Nothing Special   »   [go: up one dir, main page]

WO2010101024A1 - Method for preparing 5-hydroxymethylfurfural - Google Patents

Method for preparing 5-hydroxymethylfurfural Download PDF

Info

Publication number
WO2010101024A1
WO2010101024A1 PCT/JP2010/052435 JP2010052435W WO2010101024A1 WO 2010101024 A1 WO2010101024 A1 WO 2010101024A1 JP 2010052435 W JP2010052435 W JP 2010052435W WO 2010101024 A1 WO2010101024 A1 WO 2010101024A1
Authority
WO
WIPO (PCT)
Prior art keywords
hmf
catalyst
acid
solid
fructose
Prior art date
Application number
PCT/JP2010/052435
Other languages
French (fr)
Japanese (ja)
Inventor
幸喜 海老谷
敦 高垣
Original Assignee
国立大学法人北陸先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北陸先端科学技術大学院大学 filed Critical 国立大学法人北陸先端科学技術大学院大学
Publication of WO2010101024A1 publication Critical patent/WO2010101024A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • C07D307/50Preparation from natural products

Definitions

  • the present invention relates to a process for producing 5-hydroxymethylfurfural using oligosaccharides and monosaccharides obtained from polysaccharides such as cellulose as raw materials.
  • HMF 5-Hydroxymethylfurfural
  • resin materials such as resin materials, pharmaceuticals, agricultural chemicals, and fragrances.
  • biomass has attracted attention as an alternative to petroleum.
  • Patent Documents 1 to 3 disclose techniques for synthesizing HMF directly from cellulose.
  • the techniques disclosed therein are high-pressure and high-temperature reactions in which a liquid acid such as sulfuric acid coexists and the pressure is 10 MPa or more and 220 ° C. or more, and the yield of HMF is not necessarily high.
  • Patent Document 4 discloses a technique for synthesizing HMF from saccharides using zirconium phosphate as a solid catalyst. However, a supercritical or subcritical hydrothermal reaction is necessary. In the examples, the yield of HMF from fructose is 49-53%, but the yield of HMF from glucose is 20-23%. And low.
  • Patent Document 5 discloses synthesis of HMF from sugars using ammonium sulfate as a catalyst under hydrothermal conditions of 145 to 200 ° C., but the yield is as low as 30% or less.
  • Patent Document 6 discloses the synthesis of HMF from saccharides using an aluminosilicate solid catalyst, but is harsh at 165 ° C. and 10 atm.
  • Patent Document 7 and Non-Patent Documents 1 and 2 disclose a technique for synthesizing HMF from fructose and glucose in a two-phase system of an aqueous phase and an organic phase mainly using hydrochloric acid, but the process is complicated. The synthesis yield of HMF is as low as 24%.
  • Patent Document 8 and Non-Patent Document 3 disclose a technique for synthesizing HMF from glucose in a yield of about 70% by using an ionic liquid, but the ionic liquid is very expensive.
  • An object of the present invention is to provide a method for producing 5-hydroxymethylfurfural, which can be produced at low cost from saccharides under mild conditions.
  • the inventors of the present invention make glucose fructose by an isomerization reaction with an acid and a base, and this fructose mainly undergoes a dehydration reaction with an acid to become HMF. Focused on the process. More specifically, if the isomerization reaction of glucose to fructose proceeds with a solid base catalyst and the subsequent dehydration reaction from fructose to HMF proceeds with a solid acid catalyst, the liquid acid and base simultaneously Although it cannot be added to the reactor, the inventors have focused on the fact that a solid base and a solid acid can coexist in the same reactor, leading to the present invention.
  • the present invention showed that 5-hydroxymethylfurfural was converted from a saccharide in the presence of a solid base catalyst and a solid acid catalyst having a sulfonic acid group in a solvent. It is characterized by obtaining.
  • the saccharides may be not only monosaccharides such as glucose but also oligosaccharides such as cellobiose and sucrose. In the present specification, it means a broad sense oligosaccharide and includes disaccharides.
  • the solid base catalyst is one that does not dissolve in the solvent used in the reaction system and is solid in the solvent.
  • Alkaline earth metal oxides such as CaO and MgO are included in the solid base catalyst, but are used in the present invention.
  • Al 2 O 3 is treated as an acid catalyst and is not included in the solid base catalyst.
  • the solid base catalyst is preferably a layered double hydroxide (LDH).
  • LDH layered double hydroxide
  • the main skeleton of the structure is a sheet-like metal hydroxide.
  • Representative examples of the layered double hydroxide of the catalyst used in the present invention include hydrotalcites.
  • hydrotalcites are represented by [M 2+ 1-X M 3+ X (OH) 2 ] [A n- X / n ⁇ mH 2 O].
  • M 2+ is a divalent metal ion
  • M 3+ is a trivalent metal ion
  • a n ⁇ X / n is an interlayer anion.
  • the hydrotalcite compound is a layered clay mineral and has a positive charge as a whole, but has a property of adsorbing anions between layers and on the surface, and OH ⁇ and CO 3 2 ⁇ on the surface function as a base.
  • various hydrotalcites represented by the above general formula can be used. Among them, Mg—Al—CO 3 hydrotalcites are preferable.
  • the solid acid catalyst preferably has a sulfonic acid group, and sulfonic acid-introduced mesoporous silica or an ion exchange resin for an acid catalyst is preferable.
  • the ion exchange resin for the acid catalyst include Amberlist-15 (Rohm and Haas Co., Amberlist is a registered trademark) represented by the following chemical formula (1), and Nafion (registered trademark) represented by the chemical formula (2). DuPont).
  • an aprotic polar solvent such as dimethylformamide (DMF), dimethylacetamide (DMA), dimethylsulfoxide (DMSO) or the like can be used.
  • a solvent may be individual or a mixed solvent and mixing of a small amount of water is also accepted according to the kind of aprotic polar solvent.
  • the presence of a solid base catalyst and a solid acid catalyst having a sulfonic acid group in the solvent makes it possible to produce HMF at low cost under mild conditions using a general-purpose solvent.
  • the reaction from saccharides to HMF can proceed in a single reactor process, and both the base and the acid are solid, so that separation and recovery after the reaction are easy.
  • Table (1) shows the results of taking 3 ml of the solvent DMF (dimethylformamide) in the reactor, charging 0.1 g of glucose in the presence of each catalyst, and reacting them under predetermined conditions.
  • the arrows in the table indicate the same conditions as above.
  • HMF can be obtained from glucose under mild conditions using the process according to the present invention.
  • Amberlyst-15 0.1 g with respect to 0.1 g of glucose
  • the conversion rate was 65%
  • the yield of HMF was 48% (selectivity of HMF production 73%).
  • Table 2 shows the results of reacting glucose, 0.1 g, and 3 ml of solvent DMF with different combinations of solid acids.
  • Amberlyst-A21 represents an ion exchange resin having a quaternary ammonium group manufactured by Rohm & Haas Co., Ltd., and alkylsulfonic acid group-introduced mesoporous silica and phenylsulfonic acid-introduced mesoporous silica were prepared as follows. It is.
  • ⁇ Alkylsulfonic acid group-introduced mesoporous silica SBA-SO 3 H> 2 g, 4M hydrochloric acid aqueous solution using polyblock copolymer Pluronic 123 (HO (CH 2 CH 2 O) 20 (CH 2 CH (CH 3 ) O) 70 (CH 2 CH 2 O) 20 H, manufactured by BASF) as a surfactant) Dissolved in 30 mL. Water 45mL was added to this and it heated at 40 degreeC.
  • Tetraethoxysilane (TEOS) 18.98 mmol was added as a silica source, 3-mercaptopropyltrimethoxysilane (MPTMS) 1.02 mmol was added thereto, and the mixture was heated at 40 ° C. for 20 hours and further at 80 ° C. for 24 hours. After filtration and drying, the mixture was refluxed in ethanol, filtered and dried again to obtain a white powder. Water was added thereto, and the mixture was further treated with an aqueous hydrogen peroxide solution to obtain alkylsulfonic acid-introduced mesoporous silica.
  • TEOS tetraethoxysilane
  • CETS 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane
  • the BET specific surface area and pore diameter were measured using a high-accuracy specific surface area / pore distribution measuring device (BELSORP-max, Nippon Bell Co., Ltd.) using nitrogen gas as an adsorbate.
  • the acid catalyst powder was suspended in an aqueous solution and calculated by a neutralization titration method using NaOH.
  • HMF can also be generated by a combination of an ion exchange resin having CaO, MgO and a quaternary ammonium group as a solid base and a solid acid catalyst having a sulfonic acid group.
  • Table 4 shows examples in which the Mg / Al ratio of hydrotalcite was changed as a solid base to glucose, 0.1 g, and solvent DMF 3 ml.
  • Table 5 shows the experimental results of changing the catalyst amount with respect to glucose, 0.1 g, and 3 ml of solvent DMF, and Table 6 shows the experimental results of changing the reaction temperature.
  • the reaction temperature may be mild conditions of 120 ° C. or less, and the milder conditions of 80 to 100 ° C. yielded higher yields of HMF.
  • acetonitrile may be used as a solvent in addition to DMF, DMA and DMSO, and 3 to 6 vol% of H 2 O may be mixed.
  • the present invention can use not only monosaccharides but also oligosaccharides higher than disaccharides as a substrate. Furthermore, it has also been clarified that HMF is produced using fructose and mannose as raw materials.
  • HMF can be produced at low cost from sugars by a one-pot reaction under mild conditions, and effective utilization of natural resources such as cellulose can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Saccharide Compounds (AREA)

Abstract

The purpose of the present invention is to provide a method for preparing 5-hydroxymethylfurfural (HMF) from a saccharide at a low cost under mild conditions. Attention has been paid to a reaction path for the preparation of HMF from a saccharide, said reaction path comprising both isomerization of glucose into fructose by means of an acid or a base, and subsequent dehydration of the fructose into HMF mainly by means of an acid. Specifically provided is a method which includes isomerizing glucose into fructose by means of a solid base catalyst and dehydrating the fructose into HMF by means of a solid acid catalyst having sulfonic acid groups. In this method, the solid base catalyst and the solid acid catalyst can coexist in the same reactor, though simultaneous addition of a liquid acid catalyst and a liquid base catalyst into the same reactor is impermissible.

Description

5-ヒドロキシメチルフルフラールの製造方法Method for producing 5-hydroxymethylfurfural
 本発明は、セルロース等の多糖類から得られるオリゴ糖や単糖類を原材料とした5-ヒドロキシメチルフルフラールの製造方法に関する。 The present invention relates to a process for producing 5-hydroxymethylfurfural using oligosaccharides and monosaccharides obtained from polysaccharides such as cellulose as raw materials.
 5-ヒドロキシメチルフルフラール(以下、単にHMFとも称する。)は、樹脂材料、医薬品、農薬、香料などの広い分野にて重要な化合物である。
 近年、石油代替としてバイオマスが注目されていて、例えば、特許文献1~3にはセルロースから直接HMFを合成する技術を開示する。
 しかし、これらに開示する技術は、硫酸等の液体酸を共存させ、圧力10MPa以上、220℃以上の高圧高温反応であり、かならずしもHMFの収率が高くない。
5-Hydroxymethylfurfural (hereinafter, also simply referred to as HMF) is an important compound in a wide range of fields such as resin materials, pharmaceuticals, agricultural chemicals, and fragrances.
In recent years, biomass has attracted attention as an alternative to petroleum. For example, Patent Documents 1 to 3 disclose techniques for synthesizing HMF directly from cellulose.
However, the techniques disclosed therein are high-pressure and high-temperature reactions in which a liquid acid such as sulfuric acid coexists and the pressure is 10 MPa or more and 220 ° C. or more, and the yield of HMF is not necessarily high.
 特許文献4には、リン酸ジルコニウムを固体触媒に用いて糖類からHMFを合成する技術を開示する。
 しかし、超臨界あるいは亜臨界状態の水熱反応が必要であり、実施例を見るとフルクトースからのHMFの収率が49~53%であるが、グルコースからのHMFの収率が20~23%と低い。
Patent Document 4 discloses a technique for synthesizing HMF from saccharides using zirconium phosphate as a solid catalyst.
However, a supercritical or subcritical hydrothermal reaction is necessary. In the examples, the yield of HMF from fructose is 49-53%, but the yield of HMF from glucose is 20-23%. And low.
 特許文献5には、145~200℃の水熱条件下、硫酸アンモニウムを触媒として用い糖類からHMFの合成を開示するが、その収率は30%以下と低い。 Patent Document 5 discloses synthesis of HMF from sugars using ammonium sulfate as a catalyst under hydrothermal conditions of 145 to 200 ° C., but the yield is as low as 30% or less.
 特許文献6には、アルミノシリケートの固体触媒を用い、糖類からHMFの合成を開示するが165℃,10気圧の厳しい条件である。 Patent Document 6 discloses the synthesis of HMF from saccharides using an aluminosilicate solid catalyst, but is harsh at 165 ° C. and 10 atm.
 特許文献7,非特許文献1,2には、主に塩酸を用い水相-有機相の2相系にてフルクトース、グルコースからHMFを合成する技術を開示するがプロセスが複雑であり、グルコースからのHMF合成収率が24%と低い。 Patent Document 7 and Non-Patent Documents 1 and 2 disclose a technique for synthesizing HMF from fructose and glucose in a two-phase system of an aqueous phase and an organic phase mainly using hydrochloric acid, but the process is complicated. The synthesis yield of HMF is as low as 24%.
 特許文献8,非特許文献3には、イオン液体を用いることでグルコースから収率約70%でHMFを合成する技術を開示するが、イオン液体は非常に高価である。 Patent Document 8 and Non-Patent Document 3 disclose a technique for synthesizing HMF from glucose in a yield of about 70% by using an ionic liquid, but the ionic liquid is very expensive.
特開2005-200321号公報Japanese Patent Laid-Open No. 2005-200321 特開2005-232116号公報Japanese Patent Laying-Open No. 2005-232116 特開2007-145736号公報JP 2007-145736 A 特開2007-196174号公報JP 2007-196174 A カナダ特許第703046号公報Canadian Patent No. 703046 PCT WO9617837公開公報PCT WO9617837 Publication PCT WO2007146636公開公報PCT WO2007146636 Publication
 本発明は、糖類から穏やかな条件下で、安価に製造できる、5-ヒドロキシメチルフルフラールの製造方法の提供を目的とする。 An object of the present invention is to provide a method for producing 5-hydroxymethylfurfural, which can be produced at low cost from saccharides under mild conditions.
 本発明者らは、糖類からHMFを製造する場合にグルコースが酸及び塩基により、異性化反応が進行する事でフルクトースになり、このフルクトースが主に酸により脱水反応が進行し、HMFになる反応プロセスに着目した。
 より具体的には、グルコースからフルクトースの異性化反応を固体塩基触媒にて進行させ、次のフルクトースからHMFへの脱水反応を固体酸触媒で進行させることにすれば、液体の酸、塩基では同時に反応器に加えることができないが固体の塩基と固体の酸であれば同じ反応器内に共存させることができると着目し本発明に至った。
In the production of HMF from saccharides, the inventors of the present invention make glucose fructose by an isomerization reaction with an acid and a base, and this fructose mainly undergoes a dehydration reaction with an acid to become HMF. Focused on the process.
More specifically, if the isomerization reaction of glucose to fructose proceeds with a solid base catalyst and the subsequent dehydration reaction from fructose to HMF proceeds with a solid acid catalyst, the liquid acid and base simultaneously Although it cannot be added to the reactor, the inventors have focused on the fact that a solid base and a solid acid can coexist in the same reactor, leading to the present invention.
 本発明は、固体の塩基と固体の酸の組み合せを検討した結果、溶媒中に固体塩基触媒とスルホン酸基を有する固体酸触媒を共存させた状態下にて、糖類から5-ヒドロキシメチルフルフラールを得ることを特徴とする。
 糖類はグルコース等の単糖類のみならず、セロビオース,スクロース等のオリゴ糖であってもよい。
 本明細書では広義オリゴ糖を意味し、二糖類も含まれる。
As a result of studying the combination of a solid base and a solid acid, the present invention showed that 5-hydroxymethylfurfural was converted from a saccharide in the presence of a solid base catalyst and a solid acid catalyst having a sulfonic acid group in a solvent. It is characterized by obtaining.
The saccharides may be not only monosaccharides such as glucose but also oligosaccharides such as cellobiose and sucrose.
In the present specification, it means a broad sense oligosaccharide and includes disaccharides.
 ここで、固体塩基触媒は反応系に用いる溶媒に溶解しない、溶媒中で固体のものをいい、CaO,MgO等のアルカリ土類金属の酸化物は固体塩基触媒に含まれるが、本発明に用いる反応系ではAlを酸触媒として取扱い、固体塩基触媒には含めない。
 本発明において固体塩基触媒は、層状複水酸化物(LDH:Layered Double Hydroxide)であるのが好ましい。
 層状複水酸化物は構造の主骨格がシート状の金属水酸化物になっている。
 本発明に用いる触媒の層状複水酸化物の代表例にはハイドロタルサイト類がある。
 ここで、ハイドロタルサイト類の一般式は[M2+ 1-X3+ (OH)][An- X/n・mHO]で表される。
 (但し、M2+は2価の金属イオン、M3+は3価の金属イオン、An- X/nは層間陰イオンである。)
 ハイドロタルサイト類化合物は、層状粘土鉱物であり全体としては正の電荷を有するが層間及び表面にアニオンが吸着する性質を有し、表面のOH,CO 2-が塩基として機能する。
 本発明に用いる触媒には上記一般式で表現される各種ハイドロタルサイト類を使用できるが、その中でも好ましいのはMg-Al-CO系ハイドロタルサイト類である。
Here, the solid base catalyst is one that does not dissolve in the solvent used in the reaction system and is solid in the solvent. Alkaline earth metal oxides such as CaO and MgO are included in the solid base catalyst, but are used in the present invention. In the reaction system, Al 2 O 3 is treated as an acid catalyst and is not included in the solid base catalyst.
In the present invention, the solid base catalyst is preferably a layered double hydroxide (LDH).
In the layered double hydroxide, the main skeleton of the structure is a sheet-like metal hydroxide.
Representative examples of the layered double hydroxide of the catalyst used in the present invention include hydrotalcites.
Here, the general formula of hydrotalcites is represented by [M 2+ 1-X M 3+ X (OH) 2 ] [A n- X / n · mH 2 O].
(However, M 2+ is a divalent metal ion, M 3+ is a trivalent metal ion, and A n− X / n is an interlayer anion.)
The hydrotalcite compound is a layered clay mineral and has a positive charge as a whole, but has a property of adsorbing anions between layers and on the surface, and OH and CO 3 2− on the surface function as a base.
As the catalyst used in the present invention, various hydrotalcites represented by the above general formula can be used. Among them, Mg—Al—CO 3 hydrotalcites are preferable.
 本発明において固体酸触媒は、スルホン酸基を有するものがよく、スルホン酸導入メソポーラスシリカや酸触媒用のイオン交換樹脂が好ましい。
 酸触媒用のイオン交換樹脂としては例えば、下記化学式(1)に示すアンバーリスト-15(ローム・アンド・ハース株式会社、アンバーリストは登録商標)及び、化学式(2)で示すナフィオン(登録商標,デュポン社)が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
In the present invention, the solid acid catalyst preferably has a sulfonic acid group, and sulfonic acid-introduced mesoporous silica or an ion exchange resin for an acid catalyst is preferable.
Examples of the ion exchange resin for the acid catalyst include Amberlist-15 (Rohm and Haas Co., Amberlist is a registered trademark) represented by the following chemical formula (1), and Nafion (registered trademark) represented by the chemical formula (2). DuPont).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 本発明に係る5-ヒドロキシメチルフルフラールの反応スキームの例を下記反応式(3)に示す。
Figure JPOXMLDOC01-appb-C000003
An example of the reaction scheme of 5-hydroxymethylfurfural according to the present invention is shown in the following reaction formula (3).
Figure JPOXMLDOC01-appb-C000003
 溶媒としては、ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMA),ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒を用いることができる。
 なお、溶媒は単独でも混合溶媒でもよく、非プロトン性極性溶媒の種類に応じて少量の水の混合も許容される。
As the solvent, an aprotic polar solvent such as dimethylformamide (DMF), dimethylacetamide (DMA), dimethylsulfoxide (DMSO) or the like can be used.
In addition, a solvent may be individual or a mixed solvent and mixing of a small amount of water is also accepted according to the kind of aprotic polar solvent.
 本発明においては、溶媒中に固体塩基触媒とスルホン酸基を有する固体酸触媒を存在させることで、汎用溶媒を用い穏やかな条件下にて安価にHMFを製造することができる。
 また、糖類からHMFへの反応を1つの反応器によるプロセスで進行でき、塩基も酸も固体であることから反応後の分離回収が容易である。
In the present invention, the presence of a solid base catalyst and a solid acid catalyst having a sulfonic acid group in the solvent makes it possible to produce HMF at low cost under mild conditions using a general-purpose solvent.
In addition, the reaction from saccharides to HMF can proceed in a single reactor process, and both the base and the acid are solid, so that separation and recovery after the reaction are easy.
反応時間と生成物の関係を示す。The relationship between reaction time and product is shown.
 本発明に係るHMFの製造方法を実験結果に基づいて以下説明するが、これに限定されるものではない。
 (実験1)
 反応器に溶媒DMF(ジメチルホルムアミド)3mlを採り、各触媒の存在下でグルコース0.1gを仕込み、所定の条件にて反応させた結果を表(1)に示す。
 なお、表中矢印は上の条件と同じであることを示す。
Although the manufacturing method of HMF concerning the present invention is explained below based on an experimental result, it is not limited to this.
(Experiment 1)
Table (1) shows the results of taking 3 ml of the solvent DMF (dimethylformamide) in the reactor, charging 0.1 g of glucose in the presence of each catalyst, and reacting them under predetermined conditions.
The arrows in the table indicate the same conditions as above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の結果から本発明に係るプロセスを用いると温和な条件下でグルコースからHMFを得ることができることが明らかになった。
 例えば、グルコース,0.1gに対してハイドロタルサイト(Mg/Al=3),0.2g、アンバーリスト-15,0.1g、の場合に80℃×9時間の反応にて反応したグルコースの転化率65%、HMFの収率48%(HMF生成の選択率73%)であった。
From the results in Table 1, it was revealed that HMF can be obtained from glucose under mild conditions using the process according to the present invention.
For example, in the case of 0.1 g of hydrotalcite (Mg / Al = 3), 0.2 g, Amberlyst-15, 0.1 g with respect to 0.1 g of glucose, The conversion rate was 65%, and the yield of HMF was 48% (selectivity of HMF production 73%).
 次に、本発明に係る反応プロセスを確認すべく反応時間による生成物の変化を調査したその結果を図1のグラフに示す。
 図1に示したグラフは、グルコース,0.1gに対してハイドロタルサイト(Mg/Al=3),0.2g、アンバーリスト-15,0.1gを用いた反応系であるが、反応経過を追跡するために一定時間毎にサンプリングしたものである。
 反応初期においては、フルクトースの生成が認められ、その後にフルクトースが減少していることから、前述の反応式(3)に示した反応スキームに沿って反応が進行したと推定される。
Next, the result of investigating the change of the product with the reaction time to confirm the reaction process according to the present invention is shown in the graph of FIG.
The graph shown in FIG. 1 is a reaction system using hydrotalcite (Mg / Al = 3), 0.2 g, and Amberlyst-15, 0.1 g for 0.1 g of glucose. Is sampled at regular intervals to track
In the initial stage of the reaction, the production of fructose was observed, and the fructose decreased thereafter. Therefore, it is presumed that the reaction proceeded according to the reaction scheme shown in the above reaction formula (3).
 表2にグルコース,0.1g、溶媒DMF3mlに対して固体酸の組み合せを変えて反応させた結果を示す。 Table 2 shows the results of reacting glucose, 0.1 g, and 3 ml of solvent DMF with different combinations of solid acids.
Figure JPOXMLDOC01-appb-T000005
表中、アンバーリスト-A21はローム・アンド・ハース株式会社製の4級アンモニウム基を有するイオン交換樹脂を示し、アルキルスルホン酸基導入メソポーラスシリカ及びフェニルスルホン酸導入メソポーラスシリカは下記のとおり作製したものである。
<アルキルスルホン酸基導入メソポーラスシリカ(SBA-SOH)>
 ポリブロックコポリマーPluronic123(HO(CHCHO)20(CHCH(CH)O)70(CHCHO)20H,BASF社製)を界面活性剤として2g,4Mの塩酸水溶液30mLに溶解させた。
 これに水45mLを加え40℃に加熱した。
 シリカ源としてテトラエトキシシラン(TEOS)18.98mmolを加え、これに3-メルカプトプロピルトリメトキシシラン(MPTMS)1.02mmolを加え、40℃で20時間、さらに80℃24時間加熱した。
 ろ過、乾燥後エタノール中で還流し再びろ過、乾燥させ白色粉末を得た。
 これに水を加え、さらに過酸化水素水溶液により処理し、アルキルスルホン酸導入メソポーラスシリカを得た。
<フェニルスルホン酸導入メソポーラスシリカ(SBA-phSOH)>
 ポリブロックコポリマーPluronic123(HO(CHCHO)20(CHCH(CH)O)70(CHCHO)20H,BASF社製)を界面活性剤として2g,4Mの塩酸水溶液30mLに溶解させた。
 これに水45mLを加え40℃に加熱した。
 シリカ源としてテトラエトキシシラン(TEOS)18.98mmolを加え、これに2-(4-クロロスルホニルフェニル)エチルトリメトキシシラン(CPETS)1.02mmolを加え、40℃で20時間、さらに80℃24時間加熱した。
 ろ過、乾燥後エタノール中で還流し再びろ過、乾燥させ白色粉末を得た。
 これによりフェニルスルホン酸導入シリカを得た。
 これらの物性値を下記の表3に示す。
 ここで、BET比表面積及び細孔径については、高精度比表面積・細孔分布測定装置(BELSORP-max,日本ベル株式会社)にて吸着質として窒素ガスを用いて測定し、酸量は、固体酸触媒粉末を水溶液に懸濁させ、NaOHを用いた中和滴定法により算出した。
Figure JPOXMLDOC01-appb-T000005
In the table, Amberlyst-A21 represents an ion exchange resin having a quaternary ammonium group manufactured by Rohm & Haas Co., Ltd., and alkylsulfonic acid group-introduced mesoporous silica and phenylsulfonic acid-introduced mesoporous silica were prepared as follows. It is.
<Alkylsulfonic acid group-introduced mesoporous silica (SBA-SO 3 H)>
2 g, 4M hydrochloric acid aqueous solution using polyblock copolymer Pluronic 123 (HO (CH 2 CH 2 O) 20 (CH 2 CH (CH 3 ) O) 70 (CH 2 CH 2 O) 20 H, manufactured by BASF) as a surfactant) Dissolved in 30 mL.
Water 45mL was added to this and it heated at 40 degreeC.
Tetraethoxysilane (TEOS) 18.98 mmol was added as a silica source, 3-mercaptopropyltrimethoxysilane (MPTMS) 1.02 mmol was added thereto, and the mixture was heated at 40 ° C. for 20 hours and further at 80 ° C. for 24 hours.
After filtration and drying, the mixture was refluxed in ethanol, filtered and dried again to obtain a white powder.
Water was added thereto, and the mixture was further treated with an aqueous hydrogen peroxide solution to obtain alkylsulfonic acid-introduced mesoporous silica.
<Phenylsulfonic acid-introduced mesoporous silica (SBA-phSO 3 H)>
2 g, 4M hydrochloric acid aqueous solution using polyblock copolymer Pluronic 123 (HO (CH 2 CH 2 O) 20 (CH 2 CH (CH 3 ) O) 70 (CH 2 CH 2 O) 20 H, manufactured by BASF) as a surfactant) Dissolved in 30 mL.
Water 45mL was added to this and it heated at 40 degreeC.
As a silica source, 18.98 mmol of tetraethoxysilane (TEOS) was added, 1.02 mmol of 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane (CPETS) was added thereto, 20 hours at 40 ° C., and 24 hours at 80 ° C. Heated.
After filtration and drying, the mixture was refluxed in ethanol, filtered and dried again to obtain a white powder.
Thereby, phenylsulfonic acid-introduced silica was obtained.
These physical property values are shown in Table 3 below.
Here, the BET specific surface area and pore diameter were measured using a high-accuracy specific surface area / pore distribution measuring device (BELSORP-max, Nippon Bell Co., Ltd.) using nitrogen gas as an adsorbate. The acid catalyst powder was suspended in an aqueous solution and calculated by a neutralization titration method using NaOH.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2の結果から、固体塩基としてCaO,MgO及び4級アンモニウム基を有するイオン交換樹脂とスルホン酸基を有する固体酸触媒の組み合せでもHMFを生成することができる。 From the results in Table 2, HMF can also be generated by a combination of an ion exchange resin having CaO, MgO and a quaternary ammonium group as a solid base and a solid acid catalyst having a sulfonic acid group.
 グルコース,0.1g、溶媒DMF3mlに対して固体塩基としてハイドロタルサイトのMg/Al比を変化させた実施例を表4に示す。 Table 4 shows examples in which the Mg / Al ratio of hydrotalcite was changed as a solid base to glucose, 0.1 g, and solvent DMF 3 ml.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に示す結果から、Mg/Al比の異なるハイドロタルサイトを用いてもHMFを生成することが分かる。 From the results shown in Table 4, it can be seen that HMF is generated even when hydrotalcites having different Mg / Al ratios are used.
 次にグルコース,0.1g、溶媒DMF3mlに対して触媒量を変化させた実験結果を表5に示し、反応温度を変化させた実験結果を表6に示す。 Next, Table 5 shows the experimental results of changing the catalyst amount with respect to glucose, 0.1 g, and 3 ml of solvent DMF, and Table 6 shows the experimental results of changing the reaction temperature.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 これにより、固体塩基の触媒量が少なくなると、フルクトースへの異性化反応に影響を与えるが、固体酸の触媒量の影響は小さいことが分かる。
 また、反応温度は120℃以下の温和な条件でよく、80~100℃の温和な条件の方がHMFの収率が高かった。
Thus, it can be seen that when the catalyst amount of the solid base decreases, the isomerization reaction to fructose is affected, but the effect of the catalyst amount of the solid acid is small.
The reaction temperature may be mild conditions of 120 ° C. or less, and the milder conditions of 80 to 100 ° C. yielded higher yields of HMF.
 グルコース,0.1g、ハイドロタルサイト(Mg/Al=3)0.1g、アンバーリスト-15,0.1gに対して溶媒の種類を変化させた実験結果を表7に示す。 Table 7 shows the experimental results when the type of solvent was changed with respect to glucose, 0.1 g, hydrotalcite (Mg / Al = 3) 0.1 g, and Amberlyst-15, 0.1 g.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 これにより、溶媒としてDMF,DMA,DMSOの他にアセトニトリルでもよく、HOを3~6vol%混合してもよいことが分かる。 Thus, it can be seen that acetonitrile may be used as a solvent in addition to DMF, DMA and DMSO, and 3 to 6 vol% of H 2 O may be mixed.
 次に基質としてグルコース以外を用いてHMFの製造実験を実施した。
 二糖類の例として、セロビオース(グルコース2分子がβ-1,4グリコシド結合)、スクロース(グルコースとフルクトースがグリコシド結合)及びマルトースを用いて、溶媒DMF3ml中にそれぞれ0.1gを仕込み、表8に示した条件にて反応させた。
 その結果、表8に示すようにセロビオースの場合に収率36%でHMFが得られ、スクロースの場合に収率55%でHMFが得られた。
 これにより、本発明は基質として単糖類のみならず、二糖類以上のオリゴ糖も用いることができることが明らかになった。
 さらには、フルクトースやマンノースを原料としてもHMFが生成することも明らかになった。
Figure JPOXMLDOC01-appb-T000011
Next, an experiment for producing HMF was carried out using other than glucose as a substrate.
As examples of disaccharides, cellobiose (glucose 2 molecule is β-1,4 glycoside bond), sucrose (glucose and fructose is glycoside bond) and maltose were used, and 0.1 g each was charged in 3 ml of solvent DMF. The reaction was carried out under the conditions indicated.
As a result, as shown in Table 8, in the case of cellobiose, HMF was obtained in a yield of 36%, and in the case of sucrose, HMF was obtained in a yield of 55%.
Thereby, it became clear that the present invention can use not only monosaccharides but also oligosaccharides higher than disaccharides as a substrate.
Furthermore, it has also been clarified that HMF is produced using fructose and mannose as raw materials.
Figure JPOXMLDOC01-appb-T000011
 本発明は糖類から温和な条件でワンポット反応によりHMFを安価に製造することができ、セルロース等の天然資源の有効活用も期待できる。 In the present invention, HMF can be produced at low cost from sugars by a one-pot reaction under mild conditions, and effective utilization of natural resources such as cellulose can be expected.

Claims (4)

  1.  溶媒中に固体塩基触媒と、スルホン酸基を有する固体酸触媒とを共存させた状態下にて、
    糖類から5-ヒドロキシメチルフルフラールを得ることを特徴とする5-ヒドロキシメチルフルフラールの製造方法。
    In a state where a solid base catalyst and a solid acid catalyst having a sulfonic acid group coexist in a solvent,
    A process for producing 5-hydroxymethylfurfural, wherein 5-hydroxymethylfurfural is obtained from a saccharide.
  2.  糖類は単糖類又はオリゴ糖であることを特徴とする請求の範囲1記載の5-ヒドロキシメチルフルフラールの製造方法。 The method for producing 5-hydroxymethylfurfural according to claim 1, wherein the saccharide is a monosaccharide or an oligosaccharide.
  3.  固体塩基触媒は、ハイドロタルサイト類であることを特徴とする請求の範囲1又は2記載の5-ヒドロキシメチルフルフラールの製造方法。 3. The method for producing 5-hydroxymethylfurfural according to claim 1 or 2, wherein the solid base catalyst is hydrotalcite.
  4.  固体酸触媒は、酸触媒用イオン交換樹脂であることを特徴とする請求の範囲1~3のいずれかに記載の5-ヒドロキシメチルフルフラールの製造方法。 The method for producing 5-hydroxymethylfurfural according to any one of claims 1 to 3, wherein the solid acid catalyst is an ion exchange resin for an acid catalyst.
PCT/JP2010/052435 2009-03-06 2010-02-18 Method for preparing 5-hydroxymethylfurfural WO2010101024A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009053041A JP2012121811A (en) 2009-03-06 2009-03-06 Method for preparing 5-hydroxymethylfurfural
JP2009-053041 2009-03-06

Publications (1)

Publication Number Publication Date
WO2010101024A1 true WO2010101024A1 (en) 2010-09-10

Family

ID=42709585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052435 WO2010101024A1 (en) 2009-03-06 2010-02-18 Method for preparing 5-hydroxymethylfurfural

Country Status (2)

Country Link
JP (1) JP2012121811A (en)
WO (1) WO2010101024A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012071708A1 (en) * 2010-11-29 2012-06-07 中国科学院大连化学物理研究所 Preparation method of catalyzing carbohydrate into 5-hydroxymethylfurfural
WO2012102347A1 (en) * 2011-01-28 2012-08-02 三菱化学株式会社 Method for producing 2-furaldehyde
FR2979345A1 (en) * 2011-08-26 2013-03-01 Centre Nat Rech Scient PROCESS FOR ISOMERIZING GLUCOSE IN FRUCTOSE
CN103113329A (en) * 2013-02-19 2013-05-22 齐齐哈尔大学 Method for preparing 5-hydroxymethylfurfural through solid super acid catalysis
CN103159707A (en) * 2011-12-09 2013-06-19 中国科学院大连化学物理研究所 Method for preparing furan derivatives through biomass catalytic conversion
JP2014528407A (en) * 2011-09-29 2014-10-27 エスケー ケミカルズ カンパニー リミテッド Process for producing 5-hydroxymethyl-2-furfural or an alkyl ether derivative thereof using ion exchange resin under organic solvent
WO2015054756A1 (en) * 2013-10-17 2015-04-23 Petróleo Brasileiro S.A. - Petrobras Integrated 2,5-furandicarboxylic acid production method
EP3114230A4 (en) * 2014-03-04 2017-07-26 Yale University Novel methods of isomerizing carbohydrates
CN110560088A (en) * 2019-09-27 2019-12-13 河南科技学院 Functional carbon-based magnetic solid acid catalyst synthesized by one-pot method and application thereof in catalyzing bagasse hydrolysis to produce sugar
CN111841527A (en) * 2020-07-14 2020-10-30 江苏理工学院 Preparation method and application of composite bimetal oxide mesoporous material
CN113333022A (en) * 2021-05-20 2021-09-03 济南大学 Preparation method and application of bifunctional solid acid catalyst
CN113908825A (en) * 2021-10-13 2022-01-11 广东省科学院生物与医学工程研究所 Chromium-magnesium-containing hydrotalcite material composite biochar solid catalyst and preparation method and application thereof
CN114736175A (en) * 2022-03-09 2022-07-12 常州大学 Method for preparing 5-hydroxymethylfurfural by catalyzing glucose in aqueous phase
CN115806534A (en) * 2021-09-14 2023-03-17 中国科学院大连化学物理研究所 Preparation method of 5-hydroxymethylfurfural

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993140B (en) * 2012-12-13 2014-12-17 浙江大学 Method for preparing 5-hydroxymethyl furfural by catalyzing biomass conversion
JP5776717B2 (en) 2013-03-18 2015-09-09 コニカミノルタ株式会社 Toner for developing electrostatic image, method for producing the same, and image forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339387A (en) * 1979-09-05 1982-07-13 Roquette Freres Process for manufacturing 5-hydroxymethylfurfural
JPH06504272A (en) * 1990-12-07 1994-05-19 コミツサリア レネルジーアトミーク Method for preparing 5-hydroxymethylfurfural using heterogeneous catalysts
JP2007145736A (en) * 2005-11-25 2007-06-14 Canon Inc Manufacturing method of 5-hydroxymethylfurfural

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339387A (en) * 1979-09-05 1982-07-13 Roquette Freres Process for manufacturing 5-hydroxymethylfurfural
JPH06504272A (en) * 1990-12-07 1994-05-19 コミツサリア レネルジーアトミーク Method for preparing 5-hydroxymethylfurfural using heterogeneous catalysts
JP2007145736A (en) * 2005-11-25 2007-06-14 Canon Inc Manufacturing method of 5-hydroxymethylfurfural

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CLAUDE MOREAU ET AL.: "Determination of the basic strength of solid catalysts in water by means of a kinetic tracer", CATALYSIS COMMUNICATIONS, vol. 7, no. 12, 2006, pages 941 - 944 *
MIKA OHARA ET AL.: "Kotai San Enki Shokubai o Mochiita Glucose kara 5-hydroxymethylfurfural eno One-pot Gosei", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 89TH, no. 1, 13 March 2009 (2009-03-13), pages 332 1 H3 - 32 *
TAKAGAKI ATSUSHI ET AL.: "A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides", CHEM. COMMUN., no. 41, 7 November 2009 (2009-11-07), pages 6276 - 6278 *
XINHUA QI ET AL.: "Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating", CATALYSIS COMMUNICATIONS, vol. 9, no. 13, 2008, pages 2244 - 2249 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327271B2 (en) 2010-11-29 2016-05-03 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural
US8785668B2 (en) * 2010-11-29 2014-07-22 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method of catalytic conversion of carbohydrates into 5-hydroxymethylfurfural
WO2012071708A1 (en) * 2010-11-29 2012-06-07 中国科学院大连化学物理研究所 Preparation method of catalyzing carbohydrate into 5-hydroxymethylfurfural
US20130281719A1 (en) * 2010-11-29 2013-10-24 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method of catalytic conversion of carbohydrates into 5-hydroxymethylfurfural
US9403787B2 (en) 2011-01-28 2016-08-02 Mitsubishi Chemical Corporation Method for producing 2-furaldehyde
US9815807B2 (en) 2011-01-28 2017-11-14 Mitsubishi Chemical Corporation Method for producing 2-furaldehyde
WO2012102347A1 (en) * 2011-01-28 2012-08-02 三菱化学株式会社 Method for producing 2-furaldehyde
FR2979345A1 (en) * 2011-08-26 2013-03-01 Centre Nat Rech Scient PROCESS FOR ISOMERIZING GLUCOSE IN FRUCTOSE
JP2014525342A (en) * 2011-08-26 2014-09-29 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク(セ.エン.エル.エス.) Method for isomerizing glucose to fructose
WO2013030132A1 (en) * 2011-08-26 2013-03-07 Centre National De La Recherche Scientifique (C.N.R.S) Method for the isomerisation of glucose into fructose
US9963477B2 (en) 2011-08-26 2018-05-08 Centre National De La Recherche Scientifique (C.N.R.S.) Method for the isomerisation of glucose into fructose
JP2014528407A (en) * 2011-09-29 2014-10-27 エスケー ケミカルズ カンパニー リミテッド Process for producing 5-hydroxymethyl-2-furfural or an alkyl ether derivative thereof using ion exchange resin under organic solvent
JP2017128600A (en) * 2011-09-29 2017-07-27 エスケー ケミカルズ カンパニー リミテッド Method for producing 5-hydroxymethyl-2-furfural or alkyl ether derivatives thereof using ion exchange resin in presence of organic solvent
CN103159707A (en) * 2011-12-09 2013-06-19 中国科学院大连化学物理研究所 Method for preparing furan derivatives through biomass catalytic conversion
CN103113329B (en) * 2013-02-19 2015-04-08 齐齐哈尔大学 Method for preparing 5-hydroxymethylfurfural through solid super acid catalysis
CN103113329A (en) * 2013-02-19 2013-05-22 齐齐哈尔大学 Method for preparing 5-hydroxymethylfurfural through solid super acid catalysis
WO2015054756A1 (en) * 2013-10-17 2015-04-23 Petróleo Brasileiro S.A. - Petrobras Integrated 2,5-furandicarboxylic acid production method
EP3114230A4 (en) * 2014-03-04 2017-07-26 Yale University Novel methods of isomerizing carbohydrates
CN110560088A (en) * 2019-09-27 2019-12-13 河南科技学院 Functional carbon-based magnetic solid acid catalyst synthesized by one-pot method and application thereof in catalyzing bagasse hydrolysis to produce sugar
CN111841527A (en) * 2020-07-14 2020-10-30 江苏理工学院 Preparation method and application of composite bimetal oxide mesoporous material
CN113333022A (en) * 2021-05-20 2021-09-03 济南大学 Preparation method and application of bifunctional solid acid catalyst
CN115806534A (en) * 2021-09-14 2023-03-17 中国科学院大连化学物理研究所 Preparation method of 5-hydroxymethylfurfural
CN113908825A (en) * 2021-10-13 2022-01-11 广东省科学院生物与医学工程研究所 Chromium-magnesium-containing hydrotalcite material composite biochar solid catalyst and preparation method and application thereof
CN113908825B (en) * 2021-10-13 2023-08-25 广东省科学院生物与医学工程研究所 Solid catalyst containing chromium-magnesium hydrotalcite material composite biochar, and preparation method and application thereof
CN114736175A (en) * 2022-03-09 2022-07-12 常州大学 Method for preparing 5-hydroxymethylfurfural by catalyzing glucose in aqueous phase
CN114736175B (en) * 2022-03-09 2023-09-26 常州大学 Method for preparing 5-hydroxymethylfurfural by catalyzing glucose in aqueous phase

Also Published As

Publication number Publication date
JP2012121811A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2010101024A1 (en) Method for preparing 5-hydroxymethylfurfural
Yang et al. Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural
US8575374B1 (en) Ionic liquids processing of biomass to reducing sugars and other dehydration products
CN104016371B (en) The in-situ synthetic method of cupric mordenite
CN101891606B (en) New method for synthesizing rhodium caprylate (II)
Wu et al. Sulfonic acid functionalized nano γ-Al2O3 catalyzed per-O-acetylated of carbohydrates
CN103086992A (en) Preparation method of hexamethoxymethyl melamine resin
CN111229264A (en) Method for preparing 5-hydroxymethylfurfural, catalyst thereof and preparation method of catalyst
CN100554231C (en) The method for preparing butyl glycol ether
JP2009215172A (en) Production method of furfurals
JP2015209411A (en) Synthesis method of hydroxymethylfurfural
CN102659088B (en) Water-phase synthesis method of sodium azide
CN100420697C (en) Method of preparing trichloro sucrose-6-organic acid ester
CN101671296B (en) New method for obtaining 2-chloro-3-methylpyridine from mixture of 2-chloro-5-methylpyridine and 2-chloro-3-methylpyridine
CN107188804B (en) Method for catalytically synthesizing methyl oleate by using composite phosphotungstate
CN105693737B (en) Bipyridine ligand with axial chirality and synthetic method thereof
CN106622372A (en) Barium-silicon tungsten oxygen cluster catalyst, preparation method and application thereof
CN103709039B (en) Method for synthesizing methyl (ethyl) gallate through catalysis of Cu-mordenite
Polidoro et al. CO 2-assisted hydrolytic hydrogenation of cellulose and cellulose-based waste into sorbitol over commercial Ru/C
CN102010397A (en) Method for preparing cyclic carbonic ester in presence of difunctional catalyst
Ma et al. Preparation, characterization and application of sulfonated mesoporous hollow carbon microspheres
Yang et al. Effective hydrolysis of polysaccharides by activated attapulgite
CN102718734A (en) Preparation method for 4-hydroxymethyl furoic acid and 2,4-furan diformic acid
CN114591157A (en) Synthesis process of 5-chloro-2-pentanone
CN107915602B (en) Polyoxymethylene dimethyl ether catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP