Nothing Special   »   [go: up one dir, main page]

WO2010147090A1 - ウレタン樹脂、活性エネルギー線硬化性接着剤、及び太陽電池用裏面保護シート - Google Patents

ウレタン樹脂、活性エネルギー線硬化性接着剤、及び太陽電池用裏面保護シート Download PDF

Info

Publication number
WO2010147090A1
WO2010147090A1 PCT/JP2010/060057 JP2010060057W WO2010147090A1 WO 2010147090 A1 WO2010147090 A1 WO 2010147090A1 JP 2010060057 W JP2010060057 W JP 2010060057W WO 2010147090 A1 WO2010147090 A1 WO 2010147090A1
Authority
WO
WIPO (PCT)
Prior art keywords
diol
meth
active energy
urethane resin
energy ray
Prior art date
Application number
PCT/JP2010/060057
Other languages
English (en)
French (fr)
Inventor
諭志 前田
梅沢 三雄
山口 浩史
猛 吉川
Original Assignee
東洋インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキ製造株式会社 filed Critical 東洋インキ製造株式会社
Priority to EP10789465.1A priority Critical patent/EP2444435A4/en
Priority to CN201080026436.8A priority patent/CN102459393B/zh
Priority to KR1020117029738A priority patent/KR101372456B1/ko
Publication of WO2010147090A1 publication Critical patent/WO2010147090A1/ja
Priority to US13/325,539 priority patent/US8404969B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/68Unsaturated polyesters
    • C08G18/683Unsaturated polyesters containing cyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/80Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
    • H10F19/85Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • Y10T428/31522Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention relates to an active energy ray-curable urethane resin suitably used for, for example, adhesives, inks, paints, and the like. Specifically, the present invention relates to an active energy ray-curable urethane resin suitable for an active energy ray-curable adhesive for forming a back surface protection sheet for solar cells.
  • the present invention relates to an active energy ray-curable adhesive that makes it possible to produce a solar cell back surface protective sheet excellent in adhesive strength between sheets and wet heat resistance with high yield and productivity and at low cost.
  • These solar cells are provided with a back surface protection sheet on the surface opposite to the surface on which sunlight is incident for the purpose of protecting the solar cell elements.
  • Performances such as weather resistance, water vapor permeability, electrical insulation, mechanical properties, and mounting workability are required for the back protective sheet for solar cells.
  • a laminate of several kinds of sheet-like members is generally used.
  • a hydroxyl group-containing resin as a main component and an isocyanate compound as a curing agent are included.
  • Use included polyurethane adhesive are included.
  • the isocyanate compound as the curing agent not only reacts with the hydroxyl group-containing resin as the main agent, but also reacts with water in the air. Since the addition reaction product of the isocyanate compound and water causes a decarboxylation reaction, bubbles are generated in the adhesive layer after the sheet-like members are laminated. Therefore, the process using the polyurethane-based adhesive also has a problem that appearance defects and delamination occur.
  • Japanese Patent Application Laid-Open No. 2008-127475 reacts a polycarbonate diol, a bifunctional epoxy (meth) acrylate having two hydroxyl groups and two ethylenically unsaturated groups in one molecule, and a polyisocyanate.
  • An active energy ray-curable resin adhesive obtained by mixing an unsaturated group-containing urethane resin with a photopolymerization initiator is disclosed.
  • this was used as an adhesive for a solar cell back surface protective sheet, the adhesive strength between the sheet-like members and the heat and humidity resistance were not sufficient.
  • An object of the present invention is to provide an active energy ray-curable composition that can produce a solar cell back surface protection sheet excellent in adhesion between sheet-like members and heat-and-moisture resistance with high yield and productivity and at low cost. There is to do.
  • 1st invention is the diol component (A1) which does not have a (meth) acryloyl group, Comprising: Diol (a1) which has a carbonate structure and an alicyclic structure in 1 molecule, An alicyclic structure A combination of a diol (a2) having no carbonate structure and a diol (a3) not having a carbonate structure and having an alicyclic structure, and the diol (a1) And a diol component (A1) selected from the group consisting of a combination of at least one of the diol (a2) and the diol (a3), a (meth) acryloyl group, a carbonate structure, and an alicyclic structure.
  • Diol (a1) which has a carbonate structure and an alicyclic structure in 1 molecule
  • An alicyclic structure A combination of a diol (a2) having no carbonate structure and a diol (a3) not having a carbonate structure and having an alicycl
  • Optional diol component (A2) a polyol component (B) having a (meth) acryloyl group and two or more hydroxyl groups in one molecule, and a polyisocyanate component (C) Made by response to a urethane resin (D) having a (meth) acryloyl groups.
  • the second invention relates to the urethane resin (D) according to the invention having a glass transition temperature in the range of ⁇ 60 to ⁇ 10 ° C.
  • the third invention relates to the urethane resin (D) according to any one of the inventions having a number average molecular weight in the range of 5000 to 150,000.
  • the fourth invention relates to the urethane resin (D) according to any one of the above inventions, wherein the polyol component (B) has two or more (meth) acryloyl groups.
  • the fifth invention relates to the urethane resin (D) according to the fourth invention, wherein the polyol component (B) is a compound obtained by adding (meth) acrylic acid to an epoxy group of a compound having two or more epoxy groups.
  • the sixth invention relates to the urethane resin (D) according to any one of the above inventions, wherein the (meth) acryloyl group equivalent is in the range of 500 to 40,000.
  • the seventh invention relates to an active energy ray-curable adhesive containing the urethane resin (D) according to any of the second to sixth inventions and the epoxy resin (E).
  • the eighth invention relates to the active energy ray-curable adhesive according to the invention, wherein the epoxy resin (E) has a number average molecular weight in the range of 500 to 5,000.
  • the ninth invention is an active energy ray curable composition according to any one of the above inventions, which contains 5 to 40 parts by weight of an epoxy resin (E) with respect to 100 parts by weight of a urethane resin (D) having a (meth) acryloyl group. It relates to adhesives.
  • the tenth invention is an active energy ray curable adhesive layer formed from the active energy ray curable adhesive according to any of the above inventions, and two or more laminated via an activated energy ray curable adhesive layer It is related with the back surface protection sheet for solar cells which comprised this sheet-like member.
  • one of the sheet-like members is a metal foil, or a plastic film with a vapor deposition layer in which a metal oxide or a nonmetal inorganic oxide is vapor-deposited on at least one surface of the plastic film. It is related with the back surface protection sheet for solar cells which concerns on the said invention.
  • the twelfth invention relates to the solar cell backsheet according to any one of the above inventions, wherein the glass transition temperature of the active energy ray-curable adhesive layer is in the range of ⁇ 20 to 20 ° C.
  • the urethane resin (D) having a (meth) acryloyl group includes a diol component (A1) not having a (meth) acryloyl group, a (meth) acryloyl group, a carbonate structure, and an alicyclic structure.
  • the diol component (A1) has a carbonate structure and an alicyclic structure in one molecule.
  • the diol (a1) does not have an alicyclic structure but has a carbonate structure.
  • a combination of two types of diols that is, a diol (a2) and a diol (a3) that does not have a carbonate structure but has an alicyclic structure, and a diol (a1), a diol (a2), and ( It is selected from a combination with at least one of a3).
  • the compound when the notation “(meth) acrylo” is used for a certain compound, the compound is obtained by replacing “(meth) acrylo” with “acrylo”, and “ This means that any compound obtained by replacing “(meth) acrylo” with “methacrylo” may be used.
  • the expression “(meth) acryl” when the expression “(meth) acryl” is used for a certain functional group, the functional group is a functional group obtained by replacing “(meth) acryl” with “acryl”, and “( It means that any of the functional groups obtained by replacing “meth) acryl” with “methacryl” may be used.
  • the compound is a compound in which “(meth) acrylate” is replaced with “acrylate”, and “(meth) acrylate” "Is replaced with” methacrylate "which means any compound.
  • the glass transition temperature of the urethane resin (D) is preferably in the range of ⁇ 60 to ⁇ 10 ° C., and more preferably in the range of ⁇ 50 to ⁇ 20 ° C.
  • the glass transition temperature is lower than ⁇ 60 ° C.
  • the adhesive force between the sheet-like members tends to be reduced during the moisture and heat resistance test.
  • the glass transition temperature is higher than ⁇ 10 ° C.
  • the glass transition temperature of the urethane resin (D) was measured using a differential scanning calorimeter (DSC) “RDC220” manufactured by Seiko Instruments Inc. Specifically, first, about 10 mg from a sample obtained by drying the urethane resin solution was weighed in an aluminum pan. Next, this was set in a differential scanning calorimetry (DSC) apparatus and cooled to ⁇ 100 ° C. with liquid nitrogen. Then, this was heated up at 10 degrees C / min, and the glass transition temperature was computed from the DSC chart obtained at that time.
  • DSC differential scanning calorimeter
  • the number average molecular weight (Mn) of the urethane resin (D) is preferably in the range of 5000 to 150,000, and more preferably in the range of 10,000 to 100,000. When the number average molecular weight is less than 5,000, the cohesive force of the adhesive after curing is low, and the adhesive force between the sheet-like members tends to decrease during the moisture and heat resistance test.
  • the active energy ray-curable adhesive becomes highly viscous, the solubility with other components constituting the active energy ray-curable adhesive is low, or the curable adhesive layer or
  • the curable adhesive layer or When the sheet-like members are stacked with the cured adhesive layer sandwiched therebetween, the wettability of the adhesive to the sheet-like members is poor, and as a result, the adhesive force between the sheet-like members becomes insufficient. It tends to occur.
  • the urethane resin (D) preferably has a (meth) acryloyl group equivalent in the range of 500 to 40,000, and in the range of 1000 to 30000, from the viewpoint of compatibility between the adhesion between the sheet-like members and the heat and humidity resistance. More preferably.
  • “(meth) acryloyl group equivalent” means dividing the number average molecular weight of the urethane resin (D) by the average number of (meth) acryloyl groups contained in one molecule of the urethane resin (D). It is a value obtained by this.
  • the adhesive force between the sheet-like members tends to be insufficient due to curing shrinkage during active energy ray curing.
  • the (meth) acryloyl group equivalent is larger than 40000, the adhesive is not sufficiently cross-linked, and the adhesive force between the sheet-like members tends to be reduced during the wet heat resistance test.
  • the urethane resin (D) preferably has a urethane bond equivalent in the range of 200 to 3000, more preferably in the range of 250 to 2000, from the viewpoint of the adhesive strength between the sheet-like members and the heat and humidity resistance.
  • the “urethane bond equivalent” referred to here is a value obtained by dividing the number average molecular weight of the urethane resin (D) by the average value of the number of urethane bonds contained in one molecule of the urethane resin (D). is there.
  • the urethane bond equivalent When the urethane bond equivalent is less than 200, the cohesive force of the curable adhesive layer or the cured adhesive layer is large. Therefore, the sheet-like members are stacked with the curable adhesive layer or the cured adhesive layer interposed therebetween. At this time, the wettability of the adhesive to the sheet-like member is poor, and the adhesive force between the sheet-like members tends to be insufficient. On the other hand, when the urethane bond equivalent is larger than 3000, there are few urethane bonds having good wet heat resistance, and the adhesive force between the sheet-like members tends to decrease after the wet heat resistance test.
  • the diol component (A1) having no (meth) acryloyl group used for forming the urethane resin (D) is a diol (a1) having a carbonate structure and an alicyclic structure in one molecule; A combination of a diol (a2) having no alicyclic structure and having a carbonate structure and a diol (a3) not having a carbonate structure and having an alicyclic structure; and It is selected from the group consisting of a combination of diol (a1) and at least one of diols (a2) and (a3).
  • the carbonate structure is a structure containing a carbonate group (—O—CO—O— group).
  • the urethane resin (D) contains a carbonate group derived from the diol component (A1).
  • the concentration is preferably in the range of 2 mmol / g to 8 mmol / g, and more preferably in the range of 3 mmol / g to 7 mmol / g.
  • the concentration of the carbonate group mentioned here is 1 g of the total solid content of the diol component (A1), the diol component (A2) that can be used as necessary, the polyol component (B), and the polyisocyanate component (C). It is the amount of carbonate group contained in the inside.
  • this concentration is less than 2 mmol / g, the solubility of the urethane resin in the solvent tends to be poor, or sufficient wet heat resistance tends not to be obtained. Moreover, when this concentration is larger than 8 mmol / g, there is a tendency that sufficient adhesive force cannot be obtained.
  • the alicyclic structure is a structure containing a carbocyclic ring having no aromaticity.
  • the urethane resin (D) contains a carbocycle derived from the diol component (A1).
  • the carbocycle a cyclohexane skeleton that is a 6-membered ring is preferable.
  • the diol component (A1), the diol component (A2) that can be used as necessary, the polyol component (B), and the diol component relative to the total solid content of the polyisocyanate component (C) (The concentration of the alicyclic skeleton derived from A1) is preferably in the range of 0.05 mmol / g to 5 mmol / g, and more preferably in the range of 0.1 mmol / g to 4.5 mmol / g.
  • the concentration of the alicyclic skeleton derived from the diol component (A1) here refers to the diol component (A1), the diol component (A2) that can be used as necessary, the polyol component (B), and the polyisocyanate component (C ) And the alicyclic skeleton derived from the diol component (A1) contained in 1 g of the total solid content.
  • this concentration is less than 0.05 mmol / g, sufficient wet heat resistance tends not to be obtained.
  • this concentration is larger than 5 mmol / g, there is a tendency that sufficient adhesive force cannot be obtained.
  • the diol (a1) having a carbonate structure and an alicyclic structure in one molecule is, for example, at least one kind of diol having no alicyclic structure and a carbonate ester. Is used as a raw material to cause a transesterification reaction.
  • diols that do not have a carbonate structure but have an alicyclic structure include 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 2-bis (4 -Hydroxycyclohexyl) -propane, hydrogenated bisphenol A, hydrogenated bisphenol F, or a combination of two or more thereof can be used.
  • a diol that does not have a carbonate structure and has an alicyclic structure and a diol that does not have a carbonate structure and an alicyclic structure may be used in combination.
  • the diol having no carbonate structure and alicyclic structure include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1, 7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,5-hexanediol, 2-methyl-1,8-octanediol, neopentyl glycol, 2- Isopropyl-1,4-butanediol, 2-ethyl-1,6-hexanediol, 3-methyl-1,5-
  • a polycarbonate diol having an alicyclic structure for example, a diol that does not have a carbonate structure and is obtained by copolymerization of a diol having an alicyclic structure and caprolactone may be used.
  • examples of such a diol component include ETERNACOLL UC-100, ETERNCOLL UM-90 (3/1), ETERNACOLL UM-90 (1/1), and ETERNACOLL UM-90 (1/3) manufactured by Ube Industries, Ltd. Can be mentioned. These may be used alone or in combination of two or more.
  • the diol component (a2) which does not have an alicyclic structure but has a carbonate structure uses, for example, at least one kind of diol not having a carbonate structure and an alicyclic structure and a carbonate as a raw material. It is obtained by causing a transesterification reaction.
  • diol having no carbonate structure and alicyclic structure examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1, 7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,5-hexanediol, 2-methyl-1,8-octanediol, neopentyl glycol, 2- Isopropyl-1,4-butanediol, 2-ethyl-1,6-hexanediol, 3-methyl-1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 2,4-diethyl- 1,5-pentanediol, 1,3-butanediol, 2-
  • the polycarbonate diol which does not have an alicyclic structure for example, the diol obtained by copolymerization of the diol which does not have a carbonate structure and an alicyclic structure, and caprolactone.
  • diol components include C-1090, C-2050, C-2090, C-3090 manufactured by Kuraray Co., Ltd., ETERNACOLL UH-50, ETERNACOLL UH-100, ETERNACOLL UH-200 manufactured by Ube Industries, Ltd., ETERNACOLL UH-300, ETERNACOLL UH-50-200, ETERNACOLL UH-50-100, T6002, T6001, T5652 manufactured by Asahi Kasei Chemicals Corporation.
  • Examples include T4672, Plaxel CD CD205, Plaxel CD CD205PL, Plaxel CD CD210, Plaxel CD CD210PL, Plaxel CD CD220, Plaxel CD CD220PL manufactured by Daicel Chemical Industries, Ltd. These may be used alone or in combination of two or more.
  • Examples of the diol component (a3) not having a carbonate structure and having an alicyclic structure include 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, -Bis (4-hydroxycyclohexyl) -propane, hydrogenated bisphenol A, hydrogenated bisphenol F. These may be used alone or in combination of two or more.
  • the diol component (A1) may be used in combination with the diol component (A2) that does not have any (meth) acryloyl group, carbonate structure, or alicyclic structure.
  • the diol component (A2) can be omitted, but the diol component (A2) can be used for adjusting the glass transition temperature of the urethane resin (D).
  • diol component (A2) examples include so-called prepolymers such as polyester diol, polyethylene glycol, and polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,6-hexanediol, and neopentyl. And glycol, 1,4-butylene glycol, 1,9-nanonediol, and 3-methyl-1,5-pentanediol. These may be used alone or in combination of two or more.
  • the proportion of the diol component (A2) in the total amount thereof is preferably 20% by weight or less, and more preferably 10% by weight or less.
  • this ratio is large, the effects of the polycarbonate skeleton and the alicyclic skeleton on the heat and moisture resistance and the adhesive strength tend to be small, and it is difficult to achieve both excellent heat and heat resistance and excellent adhesive strength.
  • the polyol component (B) having a (meth) acryloyl group used as a raw material for the urethane resin (D) has two or more hydroxyl groups.
  • a (meth) acryloyl group can be introduced not only into the terminal of the main chain of the urethane resin (D) but also into the side chain.
  • the amount of (meth) acryloyl group introduced can be controlled by controlling the composition of the diol components (A1) and (A2) and the polyol component (B).
  • polyol component (B) having a (meth) acryloyl group and two or more hydroxyl groups in one molecule for example, (meth) acrylic acid is added to the epoxy group of a compound having two or more epoxy groups.
  • Examples of the compound (B1) obtained by adding (meth) acrylic acid to an epoxy group of a compound having two or more epoxy groups include, for example, a (meth) acrylic acid adduct of propylene glycol diglycidyl ether, 1,6-hexanediol (Meth) acrylic acid adduct of diglycidyl ether, (meth) acrylic acid adduct of ethylene glycol diglycidyl ether, (meth) acrylic acid adduct of 1,4-butanediol diglycidyl ether, 1,5-pentanediol (Meth) acrylic acid adduct of diglycidyl ether, (meth) acrylic acid adduct of 1,6-hexanediol diglycidyl ether, (meth) acrylic acid adduct of 1,9-nonanediol diglycidyl ether, neopentyl (Meth) acrylic acid adduct of glycol digly
  • Examples of the polyisocyanate component (C) used as a raw material for the urethane resin (D) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, 1, And diisocyanates such as 5-naphthalene diisocyanate, hexamethylene diisocyanate, and hydrogenated diphenylmethane diisocyanate. These may be used alone or in combination of two or more. From the viewpoint of weather resistance, the diisocyanate is preferably an alicyclic diisocyanate.
  • This urethane resin (D) may be produced by reacting raw materials in the absence of a solvent, or may be produced by reacting in an organic solvent.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, and methoxyethyl acetate; ethers such as diethyl ether and ethylene glycol dimethyl ether.
  • Aromatic compounds such as toluene and xylene; Aliphatic compounds such as pentane and hexane;
  • solvents such as halogenated hydrocarbons such as methylene chloride, chlorobenzene and chloroform can be used.
  • a catalyst can be added to the organic solvent as necessary.
  • the catalyst include metal catalysts such as dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, and dibutyltin dimaleate; 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diazabicyclo Tertiary amines such as (4,3,0) nonene-5,6-dibutylamino-1,8-diazabicyclo (5,4,0) undecene-7; reactive tertiary amines such as triethanolamine It is done. These may be used alone or in combination of two or more.
  • An active energy ray-curable adhesive according to an aspect of the present invention includes an urethane resin (D) having a glass transition temperature in the range of ⁇ 60 to ⁇ 10 ° C. and an epoxy resin (E). It contains.
  • D urethane resin
  • E epoxy resin
  • Examples of the epoxy resin (E) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, brominated bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, biphenol type epoxy resin, and biphenol type epoxy resin.
  • Glycidyl ether compounds such as skeleton-containing phenol novolac epoxy resins and dicyclopentadiene skeleton-containing phenol novolac epoxy resins
  • Glycidyl ester compounds such as diglycidyl ester
  • Alicyclic epoxy resins such as EHPE-3150 manufactured by Daicel Chemical Industries
  • heterocyclic epoxy resins such as triglycidyl isocyan
  • the functional group generated by the decomposition of the urethane resin during the wet heat resistance test can be reacted with the epoxy group. Accordingly, a decrease in molecular weight of the adhesive layer can be suppressed, and a decrease in adhesive force can be suppressed.
  • the epoxy resin (E) is preferably a bisphenol type epoxy resin having a number average molecular weight in the range of 500 to 5,000.
  • the number average molecular weight of the epoxy resin is smaller than 500, the adhesive layer is soft and sufficient moisture and heat resistance tends not to be obtained. If the number average molecular weight of the epoxy resin is greater than 5000, the compatibility with other components of the active energy ray-curable adhesive is low, and the adhesive tends to become cloudy.
  • This active energy ray-curable adhesive can contain an aziridine compound (F).
  • an aziridine compound (F) in the active energy ray-curable adhesive, a covalent bond can be formed between the sheet-like member and the aziridine compound, and the adhesive force between the sheet-like members can be improved.
  • aziridine compound (F) examples include 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate] and 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane. These may be used alone or in combination of two or more.
  • the back surface protection sheet to be used can be appropriately selected depending on the product or application on which the solar cell module is mounted.
  • the active energy ray-curable adhesive may not contain the aziridine-based compound (F).
  • This active energy ray-curable adhesive can further contain a compound having a (meth) acryloyl group other than the urethane resin (D).
  • a compound having a (meth) acryloyl group other than the urethane resin (D) include relatively low molecular weight (meth) acrylate monomers and so-called prepolymers and polymers having a relatively high molecular weight.
  • Examples of relatively low molecular weight (meth) acrylate monomers include monofunctional (meth) acrylate monomers such as 4-hydroxybutyl (meth) acrylate, isobornyl (meth) acrylate, lauryl (meth) acrylate, and acryloylmorpholine; 1,9-nonanediol di (meth) acrylate, bisphenol A di (meth) acrylate, pentaerythritol tri (meth) acrylate, tris ((meth) acryloxyethyl) isocyanurate, and dipentaerythritol hexa (meth)
  • a polyfunctional (meth) acrylate monomer such as acrylate can be exemplified.
  • prepolymer and polymer examples include radically polymerizable prepolymers having (meth) acryloyl groups such as polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, and (meth) acrylated maleic acid-modified polybutadiene. Mention may be made of polymers or polymers. These may be used alone or in combination of two or more.
  • This active energy ray-curable adhesive can contain a photopolymerization initiator and a compound that does not have active energy ray curability.
  • photopolymerization initiator a known photopolymerization initiator can be used.
  • photopolymerization initiators include benzophenone, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-benzyl -2-dimethylamino-1- (4-morpholinophenyl) butanone-1,2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, benzoin isopropyl ether, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2-hydroxy-2-methyl- (4- (1-Methylvini ) Pheny
  • an aliphatic amine such as n-butylamine, triethylamine, ethyl p-dimethylaminobenzoate, or an aromatic amine may be used in combination as a sensitizer.
  • This active energy ray-curable adhesive can further contain other compounds not having active energy ray curability.
  • compounds that do not have active energy ray curability include curing agents such as acrylic resins, polyester resins, amino resins, xylene resins, petroleum resins, isocyanate compounds, aluminum chelate compounds, and silane coupling agents.
  • curing agents such as acrylic resins, polyester resins, amino resins, xylene resins, petroleum resins, isocyanate compounds, aluminum chelate compounds, and silane coupling agents.
  • UV absorbers, antioxidants, leveling agents, antifoaming agents, adhesion aids, dispersants, drying regulators, antifriction agents, or combinations of two or more thereof can be used.
  • This active energy ray-curable adhesive is based on the solid content of the active energy ray-curable adhesive, 50 to 85% by weight of the urethane resin (D), 2.5 to 34% by weight of the epoxy resin (E), It is preferable to contain 0 to 10% by weight of the aziridine compound (F) and 0 to 30% by weight of a compound having a (meth) acryloyl group other than the urethane resin (D), and 60 to 85% by weight of the urethane resin (D).
  • the amount of the urethane resin (D) is less than 50% by weight, the cohesive force of the adhesive layer is reduced, and the adhesive force and the heat and humidity resistance tend to be insufficient.
  • the amount of the urethane resin (D) is more than 85% by weight, the heat and humidity resistance tends to be lowered.
  • the amount of the epoxy resin (E) is less than 2.5% by weight, the effect of improving the heat and moisture resistance tends to be hardly obtained.
  • the amount of the epoxy resin (E) is more than 34% by weight, the heat and humidity resistance tends to be lowered because the crosslinking density of the adhesive layer is lowered.
  • the amount of the aziridine compound (F) is more than 10% by weight, the heat and moisture resistance tends to be lowered.
  • the adhesive force tends to be insufficient due to shrinkage during curing.
  • the active energy ray-curable adhesive layer constituting the solar cell back surface protective sheet according to one embodiment of the present invention preferably has a glass transition temperature in the range of ⁇ 20 ° C. to 20 ° C.
  • the active energy ray-curable adhesive can form an adhesive layer having a glass transition temperature in the range of ⁇ 20 ° C. to 20 ° C. when cured by irradiation with active energy rays. Is preferred.
  • the glass transition temperature exceeds 20 ° C.
  • the wettability of the adhesive to the sheet-like member tends to be poor when the sheet-like member is stacked with the curable adhesive layer or the cured adhesive layer interposed therebetween. .
  • the adhesive force between the sheet-like members tends to be insufficient.
  • the glass transition temperature is lower than ⁇ 20 ° C.
  • the cohesive strength of the adhesive layer is small, and the adhesive strength and heat-and-moisture resistance tend to be insufficient.
  • the back surface protection sheet for solar cells includes two or more sheet-like members laminated via an active energy ray-curable adhesive layer formed from the above-described active energy ray-curable adhesive. It will be.
  • the sheet-like member that constitutes the solar cell back surface protective sheet is not particularly limited.
  • Examples of the sheet-like member include a plastic film, a metal foil, or a material obtained by evaporating a metal oxide or a non-metal oxide on a plastic film.
  • plastic film examples include polyester resin films made of polyester such as polyethylene terephthalate and polynaphthalene terephthalate; polyethylene resin films; polypropylene resin films; polyvinyl chloride resin films; polycarbonate resin films; Poly (meth) acrylic resin film; polyvinyl fluoride, polyvinylidene fluoride, polychlorotrifluoroethylene, polyethylene tetrafluoroethylene, polytetrafluoroethylene, tetrafluoroethylene perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoro Examples thereof include a fluorine resin film made of a fluorine resin such as a propylene copolymer.
  • a multilayer plastic film may be used.
  • a film formed by coating the above-described plastic film with an acrylic or fluorine-based paint, or a multilayer film obtained by laminating polyvinylidene fluoride and an acrylic resin by coextrusion may be used.
  • Examples of the metal foil include aluminum foil.
  • metal oxide or non-metallic inorganic oxide to be deposited examples include oxides such as silicon, aluminum, magnesium, calcium, potassium, tin, sodium, boron, titanium, lead, zirconium, and yttrium.
  • polyester resins such as polyethylene terephthalate and polynaphthalene terephthalate that have resistance to temperature in terms of weather resistance, water vapor permeability, electrical insulation, mechanical properties, mounting workability, etc. when used as solar cell modules It is preferable to use a film or a polycarbonate resin film.
  • a metal foil such as a plastic film or an aluminum foil on which a metal oxide or non-metal inorganic oxide having a water vapor barrier property is deposited. preferable.
  • the solar cell back surface protection sheet according to an aspect of the present invention can be obtained by any of the following methods [1] to [3], for example.
  • An active energy ray-curable adhesive is applied to a certain sheet-like member, and another sheet-like member is overlaid on the formed active energy ray-curable adhesive layer. Next, active energy rays are irradiated to this laminate from one sheet-like member side or both sheet-like member sides, and an active energy ray-curing adhesive layer is formed between these sheet-like members.
  • An active energy ray-curable adhesive is applied to a certain sheet-like member to form an active energy ray-curable adhesive layer.
  • the active energy ray-curable adhesive layer is formed by irradiating active energy rays from the active energy ray-curable adhesive layer side and / or from the sheet-like member side. Thereafter, another sheet-like member is laminated on the active energy ray-curable adhesive layer.
  • An active energy ray-curable adhesive is applied to a certain sheet-like member to form an active energy ray-curable adhesive layer.
  • the active energy ray-curable adhesive layer is formed by irradiating active energy rays from the active energy ray-curable adhesive layer side and / or from the sheet-like member side.
  • another coating material for forming a sheet-like member is applied to the active energy ray-curable adhesive layer, and another sheet-like member is formed by heat or active energy rays.
  • Examples of the other sheet-like member forming coating solution used in the method [3] include, for example, a polyester resin solution, a polyethylene resin solution, a polypropylene resin solution, and a polyvinyl chloride resin that can be used for forming a plastic film.
  • Examples thereof include a solution, a polycarbonate resin solution, a polysulfone resin solution, a poly (meth) acrylic resin solution, and a fluorine resin solution.
  • the method [1] has an advantage that when the active energy ray-curable adhesive is radically polymerizable, it is less susceptible to oxygen inhibition during curing.
  • the active energy ray-curable adhesive layer is irradiated with the active energy ray-curable adhesive layer through the sheet-like member, regardless of whether the active energy ray-curable adhesive is radically polymerizable or not. It is important to use a sheet-like member that can transmit the active energy rays without being attenuated as much as possible.
  • Method [2] has different characteristics from Method [1]. That is, in the method [2], the active energy ray is irradiated in a situation where oxygen inhibition is likely to occur. However, on the other hand, the method [2] has an advantage that there are wide choices of sheet-like members that can be used.
  • another sheet-like member can be superposed on the curable adhesive layer or on the cured adhesive layer under heating and / or pressure conditions.
  • a solvent may be contained within a range that does not affect the sheet-like member in the drying step.
  • the active energy ray-curable adhesive contains a solvent, after the solvent is volatilized, the active energy ray-curable adhesive can be cured by irradiation with active energy rays.
  • Examples of the solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, and methoxyethyl acetate; ethers such as diethyl ether and ethylene glycol dimethyl ether.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, and methoxyethyl acetate
  • ethers such as diethyl ether and ethylene glycol dimethyl ether.
  • Aromatic compounds such as toluene and xylene; aliphatic compounds such as pentane and hexane; halogenated hydrocarbon compounds such as methylene chloride, chlorobenzene and chloroform; alcohols such as ethanol, isopropyl alcohol and normal butanol; and water. These solvents may be used alone or in combination of two or more.
  • Examples of apparatuses that apply the active energy ray-curable adhesive to a sheet-like member include a comma coater, a dry laminator, a roll knife coater, a die coater, a roll coater, a bar coater, a gravure roll coater, a reverse roll coater, a blade coater, and a gravure coater And a micro gravure coater.
  • the amount of adhesive applied to the sheet-like member is preferably about 0.1 to 50 g / m 2 in terms of dry film thickness.
  • Examples of active energy rays irradiated for curing the active energy ray-curable adhesive include ultraviolet rays, electron beams, ⁇ rays, infrared rays, and visible rays.
  • Example 1 In a polymerization tank of a polymerization reactor equipped with a polymerization tank, a stirrer, a thermometer, a reflux condenser, a nitrogen introduction pipe, and a dropping tank, 716.6 parts of methyl ethyl ketone (MEK) and Kuraray polyol C-1090 (manufactured by Kuraray Co., Ltd.) 607.8 parts, 89.2 parts of cyclohexanedimethanol (CHDM), and 19.6 parts of epoxy ester 70PA (manufactured by Kyoeisha Chemical Co., Ltd.), which is a compound obtained by adding 2 mol of acrylic acid to propylene glycol diglycidyl ether.
  • MEK methyl ethyl ketone
  • Kuraray polyol C-1090 manufactured by Kuraray Co., Ltd. 607.8 parts
  • CHDM cyclohexanedimethanol
  • epoxy ester 70PA manufactured by Kyoeisha Chemical Co.,
  • the temperature in the polymerization tank was increased to 80 ° C. while stirring the mixture under a nitrogen stream. When the temperature reached 80 ° C., 0.5 part of dibutyltin dilaurate (DBTDL) was added to the polymerization tank.
  • DBTDL dibutyltin dilaurate
  • urethane resin solutions (D-2) to (D-22) were obtained in the same manner as in Example 1. Properties of these urethane resin solutions are shown in Tables 1 to 4.
  • Comparative Example 1 869.4 parts of methyl ethyl ketone (MEK) and Kuraray polyol C-3090 (manufactured by Kuraray Co., Ltd.) were added to the polymerization tank of a polymerization reactor equipped with a polymerization tank, a stirrer, a thermometer, a reflux condenser, a nitrogen inlet tube, and a dropping tank. 834.1 parts and 41.7 parts of cyclohexanedimethanol (CHDM) were charged. The temperature in the polymerization tank was increased to 80 ° C. while stirring the mixed solution under a nitrogen stream. When the temperature reached 80 ° C., 0.5 part of dibutyltin dilaurate (DBTDL) was added to the polymerization tank.
  • DBTDL dibutyltin dilaurate
  • the temperature of the polymerization tank was lowered to 60 ° C., and 6.4 parts of 2-acryloyloxyethyl isocyanate having one isocyanate group and one acryloyl group (Karenz AOI, Showa Denko) and MEK were added. A mixture with 6.4 parts was added to the polymerization vessel. The reaction was performed at 60 ° C., and the reaction was continued until the infrared absorption peak of the isocyanate group completely disappeared with an infrared spectrophotometer. Thereafter, the temperature of the polymerization tank was lowered to 40 ° C., and 500.0 parts of MEK was added to the polymerization tank to obtain a urethane resin solution (D-23) having a solid content of 40%. Table 5 shows the properties of the urethane resin solution (D-23).
  • Comparative Example 2 862.5 parts of methyl ethyl ketone (MEK) and Kuraray polyol C-3090 (manufactured by Kuraray Co., Ltd.) were added to the polymerization tank of a polymerization reactor equipped with a polymerization tank, a stirrer, a thermometer, a reflux condenser, a nitrogen inlet tube, and a dropping tank. 826.7 parts and 41.3 parts of cyclohexanedimethanol (CHDM) were charged. The temperature in the polymerization tank was increased to 80 ° C. while stirring the mixed solution under a nitrogen stream.
  • CHDM cyclohexanedimethanol
  • DBTDL dibutyltin dilaurate
  • IPDI isophorone diisocyanate
  • MEK MEK
  • the temperature of the polymerization tank was lowered to 60 ° C., and a mixture of 5.5 parts of hydroxyethyl acrylate (HEA) and 5.5 parts of MEK was added to the polymerization tank.
  • the reaction was performed at 60 ° C., and the reaction was continued until the infrared absorption peak of the isocyanate group completely disappeared with an infrared spectrophotometer.
  • the temperature of the polymerization tank was lowered to 40 ° C., and 500.0 parts of MEK was added to the polymerization tank to obtain a urethane resin solution (D-24) having a solid content of 40%.
  • Table 5 shows the properties of the urethane resin solution (D-24).
  • ⁇ Glass transition temperature (Tg)> The glass transition temperature was measured using DSC “RDC220” manufactured by Seiko Instruments Inc. Specifically, about 10 mg of a sample obtained by drying the urethane resin solutions (D-1) to (D-27) was weighed into an aluminum pan. This was set in a DSC apparatus, cooled to ⁇ 100 ° C. with liquid nitrogen, and then heated at 10 ° C./min. The glass transition temperature was calculated from the DSC chart obtained at this time.
  • Epicoat 828 Epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.) Number average molecular weight 370
  • Epicoat 1001 Epoxy resin (Japan Epoxy Resin Co., Ltd.) Number average molecular weight 900
  • Epicoat 1002 Epoxy resin (Japan Epoxy Resin Co., Ltd.) Number average molecular weight 1200
  • Epicoat 1009 Epoxy resin (Japan Epoxy Resin Co., Ltd.) Number average molecular weight 3800
  • IBXA Isobornyl acrylate (manufactured by Osaka Organic Chemical Co., Ltd.)
  • M-210 EO-modified bisphenol A diacrylate (manufactured by Toagosei Co., Ltd.)
  • M305 Pentaerythritol triacrylate (manufactured by Toagosei Co., Ltd.)
  • M315 isocyanuric acid EO-modified triacrylate (manufactured
  • a cured adhesive sheet having a thickness of about 200 ⁇ m is prepared and measured using a dynamic viscoelasticity measuring device DVA-200 (manufactured by IT Measurement & Control Co., Ltd.). did.
  • the cured adhesive sheet was prepared by applying an adhesive to a polyester film having a silicone release layer with a blade coater, drying the solvent, and then ultraviolet rays (120 W metal halide lamp, integrated light quantity of UV-A region 500 mJ). / Cm 2 ) to form an active energy ray-curable adhesive layer, and the polyester film was peeled from the adhesive layer.
  • ultraviolet rays 120 W metal halide lamp, integrated light quantity of UV-A region 500 mJ). / Cm 2
  • the solar cell back surface protection sheet was obtained as described above.
  • the amount of the adhesive layer was 8 to 10 g / m 2 .
  • the active energy ray-curable adhesive was applied to the sheet-like member (S1), and the solvent was volatilized from the coating film. Next, this coating film was irradiated with ultraviolet rays (120 W high-pressure mercury lamp, accumulated light quantity of UV-A region 200 mJ / cm 2 ) from the surface side to form an active energy ray-cured adhesive layer. Thereafter, the upper sheet member (S1) and the other sheet member (S2) were stacked with the active energy ray-curing adhesive layer interposed therebetween, and this laminate was passed between two rolls set at 60 ° C. .
  • ultraviolet rays 120 W high-pressure mercury lamp, accumulated light quantity of UV-A region 200 mJ / cm 2
  • the solar cell back surface protection sheet was obtained as described above.
  • the amount of the adhesive layer was 8 to 10 g / m 2 .
  • the active energy ray-curable adhesive was applied to the sheet-like member (S1), and the solvent was volatilized from the coating film. Next, this coating film was irradiated with ultraviolet rays (120 W high-pressure mercury lamp, accumulated light quantity of UV-A region 200 mJ / cm 2 ) from the surface side to form an active energy ray-cured adhesive layer. Thereafter, the sheet-like member (S1) and the other sheet-like member (S2) were stacked with the active energy ray-curing adhesive layer interposed therebetween, and this laminate was passed between two rolls set at 60 ° C. .
  • ultraviolet rays 120 W high-pressure mercury lamp, accumulated light quantity of UV-A region 200 mJ / cm 2
  • an active energy ray-curable adhesive was applied to one main surface of the laminate, and the solvent was volatilized from the coating film.
  • this coating film was irradiated with ultraviolet rays (120 W high-pressure mercury lamp, accumulated light quantity of UV-A region 200 mJ / cm 2 ) from the surface side to form an active energy ray-cured adhesive layer.
  • the previous laminate and another sheet-like member (S3) were stacked with this active energy ray-curing adhesive layer interposed therebetween, and this was passed between two rolls set at 60 ° C.
  • the solar cell back surface protection sheet was obtained as described above.
  • the amount of the two adhesive layers was 8 to 10 g / m 2 .
  • PET (1) colorless and transparent polyethylene terephthalate film (thickness: 188 ⁇ m) -Vapor-deposited PET: A film obtained by depositing a mixture of silicon oxide and magnesium fluoride at a ratio of 90/10 to a thickness of 500 mm on one side of a polyethylene terephthalate film (thickness 12 ⁇ m).
  • AL (1) Aluminum foil (thickness 30 ⁇ m) provided with a 10 ⁇ m weathering resin layer * on one side Weathering resin layer *: Obligato PS2012 (white)
  • Main agent Curing agent (13: 1) (manufactured by AGC Co-Tech)
  • White PET White polyethylene terephthalate film (thickness 50 ⁇ m)
  • Black PET Black polyethylene terephthalate film (thickness 50 ⁇ m)
  • PVF DuPont polyvinyl fluoride film “Tedlar” (thickness 38 ⁇ m) ⁇
  • KFC Kureha Extec Multi-layer Film “FT-50Y” (50 ⁇ m thickness)
  • EVA Ethylene / vinyl acetate copolymer resin film (thickness 100 ⁇ m)
  • Tables 9 to 13 The evaluation methods and the evaluation criteria shown in Tables 9 to 13 are as follows.
  • the back surface protection sheet for solar cells was stored at 85 ° C. in an 85% RH atmosphere for 1000 and 2000 hours.
  • the stored back surface protection sheet for solar cells was cut into a size of 200 mm ⁇ 15 mm to obtain a test piece.
  • a T-type peel test was performed on the test piece at a load rate of 300 mm / min using a tensile tester in accordance with the test method of ASTM D1876-61.
  • the peel strength (N / 15 mm width) between the sheet-like members was shown as an average value of five test pieces.
  • a high-yield high-yield protective sheet for solar cells which is excellent in adhesive strength and heat-and-moisture resistance between sheet-like members and does not cause appearance defects and delamination due to generation of bubbles in the adhesive layer. And in productivity and at low cost.
  • the cured product obtained by curing the composition containing the urethane resin (D) described here is excellent in adhesiveness to various substrates such as plastic films and metal films, and deteriorates under conditions of high temperature and high humidity. hard. Therefore, the above composition is suitably used for the production of a back surface protection sheet for solar cells, and for other uses, for example, optical members such as plastic lenses, prisms and optical fibers, and flexible printed wiring boards. It can also be used as an electrical / electronic member such as a solder resist, an interlayer insulating film for multilayer printed wiring boards, a coating agent for paper or plastic film, and an adhesive for food packaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 シート状部材間の接着力と耐湿熱性とに優れた太陽電池用裏面保護シートを高い歩留まり及び生産性で並びに低いコストで製造可能とする活性エネルギー線硬化性組成物が提供される。この接着剤は、ウレタン樹脂(D)とエポキシ樹脂(E)とを含有している。ウレタン樹脂(D)は、(メタ)アクリロイル基を有していないジオール成分(A1)と、(メタ)アクリロイル基とカーボネート構造と脂環構造とを有していない任意のジオール成分(A2)と、(メタ)アクリロイル基と2個以上の水酸基とを1分子中に有しているポリオール成分(B)と、ポリイソシアネート成分(C)とを反応させてなる。成分(A1)は、カーボネート構造と脂環構造とを1分子中に有しているジオール(a1)、脂環構造を有しておらず、カーボネート構造を有しているジオール(a2)と、カーボネート構造を有しておらず、脂環構造を有しているジオール(a3)との組み合わせ、並びにジオール(a1)とジオール(a2)及び(a3)の少なくとも一方との組み合わせから選択される。

Description

ウレタン樹脂、活性エネルギー線硬化性接着剤、及び太陽電池用裏面保護シート
 本発明は、例えば、接着剤、インキ及び塗料などに好適に使用される活性エネルギー線硬化性ウレタン樹脂に関する。詳しくは、本発明は、太陽電池用裏面保護シート形成用の活性エネルギー線硬化性接着剤に好適な活性エネルギー線硬化性ウレタン樹脂に関する。
 更に、本発明は、シート状部材間の接着力と耐湿熱性とに優れた太陽電池用裏面保護シートを高い歩留まり及び生産性で並びに低いコストで製造可能とする活性エネルギー線硬化性接着剤に関する。
 近年、環境問題に対する意識が高まり、環境汚染がなくクリーンなエネルギー源である太陽電池が注目されている。太陽電池は、実質的に無尽蔵なエネルギー資源である太陽エネルギーを電気エネルギーとして利用可能とすることから、鋭意研究されており、既に実用化が進んでいる。
 これら太陽電池には、太陽光が入射する面とは反対側の面に、太陽電池素子を保護する目的で裏面保護シートが設けられている。太陽電池用裏面保護シートには、耐候性、水蒸気透過性、電気絶縁性、機械特性及び実装作業性などの性能が必要とされる。
 太陽電池用裏面保護シートとしては、数種類のシート状部材を積層させたものが一般的である。これらシート状部材の積層には、特開2007-320218号公報及び特開2007-253463号公報に記載されているように、一般には、主剤である水酸基含有樹脂と硬化剤であるイソシアネート化合物とを含んだポリウレタン系接着剤を使用する。
 ところで、太陽電池用裏面保護シートを大量生産する場合、複数のシート状部材を積層して長尺の積層体を形成し、これをロール状に巻き取る。しかしながら、ポリウレタン系接着剤は硬化反応速度が遅いため、巻き取った積層体において、貼り合せたシート状部材が互いに対してずれ易い。それ故、ポリウレタン系接着剤を使用するプロセスには、不良品発生率が高く、歩留まりが低いという問題があった。
 また、このような積層体は、ポリウレタン系接着剤を十分に硬化させる為に、高温に維持した倉庫内で数日間に亘ってエージングさせる必要がある。それ故、ポリウレタン系接着剤を使用するプロセスには、生産性が低い、及び、倉庫の温度を維持する為の電気コストが必要である、などの問題もあった。
 更に、硬化剤であるイソシアネート化合物は、主剤である水酸基含有樹脂と反応するだけでなく、空気中の水とも反応する。イソシアネート化合物と水との付加反応生成物は脱炭酸反応を生じるため、シート状部材を積層した後に接着剤層中に気泡が発生する。それ故、ポリウレタン系接着剤を使用するプロセスには、外観不良やデラミネーションが生じるという問題もあった。
 また、特開2008-127475号公報は、ポリカーボネートジオールと、1分子中に2個の水酸基と2個のエチレン性不飽和基とを有する2官能エポキシ(メタ)アクリレートと、ポリイソシアネートとを反応させた不飽和基含有ウレタン樹脂に、光重合開始剤を混合してなる活性エネルギー線硬化型樹脂接着剤を開示している。但し、これを太陽電池裏面保護シート用の接着剤として使用した場合、シート状部材間の接着力及び耐湿熱性が十分ではなかった。
 本発明の目的は、シート状部材間の接着力と耐湿熱性とに優れた太陽電池用裏面保護シートを高い歩留まり及び生産性で並びに低いコストで製造可能とする活性エネルギー線硬化性組成物を提供することにある。
 第1の発明は、(メタ)アクリロイル基を有していないジオール成分(A1)であって、カーボネート構造と脂環構造とを1分子中に有しているジオール(a1)、脂環構造を有しておらず、カーボネート構造を有しているジオール(a2)と、カーボネート構造を有しておらず、脂環構造を有しているジオール(a3)との組み合わせ、並びに前記ジオール(a1)と、前記ジオール(a2)及び前記ジオール(a3)の少なくとも一方との組み合わせからなる群より選択されるジオール成分(A1)と、(メタ)アクリロイル基とカーボネート構造と脂環構造とを有していない任意のジオール成分(A2)と、(メタ)アクリロイル基と2個以上の水酸基とを1分子中に有しているポリオール成分(B)と、ポリイソシアネート成分(C)とを反応させてなる、(メタ)アクリロイル基を有するウレタン樹脂(D)に関する。
 第2の発明は、ガラス転移温度が-60乃至-10℃の範囲内にある前記発明に係るウレタン樹脂(D)に関する。
 第3の発明は、数平均分子量が5000乃至150000の範囲内にある前記発明の何れかに係るウレタン樹脂(D)に関する。
 第4の発明は、ポリオール成分(B)は(メタ)アクリロイル基を2個以上有する前記発明の何れかに係るウレタン樹脂(D)に関する。
 第5の発明は、ポリオール成分(B)は2個以上のエポキシ基を有する化合物のエポキシ基に(メタ)アクリル酸が付加した化合物である第4の発明に係るウレタン樹脂(D)に関する。
 第6の発明は、(メタ)アクリロイル基当量が500乃至40000の範囲内にある前記発明の何れかに係るウレタン樹脂(D)に関する。
 第7の発明は、第2乃至第6の発明の何れかに係るウレタン樹脂(D)と、エポキシ樹脂(E)とを含有した活性エネルギー線硬化性接着剤に関する。
 第8の発明は、エポキシ樹脂(E)の数平均分子量は500乃至5000の範囲内にある前記発明に係る活性エネルギー線硬化性接着剤に関する。
 第9の発明は、(メタ)アクリロイル基を有するウレタン樹脂(D)100重量部に対して、エポキシ樹脂(E)を5乃至40重量部含有した前記発明の何れかに係る活性エネルギー線硬化性接着剤に関する。
 第10の発明は、前記発明の何れかに係る活性エネルギー線硬化性接着剤から形成された活性エネルギー線硬化接着剤層と、活性化エネルギー線硬化接着剤層を介して積層された2つ以上のシート状部材とを具備した太陽電池用裏面保護シートに関する。
 第11の発明は、シート状部材の1つは、金属箔であるか、又は、プラスチックフィルムの少なくとも一方の面に金属酸化物若しくは非金属無機酸化物が蒸着されてなる蒸着層付きプラスチックフィルムである前記発明に係る太陽電池用裏面保護シートに関する。
 第12の発明は、活性エネルギー線硬化接着剤層のガラス転移温度は-20乃至20℃の範囲内にある前記発明の何れかに係る太陽電池用バックシートに関する。
 以下、本発明の実施の形態を、詳細に説明する。 
 本発明の一形態に係る(メタ)アクリロイル基を有するウレタン樹脂(D)は、(メタ)アクリロイル基を有していないジオール成分(A1)と、(メタ)アクリロイル基とカーボネート構造と脂環構造とを有していない任意のジオール成分(A2)と、(メタ)アクリロイル基と2個以上の水酸基とを1分子中に有しているポリオール成分(B)と、ポリイソシアネート成分(C)とを反応させて得ることができる。後述するように、ジオール成分(A1)は、カーボネート構造と脂環構造とを1分子中に有しているジオール(a1)、脂環構造を有しておらず、カーボネート構造を有しているジオール(a2)と、カーボネート構造を有しておらず、脂環構造を有しているジオール(a3)との2種類のジオールの組み合わせ、及び、ジオール(a1)と、ジオール(a2)及び(a3)の少なくとも一方との組み合わせから選択される。
 なお、この明細書及び請求の範囲において、或る化合物について「(メタ)アクリロ」という表記を使用した場合、その化合物は、「(メタ)アクリロ」を「アクリロ」に読み替えた化合物、及び、「(メタ)アクリロ」を「メタクリロ」に読み替えた化合物の何れであってもよいことを意味している。また、この明細書において、或る官能基について「(メタ)アクリル」という表記を使用した場合、その官能基は、「(メタ)アクリル」を「アクリル」に読み替えた官能基、及び、「(メタ)アクリル」を「メタクリル」に読み替えた官能基の何れであってもよいことを意味している。更に、この明細書において、或る化合物について「(メタ)アクリレート」という表記を使用した場合、その化合物は、「(メタ)アクリレート」を「アクリレート」に読み替えた化合物、及び、「(メタ)アクリレート」を「メタクリレート」に読み替えた化合物の何れであってもよいことを意味している。
 ウレタン樹脂(D)のガラス転移温度は、-60乃至-10℃の範囲内にあることが好ましく、更に-50乃至-20℃の範囲内にあることが好ましい。ガラス転移温度が-60℃より低いと、耐湿熱性試験時にシート状部材間の接着力が低下し易い。ガラス転移温度が-10℃より高いと、硬化性(curable)接着剤層又は硬化(cured)接着剤層を間に挟んでシート状部材を重ねた際における、シート状部材に対する接着剤の濡れ性が乏しい傾向にある。その結果、シート状部材間の接着力が不十分となり易い。
 なお、ウレタン樹脂(D)のガラス転移温度の測定は、セイコーインスツルメンツ社製示差走査熱量計(DSC)「RDC220」を用いて行った。具体的には、まず、ウレタン樹脂溶液を乾燥させてなる試料から約10mgをアルミニウムパンに量り採った。次いで、これを示差走査熱分析(DSC)装置にセットして、液体窒素で-100℃まで冷却した。その後、これを10℃/minで昇温し、その際に得られたDSCチャートからガラス転移温度を算出した。
 ウレタン樹脂(D)の数平均分子量(Mn)は、5000乃至150000の範囲内にあることが好ましく、10000乃至100000の範囲内にあることがより好ましい。数平均分子量が5000より小さいと、硬化後の接着剤の凝集力が低く、耐湿熱性試験時にシート状部材間の接着力が低下し易い。数平均分子量が150000より大きいと、活性エネルギー線硬化性接着剤が高粘度になる、活性エネルギー線硬化性接着剤を構成する他の成分との溶解性が低い、又は、硬化性接着剤層若しくは硬化接着剤層を間に挟んでシート状部材を重ねた際における、シート状部材に対する接着剤の濡れ性が乏しく、その結果、シート状部材間の接着力が不十分となる、などの問題が生じやすくなる。
 ウレタン樹脂(D)は、シート状部材間の接着力と耐湿熱性との両立の観点から、(メタ)アクリロイル基当量は500乃至40000の範囲内にあることが好ましく、1000乃至30000の範囲内にあることがより好ましい。ここで言う「(メタ)アクリロイル基当量」とは、ウレタン樹脂(D)の数平均分子量を、ウレタン樹脂(D)の1分子が含んでいる(メタ)アクリロイル基の数の平均値で除することによって得られる値である。
 (メタ)アクリロイル基当量が500よりも小さいと、活性エネルギー線硬化時の硬化収縮によりシート状部材間の接着力が不十分となる傾向にある。一方、(メタ)アクリロイル基当量が40000よりも大きいと、接着剤の架橋が不十分となり、耐湿熱性試験時にシート状部材間の接着力が低下する傾向にある。
 また、ウレタン樹脂(D)は、シート状部材間の接着力及び耐湿熱性の観点から、ウレタン結合当量が200乃至3000の範囲内にあることが好ましく、250乃至2000の範囲内にあることがより好ましい。ここで言う「ウレタン結合当量」とは、ウレタン樹脂(D)の数平均分子量を、ウレタン樹脂(D)の1分子が含んでいるウレタン結合の数の平均値で除することによって得られる値である。
 ウレタン結合当量が200よりも小さいと、硬化性接着剤層又は硬化接着剤層の凝集力が大きく、それ故、硬化性接着剤層又は硬化接着剤層を間に挟んでシート状部材を重ねた際に、シート状部材に対する接着剤の濡れ性が乏しく、シート状部材間の接着力が不十分となる傾向にある。一方、ウレタン結合当量が3000よりも大きいと、耐湿熱性の良好なウレタン結合が少なく、耐湿熱性試験後にシート状部材間の接着力が低下する傾向にある。
 ウレタン樹脂(D)の形成に使用される、(メタ)アクリロイル基を有していないジオール成分(A1)は、カーボネート構造と脂環構造とを1分子中に有しているジオール(a1);脂環構造を有しておらず、カーボネート構造を有しているジオール(a2)と、カーボネート構造を有しておらず、脂環構造を有しているジオール(a3)との組み合わせ;及び、ジオール(a1)とジオール(a2)及び(a3)の少なくとも一方との組み合わせからなる群より選択される。
 カーボネート構造は、カーボネート基(-O-CO-O-基)を含んだ構造である。ウレタン樹脂(D)は、ジオール成分(A1)に由来したカーボネート基を含んでいる。
 ウレタン樹脂(D)において、ジオール成分(A1)と、必要に応じて用い得るジオール成分(A2)と、ポリオール成分(B)と、ポリイソシアネート成分(C)との合計の固形分に対するカーボネート基の濃度は2mmol/g乃至8mmol/g範囲内にあることが好ましく、3mmol/g乃至7mmol/gの範囲内にあることがより好ましい。ここで言うカーボネート基の濃度とは、ジオール成分(A1)と、必要に応じて用い得るジオール成分(A2)と、ポリオール成分(B)と、ポリイソシアネート成分(C)との合計の固形分1g中に含まれるカーボネート基の量のことである。この濃度が2mmol/gより小さい場合、ウレタン樹脂の溶剤に対する溶解性が悪くなるか、又は、十分な耐湿熱性が得られなくなる傾向にある。また、この濃度が8mmol/gより大きい場合、十分な接着力が得られない傾向にある。
 脂環構造は、芳香族性を持たない炭素環を含んだ構造である。ウレタン樹脂(D)は、ジオール成分(A1)に由来した炭素環を含んでいる。炭素環としては、6員環であるシクロヘキサン骨格が好ましい。
 ウレタン樹脂(D)において、ジオール成分(A1)と、必要に応じて用い得るジオール成分(A2)と、ポリオール成分(B)と、ポリイソシアネート成分(C)との合計の固形分に対するジオール成分(A1)由来の脂環骨格の濃度は、0.05mmol/g乃至5mmol/g範囲内にあることが好ましく、0.1mmol/g乃至4.5mmol/gの範囲内にあることがより好ましい。ここで言うジオール成分(A1)由来の脂環骨格の濃度とは、ジオール成分(A1)と、必要に応じて用い得るジオール成分(A2)と、ポリオール成分(B)と、ポリイソシアネート成分(C)との合計の固形分1g中に含まれるジオール成分(A1)由来の脂環骨格の量のことである。この濃度が0.05mmol/gより小さい場合、十分な耐湿熱性が得られない傾向にある。また、この濃度が5mmol/gより大きい場合、十分な接着力が得られない傾向にある。
 カーボネート構造と脂環構造とを1分子中に有しているジオール(a1)は、例えば、カーボネート構造を有しておらず、脂環構造を有しているジオールの少なくとも1種類と、炭酸エステルとを原料に用い、エステル交換反応を生じさせることによって得られる。カーボネート構造を有しておらず、脂環構造を有しているジオールとしては、例えば、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、水添ビスフェノールA、水添ビスフェノールF、又はそれらの2種以上の組み合わせを使用することができる。このエステル交換反応においては、カーボネート構造を有しておらず、脂環構造を有しているジオールと、カーボネート構造及び脂環構造を有していないジオールとを併用してもよい。カーボネート構造及び脂環構造を有していないジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,5-ヘキサンジオール、2-メチル-1,8-オクタンジオール、ネオペンチルグリコール、2-イソプロピル-1,4-ブタンジオール、2-エチル-1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジメチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,3-ブタンジオール、2-エチル-1,3-ヘキサンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、又はそれらの2種以上の組み合わせを使用することができる。また、脂環構造を有しているポリカーボネートジオール、例えば、カーボネート構造を有しておらず、脂環構造を有しているジオールと、カプロラクトンとの共重合によって得られるジオールを使用してもよい。このようなジオール成分としては、例えば、宇部興産株式会社製ETERNACOLL UC-100、ETERNACOLL UM-90(3/1)、ETERNACOLL UM-90(1/1)、ETERNACOLL UM-90(1/3)が挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。
 脂環構造を有しておらず、カーボネート構造を有しているジオール成分(a2)は、例えば、カーボネート構造及び脂環構造を有していないジオールの少なくとも1種類と炭酸エステルとを原料に用い、エステル交換反応を生じさせることで得られる。カーボネート構造及び脂環構造を有していないジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,5-ヘキサンジオール、2-メチル-1,8-オクタンジオール、ネオペンチルグリコール、2-イソプロピル-1,4-ブタンジオール、2-エチル-1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジメチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,3-ブタンジオール、2-エチル-1,3-ヘキサンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、又はそれらの2種以上の組み合わせを使用することができる。また、脂環構造を有していないポリカーボネートジオール、例えば、カーボネート構造及び脂環構造を有していないジオールとカプロラクトンとの共重合によって得られるジオールを使用してもよい。このようなジオール成分としては、例えば、クラレ株式会社製C-1090、C-2050、C-2090、C-3090、宇部興産株式会社製ETERNACOLL UH-50、ETERNACOLL UH-100、ETERNACOLL UH-200、ETERNACOLL UH-300、ETERNACOLL UH-50-200、ETERNACOLL UH-50-100、旭化成ケミカルズ株式会社製T6002、T6001、T5652.T4672、ダイセル化学株式会社製プラクセルCD CD205、プラクセルCD CD205PL、プラクセルCD CD210、プラクセルCD CD210PL、プラクセルCD CD220、プラクセルCD CD220PLが挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。
 カーボネート構造を有しておらず、脂環構造を有しているジオール成分(a3)としては、例えば、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、水添ビスフェノールA、水添ビスフェノールFが挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。
 ジオール成分(A1)は、(メタ)アクリロイル基とカーボネート構造と脂環構造とのいずれも有していないジオール成分(A2)と併用してもよい。ジオール成分(A2)は省略することができるが、ジオール成分(A2)は、ウレタン樹脂(D)のガラス転移温度の調節に利用することができる。
 ジオール成分(A2)としては、例えば、ポリエステルジオール、ポリエチレングリコール、ポリプロピレングリコールなどの所謂プレポリマーや、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-ブチレングリコール、1,9-ナノンジオール、3-メチル-1,5-ペンタンジオールが挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。
 ジオール成分(A1)及び(A2)を併用する場合、それらの合計量に占めるジオール成分(A2)の割合は、20重量%以下であることが好ましく、10重量%以下であることがより好ましい。この割合が大きい場合、ポリカーボネート骨格及び脂環骨格の耐湿熱性及び接着力に対する効果が小さくなり、優れた耐湿熱性と優れた接着力との両立が困難となる傾向にある。
 ウレタン樹脂(D)の原料として使用される(メタ)アクリロイル基を有するポリオール成分(B)は、水酸基を2個以上有するものである。ポリオール成分(B)を用いることによって、ウレタン樹脂(D)の主鎖の末端のみではなく、側鎖にも(メタ)アクリロイル基を導入することができる。ジオール成分(A1)及び(A2)並びにポリオール成分(B)の組成を制御することによって、(メタ)アクリロイル基の導入量を制御することができる。
 (メタ)アクリロイル基と2個以上の水酸基とを1分子中に有しているポリオール成分(B)としては、例えば、2個以上のエポキシ基を有する化合物のエポキシ基に(メタ)アクリル酸が付加した化合物(B1)、グリセリンモノ(メタ)アクリレート、トリメチロールエタンモノ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレートが挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。
 2個以上のエポキシ基を有する化合物のエポキシ基に(メタ)アクリル酸が付加した化合物(B1)としては、例えば、プロピレングリコールジグリシジルエーテルの(メタ)アクリル酸付加物、1,6-ヘキサンジオールジグリシジルエーテルの(メタ)アクリル酸付加物、エチレングリコールジグリシジルエーテルの(メタ)アクリル酸付加物、1,4-ブタンジオールジグリシジルエーテルの(メタ)アクリル酸付加物、1,5-ペンタンジオールジグリシジルエーテルの(メタ)アクリル酸付加物、1,6-ヘキサンジオールジグリシジルエーテルの(メタ)アクリル酸付加物、1,9-ノナンジオールジグリシジルエーテルの(メタ)アクリル酸付加物、ネオペンチルグリコールジグリシジルエーテルの(メタ)アクリル酸付加物、ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物、水添ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物、グリセリンジグリシジルエーテルの(メタ)アクリル酸付加物が挙げられる。
 ウレタン樹脂(D)の原料として使用されるポリイソシアネート成分(C)としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、1,5-ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、及び水添化ジフェニルメタンジイソシアネートなどのジイソシアネートが挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。耐候性の観点から、ジイソシアネートとしては、脂環式ジイソシアネートが好ましい。
 このウレタン樹脂(D)は、原料を無溶剤下で反応させて製造してもよく、有機溶剤中で反応させて製造してもよい。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、酢酸メトキシエチル等のエステル類;ジエチルエーテル、エチレングリコールジメチルエーテル等のエーテル類;トルエン、キシレン等の芳香族化合物;ペンタン、ヘキサン等の脂肪族化合物;塩化メチレン、クロロベンゼン、クロロホルム等のハロゲン化炭化水素などの各種溶剤を使用することができる。
 また、有機溶剤には、必要に応じて触媒を添加することができる。触媒としては、例えば、ジブチルチンジアセテート、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジブチルチンジマレート等金属系触媒;1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7、1,5-ジアザビシクロ(4,3,0)ノネン-5、6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)ウンデセン-7等の3級アミン;トリエタノールアミンなどの反応性3級アミン等が挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。
 次に、本発明の一態様に係る活性エネルギー線硬化性接着剤について説明する。 
 本発明の一態様に係る活性エネルギー線硬化性接着剤は、前記のウレタン樹脂(D)のうちガラス転移温度が-60乃至-10℃の範囲内にあるものと、エポキシ樹脂(E)とを含有するものである。
 エポキシ樹脂(E)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビキシレノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ナフタレン骨格含有フェノールノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有フェノールノボラック型エポキシ樹脂などのグリシジルエーテル化合物;テレフタル酸ジグリシジルエステルなどのグリシジルエステル化合物;ダイセル化学工業(株)製のEHPE-3150などの脂環式エポキシ樹脂;トリグリシジルイソシアヌレートなどの複素環式エポキシ樹脂;N,N,N’,N’-テトラグリシジルメタキシレンジアミンなどのグリシジルアミン類や、グリシジル(メタ)アクリレートとエチレン性不飽和二重結合を有する化合物との共重合物などのエポキシ化合物が挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。
 エポキシ樹脂を活性エネルギー線硬化性接着剤に含有させると、耐湿熱試験時にウレタン樹脂の分解によって発生した官能基をエポキシ基と反応させることができる。従って、接着剤層の分子量低下を抑制でき、接着力低下を抑えることができる。
 接着剤層の耐湿熱性及びウレタン樹脂(D)との相溶性の観点から、エポキシ樹脂(E)としては、数平均分子量が500乃至5000の範囲内にあるビスフェノール型エポキシ樹脂が好ましい。エポキシ樹脂の数平均分子量が500より小さいと、接着剤層が柔らかく、十分な耐湿熱性が得られない傾向にある。エポキシ樹脂の数平均分子量が5000より大きいと、活性エネルギー線硬化性接着剤の他の成分との相溶性が低く、接着剤が濁りやすくなる傾向にある。
 この活性エネルギー線硬化性接着剤には、アジリジン系化合物(F)を含有させることができる。アジリジン系化合物(F)を活性エネルギー線硬化性接着剤に含有させることにより、シート状部材とアジリジン化合物との間に共有結合を形成させ、シート状部材間の接着力を向上させることができる。
 アジリジン系化合物(F)としては、例えば、2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]及び4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタンが挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。
 なお、太陽電池モジュールには、それを搭載する製品又は用途に応じて様々な構成のものがある。用いるべき裏面保護シートは、太陽電池モジュールを搭載する製品又は用途によって適宜選択され得る。シート状部材間の接着力の大きさがさほど重要視されない場合には、活性エネルギー線硬化性接着剤はアジリジン系化合物(F)を含有していなくてもよい。
 この活性エネルギー線硬化性接着剤は、ウレタン樹脂(D)以外の(メタ)アクリロイル基を有する化合物を更に含有することができる。ウレタン樹脂(D)以外の(メタ)アクリロイル基を有する化合物としては、例えば、比較的低分子量の(メタ)アクリレートモノマーや、或る程度分子量が大きい所謂プレポリマー及びポリマーが挙げられる。
 比較的低分子量の(メタ)アクリレートモノマーとしては、例えば、4-ヒドロキシブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ラウリル(メタ)アクリレート、及びアクリロイルモルフォリンなどの単官能(メタ)アクリレートモノマー;並びに、1,9-ノナンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート、及びジペンタエリスリトールヘキサ(メタ)アクリレートなどの多官能(メタ)アクリレートモノマーを例示することができる。
 プレポリマー及びポリマーとしては、例えば、ポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、及び(メタ)アクリル化マレイン酸変性ポリブタジエンなどの(メタ)アクリロイル基を有するラジカル重合性プレポリマー又はポリマーを挙げることができる。 
 これらは単独で使用してもよく、2種類以上を併用してもよい。
 この活性エネルギー線硬化性接着剤には、光重合開始剤及び活性エネルギー線硬化性を有していない化合物などを含有させることができる。
 光重合開始剤としては、公知の光重合開始剤を使用することができる。例えば、光重合開始剤として、ベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイルジフォニルホスフィンオキサイド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-ヒドロキシ-2-メチル-(4-(1-メチルビニル)フェニル)プロパノールオリゴマー、イソプロピルチオキサントン、(4-(メチルフェニルチオ)フェニル)フェニルメタン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、エチルアントラキノン、又はそれらの2種以上の組み合わせを使用することができる。
 また、光重合開始剤とともに、増感剤として、n-ブチルアミン、トリエチルアミン、p-ジメチルアミノ安息香酸エチル等の脂肪族アミン、又は芳香族アミンを併用してもよい。
 この活性エネルギー線硬化性接着剤は、活性エネルギー線硬化性を有していないその他の化合物を更に含有することができる。活性エネルギー線硬化性を有していない化合物としては、例えば、アクリル樹脂、ポリエステル樹脂、アミノ樹脂、キシレン樹脂、石油樹脂などの樹脂、イソシアネート化合物、などの硬化剤、アルミキレート化合物、シランカップリング剤、紫外線吸収剤、酸化防止剤、レベリング剤、消泡剤、接着助剤、分散剤、乾燥調整剤、耐摩擦剤、又はそれらの2種以上の組み合わせを使用することができる。
 この活性エネルギー線硬化性接着剤は、活性エネルギー線硬化性接着剤の固形分を基準として、ウレタン樹脂(D)を50乃至85重量%、エポキシ樹脂(E)を2.5乃至34重量%、アジリジン系化合物(F)を0乃至10重量%、ウレタン樹脂(D)以外の(メタ)アクリロイル基を有する化合物を0乃至30重量%含有することが好ましく、ウレタン樹脂(D)を60乃至85重量%、エポキシ樹脂(E)を10乃至34重量%、アジリジン系化合物(F)を0乃至5重量%、ウレタン樹脂(D)以外の(メタ)アクリロイル基を有する化合物を0乃至15重量%含有することがより好ましい。
 ウレタン樹脂(D)を50重量%よりも少なくすると、接着剤層の凝集力が小さくなり、接着力及び耐湿熱性が不十分となる傾向にある。ウレタン樹脂(D)を85重量%よりも多くすると、耐湿熱性が低下する傾向にある。
 エポキシ樹脂(E)を2.5重量%よりも少なくすると、耐湿熱性を向上させる効果が殆ど得られなくなる傾向にある。エポキシ樹脂(E)を34重量%よりも多くすると、接着剤層の架橋密度が低下するために耐湿熱性が低下する傾向にある。
 アジリジン系化合物(F)を10重量%よりも多くすると、耐湿熱性が低下する傾向にある。
 ウレタン樹脂(D)以外の(メタ)アクリロイル基を有する化合物を30重量%よりも多くすると、硬化時の収縮により接着力が不十分となり易い。
 本発明の一態様に係る太陽電池裏面保護用シートを構成する活性エネルギー線硬化接着剤層は、ガラス転移温度が-20℃乃至20℃の範囲内にあることが好ましい。換言すると、活性エネルギー線硬化性接着剤は、活性エネルギー線の照射により硬化させた場合に、ガラス転移温度が-20℃乃至20℃の範囲内にある接着剤層を形成し得るものであることが好ましい。
 ガラス転移温度が20℃を超える場合には、硬化性接着剤層又は硬化接着剤層を間に挟んでシート状部材を重ねた際における、シート状部材に対する接着剤の濡れ性が乏しい傾向にある。その結果、シート状部材間の接着力が不十分となり易い。一方、ガラス転移温度が-20℃未満の場合には、接着剤層の凝集力が小さく、接着力及び耐湿熱性が不十分となり易い。
 本発明の一態様に係る太陽電池用裏面保護シートは、上述した活性エネルギー線硬化性接着剤から形成される活性エネルギー線硬化接着剤層を介して、2つ以上のシート状部材が積層されてなるものである。
 この太陽電池用裏面保護シートを構成するシート状部材は、特に限定されるものではない。シート状部材としては、例えば、プラスチックフィルム、金属箔、又はプラスチックフィルムに金属酸化物若しくは非金属酸化物を蒸着してなるものが挙げられる。
 プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリナフタレンテレフタレートなどのポリエステルからなるポリエステル系樹脂フィルム;ポリエチレン系樹脂フィルム;ポリプロピレン系樹脂フィルム;ポリ塩化ビニル系樹脂フィルム;ポリカーボネート系樹脂フィルム;ポリスルホン系樹脂フィルム;ポリ(メタ)アクリル系樹脂フィルム;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン、ポリエチレンテトラフルオロエチレン、ポリテトラフルオロエチレン、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などのフッ素樹脂からなるフッ素系樹脂フィルムが挙げられる。
 単層構造のプラスチックフィルムの代わりに、多層構造のプラスチックフィルムを使用してもよい。例えば、上述したプラスチックフィルムにアクリル系又はフッ素系塗料をコーティングしてなるフィルムや、ポリフッ化ビニリデン及びアクリル樹脂などが共押出しにより積層されてなる多層フィルムなどを使用してもよい。或いは、ウレタン系接着剤層などを介して上記のプラスチックフィルムを複数積層してなるシート状部材を用いてもよい。
 金属箔としては、例えば、アルミニウム箔が挙げられる。
 蒸着させる金属酸化物又は非金属無機酸化物としては、例えば、ケイ素、アルミニウム、マグネシウム、カルシウム、カリウム、スズ、ナトリウム、ホウ素、チタン、鉛、ジルコニウム、イットリウムなどの酸化物を使用できる。
 これらの中でも、太陽電池モジュールとして使用する際の耐候性、水蒸気透過性、電気絶縁性、機械特性、実装作業性など観点では、温度に対する耐性を有する、ポリエチレンテレフタレート及びポリナフタレンテレフタレートなどのポリエステル系樹脂フィルム又はポリカーボネート系樹脂フィルムを使用することが好ましい。また、太陽電池セルの水の影響による出力低下を防止する観点では、水蒸気バリア性を有する金属酸化物若しくは非金属無機酸化物が蒸着されたプラスチックフィルム又はアルミニウム箔などの金属箔を使用することが好ましい。そして、光劣化による外観不良発生を防止する観点では、耐候性の良好なフッ素系樹脂フィルムを使用することが好ましい。これらを積層した場合、特に優れた太陽電池用裏面保護シートが得られる。
 本発明の一態様に係る太陽電池裏面保護用シートは、例えば、下記方法[1]乃至[3]の何れかによって得ることができる。
[1]或るシート状部材に活性エネルギー線硬化性接着剤を塗工し、形成された活性エネルギー線硬化性接着剤層に他のシート状部材を重ねる。次いで、一方のシート状部材側から又は両シート状部材側から、この積層体に活性エネルギー線を照射し、これらシート状部材間に活性エネルギー線硬化接着剤層を形成する。
[2]或るシート状部材に活性エネルギー線硬化性接着剤を塗工し、活性エネルギー線硬化性接着剤層を形成する。次いで、該活性エネルギー線硬化性接着剤層側から及び/又はシート状部材側から活性エネルギー線を照射して、活性エネルギー線硬化接着剤層を形成する。その後、該活性エネルギー線硬化接着剤層に他のシート状部材を積層する。
[3]或るシート状部材に活性エネルギー線硬化性接着剤を塗工し、活性エネルギー線硬化性接着剤層を形成する。次いで、該活性エネルギー線硬化性接着剤層側から及び/又はシート状部材側から活性エネルギー線を照射して、活性エネルギー線硬化接着剤層を形成する。その後、該活性エネルギー線硬化接着剤層に、他のシート状部材形成用塗液を塗工し、熱又は活性エネルギー線により他のシート状部材を形成する。
 方法[3]において用いられる他のシート状部材形成用塗液としては、例えば、プラスチックフィルムの形成に使用され得る、ポリエステル系樹脂溶液、ポリエチレン系樹脂溶液、ポリプロピレン系樹脂溶液、ポリ塩化ビニル系樹脂溶液、ポリカーボネート系樹脂溶液、ポリスルホン系樹脂溶液、ポリ(メタ)アクリル系樹脂溶液、フッ素系樹脂溶液等が挙げられる。
 方法[1]では、2つのシート状部材間に活性エネルギー線硬化性接着剤層を挟んだ状態で活性エネルギー線を照射する。それ故、方法[1]は、活性エネルギー線硬化性接着剤がラジカル重合性である場合、硬化の際に酸素阻害を受け難いという長所を持つ。しかしながら、その反面で、シート状部材を通して活性エネルギー線硬化性接着剤層に活性エネルギー線が照射されることになるので、活性エネルギー線硬化性接着剤がラジカル重合性であるか否かに関わらず、活性エネルギー線をできるだけ減衰させることなく透過させ得るシート状部材を使用することが肝要である。
 方法[2]は、方法[1]とは異なる特徴を有する。即ち、方法[2]では、酸素阻害を受け易い状況で活性エネルギー線を照射する。但し、その反面で、方法[2]は、使用し得るシート状部材の選択肢が広いという長所を有する。
 方法[3]では、最初の工程で酸素阻害を受け易い状況で活性エネルギー線を照射する。但し、その反面で、方法[3]は、形成された接着剤層に他のシート状部材形成用塗液を塗工し、他のシート状部材を形成するので、接着剤層と他のシート状部材との接着力を確保し易いという長所を有する。
 太陽電池用裏面保護シートとして要求される性能、価格、生産性等を勘案して、種々の製造方法を選択したり、更に組み合わせたりすることができる。
 なお、方法[1]又は[2]の場合、硬化性接着剤層に又は硬化接着剤層には、他のシート状部材を、加熱及び/又は加圧条件下で重ね合わせることができる。
 活性エネルギー線硬化性接着剤には、シート状部材への塗工に適した粘度に調整するために、乾燥工程においてシート状部材への影響がない範囲内で溶剤を含有させてもよい。活性エネルギー線硬化性接着剤が溶剤を含む場合には、溶剤を揮散させた後、活性エネルギー線を照射して活性エネルギー線硬化性接着剤を硬化させることができる。
 溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、酢酸メトキシエチル等のエステル類;ジエチルエーテル、エチレングリコールジメチルエーテル等のエーテル類;トルエン、キシレン等の芳香族化合物;ペンタン、ヘキサン等の脂肪族化合物;塩化メチレン、クロロベンゼン、クロロホルム等のハロゲン化炭化水素化合物;エタノール、イソプロピルアルコール、ノルマルブタノール等のアルコール類;水が挙げられる。これら溶剤は単独で使用してもよく、2種類以上を併用してもよい。
 活性エネルギー線硬化性接着剤をシート状部材に塗工する装置としては、例えば、コンマコータ、ドライラミネータ、ロールナイフコータ、ダイコータ、ロールコータ、バーコータ、グラビアロールコータ、リバースロールコータ、ブレードコータ、グラビアコータ、マイクログラビアコータが挙げられる。
 シート状部材に塗布する接着剤量は、乾燥膜厚で0.1乃至50g/m程度であることが好ましい。
 活性エネルギー線硬化性接着剤を硬化させるために照射する活性エネルギー線としては、例えば、紫外線、電子線、γ線、赤外線、可視光線が挙げられる。
 以下に本発明の実施例を記載するが、本発明は下記実施例に限定されるものでない。なお、実施例中の部及び%は、それぞれ重量部及び重量%を表している。
 まず、ウレタン樹脂の合成方法、活性エネルギー線硬化性接着剤の調製方法、及び太陽電池用裏面保護シートの作成方法について示す。
(ウレタン樹脂の合成)
 実施例1
 重合槽、攪拌機、温度計、還流冷却器、窒素導入管、滴下槽を備えた重合反応装置の重合槽に、メチルエチルケトン(MEK)を716.6部、クラレポリオールC-1090(クラレ社製)を607.8部、シクロヘキサンジメタノール(CHDM)を89.2部、プロピレングリコールジグリシジルエーテルに2モルのアクリル酸が付加した化合物であるエポキシエステル70PA(共栄社化学社製)を19.6部仕込んだ。窒素気流下、混合液を攪拌しながら、重合槽内の温度を80℃に高めた。80℃に達した時点で、重合槽内にジブチル錫ジラウレート(DBTDL)を0.5部加えた。
 次に、イソホロンジイソシアネート(IPDI)283.4部とMEK283.4部との混合物を、2時間かけて滴下槽から重合槽に滴下した。滴下を終了してから1時間経過後に重合槽内にDBTDLを0.05部加え、その後、赤外分光光度計でイソシアネート基の赤外吸収ピークが消滅するまで反応を続けた。イソシアネート基の吸収ピークが完全に消滅したことを確認し、反応を終了した。重合槽の温度を40℃まで下げて、重合槽内にMEKを500.0部加えて、固形分40%のウレタン樹脂溶液(D-1)を得た。ウレタン樹脂溶液(D-1)の性状を表1に示す。
 実施例2乃至22
 表1乃至4の組成に従って、実施例1と同様にしてウレタン樹脂溶液(D-2)乃至(D-22)を得た。これらウレタン樹脂溶液の性状を表1乃至4に示す。
 比較例1
 重合槽、攪拌機、温度計、還流冷却器、窒素導入管、滴下槽を備えた重合反応装置の重合槽に、メチルエチルケトン(MEK)を869.4部、クラレポリオールC-3090(クラレ社製)を834.1部、シクロヘキサンジメタノール(CHDM)を41.7部仕込んだ。窒素気流下、この混合液を攪拌しながら、重合槽内の温度を80℃に高めた。80℃に達した時点で、重合槽内にジブチル錫ジラウレート(DBTDL)を0.5部加えた。
 次に、イソホロンジイソシアネート(IPDI)124.2部とMEK124.2部との混合物を、2時間かけて滴下槽から重合槽に滴下した。滴下を終了してから1時間経過後に重合槽内にDBTDLを0.05部加え、その後、赤外分光光度計でイソシアネート基の赤外吸収ピークが消滅するまで反応を続けた。イソシアネート基の吸収ピークが完全に消滅したことを確認し、数平均分子量44000、重量平均分子量76000、水酸基価2.55mgKOH/gのウレタン樹脂を得た。
 次いで、重合槽の温度を60℃に下げて、1個のイソシアネート基と1個のアクリロイル基とを有する2-アクリロイルオキシエチルイソシアネート(カレンズAOI、昭和電工社製)を6.4部とMEKを6.4部との混合物を重合槽に添加した。60℃で反応を行い、赤外分光光度計でイソシアネート基の赤外吸収ピークが完全に消滅するまで反応を続けた。その後、重合槽の温度を40℃まで下げ、重合槽内にMEKを500.0部加えて、固形分40%のウレタン樹脂溶液(D-23)を得た。ウレタン樹脂溶液(D-23)の性状を表5に示す。
 比較例2
 重合槽、攪拌機、温度計、還流冷却器、窒素導入管、滴下槽を備えた重合反応装置の重合槽に、メチルエチルケトン(MEK)を862.5部、クラレポリオールC-3090(クラレ社製)を826.7部、シクロヘキサンジメタノール(CHDM)を41.3部仕込んだ。窒素気流下、この混合液を攪拌しながら、重合槽内の温度を80℃に高めた。80℃に達した時点で、重合槽内にジブチル錫ジラウレート(DBTDL)を0.5部加えた。次に、イソホロンジイソシアネート(IPDI)132.0部とMEK132.0部との混合物を、2時間かけて滴下槽から重合槽に滴下した。滴下を終了してから1時間経過後に重合槽内にDBTDLを0.05部加えて3時間反応を続けて、数平均分子量42000、重量平均分子量72000、NCO価2.67mgKOH/gのウレタン樹脂を得た。
 次いで、重合槽の温度を60℃に下げて、ヒドロキシエチルアクリレート(HEA)を5.5部とMEKを5.5部とを混合したものを重合槽に添加した。60℃で反応を行い、赤外分光光度計でイソシアネート基の赤外吸収ピークが完全に消滅するまで反応を続けた。その後、重合槽の温度を40℃まで下げ、重合槽内にMEKを500.0部加えて、固形分40%のウレタン樹脂溶液(D-24)を得た。ウレタン樹脂溶液(D-24)の性状を表5に示す。
 比較例3乃至5
 表5の組成に従って、実施例1と同様にしてウレタン樹脂溶液(D-25)乃至(D-27)を得た。これらウレタン樹脂溶液の性状を表5に示す。
 <数平均分子量(Mn)及び、重量平均分子量(Mw)>
 数平均分子量及び重量平均分子量の測定は東ソー社製GPC(ゲルパーミエーションクロマトグラフィー)「HPC-8020」を用い、溶媒はテトラヒドロフランを用いた。数平均分子量及び重量平均分子量はポリスチレン換算で行った。
 <ガラス転移温度(Tg)>
 ガラス転移温度の測定は、セイコーインスツルメンツ社製DSC「RDC220」を用いて行った。具体的には、ウレタン樹脂溶液(D-1)乃至(D-27)を乾燥させてなる試料から約10mgをアルミニウムパンに量り採った。これをDSC装置にセットして液体窒素で-100℃まで冷却した後、10℃/minで昇温した。この際に得られたDSCチャートからガラス転移温度を算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1乃至5中の各成分の詳細は以下の通りである。
 C-1090:クラレ社製、ポリカーボネートジオール 数平均分子量=1000
 C-2050:クラレ社製、ポリカーボネートジオール 数平均分子量=2000
 C-2090R:クラレ社製、ポリカーボネートジオール 数平均分子量=2000
 C-3090:クラレ社製、ポリカーボネートジオール 数平均分子量=3000
 P-3090:クラレ社製、ポリエステルジオール 数平均分子量=3000
 ETERNACOLL UM-90(3/1):1,4-シクロヘキサンジメタノール/1,6-ヘキサンジオール=3/1(モル比)を原料とするポリカーボネートジオール、数平均分子量=900
 ETERNACOLL UM-90(1/1):1,4-シクロヘキサンジメタノール/1,6-ヘキサンジオール=1/1(モル比)を原料とするポリカーボネートジオール、数平均分子量=900
 ETERNACOLL UM-90(1/3):1,4-シクロヘキサンジメタノール/1,6-ヘキサンジオール=1/3(モル比)を原料とするポリカーボネートジオール、数平均分子量=900
 CHDM:シクロヘキサンジメタノール
 リカビノールHB:新日本理化(株)製、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン、別名水添ビスフェノールA)
 エポキシエステル70A:共栄化学(株)製、プロピレングリコールジグリシジルエーテルに2モルのアクリル酸が付加した化合物
 エポキシエステル3000A:ビスフェノールAジグリシジルエーテルに2モルのアクリル酸が付加した化合物。
 ブレンマーGML:グリセリンモノメタクリレート
 エポキシエステル80MFA:グリセリンジグリシジルエーテルに2モルのアクリル酸が付加した化合物
 IPDI:イソホロンジイソシアネート
 DBTL:ジブチル錫ジラウレート
 AOI:2-アクリロイルオキシエチルイソシアネート(カレンズAOI、昭和電工社製)
 HEA:ヒドロキシエチルアクリレート
 MEK:メチルエチルケトン
(活性エネルギー線硬化性接着剤1乃至27)
 実施例23乃至44及び比較例6乃至10
 上記合成により得られたウレタン樹脂溶液D)、エポキシ樹脂(E)、活性エネルギー線硬化性化合物、光重合開始剤及びその他の成分を表6乃至8に示す重量比で混合し、活性エネルギー線硬化性接着剤を得た。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表6乃至8中の各成分の詳細は以下の通りである。
 エピコート828:エポキシ樹脂(ジャパンエポキシレジン社製) 数平均分子量370
 エピコート1001:エポキシ樹脂(ジャパンエポキシレジン社製) 数平均分子量900
 エピコート1002:エポキシ樹脂(ジャパンエポキシレジン社製) 数平均分子量1200
 エピコート1009:エポキシ樹脂(ジャパンエポキシレジン社製) 数平均分子量3800
 IBXA:イソボルニルアクリレート(大阪有機化学社製)
 M-210:EO変性ビスフェノールAジアクリレート(東亞合成社製)
 M305:ペンタエリスリトールトリアクリレート(東亞合成社製)
 M315:イソシアヌル酸EO変性トリアクリレート(東亞合成社製)
 ビームセット700:ジペンタエリスリトールヘキサアクリレート(荒川化学社製)
 ビスコート#230:1,6-ヘキサンジオールジアクリレート(大阪有機化学社製)
 イルガキュア184:1-ヒドロキシーシクロヘキシルーフェニルーケトン(チバ・スペシャリティ・ケミカルズ製)
 イルガキュア369:2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(チバ・スペシャリティ・ケミカルズ製)
 イルガキュア819:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(チバ・スペシャリティ・ケミカルズ社製)
 ケミタイトDZ-22E:4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン(日本触媒社製)
 ケミタイトPZ-33:2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート](日本触媒社製)
 S-510:3-グリシドキシプロピル)トリメトキシシラン(チッソ社製)
 表6乃至8に示す接着剤の硬化物のガラス転移温度(Tg)は、以下のようにして求めた。
 厚さが約200μmの接着剤硬化物シートを作成し、動的粘弾性測定装置DVA-200(アイティー計測制御社製)を用いた測定を行い、tanδのピーク値の温度をガラス転移温度とした。
 なお、接着剤硬化物シートは、シリコーン系離形層を有するポリエステルフィルムにブレードコータにて接着剤を塗工し、溶剤を乾燥させた後に紫外線(120Wメタルハライドランプ、UV-A領域の積算光量500mJ/cm)を照射して活性エネルギー線硬化接着剤層を形成し、更にこの接着剤層からポリエステルフィルムを剥離することにより得た。
(太陽電池用裏面保護シートの作成方法1乃至3)
 作成方法1
 シート状部材(S1)に活性エネルギー線硬化性接着剤を塗布し、塗膜から溶剤を揮散させた。次いで、この塗膜を間に挟んでシート状部材(S1)と他のシート状部材(S2)とを重ね、この積層体を60℃に設定した2つのロール間に通過させた。その後、他のシート状部材(S2)側から紫外線(120Wメタルハライドランプ、UV-A領域の積算光量500mJ/cm2)を照射して、活性エネルギー線硬化接着剤層を形成した。
 以上のようにして、太陽電池用裏面保護シートを得た。なお、接着剤層の量は8乃至10g/mとした。
 作成方法2
 シート状部材(S1)に活性エネルギー線硬化性接着剤を塗布し、塗膜から溶剤を揮散させた。次いで、この塗膜に表面側から紫外線(120W高圧水銀ランプ、UV-A領域の積算光量200mJ/cm)を照射して、活性エネルギー線硬化接着剤層を形成した。その後、活性エネルギー線硬化接着剤層を間に挟んでシート上部材(S1)と他のシート状部材(S2)とを重ね、この積層体を60℃に設定した2つのロール間に通過させた。
 以上のようにして、太陽電池用裏面保護シートを得た。なお、接着剤層の量は8乃至10g/mとした。
作成方法3
 シート状部材(S1)に活性エネルギー線硬化性接着剤を塗布し、塗膜から溶剤を揮散させた。次いで、この塗膜に表面側から紫外線(120W高圧水銀ランプ、UV-A領域の積算光量200mJ/cm)を照射して、活性エネルギー線硬化接着剤層を形成した。その後、活性エネルギー線硬化接着剤層を間に挟んでシート状部材(S1)と他のシート状部材(S2)とを重ね、この積層体を60℃に設定した2つのロール間に通過させた。
 次に、この積層体の一方の主面に活性エネルギー線硬化性接着剤を塗布し、塗膜から溶剤を揮散させた。次いで、この塗膜に表面側から紫外線(120W高圧水銀ランプ、UV-A領域の積算光量200mJ/cm)を照射して、活性エネルギー線硬化接着剤層を形成した。その後、この活性エネルギー線硬化接着剤層を間に挟んで先の積層体と更に他のシート状部材(S3)とを重ね、これを60℃に設定した2つのロール間に通過させた。
 以上のようにして、太陽電池用裏面保護シートを得た。なお、2つの接着剤層の量はいずれも8乃至10g/mとした。
(実施例45乃至73及び比較例11乃至22)
 活性エネルギー線硬化性接着剤と太陽電池用裏面保護シートの作成方法とシート状部材とを表9乃至13に示すように組み合わせて、太陽電池用裏面保護シートを得た。そして、後述する方法に従い、接着性、耐湿熱性、生産性、気泡の有無を評価した。結果を表9乃至13に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表9乃至13においてシート状部材(S1乃至S3)に関して使用している略語の意味は以下の通りである。
・PET(1):無色透明のポリエチレンテレフタレートフィルム(厚さ188μm)
・蒸着PET:ポリエチレンテレフタレートフィルム(厚さ12μm)の片面に、珪素酸化物とフッ化マグネシウムとの比率(モル%)が90/10の混合物を500Åの厚さに蒸着したフィルム
・AL(1):アルミニウム箔(厚さ30μm)の片面に10μの耐候性樹脂層*を設けたもの
  耐候性樹脂層*:オブリガートPS2012(白) 主剤:硬化剤(13:1)(AGCコーテック社製)
・AL(2):アルミニウム箔(厚さ30μm)
・白色PET:白色ポリエチレンテレフタレートフィルム(厚さ50μm)
・黒PET:黒色ポリエチレンテレフタレートフィルム(厚さ50μm)
・PVF:デュポン社製ポリフッ化ビニルフィルム「テドラー」(厚さ38μm)
・KFC:クレハエクステック社製多層フィルム「FT-50Y」(厚さ50μm)
・EVA:エチレン・酢酸ビニル共重合樹脂フィルム(厚さ100μm)
 表9乃至13に結果を示している評価の方法及びその評価基準は以下の通りである。
(1)接着性
 太陽電池用裏面保護シートを200mm×15mmの大きさに切断して、試験片を得た。この試験片に対して、ASTM D1876-61の試験法に準じ、引張り試験機を用いて荷重速度300mm/分でT型剥離試験を行った。シート状部材間の剥離強度(N/15mm巾)は、5個の試験片の平均値で示した。
 ◎…4N以上
 ○…2N以上4N未満
 △…1N以上2N未満
 ×…1N未満
(2)耐湿熱性
 太陽電池用裏面保護シートを85℃、85%RH雰囲気下に1000及び2000時間保存した。保存した太陽電池用裏面保護シートを200mm×15mmの大きさに切断して、試験片を得た。この試験片に対して、ASTM D1876-61の試験法に準じ、引張り試験機を用いて荷重速度300mm/分でT型剥離試験を行った。シート状部材間の剥離強度(N/15mm巾)は、5個の試験片の平均値で示した。
 ◎…4N以上
 ○…2N以上4N未満
 △…1N以上2N未満
 ×…1N未満
(3)生産性
 50cm巾、500m長の太陽電池用裏面保護シートのロール状物を作成した。このロール状物を、その巻芯の軸方向が天地方向となるように立て、その外周を掴んで持ち上げた。
 ○…接着したシート状部材間にズレが生じることはなく、ロールの形状も維持できた。
 ×…接着したシート状部材間にズレが生じ、ロールの形状も維持できなかった。
(4)気泡及び浮きの有無
 50cm巾、500m長の太陽電池用裏面保護シートのロール状物を作成した。このロール状物を、その巻芯の軸方向が天地方向となるように立て、60℃の環境中で1週間保存した。
 その後、透明なシート状部材を通して接着剤層の状態を観察して、気泡の有無を調べた。また、シート状部材の浮きの有無を観察した。
 ○…異常なし
 △…大きな気泡及び大きな浮きは発生しなかったが、小さな気泡及び小さな浮きの少なくとも一方が発生
 ×…大きな気泡及び大きな浮きの少なくとも一方が発生
 表7乃至10に示されるように、ガラス転移温度が-60乃至-10℃の範囲内にあるウレタン樹脂(D)とエポキシ樹脂(E)とを含有した活性エネルギー線硬化性接着剤を使用した場合、シート状部材間の接着力及び耐湿熱性に優れた太陽電池用裏面保護シートを、接着剤層中の気泡発生による外観不良やデラミネーションを生じることなしに製造することができる。また、これら接着剤を使用した太陽電池用裏面保護シートの製造では、接着剤層を硬化させるためのエージングは不溶である。即ち、これら接着剤を使用することにより、シート状部材間の接着力及び耐湿熱性に優れ、接着剤層中の気泡発生による外観不良やデラミネーションが生じない太陽電池用裏面保護シートを、高い歩留まり及び生産性で並びに低いコストで得ることができる。
 ここで説明したウレタン樹脂(D)を含有する組成物を硬化させてなる硬化物は、プラスチックフィルムや金属フィルムなどの各種基材に対する接着性に優れ、また、高温多湿の条件下において劣化を生じ難い。それ故、先の組成物は、太陽電池用裏面保護シート製造用に好適に用いられることは勿論、その他の用途に、例えば、プラスチックレンズ、プリズム及び光ファイバなどの光学部材、フレキシブルプリント配線盤用ソルダーレジスト、多層プリント配線盤用層間絶縁膜などの電気・電子部材、紙又はプラスチックフィルム用のコーティング剤、食品パッケージ用の接着剤として用いることもできる。

Claims (12)

  1.  (メタ)アクリロイル基を有していないジオール成分(A1)であって、
      カーボネート構造と脂環構造とを1分子中に有しているジオール(a1)、
      脂環構造を有しておらず、カーボネート構造を有しているジオール(a2)と、カーボネート構造を有しておらず、脂環構造を有しているジオール(a3)との組み合わせ、並びに
      前記ジオール(a1)と、前記ジオール(a2)及び前記ジオール(a3)の少なくとも一方との組み合わせ
    からなる群より選択されるジオール成分(A1)と、
     (メタ)アクリロイル基とカーボネート構造と脂環構造とを有していない任意のジオール成分(A2)と、
     (メタ)アクリロイル基と2個以上の水酸基とを1分子中に有しているポリオール成分(B)と、
     ポリイソシアネート成分(C)と
    を反応させてなる、(メタ)アクリロイル基を有するウレタン樹脂(D)。
  2.  ガラス転移温度が-60乃至-10℃の範囲内にある請求項1に記載のウレタン樹脂(D)。
  3.  数平均分子量が5000乃至150000の範囲内にある請求項1又は2に記載のウレタン樹脂(D)。
  4.  前記ポリオール成分(B)は、1分子中に(メタ)アクリロイル基を2個以上有する請求項1乃至3の何れかに記載のウレタン樹脂(D)。
  5.  前記ポリオール成分(B)は、2個以上のエポキシ基を有する化合物のエポキシ基に(メタ)アクリル酸が付加した化合物である請求項4に記載のウレタン樹脂(D)。
  6.  (メタ)アクリロイル基当量が500乃至40000の範囲内にある請求項1乃至5の何れかに記載のウレタン樹脂(D)。
  7.  請求項2乃至6の何れかに記載のウレタン樹脂(D)と、エポキシ樹脂(E)とを含有した活性エネルギー線硬化性接着剤。
  8.  前記エポキシ樹脂(E)の数平均分子量は500乃至5000の範囲内にある請求項7に記載の活性エネルギー線硬化性接着剤。
  9.  前記ウレタン樹脂(D)100重量部に対して、前記エポキシ樹脂(E)を5乃至40重量部含有した請求項7又は8に記載の活性エネルギー線硬化性接着剤。
  10.  請求項7乃至9の何れかに記載の活性エネルギー線硬化性接着剤から形成された活性エネルギー線硬化接着剤層と、前記活性エネルギー線硬化接着剤層を介して積層された2つ以上のシート状部材とを具備した太陽電池用裏面保護シート。
  11.  前記シート状部材の1つは、金属箔であるか、又は、プラスチックフィルムの少なくとも一方の面に金属酸化物若しくは非金属無機酸化物が蒸着されてなる蒸着層付きプラスチックフィルムである請求項10に記載の太陽電池用裏面保護シート。
  12.  前記活性エネルギー線硬化接着剤層のガラス転移温度は-20乃至20℃の範囲内にある請求項10又は11に記載の太陽電池用裏面保護シート。
PCT/JP2010/060057 2009-06-15 2010-06-14 ウレタン樹脂、活性エネルギー線硬化性接着剤、及び太陽電池用裏面保護シート WO2010147090A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10789465.1A EP2444435A4 (en) 2009-06-15 2010-06-14 URETHANE RESIN, LIQUID THAT IS HARDENABLE WITH ACTIN POWER RAYS AND PROTECTIVE BACKFILM FOR A SOLAR CELL
CN201080026436.8A CN102459393B (zh) 2009-06-15 2010-06-14 聚氨酯树脂、活性能量线固化性粘合剂及太阳能电池用背面保护片
KR1020117029738A KR101372456B1 (ko) 2009-06-15 2010-06-14 우레탄 수지, 활성 에너지선 경화성 접착제, 및 태양전지용 이면 보호 시트
US13/325,539 US8404969B2 (en) 2009-06-15 2011-12-14 Urethane resin, actinic energy ray curable adhesive, and back protective sheet for solar cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009142475 2009-06-15
JP2009142476 2009-06-15
JP2009-142475 2009-06-15
JP2009-142476 2009-06-15
JP2009-279068 2009-12-09
JP2009279068 2009-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/325,539 Continuation US8404969B2 (en) 2009-06-15 2011-12-14 Urethane resin, actinic energy ray curable adhesive, and back protective sheet for solar cell

Publications (1)

Publication Number Publication Date
WO2010147090A1 true WO2010147090A1 (ja) 2010-12-23

Family

ID=43356408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060057 WO2010147090A1 (ja) 2009-06-15 2010-06-14 ウレタン樹脂、活性エネルギー線硬化性接着剤、及び太陽電池用裏面保護シート

Country Status (7)

Country Link
US (1) US8404969B2 (ja)
EP (1) EP2444435A4 (ja)
JP (1) JP5447204B2 (ja)
KR (1) KR101372456B1 (ja)
CN (1) CN102459393B (ja)
TW (1) TW201105746A (ja)
WO (1) WO2010147090A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111852A (ja) * 2010-11-25 2012-06-14 Toyo Ink Sc Holdings Co Ltd (メタ)アクリロイル基を有するウレタン樹脂及び該ウレタン樹脂を含有する活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
WO2012081243A1 (ja) * 2010-12-15 2012-06-21 東洋インキScホールディングス株式会社 活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
JP2013074172A (ja) * 2011-09-28 2013-04-22 Dainippon Printing Co Ltd 易接着性裏面保護シート及びそれを用いた太陽電池モジュール
WO2013105486A1 (ja) * 2012-01-10 2013-07-18 東洋インキScホールディングス株式会社 太陽電池保護シート用易接着剤、太陽電池保護シート、及び太陽電池モジュール
CN104114595A (zh) * 2012-02-16 2014-10-22 阿科玛股份有限公司 用于光伏背板的辐射可固化的粘合剂组合物
WO2016092970A1 (ja) * 2014-12-08 2016-06-16 Dic株式会社 紫外線硬化型粘着剤組成物、及び、粘着シート
JP2019104886A (ja) * 2017-12-14 2019-06-27 日華化学株式会社 積層体、コーティング剤、及び積層体の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053030A1 (de) 2011-08-26 2013-02-28 Bayer Materialscience Aktiengesellschaft Solarmodul und Verfahren zu seiner Herstellung
JP5914024B2 (ja) * 2012-02-16 2016-05-11 日東電工株式会社 放射線硬化型粘着剤組成物の製造方法、該製造方法で得られた放射線硬化型粘着剤組成物、および、該粘着剤組成物を用いた粘着シート
JP6049055B2 (ja) * 2012-08-08 2016-12-21 日本化薬株式会社 紫外線硬化型樹脂組成物、硬化物及び物品
BR112015002821B1 (pt) * 2012-08-08 2022-10-18 Theravance Biopharma R&D Ip, Llc Compostos inibidores de neprilisina e composição farmacêutica
JP2014231574A (ja) * 2013-05-30 2014-12-11 Jsr株式会社 ウレタン(メタ)アクリレート、硬化性組成物および硬化物
JP5713515B1 (ja) 2013-08-06 2015-05-07 第一工業製薬株式会社 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極、該電極を使用したリチウム二次電池
CN106103632B (zh) * 2014-03-18 2020-07-17 胡网加成股份有限公司 辐射固化树脂组合物
CN104393074B (zh) * 2014-11-25 2017-06-13 张婷 一种太阳电池组件用绝缘膜及其制备方法
KR101666367B1 (ko) * 2014-12-03 2016-10-17 코오롱글로텍주식회사 소수성 또는 발수성 기재용 접착제 및 이의 제조방법
CN105238324B (zh) * 2015-10-29 2018-02-23 乐凯胶片股份有限公司 一种光伏背板用胶黏剂及其光伏背板
JP6365506B2 (ja) * 2015-10-31 2018-08-01 三菱ケミカル株式会社 積層ポリエステルフィルム
CN107429128B (zh) 2016-03-09 2024-08-02 三菱化学株式会社 粘接膜及其制造方法
KR102419357B1 (ko) * 2016-09-27 2022-07-08 가부시끼가이샤 쓰리본드 경화성 수지 조성물, 그 경화물 및 그 경화물로 접합된 접합체
WO2018183787A1 (en) * 2017-03-31 2018-10-04 Magna Seating Inc. Electrical circuit board with low thermal conductivity and method of constructing thereof
CN111417666B (zh) * 2017-12-27 2022-11-22 陶氏环球技术有限责任公司 用于粘附到聚合物阻隔基材的双组分无溶剂粘着剂组合物
CN108359404A (zh) * 2018-01-23 2018-08-03 合肥华盖光伏科技有限公司 一种太阳能光伏电池背板用胶粘剂及制备方法
CN115181538B (zh) * 2022-09-08 2022-12-20 拓迪化学(上海)有限公司 一种用于电池的uv光固化型胶水及其应用
CN115181539B (zh) * 2022-09-08 2022-12-20 拓迪化学(上海)有限公司 一种用于电池的uv光固化型胶水及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273017A (ja) * 1990-03-20 1991-12-04 Toyobo Co Ltd 放射線硬化型樹脂及びその組成物
JPH09268215A (ja) * 1996-01-29 1997-10-14 Mitsubishi Chem Corp 変性ウレタン樹脂組成物及びその製造方法
JP2004217808A (ja) * 2003-01-16 2004-08-05 Mitsubishi Chemicals Corp 活性エネルギー線硬化性樹脂組成物並びにそれを用いた印刷インキ用バインダー及び積層シート
JP2007169453A (ja) * 2005-12-21 2007-07-05 Sumitomo Bakelite Co Ltd 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP2007253463A (ja) 2006-03-23 2007-10-04 Toray Advanced Film Co Ltd 太陽電池モジュール用表面保護シート
JP2007320218A (ja) 2006-06-02 2007-12-13 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2008069307A (ja) * 2006-09-15 2008-03-27 Dh Material Kk 被覆接着用ラジカル重合性樹脂組成物
JP2008127475A (ja) 2006-11-21 2008-06-05 Negami Kogyo Kk 不飽和基含有ウレタン樹脂およびこれを含有する活性エネルギー線硬化型樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301236A (ja) * 2004-03-15 2005-10-27 Jsr Corp 液状硬化性樹脂組成物
TW200613903A (en) * 2004-05-26 2006-05-01 Showa Denko Kk Photosensitive resin composition, and cured product and use thereof
JP2006065193A (ja) * 2004-08-30 2006-03-09 Jsr Corp 光ファイバアップジャケット用液状硬化性樹脂組成物
JP2008004691A (ja) * 2006-06-21 2008-01-10 Toppan Printing Co Ltd 太陽電池裏面封止用シート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273017A (ja) * 1990-03-20 1991-12-04 Toyobo Co Ltd 放射線硬化型樹脂及びその組成物
JPH09268215A (ja) * 1996-01-29 1997-10-14 Mitsubishi Chem Corp 変性ウレタン樹脂組成物及びその製造方法
JP2004217808A (ja) * 2003-01-16 2004-08-05 Mitsubishi Chemicals Corp 活性エネルギー線硬化性樹脂組成物並びにそれを用いた印刷インキ用バインダー及び積層シート
JP2007169453A (ja) * 2005-12-21 2007-07-05 Sumitomo Bakelite Co Ltd 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP2007253463A (ja) 2006-03-23 2007-10-04 Toray Advanced Film Co Ltd 太陽電池モジュール用表面保護シート
JP2007320218A (ja) 2006-06-02 2007-12-13 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2008069307A (ja) * 2006-09-15 2008-03-27 Dh Material Kk 被覆接着用ラジカル重合性樹脂組成物
JP2008127475A (ja) 2006-11-21 2008-06-05 Negami Kogyo Kk 不飽和基含有ウレタン樹脂およびこれを含有する活性エネルギー線硬化型樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444435A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111852A (ja) * 2010-11-25 2012-06-14 Toyo Ink Sc Holdings Co Ltd (メタ)アクリロイル基を有するウレタン樹脂及び該ウレタン樹脂を含有する活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
WO2012081243A1 (ja) * 2010-12-15 2012-06-21 東洋インキScホールディングス株式会社 活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
JP5849968B2 (ja) * 2010-12-15 2016-02-03 東洋インキScホールディングス株式会社 活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
JPWO2012081243A1 (ja) * 2010-12-15 2014-05-22 東洋インキScホールディングス株式会社 活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
JP2013074172A (ja) * 2011-09-28 2013-04-22 Dainippon Printing Co Ltd 易接着性裏面保護シート及びそれを用いた太陽電池モジュール
KR20140123947A (ko) * 2012-01-10 2014-10-23 토요잉크Sc홀딩스주식회사 태양 전지 보호 시트용 용이 접착제, 태양 전지 보호 시트 및 태양 전지 모듈
JPWO2013105486A1 (ja) * 2012-01-10 2015-05-11 東洋インキScホールディングス株式会社 太陽電池保護シート用易接着剤、太陽電池保護シート、及び太陽電池モジュール
WO2013105486A1 (ja) * 2012-01-10 2013-07-18 東洋インキScホールディングス株式会社 太陽電池保護シート用易接着剤、太陽電池保護シート、及び太陽電池モジュール
KR102048981B1 (ko) * 2012-01-10 2019-11-26 토요켐주식회사 태양 전지 보호 시트용 용이 접착제, 태양 전지 보호 시트 및 태양 전지 모듈
CN104114595A (zh) * 2012-02-16 2014-10-22 阿科玛股份有限公司 用于光伏背板的辐射可固化的粘合剂组合物
WO2016092970A1 (ja) * 2014-12-08 2016-06-16 Dic株式会社 紫外線硬化型粘着剤組成物、及び、粘着シート
JP5967461B1 (ja) * 2014-12-08 2016-08-10 Dic株式会社 紫外線硬化型粘着剤組成物、及び、粘着シート
JP2019104886A (ja) * 2017-12-14 2019-06-27 日華化学株式会社 積層体、コーティング剤、及び積層体の製造方法

Also Published As

Publication number Publication date
US20120082853A1 (en) 2012-04-05
JP5447204B2 (ja) 2014-03-19
JP2011140622A (ja) 2011-07-21
KR101372456B1 (ko) 2014-03-11
EP2444435A1 (en) 2012-04-25
TW201105746A (en) 2011-02-16
KR20120023085A (ko) 2012-03-12
US8404969B2 (en) 2013-03-26
CN102459393A (zh) 2012-05-16
EP2444435A4 (en) 2013-07-03
CN102459393B (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5447204B2 (ja) (メタ)アクリロイル基を有するウレタン樹脂及び該ウレタン樹脂を含有する活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
JP5849968B2 (ja) 活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
JP5382277B2 (ja) 活性エネルギー線硬化型樹脂組成物、接着剤及び積層フィルム
CN104204019B (zh) 太阳能电池背板用粘合剂
JP5532882B2 (ja) 活性エネルギー線硬化性組成物及び太陽電池用裏面保護シート
JP5664170B2 (ja) (メタ)アクリロイル基を有するウレタン・ウレア樹脂及び該ウレタン・ウレア樹脂を含有する活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
US9412893B2 (en) Solar module and process for production thereof
JP5853859B2 (ja) プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
TW201130869A (en) Fresnel lens
JP2011020433A (ja) 太陽電池用裏面保護シート及び該シートの製造方法
JP5978776B2 (ja) 硬化性組成物、接着剤、積層フィルム及び太陽電池のバックシート
KR102048981B1 (ko) 태양 전지 보호 시트용 용이 접착제, 태양 전지 보호 시트 및 태양 전지 모듈
JP5707899B2 (ja) (メタ)アクリロイル基を有するウレタン樹脂及び該ウレタン樹脂を含有する活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
JP5707898B2 (ja) (メタ)アクリロイル基を有するウレタン樹脂及び該ウレタン樹脂を含有する活性エネルギー線硬化性接着剤、並びに太陽電池用裏面保護シート
JP2014009339A (ja) プラスチック製フィルム又はシート用活性エネルギー線硬化型接着剤組成物
JP7491457B1 (ja) 活性エネルギー線硬化型接着剤および積層体
JP2024088114A (ja) 活性エネルギー線重合性樹脂組成物および積層体
JP2011240614A (ja) 積層シート及び太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026436.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117029738

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010789465

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010789465

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE