WO2010143633A1 - ゴム組成物及びそれを用いたタイヤ - Google Patents
ゴム組成物及びそれを用いたタイヤ Download PDFInfo
- Publication number
- WO2010143633A1 WO2010143633A1 PCT/JP2010/059706 JP2010059706W WO2010143633A1 WO 2010143633 A1 WO2010143633 A1 WO 2010143633A1 JP 2010059706 W JP2010059706 W JP 2010059706W WO 2010143633 A1 WO2010143633 A1 WO 2010143633A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- natural rubber
- rubber
- tire
- group
- rubber composition
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
Definitions
- the present invention relates to a rubber composition and a tire using the rubber composition. More specifically, the present invention relates to a rubber composition that provides a large tire such as a tire for low heat generation and wear resistance, particularly an off-the-road tire, and a tire member such as tread rubber or case rubber. It relates to a tire having the above performance.
- the most common technique is to use a material having lower heat generation as the rubber composition.
- a synthetic rubber component such as styrene-butadiene copolymer (SBR) has been used in the tread rubber composition in order to improve wear resistance. It has been improved. It has also been proposed to add a modified conjugated diene polymer such as a modified styrene-butadiene copolymer in order to improve low heat build-up. However, if the amount of the modified conjugated diene polymer is excessively increased, the wear resistance cannot be sufficiently improved, and the fracture resistance is deteriorated.
- SBR styrene-butadiene copolymer
- Silica is known as a filler to improve low heat build-up (for example, Patent Documents 1 to 4), but silica tends to aggregate particles and has wettability with rubber. Inferior, not well dispersed in rubber. If the silica is not sufficiently dispersed in the rubber, the rubber composition has a high Mooney viscosity, and there is a problem that the processability such as extrusion is poor.
- a technique of blending a rubber-filler coupling agent having a specific structure into a rubber composition for example, Patent Document 8
- a diene rubber and a filler A rubber composition having low heat buildup and wear resistance obtained by adding a vulcanizing agent or a vulcanization accelerator to a heat treated rubber obtained by heat treatment under specific conditions after mixing (for example, Patent Document 9) has been proposed.
- Patent Document 8 a technique of blending a rubber-filler coupling agent having a specific structure into a rubber composition
- Patent Document 9 A rubber composition having low heat buildup and wear resistance obtained by adding a vulcanizing agent or a vulcanization accelerator to a heat treated rubber obtained by heat treatment under specific conditions after mixing
- JP-A-6-248116 Japanese Patent Laid-Open No. 7-70369 JP-A-8-245838 JP-A-3-252431 JP 2006-37046 A Japanese Examined Patent Publication No. 6-53763 International Publication No. 2004/106397 Pamphlet US Patent Application Publication No. 2007/0161756 JP 2008-156548 A
- the present invention has been made under such circumstances, and a rubber composition that provides a large tire such as a tire having low heat build-up and wear resistance, particularly an off-the-road tire, and a tire member using the rubber composition. It is an object of the present invention to provide a tire having the above performance.
- the total surface area of the reinforcing filler and the dispersibility of the reinforcing filler are important, that is, the dispersibility of the reinforcing filler is good at a specific total surface area of the reinforcing filler. It was found that the low heat buildup of the rubber composition is improved, the wear resistance is improved if the total surface area of the reinforcing filler is large and the dispersibility of the reinforcing filler is good. Furthermore, the inventors have conducted various experimental studies on indices that can universally evaluate the dispersibility of the reinforcing filler at a specific total surface area of the reinforcing filler. In order to obtain a good rubber composition, it has been found through numerous experiments that the (-30 ° C.
- tan ⁇ / 60 ° C. tan ⁇ ratio of the vulcanized rubber composition should be increased.
- the wear resistance of the rubber composition In addition, in relation to the ( ⁇ 30 ° C. tan ⁇ / 60 ° C.
- cetyltrimethylammonium bromide adsorption specific surface area (m 2 / g) is most preferable as an indicator of the specific total surface area of the reinforcing filler. did.
- a rubber composition containing natural rubber as a rubber component, carbon black and / or silica as a reinforcing filler, and -30 of vulcanized rubber composition It has been found that the above problem can be solved by adjusting the °C / 60 ° C. tan ⁇ ratio to be larger than a specific formula using the total surface area of the reinforcing filler as a variable.
- the rubber composition is prepared by using, for example, a natural rubber and carbon black masterbatch or a modified natural rubber as a natural rubber of the rubber component, or using a dispersibility improver of a reinforcing filler in the rubber composition. It discovered that it could achieve by mix
- Ln (x) is the natural logarithm of x
- tan ⁇ is the loss tangent of the vulcanized rubber composition.
- a rubber composition that provides a tire having both low heat build-up and wear resistance, particularly a large tire such as an off-the-road tire, and the tire composition such as tread rubber and case rubber is used for the tire composition.
- a tire having performance can be provided.
- FIG. 3 is a plot diagram showing the relationship between x in Formula (1) and ⁇ 30 ° C. tan ⁇ / 60 ° C. tan ⁇ in the rubber compositions obtained in Examples and Comparative Examples.
- it is a plot figure which shows the relationship between the internal temperature change in a driving
- Ln (x) is the natural logarithm of x
- tan ⁇ is the loss tangent of the vulcanized rubber composition. It is characterized by adjusting to satisfy the relationship.
- the rubber composition of the present invention such that the value of the -30 ° C. tan ⁇ / 60 ° C. tan ⁇ ratio is larger than the y value when the value of “ ⁇ 1026.5Ln (x) +10256” is y, A rubber composition excellent in low heat generation and wear resistance is obtained, and by using this rubber composition for a tire member, a tire having both low heat generation and wear resistance, particularly a tire for large heavy loads or off-the-road use. Can be given.
- x is “CTAB ⁇ A”
- CTAB is the cetyltrimethylammonium bromide adsorption specific surface area (m 2 / g) measured according to ISO 6810 of the reinforcing filler
- A is Since it is a mass part of the reinforcing filler per 100 parts by mass of natural rubber, x means the total surface area of the reinforcing filler.
- x is a number in the range of 2500 to 13000.
- the ⁇ 30 ° C. tan ⁇ and 60 ° C. tan ⁇ of the vulcanized rubber composition are values measured by the following method. ⁇ Measurement of ⁇ 30 ° C. tan ⁇ and 60 ° C.
- tan ⁇ > A vulcanized rubber composition obtained by vulcanizing a rubber composition at 150 ° C. for 90 minutes was measured from 100 ° C. to ⁇ 60 ° C. using a shear viscoelasticity measuring apparatus [“Ares” manufactured by Rheometrics Co., Ltd.]. The tan ⁇ at °C and the tan ⁇ at ⁇ 30 ° C. were determined. The tan ⁇ at 60 ° C. was a value at a frequency of 10 Hz and a dynamic strain of 3%, and the tan ⁇ at ⁇ 30 ° C. was a value at a frequency of 10 Hz and a dynamic strain of 0.1%.
- the type of carbon black or silica that is the reinforcing filler in the rubber composition the selection of the quantity ratio, (1) Use natural rubber in the form of a masterbatch of natural rubber and carbon black, (2) Use modified natural rubber, (3) Reinforcing fillers such as rubber-filler coupling agents This is achieved by taking measures such as using a dispersibility improver, (4) using a heat treatment masterbatch obtained by mixing natural rubber and a reinforcing filler, and then heat-treating under predetermined conditions. be able to.
- Carbon black and / or silica In the rubber composition of the present invention, carbon black and / or silica is used as the reinforcing filler.
- carbon black There is no restriction
- This carbon black preferably has a cetyltrimethylammonium bromide adsorption specific surface area (CTAB) measured in accordance with ISO 6810 in the range of 20 to 200 m 2 / g, and in the range of 70 to 160 m 2 / g. Those are more preferred.
- CTAB cetyltrimethylammonium bromide adsorption specific surface area
- silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like. Among these, wet silica is preferable.
- the wet silica preferably has a CATB specific surface area of 100 to 300 m 2 / g. Silica having a CATB specific surface area within this range has an advantage that both rubber reinforcement and dispersibility in a rubber component can be achieved. From this viewpoint, silica having a CATB specific surface area in the range of 150 to 250 m 2 / g is more preferable.
- silica commercially available products such as “Nipsil AQ”, “Nipsil KQ” manufactured by Tosoh Silica Co., Ltd., “Ultrasil VN3” manufactured by Degussa Co., Ltd. can be used. This silica may be used alone or in combination of two or more.
- the reinforcing filler only carbon black may be used, silica alone may be used, or carbon black and silica may be used in combination.
- the reinforcing filler is preferably 20 to 120 parts by weight, more preferably 25 to 100 parts by weight, still more preferably 100 parts by weight of natural rubber, from the viewpoint of reinforcing properties and the effect of improving various properties thereby. It is blended at a ratio of 30 to 90 parts by mass.
- the natural rubber can be used in the form of a masterbatch of natural rubber and carbon black (hereinafter sometimes referred to as a natural rubber masterbatch).
- This master batch is preferably a wet master batch of natural rubber latex and carbon black.
- This natural rubber masterbatch is preferably a wet masterbatch in which carbon black is mixed with natural rubber latex, and the production method is preferably such that after decomposing the amide bond in the latex, the natural rubber latex and carbon black are dispersed in water. And a step of mixing, coagulating, and drying the resulting aqueous slurry.
- a slurry liquid in which carbon black is dispersed in water in advance Prior to mixing the natural rubber latex and the aqueous dispersion slurry liquid, a slurry liquid in which carbon black is dispersed in water in advance is produced.
- the manufacturing method of this slurry can use a well-known method, and is not specifically limited.
- the water dispersion slurry of carbon black can be prepared, for example, by putting a predetermined amount of carbon black and water in a homomixer and stirring for a certain time.
- the concentration of carbon black in the slurry is preferably from 0.5 to 30% by mass, particularly preferably from 1 to 15% by mass, based on the slurry.
- the volume average particle size (mv) is preferably 25 ⁇ m or less and the 90 volume% particle size (D90) is preferably 30 ⁇ m or less.
- the volume average particle size is 25 ⁇ m or less and the 90% by volume particle size is 30 ⁇ m or less, the carbon black dispersion in the rubber is further improved, and the reinforcing property and wear resistance are further improved.
- excessive shearing force is applied to the slurry to reduce the particle size of the carbon black, the structure of the carbon black is destroyed and the reinforcing property is deteriorated.
- 24M4DBP oil absorption of the carbon black recovered by drying from the aqueous dispersion slurry liquid The amount is preferably mixed so as to maintain 93% or more, more preferably 96% or more of the 24M4DBP oil absorption before being dispersed in water.
- the amount of carbon black mixed when mixing the natural rubber latex and the water-dispersed slurry is usually about 10 to 100 parts by mass with respect to 100 parts by mass of the natural rubber component in the natural rubber latex. If it is less than 10 parts by mass, sufficient wear resistance cannot be obtained, and if it exceeds 100 parts by mass, the low heat build-up is reduced.
- the mixing amount of carbon black is preferably 20 to 80 parts by mass, and more preferably 30 to 60 parts by mass. Through this mixing step, a natural rubber wet masterbatch is obtained.
- the natural rubber wet masterbatch obtained through the mixing step is preferably coagulated in the coagulation step.
- the wet masterbatch is solidified by using a solidifying agent such as formic acid or sulfuric acid or a salt such as sodium chloride as usual.
- coagulation may be performed by adding natural rubber latex and the slurry liquid without adding a coagulant.
- drying process It is preferable to perform a drying process as the final step of master batch production.
- ordinary dryers such as vacuum dryers, air dryers, drum dryers, band dryers, etc. can be used, but in order to further improve the dispersibility of carbon black, while applying mechanical shearing force It is preferable to dry. Thereby, rubber excellent in processability and reinforcement can be obtained.
- this drying can be performed using a general kneader, it is preferable to use a continuous kneader. Furthermore, it is more preferable to use a multi-axis kneading extruder that rotates in the same direction or in different directions.
- the moisture in the master batch before the drying step is preferably 10% by mass or more. This is because when the water content is less than 10% by mass, the dispersion improvement width of the carbon black in the drying process becomes small.
- the natural rubber latex used in the mixing step may be subjected to a step of decomposing amide bonds in the latex. If the amide bond is decomposed in advance, molecules are entangled by the hydrogen bondability of the amide bond, the viscosity increase of the rubber is small, and the processability can be improved.
- a protease and / or an aromatic polycarboxylic acid derivative it is preferable to use a protease and / or an aromatic polycarboxylic acid derivative.
- Proteases have the property of hydrolyzing amide bonds present in the surface layer components of natural rubber latex particles, and examples include acidic proteases, neutral proteases, and alkaline proteases.
- alkaline protease is particularly preferred from the viewpoint of effect.
- the amide bond is decomposed by a protease, it may be carried out under conditions suitable for the enzyme to be mixed.
- the temperature is usually 20 to 80 ° C. It is desirable to process with a range.
- the pH at this time is usually in the range of 6.0 to 12.0.
- the amount of protease added is usually in the range of 0.01 to 2% by mass, preferably 0.02 to 1% by mass, based on the natural rubber latex.
- the addition amount of the aromatic polycarboxylic acid derivative is preferably 0.01 to 30% by mass with respect to the natural rubber latex. If the addition amount is less than 0.01% by mass, the Mooney viscosity may not be sufficiently reduced. On the other hand, if it exceeds 30% by mass, not only the effect corresponding to the increase is obtained but also the vulcanized rubber is destroyed. May adversely affect properties.
- the addition amount varies within the above range depending on the type and grade of the natural rubber latex used, but it is preferably in the range of 0.05 to 20% by mass from the physical properties and cost.
- the aromatic polycarboxylic acid derivative is preferably a derivative of phthalic acid, trimellitic acid, pyromellitic acid and its anhydride, specifically, monostearyl phthalate, monodecyl phthalate, monophthalic acid Examples include octylamide, polyoxyethylene lauryl phthalate, monodecyl trimellitic acid, monostearyl trimellitic acid, monostearyl pyromellitic acid, and distearyl pyromellitic acid.
- a surfactant for the purpose of improving the stability of the latex.
- anionic, cationic, nonionic and amphoteric surfactants can be used, and anionic and nonionic surfactants are particularly preferable.
- the addition amount of the surfactant can be appropriately adjusted according to the properties of the natural rubber latex, but is usually 0.01 to 2% by mass, preferably 0.02 to 1% by mass with respect to the natural rubber latex. .
- the addition of the surfactant is preferably performed in the amide bond decomposition step, but is not particularly limited as long as it is at least before the mixing step.
- modified natural rubber can be used as the natural rubber.
- natural rubber latex may be used as a raw material, or at least one solid natural rubber raw material selected from natural rubber, natural rubber latex coagulum and natural rubber cup lamp is used. May be.
- the natural rubber latex is not particularly limited, and for example, a field latex, an ammonia-treated latex, a centrifugal concentrated latex, a deproteinized latex treated with a surfactant or an enzyme, and a combination thereof can be used. .
- a polar group-containing modified natural rubber in the production of modified natural rubber, for example, when natural rubber latex is used as a raw material, a polar group-containing modified natural rubber can be obtained by producing a polar group-containing modified natural rubber latex and further coagulating and drying.
- the production method of the polar group-containing modified natural rubber latex is not particularly limited. For example, (1) a polar group-containing monomer is added to the natural rubber latex, and the polar group-containing monomer is used as a natural rubber.
- a method of adding a polar group-containing mercapto compound to natural rubber latex and adding the polar group-containing mercapto compound to the natural rubber molecule in natural rubber latex (3) ) A method of adding a polar group-containing olefin and a metathesis catalyst to natural rubber latex, and reacting the polar group-containing olefin with a natural rubber molecule in the natural rubber latex using the metathesis catalyst, (4) perbenzoic acid, Reaction of organic peracids such as acetic acid, performic acid, perphthalic acid, perpropionic acid, trifluoroperacetic acid under severe conditions A method of obtaining a rubber having a main chain reactive functional groups such as epoxidized natural rubbers by.
- the polar group-containing monomer added to the natural rubber latex is not particularly limited as long as it has at least one polar group in the molecule and can be graft-polymerized with the natural rubber molecule.
- the polar group-containing monomer preferably has a carbon-carbon double bond in the molecule for graft polymerization with a natural rubber molecule, and is preferably a polar group-containing vinyl monomer.
- Specific examples of the polar group include amino group, imino group, nitrile group, ammonium group, imide group, amide group, hydrazo group, azo group, diazo group, hydroxyl group, carboxyl group, carbonyl group, epoxy group, and oxycarbonyl.
- Preferred examples include a group, sulfide group, disulfide group, sulfonyl group, sulfinyl group, thiocarbonyl group, nitrogen-containing heterocyclic group, oxygen-containing heterocyclic group, alkoxysilyl group, and tin-containing group.
- These monomers containing a polar group may be used alone or in combination of two or more.
- Examples of the monomer containing an amino group include polymerizable monomers containing at least one amino group selected from primary, secondary, and tertiary amino groups in one molecule.
- a tertiary amino group-containing monomer such as dialkylaminoalkyl (meth) acrylate is particularly preferable.
- These amino group-containing monomers may be used alone or in combination of two or more.
- examples of the primary amino group-containing monomer include acrylamide, methacrylamide, 4-vinylaniline, aminomethyl (meth) acrylate, aminoethyl (meth) acrylate, aminopropyl (meth) acrylate, aminobutyl (meth) ) Acrylate and the like.
- the secondary amino group-containing monomer includes (1) anilinostyrene, ⁇ -phenyl-p-anilinostyrene, ⁇ -cyano-p-anilinostyrene, ⁇ -cyano- ⁇ -methyl-p. -Anilinostyrene, ⁇ -chloro-p-anilinostyrene, ⁇ -carboxy-p-anilinostyrene, ⁇ -methoxycarbonyl-p-anilinostyrene, ⁇ - (2-hydroxyethoxy) carbonyl-p-anilino
- Anilinostyrenes such as styrene, ⁇ -formyl-p-anilinostyrene, ⁇ -formyl- ⁇ -methyl-p-anilinostyrene, ⁇ -carboxy- ⁇ -carboxy- ⁇ -phenyl-p-anilinostyrene, (2) 1-anilinophenyl-1,3-butadiene, 1-anil
- examples of the tertiary amino group-containing monomer include N, N-disubstituted aminoalkyl (meth) acrylate and N, N-disubstituted aminoalkyl (meth) acrylamide.
- examples of the N, N-disubstituted aminoalkyl (meth) acrylate include N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, and N, N-dimethylaminopropyl (meth).
- N, N -Dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dipropylaminoethyl (meth) acrylate, N, N-dioctylaminoethyl (meth) acrylate, N-methyl-N -Ethylaminoethyl (meth) acrylate and the like are particularly preferred.
- N, N-disubstituted aminoalkyl (meth) acrylamide examples include N, N-dimethylaminomethyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl ( (Meth) acrylamide, N, N-dimethylaminobutyl (meth) acrylamide, N, N-diethylaminoethyl (meth) acrylamide, N, N-diethylaminopropyl (meth) acrylamide, N, N-diethylaminobutyl (meth) acrylamide, N -Methyl-N-ethylaminoethyl (meth) acrylamide, N, N-dipropylaminoethyl (meth) acrylamide, N, N-dibutylaminoethyl (meth) acrylamide, N, N-dibuty
- Examples of the monomer containing a nitrile group include (meth) acrylonitrile and vinylidene cyanide. These nitrile group-containing monomers may be used alone or in a combination of two or more.
- Examples of the monomer containing a hydroxyl group include polymerizable monomers having at least one hydroxyl group in one molecule.
- Examples of such monomers include hydroxyl group-containing unsaturated carboxylic acid monomers, hydroxyl group-containing vinyl ether monomers, hydroxyl group-containing vinyl ketone monomers, and the like.
- hydroxyl group-containing unsaturated carboxylic acid monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxy Hydroxyalkyl (meth) acrylates such as butyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; polyalkylene glycols such as polyethylene glycol and polypropylene glycol (the number of alkylene glycol units is For example, 2 to 23) mono (meth) acrylates; N-hydroxymethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, N, N-bis (2-hydroxymethyl) ( Me ) Hydroxyl group-containing unsaturated amides such as acrylamide; o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene,
- a hydroxyl group-containing unsaturated carboxylic acid monomer and a hydroxyl group-containing vinyl aromatic compound are preferable, and a hydroxyl group-containing unsaturated carboxylic acid monomer is particularly preferable.
- examples of the hydroxyl group-containing unsaturated carboxylic acid monomer include esters such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, amides, and anhydrides.
- esters such as acrylic acid and methacrylic acid.
- These hydroxyl group-containing monomers may be used alone or in a combination of two or more.
- Examples of the monomer containing a carboxyl group include unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, tetraconic acid and cinnamic acid; non-phthalic acid, succinic acid, adipic acid and the like.
- Examples thereof include free carboxyl group-containing esters such as monoesters of a polymerizable polycarboxylic acid and a hydroxyl group-containing unsaturated compound such as (meth) allyl alcohol and 2-hydroxyethyl (meth) acrylate, and salts thereof. Of these, unsaturated carboxylic acids are particularly preferred.
- These carboxyl group-containing monomers may be used alone or in a combination of two or more.
- Examples of the monomer containing an epoxy group include (meth) allyl glycidyl ether, glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, and the like. These epoxy group-containing monomers may be used alone or in combination of two or more.
- the nitrogen-containing heterocyclic ring includes pyrrole, histidine, imidazole, triazolidine, triazole, triazine, pyridine, pyrimidine, pyrazine, indole, quinoline, purine, phenazine, pteridine, Examples include melamine.
- the nitrogen-containing heterocycle may contain other heteroatoms in the ring.
- a monomer containing a pyridyl group as a nitrogen-containing heterocyclic group 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 5-methyl-2-vinylpyridine, 5-ethyl-2- Examples thereof include a vinyl compound containing a pyridyl group such as vinylpyridine, and among these, 2-vinylpyridine, 4-vinylpyridine and the like are particularly preferable.
- These nitrogen-containing heterocyclic group-containing monomers may be used alone or in a combination of two or more.
- Examples of the monomer containing the alkoxysilyl group include (meth) acryloxymethyltrimethoxysilane, (meth) acryloxymethylmethyldimethoxysilane, (meth) acryloxymethyldimethylmethoxysilane, and (meth) acryloxymethyltrimethylsilane.
- Examples of the monomer having a tin-containing group include allyltri-n-butyltin, allyltrimethyltin, allyltriphenyltin, allyltri-n-octyltin, (meth) acryloxy-n-butyltin, and (meth) acryloxytrimethyltin.
- tin-containing monomers such as (meth) acryloxytriphenyltin, (meth) acryloxy-n-octyltin, vinyltri-n-butyltin, vinyltrimethyltin, vinyltriphenyltin, vinyltri-n-octyltin Can do. These tin-containing monomers may be used alone or in combination of two or more.
- the graft polymerization of the polar group-containing monomer to the natural rubber molecule is preferably performed by emulsion polymerization.
- the polar group-containing monomer in general, is added to a liquid obtained by adding water and, if necessary, an emulsifier to natural rubber latex, and a polymerization initiator is further added thereto. It is preferable to polymerize the polar group-containing monomer by stirring at the temperature.
- an emulsifier may be added in advance to the natural rubber latex, or after emulsifying the polar group-containing monomer with the emulsifier, May be added.
- an emulsifier which can be used for emulsification of a natural rubber latex and / or a polar group containing monomer, Nonionic surfactants, such as polyoxyethylene lauryl ether, are mentioned.
- the polymerization initiator is not particularly limited, and various polymerization initiators for emulsion polymerization can be used, and the addition method is not particularly limited.
- Examples of commonly used polymerization initiators include benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, di-tert-butyl peroxide, 2,2-azobisisobutyronitrile, 2,2-azobis (2-diaminopropane) hydrochloride, 2,2-azobis (2-diaminopropane) dihydrochloride, 2,2-azobis (2,4-dimethylvaleronitrile), potassium persulfate, sodium persulfate And ammonium persulfate.
- a redox polymerization initiator In order to lower the polymerization temperature, it is preferable to use a redox polymerization initiator.
- the reducing agent to be combined with the peroxide in the redox polymerization initiator include tetraethylenepentamine, mercaptans, acidic sodium sulfite, reducing metal ions, ascorbic acid and the like.
- a preferred combination of a peroxide and a reducing agent in the redox polymerization initiator includes a combination of tert-butyl hydroperoxide and tetraethylenepentamine.
- the amount of the polymerization initiator added is preferably in the range of 1 to 100 mol%, more preferably in the range of 10 to 100 mol% with respect to the polar group-containing monomer.
- the above-mentioned components are charged into a reaction vessel and reacted at about 30 to 80 ° C. for about 10 minutes to 7 hours to obtain a modified natural rubber latex in which the polar group-containing monomer is graft copolymerized with natural rubber molecules. .
- the modified natural rubber latex is coagulated, washed, and then dried using a dryer such as a vacuum dryer, an air dryer, a drum dryer or the like to obtain a modified natural rubber.
- the coagulant used for coagulating the modified natural rubber latex is not particularly limited, and examples thereof include acids such as formic acid and sulfuric acid, and salts such as sodium chloride.
- the polar group-containing mercapto compound that is added to the natural rubber latex and undergoes an addition reaction with the natural rubber molecule in the natural rubber latex as long as it has at least one mercapto group and a polar group other than the mercapto group in the molecule. It is not limited.
- polar group examples include amino group, imino group, nitrile group, ammonium group, imide group, amide group, hydrazo group, azo group, diazo group, hydroxyl group, carboxyl group, carbonyl group, epoxy group, oxycarbonyl
- Preferred examples include a group, a nitrogen-containing heterocyclic group, a mixed oxygen heterocyclic group, an alkoxysilyl group, and a tin-containing group. These mercapto compounds containing polar groups may be used alone or in combination of two or more.
- Examples of the mercapto compound containing an amino group include mercapto compounds having at least one amino group selected from primary, secondary and tertiary amino groups in one molecule.
- a tertiary amino group-containing mercapto compound is particularly preferable.
- the primary amino group-containing mercapto compound 4-mercaptoaniline, 2-mercaptoethylamine, 2-mercaptopropylamine, 3-mercaptopropylamine, 2-mercaptobutylamine, 3-mercaptobutylamine, 4-mercaptobutylamine Etc.
- Examples of the secondary amino group-containing mercapto compounds include N-methylaminoethanethiol, N-ethylaminoethanethiol, N-methylaminopropanethiol, N-ethylaminopropanethiol, N-methylaminobutanethiol, N- And ethylaminobutanethiol.
- the tertiary amino group-containing mercapto compounds include N, N-dimethylaminoethanethiol, N, N-diethylaminoethanethiol, N, N-dimethylaminopropanethiol, N, N-diethylaminopropanethiol, N, N -N, N-disubstituted aminoalkyl mercaptans such as dimethylaminobutanethiol and N, N-diethylaminobutanethiol.
- 2-mercaptoethylamine and N, N-dimethylaminoethanethiol are preferred.
- These amino group-containing mercapto compounds may be used alone or in combination of two or more.
- Examples of the mercapto compound having a nitrile group include 2-mercaptopropane nitrile, 3-mercaptopropane nitrile, 2-mercaptobutane nitrile, 3-mercaptobutane nitrile, 4-mercaptobutane nitrile, and the like. These nitrile group-containing mercapto compounds May be used singly or in combination of two or more.
- Examples of the mercapto compound containing a hydroxyl group include mercapto compounds having at least one primary, secondary, or tertiary hydroxyl group in one molecule.
- Specific examples of the hydroxyl group-containing mercapto compound include 2-mercaptoethanol, 3-mercapto-1-propanol, 3-mercapto-2-propanol, 4-mercapto-1-butanol, 4-mercapto-2-butanol, 3 -Mercapto-1-butanol, 3-mercapto-2-butanol, 3-mercapto-1-hexanol, 3-mercapto-1,2-propanediol, 2-mercaptobenzyl alcohol, 2-mercaptophenol, 4-mercaptophenol, etc.
- 2-mercaptoethanol and the like are preferable.
- These hydroxyl group-containing mercapto compounds may be used alone or in combination of two or more.
- Examples of the mercapto compound containing a carboxyl group include mercaptoacetic acid, mercaptopropionic acid, thiosalicylic acid, mercaptomalonic acid, mercaptosuccinic acid, mercaptobenzoic acid, and the like. Among these, mercaptoacetic acid is preferred. These carboxyl group-containing mercapto compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
- the nitrogen-containing heterocyclic ring includes pyrrole, histidine, imidazole, triazolidine, triazole, triazine, pyridine, pyrimidine, pyrazine, indole, quinoline, purine, phenazine, pteridine, melamine. Etc.
- the nitrogen-containing heterocycle may contain other heteroatoms in the ring.
- mercapto compounds containing a pyridyl group as a nitrogen-containing heterocyclic group 2-mercaptopyridine, 3-mercaptopyridine, 4-mercaptopyridine, 5-methyl-2-mercaptopyridine, 5-ethyl-2-mercapto
- mercapto compounds containing other nitrogen-containing heterocyclic groups include 2-mercaptopyrimidine, 2-mercapto-5-methylbenzimidazole, 2-mercapto-1-methylimidazole, 2-mercapto. Examples include benzimidazole and 2-mercaptoimidazole.
- 2-mercaptopyridine, 4-mercaptopyridine and the like are preferable.
- These nitrogen-containing heterocyclic group-containing mercapto compounds may be used alone or in combination of two or more.
- Examples of the mercapto compound containing an alkoxysilyl group include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyldimethylmethoxysilane, 2-mercaptoethyltrimethoxysilane. Examples include silane, 2-mercaptoethyltriethoxysilane, mercaptomethylmethyldiethoxysilane, mercaptomethyltrimethoxysilane, and the like. Among these, 3-mercaptopropyltrimethoxysilane is preferable. These alkoxysilyl group-containing mercapto compounds may be used alone or in combination of two or more.
- Examples of the mercapto compound having a tin-containing group include 2-mercaptoethyltri-n-butyltin, 2-mercaptoethyltrimethyltin, 2-mercaptoethyltriphenyltin, 3-mercaptopropyltri-n-butyltin, and 3-mercaptopropyl. Mention may be made of tin-containing mercapto compounds such as trimethyltin and 3-mercaptopropyltriphenyltin. These tin-containing mercapto compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
- the polar group-containing mercapto compound When adding the polar group-containing mercapto compound to the natural rubber molecule in the natural rubber latex, generally, the polar group-containing mercapto compound is added to a solution obtained by adding water and an emulsifier as necessary to the natural rubber latex, By stirring at a predetermined temperature, the polar group-containing mercapto compound is added to the double bond of the main chain of the natural rubber molecule in the natural rubber latex.
- an emulsifier may be added to the natural rubber latex in advance, or the polar group-containing mercapto compound may be added to the natural rubber latex after being emulsified with the emulsifier. good.
- an organic peroxide can also be added as needed.
- it does not specifically limit as an emulsifier which can be used for emulsification of natural rubber latex and / or a polar group containing mercapto compound, Nonionic surfactants, such as polyoxyethylene lauryl ether, are mentioned.
- the polar group-containing mercapto compound is introduced in a small amount and uniformly into each natural rubber molecule.
- the modification reaction is preferably performed with stirring.
- the above components such as natural rubber latex and a polar group-containing mercapto compound are charged into a reaction vessel and reacted at about 30 to 80 ° C. for about 10 minutes to 24 hours.
- a modified natural rubber latex in which the polar group-containing mercapto compound is added to natural rubber molecules is obtained.
- the polar group-containing olefin added to the natural rubber latex has at least one polar group in the molecule, and also has a carbon-carbon double bond for cross-metathesis reaction with the natural rubber molecule.
- specific examples of the polar group include amino group, imino group, nitrile group, ammonium group, imide group, amide group, hydrazo group, azo group, diazo group, hydroxyl group, carboxyl group, carbonyl group, and epoxy group.
- Preferable examples include oxycarbonyl group, sulfide group, disulfide group, sulfonyl group, sulfinyl group, thiocarbonyl group, nitrogen-containing heterocyclic group, oxygen-containing heterocyclic group, alkoxysilyl group, and tin-containing group.
- These polar group-containing olefins may be used singly or in combination of two or more.
- the polar group-containing olefin When the polar group-containing olefin is reacted with the natural rubber molecule in the natural rubber latex by the metathesis catalyst, generally, the polar group-containing olefin is added to a liquid obtained by adding water and an emulsifier as necessary to the natural rubber latex, Further, a metathesis catalyst is added and stirred at a predetermined temperature to cause a metathesis reaction between the natural rubber molecule and the polar group-containing olefin.
- an emulsifier may be added to the natural rubber latex in advance, or the polar group-containing olefin may be added to the natural rubber latex after emulsifying the polar group-containing olefin with the emulsifier. good.
- an emulsifier which can be used for emulsification of natural rubber latex and / or a polar group containing olefin, Nonionic surfactants, such as polyoxyethylene lauryl ether, are mentioned.
- the metathesis catalyst is not particularly limited as long as it has a catalytic action on the metathesis reaction between the natural rubber molecule and the polar group-containing olefin, and various metathesis catalysts can be used.
- the metathesis catalyst contains a transition metal, but since it is used in a natural rubber latex, it is preferable that the stability to water is high. Therefore, the transition metal constituting the metathesis catalyst is preferably any one of ruthenium, osmium, and iridium.
- Cy represents a cyclohexyl group
- Cp represents a cyclopentyl group
- Ph represents a phenyl group.
- the addition amount of the metathesis catalyst is preferably in the range of 1 to 500 mol%, more preferably in the range of 10 to 100 mol% with respect to the polar group-containing olefin.
- the above-mentioned components are charged into a reaction vessel and reacted at about 30 to 80 ° C. for about 10 minutes to 24 hours, thereby obtaining a modified natural rubber latex in which the polar group is introduced into natural rubber molecules.
- a polar group-containing compound is given a mechanical shearing force
- a modified natural rubber is obtained by graft polymerization or addition to a raw material.
- the natural rubber raw material various solid natural rubbers after drying, various natural rubber latex coagulates (including unsmoked sheets) or natural rubber cup lamps can be used, and these natural rubber raw materials are used alone. It may also be used in combination of two or more.
- the polar group-containing compound When the polar group-containing compound is graft-polymerized to a natural rubber molecule in a natural rubber raw material, the polar group-containing compound preferably has a carbon-carbon double bond in the molecule, and the polar group-containing vinyl monomer It is preferable that On the other hand, when a polar group-containing compound is subjected to an addition reaction with a natural rubber molecule in a natural rubber raw material, the polar group-containing compound preferably has a mercapto group in the molecule, and is preferably a polar group-containing mercapto compound.
- a biaxial extrusion kneader and a dry prebreaker are preferable.
- the polar group-containing compound is graft-polymerized to the natural rubber molecule in the natural rubber raw material
- the natural rubber raw material and the polar group-containing compound preferably, the polar group-containing vinyl are contained in the apparatus to which the mechanical shearing force is applied.
- a polar group-containing compound when a polar group-containing compound is subjected to an addition reaction with a natural rubber molecule in a natural rubber raw material, the natural rubber raw material and the polar group-containing compound (preferably, a polar group-containing mercapto compound are contained in the above-described mechanical shear force device. ) And, if necessary, organic peroxides and the like are further added to give mechanical shearing force, so that a polar group-containing compound is added to the double bond of the main chain of the natural rubber molecule in the natural rubber raw material. An addition reaction can be performed.
- the polar group-containing compound used here include the above-described polar group-containing monomers, polar group-containing mercapto compounds, polar group-containing olefins, and the like.
- the modified natural rubber in which the above-mentioned polar group-containing compound is graft-polymerized or added to the natural rubber molecule is obtained by charging each component described above into a device that can be applied with a mechanical shear force and applying the mechanical shear force.
- the modification reaction of the natural rubber molecule may be carried out by heating, and preferably at 30 to 160 ° C., more preferably 50 to 130 ° C., the modified natural rubber with sufficient reaction efficiency. Can be obtained.
- the polar group content of the modified natural rubber is preferably in the range of 0.001 to 0.5 mmol / g, more preferably in the range of 0.002 to 0.3 mmol / g, relative to the rubber component in the modified natural rubber. A range of 0.003 to 0.2 mmol / g is even more preferable. When the polar group content of the modified natural rubber is less than 0.001 mmol / g, the low heat build-up and wear resistance of the rubber composition may not be sufficiently improved.
- the polar group content of the modified natural rubber exceeds 0.5 mmol / g, the physical properties inherent to natural rubber such as viscoelasticity and SS characteristics (stress-strain curve in a tensile testing machine) will be greatly changed. In addition, the physical properties inherent to natural rubber are impaired, and the processability of the rubber composition may be greatly deteriorated.
- various low exothermic improvers or low exothermic deterioration inhibitors shown below can be blended.
- Low exothermic improver In the rubber composition of the present invention, compounds that can be used as a low exothermic improver or a low exothermic decrease inhibitor include (1) a compound that becomes a rubber-filler coupling agent, a nitrosoquinoline compound, a hydrazide compound, QAB type compounds having a bipolar nitrogen-containing moiety can be used.
- Rubber-filler coupling agent examples include disulfide compounds having a heterocyclic group such as bis [2- (2-oxazolyl) phenyl] disulfide or bis [2- (2-thiazolyl) phenyl] disulfide. .
- Each of these compounds has a structure in which a 2- (2-oxazolyl) phenyl group or 2- (2-thiazolyl) phenyl group is bonded to each sulfur atom of the disulfide moiety.
- the sulfur atom of the disulfide moiety is cleaved to form two 2- (2-oxazolyl) phenyl sulfide groups or 2- (2-thiazolyl) phenyl sulfide groups, and the sulfide moieties of these groups bind to natural rubber
- the oxazolyl moiety or thiazolyl moiety binds to carbon black to exert a coupling action.
- carbon black is highly dispersed in the rubber composition, and the low heat buildup and wear resistance of the rubber composition are improved.
- the coupling agent is blended in an amount of about 0.1 to 10 parts by mass with respect to 100 parts by mass of natural rubber.
- Nitrosoquinoline compounds are known as compounds to be incorporated into rubber compositions in order to realize low heat buildup and high reinforcement of tread rubber. Specifically, 5-nitroso-8-hydroxyquinoline, 7-nitroso -8-hydroxy-5-methylquinoline, 5-nitroso-8-hydroxy-6-methylquinoline, 8-nitroso-5-hydroxy-6-methylquinoline, 5-nitroso-8-hydroxy-7-methylquinoline, 6 -Nitroso-5-hydroxy-8-methylquinoline is preferable, among which 5-nitroso-8-hydroxyquinoline is preferable.
- the nitrosoquinoline compound is blended in an amount of about 0.1 to 10 parts by mass with respect to 100 parts by mass of natural rubber.
- Hydrazide compounds especially when blended into rubber compositions suitable for tread rubber of heavy duty pneumatic tires, suppress the decrease in elastic modulus due to overvulcanization due to reversion, and reduce low heat buildup and wear resistance. It is known to have an inhibitory action.
- the hydrazide compound that can be used in the present invention include 1-hydroxy-N ′-(1-methylethylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1-methylpropylidene) -2-naphthoyl.
- Acid hydrazide 1-hydroxy-N ′-(1-methylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy-N ′-(1,3-dimethylbutylidene) -2-naphthoic acid hydrazide, 1-hydroxy -N '-(2,6-dimethyl-4-heptylidene) -2-naphthoic acid hydrazide, 2-hydroxy-N'-(1-methylethylidene) -3-naphthoic acid hydrazide, 2-hydroxy-N '-( 1-methylpropylidene) -3-naphthoic acid hydrazide, 2-hydroxy-N ′-(1-methylbutylidene) -3-naphthoic acid hydrazide, 2-hydride Xylon-N ′-(1,3-dimethylbutylidene) -3-naphthoic acid
- QAB type compound having a bipolar nitrogen-containing moiety In the rubber composition of the present invention, a QAB type compound having a bipolar nitrogen-containing portion can be used.
- This QAB type compound has the following general formula QAB Wherein Q represents a dipolar nitrogen atom-containing moiety, B represents an oxazoline moiety, a thiazoline moiety, an alkoxysilane moiety or an allyltin moiety, and A represents a linking atom or group that forms a bridge between Q and B. Show.) It is a compound which has a structure represented by these.
- Q in the compound represented by this general formula is preferably a dipolar nitrogen-containing moiety capable of adding a 1,3-dipole to an unsaturated carbon-carbon bond in the molecular structure of natural rubber.
- examples of such Q include nitrone, nitrile oxide, and nitrile imine.
- the QAB type compound has, as Q, a dipolar nitrogen-containing moiety such as nitrone, nitrile oxide, nitrileimine, etc., and this dipolar nitrogen-containing moiety is unsaturated in the molecular structure of natural rubber. Add a 1,3-dipole to the carbon-carbon bond.
- B has an oxazoline portion, a thiazoline portion, an alkoxysilane portion, an allyltin portion, and the like, and these react with the surface group of the component silica and / or carbon black which is a reinforcing filler.
- the QAB type compound has an action of coupling natural rubber and reinforcing filler, and improves the dispersion of reinforcing filler such as silica and carbon black in the natural rubber.
- the rubber composition of the present invention is excellent in low heat buildup and wear resistance.
- Examples of the QAB compound represented by the general formula include 4- (2-oxazolyl) -phenyl-N-methyl-nitrone, 4- (2-thiazolyl) -phenyl-N-methyl-nitrone, 4- (2-oxazolyl) -phenyl-N-phenyl-nitrone, 4- (2-thiazolyl) -phenyl-N-phenyl-nitrone, phenyl-N-4- (2-oxazolyl) -phenyl-nitrone, phenyl- N-4- (2-thiazolyl) -phenyl-nitrone, 4-tolyl-N-4- (2-oxazolyl) -phenyl-nitrone, 4-tolyl-N-4- (2-thiazolyl) -phenyl-nitrone, 4-methoxyphenyl-N-4- (2-oxazolyl) -phenyl-nitrone, 4-methoxyphenyl-N-4- (2-oxazoly
- the wet masterbatch or dry masterbatch used in the rubber composition of the present invention is preferably used after heat treatment.
- the heat treatment of the masterbatch is performed by mixing natural rubber and the reinforcing filler by a wet masterbatch or dry masterbatch method and then heat-treating them under predetermined conditions.
- the treatment temperature T (° C.) is 50 ° C. or more, preferably 200 ° C. or less
- the treatment time t (min) is 2 ⁇ 10 +20 ⁇ . obtained by heat treatment at T -8.42>t> 1 ⁇ 10 +13 ⁇ T -5.4228 -3.3 conditions.
- the resulting heat-treated masterbatch does not contain a vulcanizing agent.
- a masterbatch composed of natural rubber and carbon black and / or silica which is a reinforcing filler
- the rubber composition using this heat-treated master batch has sufficient low heat buildup and wear resistance.
- a method for obtaining the heat treatment masterbatch a method in which the masterbatch is allowed to remain in a constant temperature apparatus such as an oven for a predetermined time under the above conditions may be used, or natural rubber and a reinforcing filler may be placed in a Banbury mixer or the like under the above conditions.
- a kneading method may be used.
- the treatment temperature T is more preferably in the range of 90 to 180 ° C, still more preferably 100 to 170 ° C. If the treatment temperature T is less than 50 ° C., even if the treatment time is sufficiently long, it is difficult to obtain the above effect. If the treatment temperature T exceeds 200 ° C., the main chain of natural rubber may be decomposed. On the other hand, if the treatment time t (min) is in a range satisfying the above formula, a heat-treated master batch that provides a rubber composition having sufficient low heat buildup and wear resistance can be obtained.
- the rubber composition of the present invention contains natural rubber and carbon black and / or silica as a reinforcing filler, and has a ratio of ⁇ 30 ° C. tan ⁇ / 60 ° C. tan ⁇ , “CTAB ⁇ A” (reinforcing filler The total surface area) is prepared by taking the above-mentioned various means so as to satisfy the relationship of the formula (1).
- natural rubber and carbon black may be used in the form of a wet masterbatch, or natural rubber and carbon black and / or silica may be used in the heat treatment masterbatch (dry masterbatch) described above. (Batch) may be used.
- modified natural rubber can be used as the natural rubber.
- a compounding agent for the rubber composition at least one compound selected from the aforementioned compound serving as a rubber-filler coupling agent, a nitrosoquinoline compound, a hydrazide compound, and a QAB compound having a dipolar nitrogen-containing portion is used. Can be used.
- vulcanizing agents other than sulfur for example, vulcanizing agents other than sulfur, vulcanization accelerators, silane coupling agents, process oils, plasticizers, An anti-aging agent, an anti-scorch agent, zinc white, stearic acid and the like can be contained.
- the vulcanization accelerator that can be used in the present invention is not particularly limited, and examples thereof include M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), and CZ (N-cyclohexyl-2-benzothiazyl).
- Sulfenamide) and other guanidine vulcanization accelerators such as DPG (diphenylguanidine) can be used, and the amount used is 0.1-5. 0 parts by mass is preferable, and 0.2 to 3.0 parts by mass is more preferable.
- examples of the process oil used as a softening agent that can be used in the rubber composition of the present invention include paraffinic, naphthenic, and aromatic oils. Aromatics are used for applications that emphasize tensile strength and wear resistance, and naphthenic or paraffinic systems are used for applications that emphasize hysteresis loss and low-temperature characteristics.
- the amount used is preferably 0 to 100 parts by mass with respect to 100 parts by mass of natural rubber, and if it is 100 parts by mass or less, the deterioration of the tensile strength and low heat build-up (low fuel consumption) of the vulcanized rubber is suppressed. can do.
- examples of the anti-aging agent that can be used in the rubber composition of the present invention include 3C (N-isopropyl-N′-phenyl-p-phenylenediamine), 6C [N- (1,3-dimethylbutyl) -N ′. -Phenyl-p-phenylenediamine], AW (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline), high-temperature condensate of diphenylamine and acetone, and the like.
- the amount to be used is preferably 0.1 to 6.0 parts by mass, more preferably 0.3 to 5.0 parts by mass with respect to 100 parts by mass of natural rubber.
- the rubber composition of the present invention can be prepared by kneading the above components using a kneader such as an open kneader such as a roll or a closed kneader such as a Banbury mixer.
- a kneader such as an open kneader such as a roll or a closed kneader such as a Banbury mixer.
- components other than zinc white, vulcanization accelerator and vulcanizing agent are kneaded in the first stage, and then the remaining zinc white and vulcanized are added to the kneaded product. It is preferable to prepare by adding an accelerator and a vulcanizing agent and kneading in the second stage.
- the rubber composition of the present invention thus obtained has excellent low heat buildup and excellent wear resistance, and can be used for tire members of large heavy duty tires and off-the-road tires. Examples of the tire member include tread rubber and case rubber including a sidewall.
- the tire of the present invention is characterized by using the above-described rubber composition of the present invention for a tire member.
- the tire member include a case rubber including a tread rubber and a sidewall.
- the rubber composition of the present invention can be used for any of these, and it is particularly preferable to use the rubber composition for the tread rubber.
- a tire using the rubber composition of the present invention as a case rubber including a tread rubber and a sidewall has low rolling resistance and excellent fuel efficiency, and excellent wear resistance, and is particularly suitable as a large heavy duty tire or an off-the-road tire. It is.
- gas with which the tire of the present invention is filled normal or air with a changed oxygen partial pressure, or an inert gas such as nitrogen is exemplified.
- the rubber composition of the present invention is used for a tread, for example, it is extruded on a tread member, and is pasted and molded by a usual method on a tire molding machine to form a raw tire.
- the green tire is heated and pressed in a vulcanizer to obtain a tire.
- CTAB cetyltrimethylammonium bromide adsorption specific surface area
- tan ⁇ were measured in the vulcanized rubber composition, and the ratio of ⁇ 30 ° C. tan ⁇ / 60 ° C. tan ⁇ was determined.
- Production Example 1 Production of wet masterbatch of natural rubber and carbon black
- carbon black carbon black species shown in Table 2
- 95 were used in a homomixer (High Shear mixer manufactured by Silverson). Mass% water was added and finely dispersed to obtain an aqueous dispersion slurry of carbon black.
- the volume average particle size (mv) was 25 ⁇ m or less
- the 90 volume% particle size (D90) was 30 ⁇ m or less.
- the aqueous dispersion slurry of carbon black and the natural rubber latex are stirred in a homomixer so that the mass part of the carbon black in Table 2 is 100 parts by mass of the natural rubber component in the natural rubber latex. After mixing, this was adjusted to pH 4.5 with formic acid and solidified to obtain each wet masterbatch.
- Example 2 Production of dry masterbatch Untreated natural rubber or modified natural rubber and carbon black of the type and content shown in Table 2 were kneaded in a Banbury mixer as in the first stage shown in Table 1. A dry masterbatch was obtained. In Example 5 and Comparative Example 11, a dry masterbatch was prepared using untreated natural rubber, and in Example 12 using modified natural rubber.
- Production Example 4 Heat treatment method of master batch A wet master batch or a dry master batch was heat-treated in an oven at a temperature of 140 ° C for 30 minutes.
- Production Example 5 Production of Rubber-Filler Coupling Agent A mixture was prepared by adding 20 g (65 mmol) of 2,2′-dithio-bis (benzoic acid) to 28.6 mL (390 mmol) of thionyl chloride. The mixture was refluxed for 12 hours and then filtered. The filtrate was dried using a rotary evaporator to obtain 15.0 g (44 mmol) of 2,2′-dithio-bis (benzoyl chloride) powder. The yield of this reaction was 68%. Next, the obtained 2,2′-dithio-bis (benzoyl chloride) was added to 300 mL of chloroform and mixed.
- Examples 1 to 15 and Comparative Examples 1 to 11 According to the formulation shown in Table 1, natural rubber in the form shown in Table 2, carbon black of the type and amount shown in Table 2, or a combination of carbon black and silica, and rubber-filler shown in Table 2 Twenty-six types of rubber compositions were prepared using a coupling agent. The rubber composition was prepared by first kneading each component of the first stage shown in Table 1 in a Banbury mixer, and then adding each component of the second stage shown in Table 1 to the obtained kneaded product. In addition, it was carried out by kneading. Each rubber composition was vulcanized at 150 ° C. for 90 minutes to prepare a test piece for measuring ⁇ 30 ° C.
- FIG. 1 is a plot diagram showing the relationship between x and ⁇ 30 ° C. tan ⁇ / 60 ° C. tan ⁇ ratio in the formula (1) in the rubber compositions obtained in Examples and Comparative Examples, and FIG. In the tire obtained by the comparative example, it is a plot figure which shows the relationship between the internal temperature change in a driving
- Untreated natural rubber or treated natural rubber Untreated natural rubber is ordinary natural rubber, which is obtained by directly coagulating and drying natural rubber latex. The natural rubber and the modified natural rubber in the wet masterbatch or the dry masterbatch shown in FIG. 2) Carbon black: types and amounts are shown in Table 2. 3) Silica: Types and amounts are shown in Table 2.
- Rubber-filler coupling agent bis [2- (2-oxazolyl) phenyl] disulfide obtained in Production Example 5 5) Silane coupling agent: bis (3-triethoxysilylpropyl) tetrasulfide, Degussa Product name "Si69” 6) Anti-aging agent 6C: N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Co., Ltd., trade name “NOCRACK 6C” 7) Vulcanization accelerator CZ: N-cyclohexyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd., trade name “Noxeller CZ”
- the tire temperature using the rubber composition obtained in the example is compared with the tire wear resistance using the rubber composition obtained in the comparative example.
- the tire using the rubber composition obtained in the examples has good wear resistance.
- the rubber composition of the present invention can give a tire having both low heat buildup and wear resistance, particularly a large tire such as an off-the-road tire.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本発明は、天然ゴムと、補強性充填材としてカーボンブラック及び/又はシリカを含み、かつ下記式(1) -30℃tanδ/60℃tanδ>-1026.5Ln(x)+10256 ・・・(1)(ただし、x=CTAB×Aであり、CTABは補強性充填材のISO 6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積(m2/g)を、Aは天然ゴム100質量部当たりの補強性充填材の質量部を示し、xは2500~13000の範囲の数である。Ln(x)はxの自然対数を、tanδは加硫ゴム組成物の損失正接を意味する。)の関係を満たすように調整してなるゴム組成物、及び該ゴム組成物をタイヤ部材に用いてなるタイヤであり、低発熱性と耐摩耗性を両立させたタイヤ、特にオフザロード用タイヤなどの大型タイヤを与えるゴム組成物、及びそれをタイヤ部材に用いてなる上記性能を有するタイヤを提供するものである。
Description
本発明は、ゴム組成物及びそれを用いたタイヤに関する。さらに詳しくは、本発明は、低発熱性と耐摩耗性を両立させたタイヤ、特にオフザロード用タイヤなどの大型タイヤを与えるゴム組成物、及びそれをトレッドゴムやケースゴムなどのタイヤ部材に用いてなる上記性能を有するタイヤに関するものである。
近年、省エネルギーの社会的な要請及び環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求はより過酷なものとなりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗を減らした低発熱性のタイヤが求められてきている。特にトラック、バス等に用いられる重荷重用空気入りタイヤあってはより改善された低発熱化が求められる。更にオフザロード用タイヤのような大型タイヤでは、トレッドの体積が大きいため内部ゴムが蓄熱しやすく、劣化が著しいため、トレッドゴムの低発熱性(低転がり抵抗性)及び耐摩耗性が求められる。
タイヤの転がり抵抗を下げる手法としては、タイヤ構造の最適化による手法についても検討されてきたものの、ゴム組成物としてより発熱性の低い材料を用いることが最も一般的な手法として行われている。一般に、低発熱性向上のためにはトレッドゴムの変形を抑え、高温域でのtanδを下げることが好ましい。
タイヤの転がり抵抗を下げる手法としては、タイヤ構造の最適化による手法についても検討されてきたものの、ゴム組成物としてより発熱性の低い材料を用いることが最も一般的な手法として行われている。一般に、低発熱性向上のためにはトレッドゴムの変形を抑え、高温域でのtanδを下げることが好ましい。
特にオフザロード用タイヤでは、従来、耐摩耗性を向上させるために、トレッドゴム用組成物にスチレン-ブタジエン共重合体(SBR)等の合成ゴム成分を使用し、カット性の向上や耐疲労性の向上を図ってきた。また、低発熱性を良くするため、変性スチレン-ブタジエン共重合体等の変性共役ジエン系重合体などを添加することも提案されている。しかし、変性共役ジエン系重合体の配合量が増えすぎると、耐摩耗性を十分に向上させることができず、また耐破壊特性が悪化する。
これまで、低発熱性のゴム組成物を得る方法として、補強用充填材を改良すること及びゴム成分を改良することが行われている。
従来からゴム用補強充填材としては、カーボンブラックが使用されている。これは、カーボンブラックがゴム組成物に高い耐摩耗性を付与し得るからである。低発熱化を図ろうとする場合には、カーボンブラックの充填量を減らす、粒径の大きいものを使用するなどの方法があるが、大粒径のカーボンブラックを使用すると転がり抵抗は改善されるが、耐摩耗性が低下するのを避けられない。一方、耐摩耗性を向上させるにはカーボンブラックを微粒化する、充填量を増やす、あるいは、カーボンブラックを高ストラクチャにしたり、細孔を持たせることにより、ポリマーとの相互作用を強くして耐摩耗性を向上させることが行われるが、タイヤの転がり抵抗が大きくなるという問題がある。そこで、これらの問題を解決するため、天然ゴム及び/又はジエン系合成ゴムにコロイダル特性が特定の関係にあるカーボンブラックを配合したゴム組成物が提案されている。
従来からゴム用補強充填材としては、カーボンブラックが使用されている。これは、カーボンブラックがゴム組成物に高い耐摩耗性を付与し得るからである。低発熱化を図ろうとする場合には、カーボンブラックの充填量を減らす、粒径の大きいものを使用するなどの方法があるが、大粒径のカーボンブラックを使用すると転がり抵抗は改善されるが、耐摩耗性が低下するのを避けられない。一方、耐摩耗性を向上させるにはカーボンブラックを微粒化する、充填量を増やす、あるいは、カーボンブラックを高ストラクチャにしたり、細孔を持たせることにより、ポリマーとの相互作用を強くして耐摩耗性を向上させることが行われるが、タイヤの転がり抵抗が大きくなるという問題がある。そこで、これらの問題を解決するため、天然ゴム及び/又はジエン系合成ゴムにコロイダル特性が特定の関係にあるカーボンブラックを配合したゴム組成物が提案されている。
また、低発熱性を向上させるために充填材としてシリカが知られているが(例えば、特許文献1~4)、シリカは、粒子同士が凝集する傾向にあり、また、ゴムとのぬれ性も劣り、ゴム中への分散は良くない。ゴム中へのシリカの分散が不十分であるとゴム組成物のムーニー粘度が高くなり、押出しなどの加工性に劣るという問題もある。
一方、ゴム成分を改良する方法として、カーボンブラックやシリカなどの充填材と相互作用する変性ゴムの技術開発が多くなされてきた。合成ゴムでは、共役ジエン系重合体の重合活性末端を充填材と相互作用する官能基を含有するアルコキシシラン誘導体で変性する方法が有効なものとして提案されている(例えば、特許文献5、6)。また、天然ゴムに関しては、天然ゴムラテックス中の天然ゴム分子に極性基含有単量体をグラフト重合させた変性天然ゴムにして、充填材との親和性を向上させ、低発熱性、耐摩耗性を改良する技術が提案されている(例えば、特許文献7)。さらに、充填材の分散性を向上させるために、特定の構造を有する、ゴム-充填材カップリング剤をゴム組成物に配合する技術(例えば、特許文献8)、ジエン系ゴムと充填材とを混合した後に、特定の条件で熱処理して得られた熱処理ゴムに、加硫剤や加硫促進剤を添加してなる低発熱性及び耐摩耗性を有するゴム組成物(例えば、特許文献9)が提案されている。
しかしながら、昨今、トレッド用ゴムの低発熱性及び耐摩耗性をさらに向上させることが要求されている。
しかしながら、昨今、トレッド用ゴムの低発熱性及び耐摩耗性をさらに向上させることが要求されている。
本発明は、このような状況下になされたもので、低発熱性と耐摩耗性を両立させたタイヤ、特にオフザロード用タイヤなどの大型タイヤを与えるゴム組成物、及びそれをタイヤ部材に用いてなる上記性能を有するタイヤを提供することを課題とするものである。
本発明者らは、低発熱性と耐摩耗性を両立させたタイヤ、特にオフザロード用タイヤなどの大型タイヤを得るには、低発熱性と耐摩耗性に優れるゴム組成物が必要であり、それには、補強性充填材を高度に分散させる技術と共に、ゴム成分の種類及び該補強用充填材の種類を選ぶことが重要であることに着目し、研究を重ねた結果、下記の知見を得た。
タイヤ、特にオフザロード用タイヤなどの大型タイヤの低発熱性と耐摩耗性を両立させるための数多くの実験を重ねたところ、ゴム成分として天然ゴムを、補強性充填材としてカーボンブラック及び/又はシリカを含むゴム組成物において、補強性充填材の総表面積と補強性充填材の分散性とが重要であること、即ち、補強性充填材の特定の総表面積において、補強性充填材の分散性が良好であれば上記ゴム組成物の低発熱性が向上し、補強性充填材の総表面積が大きく、かつ補強性充填材の分散性が良好であれば耐摩耗性が向上することを見出した。
さらに、発明者らは、補強性充填材の特定の総表面積において、補強性充填材の分散性を普遍的に評価し得る指標を種々実験的に検討したところ、補強性充填材の分散性が良好であるゴム組成物を得るためには、加硫ゴム組成物の(-30℃tanδ/60℃tanδ)比を大きくすれば良いことを数多くの実験により知見した。加硫ゴム組成物の-30℃tanδと60℃tanδの差が大きいほど、補強性充填材の分散性が良好であること、並びに、補強性充填材の総表面積が、該充填材の分散性及びゴム組成物の耐摩耗性に関与すること、
また、(-30℃tanδ/60℃tanδ)比との関連において、補強性充填材の特定の総表面積の指標として、セチルトリメチルアンモニウムブロミド吸着比表面積(m2/g)が最も好ましいことも知見した。
以上の知見を基にして、さらに実験を重ねた結果、したがって、ゴム成分として天然ゴムを、補強性充填材としてカーボンブラック及び/又はシリカを含むゴム組成物を、加硫ゴム組成物の-30℃/60℃tanδ比が、補強性充填材の総表面積を変数とする特定の式よりも大きくなるように調整することにより、前記課題を解決し得ることを見出した。
上記ゴム組成物の調整は、例えばゴム成分の天然ゴムとして、天然ゴムとカーボンブラックとのマスターバッチや、変性天然ゴムを用いたり、あるいは、補強性充填材の分散性向上剤をゴム組成物に配合したりなどして達成することができることを見出した。
本発明は、かかる知見に基づいて完成したものである。
タイヤ、特にオフザロード用タイヤなどの大型タイヤの低発熱性と耐摩耗性を両立させるための数多くの実験を重ねたところ、ゴム成分として天然ゴムを、補強性充填材としてカーボンブラック及び/又はシリカを含むゴム組成物において、補強性充填材の総表面積と補強性充填材の分散性とが重要であること、即ち、補強性充填材の特定の総表面積において、補強性充填材の分散性が良好であれば上記ゴム組成物の低発熱性が向上し、補強性充填材の総表面積が大きく、かつ補強性充填材の分散性が良好であれば耐摩耗性が向上することを見出した。
さらに、発明者らは、補強性充填材の特定の総表面積において、補強性充填材の分散性を普遍的に評価し得る指標を種々実験的に検討したところ、補強性充填材の分散性が良好であるゴム組成物を得るためには、加硫ゴム組成物の(-30℃tanδ/60℃tanδ)比を大きくすれば良いことを数多くの実験により知見した。加硫ゴム組成物の-30℃tanδと60℃tanδの差が大きいほど、補強性充填材の分散性が良好であること、並びに、補強性充填材の総表面積が、該充填材の分散性及びゴム組成物の耐摩耗性に関与すること、
また、(-30℃tanδ/60℃tanδ)比との関連において、補強性充填材の特定の総表面積の指標として、セチルトリメチルアンモニウムブロミド吸着比表面積(m2/g)が最も好ましいことも知見した。
以上の知見を基にして、さらに実験を重ねた結果、したがって、ゴム成分として天然ゴムを、補強性充填材としてカーボンブラック及び/又はシリカを含むゴム組成物を、加硫ゴム組成物の-30℃/60℃tanδ比が、補強性充填材の総表面積を変数とする特定の式よりも大きくなるように調整することにより、前記課題を解決し得ることを見出した。
上記ゴム組成物の調整は、例えばゴム成分の天然ゴムとして、天然ゴムとカーボンブラックとのマスターバッチや、変性天然ゴムを用いたり、あるいは、補強性充填材の分散性向上剤をゴム組成物に配合したりなどして達成することができることを見出した。
本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)天然ゴムと、補強性充填材としてカーボンブラック及び/又はシリカを含み、かつ下記式(1)
-30℃tanδ/60℃tanδ>-1026.5Ln(x)+10256 ・・・(1)
(ただし、x=CTAB×Aであり、CTABは補強性充填材のISO 6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積(m2/g)を、Aは天然ゴム100質量部当たりの補強性充填材の質量部を示し、xは2500~13000の範囲の数である。Ln(x)はxの自然対数を、tanδは加硫ゴム組成物の損失正接を意味する。)
の関係を満たすように調整したことを特徴とするゴム組成物、
(2)カーボンブラック及び/又はシリカの含有量が、天然ゴム100質量部に対して、20~120質量部である上記(1)に記載のゴム組成物、
(3)天然ゴムを、天然ゴムとカーボンブラックとのマスターバッチの形態で含む上記(1)又は(2)に記載のゴム組成物、
(4)天然ゴムを、天然ゴムラテックスとカーボンブラックとのウェットマスターバッチの形態で含む上記(3)に記載のゴム組成物、
(5)上記(1)~(4)のいずれかに記載のゴム組成物を、タイヤ部材に用いたことを特徴とするタイヤ、
(6)タイヤ部材がトレッドゴム又はケースゴムである上記(5)に記載のタイヤ、及び
(7)大型重荷重用又はオフザロード用である上記(5)又は(6)に記載のタイヤ、
を提供するものである。
(1)天然ゴムと、補強性充填材としてカーボンブラック及び/又はシリカを含み、かつ下記式(1)
-30℃tanδ/60℃tanδ>-1026.5Ln(x)+10256 ・・・(1)
(ただし、x=CTAB×Aであり、CTABは補強性充填材のISO 6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積(m2/g)を、Aは天然ゴム100質量部当たりの補強性充填材の質量部を示し、xは2500~13000の範囲の数である。Ln(x)はxの自然対数を、tanδは加硫ゴム組成物の損失正接を意味する。)
の関係を満たすように調整したことを特徴とするゴム組成物、
(2)カーボンブラック及び/又はシリカの含有量が、天然ゴム100質量部に対して、20~120質量部である上記(1)に記載のゴム組成物、
(3)天然ゴムを、天然ゴムとカーボンブラックとのマスターバッチの形態で含む上記(1)又は(2)に記載のゴム組成物、
(4)天然ゴムを、天然ゴムラテックスとカーボンブラックとのウェットマスターバッチの形態で含む上記(3)に記載のゴム組成物、
(5)上記(1)~(4)のいずれかに記載のゴム組成物を、タイヤ部材に用いたことを特徴とするタイヤ、
(6)タイヤ部材がトレッドゴム又はケースゴムである上記(5)に記載のタイヤ、及び
(7)大型重荷重用又はオフザロード用である上記(5)又は(6)に記載のタイヤ、
を提供するものである。
本発明によれば、低発熱性と耐摩耗性を両立させたタイヤ、特にオフザロード用タイヤなどの大型タイヤを与えるゴム組成物、及びそれをトレッドゴムやケースゴムなどのタイヤ部材に用いてなる上記性能を有するタイヤを提供することができる。
本発明のゴム組成物は、天然ゴムと、補強性充填材としてカーボンブラック及び/又はシリカを含み、かつ下記式(1)
-30℃tanδ/60℃tanδ>-1026.5Ln(x)+10256 ・・・(1)
(ただし、x=CTAB×Aであり、CTABは補強性充填材のISO 6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積(m2/g)を、Aは天然ゴム100質量部当たりの補強性充填材の質量部を示し、xは2500~13000の範囲の数である。Ln(x)はxの自然対数を、tanδは加硫ゴム組成物の損失正接を意味する。)の関係を満たすように調整したことを特徴とする。
本発明のゴム組成物を、-30℃tanδ/60℃tanδ比の値が、「-1026.5Ln(x)+10256」の値をyとすると、y値より大きくなるように調整することにより、低発熱性と耐摩耗性に優れるゴム組成物が得られ、このゴム組成物をタイヤ部材に用いることにより、低発熱性と耐摩耗性を両立したタイヤ、特に大型重荷重用又はオフザロード用のタイヤを与えることができる。
-30℃tanδ/60℃tanδ>-1026.5Ln(x)+10256 ・・・(1)
(ただし、x=CTAB×Aであり、CTABは補強性充填材のISO 6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積(m2/g)を、Aは天然ゴム100質量部当たりの補強性充填材の質量部を示し、xは2500~13000の範囲の数である。Ln(x)はxの自然対数を、tanδは加硫ゴム組成物の損失正接を意味する。)の関係を満たすように調整したことを特徴とする。
本発明のゴム組成物を、-30℃tanδ/60℃tanδ比の値が、「-1026.5Ln(x)+10256」の値をyとすると、y値より大きくなるように調整することにより、低発熱性と耐摩耗性に優れるゴム組成物が得られ、このゴム組成物をタイヤ部材に用いることにより、低発熱性と耐摩耗性を両立したタイヤ、特に大型重荷重用又はオフザロード用のタイヤを与えることができる。
前記式(1)において、xは「CTAB×A」であり、CTABは、補強性充填材のISO 6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積(m2/g)、Aは天然ゴム100質量部当たり補強性充填材の質量部であることから、xは補強性充填材の総表面積を意味する。
本発明においては、このxは2500~13000の範囲の数である。
上記加硫ゴム組成物の-30℃tanδ及び60℃tanδは、以下に示す方法で測定した値である。
<-30℃tanδ及び60℃tanδの測定>
ゴム組成物を150℃で90分間加硫して得た加硫ゴム組成物を、せん断粘弾性測定装置[レオメトリックス社製「Ares」]を用い、100℃~-60℃まで測定し、60℃のtanδと-30℃のtanδを求めた。なお、60℃のtanδは周波数10Hz、動歪3%での値とし、-30℃のtanδは周波数10Hz、動歪0.1%での値とした。
本発明においては、このxは2500~13000の範囲の数である。
上記加硫ゴム組成物の-30℃tanδ及び60℃tanδは、以下に示す方法で測定した値である。
<-30℃tanδ及び60℃tanδの測定>
ゴム組成物を150℃で90分間加硫して得た加硫ゴム組成物を、せん断粘弾性測定装置[レオメトリックス社製「Ares」]を用い、100℃~-60℃まで測定し、60℃のtanδと-30℃のtanδを求めた。なお、60℃のtanδは周波数10Hz、動歪3%での値とし、-30℃のtanδは周波数10Hz、動歪0.1%での値とした。
本発明のゴム組成物を、前記式(1)の関係を満たすように調整するには、当該ゴム組成物における補強性充填材であるカーボンブラックやシリカの種類の選択や量比の選定、さらには、(1)天然ゴムを、天然ゴムとカーボンブラックとのマスターバッチの形態で用いる、(2)変性天然ゴムを使用する、(3)ゴム-充填材カップリング剤などの補強性充填材の分散性向上剤を使用する、(4)天然ゴムと補強性充填材とを混合した後に、所定の条件で熱処理して得られた熱処理マスターバッチを用いる、などの手段を講じることにより、達成することができる。
[カーボンブラック及び/又はシリカ]
本発明のゴム組成物においては、補強性充填材として、カーボンブラック及び/又はシリカが用いられる。
前記カーボンブラックとしては特に制限はなく、従来ゴムの補強性充填材として使用されているものの中から、任意のものを適宜選択して用いることができる。例えば、SRF、GPF、FEF、HAF、ISAF、SAFなどが用いられ、特に耐摩耗性に優れるHAF、ISAF、SAFが好ましい。
このカーボンブラックは、ISO 6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)が、20~200m2/gの範囲にあるものが好ましく、70~160m2/gの範囲にあるものがより好ましい。
このカーボンブラックは、1種用いても良く、2種以上を組み合わせて用いても良い。
本発明のゴム組成物においては、補強性充填材として、カーボンブラック及び/又はシリカが用いられる。
前記カーボンブラックとしては特に制限はなく、従来ゴムの補強性充填材として使用されているものの中から、任意のものを適宜選択して用いることができる。例えば、SRF、GPF、FEF、HAF、ISAF、SAFなどが用いられ、特に耐摩耗性に優れるHAF、ISAF、SAFが好ましい。
このカーボンブラックは、ISO 6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)が、20~200m2/gの範囲にあるものが好ましく、70~160m2/gの範囲にあるものがより好ましい。
このカーボンブラックは、1種用いても良く、2種以上を組み合わせて用いても良い。
一方、シリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられるが、中でも湿式シリカが好ましい。
この湿式シリカの前記CATB比表面積は100~300m2/gであるのが好ましい。CATB比表面積がこの範囲であるシリカは、ゴム補強性とゴム成分中への分散性とを両立できるという利点がある。この観点から、CATB比表面積が150~250m2/gの範囲にあるシリカが更に好ましい。このようなシリカとしては東ソー・シリカ(株)社製「ニプシルAQ」、「ニプシルKQ」、デグッサ社製「ウルトラジルVN3」等の市販品を用いることができる。
このシリカは1種用いても良く、2種以上組み合わせて用いても良い。
この湿式シリカの前記CATB比表面積は100~300m2/gであるのが好ましい。CATB比表面積がこの範囲であるシリカは、ゴム補強性とゴム成分中への分散性とを両立できるという利点がある。この観点から、CATB比表面積が150~250m2/gの範囲にあるシリカが更に好ましい。このようなシリカとしては東ソー・シリカ(株)社製「ニプシルAQ」、「ニプシルKQ」、デグッサ社製「ウルトラジルVN3」等の市販品を用いることができる。
このシリカは1種用いても良く、2種以上組み合わせて用いても良い。
本発明においては、補強性充填材として、カーボンブラックのみを用いても良いし、シリカのみを用いても良く、また、カーボンブラックとシリカとを併用しても良い。当該補強性充填材は、補強性とそれによる諸特性の改良効果の観点から、天然ゴム100質量部に対して、好ましくは20~120質量部、より好ましくは25~100質量部、さらに好ましくは30~90質量部の割合で配合される。カーボンブラック及び/又はシリカの量を上記範囲にすることによって混練作業性などの工場作業性に優れ、ゴム組成物として、所望の耐摩耗性を得ることができる。
本発明のゴム組成物においては、天然ゴムとして、天然ゴムとカーボンブラックとのマスターバッチ(以下、天然ゴムマスターバッチと称することがある。)の形態で用いることができる。このマスターバッチは、天然ゴムラテックスとカーボンブラックとのウェットマスターバッチであることが好ましい。
[天然ゴムマスターバッチ]
この天然ゴムマスターバッチは、天然ゴムラテックスにカーボンブラックを混合したウェットマスターバッチが好ましく、その製造方法は、好ましくはラテックス中のアミド結合を分解した後、天然ゴムラテックスと、水中にカーボンブラックが分散されてなる水スラリー液とを混合、凝固、乾燥する工程を含む。
[天然ゴムマスターバッチ]
この天然ゴムマスターバッチは、天然ゴムラテックスにカーボンブラックを混合したウェットマスターバッチが好ましく、その製造方法は、好ましくはラテックス中のアミド結合を分解した後、天然ゴムラテックスと、水中にカーボンブラックが分散されてなる水スラリー液とを混合、凝固、乾燥する工程を含む。
(水分散スラリー溶液の調製)
天然ゴムラテックスと水分散スラリー液とを混合するに先立って、予め水中にカーボンブラックが分散したスラリー液を製造する。このスラリーの製造方法は公知の方法を用いることができ、特に限定されない。
カーボンブラックの水分散スラリーの製造は、例えばホモミキサーに所定量のカーボンブラックと水を入れ、一定時間攪拌することで調製することができる。スラリー液中のカーボンブラックの濃度は、スラリーに対して0.5~30質量%が好ましく、特に好ましくは1~15質量%である。
天然ゴムラテックスと水分散スラリー液とを混合するに先立って、予め水中にカーボンブラックが分散したスラリー液を製造する。このスラリーの製造方法は公知の方法を用いることができ、特に限定されない。
カーボンブラックの水分散スラリーの製造は、例えばホモミキサーに所定量のカーボンブラックと水を入れ、一定時間攪拌することで調製することができる。スラリー液中のカーボンブラックの濃度は、スラリーに対して0.5~30質量%が好ましく、特に好ましくは1~15質量%である。
水分散スラリー液中のカーボンブラックの粒度分布は、体積平均粒子径(mv)が25μm以下、90体積%粒径(D90)が30μm以下であることが好ましい。体積平均粒子径が25μm以下であり、90体積%粒径が30μm以下であるとゴム中のカーボンブラック分散がさらに良好となり、補強性、耐摩耗性がさらに向上する。
カーボンブラックの粒径を小さくするために、スラリーに過度の剪断力をかけると、カーボンブラックのストラクチャが破壊され、補強性の低下を引き起こすので、水分散スラリー液から乾燥回収したカーボンブラックの24M4DBP吸油量は、水中に分散させる前の24M4DBP吸油量の93%以上、さらに好ましくは96%以上保持するように混合することが好ましい。
カーボンブラックの粒径を小さくするために、スラリーに過度の剪断力をかけると、カーボンブラックのストラクチャが破壊され、補強性の低下を引き起こすので、水分散スラリー液から乾燥回収したカーボンブラックの24M4DBP吸油量は、水中に分散させる前の24M4DBP吸油量の93%以上、さらに好ましくは96%以上保持するように混合することが好ましい。
(混合工程)
天然ゴムラテックスと水分散スラリー液とを混合する際のカーボンブラックの混合量は、天然ゴムラテックス中の天然ゴム成分100質量部に対して、通常10~100質量部程度である。10質量部未満では、十分な耐摩耗性が得られず、100質量部を超えると低発熱性が低下する。カーボンブラックの混合量は、20~80質量部であることが好ましく、30~60質量部であることがより好ましい。
この混合工程を経て、天然ゴムウェットマスターバッチが得られる。
天然ゴムラテックスと水分散スラリー液とを混合する際のカーボンブラックの混合量は、天然ゴムラテックス中の天然ゴム成分100質量部に対して、通常10~100質量部程度である。10質量部未満では、十分な耐摩耗性が得られず、100質量部を超えると低発熱性が低下する。カーボンブラックの混合量は、20~80質量部であることが好ましく、30~60質量部であることがより好ましい。
この混合工程を経て、天然ゴムウェットマスターバッチが得られる。
(凝固工程)
混合工程を経て得られた天然ゴムウェットマスターバッチは、凝固工程で凝固させることが好ましい。
ウェットマスターバッチの凝固方法としては、通常と同様、蟻酸、硫酸等の酸や、塩化ナトリウム等の塩の凝固剤を用いて行う。あるいは、凝固剤を添加せず、天然ゴムラテックスと上記スラリー液とを混合することによって、凝固がなされる場合もある。
混合工程を経て得られた天然ゴムウェットマスターバッチは、凝固工程で凝固させることが好ましい。
ウェットマスターバッチの凝固方法としては、通常と同様、蟻酸、硫酸等の酸や、塩化ナトリウム等の塩の凝固剤を用いて行う。あるいは、凝固剤を添加せず、天然ゴムラテックスと上記スラリー液とを混合することによって、凝固がなされる場合もある。
(乾燥工程)
マスターバッチ製造の最終工程として、乾燥処理を行うことが好ましい。乾燥機としては、真空乾燥機、エアドライヤー、ドラムドライヤー、バンドドライヤー等の通常の乾燥機を用いることができるが、さらにカーボンブラックの分散性を向上させるためには、機械的剪断力をかけながら乾燥することが好ましい。これにより、加工性、補強性に優れたゴムを得ることができる。この乾燥は、一般的な混練機を用いて行うことができるが、連続混練機を用いることが好ましい。さらに、同方向回転、あるいは異方向回転の多軸混練押出機を用いることがより好ましい。
剪断力をかけながら乾燥する工程においては、乾燥工程前のマスターバッチ中の水分は10質量%以上であることが好ましい。水分が10質量%未満であると、乾燥工程でのカーボンブラックの分散改良幅が小さくなってしまうからである。
マスターバッチ製造の最終工程として、乾燥処理を行うことが好ましい。乾燥機としては、真空乾燥機、エアドライヤー、ドラムドライヤー、バンドドライヤー等の通常の乾燥機を用いることができるが、さらにカーボンブラックの分散性を向上させるためには、機械的剪断力をかけながら乾燥することが好ましい。これにより、加工性、補強性に優れたゴムを得ることができる。この乾燥は、一般的な混練機を用いて行うことができるが、連続混練機を用いることが好ましい。さらに、同方向回転、あるいは異方向回転の多軸混練押出機を用いることがより好ましい。
剪断力をかけながら乾燥する工程においては、乾燥工程前のマスターバッチ中の水分は10質量%以上であることが好ましい。水分が10質量%未満であると、乾燥工程でのカーボンブラックの分散改良幅が小さくなってしまうからである。
(アミド結合分解工程)
混合工程に用いられる天然ゴムラテックスは、ラテックス中のアミド結合を分解する工程を経ていても良い。アミド結合を予め分解しておけば、アミド結合の水素結合性によって分子同士が絡み合い、ゴムの粘度上昇が小さく、加工性を改善できる。
アミド結合分解工程においては、プロテアーゼ及び/又は芳香族ポリカルボン酸誘導体を用いることが好ましい。プロテアーゼとは、天然ゴムラテックス粒子の表面層成分中に存在するアミド結合を加水分解する性質を有するものであり、酸性プロテアーゼ、中性プロテアーゼ、アルカリ性プロテアーゼなどが挙げられる。本発明では、特にアルカリ性プロテアーゼが効果の点から好ましい。プロテアーゼによってアミド結合の分解を行う場合は、混合する酵素に適した条件で行えば良く、例えば天然ゴムラテックスにノボザイム社製アルカラーゼ2.5LタイプDXを混合する場合には、通常20~80℃の範囲で処理することが望ましい。この際のpHは、通常6.0~12.0の範囲で行う。プロテアーゼの添加量は、天然ゴムラテックスに対して、通常0.01~2質量%、好ましくは0.02~1質量%の範囲である。
混合工程に用いられる天然ゴムラテックスは、ラテックス中のアミド結合を分解する工程を経ていても良い。アミド結合を予め分解しておけば、アミド結合の水素結合性によって分子同士が絡み合い、ゴムの粘度上昇が小さく、加工性を改善できる。
アミド結合分解工程においては、プロテアーゼ及び/又は芳香族ポリカルボン酸誘導体を用いることが好ましい。プロテアーゼとは、天然ゴムラテックス粒子の表面層成分中に存在するアミド結合を加水分解する性質を有するものであり、酸性プロテアーゼ、中性プロテアーゼ、アルカリ性プロテアーゼなどが挙げられる。本発明では、特にアルカリ性プロテアーゼが効果の点から好ましい。プロテアーゼによってアミド結合の分解を行う場合は、混合する酵素に適した条件で行えば良く、例えば天然ゴムラテックスにノボザイム社製アルカラーゼ2.5LタイプDXを混合する場合には、通常20~80℃の範囲で処理することが望ましい。この際のpHは、通常6.0~12.0の範囲で行う。プロテアーゼの添加量は、天然ゴムラテックスに対して、通常0.01~2質量%、好ましくは0.02~1質量%の範囲である。
芳香族ポリカルボン酸誘導体を用いる方法では、芳香族ポリカルボン酸誘導体の添加量は、天然ゴムラテックスに対して、0.01~30質量%配合することが好ましい。添加量が0.01質量%未満では、ムーニー粘度を十分に低下できないことがあり、一方、30質量%を超えると、その増量に見合った効果が得られないばかりでなく、加硫ゴムの破壊特性などに悪影響を与えることがある。使用する天然ゴムラテックスの種類やグレードなどにより、添加量は上記範囲内で変動するが、物性、コストなどから0.05~20質量%の範囲が望ましい。
芳香族ポリカルボン酸誘導体としては、好ましくはフタル酸、トリメリット酸、ピロメリット酸及びその無水物のいずれかの誘導体が好ましく、具体的には、フタル酸モノステアリル、フタル酸モノデシル、フタル酸モノオクチルアミド、フタル酸ポリオキシエチレンラウリルエステル、トリメリット酸モノデシル、トリメリット酸モノステアリル、ピロメリット酸モノステアリル、ピロメリット酸ジステアリルが挙げられる。
芳香族ポリカルボン酸誘導体としては、好ましくはフタル酸、トリメリット酸、ピロメリット酸及びその無水物のいずれかの誘導体が好ましく、具体的には、フタル酸モノステアリル、フタル酸モノデシル、フタル酸モノオクチルアミド、フタル酸ポリオキシエチレンラウリルエステル、トリメリット酸モノデシル、トリメリット酸モノステアリル、ピロメリット酸モノステアリル、ピロメリット酸ジステアリルが挙げられる。
アミド結合分解工程においては、ラテックスの安定性を向上させる目的で、界面活性剤を加えることが望ましい。界面活性剤は、アニオン系、カチオン系、ノニオン系、両性界面活性剤を使用できるが、特にアニオン系、ノニオン系界面活性剤が好ましい。界面活性剤の添加量は、天然ゴムラテックスの性状に応じて適宜調整しうるが、通常は天然ゴムラテックスに対して、0.01~2質量%、好ましくは0.02~1質量%である。界面活性剤の添加は、アミド結合分解工程で行うことが好ましいが、少なくとも混合工程の前であれば特に限定されない。
本発明のゴム組成物においては、天然ゴムとして、変性天然ゴムを用いることができる。
[変性天然ゴム]
この変性天然ゴムの製造には、原料として、天然ゴムラテックスを用いても良いし、天然ゴム、天然ゴムラテックス凝固物及び天然ゴムカップランプの中から選択される少なくとも一種の固形天然ゴム原材料を用いても良い。
上記天然ゴムラテックスとしては、特に限定されず、例えば、フィールドラテックス、アンモニア処理ラテックス、遠心分離濃縮ラテックス、界面活性剤や酵素で処理した脱タンパク質ラテックス、及びこれらを組み合せたもの等を用いることができる。
[変性天然ゴム]
この変性天然ゴムの製造には、原料として、天然ゴムラテックスを用いても良いし、天然ゴム、天然ゴムラテックス凝固物及び天然ゴムカップランプの中から選択される少なくとも一種の固形天然ゴム原材料を用いても良い。
上記天然ゴムラテックスとしては、特に限定されず、例えば、フィールドラテックス、アンモニア処理ラテックス、遠心分離濃縮ラテックス、界面活性剤や酵素で処理した脱タンパク質ラテックス、及びこれらを組み合せたもの等を用いることができる。
変性天然ゴムの製造において、例えば、天然ゴムラテックスを原料とする場合は、極性基含有変性天然ゴムラテックスを製造し、更に凝固及び乾燥させることで、極性基含有変性天然ゴムを得ることができる。ここで、極性基含有変性天然ゴムラテックスの製造方法としては、特に限定されず、例えば、(1)天然ゴムラテックスに極性基含有単量体を添加し、該極性基含有単量体を天然ゴムラテックス中の天然ゴム分子にグラフト重合させる方法、(2)天然ゴムラテックスに極性基含有メルカプト化合物を添加し、該極性基含有メルカプト化合物を天然ゴムラテックス中の天然ゴム分子に付加させる方法、(3)天然ゴムラテックスに極性基含有オレフィン及びメタセシス触媒を加え、該メタセシス触媒によって天然ゴムラテックス中の天然ゴム分子に極性基含有オレフィンを反応させる方法、(4)天然ゴムラテックスに、過安息香酸、過酢酸、過ギ酸、過フタル酸、過プロピオン酸、トリフルオロ過酢酸等の有機過酸を過酷な条件で反応させることによりエポキシ化天然ゴム等の主鎖反応性官能基を有するゴムを得る方法などが挙げられる。
上記天然ゴムラテックスに添加される極性基含有単量体は、分子内に少なくとも一つの極性基を有し、天然ゴム分子とグラフト重合できる限り特に制限されるものでない。ここで、該極性基含有単量体は、天然ゴム分子とグラフト重合するために、分子内に炭素-炭素二重結合を有することが好ましく、極性基含有ビニル系単量体であることが好ましい。上記極性基の具体例としては、アミノ基、イミノ基、ニトリル基、アンモニウム基、イミド基、アミド基、ヒドラゾ基、アゾ基、ジアゾ基、ヒドロキシル基、カルボキシル基、カルボニル基、エポキシ基、オキシカルボニル基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、含窒素複素環基、含酸素複素環基、アルコキシシリル基、及びスズ含有基等を好適に挙げることができる。これら極性基を含有する単量体は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記アミノ基を含有する単量体としては、1分子中に第1級、第2級及び第3級アミノ基から選ばれる少なくとも1つのアミノ基を含有する重合性単量体が挙げられる。該アミノ基を有する重合性単量体の中でも、ジアルキルアミノアルキル(メタ)アクリレート等の第3級アミノ基含有単量体が特に好ましい。これらアミノ基含有単量体は、一種単独で用いても良く、二種以上を組み合せて用いても良い。ここで、第1級アミノ基含有単量体としては、アクリルアミド、メタクリルアミド、4-ビニルアニリン、アミノメチル(メタ)アクリレート、アミノエチル(メタ)アクリレート、アミノプロピル(メタ)アクリレート、アミノブチル(メタ)アクリレート等が挙げられる。
また、第2級アミノ基含有単量体としては、(1)アニリノスチレン、β-フェニル-p-アニリノスチレン、β-シアノ-p-アニリノスチレン、β-シアノ-β-メチル-p-アニリノスチレン、β-クロロ-p-アニリノスチレン、β-カルボキシ-p-アニリノスチレン、β-メトキシカルボニル-p-アニリノスチレン、β-(2-ヒドロキシエトキシ)カルボニル-p-アニリノスチレン、β-ホルミル-p-アニリノスチレン、β-ホルミル-β-メチル-p-アニリノスチレン、α-カルボキシ-β-カルボキシ-β-フェニル-p-アニリノスチレン等のアニリノスチレン類、(2)1-アニリノフェニル-1,3-ブタジエン、1-アニリノフェニル-3-メチル-1,3-ブタジエン、1-アニリノフェニル-3-クロロ-1,3-ブタジエン、3-アニリノフェニル-2-メチル-1,3-ブタジエン、1-アニリノフェニル-2-クロロ-1,3-ブタジエン、2-アニリノフェニル-1,3-ブタジエン、2-アニリノフェニル-3-メチル-1,3-ブタジエン、2-アニリノフェニル-3-クロロ-1,3-ブタジエン等のアニリノフェニルブタジエン類、(3)N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-メチロールアクリルアミド、N-(4-アニリノフェニル)メタクリルアミド等のN-モノ置換(メタ)アクリルアミド類等が挙げられる。
更に、第3級アミノ基含有単量体としては、N,N-ジ置換アミノアルキル(メタ)アクリレート及びN,N-ジ置換アミノアルキル(メタ)アクリルアミド等が挙げられる。上記N,N-ジ置換アミノアルキル(メタ)アクリレートとしては、N,N-ジメチルアミノメチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノブチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノブチル(メタ)アクリレート、N-メチル-N-エチルアミノエチル(メタ)アクリレート、N,N-ジプロピルアミノエチル(メタ)アクリレート、N,N-ジブチルアミノエチル(メタ)アクリレート、N,N-ジブチルアミノプロピル(メタ)アクリレート、N,N-ジブチルアミノブチル(メタ)アクリレート、N,N-ジヘキシルアミノエチル(メタ)アクリレート、N,N-ジオクチルアミノエチル(メタ)アクリレート、アクリロイルモルフォリン等のアクリル酸又はメタクリル酸のエステル等が挙げられ、これらの中でも、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジプロピルアミノエチル(メタ)アクリレート、N,N-ジオクチルアミノエチル(メタ)アクリレート、N-メチル-N-エチルアミノエチル(メタ)アクリレート等が特に好ましい。
また、上記N,N-ジ置換アミノアルキル(メタ)アクリルアミドとしては、N,N-ジメチルアミノメチル(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチルアミノブチル(メタ)アクリルアミド、N,N-ジエチルアミノエチル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノブチル(メタ)アクリルアミド、N-メチル-N-エチルアミノエチル(メタ)アクリルアミド、N,N-ジプロピルアミノエチル(メタ)アクリルアミド、N,N-ジブチルアミノエチル(メタ)アクリルアミド、N,N-ジブチルアミノプロピル(メタ)アクリルアミド、N,N-ジブチルアミノブチル(メタ)アクリルアミド、N,N-ジヘキシルアミノエチル(メタ)アクリルアミド、N,N-ジヘキシルアミノプロピル(メタ)アクリルアミド、N,N-ジオクチルアミノプロピル(メタ)アクリルアミド等のアクリルアミド化合物又はメタクリルアミド化合物等が挙げられ、これらの中でも、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミド、N,N-ジオクチルアミノプロピル(メタ)アクリルアミド等が特に好ましい。
上記ニトリル基を含有する単量体としては、(メタ)アクリロニトリル、シアン化ビニリデン等が挙げられる。これらニトリル基含有単量体は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記ヒドロキシル基を含有する単量体としては、1分子中に少なくとも1つのヒドロキシル基を有する重合性単量体が挙げられる。かかる単量体としては、ヒドロキシル基含有不飽和カルボン酸系単量体、ヒドロキシル基含有ビニルエーテル系単量体、ヒドロキシル基含有ビニルケトン系単量体等が挙げられる。ここで、ヒドロキシル基含有不飽和カルボン酸系単量体の具体例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール(アルキレングリコール単位数は、例えば、2~23である)のモノ(メタ)アクリレート類;N-ヒドロキシメチル(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N,N-ビス(2-ヒドロキシメチル)(メタ)アクリルアミド等のヒドロキシル基含有不飽和アミド類;o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、o-ヒドロキシ-α-メチルスチレン、m-ヒドロキシ-α-メチルスチレン、p-ヒドロキシ-α-メチルスチレン、p-ビニルベンジルアルコール等のヒドロキシル基含有ビニル芳香族化合物類等が挙げられる。これらの中でも、ヒドロキシル基含有不飽和カルボン酸系単量体、ヒドロキシル基含有ビニル芳香族化合物が好ましく、ヒドロキシル基含有不飽和カルボン酸系単量体が特に好ましい。ここで、ヒドロキシル基含有不飽和カルボン酸系単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエステル、アミド、無水物等の誘導体が挙げられ、これらの中でも、アクリル酸、メタクリル酸等のエステルが特に好ましい。これらヒドロキシル基含有単量体は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記カルボキシル基を含有する単量体としては、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、テトラコン酸、桂皮酸等の不飽和カルボン酸類;フタル酸、コハク酸、アジピン酸等の非重合性多価カルボン酸と、(メタ)アリルアルコール、2-ヒドロキシエチル(メタ)アクリレート等の水酸基含有不飽和化合物とのモノエステルのような遊離カルボキシル基含有エステル類及びその塩等が挙げられる。これらの中でも、不飽和カルボン酸類が特に好ましい。これらカルボキシル基含有単量体は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記エポキシ基を含有する単量体としては、(メタ)アリルグリシジルエーテル、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート等が挙げられる。これらエポキシ基含有単量体は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記含窒素複素環基を含有する単量体において、該含窒素複素環としては、ピロール、ヒスチジン、イミダゾール、トリアゾリジン、トリアゾール、トリアジン、ピリジン、ピリミジン、ピラジン、インドール、キノリン、プリン、フェナジン、プテリジン、メラミン等が挙げられる。なお、該含窒素複素環は、他のヘテロ原子を環中に含んでいても良い。ここで、含窒素複素環基としてピリジル基を含有する単量体としては、2-ビニルピリジン、3-ビニルピリジン、4-ビニルピリジン、5-メチル-2-ビニルピリジン、5-エチル-2-ビニルピリジン等のピリジル基含有ビニル化合物等が挙げられ、これらの中でも、2-ビニルピリジン、4-ビニルピリジン等が特に好ましい。これら含窒素複素環基含有単量体は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記アルコキシシリル基を含有する単量体としては、(メタ)アクリロキシメチルトリメトキシシラン、(メタ)アクリロキシメチルメチルジメトキシシラン、(メタ)アクリロキシメチルジメチルメトキシシラン、(メタ)アクリロキシメチルトリエトキシシラン、(メタ)アクリロキシメチルメチルジエトキシシラン、(メタ)アクリロキシメチルジメチルエトキシシラン、(メタ)アクリロキシメチルトリプロポキシシラン、(メタ)アクリロキシメチルメチルジプロポキシシラン、(メタ)アクリロキシメチルジメチルプロポキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルジメチルメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン、γ-(メタ)アクリロキシプロピルジメチルエトキシシラン、γ-(メタ)アクリロキシプロピルトリプロポキシシラン、γ-(メタ)アクリロキシプロピルメチルジプロポキシシラン、γ-(メタ)アクリロキシプロピルジメチルプロポキシシラン、γ-(メタ)アクリロキシプロピルメチルジフェノキシシラン、γ-(メタ)アクリロキシプロピルジメチルフェノキシシラン、γ-(メタ)アクリロキシプロピルメチルジベンジロキシシラン、γ-(メタ)アクリロキシプロピルジメチルベンジロキシシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、6-トリメトキシシリル-1,2-ヘキセン、p-トリメトキシシリルスチレン等が挙げられる。これらアルコキシシリル基含有単量体は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記スズ含有基を有する単量体としては、アリルトリ-n-ブチルスズ、アリルトリメチルスズ、アリルトリフェニルスズ、アリルトリ-n-オクチルスズ、(メタ)アクリルオキシ-n-ブチルスズ、(メタ)アクリルオキシトリメチルスズ、(メタ)アクリルオキシトリフェニルスズ、(メタ)アクリルオキシ-n-オクチルスズ、ビニルトリ-n-ブチルスズ、ビニルトリメチルスズ、ビニルトリフェニルスズ、ビニルトリ-n-オクチルスズ等のスズ含有単量体を挙げることができる。これらスズ含有単量体は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記極性基含有単量体を天然ゴムラテックス中の天然ゴム分子にグラフト重合させる場合は、上記極性基含有単量体の天然ゴム分子へのグラフト重合を、乳化重合で行うのが良い。ここで、該乳化重合においては、一般的に、天然ゴムラテックスに水及び必要に応じて乳化剤を加えた液中に、上記極性基含有単量体を加え、更に重合開始剤を加えて、所定の温度で撹拌して極性基含有単量体を重合させることが好ましい。なお、上記極性基含有単量体の天然ゴムラテックスへの添加においては、予め天然ゴムラテックス中に乳化剤を加えても良いし、極性基含有単量体を乳化剤で乳化した後に天然ゴムラテックス中に加えても良い。なお、天然ゴムラテックス及び/又は極性基含有単量体の乳化に使用できる乳化剤としては、特に限定されず、ポリオキシエチレンラウリルエーテル等のノニオン系の界面活性剤が挙げられる。
上記重合開始剤としては、特に制限はなく、種々の乳化重合用の重合開始剤を用いることができ、その添加方法についても特に制限はない。一般に用いられる重合開始剤の例としては、過酸化ベンゾイル、過酸化水素、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス(2-ジアミノプロパン)ヒドロクロライド、2,2-アゾビス(2-ジアミノプロパン)ジヒドロクロライド、2,2-アゾビス(2,4-ジメチルバレロニトリル)、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。なお、重合温度を低下させるためには、レドックス系の重合開始剤を用いることが好ましい。かかるレドックス系重合開始剤において、過酸化物と組み合せる還元剤としては、例えば、テトラエチレンペンタミン、メルカプタン類、酸性亜硫酸ナトリウム、還元性金属イオン、アスコルビン酸等が挙げられる。レドックス系重合開始剤における過酸化物と還元剤との好ましい組み合せとしては、tert-ブチルハイドロパーオキサイドとテトラエチレンペンタミンとの組み合せ等が挙げられる。上記変性天然ゴムを用いて、ゴム組成物の加工性を低下させることなく低発熱性及び耐摩耗性を向上させるには、各天然ゴム分子に上記極性基含有単量体が少量且つ均一に導入されることが重要であるため、上記重合開始剤の添加量は、上記極性基含有単量体に対し1~100mol%の範囲が好ましく、10~100mol%の範囲が更に好ましい。
上述した各成分を反応容器に仕込み、30~80℃程度で10分~7時間程度反応させることで、天然ゴム分子に上記極性基含有単量体がグラフト共重合した変性天然ゴムラテックスが得られる。また、該変性天然ゴムラテックスを凝固させ、洗浄後、真空乾燥機、エアドライヤー、ドラムドライヤー等の乾燥機を用いて乾燥することで変性天然ゴムが得られる。ここで、変性天然ゴムラテックスを凝固するのに用いる凝固剤としては、特に限定されるものではないが、ギ酸、硫酸等の酸や、塩化ナトリウム等の塩が挙げられる。
上記天然ゴムラテックスに添加されて、該天然ゴムラテックス中の天然ゴム分子に付加反応する極性基含有メルカプト化合物は、分子内に少なくとも一つのメルカプト基と該メルカプト基以外の極性基とを有する限り特に制限されるものでない。上記極性基の具体例としては、アミノ基、イミノ基、ニトリル基、アンモニウム基、イミド基、アミド基、ヒドラゾ基、アゾ基、ジアゾ基、ヒドロキシル基、カルボキシル基、カルボニル基、エポキシ基、オキシカルボニル基、含窒素複素環基、合酸素複素環基、アルコキシシリル基、及びスズ含有基等を好適に挙げることができる。これら極性基を含有するメルカプト化合物は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記アミノ基を含有するメルカプト化合物としては、1分子中に第1級、第2級及び第3級アミノ基から選ばれる少なくとも1つのアミノ基を有するメルカプト化合物が挙げられる。該アミノ基を有するメルカプト化合物の中でも、第3級アミノ基含有メルカプト化合物が特に好ましい。ここで、第1級アミノ基含有メルカプト化合物としては、4-メルカプトアニリン、2-メルカプトエチルアミン、2-メルカプトプロピルアミン、3-メルカプトプロピルアミン、2-メルカプトブチルアミン、3-メルカプトブチルアミン、4-メルカプトブチルアミン等が挙げられる。また、第2級アミノ基含有メルカプト化合物としては、N-メチルアミノエタンチオール、N-エチルアミノエタンチオール、N-メチルアミノプロパンチオール、N-エチルアミノプロパンチオール、N-メチルアミノブタンチオール、N-エチルアミノブタンチオール等が挙げられる。更に、第3級アミノ基含有メルカプト化合物としては、N,N-ジメチルアミノエタンチオール、N,N-ジエチルアミノエタンチオール、N,N-ジメチルアミノプロパンチオール、N,N-ジエチルアミノプロパンチオール、N,N-ジメチルアミノブタンチオール、N,N-ジエチルアミノブタンチオール等のN,N-ジ置換アミノアルキルメルカプタン等が挙げられる。これらアミノ基含有メルカプト化合物の中でも、2-メルカプトエチルアミン及びN,N-ジメチルアミノエタンチオール等が好ましい。これらアミノ基含有メルカプト化合物は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記ニトリル基を有するメルカプト化合物としては、2-メルカプトプロパンニトリル、3-メルカプトプロパンニトリル、2-メルカプトブタンニトリル、3-メルカプトブタンニトリル、4-メルカプトブタンニトリル等が挙げられ、これらニトリル基含有メルカプト化合物は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記ヒドロキシル基を含有するメルカプト化合物としては、1分子中に少なくとも1つの第1級、第2級又は第3級ヒドロキシル基を有するメルカプト化合物が挙げられる。該ヒドロキシル基含有メルカプト化合物の具体例としては、2-メルカプトエタノール、3-メルカプト-1-プロパノール、3-メルカプト-2-プロパノール、4-メルカプト-1-ブタノール、4-メルカプト-2-ブタノール、3-メルカプト-1-ブタノール、3-メルカプト-2-ブタノール、3-メルカプト-1-ヘキサノール、3-メルカプト-1,2-プロパンジオール、2-メルカプトベンジルアルコール、2-メルカプトフェノール、4-メルカプトフェノール等が挙げられ、これらの中でも、2-メルカプトエタノール等が好ましい。これらヒドロキシル基含有メルカプト化合物は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記カルボキシル基を含有するメルカプト化合物としては、メルカプト酢酸、メルカプトプロピオン酸、チオサリチル酸、メルカプトマロン酸、メルカプトコハク酸、メルカプト安息香酸等が挙げられ、これらの中でも、メルカプト酢酸等が好ましい。これらカルボキシル基含有メルカプト化合物は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記含窒素複素環基を含有するメルカプト化合物において、該含窒素複素環としては、ピロール、ヒスチジン、イミダゾール、トリアゾリジン、トリアゾール、トリアジン、ピリジン、ピリミジン、ピラジン、インドール、キノリン、プリン、フェナジン、プテリジン、メラミン等が挙げられる。なお、該含窒素複素環は、他のヘテロ原子を環中に含んでいても良い。ここで、含窒素複素環基としてピリジル基を含有するメルカプト化合物としては、2-メルカプトピリジン、3-メルカプトピリジン、4-メルカプトピリジン、5-メチル-2-メルカプトピリジン、5-エチル-2-メルカプトピリジン等が挙げられ、また、他の含窒素複素環基を含有するメルカプト化合物としては、2-メルカプトピリミジン、2-メルカプト-5-メチルベンズイミダゾール、2-メルカプト-1-メチルイミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトイミダゾール等が挙げられ、これらの中でも、2-メルカプトピリジン、4-メルカプトピリジン等が好ましい。これら含窒素複素環基含有メルカプト化合物は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記アルコキシシリル基を含有するメルカプト化合物としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルジメチルメトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、メルカプトメチルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン等が挙げられ、これらの中でも、3-メルカプトプロピルトリメトキシシラン等が好ましい。これらアルコキシシリル基含有メルカプト化合物は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記スズ含有基を有するメルカプト化合物としては、2-メルカプトエチルトリ-n-ブチルスズ、2-メルカプトエチルトリメチルスズ、2-メルカプトエチルトリフェニルスズ、3-メルカプトプロピルトリ-n-ブチルスズ、3-メルカプトプロピルトリメチルスズ、3-メルカプトプロピルトリフェニルスズ等のスズ含有メルカプト化合物を挙げることができる。これらスズ含有メルカプト化合物は、一種単独で用いても良く、二種以上を組み合せて用いても良い。
上記極性基含有メルカプト化合物を天然ゴムラテックス中の天然ゴム分子に付加させる場合は、一般に、天然ゴムラテックスに水及び必要に応じて乳化剤を加えた溶液中に、上記極性基含有メルカプト化合物を加え、所定の温度で撹拌することで、上記極性基含有メルカプト化合物を天然ゴムラテックス中の天然ゴム分子の主鎖の二重結合に付加反応させる。なお、上記極性基含有メルカプト化合物の天然ゴムラテックスヘの添加においては、予め天然ゴムラテックス中に乳化剤を加えても良いし、極性基含有メルカプト化合物を乳化剤で乳化した後に天然ゴムラテックスに加えても良い。また、必要に応じて、更に有機過酸化物を添加することもできる。なお、天然ゴムラテックス及び/又は極性基含有メルカプト化合物の乳化に使用できる乳化剤としては、特に限定されず、ポリオキシエチレンラウリルエーテル等のノニオン系の界面活性剤が挙げられる。
ゴム組成物の加工性を低下させることなく低発熱性及び耐摩耗性を向上させるには、各天然ゴム分子に上記極性基含有メルカプト化合物が少量且つ均一に導入されることが重要であるため、上記変性反応は、撹拌しながら行うことが好ましく、例えば、天然ゴムラテックス及び極性基含有メルカプト化合物等の上記成分を反応容器に仕込み、30~80℃程度で10分~24時間程度反応させることで、天然ゴム分子に上記極性基含有メルカプト化合物が付加した変性天然ゴムラテックスが得られる。
上記天然ゴムラテックスに添加される極性基含有オレフィンは、分子内に少なくとも一つの極性基を有し、また、天然ゴム分子とクロスメタセシス反応するために炭素-炭素二重結合を有する。ここで、上記極性基の具体例としては、アミノ基、イミノ基、ニトリル基、アンモニウム基、イミド基、アミド基、ヒドラゾ基、アゾ基、ジアゾ基、ヒドロキシル基、カルボキシル基、カルボニル基、エポキシ基、オキシカルボニル基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、含窒素複素環基、含酸素複素環基、アルコキシシリル基、及びスズ含有基等を好適に挙げることができる。これら極性基含有オレフィンは、一種単独で用いても良く、二種以上を組み合せて用いても良い。
メタセシス触媒によって天然ゴムラテックス中の天然ゴム分子に極性基含有オレフィンを反応させる場合は、一般に、天然ゴムラテックスに水及び必要に応じて乳化剤を加えた液中に、上記極性基含有オレフィンを加え、更にメタセシス触媒を加えて、所定の温度で撹拌して天然ゴム分子と極性基含有オレフィンをメタセシス反応させる。ここで、上記極性基含有オレフィンの天然ゴムラテックスへの添加においては、予め天然ゴムラテックス中に乳化剤を加えても良いし、極性基含有オレフィンを乳化剤で乳化した後に天然ゴムラテックス中に加えても良い。なお、天然ゴムラテックス及び/又は極性基含有オレフィンの乳化に使用できる乳化剤としては、特に限定されず、ポリオキシエチレンラウリルエーテル等のノニオン系の界面活性剤が挙げられる。
上記メタセシス触媒としては、天然ゴム分子と上記極性基含有オレフィンとのメタセシス反応に対して触媒作用を有する限り特に制限されず、種々のメタセシス触媒を用いることができる。該メタセシス触媒は、遷移金属を含有するが、天然ゴムラテックス中で使用するため、水に対する安定性が高いことが好ましい。そのため、メタセシス触媒を構成する遷移金属は、ルテニウム、オスミウム及びイリジウムのいずれかであることが好ましい。上記メタセシス触媒として、具体的には、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロライド[RuCl2(=CHPh)(PCy3)2]の他、RuCl2(=CH-CH=CPh2)(PPh3)2、RuCl2(=CHPh)(PCp3)2、RuCl2(=CHPh)(PPh3)2、RuCl2(=CHPh)[Cy2PCH2CH2N(CH3)3
+Cl]2等を挙げることができる。なお、化学式中、Cyはシクロヘキシル基を示し、Cpはシクロペンチル基を示し、Phはフェニル基を示す。上記メタセシス触媒の添加量は、上記極性基含有オレフィンに対し1~500mol%の範囲が好ましく、10~100mol%の範囲が更に好ましい。
上述した各成分を反応容器に仕込み、30~80℃程度で10分~24時間程度反応させることで、天然ゴム分子に上記極性基が導入された変性天然ゴムラテックスが得られる。
また、原料として、天然ゴム、天然ゴムラテックス凝固物及び天然ゴムカップランプの中から選択される少なくとも一種の天然ゴム原材料を用いる場合は、極性基含有化合物を機械的せん断力を与えて、天然ゴム原材料にグラフト重合又は付加させることにより変性天然ゴムが得られる。
上記天然ゴム原材料としては、乾燥後の各種固形天然ゴム、各種天然ゴムラテックス凝固物(アンスモークドシートを包含する)又は天然ゴムカップランプを用いることができ、これら天然ゴム原材料は、一種単独で用いても良いし、二種以上を組み合せて用いても良い。
また、原料として、天然ゴム、天然ゴムラテックス凝固物及び天然ゴムカップランプの中から選択される少なくとも一種の天然ゴム原材料を用いる場合は、極性基含有化合物を機械的せん断力を与えて、天然ゴム原材料にグラフト重合又は付加させることにより変性天然ゴムが得られる。
上記天然ゴム原材料としては、乾燥後の各種固形天然ゴム、各種天然ゴムラテックス凝固物(アンスモークドシートを包含する)又は天然ゴムカップランプを用いることができ、これら天然ゴム原材料は、一種単独で用いても良いし、二種以上を組み合せて用いても良い。
上記極性基含有化合物を天然ゴム原材料中の天然ゴム分子にグラフト重合させる場合、該極性基含有化合物は、分子内に炭素-炭素二重結合を有することが好ましく、極性基含有ビニル系単量体であることが好ましい。一方、極性基含有化合物を天然ゴム原材料中の天然ゴム分子に付加反応させる場合、該極性基含有化合物は、分子内にメルカプト基を有することが好ましく、極性基含有メルカプト化合物であることが好ましい。
上記天然ゴム原材料と極性基含有化合物との混合物に機械的せん断力を与える手段としては、二軸押出混練装置及びドライプリブレーカーが好ましい。ここで、極性基含有化合物を天然ゴム原材料中の天然ゴム分子にグラフト重合させる場合は、上記機械的せん断力を与えられる装置内に天然ゴム原材料及び極性基含有化合物(好ましくは、極性基含有ビニル系単量体)と共に重合開始剤を投入し、機械的せん断力を与えることで、天然ゴム原材料中の天然ゴム分子に極性基含有化合物をグラフト重合により導入することができる。また、極性基含有化合物を天然ゴム原材料中の天然ゴム分子に付加反応させる場合は、上記機械的せん断力を与えられる装置内に天然ゴム原材料及び極性基含有化合物(好ましくは、極性基含有メルカプト化合物)を投入し、必要に応じて有機過酸化物等を更に投入して、機械的せん断力を与えることで、天然ゴム原材料中の天然ゴム分子の主鎖の二重結合に極性基含有化合物を付加反応させることができる。ここで使用する極性基含有化合物としては、上述した極性基含有単量体、極性基含有メルカプト化合物、極性基含有オレフィン等が挙げられる。
上述した各成分を機械的せん断力を与えられる装置内に仕込み、機械的せん断力を与えることで、天然ゴム分子に上記極性基含有化合物がグラフト重合又は付加した変性天然ゴムが得られる。なお、この際、天然ゴム分子の変性反応を加温して行っても良く、好ましくは30~160℃、より好ましくは50~130℃の温度で行うことで、十分な反応効率で変性天然ゴムを得ることができる。
上記変性天然ゴムの極性基含有量は、変性天然ゴム中のゴム成分に対して0.001~0.5mmol/gの範囲が好ましく、0.002~0.3mmol/gの範囲が更に好ましく、0.003~0.2mmol/gの範囲がより一層好ましい。変性天然ゴムの極性基含有量が0.001mmol/g未満では、ゴム組成物の低発熱性及び耐摩耗性を十分に改良できないことがある。また、変性天然ゴムの極性基含有量が0.5mmol/gを超えると、粘弾性、S-S特性(引張試験機における応力-歪曲線)等の天然ゴム本来の物理特性を大きく変えてしまい、天然ゴム本来の優れた物理特性が損なわれると共に、ゴム組成物の加工性が大幅に悪化するおそれがある。
本発明のゴム組成物においては、以下に示す各種の低発熱性向上剤又は低発熱性低下抑制剤を配合することができる。
[低発熱性向上剤]
本発明のゴム組成物において、低発熱性向上剤又は低発熱性低下抑制剤として用いることのできる化合物としては、(1)ゴム-充填材カップリング剤となる化合物、ニトロソキノリン化合物、ヒドラジド化合物、双極性窒素含有部分を有するQ-A-B型化合物などを用いることができる。
[低発熱性向上剤]
本発明のゴム組成物において、低発熱性向上剤又は低発熱性低下抑制剤として用いることのできる化合物としては、(1)ゴム-充填材カップリング剤となる化合物、ニトロソキノリン化合物、ヒドラジド化合物、双極性窒素含有部分を有するQ-A-B型化合物などを用いることができる。
(ゴム-充填材カップリング剤)
ゴム-充填材カップリング剤としては、例えばビス[2-(2-オキサゾリル)フェニル]ジスルフィド又はビス[2-(2-チアゾリル)フェニル]ジスルフィドなどの複素環基を有するジスルフィド化合物を挙げることができる。
これらの化合物は、いずれもジスルフィド部分のそれぞれの硫黄原子に2-(2-オキサゾリル)フェニル基又は2-(2-チアゾリル)フェニル基が結合した構造を有しており、ゴム組成物の混練時において、ジスルフィド部分の硫黄原子間が切断され、2つの2-(2-オキサゾリル)フェニルスルフィド基又は2-(2-チアゾリル)フェニルスルフィド基が生成し、これらの基のスルフィド部分は天然ゴムと結合すると共に、オキサゾリル部分又はチアゾリル部分がカーボンブラックと結合することにより、カップリング作用を発揮する。
このようなカップリング作用により、カーボンブラックは、ゴム組成物中において高度に分散し、該ゴム組成物の低発熱性及び耐摩耗性が向上する。
当該カップリング剤は、天然ゴム100質量部に対して、0.1~10質量部程度配合される。
ゴム-充填材カップリング剤としては、例えばビス[2-(2-オキサゾリル)フェニル]ジスルフィド又はビス[2-(2-チアゾリル)フェニル]ジスルフィドなどの複素環基を有するジスルフィド化合物を挙げることができる。
これらの化合物は、いずれもジスルフィド部分のそれぞれの硫黄原子に2-(2-オキサゾリル)フェニル基又は2-(2-チアゾリル)フェニル基が結合した構造を有しており、ゴム組成物の混練時において、ジスルフィド部分の硫黄原子間が切断され、2つの2-(2-オキサゾリル)フェニルスルフィド基又は2-(2-チアゾリル)フェニルスルフィド基が生成し、これらの基のスルフィド部分は天然ゴムと結合すると共に、オキサゾリル部分又はチアゾリル部分がカーボンブラックと結合することにより、カップリング作用を発揮する。
このようなカップリング作用により、カーボンブラックは、ゴム組成物中において高度に分散し、該ゴム組成物の低発熱性及び耐摩耗性が向上する。
当該カップリング剤は、天然ゴム100質量部に対して、0.1~10質量部程度配合される。
(ニトロソキノリン化合物)
ニトロソキノリン化合物は、トレッドゴムの低発熱性、高補強を実現させるために、ゴム組成物に配合する化合物として知られており、具体的には、5-ニトロソ-8-ヒドロキシキノリン、7-ニトロソ-8-ヒドロキシ-5-メチルキノリン、5-ニトロソ-8-ヒドロキシ-6-メチルキノリン、8-ニトロソ-5-ヒドロキシ-6-メチルキノリン、5-ニトロソ-8-ヒドロキシ-7-メチルキノリン、6-ニトロソ-5-ヒドロキシ-8-メチルキノリンがあげられ、中でも5-ニトロソ-8-ヒドロキシキノリンが好ましい。
このニトロソキノリン化合物は、天然ゴム100質量部に対して、0.1~10質量部程度配合される。
ニトロソキノリン化合物は、トレッドゴムの低発熱性、高補強を実現させるために、ゴム組成物に配合する化合物として知られており、具体的には、5-ニトロソ-8-ヒドロキシキノリン、7-ニトロソ-8-ヒドロキシ-5-メチルキノリン、5-ニトロソ-8-ヒドロキシ-6-メチルキノリン、8-ニトロソ-5-ヒドロキシ-6-メチルキノリン、5-ニトロソ-8-ヒドロキシ-7-メチルキノリン、6-ニトロソ-5-ヒドロキシ-8-メチルキノリンがあげられ、中でも5-ニトロソ-8-ヒドロキシキノリンが好ましい。
このニトロソキノリン化合物は、天然ゴム100質量部に対して、0.1~10質量部程度配合される。
(ヒドラジド化合物)
ヒドラジド化合物は、特に重荷重用空気入りタイヤのトレッドゴムに好適なゴム組成物に配合すると、加硫戻りによる過加硫に起因する弾性率の低下を抑え、低発熱性,耐摩耗性の低下を抑制する作用を有していることが知られている。
本発明で用いることができるヒドラジド化合物は、例えば1-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(2,6-ジメチル-4-ヘプチリデン)-2-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルエチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルプロピリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルブチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(2,6-ジメチル-4-ヘプチリデン)-3-ナフトエ酸ヒドラジド、イソフタル酸ジ(1-メチルエチリデン)ヒドラジド、イソフタル酸ジ(1-メチルプロピリデン)ヒドラジド、イソフタル酸ジ(1-メチルブチリデン)ヒドラジド、イソフタル酸ジ(1,3-ジメチルブチリデン)ヒドラジド、イソフタル酸ジ(2,6-ジメチル-4-ヘプチリデン)ヒドラジド、イソニコチン酸(1-メチルエチリデン)ヒドラジド、イソニコチン酸(1-メチルプロピリデン)ヒドラジド、イソニコチン酸(1-メチルブチリデン)ヒドラジド、イソニコチン酸(2,6-ジメチル-4-ヘプチリデン)ヒドラジド、イソニコチン酸(1,3-ジメチルブチリデン)ヒドラジド、N’-(1-メチルエチリデン)-サリチル酸ヒドラジド、N’-(1-メチルプロピリデン)-サリチル酸ヒドラジド、N’-(1-メチルブチリデン)-サリチル酸ヒドラジド、N’-(1,3-ジメチルブチリデン)-サリチル酸ヒドラジド、N’-(2,6-ジメチル-4-ヘプチリデン)-サリチル酸ヒドラジドなどが挙げられる。
このヒドラジド化合物は、ゴム成分100質量部に対して、0.05~5質量部程度配合される。
ヒドラジド化合物は、特に重荷重用空気入りタイヤのトレッドゴムに好適なゴム組成物に配合すると、加硫戻りによる過加硫に起因する弾性率の低下を抑え、低発熱性,耐摩耗性の低下を抑制する作用を有していることが知られている。
本発明で用いることができるヒドラジド化合物は、例えば1-ヒドロキシ-N’-(1-メチルエチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルプロピリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1-メチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-2-ナフトエ酸ヒドラジド、1-ヒドロキシ-N’-(2,6-ジメチル-4-ヘプチリデン)-2-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルエチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルプロピリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1-メチルブチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(1,3-ジメチルブチリデン)-3-ナフトエ酸ヒドラジド、2-ヒドロキシ-N’-(2,6-ジメチル-4-ヘプチリデン)-3-ナフトエ酸ヒドラジド、イソフタル酸ジ(1-メチルエチリデン)ヒドラジド、イソフタル酸ジ(1-メチルプロピリデン)ヒドラジド、イソフタル酸ジ(1-メチルブチリデン)ヒドラジド、イソフタル酸ジ(1,3-ジメチルブチリデン)ヒドラジド、イソフタル酸ジ(2,6-ジメチル-4-ヘプチリデン)ヒドラジド、イソニコチン酸(1-メチルエチリデン)ヒドラジド、イソニコチン酸(1-メチルプロピリデン)ヒドラジド、イソニコチン酸(1-メチルブチリデン)ヒドラジド、イソニコチン酸(2,6-ジメチル-4-ヘプチリデン)ヒドラジド、イソニコチン酸(1,3-ジメチルブチリデン)ヒドラジド、N’-(1-メチルエチリデン)-サリチル酸ヒドラジド、N’-(1-メチルプロピリデン)-サリチル酸ヒドラジド、N’-(1-メチルブチリデン)-サリチル酸ヒドラジド、N’-(1,3-ジメチルブチリデン)-サリチル酸ヒドラジド、N’-(2,6-ジメチル-4-ヘプチリデン)-サリチル酸ヒドラジドなどが挙げられる。
このヒドラジド化合物は、ゴム成分100質量部に対して、0.05~5質量部程度配合される。
(双極性窒素含有部分を有するQ-A-B型化合物)
本発明のゴム組成物においては、双極性窒素含有部分を有するQ-A-B型化合物を用いることができる。このQ-A-B型化合物は、下記一般式
Q-A-B
(式中、Qは双極性の窒素原子含有部分、Bはオキサゾリン部分、チアゾリン部分、アルコキシシラン部分又はアリルスズ部分を示し、AはQとBとの間に橋かけを形成する連結原子又は基を示す。)
で表される構造を有する化合物である。
この一般式で表される化合物におけるQは、天然ゴムにおける分子構造中の不飽和炭素-炭素結合に、1,3-双極子付加することが可能な双極性の窒素含有部分であることが好ましい。このようなQとしては、ニトロン、ニトリルオキシド、ニトリルイミンなどを挙げることができる。
本発明のゴム組成物においては、双極性窒素含有部分を有するQ-A-B型化合物を用いることができる。このQ-A-B型化合物は、下記一般式
Q-A-B
(式中、Qは双極性の窒素原子含有部分、Bはオキサゾリン部分、チアゾリン部分、アルコキシシラン部分又はアリルスズ部分を示し、AはQとBとの間に橋かけを形成する連結原子又は基を示す。)
で表される構造を有する化合物である。
この一般式で表される化合物におけるQは、天然ゴムにおける分子構造中の不飽和炭素-炭素結合に、1,3-双極子付加することが可能な双極性の窒素含有部分であることが好ましい。このようなQとしては、ニトロン、ニトリルオキシド、ニトリルイミンなどを挙げることができる。
当該Q-A-B型化合物は、Qとして、ニトロン、ニトリルオキシド、ニトリルイミンなどの双極性窒素含有部分を有しており、この双極性窒素含有部分が、天然ゴムにおける分子構造中の不飽和炭素-炭素結合に1,3-双極子付加する。一方、Bとして、オキサゾリン部分、チアゾリン部分、アルコキシシラン部分、アリルスズ部分などを有しており、これらが、補強用充填材である成分のシリカ及び/又はカーボンブラックの表面基と反応する。
したがって、当該Q-A-B型化合物は、天然ゴムと補強用充填材をカップリングさせる作用を有し、該天然ゴム中へのシリカやカーボンブラックなどの補強用充填材の分散を向上させ、その結果、本発明のゴム組成物は、低発熱性及び耐摩耗性などに優れたものとなる。
したがって、当該Q-A-B型化合物は、天然ゴムと補強用充填材をカップリングさせる作用を有し、該天然ゴム中へのシリカやカーボンブラックなどの補強用充填材の分散を向上させ、その結果、本発明のゴム組成物は、低発熱性及び耐摩耗性などに優れたものとなる。
前記一般式で表されるQ-A-B型化合物としては、例えば4-(2-オキサゾリル)-フェニル-N-メチル-ニトロン、4-(2-チアゾリル)-フェニル-N-メチル-ニトロン、4-(2-オキサゾリル)-フェニル-N-フェニル-ニトロン、4-(2-チアゾリル)-フェニル-N-フェニル-ニトロン、フェニル-N-4-(2-オキサゾリル)-フェニル-ニトロン、フェニル-N-4-(2-チアゾリル)-フェニル-ニトロン、4-トリル-N-4-(2-オキサゾリル)-フェニル-ニトロン、4-トリル-N-4-(2-チアゾリル)-フェニル-ニトロン、4-メトキシフェニル-N-4-(2-オキサゾリル)-フェニル-ニトロン、4-メトキシフェニル-N-4-(2-チアゾリル)-フェニル-ニトロン、4-(2-オキサゾリル)-フェニル-ニトリルオキシド、4-(2-チアゾリル)-フェニル-ニトリルオキシド、4-(2-オキサゾリル)-フェニル-N-メチル-ニトリルイミン、4-(2-チアゾリル)-フェニル-N-メチル-ニトリルイミン、4-(2-オキサゾリル)-フェニル-N-フェニル-ニトリルイミン、4-(2-チアゾリル)-フェニル-N-フェニル-ニトリルイミン、フェニル-N-4-(2-オキサゾリル)-フェニル-ニトリルイミン、フェニル-N-4-(2-チアゾリル)-フェニル-ニトリルイミンなどを挙げることができる。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。これらの化合物の中では、4-(2-オキサゾリル)-フェニル-N-メチル-ニトロン(4OPMN)、4-(2-オキサゾリル)-フェニル-N-フェニル-ニトロン(4OPPN)及びフェニル-N-4-(2-オキサゾリル)-フェニル-ニトロン(P4OPN)が好ましい。
当該Q-A-B型化合物は、天然ゴム100質量部に対して、0.1~10質量部程度配合される。
当該Q-A-B型化合物は、天然ゴム100質量部に対して、0.1~10質量部程度配合される。
[マスターバッチの熱処理方法]
本発明のゴム組成物において用いられるウェットマスターバッチ又はドライマスターバッチは熱処理した後用いられることが好ましい。マスターバッチの熱処理は、天然ゴムと補強性充填材とをウェットマスターバッチ又はドライマスターバッチの方法により混合した後に、所定の条件で熱処理して行なわれる。
具体的には、天然ゴムとカーボンブラック及び/又はシリカとを混合した後に、処理温度T(℃)が50℃以上、好ましくは200℃以下、処理時間t(min)が
2×10+20×T-8.42>t>1×10+13×T-5.4228-3.3の条件での熱処理により得られる。得られる熱処理マスターバッチには加硫剤は含まれていない。
このように、天然ゴムと補強性充填材であるカーボンブラック及び/又はシリカとからなるマスターバッチを熱処理することにより、該補強性充填材に天然ゴムがより強固に付き、天然ゴムでのポリマー自由度が低下してtanδが減少し、この熱処理マスターバッチを用いたゴム組成物は、低発熱性と耐摩耗性が十分なものとなる。
当該熱処理マスターバッチを得る方法としては、オーブン等の恒温装置内にマスターバッチを前記条件の所定時間存置する方法でも良いし、天然ゴムと補強性充填材とを、バンバリーミキサー内などで、前記条件にて混練り処理する方法を用いても良い。処理温度Tは、より好ましくは90~180℃、さらに好ましくは100~170℃の範囲である。この処理温度Tが50℃未満では処理時間を充分に要しても、前記効果が得られにくく、また200℃を超えると天然ゴムの主鎖が分解するおそれが生じる。
一方、処理時間t(min)が、前記式を満たす範囲にあれば、低発熱性と耐摩耗性が十分なゴム組成物を与える熱処理マスターバッチを得ることができる。
本発明のゴム組成物において用いられるウェットマスターバッチ又はドライマスターバッチは熱処理した後用いられることが好ましい。マスターバッチの熱処理は、天然ゴムと補強性充填材とをウェットマスターバッチ又はドライマスターバッチの方法により混合した後に、所定の条件で熱処理して行なわれる。
具体的には、天然ゴムとカーボンブラック及び/又はシリカとを混合した後に、処理温度T(℃)が50℃以上、好ましくは200℃以下、処理時間t(min)が
2×10+20×T-8.42>t>1×10+13×T-5.4228-3.3の条件での熱処理により得られる。得られる熱処理マスターバッチには加硫剤は含まれていない。
このように、天然ゴムと補強性充填材であるカーボンブラック及び/又はシリカとからなるマスターバッチを熱処理することにより、該補強性充填材に天然ゴムがより強固に付き、天然ゴムでのポリマー自由度が低下してtanδが減少し、この熱処理マスターバッチを用いたゴム組成物は、低発熱性と耐摩耗性が十分なものとなる。
当該熱処理マスターバッチを得る方法としては、オーブン等の恒温装置内にマスターバッチを前記条件の所定時間存置する方法でも良いし、天然ゴムと補強性充填材とを、バンバリーミキサー内などで、前記条件にて混練り処理する方法を用いても良い。処理温度Tは、より好ましくは90~180℃、さらに好ましくは100~170℃の範囲である。この処理温度Tが50℃未満では処理時間を充分に要しても、前記効果が得られにくく、また200℃を超えると天然ゴムの主鎖が分解するおそれが生じる。
一方、処理時間t(min)が、前記式を満たす範囲にあれば、低発熱性と耐摩耗性が十分なゴム組成物を与える熱処理マスターバッチを得ることができる。
[ゴム組成物の調製]
本発明のゴム組成物は、天然ゴムと、補強性充填材としてカーボンブラック及び/又はシリカを含むと共に、-30℃tanδ/60℃tanδの比率と、「CTAB×A」(補強性充填材の総表面積)とが、前記式(1)の関係を満たすように、前述した種々手段を講じて調製する。
本発明のゴム組成物においては、天然ゴムと、カーボンブラックは、ウェットマスターバッチの形態で用いても良いし、あるいは天然ゴムと、カーボンブラック及び/又はシリカは、前述した熱処理マスターバッチ(ドライマスターバッチ)の形態で用いても良い。さらには天然ゴムとして、変性天然ゴムを用いることができる。
ゴム組成物の配合剤としては、前述したゴム-充填材カップリング剤となる化合物、ニトロソキノリン化合物、ヒドラジド化合物及び双極性窒素含有部分を有するQ-A-B型化合物の中から選ばれる少なくとも一種を用いることができる。
本発明のゴム組成物は、天然ゴムと、補強性充填材としてカーボンブラック及び/又はシリカを含むと共に、-30℃tanδ/60℃tanδの比率と、「CTAB×A」(補強性充填材の総表面積)とが、前記式(1)の関係を満たすように、前述した種々手段を講じて調製する。
本発明のゴム組成物においては、天然ゴムと、カーボンブラックは、ウェットマスターバッチの形態で用いても良いし、あるいは天然ゴムと、カーボンブラック及び/又はシリカは、前述した熱処理マスターバッチ(ドライマスターバッチ)の形態で用いても良い。さらには天然ゴムとして、変性天然ゴムを用いることができる。
ゴム組成物の配合剤としては、前述したゴム-充填材カップリング剤となる化合物、ニトロソキノリン化合物、ヒドラジド化合物及び双極性窒素含有部分を有するQ-A-B型化合物の中から選ばれる少なくとも一種を用いることができる。
さらに、本発明の目的が損なわれない範囲で、所望により、通常ゴム工業界で用いられる各種薬品、例えば硫黄以外の加硫剤、加硫促進剤、シランカップリング剤、プロセス油、可塑剤、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸等を含有させることができる。
本発明で使用できる加硫促進剤は、特に限定されるものではないが、例えば、M(2-メルカプトベンゾチアゾール)、DM(ジベンゾチアジルジスルフィド)、CZ(N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド)等のチアゾール系、あるいはDPG(ジフェニルグアニジン)等のグアニジン系の加硫促進剤等を挙げることができ、その使用量は、天然ゴム100質量部に対し、0.1~5.0質量部が好ましく、更に好ましくは0.2~3.0質量部である。
また、本発明のゴム組成物で使用できる軟化剤として用いるプロセス油としては、例えば、パラフィン系、ナフテン系、アロマチック系等を挙げることができる。引張強度、耐摩耗性を重視する用途にはアロマチック系が、ヒステリシスロス、低温特性を重視する用途にはナフテン系又はパラフィン系が用いられる。その使用量は、天然ゴム100質量部に対して、0~100質量部が好ましく、100質量部以下であれば加硫ゴムの引張強度、低発熱性(低燃費性)が悪化するのを抑制することができる。
更に、本発明のゴム組成物で使用できる老化防止剤としては、例えば3C(N-イソプロピル-N'-フェニル-p-フェニレンジアミン)、6C[N-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン]、AW(6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン)、ジフェニルアミンとアセトンの高温縮合物等を挙げることができる。その使用量は、天然ゴム100質量部に対して、0.1~6.0質量部が好ましく、更に好ましくは0.3~5.0質量部である。
本発明のゴム組成物は、前記各成分を、ロールなどの開放式混練機、バンバリーミキサーなどの密閉式混練機などの混練り機を用いて混練りすることにより、調製することができる。
なお、当該ゴム組成物の調製においては、亜鉛華、加硫促進剤及び加硫剤を除く各成分を、第一ステージにて混練りしたのち、この混練物に、残りの亜鉛華、加硫促進剤及び加硫剤を加え、第二ステージで混練りすることにより、調製することが好ましい。
このようにして得られた本発明のゴム組成物は、低発熱性に優れると共に、耐摩耗性に優れており、大型重荷重用タイヤやオフザロード用タイヤのタイヤ部材に用いることができる。該タイヤ部材としては、トレッドゴムや、サイドウォールを含むケースゴム等が挙げられる。
なお、当該ゴム組成物の調製においては、亜鉛華、加硫促進剤及び加硫剤を除く各成分を、第一ステージにて混練りしたのち、この混練物に、残りの亜鉛華、加硫促進剤及び加硫剤を加え、第二ステージで混練りすることにより、調製することが好ましい。
このようにして得られた本発明のゴム組成物は、低発熱性に優れると共に、耐摩耗性に優れており、大型重荷重用タイヤやオフザロード用タイヤのタイヤ部材に用いることができる。該タイヤ部材としては、トレッドゴムや、サイドウォールを含むケースゴム等が挙げられる。
[タイヤ]
本発明のタイヤは、前述した本発明のゴム組成物をタイヤ部材に用いたことを特徴とする。タイヤ部材としては、トレッドゴム及びサイドウォールを含むケースゴムを挙げることができ、これらのいずれかに、本発明のゴム組成物を用いることができるが、特にトレッドゴムに用いることが好ましい。
本発明のゴム組成物をトレッドゴムやサイドウォールを含むケースゴムに用いたタイヤは、転がり抵抗が低く低燃費性に優れると共に、耐摩耗性が優れ、特に大型重荷重用タイヤやオフザロード用タイヤとして好適である。なお、本発明のタイヤに充填する気体としては、通常の或いは酸素分圧を変えた空気、又は窒素等の不活性ガスが挙げられる。本発明のゴム組成物をトレッドに用いる場合は、例えばトレッド用部材に押出し加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
本発明のタイヤは、前述した本発明のゴム組成物をタイヤ部材に用いたことを特徴とする。タイヤ部材としては、トレッドゴム及びサイドウォールを含むケースゴムを挙げることができ、これらのいずれかに、本発明のゴム組成物を用いることができるが、特にトレッドゴムに用いることが好ましい。
本発明のゴム組成物をトレッドゴムやサイドウォールを含むケースゴムに用いたタイヤは、転がり抵抗が低く低燃費性に優れると共に、耐摩耗性が優れ、特に大型重荷重用タイヤやオフザロード用タイヤとして好適である。なお、本発明のタイヤに充填する気体としては、通常の或いは酸素分圧を変えた空気、又は窒素等の不活性ガスが挙げられる。本発明のゴム組成物をトレッドに用いる場合は、例えばトレッド用部材に押出し加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
なお、各例における諸特性は、以下に示す方法に従って測定した。
<補強性充填材>
(1)CTAB
JIS K 6217-3:2001に準拠して、セチルトリメチルアンモニウムブロミド吸着比表面積(CTAB:m2/g)を、カーボンブラック及びシリカについて測定した。
<加硫ゴム組成物の性能>
(2)-30℃tanδ/60℃tanδ
明細書本文記載の方法に従って、加硫ゴム組成物における-30℃tanδと60℃tanδを測定し、-30℃tanδ/60℃tanδの比率を求めた。
<タイヤ性能>
(3)耐摩耗性
サイズ2400R35のタイヤを作製し、悪路を10000km走行させた際の残溝より摩耗量を求め、実施例3の摩耗量を0として耐摩耗性を指数表示した。+の数値が大きい程耐摩耗性が良好であり、-の数値が大きい程耐摩耗性が劣悪である。
(4)タイヤの内部温度変化
サイズ2400R35のタイヤをドラム上で、40km/hの速度にて24時間走行させた際の内部温度を測定し、実施例3の温度を0として指数表示し、タイヤの内部温度変化とした。+の数値は実施例3のタイヤの内部温度よりその数値だけ高いことを示し、-の数値は実施例3のタイヤの内部温度よりその数値だけ低いことを示す。
なお、各例における諸特性は、以下に示す方法に従って測定した。
<補強性充填材>
(1)CTAB
JIS K 6217-3:2001に準拠して、セチルトリメチルアンモニウムブロミド吸着比表面積(CTAB:m2/g)を、カーボンブラック及びシリカについて測定した。
<加硫ゴム組成物の性能>
(2)-30℃tanδ/60℃tanδ
明細書本文記載の方法に従って、加硫ゴム組成物における-30℃tanδと60℃tanδを測定し、-30℃tanδ/60℃tanδの比率を求めた。
<タイヤ性能>
(3)耐摩耗性
サイズ2400R35のタイヤを作製し、悪路を10000km走行させた際の残溝より摩耗量を求め、実施例3の摩耗量を0として耐摩耗性を指数表示した。+の数値が大きい程耐摩耗性が良好であり、-の数値が大きい程耐摩耗性が劣悪である。
(4)タイヤの内部温度変化
サイズ2400R35のタイヤをドラム上で、40km/hの速度にて24時間走行させた際の内部温度を測定し、実施例3の温度を0として指数表示し、タイヤの内部温度変化とした。+の数値は実施例3のタイヤの内部温度よりその数値だけ高いことを示し、-の数値は実施例3のタイヤの内部温度よりその数値だけ低いことを示す。
製造例1 天然ゴムとカーボンブラックとのウェットマスターバッチの製造
予め、ホモミキサー(シルバーソン社製ハイシアーミキサー)に5質量%のカーボンブラック(第2表記載のカーボンブラック種を用いる。)と95質量%の水を入れ、微分散させて、カーボンブラックの水分散スラリー液を得た。いずれの水分散スラリー液においても、体積平均粒子径(mv)が25μm以下、90体積%粒径(D90)が30μm以下であった。
次に、天然ゴムラテックス中の天然ゴム成分100質量部に対して、第2表のカーボンブラックの質量部になるように、カーボンブラックの水分散スラリー液と天然ゴムラテックスとをホモミキサー中で攪拌しながら混合したのち、これを蟻酸にてpH4.5に調整して凝固させて、各ウェットマスターバッチを得た。
予め、ホモミキサー(シルバーソン社製ハイシアーミキサー)に5質量%のカーボンブラック(第2表記載のカーボンブラック種を用いる。)と95質量%の水を入れ、微分散させて、カーボンブラックの水分散スラリー液を得た。いずれの水分散スラリー液においても、体積平均粒子径(mv)が25μm以下、90体積%粒径(D90)が30μm以下であった。
次に、天然ゴムラテックス中の天然ゴム成分100質量部に対して、第2表のカーボンブラックの質量部になるように、カーボンブラックの水分散スラリー液と天然ゴムラテックスとをホモミキサー中で攪拌しながら混合したのち、これを蟻酸にてpH4.5に調整して凝固させて、各ウェットマスターバッチを得た。
製造例2 ドライマスターバッチの製造
未処理天然ゴム又は変性天然ゴムと、第2表に示す種類及び含有量のカーボンブラックとを第1表に示す第一ステージと同様にバンバリーミキサー内で混練して、ドライマスターバッチを得た。なお、実施例5及び比較例11では未処理天然ゴムを用い、実施例12では変性天然ゴムを用いてドライマスターバッチを調製した。
未処理天然ゴム又は変性天然ゴムと、第2表に示す種類及び含有量のカーボンブラックとを第1表に示す第一ステージと同様にバンバリーミキサー内で混練して、ドライマスターバッチを得た。なお、実施例5及び比較例11では未処理天然ゴムを用い、実施例12では変性天然ゴムを用いてドライマスターバッチを調製した。
製造例3 変性天然ゴムの製造
(天然ゴムラテックスの変性反応工程)
フィールドラテックスをラテックスセパレーター[斎藤遠心工業製]を用いて回転数7500rpmで遠心分離して、乾燥ゴム濃度60%の濃縮ラテックスを得た。この濃縮ラテックス1000gを、撹拌機及び温調ジャケットを備えたステンレス製反応容器に投入し、予め10mLの水と90mgの乳化剤(花王株式会社製、商品名「エマルゲン1108」)をN,N-ジエチルアミノエチルメタクリレート 3.0gに加えて乳化したものを990mLの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。次に、重合開始剤としてtert-ブチルハイドロパーオキサイド 1.2gとテトラエチレンペンタミン 1.2gとを加え、40℃で30分間反応させることにより、変性天然ゴムラテックスを得た。
(天然ゴムラテックスの変性反応工程)
フィールドラテックスをラテックスセパレーター[斎藤遠心工業製]を用いて回転数7500rpmで遠心分離して、乾燥ゴム濃度60%の濃縮ラテックスを得た。この濃縮ラテックス1000gを、撹拌機及び温調ジャケットを備えたステンレス製反応容器に投入し、予め10mLの水と90mgの乳化剤(花王株式会社製、商品名「エマルゲン1108」)をN,N-ジエチルアミノエチルメタクリレート 3.0gに加えて乳化したものを990mLの水と共に添加し、これらを窒素置換しながら常温で30分間撹拌した。次に、重合開始剤としてtert-ブチルハイドロパーオキサイド 1.2gとテトラエチレンペンタミン 1.2gとを加え、40℃で30分間反応させることにより、変性天然ゴムラテックスを得た。
(凝固及び乾燥工程)
上記変性天然ゴムラテックスにギ酸を加えpHを4.7に調整し、変性天然ゴムラテックスを凝固させた。このようにして得られた固形物をクレーパーで5回処理し、シュレッダーに通してクラム化した後、熱風式乾燥機により110℃で210分間乾燥して変性天然ゴムAを得た。このようにして得られた変性天然ゴムAの質量から、単量体として加えたN,N-ジエチルアミノエチルメタクリレートの転化率が100%であることが確認された。また、該変性天然ゴムAを石油エーテルで抽出し、更にアセトンとメタノールの2:1混合溶媒で抽出することによりホモポリマーの分離を試みたが、抽出物を分析したところホモポリマーは検出されず、添加した単量体の100%が天然ゴム分子に導入されていることが確認された。従って、得られた変性天然ゴムAの極性基含有量は、天然ゴムラテックス中のゴム成分に対して0.027mmol/gである。
上記変性天然ゴムラテックスにギ酸を加えpHを4.7に調整し、変性天然ゴムラテックスを凝固させた。このようにして得られた固形物をクレーパーで5回処理し、シュレッダーに通してクラム化した後、熱風式乾燥機により110℃で210分間乾燥して変性天然ゴムAを得た。このようにして得られた変性天然ゴムAの質量から、単量体として加えたN,N-ジエチルアミノエチルメタクリレートの転化率が100%であることが確認された。また、該変性天然ゴムAを石油エーテルで抽出し、更にアセトンとメタノールの2:1混合溶媒で抽出することによりホモポリマーの分離を試みたが、抽出物を分析したところホモポリマーは検出されず、添加した単量体の100%が天然ゴム分子に導入されていることが確認された。従って、得られた変性天然ゴムAの極性基含有量は、天然ゴムラテックス中のゴム成分に対して0.027mmol/gである。
製造例4 マスターバッチの熱処理方法
ウェットマスターバッチ又はドライマスターバッチを温度140℃のオーブン中で30分間熱処理を行った。
ウェットマスターバッチ又はドライマスターバッチを温度140℃のオーブン中で30分間熱処理を行った。
製造例5 ゴム-充填材カップリング剤の製造
チオニルクロライド28.6mL(390mmol)中に2,2’-ジチオ-ビス(安息香酸)20g(65mmol)を加えて混合液を調製し、得られた混合液を12時間還流した後、ろ過した。ロータリーエバポレータを用いて、このろ液を乾燥し、2,2’-ジチオ-ビス(ベンゾイルクロライド)の粉末15.0g(44mmol)を得た。この反応の収率は68%であった。
次に、得られた2,2’-ジチオ-ビス(ベンゾイルクロライド)をクロロホルム300mLに加え混合した。この混合物に、クロロホルム200mL中に2-アミノエタノール10.7g(175mmol)を含む溶液を撹拌しながら滴下した。添加の完了後、沈殿物が形成される間、25℃で2時間撹拌した。この沈殿物はろ過により集められ、水200mLで洗浄された。その後、沈殿物は乾燥され、2,2’-ジチオ-ビス[N-(ヒドロオキシエチル)-ベンズアミド]13.5g(34mmol)の淡褐色粉末として集められた。収率は77%であった。
この2,2’-ジチオ-ビス[N-(ヒドロオキシエチル)-ベンズアミド]粉末に、チオニルクロライド15mL(204mmol)を撹拌しながら滴下した。この混合物をエーテル150mL中に注ぎ込み、白色沈殿物を形成した。その後、この沈殿物をろ過し、水に溶かした。溶解した沈殿物を冷やした20%水酸化ナトリウムで中和し、クロロホルムで抽出した。このクロロホルム抽出物を乾燥し、ヘキサンで再結晶した。7g(20mmol)のビス[2-(2-オキサゾリル)フェニル]ジスルフィドが得られた。収率は59%であった。全収率は15%であった。
チオニルクロライド28.6mL(390mmol)中に2,2’-ジチオ-ビス(安息香酸)20g(65mmol)を加えて混合液を調製し、得られた混合液を12時間還流した後、ろ過した。ロータリーエバポレータを用いて、このろ液を乾燥し、2,2’-ジチオ-ビス(ベンゾイルクロライド)の粉末15.0g(44mmol)を得た。この反応の収率は68%であった。
次に、得られた2,2’-ジチオ-ビス(ベンゾイルクロライド)をクロロホルム300mLに加え混合した。この混合物に、クロロホルム200mL中に2-アミノエタノール10.7g(175mmol)を含む溶液を撹拌しながら滴下した。添加の完了後、沈殿物が形成される間、25℃で2時間撹拌した。この沈殿物はろ過により集められ、水200mLで洗浄された。その後、沈殿物は乾燥され、2,2’-ジチオ-ビス[N-(ヒドロオキシエチル)-ベンズアミド]13.5g(34mmol)の淡褐色粉末として集められた。収率は77%であった。
この2,2’-ジチオ-ビス[N-(ヒドロオキシエチル)-ベンズアミド]粉末に、チオニルクロライド15mL(204mmol)を撹拌しながら滴下した。この混合物をエーテル150mL中に注ぎ込み、白色沈殿物を形成した。その後、この沈殿物をろ過し、水に溶かした。溶解した沈殿物を冷やした20%水酸化ナトリウムで中和し、クロロホルムで抽出した。このクロロホルム抽出物を乾燥し、ヘキサンで再結晶した。7g(20mmol)のビス[2-(2-オキサゾリル)フェニル]ジスルフィドが得られた。収率は59%であった。全収率は15%であった。
実施例1~15及び比較例1~11
第1表に示す配合処方に従い、第2表に示す形態の天然ゴム、第2表に示す種類と量のカーボンブラック又はカーボンブラックとシリカとの組合わせ、及び第2表に示すゴム-充填材カップリング剤を用い、26種類のゴム組成物を調製した。
なお、ゴム組成物の調製は、まず、第1表に示す第一ステージの各成分をバンバリーミキサー内で混練りした後、得られた混練物に第1表に示す第二ステージの各成分を加え、混練りすることにより行った。
各ゴム組成物を150℃で90分間加硫して、-30℃tanδ測定用試験片及び60℃tanδ測定用試験片を作製し、それぞれ-30℃tanδ及び60℃tanδを測定して、-30℃tanδ/60℃tanδ比を算出した。その結果を第2表に示す。
次に、各ゴム組成物を用いて、サイズ2400R35の26種類のタイヤを製作し、タイヤ性能を評価した。その結果を第2表に示す。
図1は、実施例及び比較例で得られたゴム組成物において、式(1)におけるxと-30℃tanδ/60℃tanδ比との関係を示すプロット図であり、図2は実施例及び比較例で得られたタイヤにおいて、走行試験における内部温度変化と耐摩耗性との関係を示すプロット図である。
第1表に示す配合処方に従い、第2表に示す形態の天然ゴム、第2表に示す種類と量のカーボンブラック又はカーボンブラックとシリカとの組合わせ、及び第2表に示すゴム-充填材カップリング剤を用い、26種類のゴム組成物を調製した。
なお、ゴム組成物の調製は、まず、第1表に示す第一ステージの各成分をバンバリーミキサー内で混練りした後、得られた混練物に第1表に示す第二ステージの各成分を加え、混練りすることにより行った。
各ゴム組成物を150℃で90分間加硫して、-30℃tanδ測定用試験片及び60℃tanδ測定用試験片を作製し、それぞれ-30℃tanδ及び60℃tanδを測定して、-30℃tanδ/60℃tanδ比を算出した。その結果を第2表に示す。
次に、各ゴム組成物を用いて、サイズ2400R35の26種類のタイヤを製作し、タイヤ性能を評価した。その結果を第2表に示す。
図1は、実施例及び比較例で得られたゴム組成物において、式(1)におけるxと-30℃tanδ/60℃tanδ比との関係を示すプロット図であり、図2は実施例及び比較例で得られたタイヤにおいて、走行試験における内部温度変化と耐摩耗性との関係を示すプロット図である。
[注]
1)未処理天然ゴム又は処理天然ゴム:未処理天然ゴムは、通常の天然ゴムであり、天然ゴムラテックスを直接に凝固及び乾燥させて得られたものを指し、処理天然ゴムは、第2表に示すウェットマスターバッチ又はドライマスターバッチ中の天然ゴム及び変性天然ゴムを指す。
2)カーボンブラック:種類及び量は第2表に示す。
3)シリカ:種類及び量は第2表に示す。
4)ゴム-充填材カップリング剤:製造例5で得られたビス[2-(2-オキサゾリル)フェニル]ジスルフィド
5)シランカップリング剤:ビス(3-トリエトキシシリルプロピル)テトラスルフィド、デグッサ社製、商品名「Si69」
6)老化防止剤6C:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業(株)製、商品名「ノクラック 6C」
7)加硫促進剤CZ:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業(株)製、商品名「ノクセラー CZ」
1)未処理天然ゴム又は処理天然ゴム:未処理天然ゴムは、通常の天然ゴムであり、天然ゴムラテックスを直接に凝固及び乾燥させて得られたものを指し、処理天然ゴムは、第2表に示すウェットマスターバッチ又はドライマスターバッチ中の天然ゴム及び変性天然ゴムを指す。
2)カーボンブラック:種類及び量は第2表に示す。
3)シリカ:種類及び量は第2表に示す。
4)ゴム-充填材カップリング剤:製造例5で得られたビス[2-(2-オキサゾリル)フェニル]ジスルフィド
5)シランカップリング剤:ビス(3-トリエトキシシリルプロピル)テトラスルフィド、デグッサ社製、商品名「Si69」
6)老化防止剤6C:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業(株)製、商品名「ノクラック 6C」
7)加硫促進剤CZ:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業(株)製、商品名「ノクセラー CZ」
[注]
1)ウェットマスターバッチ:製造例1で得られた天然ゴムとカーボンブラックとのウェットマスターバッチ
2)ドライマスターバッチ:製造例2で得られたドライマスターバッチ
3)変性天然ゴム:製造例3で得られた変性天然ゴムA
4)マスターバッチの熱処理:製造例4の方法により熱処理した。
5)ゴム-充填材カップリング剤:製造例5で得られたビス[2-(2-オキサゾリル)フェニル]ジスルフィド
6)シリカ:デグッサ社製、商品名「ウルトラジルVN3」
図1から分かるように、実施例1~15で得られたゴム組成物は、いずれも-30℃/60℃tanδ比が、y=1026.5Ln(x)+10256の値よりも大きい。また図2から分かるように、実施例で得られたゴム組成物を用いたタイヤの耐摩耗性と、比較例で得られたゴム組成物を用いたタイヤの耐摩耗性を比べると、タイヤ温度変化が同一の場合、実施例で得られたゴム組成物を用いたタイヤは、耐摩耗性が良好である。
1)ウェットマスターバッチ:製造例1で得られた天然ゴムとカーボンブラックとのウェットマスターバッチ
2)ドライマスターバッチ:製造例2で得られたドライマスターバッチ
3)変性天然ゴム:製造例3で得られた変性天然ゴムA
4)マスターバッチの熱処理:製造例4の方法により熱処理した。
5)ゴム-充填材カップリング剤:製造例5で得られたビス[2-(2-オキサゾリル)フェニル]ジスルフィド
6)シリカ:デグッサ社製、商品名「ウルトラジルVN3」
図1から分かるように、実施例1~15で得られたゴム組成物は、いずれも-30℃/60℃tanδ比が、y=1026.5Ln(x)+10256の値よりも大きい。また図2から分かるように、実施例で得られたゴム組成物を用いたタイヤの耐摩耗性と、比較例で得られたゴム組成物を用いたタイヤの耐摩耗性を比べると、タイヤ温度変化が同一の場合、実施例で得られたゴム組成物を用いたタイヤは、耐摩耗性が良好である。
本発明のゴム組成物は、低発熱性と耐摩耗性を両立させたタイヤ、特にオフザロード用タイヤなどの大型タイヤを与えることができる。
Claims (7)
- 天然ゴムと、補強性充填材としてカーボンブラック及び/又はシリカを含み、かつ下記式(1)
-30℃tanδ/60℃tanδ>-1026.5Ln(x)+10256 ・・・(1)
(ただし、x=CTAB×Aであり、CTABは補強性充填材のISO 6810に準拠して測定されるセチルトリメチルアンモニウムブロミド吸着比表面積(m2/g)を、Aは天然ゴム100質量部当たりの補強性充填材の質量部を示し、xは2500~13000の範囲の数である。Ln(x)はxの自然対数を、tanδは加硫ゴム組成物の損失正接を意味する。)
の関係を満たすように調整したことを特徴とするゴム組成物。 - カーボンブラック及び/又はシリカの含有量が、天然ゴム100質量部に対して、20~120質量部である請求項1に記載のゴム組成物。
- 天然ゴムを、天然ゴムとカーボンブラックとのマスターバッチの形態で含む請求項1又は2に記載のゴム組成物。
- 天然ゴムを、天然ゴムラテックスとカーボンブラックとのウェットマスターバッチの形態で含む請求項3に記載のゴム組成物。
- 請求項1~4のいずれかに記載のゴム組成物を、タイヤ部材に用いたことを特徴とするタイヤ。
- タイヤ部材がトレッドゴム又はケースゴムである請求項5に記載のタイヤ。
- 大型重荷重用又はオフザロード用である請求項5又は6に記載のタイヤ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009139692 | 2009-06-10 | ||
JP2009-139692 | 2009-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010143633A1 true WO2010143633A1 (ja) | 2010-12-16 |
Family
ID=43308888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059706 WO2010143633A1 (ja) | 2009-06-10 | 2010-06-08 | ゴム組成物及びそれを用いたタイヤ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010143633A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2980206A1 (fr) * | 2011-09-19 | 2013-03-22 | Michelin Soc Tech | Bande de roulement de pneumatique hors la route |
WO2015170669A1 (ja) * | 2014-05-08 | 2015-11-12 | 株式会社ブリヂストン | ゴム組成物及びこれを用いてなるタイヤ |
WO2015174461A1 (ja) * | 2014-05-14 | 2015-11-19 | 横浜ゴム株式会社 | コンベヤベルト用ゴム組成物およびコンベヤベルト |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993019578A2 (en) * | 1993-07-14 | 1993-10-14 | Bridgestone Corporation | Tire tread rubber composition |
JP2001294711A (ja) * | 2000-04-11 | 2001-10-23 | Yokohama Rubber Co Ltd:The | ゴム組成物 |
JP2006152212A (ja) * | 2004-12-01 | 2006-06-15 | Bridgestone Corp | 重荷重用空気入りタイヤ |
JP2006213804A (ja) * | 2005-02-03 | 2006-08-17 | Bridgestone Corp | ゴム組成物 |
JP2006241297A (ja) * | 2005-03-03 | 2006-09-14 | Yokohama Rubber Co Ltd:The | ゴム組成物 |
WO2009072413A1 (ja) * | 2007-12-03 | 2009-06-11 | Bridgestone Corporation | 天然ゴムマスターバッチの製造方法、天然ゴムマスターバッチ、ゴム組成物、タイヤ |
WO2010055919A1 (ja) * | 2008-11-13 | 2010-05-20 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
-
2010
- 2010-06-08 WO PCT/JP2010/059706 patent/WO2010143633A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993019578A2 (en) * | 1993-07-14 | 1993-10-14 | Bridgestone Corporation | Tire tread rubber composition |
JP2001294711A (ja) * | 2000-04-11 | 2001-10-23 | Yokohama Rubber Co Ltd:The | ゴム組成物 |
JP2006152212A (ja) * | 2004-12-01 | 2006-06-15 | Bridgestone Corp | 重荷重用空気入りタイヤ |
JP2006213804A (ja) * | 2005-02-03 | 2006-08-17 | Bridgestone Corp | ゴム組成物 |
JP2006241297A (ja) * | 2005-03-03 | 2006-09-14 | Yokohama Rubber Co Ltd:The | ゴム組成物 |
WO2009072413A1 (ja) * | 2007-12-03 | 2009-06-11 | Bridgestone Corporation | 天然ゴムマスターバッチの製造方法、天然ゴムマスターバッチ、ゴム組成物、タイヤ |
WO2010055919A1 (ja) * | 2008-11-13 | 2010-05-20 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2980206A1 (fr) * | 2011-09-19 | 2013-03-22 | Michelin Soc Tech | Bande de roulement de pneumatique hors la route |
WO2013041401A1 (fr) * | 2011-09-19 | 2013-03-28 | Compagnie Generale Des Etablissements Michelin | Bande de roulement de pneumatique hors la route |
WO2015170669A1 (ja) * | 2014-05-08 | 2015-11-12 | 株式会社ブリヂストン | ゴム組成物及びこれを用いてなるタイヤ |
JP2015214626A (ja) * | 2014-05-08 | 2015-12-03 | 株式会社ブリヂストン | ゴム組成物及びこれを用いてなるタイヤ |
US9834658B2 (en) | 2014-05-08 | 2017-12-05 | Bridgestone Corporation | Rubber composition and tire obtained using same |
WO2015174461A1 (ja) * | 2014-05-14 | 2015-11-19 | 横浜ゴム株式会社 | コンベヤベルト用ゴム組成物およびコンベヤベルト |
JPWO2015174461A1 (ja) * | 2014-05-14 | 2017-04-20 | 横浜ゴム株式会社 | コンベヤベルト用ゴム組成物およびコンベヤベルト |
US9752018B2 (en) | 2014-05-14 | 2017-09-05 | The Yokohama Rubber Co., Ltd. | Rubber composition for conveyor belt, and conveyor belt |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009096856A (ja) | ゴム組成物及びそれを用いた重荷重用空気入りラジアルタイヤ | |
JP4963786B2 (ja) | 変性天然ゴムラテックス及びその製造方法、変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ | |
EP2845869B1 (en) | Modified natural rubber, method for producing same, rubber composition, and tire | |
WO2007066689A1 (ja) | ゴム組成物及びそれを用いたタイヤ | |
WO2009104555A1 (ja) | 変性ジエン系ゴム及びその製造方法、並びにそれを用いたゴム組成物及びタイヤ | |
WO2012057365A1 (ja) | 加硫ゴム組成物の製造方法 | |
WO2010055919A1 (ja) | ゴム組成物及びタイヤ | |
WO2011010662A1 (ja) | タイヤ | |
JP5232364B2 (ja) | 変性天然ゴムマスターバッチ及びその製造方法、並びにゴム組成物及びタイヤ | |
JP5170997B2 (ja) | ゴム組成物及びそれを用いたタイヤ | |
WO2010143633A1 (ja) | ゴム組成物及びそれを用いたタイヤ | |
JP6120949B2 (ja) | 乳化重合共役ジエン系重合体とシリカ懸濁液とからなるゴム組成物およびその製造方法 | |
JP4944451B2 (ja) | 重荷重用空気入りタイヤ | |
JP4733993B2 (ja) | 変性天然ゴムマスターバッチ及びその製造方法、並びにゴム組成物及びタイヤ | |
JP2006152215A (ja) | タイヤ用トレッドゴム組成物及び空気入りタイヤ | |
JP5019803B2 (ja) | ゴム組成物及びそれを用いたタイヤ | |
JP5232363B2 (ja) | 変性天然ゴムマスターバッチ及びその製造方法、並びにゴム組成物及びタイヤ | |
JP2008184572A (ja) | 変性水添天然ゴムの製造方法、変性水添天然ゴム、ゴム組成物及びそれを用いた空気入りタイヤ | |
JP5002162B2 (ja) | 変性天然ゴム、並びにそれを用いたゴム組成物及びタイヤ | |
JP2006152156A (ja) | 空気入りタイヤ | |
JP5265093B2 (ja) | ゴム組成物及びそれを用いたタイヤ | |
JP2006151259A (ja) | 空気入りタイヤ | |
JP5019752B2 (ja) | 変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ | |
JP4979055B2 (ja) | ゴム材料、それを用いたゴム組成物及び架橋ゴム | |
JP2010163055A (ja) | 空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10786164 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10786164 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |