WO2010140184A1 - Probe and probe device - Google Patents
Probe and probe device Download PDFInfo
- Publication number
- WO2010140184A1 WO2010140184A1 PCT/JP2009/002431 JP2009002431W WO2010140184A1 WO 2010140184 A1 WO2010140184 A1 WO 2010140184A1 JP 2009002431 W JP2009002431 W JP 2009002431W WO 2010140184 A1 WO2010140184 A1 WO 2010140184A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- probe
- rod
- spring
- shaped conductor
- tightening
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/06711—Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
- G01R1/06716—Elastic
- G01R1/06722—Spring-loaded
Definitions
- the present invention relates to a probe and a probe device used for electrically connecting an inspection object (or an inspection intermediate jig) and an inspection apparatus in inspection of a semiconductor IC, a printed circuit board, etc., and more particularly, a vertical type.
- the present invention relates to a probe and a probe device such as a probe card provided with the probe.
- a jig called a probe card In order to connect a semiconductor IC formed on a wafer to an inspection device, a jig called a probe card is generally used.
- the probe card includes a large number of probes connected to wiring from the inspection apparatus. By directly contacting each probe with the electrode pad of the semiconductor IC, a conductive path between the inspection apparatus and the semiconductor IC is formed, and the semiconductor IC can be inspected.
- the probe includes a horizontal probe that extends horizontally from the periphery of the inspection object to the inside, and a vertical probe that extends vertically from the top to the bottom of the inspection object.
- the vertical probe has an advantage that the degree of freedom of arrangement of the inspection electrode pad is higher than that of the horizontal probe.
- Patent Document 1 describes an example of a vertical probe that expands and contracts by a spring structure.
- FIG. 14 is a diagram showing a conventional vertical probe described in Patent Document 1.
- a conventional vertical probe disclosed in Patent Document 1 includes a cylindrical body (700) having openings (701, 702) at both ends, and a coil spring (710) compressed and accommodated inside the cylindrical body (700). And two probe pins (720, 730) arranged with a coil spring (710) interposed therebetween. The probe pins (720, 730) are biased by a coil spring (710), and their tips protrude from the openings (701, 702).
- the vertical probe shown in FIG. 14 has the following problems.
- the vertical probe shown in FIG. 14 has a structure in which the compression coil spring (710) is accommodated in the cylindrical body (700). Due to such a structure, the diameter of the coil spring (710) is essentially smaller than the diameter of the probe in this vertical probe. Therefore, in order to reduce the outer diameter of the probe, the diameter of the coil spring (710) must be further reduced. When the diameter of the coil spring (710) is reduced, there arises a problem that the winding becomes thin and sufficient elastic force cannot be obtained, and that the manufacture becomes difficult.
- FIG. 15 is a diagram showing an improved vertical probe described in Patent Document 1.
- the vertical probe shown in FIG. 15 includes a contact pin (100A) and a cylinder (200A).
- a coil-shaped spring portion (230A) is formed between the upper cylindrical portion (210A) and the lower cylindrical portion (220A).
- the guide element (120A) extends on the contact pin (100A) on a straight line of the contact element (110A).
- a collar (130A) is formed between the contact (110A) and the guide (120A).
- the guide (120A) is inserted into the cylinder (200A), and the lower cylinder (220A) is connected to the flange (130A).
- the spring portion (230A) is formed by subjecting a cylindrical material to laser processing or machining. Therefore, if the probe diameter is reduced, it becomes difficult to manufacture because the fine processing cannot be performed. Further, when the spring portion (230A) is cut out from the cylindrical material, the durability is deteriorated due to cracks associated with the cutting process.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a probe capable of reducing the diameter with a simple configuration and a probe apparatus configured using such a probe.
- the probe according to the first aspect of the present invention includes a spiral spring formed by winding a conducting wire and a rod-shaped conductor inserted inside the spiral spring.
- the helical spring includes a tightening portion for tightening the rod-shaped conductor, a first densely wound portion in which the conductive wire is tightly wound and in contact with an electrode at an end, the tightening portion, and the first densely wound portion. And a spring portion that expands and contracts between the two. When the spring portion is not expanded and contracted, the tip end portion of the rod-shaped conductor is located inside the first densely wound portion.
- the rod-shaped conductor has a tapered slope that contacts the inner surface of the first densely wound portion at the tip portion.
- the first densely wound portion has a tapered portion whose winding diameter becomes narrower toward an end portion in contact with the electrode.
- the first densely wound portion has a straight portion having a constant winding diameter between the end portion in contact with the electrode and the tapered portion.
- the probe includes a second densely wound portion extending at an end of the spring portion opposite to the first densely wound portion, and at least a part of the second densely wound portion is wound.
- a wire is interposed between the tightening portion and the spring portion.
- the tightening part is formed at least one first tightening part formed in the middle of the second densely wound part and an end of the second densely wound part opposite to the spring part. A second fastening portion.
- the rod-shaped conductor has a groove that engages with the tightening portion.
- the rod-shaped conductor has a first groove engaged with the first tightening portion and / or a second groove engaged with the second tightening portion.
- the spiral spring has a pitch winding portion that is extended at an end of the second dense winding portion on the opposite side to the spring portion, and in which the conductive wire is wound at a constant interval.
- the conductor has a spiral protrusion that is screwed into the pitch winding portion.
- the rod-shaped conductor has a step that contacts the end of the spiral spring opposite to the end of the first densely wound portion that contacts the electrode.
- the rod-shaped conductor has a rod portion inserted into the spiral spring and a plated portion obtained by plating a predetermined metal on the rod portion, and the step is formed by an edge of the plated portion.
- at least a part of the second densely wound portion is welded to the rod-shaped conductor.
- a probe device includes a plurality of probes whose both ends are in contact with electrodes, a first insulating plate having a hole through which a tip of one end of the probe passes, and the probe And a spacer that supports the first insulating plate and the second insulating plate.
- the second insulating plate includes a hole through which the tip of the other end passes.
- FIG. 12 It is the figure which expanded and showed a part of spiral spring in FIG. It is a figure which shows the modification of the probe which concerns on 3rd Embodiment. It is a figure for demonstrating the example which provides a straight part ahead of a taper part. It is a figure which shows the example of the probe apparatus with which the probe which has a straight part shown in FIG. 12 was integrated. It is a figure which shows the 1st prior art example of a vertical type probe. It is a figure which shows the 2nd prior art example of a vertical type probe.
- FIG. 1 is a diagram illustrating an example of a probe 1 according to the first embodiment.
- FIG. 2 is a diagram illustrating the inside of the spiral spring 20 in FIG. 1 cut in the axial direction.
- FIG. 3 is an enlarged view of a part of the spiral spring 20 in FIG.
- the probe 1 shown in FIGS. 1 to 3 includes a spiral spring 20 formed by winding a conducting wire, and a rod-shaped conductor 10 inserted inside the spiral spring 20.
- the spiral spring 20 has closely wound portions 21 and 22 formed at both ends, and a spring portion 23 formed between the two closely wound portions (21, 22).
- the conductive wires are tightly wound at close intervals. For this reason, the tightly wound portions 21 and 2 are poor in elasticity and are not easily deformed in shape.
- the spring part 23 the conducting wire is wound at a certain interval. Therefore, the spring part 23 is rich in elasticity and can be expanded and contracted in the axial direction.
- the rod-shaped conductor 10 has small-diameter portions 11 and 12 formed at both ends, and a large-diameter portion 13 formed between the two small-diameter portions (11 and 12). Tapers 101 and 102 are formed at the tips of the small diameter portions 11 and 12, respectively. Almost the entire small diameter portion 11 is inserted into the spiral spring 20.
- the tip of the taper 101 of the small diameter portion 11 contacts the electrode of the inspection object, and the end of the closely wound portion 21 contacts the electrode of the inspection jig substrate.
- the densely wound portion 21 has a tapered portion 203 wound so that the winding diameter becomes narrower toward the end portion in contact with the electrode (FIG. 1).
- Step 14 exists at the boundary between the small diameter portion 12 and the large diameter portion 13 (FIG. 3).
- the end portion of the spiral spring 20 (the end portion on the opposite side to the end portion of the closely wound portion 21 that contacts the electrode) abuts on the step 14.
- fastening portions 201 and 202 that fasten and restrain the small diameter portion 12 are provided.
- the tightening portions 201 and 202 have a smaller winding diameter than the diameter of the small diameter portion 12. Therefore, when the small diameter portion 12 is inserted into the tightening portions 201 and 202, the tightening portions 201 and 202 generate an elastic force so as to narrow the diameter, and tighten the small diameter portion 12.
- the tightening portion 201 is formed in the middle of the densely wound portion 22 that is separated from the spring portion 23.
- the tightening portion 202 is formed at the end of the closely wound portion 22 on the side in contact with the step 14.
- the manufacturing method of the rod-shaped conductor 10 is demonstrated.
- the rod-shaped conductor 10 is formed of a material having high hardness (such as tungsten), it becomes very difficult to form the step 14 by cutting when the diameter is reduced.
- the step 14 can be formed by a method of removing the plating by etching.
- Step 1 First, a rod 2 made of tungsten or the like having a predetermined diameter and length as a core of the rod-shaped conductor 10 is formed.
- Step 2 (FIG. 4B): Next, tapers 101 and 102 are formed at both ends of the rod 2.
- the tapers 101 and 102 are formed by etching, for example. Specifically, for example, by repeatedly immersing the tip of the rod 2 in the etching solution from a direction perpendicular to the liquid surface of the etching solution (such as aqua regia), a taper 101 symmetrical to the central axis of the rod 2 is provided. 102 is formed.
- Step 3 (FIG. 4C): After the tapers 101 and 102 are formed in the step 2, a plating 3 such as nickel having a predetermined thickness is formed on the surface of the rod 2.
- Step 4 (FIG. 4D): After the plating 3 is formed in step 3, a resist 4 is applied to the plating surface area corresponding to the large diameter portion 13.
- Step 5 After the resist 4 is applied in step 4, the whole is immersed in an etching solution. Thereby, the plating 3 is removed leaving a region covered with the resist 4.
- the portion covered with the plating 3 becomes the large diameter portion 13, and the portions from which the plating 3 is removed become the small diameter portions 11 and 12.
- the resist 4 applied to the plating surface may be removed with another resist etching solution.
- the probe device shown in FIG. 5 includes a plurality of pins 1, an upper plate 33 and a lower plate 35, a spacer 34, and a multilayer substrate 30.
- the upper plate 33 has a plurality of guide holes 36 through which the tightly wound portion 21 of the pin 1 is inserted, and the lower plate 35 has a plurality of guide holes 37 through which the small diameter portion 11 of the pin 1 is inserted.
- the upper plate 33 and the lower plate 35 are formed of an insulating material such as ceramic.
- the spacer 34 supports the upper plate 33 and the lower plate 35 by separating them.
- the guide holes 36 and 37 are aligned on a straight line while being supported by the spacer 34. Further, both ends of the pin 1 protrude from the guide holes 36 and 37 by a predetermined length.
- the multilayer substrate 30 has a plurality of electrodes 31 in contact with the tip of the densely wound portion 21 on one surface, and a plurality of electrodes 32 connected to the electrodes 31 by internal wiring on the other surface.
- the electrode 32 is connected to another jig (for example, an interposer) of the inspection apparatus. Since the electrode 32 is arranged with a space compared to the electrode 31, the wiring density of the electrode 32 is relaxed compared to the electrode 31.
- the diameter of the guide hole 37 is larger than the small diameter portion 11 and smaller than the large diameter portion 13. Therefore, the small diameter portion 11 passes through the guide hole 37, but the large diameter portion 13 does not pass through the guide hole 37. As a result, when the small diameter portion 11 is arranged downward as shown in FIG. 5, the large diameter portion 13 is in contact with the edge of the guide hole 37, and the pin 1 is prevented from falling down. Yes.
- the bar-shaped conductor 10 moves up and down.
- the tip of the small diameter portion 12 moves up and down inside the densely wound portion 21. That is, the rod-shaped conductor 10 moves up and down with the small diameter portion 11 penetrating the entire coil portion 23. Therefore, the coil portion 23 is supported by the small diameter portion 11 so as not to be deformed in the lateral direction while the wafer 38 is repeatedly attached and detached.
- the probe according to the present embodiment described above has the following excellent features.
- the probe 1 according to the present embodiment has a simple configuration in which the rod-shaped conductor 10 is inserted into the spiral spring 20, and the number of parts can be reduced as compared with the conventional one. Thereby, significant cost reduction can be realized (improvement of Problem 1).
- the outer diameter of the probe and the outer diameter of the spiral spring 20 are substantially equal. Therefore, the outer diameter of the probe can be made thinner than the conventional structure in which a thin spring is accommodated in the cylinder (improvement of Problem 2).
- the rod-shaped conductor 10 is tightened at the tightening portions 201 and 202. That is, a part of the spiral spring 20 is fixed to the rod-shaped conductor 10 using the elastic force of the spring. Even if a slight error occurs in the winding diameters in the tightening portions 201 and 202 during manufacturing, the elastic force of the winding does not change remarkably, so that the coupling between the spiral spring 20 and the rod-shaped conductor 10 can be kept good. . Therefore, as in the conventional probe shown in FIG. 15, the problem that the processing becomes difficult as the diameter becomes smaller is reduced (improvement of Problem 3).
- the probe 1 according to this embodiment uses a spiral spring 20 formed by winding a conducting wire, the probe shown in FIG. 15 that forms a spring by applying laser processing or machining to a cylindrical material is formed. In comparison, the manufacturing is simple, and it is excellent in terms of easy diameter reduction and durability (improvement of Problem 4).
- a taper 102 is formed at the tip of the rod-shaped conductor 10 that reciprocates inside the densely wound portion 21. If the tip of the rod-shaped conductor 10 is angular, the inner side of the densely wound portion 21 is slid by the angular tip, so that the winding (conductor) is scraped off. In this case, there arises a problem that a large amount of shavings is generated and a problem that the strength of the winding is lowered. By providing the taper 102, the sliding inside the densely wound portion 21 becomes smooth, and thus the above problem is reduced.
- a tapered portion 203 is provided at the end of the closely wound portion 21.
- the end of the spiral spring 10 (the end opposite to the end in contact with the electrode) abuts on the step 14 (FIG. 3) formed in the rod-shaped conductor 10. .
- a force acts in the lateral direction (longitudinal direction of the rod-shaped conductor 10) on the tightening portions 201 and 202. Since the end of the spiral spring 10 abuts against the step 14, this force is received by the step 14, so that the displacement of the tightening positions of the tightening portions 201 and 202 is suppressed. If the displacement of the tightening position is suppressed, for example, in the probe device shown in FIG. 5, the problem that the position of the spiral spring 10 is shifted downward and the elastic force of the spring portion 23 is reduced can be reduced.
- the step 14 of the rod-shaped conductor 10 can be realized by, for example, a plating edge formed by a manufacturing method as shown in FIG. 4, a very thin rod-shaped conductor 10 can be manufactured using a material having high hardness such as tungsten.
- FIG. 6 is a diagram illustrating the main part of the probe 1A according to the second embodiment, and illustrates the inside by cutting the spiral spring 20 in the axial direction in the same manner as in FIG.
- a groove 15 that engages with the tightening portion 202 is formed in the small diameter portion 12.
- the groove 15 is formed by laser processing, for example.
- the tightening portion 201 tightens the small diameter portion 12 in a state where the tightening portion 201 falls into the bottom of the groove 15. Even if a force in the lateral direction (longitudinal direction of the rod-shaped conductor 10) is applied to the spiral spring 20, the winding of the tightening portion 201 comes into contact with the side surface or edge of the groove 15, so that the tightening position of the tightening portion 201 is displaced. Is less likely to occur.
- the probe 1A by engaging the groove 15 formed in the rod-shaped conductor 10 and the tightening portion 201, it is difficult to cause displacement of the tightening position of the tightening portion 201. it can. If the tightening position of the tightening portion 201 is difficult to be displaced, for example, in the probe device shown in FIG. 5, the variation in the length of the closely wound portion 21 protruding from the guide hole 36 can be suppressed. Pressure can be stabilized.
- FIG. 7 is a view showing a modification of the probe 1A according to the second embodiment.
- the groove 16 that engages with the tightening portion 202 at the end of the spiral spring 10 is formed in the small diameter portion 11. Also in this case, the displacement of the tightening position of the tightening portion 202 can be suppressed as described above.
- the tightening portion 202 closest to the insertion side of the small diameter portion 11 engages with the groove 16, so that in the process of inserting the small diameter portion 11 into the spiral spring 20, another tightening portion is a groove. 16 can be prevented from engaging. This facilitates assembly.
- FIG. 8 is a diagram illustrating an example of a probe 1B according to the third embodiment.
- FIG. 9 is a diagram illustrating the inside of the spiral spring 20 cut in the axial direction in FIG. 8.
- FIG. 10 is an enlarged view of a part of the spiral spring 20 in FIG.
- the probe 1B shown in FIGS. 8 to 10 is different from the probe 1 shown in FIGS. 1 to 3 in the following points.
- the spiral spring 20 of the probe 1B shown in FIG. 8 to FIG. 10 has a pitch winding portion 24 extending at the end of the close winding portion 22 (the end opposite to the spring portion 23).
- the conducting wire is wound at a constant interval.
- a spiral protrusion 17 that is screwed with the pitch winding portion 24 is formed in the small diameter portion 12.
- the small diameter portion 12 is inserted from the end of the pitch winding portion 24 of the spiral spring 20. Once the pitch winding portion 24 is inserted until the end of the pitch winding portion 24 comes into contact with the ridge 17, the spiral spring 20 is then rotated. When the spiral spring 20 is rotated, the winding of the pitch winding portion 24 advances along the protrusion 17 while rotating around the small diameter portion 12.
- the end of the spiral spring 20 can be stably fixed at a predetermined position of the small diameter portion 12 by the structure in which the pitch winding portion 24 and the protrusion 17 are screwed together.
- the step 14 is provided so as to stop the progress of the winding by coming into contact with the winding of the pitch winding portion 24 proceeding along the ridge 17, the engagement between the winding and the ridge 17 becomes strong, The above fixation can be further stabilized.
- the fixing can be further stabilized by providing the groove 16 that engages with the tightening portion 202.
- the taper portion 203 is provided at the tip of the densely wound portion 21 to increase the contact pressure with the electrode.
- a straight portion 204 having a constant winding diameter may be provided between the end portion in contact with the electrode and the tapered portion 203.
- tip of the closely wound part 21 can be supported now by the small diameter hole which penetrates only the straight part 204.
- FIG. 13 the diameter of the guide hole 36 into which the tip of the densely wound portion 21 is inserted is larger than the diameter of the straight portion 204 and smaller than the diameter of the tapered portion 203.
- the guide hole 36 penetrates only the straight portion 204, and the entire probe 1 can be prevented from jumping out of the guide hole 36.
- the tightening portions 201 and 202 provided in the densely wound portion 22 fasten the rod-shaped conductor 10 to fix the spiral spring 20 to the rod-shaped conductor 10. May be welded to the rod-shaped conductor 10. Thereby, said fixation can be further strengthened.
- the tightening portions 201 and 202 are provided in the tightly wound portion 22, but the tightly wound portion 22 may be omitted and a tightening portion may be provided at the end of the spring portion 23.
- one or two fastening portions are provided, but more fastening portions may be provided.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Leads Or Probes (AREA)
Abstract
A probe having a simple structure and a small diameter. A probe is provided with a helical spring (20) formed by winding a conductive wire, and also with a bar-like conductor (10) inserted into the inside of the helical spring (20). The helical spring (20) has fastening sections (201, 202) for fastening and restraining the bar-like conductor (10), a closely wound section (21) formed by closely winding the conductive wire and having an end in contact with an electrode, and a spring section (23) stretching and contracting between the closely wound section (21) and the fastening sections (201, 202). When the spring section (23) is neither stretched nor contracted, the front end of the bar-like conductor (10) is located inside the closely wound section (21).
Description
本発明は、半導体ICやプリント基板などの検査において、検査対象物(若しくは検査用中間治具)と検査装置とを電気的に接続するために用いられるプローブ及びプローブ装置に係り、特に垂直型のプローブとこれを備えたプローブカード等のプローブ装置に関するものである。
The present invention relates to a probe and a probe device used for electrically connecting an inspection object (or an inspection intermediate jig) and an inspection apparatus in inspection of a semiconductor IC, a printed circuit board, etc., and more particularly, a vertical type. The present invention relates to a probe and a probe device such as a probe card provided with the probe.
ウェハに形成された半導体ICを検査装置に接続するため、プローブカードと呼ばれる治具が一般に用いられる。プローブカードは、検査装置からの配線に接続された多数のプローブを備えている。各プローブを半導体ICの電極パッドに直接接触させることで、検査装置と半導体ICとの導電経路が形成され、半導体ICの検査が可能になる。
In order to connect a semiconductor IC formed on a wafer to an inspection device, a jig called a probe card is generally used. The probe card includes a large number of probes connected to wiring from the inspection apparatus. By directly contacting each probe with the electrode pad of the semiconductor IC, a conductive path between the inspection apparatus and the semiconductor IC is formed, and the semiconductor IC can be inspected.
プローブには、検査対象物の周囲から内側に向かって水平に延びる水平型プローブや、検査対象物の上方から下に向かって垂直に延びる垂直型プローブなどがある。垂直型プローブは水平型プローブに比べて検査用電極パッドの配置の自由度が高いという利点がある。下記の特許文献1には、スプリング構造によって伸縮する垂直型プローブの例が記載されている。
The probe includes a horizontal probe that extends horizontally from the periphery of the inspection object to the inside, and a vertical probe that extends vertically from the top to the bottom of the inspection object. The vertical probe has an advantage that the degree of freedom of arrangement of the inspection electrode pad is higher than that of the horizontal probe. The following Patent Document 1 describes an example of a vertical probe that expands and contracts by a spring structure.
図14は、特許文献1に記載される従来の垂直型プローブを示す図である。
特許文献1に示される従来の垂直型プローブは、両端に開口(701,702)を持つ筒体(700)と、筒体(700)の内部に圧縮されて収容されたコイルスプリング(710)と、コイルスプリング(710)を挟んで配置された2つのプローブピン(720,730)を備えている。プローブピン(720,730)はコイルスプリング(710)により付勢されており、その先端が開口(701,702)から突出している。 FIG. 14 is a diagram showing a conventional vertical probe described inPatent Document 1. In FIG.
A conventional vertical probe disclosed inPatent Document 1 includes a cylindrical body (700) having openings (701, 702) at both ends, and a coil spring (710) compressed and accommodated inside the cylindrical body (700). And two probe pins (720, 730) arranged with a coil spring (710) interposed therebetween. The probe pins (720, 730) are biased by a coil spring (710), and their tips protrude from the openings (701, 702).
特許文献1に示される従来の垂直型プローブは、両端に開口(701,702)を持つ筒体(700)と、筒体(700)の内部に圧縮されて収容されたコイルスプリング(710)と、コイルスプリング(710)を挟んで配置された2つのプローブピン(720,730)を備えている。プローブピン(720,730)はコイルスプリング(710)により付勢されており、その先端が開口(701,702)から突出している。 FIG. 14 is a diagram showing a conventional vertical probe described in
A conventional vertical probe disclosed in
この図14に示される垂直型プローブには、次のような問題がある。
The vertical probe shown in FIG. 14 has the following problems.
(問題1)
図14に示す垂直型プローブでは4つの部品(筒体、コイルスプリング、2つのプローブピン)が必要であり、部品点数が多いという問題がある。 (Problem 1)
The vertical probe shown in FIG. 14 requires four parts (cylinder, coil spring, and two probe pins), and there is a problem that the number of parts is large.
図14に示す垂直型プローブでは4つの部品(筒体、コイルスプリング、2つのプローブピン)が必要であり、部品点数が多いという問題がある。 (Problem 1)
The vertical probe shown in FIG. 14 requires four parts (cylinder, coil spring, and two probe pins), and there is a problem that the number of parts is large.
(問題2)
近年、同一サイズのウェハに形成される半導体ICの数が増加し、半導体ICの端子数も増加している。そのため、プローブ同士の間隔を狭くすること(狭ピッチ化)が求められている。これに対応するには、プローブの径をなるべく細くする必要がある。
しかしながら、図14に示す垂直型プローブは、筒体(700)の内部に圧縮コイルスプリング(710)を収容する構造をもつ。かかる構造のため、本質的にこの垂直型プローブでは、コイルスプリング(710)の径がプローブの径より細い。従って、プローブの外径を細くするには、コイルスプリング(710)の径をこれよりも更に細くしなければならない。コイルスプリング(710)の径が細くなると、巻き線が細くなって十分な弾性力が得られなくなる問題や、製造が困難になる問題が生じる。 (Problem 2)
In recent years, the number of semiconductor ICs formed on wafers of the same size has increased, and the number of terminals of semiconductor ICs has also increased. Therefore, it is required to narrow the interval between probes (narrow pitch). In order to cope with this, it is necessary to make the diameter of the probe as thin as possible.
However, the vertical probe shown in FIG. 14 has a structure in which the compression coil spring (710) is accommodated in the cylindrical body (700). Due to such a structure, the diameter of the coil spring (710) is essentially smaller than the diameter of the probe in this vertical probe. Therefore, in order to reduce the outer diameter of the probe, the diameter of the coil spring (710) must be further reduced. When the diameter of the coil spring (710) is reduced, there arises a problem that the winding becomes thin and sufficient elastic force cannot be obtained, and that the manufacture becomes difficult.
近年、同一サイズのウェハに形成される半導体ICの数が増加し、半導体ICの端子数も増加している。そのため、プローブ同士の間隔を狭くすること(狭ピッチ化)が求められている。これに対応するには、プローブの径をなるべく細くする必要がある。
しかしながら、図14に示す垂直型プローブは、筒体(700)の内部に圧縮コイルスプリング(710)を収容する構造をもつ。かかる構造のため、本質的にこの垂直型プローブでは、コイルスプリング(710)の径がプローブの径より細い。従って、プローブの外径を細くするには、コイルスプリング(710)の径をこれよりも更に細くしなければならない。コイルスプリング(710)の径が細くなると、巻き線が細くなって十分な弾性力が得られなくなる問題や、製造が困難になる問題が生じる。 (Problem 2)
In recent years, the number of semiconductor ICs formed on wafers of the same size has increased, and the number of terminals of semiconductor ICs has also increased. Therefore, it is required to narrow the interval between probes (narrow pitch). In order to cope with this, it is necessary to make the diameter of the probe as thin as possible.
However, the vertical probe shown in FIG. 14 has a structure in which the compression coil spring (710) is accommodated in the cylindrical body (700). Due to such a structure, the diameter of the coil spring (710) is essentially smaller than the diameter of the probe in this vertical probe. Therefore, in order to reduce the outer diameter of the probe, the diameter of the coil spring (710) must be further reduced. When the diameter of the coil spring (710) is reduced, there arises a problem that the winding becomes thin and sufficient elastic force cannot be obtained, and that the manufacture becomes difficult.
一方、図15は、特許文献1に記載される改良された垂直型プローブを示す図である。
図15に示す垂直型プローブは、接触ピン(100A)と筒体(200A)を備えている。筒体(200A)には、上側筒部(210A)と下側筒部(220A)の間にコイル形状のスプリング部(230A)が形成されている。また、接触ピン(100A)には、接触子(110A)の一直線上に案内子(120A)が延びている。接触子(110A)と案内子(120A)との間に、鍔部(130A)が形成されている。案内子(120A)が筒体(200A)に挿入され、下側筒部(220A)が鍔部(130A)に連結されている。 On the other hand, FIG. 15 is a diagram showing an improved vertical probe described inPatent Document 1. In FIG.
The vertical probe shown in FIG. 15 includes a contact pin (100A) and a cylinder (200A). In the cylindrical body (200A), a coil-shaped spring portion (230A) is formed between the upper cylindrical portion (210A) and the lower cylindrical portion (220A). Moreover, the guide element (120A) extends on the contact pin (100A) on a straight line of the contact element (110A). A collar (130A) is formed between the contact (110A) and the guide (120A). The guide (120A) is inserted into the cylinder (200A), and the lower cylinder (220A) is connected to the flange (130A).
図15に示す垂直型プローブは、接触ピン(100A)と筒体(200A)を備えている。筒体(200A)には、上側筒部(210A)と下側筒部(220A)の間にコイル形状のスプリング部(230A)が形成されている。また、接触ピン(100A)には、接触子(110A)の一直線上に案内子(120A)が延びている。接触子(110A)と案内子(120A)との間に、鍔部(130A)が形成されている。案内子(120A)が筒体(200A)に挿入され、下側筒部(220A)が鍔部(130A)に連結されている。 On the other hand, FIG. 15 is a diagram showing an improved vertical probe described in
The vertical probe shown in FIG. 15 includes a contact pin (100A) and a cylinder (200A). In the cylindrical body (200A), a coil-shaped spring portion (230A) is formed between the upper cylindrical portion (210A) and the lower cylindrical portion (220A). Moreover, the guide element (120A) extends on the contact pin (100A) on a straight line of the contact element (110A). A collar (130A) is formed between the contact (110A) and the guide (120A). The guide (120A) is inserted into the cylinder (200A), and the lower cylinder (220A) is connected to the flange (130A).
図15に示す垂直型プローブでは、部品点数が2つ(接触ピン、筒体)に減っているため、上述した(問題1)が改良されている。
また、図15に示す垂直型プローブでは、筒体(200A)にスプリング部(230A)が形成されていることから、スプリング部(230A)の径がプローブの径と等しくなっている。これにより、プローブの径を細くし易くなるため、上述した(問題2)についても改良が図られている。 In the vertical probe shown in FIG. 15, since the number of parts is reduced to two (contact pin, cylinder), (Problem 1) described above is improved.
In the vertical probe shown in FIG. 15, since the spring part (230A) is formed in the cylinder (200A), the diameter of the spring part (230A) is equal to the diameter of the probe. Thereby, since it becomes easy to make the diameter of a probe small, improvement about the above-mentioned (problem 2) is also achieved.
また、図15に示す垂直型プローブでは、筒体(200A)にスプリング部(230A)が形成されていることから、スプリング部(230A)の径がプローブの径と等しくなっている。これにより、プローブの径を細くし易くなるため、上述した(問題2)についても改良が図られている。 In the vertical probe shown in FIG. 15, since the number of parts is reduced to two (contact pin, cylinder), (Problem 1) described above is improved.
In the vertical probe shown in FIG. 15, since the spring part (230A) is formed in the cylinder (200A), the diameter of the spring part (230A) is equal to the diameter of the probe. Thereby, since it becomes easy to make the diameter of a probe small, improvement about the above-mentioned (problem 2) is also achieved.
しかしながら、図15に示す垂直型プローブには、次のような問題がある。
However, the vertical probe shown in FIG. 15 has the following problems.
(問題3)
図15に示す垂直型プローブでは、鍔部(130A)を下側筒部(220A)に嵌め合わせて圧入することにより接触ピン(100A)と筒体(200A)とが連結される。この構造では、両者を高い精度で加工することが要求される。すなわち、加工精度が低いと、両者を嵌め合わせることができなくなったり、緩みが生じて十分な連結力が得られなくなったりする。プローブの径が細くなると精度の良い加工ができなくなるため、このような構造では製造が困難になる。 (Problem 3)
In the vertical probe shown in FIG. 15, the contact pin (100A) and the cylindrical body (200A) are connected by fitting and fitting the collar portion (130A) to the lower cylindrical portion (220A). In this structure, it is required to process both with high accuracy. That is, if the processing accuracy is low, it becomes impossible to fit the two together, or loosening occurs and a sufficient coupling force cannot be obtained. If the diameter of the probe is reduced, accurate processing cannot be performed, and thus such a structure makes it difficult to manufacture.
図15に示す垂直型プローブでは、鍔部(130A)を下側筒部(220A)に嵌め合わせて圧入することにより接触ピン(100A)と筒体(200A)とが連結される。この構造では、両者を高い精度で加工することが要求される。すなわち、加工精度が低いと、両者を嵌め合わせることができなくなったり、緩みが生じて十分な連結力が得られなくなったりする。プローブの径が細くなると精度の良い加工ができなくなるため、このような構造では製造が困難になる。 (Problem 3)
In the vertical probe shown in FIG. 15, the contact pin (100A) and the cylindrical body (200A) are connected by fitting and fitting the collar portion (130A) to the lower cylindrical portion (220A). In this structure, it is required to process both with high accuracy. That is, if the processing accuracy is low, it becomes impossible to fit the two together, or loosening occurs and a sufficient coupling force cannot be obtained. If the diameter of the probe is reduced, accurate processing cannot be performed, and thus such a structure makes it difficult to manufacture.
(問題4)
図15に示す垂直型プローブでは、円筒形状の素材にレーザ加工や機械加工等を施すことによってスプリング部(230A)が形成される。従って、プローブの径が細くなると微細な加工ができなくなるため製造が困難になる。また、円筒形状の素材からスプリング部(230A)を切り出す際に、切削加工に伴うひび割れなどによって耐久性が劣化する。 (Problem 4)
In the vertical probe shown in FIG. 15, the spring portion (230A) is formed by subjecting a cylindrical material to laser processing or machining. Therefore, if the probe diameter is reduced, it becomes difficult to manufacture because the fine processing cannot be performed. Further, when the spring portion (230A) is cut out from the cylindrical material, the durability is deteriorated due to cracks associated with the cutting process.
図15に示す垂直型プローブでは、円筒形状の素材にレーザ加工や機械加工等を施すことによってスプリング部(230A)が形成される。従って、プローブの径が細くなると微細な加工ができなくなるため製造が困難になる。また、円筒形状の素材からスプリング部(230A)を切り出す際に、切削加工に伴うひび割れなどによって耐久性が劣化する。 (Problem 4)
In the vertical probe shown in FIG. 15, the spring portion (230A) is formed by subjecting a cylindrical material to laser processing or machining. Therefore, if the probe diameter is reduced, it becomes difficult to manufacture because the fine processing cannot be performed. Further, when the spring portion (230A) is cut out from the cylindrical material, the durability is deteriorated due to cracks associated with the cutting process.
本発明はかかる事情に鑑みてなされたものであり、その目的は、簡易な構成で径を細くできるプローブと、そのようなプローブを用いて構成されたプローブ装置を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a probe capable of reducing the diameter with a simple configuration and a probe apparatus configured using such a probe.
本発明の第1の観点に係るプローブは、導線を巻いて形成された螺旋状ばねと、前記螺旋状ばねの内側に挿入される棒状導体とを有する。前記螺旋状ばねは、前記棒状導体を締め付ける締め付け部と、前記導線が密に巻かれており、端部において電極と接触する第1密巻き部と、前記締め付け部と前記第1密巻き部との間において伸縮するばね部とを有する。前記ばね部が伸縮していないとき、前記棒状導体の先端部が前記第1密巻き部の内側に位置する。
The probe according to the first aspect of the present invention includes a spiral spring formed by winding a conducting wire and a rod-shaped conductor inserted inside the spiral spring. The helical spring includes a tightening portion for tightening the rod-shaped conductor, a first densely wound portion in which the conductive wire is tightly wound and in contact with an electrode at an end, the tightening portion, and the first densely wound portion. And a spring portion that expands and contracts between the two. When the spring portion is not expanded and contracted, the tip end portion of the rod-shaped conductor is located inside the first densely wound portion.
好適に、前記棒状導体は、前記先端部において前記第1密巻き部の内面と接触するテーパー状の斜面を有する。
Preferably, the rod-shaped conductor has a tapered slope that contacts the inner surface of the first densely wound portion at the tip portion.
好適に、前記第1密巻き部は、前記電極と接触する端部に向かって巻き径が細くなるテーパー部を有する。
Preferably, the first densely wound portion has a tapered portion whose winding diameter becomes narrower toward an end portion in contact with the electrode.
好適に、前記第1密巻き部は、前記電極と接触する端部と前記テーパ部との間に巻き径が一定のストレート部を有する。
Preferably, the first densely wound portion has a straight portion having a constant winding diameter between the end portion in contact with the electrode and the tapered portion.
好適に、上記プローブは、前記第1密巻き部に対して反対側の前記ばね部の端に延設された第2密巻き部を有し、前記第2密巻き部の少なくとも一部の巻き線が前記締め付け部と前記ばね部との間に介在している。
Preferably, the probe includes a second densely wound portion extending at an end of the spring portion opposite to the first densely wound portion, and at least a part of the second densely wound portion is wound. A wire is interposed between the tightening portion and the spring portion.
好適に、前記締め付け部は、前記第2密巻き部の中間に形成される少なくとも1つの第1締め付け部と、前記ばね部に対して反対側の前記第2密巻き部の端に形成される第2締め付け部とを有する。
Preferably, the tightening part is formed at least one first tightening part formed in the middle of the second densely wound part and an end of the second densely wound part opposite to the spring part. A second fastening portion.
好適に、前記棒状導体は、前記締め付け部と係合する溝を有する。
Preferably, the rod-shaped conductor has a groove that engages with the tightening portion.
好適に、前記棒状導体は、前記第1締め付け部と係合する第1の溝、及び/又は、前記第2締め付け部と係合する第2の溝を有する。
Preferably, the rod-shaped conductor has a first groove engaged with the first tightening portion and / or a second groove engaged with the second tightening portion.
好適に、前記螺旋状ばねは、前記ばね部に対して反対側の前記第2密巻き部の端に延設され、前記導線が一定の間隔で巻かれたピッチ巻き部を有し、前記棒状導体は、前記ピッチ巻き部と螺合する螺旋状の突条を有する。
Preferably, the spiral spring has a pitch winding portion that is extended at an end of the second dense winding portion on the opposite side to the spring portion, and in which the conductive wire is wound at a constant interval. The conductor has a spiral protrusion that is screwed into the pitch winding portion.
好適に、前記棒状導体は、前記電極と接触する前記第1密巻き部の端部に対して反対側の前記螺旋状ばねの端部と当接する段差を有する。
Preferably, the rod-shaped conductor has a step that contacts the end of the spiral spring opposite to the end of the first densely wound portion that contacts the electrode.
好適に、前記棒状導体は、前記螺旋状ばねに挿入される棒部と、前記棒部に所定の金属をメッキしたメッキ部とを有し、前記段差が前記メッキ部の縁によって形成される。
好適に、前記第2密巻き部の少なくとも一部が前記棒状導体に溶接されている。 Preferably, the rod-shaped conductor has a rod portion inserted into the spiral spring and a plated portion obtained by plating a predetermined metal on the rod portion, and the step is formed by an edge of the plated portion.
Preferably, at least a part of the second densely wound portion is welded to the rod-shaped conductor.
好適に、前記第2密巻き部の少なくとも一部が前記棒状導体に溶接されている。 Preferably, the rod-shaped conductor has a rod portion inserted into the spiral spring and a plated portion obtained by plating a predetermined metal on the rod portion, and the step is formed by an edge of the plated portion.
Preferably, at least a part of the second densely wound portion is welded to the rod-shaped conductor.
本発明の第2の観点に係るプローブ装置は、両端がそれぞれ電極に接触する複数の上記プローブと、上記プローブの一方の端の尖端が貫通する孔を備えた第1の絶縁板と、上記プローブの他方の端の尖端が貫通する孔を備えた第2の絶縁板と、前記第1の絶縁板と前記第2の絶縁板とを支えるスペーサとを有する。
A probe device according to a second aspect of the present invention includes a plurality of probes whose both ends are in contact with electrodes, a first insulating plate having a hole through which a tip of one end of the probe passes, and the probe And a spacer that supports the first insulating plate and the second insulating plate. The second insulating plate includes a hole through which the tip of the other end passes.
本発明によれば、簡易な構成で径を細くできるプローブを提供できる。
According to the present invention, it is possible to provide a probe whose diameter can be reduced with a simple configuration.
<第1の実施形態>
まず、図1~図3を参照して、本発明の第1の実施形態に係るプローブ1の構造について説明する。
図1は、第1の実施形態に係るプローブ1の一例を示す図である。
図2は、図1において螺旋状ばね20を軸方向に切断してその内部を図解した図である。
図3は、図2における螺旋状ばね20の一部を拡大して示した図である。 <First Embodiment>
First, the structure of theprobe 1 according to the first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram illustrating an example of aprobe 1 according to the first embodiment.
FIG. 2 is a diagram illustrating the inside of thespiral spring 20 in FIG. 1 cut in the axial direction.
FIG. 3 is an enlarged view of a part of thespiral spring 20 in FIG.
まず、図1~図3を参照して、本発明の第1の実施形態に係るプローブ1の構造について説明する。
図1は、第1の実施形態に係るプローブ1の一例を示す図である。
図2は、図1において螺旋状ばね20を軸方向に切断してその内部を図解した図である。
図3は、図2における螺旋状ばね20の一部を拡大して示した図である。 <First Embodiment>
First, the structure of the
FIG. 1 is a diagram illustrating an example of a
FIG. 2 is a diagram illustrating the inside of the
FIG. 3 is an enlarged view of a part of the
図1~図3に示すプローブ1は、導線を巻いて形成された螺旋状ばね20と、この螺旋状ばね20の内側に挿入される棒状導体10を有する。
The probe 1 shown in FIGS. 1 to 3 includes a spiral spring 20 formed by winding a conducting wire, and a rod-shaped conductor 10 inserted inside the spiral spring 20.
螺旋状ばね20は、両端に形成された密巻き部21及び22と、この2つの密巻き部(21,22)の間に形成されたばね部23を有する。密巻き部21,22では、導線が間隔を詰めて密に巻かれている。そのため、密巻き部21,2は弾性に乏しく、形状の歪みが生じ難くい。一方、ばね部23では、導線が一定の間隔を空けて巻かれている。そのため、ばね部23は弾性に富んでおり、軸方向に伸縮可能である。
The spiral spring 20 has closely wound portions 21 and 22 formed at both ends, and a spring portion 23 formed between the two closely wound portions (21, 22). In the densely wound portions 21 and 22, the conductive wires are tightly wound at close intervals. For this reason, the tightly wound portions 21 and 2 are poor in elasticity and are not easily deformed in shape. On the other hand, in the spring part 23, the conducting wire is wound at a certain interval. Therefore, the spring part 23 is rich in elasticity and can be expanded and contracted in the axial direction.
棒状導体10は、両端に形成された小径部11,12と、この2つの小径部(11,12)の間に形成された大径部13を有する。小径部11,12の先端には、それぞれテーパー101,102が形成される。小径部11のほぼ全体が螺旋状ばね20の内部に挿入される。
The rod-shaped conductor 10 has small- diameter portions 11 and 12 formed at both ends, and a large-diameter portion 13 formed between the two small-diameter portions (11 and 12). Tapers 101 and 102 are formed at the tips of the small diameter portions 11 and 12, respectively. Almost the entire small diameter portion 11 is inserted into the spiral spring 20.
図1~図3に示すプローブ1においては、小径部11のテーパー101の尖端が検査対象物の電極に接触し、密巻き部21の端部が検査用治具基板の電極に接触する。密巻き部21は、電極に接触する端部に向かって巻き径が細くなるように巻かれたテーパー部203を有する(図1)。
In the probe 1 shown in FIGS. 1 to 3, the tip of the taper 101 of the small diameter portion 11 contacts the electrode of the inspection object, and the end of the closely wound portion 21 contacts the electrode of the inspection jig substrate. The densely wound portion 21 has a tapered portion 203 wound so that the winding diameter becomes narrower toward the end portion in contact with the electrode (FIG. 1).
小径部12と大径部13との境界には、段差14が存在する(図3)。この段差14に螺旋状ばね20の端部(電極と接触する密巻き部21の端部に対して反対側の端部)が当接する。
Step 14 exists at the boundary between the small diameter portion 12 and the large diameter portion 13 (FIG. 3). The end portion of the spiral spring 20 (the end portion on the opposite side to the end portion of the closely wound portion 21 that contacts the electrode) abuts on the step 14.
密巻き部22の中には、小径部12を締め付けて拘束する締め付け部201,202が設けられている。締め付け部201,202は、小径部12の径に比べて巻き径が細くなっている。そのため、締め付け部201,202の中に小径部12が挿通されると、締め付け部201,202は径を狭めるように弾性力を発生し、小径部12を締め付ける。
締め付け部201は、ばね部23から離間した密巻き線部22の中間に形成される。締め付け部202は、段差14と当接する側の密巻き部22の端部に形成される。 In the tightly woundportion 22, fastening portions 201 and 202 that fasten and restrain the small diameter portion 12 are provided. The tightening portions 201 and 202 have a smaller winding diameter than the diameter of the small diameter portion 12. Therefore, when the small diameter portion 12 is inserted into the tightening portions 201 and 202, the tightening portions 201 and 202 generate an elastic force so as to narrow the diameter, and tighten the small diameter portion 12.
The tighteningportion 201 is formed in the middle of the densely wound portion 22 that is separated from the spring portion 23. The tightening portion 202 is formed at the end of the closely wound portion 22 on the side in contact with the step 14.
締め付け部201は、ばね部23から離間した密巻き線部22の中間に形成される。締め付け部202は、段差14と当接する側の密巻き部22の端部に形成される。 In the tightly wound
The tightening
図1~図3に示すプローブ1においては、ばね部23が伸縮していないとき、すなわち、ばね部23に弾性エネルギーが蓄えられていない状態にあるとき、小径部12の先端が密巻き部21の内側に位置している。すなわち、小径部12がばね部23の全体を貫いており、ばね部23が横方向へ変形しないように支えている。
In the probe 1 shown in FIGS. 1 to 3, when the spring portion 23 is not expanded or contracted, that is, when the elastic energy is not stored in the spring portion 23, the tip of the small diameter portion 12 is closely wound portion 21. Located inside. That is, the small diameter part 12 penetrates the whole spring part 23, and it supports so that the spring part 23 may not deform | transform in a horizontal direction.
次に、図4を参照して、棒状導体10の製造方法について説明する。
棒状導体10が高硬度の材料(タングステン等)で形成されている場合、径が細くなると切削加工によって段差14を形成するのが非常に困難になる。この場合、例えば図4に示すように、エッチングでメッキを除去する方法により段差14を形成することができる。 Next, with reference to FIG. 4, the manufacturing method of the rod-shapedconductor 10 is demonstrated.
When the rod-shapedconductor 10 is formed of a material having high hardness (such as tungsten), it becomes very difficult to form the step 14 by cutting when the diameter is reduced. In this case, for example, as shown in FIG. 4, the step 14 can be formed by a method of removing the plating by etching.
棒状導体10が高硬度の材料(タングステン等)で形成されている場合、径が細くなると切削加工によって段差14を形成するのが非常に困難になる。この場合、例えば図4に示すように、エッチングでメッキを除去する方法により段差14を形成することができる。 Next, with reference to FIG. 4, the manufacturing method of the rod-shaped
When the rod-shaped
工程1(図4(A)):
まず、棒状導体10の芯となる所定の径と長さを持ったタングステン等の棒2が形成される。 Step 1 (FIG. 4A):
First, a rod 2 made of tungsten or the like having a predetermined diameter and length as a core of the rod-shapedconductor 10 is formed.
まず、棒状導体10の芯となる所定の径と長さを持ったタングステン等の棒2が形成される。 Step 1 (FIG. 4A):
First, a rod 2 made of tungsten or the like having a predetermined diameter and length as a core of the rod-shaped
工程2(図4(B)):
次に、棒2の両端にテーパー101,102が形成される。棒2がタングステン等の高硬度の材料で形成されている場合、例えばエッチングによりテーパー101,102が形成される。具体的には、例えば、エッチング液(王水等)の液面に対して垂直な方向から棒2の先端をエッチング液に繰り返し浸すことにより、棒2の中心軸に対して対称なテーパー101,102が形成される。 Step 2 (FIG. 4B):
Next, tapers 101 and 102 are formed at both ends of the rod 2. When the rod 2 is formed of a material having high hardness such as tungsten, the tapers 101 and 102 are formed by etching, for example. Specifically, for example, by repeatedly immersing the tip of the rod 2 in the etching solution from a direction perpendicular to the liquid surface of the etching solution (such as aqua regia), a taper 101 symmetrical to the central axis of the rod 2 is provided. 102 is formed.
次に、棒2の両端にテーパー101,102が形成される。棒2がタングステン等の高硬度の材料で形成されている場合、例えばエッチングによりテーパー101,102が形成される。具体的には、例えば、エッチング液(王水等)の液面に対して垂直な方向から棒2の先端をエッチング液に繰り返し浸すことにより、棒2の中心軸に対して対称なテーパー101,102が形成される。 Step 2 (FIG. 4B):
Next, tapers 101 and 102 are formed at both ends of the rod 2. When the rod 2 is formed of a material having high hardness such as tungsten, the
工程3(図4(C)):
工程2でテーパー101,102が形成された後、棒2の表面に所定の厚みを有したニッケル等のメッキ3が形成される。 Step 3 (FIG. 4C):
After the tapers 101 and 102 are formed in the step 2, a plating 3 such as nickel having a predetermined thickness is formed on the surface of the rod 2.
工程2でテーパー101,102が形成された後、棒2の表面に所定の厚みを有したニッケル等のメッキ3が形成される。 Step 3 (FIG. 4C):
After the
工程4(図4(D)):
工程3でメッキ3が形成され後、大径部13に対応するメッキ表面領域にレジスト4が塗布される。 Step 4 (FIG. 4D):
After the plating 3 is formed in step 3, a resist 4 is applied to the plating surface area corresponding to thelarge diameter portion 13.
工程3でメッキ3が形成され後、大径部13に対応するメッキ表面領域にレジスト4が塗布される。 Step 4 (FIG. 4D):
After the plating 3 is formed in step 3, a resist 4 is applied to the plating surface area corresponding to the
工程5(図4(E)):
工程4でレジスト4が塗布された後、全体がエッチング液に浸される。これにより、レジスト4で覆われた領域を残してメッキ3が除去される。 Step 5 (FIG. 4E):
After the resist 4 is applied in step 4, the whole is immersed in an etching solution. Thereby, the plating 3 is removed leaving a region covered with the resist 4.
工程4でレジスト4が塗布された後、全体がエッチング液に浸される。これにより、レジスト4で覆われた領域を残してメッキ3が除去される。 Step 5 (FIG. 4E):
After the resist 4 is applied in step 4, the whole is immersed in an etching solution. Thereby, the plating 3 is removed leaving a region covered with the resist 4.
以上の工程により、メッキ3で覆われた部分が大径部13となり、メッキ3を除去された部分が小径部11,12となる。なお、メッキの表面に塗布したレジスト4は、別のレジスト用エッチング液によって除去してもよい。
Through the above steps, the portion covered with the plating 3 becomes the large diameter portion 13, and the portions from which the plating 3 is removed become the small diameter portions 11 and 12. The resist 4 applied to the plating surface may be removed with another resist etching solution.
次に、上述のプローブ1が組み込まれたプローブ装置について図5を参照して説明する。
図5に示すプローブ装置は、複数のピン1と、上板33及び下板35と、スペーサ34と、多層基板30を有する。 Next, a probe apparatus in which the above-describedprobe 1 is incorporated will be described with reference to FIG.
The probe device shown in FIG. 5 includes a plurality ofpins 1, an upper plate 33 and a lower plate 35, a spacer 34, and a multilayer substrate 30.
図5に示すプローブ装置は、複数のピン1と、上板33及び下板35と、スペーサ34と、多層基板30を有する。 Next, a probe apparatus in which the above-described
The probe device shown in FIG. 5 includes a plurality of
上板33は、ピン1の密巻き部21が挿通される複数のガイド孔36を有し、下板35は、ピン1の小径部11が挿通される複数のガイド孔37を有する。上板33と下板35は、例えばセラミックなどの絶縁材料によって形成される。
The upper plate 33 has a plurality of guide holes 36 through which the tightly wound portion 21 of the pin 1 is inserted, and the lower plate 35 has a plurality of guide holes 37 through which the small diameter portion 11 of the pin 1 is inserted. The upper plate 33 and the lower plate 35 are formed of an insulating material such as ceramic.
スペーサ34は、上板33と下板35を離間させて支える。スペーサ34によって支持された状態で、ガイド孔36と37が直線上に整列する。また、ピン1の両端がガイド孔36,37から所定の長さだけ突出する。
The spacer 34 supports the upper plate 33 and the lower plate 35 by separating them. The guide holes 36 and 37 are aligned on a straight line while being supported by the spacer 34. Further, both ends of the pin 1 protrude from the guide holes 36 and 37 by a predetermined length.
多層基板30は、密巻き部21の先端と接触する複数の電極31を一方の面に有し、この電極31と内部配線により接続された複数の電極32を他方の面に有する。電極32は、検査装置の他の治具(例えばインターポーザ)に接続される。電極32は電極31に比べて間隔を空けて配置されるため、電極32の配線密度は電極31に比べて緩和されている。
The multilayer substrate 30 has a plurality of electrodes 31 in contact with the tip of the densely wound portion 21 on one surface, and a plurality of electrodes 32 connected to the electrodes 31 by internal wiring on the other surface. The electrode 32 is connected to another jig (for example, an interposer) of the inspection apparatus. Since the electrode 32 is arranged with a space compared to the electrode 31, the wiring density of the electrode 32 is relaxed compared to the electrode 31.
ガイド孔37の径は、小径部11より大きく大径部13より小さい。そのため、小径部11はガイド孔37を通るが大径部13はガイド孔37を通らない。これにより、図5に示すように小径部11を下に向けて配置した場合、大径部13がガイド孔37の縁に当接した状態となり、ピン1が下方向へ抜け落ちないようになっている。
The diameter of the guide hole 37 is larger than the small diameter portion 11 and smaller than the large diameter portion 13. Therefore, the small diameter portion 11 passes through the guide hole 37, but the large diameter portion 13 does not pass through the guide hole 37. As a result, when the small diameter portion 11 is arranged downward as shown in FIG. 5, the large diameter portion 13 is in contact with the edge of the guide hole 37, and the pin 1 is prevented from falling down. Yes.
図5に示すように、ピン1の密巻き部21に多層基板30の電極31が押し当てられると、密巻き部21が下方向へ押される。このとき、上述のようにピン1の下側がガイド孔37に当たっており、また、小径部12が締め付け部201,202によって締め付けられているため、密巻き部21と締め付け部201,202との間に挟まれたコイル部23が圧縮される。コイル部23が圧縮されると、密巻き部21はコイル部23の弾性力により付勢されて電極31と密着する。
As shown in FIG. 5, when the electrode 31 of the multilayer substrate 30 is pressed against the densely wound portion 21 of the pin 1, the densely wound portion 21 is pushed downward. At this time, since the lower side of the pin 1 is in contact with the guide hole 37 as described above, and the small diameter portion 12 is fastened by the fastening portions 201 and 202, the tightly wound portion 21 and the fastening portions 201 and 202 are interposed. The sandwiched coil portion 23 is compressed. When the coil part 23 is compressed, the closely wound part 21 is urged by the elastic force of the coil part 23 and is in close contact with the electrode 31.
この状態で、下方向からウェハ38の電極39が小径部11の尖端に押し当てられると、棒状導体10が上方向に押される。このとき、密巻き部21は電極31に密着しているため上方向への移動が規制されており、また、小径部12が締め付け部201,202によって締め付けられているため、密巻き部21と締め付け部201,202との間に挟まれたコイル部23が更に圧縮される。コイル部23が圧縮されると、小径部11の尖端はコイル部23の弾性力により付勢されて電極39と密着する。
In this state, when the electrode 39 of the wafer 38 is pressed against the tip of the small-diameter portion 11 from below, the rod-shaped conductor 10 is pressed upward. At this time, since the tightly wound portion 21 is in close contact with the electrode 31, the upward movement is restricted, and since the small diameter portion 12 is fastened by the fastening portions 201 and 202, The coil part 23 sandwiched between the fastening parts 201 and 202 is further compressed. When the coil portion 23 is compressed, the tip of the small diameter portion 11 is urged by the elastic force of the coil portion 23 and is in close contact with the electrode 39.
ウェハ38の着脱が繰り返されると、棒状導体10は上下に移動する。このとき、小径部12の先端は密巻き部21の内側において上下に移動する。すなわち、コイル部23の全体を小径部11が貫いた状態で棒状導体10が上下に移動する。そのため、コイル部23は、ウェハ38の着脱が繰り返される間、横方向へ変形しないように小径部11によって支えられる。
When the wafer 38 is repeatedly attached and detached, the bar-shaped conductor 10 moves up and down. At this time, the tip of the small diameter portion 12 moves up and down inside the densely wound portion 21. That is, the rod-shaped conductor 10 moves up and down with the small diameter portion 11 penetrating the entire coil portion 23. Therefore, the coil portion 23 is supported by the small diameter portion 11 so as not to be deformed in the lateral direction while the wafer 38 is repeatedly attached and detached.
以上説明した本実施形態に係るプローブは、次のような優れた特徴を持つ。
The probe according to the present embodiment described above has the following excellent features.
(特徴1)
本実施形態に係るプローブ1は、螺旋状ばね20に棒状導体10を挿入する簡易な構成を有しており、従来に比べて部品点数を減らすことができる。これにより、大幅なコスト削減を実現できる(問題1の改善)。 (Feature 1)
Theprobe 1 according to the present embodiment has a simple configuration in which the rod-shaped conductor 10 is inserted into the spiral spring 20, and the number of parts can be reduced as compared with the conventional one. Thereby, significant cost reduction can be realized (improvement of Problem 1).
本実施形態に係るプローブ1は、螺旋状ばね20に棒状導体10を挿入する簡易な構成を有しており、従来に比べて部品点数を減らすことができる。これにより、大幅なコスト削減を実現できる(問題1の改善)。 (Feature 1)
The
(特徴2)
本実施形態に係るプローブ1は、プローブの外径と螺旋状ばね20の外径とがほぼ等しい。そのため、筒体の中に細いバネを収容する従来の構造に比べて、プローブの外径をより細くできる(問題2の改善)。 (Feature 2)
In theprobe 1 according to this embodiment, the outer diameter of the probe and the outer diameter of the spiral spring 20 are substantially equal. Therefore, the outer diameter of the probe can be made thinner than the conventional structure in which a thin spring is accommodated in the cylinder (improvement of Problem 2).
本実施形態に係るプローブ1は、プローブの外径と螺旋状ばね20の外径とがほぼ等しい。そのため、筒体の中に細いバネを収容する従来の構造に比べて、プローブの外径をより細くできる(問題2の改善)。 (Feature 2)
In the
(特徴3)
本実施形態に係るプローブ1では、締め付け部201,202において棒状導体10が締め付けられている。すなわち、ばねの弾性力を利用して、螺旋状ばね20の一部分が棒状導体10に固定されている。製造の際、締め付け部201,202における巻き径に多少の誤差が生じても、巻き線の弾性力は著しく変化しないため、螺旋状ばね20と棒状導体10との結合を良好に保つことができる。従って、図15に示す従来のプローブのように、径が細くなるほど加工が困難になるという問題が軽減される(問題3の改善)。 (Feature 3)
In theprobe 1 according to the present embodiment, the rod-shaped conductor 10 is tightened at the tightening portions 201 and 202. That is, a part of the spiral spring 20 is fixed to the rod-shaped conductor 10 using the elastic force of the spring. Even if a slight error occurs in the winding diameters in the tightening portions 201 and 202 during manufacturing, the elastic force of the winding does not change remarkably, so that the coupling between the spiral spring 20 and the rod-shaped conductor 10 can be kept good. . Therefore, as in the conventional probe shown in FIG. 15, the problem that the processing becomes difficult as the diameter becomes smaller is reduced (improvement of Problem 3).
本実施形態に係るプローブ1では、締め付け部201,202において棒状導体10が締め付けられている。すなわち、ばねの弾性力を利用して、螺旋状ばね20の一部分が棒状導体10に固定されている。製造の際、締め付け部201,202における巻き径に多少の誤差が生じても、巻き線の弾性力は著しく変化しないため、螺旋状ばね20と棒状導体10との結合を良好に保つことができる。従って、図15に示す従来のプローブのように、径が細くなるほど加工が困難になるという問題が軽減される(問題3の改善)。 (Feature 3)
In the
(特徴4)
本実施形態に係るプローブ1は、導線を巻いて形成された螺旋状ばね20を用いているため、円筒形状の素材にレーザ加工や機械加工等を施してスプリングを形成する図15に示すプローブに比べて製造が簡単であり、細径化の容易性や耐久性の点で優れている(問題4の改善)。 (Feature 4)
Since theprobe 1 according to this embodiment uses a spiral spring 20 formed by winding a conducting wire, the probe shown in FIG. 15 that forms a spring by applying laser processing or machining to a cylindrical material is formed. In comparison, the manufacturing is simple, and it is excellent in terms of easy diameter reduction and durability (improvement of Problem 4).
本実施形態に係るプローブ1は、導線を巻いて形成された螺旋状ばね20を用いているため、円筒形状の素材にレーザ加工や機械加工等を施してスプリングを形成する図15に示すプローブに比べて製造が簡単であり、細径化の容易性や耐久性の点で優れている(問題4の改善)。 (Feature 4)
Since the
(特徴5)
本実施形態に係るプローブ1では、密巻き部21の内側を往復する棒状導体10の先端部にテーパー102が形成されている。もし、棒状導体10の先端部が角張っていると、密巻き部21の内側がこの角張った先端部によって摺動されるため、巻き線(導線)が削り取られてしまう。この場合、削り屑が多く生じてしまうという問題や、巻き線の強度が低下するという問題が生じる。テーパー102を設けることで、密巻き部21の内側における摺動が滑らかになるため、上記の問題が軽減される。 (Feature 5)
In theprobe 1 according to this embodiment, a taper 102 is formed at the tip of the rod-shaped conductor 10 that reciprocates inside the densely wound portion 21. If the tip of the rod-shaped conductor 10 is angular, the inner side of the densely wound portion 21 is slid by the angular tip, so that the winding (conductor) is scraped off. In this case, there arises a problem that a large amount of shavings is generated and a problem that the strength of the winding is lowered. By providing the taper 102, the sliding inside the densely wound portion 21 becomes smooth, and thus the above problem is reduced.
本実施形態に係るプローブ1では、密巻き部21の内側を往復する棒状導体10の先端部にテーパー102が形成されている。もし、棒状導体10の先端部が角張っていると、密巻き部21の内側がこの角張った先端部によって摺動されるため、巻き線(導線)が削り取られてしまう。この場合、削り屑が多く生じてしまうという問題や、巻き線の強度が低下するという問題が生じる。テーパー102を設けることで、密巻き部21の内側における摺動が滑らかになるため、上記の問題が軽減される。 (Feature 5)
In the
(特徴6)
本実施形態に係るプローブ1では、密巻き部21の端部にテーパー部203が設けられている。これにより、電極に接触する端部の面積が小さくなり、接触圧が高くなるため、電気的な接触抵抗を低くすることができる。 (Feature 6)
In theprobe 1 according to this embodiment, a tapered portion 203 is provided at the end of the closely wound portion 21. Thereby, since the area of the edge part which contacts an electrode becomes small and contact pressure becomes high, electrical contact resistance can be made low.
本実施形態に係るプローブ1では、密巻き部21の端部にテーパー部203が設けられている。これにより、電極に接触する端部の面積が小さくなり、接触圧が高くなるため、電気的な接触抵抗を低くすることができる。 (Feature 6)
In the
(特徴7)
本実施形態に係るプローブ1では、螺旋状ばね10の端部(電極に接触する端部に対して反対側の端部)が、棒状導体10に形成された段差14(図3)に当接する。螺旋状ばね10が電極との接触によって圧縮されるとき、締め付け部201,202には横方向(棒状導体10の長手方向)に力が働く。螺旋状ばね10の端部が段差14に当接することで、この力が段差14によって受け止められるため、締め付け部201,202の締め付け位置の変位が抑えられる。締め付け位置の変位が抑制されると、例えば図5に示すプローブ装置において、螺旋状ばね10の位置が下にずれてばね部23の弾性力が低下するという問題を軽減できる。 (Feature 7)
In theprobe 1 according to the present embodiment, the end of the spiral spring 10 (the end opposite to the end in contact with the electrode) abuts on the step 14 (FIG. 3) formed in the rod-shaped conductor 10. . When the helical spring 10 is compressed by contact with the electrode, a force acts in the lateral direction (longitudinal direction of the rod-shaped conductor 10) on the tightening portions 201 and 202. Since the end of the spiral spring 10 abuts against the step 14, this force is received by the step 14, so that the displacement of the tightening positions of the tightening portions 201 and 202 is suppressed. If the displacement of the tightening position is suppressed, for example, in the probe device shown in FIG. 5, the problem that the position of the spiral spring 10 is shifted downward and the elastic force of the spring portion 23 is reduced can be reduced.
本実施形態に係るプローブ1では、螺旋状ばね10の端部(電極に接触する端部に対して反対側の端部)が、棒状導体10に形成された段差14(図3)に当接する。螺旋状ばね10が電極との接触によって圧縮されるとき、締め付け部201,202には横方向(棒状導体10の長手方向)に力が働く。螺旋状ばね10の端部が段差14に当接することで、この力が段差14によって受け止められるため、締め付け部201,202の締め付け位置の変位が抑えられる。締め付け位置の変位が抑制されると、例えば図5に示すプローブ装置において、螺旋状ばね10の位置が下にずれてばね部23の弾性力が低下するという問題を軽減できる。 (Feature 7)
In the
(特徴8)
本実施形態に係るプローブ1では、締め付け部201,202が密巻き部22の巻き線によってばね部23から分離されている。これにより、ばね部23の伸縮に伴う締め付け部201,202の巻き線間隔の変化を緩和し、締め付け位置の変位を生じ難くすることができる。 (Feature 8)
In theprobe 1 according to the present embodiment, the tightening portions 201 and 202 are separated from the spring portion 23 by the winding of the densely wound portion 22. Thereby, the change of the winding space | interval of the clamping parts 201 and 202 accompanying the expansion / contraction of the spring part 23 can be relieved, and it becomes difficult to produce the displacement of a clamping position.
本実施形態に係るプローブ1では、締め付け部201,202が密巻き部22の巻き線によってばね部23から分離されている。これにより、ばね部23の伸縮に伴う締め付け部201,202の巻き線間隔の変化を緩和し、締め付け位置の変位を生じ難くすることができる。 (Feature 8)
In the
(特徴9)
棒状導体10の段差14を、例えば図4に示すような製造方法で形成されるメッキの縁により実現できるので、タングステンのような高硬度の材料を用いて非常に細い棒状導体10を製造できる。 (Feature 9)
Since thestep 14 of the rod-shaped conductor 10 can be realized by, for example, a plating edge formed by a manufacturing method as shown in FIG. 4, a very thin rod-shaped conductor 10 can be manufactured using a material having high hardness such as tungsten.
棒状導体10の段差14を、例えば図4に示すような製造方法で形成されるメッキの縁により実現できるので、タングステンのような高硬度の材料を用いて非常に細い棒状導体10を製造できる。 (Feature 9)
Since the
<第2の実施形態>
次に、本発明の第2の実施形態について説明する。
図6は、第2の実施形態に係るプローブ1Aの要部を図解した図であり、図3と同様に螺旋状ばね20を軸方向に切断して内部を図解している。 <Second Embodiment>
Next, a second embodiment of the present invention will be described.
FIG. 6 is a diagram illustrating the main part of theprobe 1A according to the second embodiment, and illustrates the inside by cutting the spiral spring 20 in the axial direction in the same manner as in FIG.
次に、本発明の第2の実施形態について説明する。
図6は、第2の実施形態に係るプローブ1Aの要部を図解した図であり、図3と同様に螺旋状ばね20を軸方向に切断して内部を図解している。 <Second Embodiment>
Next, a second embodiment of the present invention will be described.
FIG. 6 is a diagram illustrating the main part of the
図6に示すプローブ1Aは、締め付け部202と係合する溝15が小径部12に形成されている。この溝15は、例えばレーザ加工により形成される。締め付け部201は、この溝15の底部に落ち込んだ状態で小径部12を締め付ける。螺旋状ばね20に対して横方向(棒状導体10の長手方向)の力が加わっても、締め付け部201の巻き線が溝15の側面若しくは縁に当接するため、締め付け部201の締め付け位置の変位が生じ難くなる。
In the probe 1 </ b> A shown in FIG. 6, a groove 15 that engages with the tightening portion 202 is formed in the small diameter portion 12. The groove 15 is formed by laser processing, for example. The tightening portion 201 tightens the small diameter portion 12 in a state where the tightening portion 201 falls into the bottom of the groove 15. Even if a force in the lateral direction (longitudinal direction of the rod-shaped conductor 10) is applied to the spiral spring 20, the winding of the tightening portion 201 comes into contact with the side surface or edge of the groove 15, so that the tightening position of the tightening portion 201 is displaced. Is less likely to occur.
このように、本実施形態に係るプローブ1Aによれば、棒状導体10に形成された溝15と締め付け部201とを係合させることで、締め付け部201の締め付け位置の変位を生じ難くすることができる。締め付け部201の締め付け位置が変位し難くなると、例えば図5に示すプローブ装置において、ガイド孔36から突き出る密巻き部21の長さの変動が抑えられるので、電極31と密巻き部21との接触圧を安定化できる。
Thus, according to the probe 1A according to the present embodiment, by engaging the groove 15 formed in the rod-shaped conductor 10 and the tightening portion 201, it is difficult to cause displacement of the tightening position of the tightening portion 201. it can. If the tightening position of the tightening portion 201 is difficult to be displaced, for example, in the probe device shown in FIG. 5, the variation in the length of the closely wound portion 21 protruding from the guide hole 36 can be suppressed. Pressure can be stabilized.
図7は、第2の実施形態に係るプローブ1Aの変形例を示す図である。
図7に示すプローブ1Aでは、螺旋状ばね10の端部の締め付け部202と係合する溝16が小径部11に形成されている。この場合も、上述と同様に締め付け部202の締め付け位置の変位を抑制できる。
また、図7に示すプローブ1Aでは、小径部11の挿入側に最も近い締め付け部202が溝16と係合するので、小径部11を螺旋状ばね20に挿入する過程で別の締め付け部が溝16に係合することを防止できる。これにより、組み立てが容易になる。 FIG. 7 is a view showing a modification of theprobe 1A according to the second embodiment.
In theprobe 1 </ b> A shown in FIG. 7, the groove 16 that engages with the tightening portion 202 at the end of the spiral spring 10 is formed in the small diameter portion 11. Also in this case, the displacement of the tightening position of the tightening portion 202 can be suppressed as described above.
Further, in theprobe 1A shown in FIG. 7, the tightening portion 202 closest to the insertion side of the small diameter portion 11 engages with the groove 16, so that in the process of inserting the small diameter portion 11 into the spiral spring 20, another tightening portion is a groove. 16 can be prevented from engaging. This facilitates assembly.
図7に示すプローブ1Aでは、螺旋状ばね10の端部の締め付け部202と係合する溝16が小径部11に形成されている。この場合も、上述と同様に締め付け部202の締め付け位置の変位を抑制できる。
また、図7に示すプローブ1Aでは、小径部11の挿入側に最も近い締め付け部202が溝16と係合するので、小径部11を螺旋状ばね20に挿入する過程で別の締め付け部が溝16に係合することを防止できる。これにより、組み立てが容易になる。 FIG. 7 is a view showing a modification of the
In the
Further, in the
<第3の実施形態>
次に、本発明の第3の実施形態に係るプローブについて説明する。
図8は、第3の実施形態に係るプローブ1Bの一例を示す図である。
図9は、図8において螺旋状ばね20を軸方向に切断してその内部を図解した図である。
図10は、図9において螺旋状ばね20の一部を拡大して示した図である。 <Third Embodiment>
Next, a probe according to a third embodiment of the present invention will be described.
FIG. 8 is a diagram illustrating an example of aprobe 1B according to the third embodiment.
FIG. 9 is a diagram illustrating the inside of thespiral spring 20 cut in the axial direction in FIG. 8.
FIG. 10 is an enlarged view of a part of thespiral spring 20 in FIG.
次に、本発明の第3の実施形態に係るプローブについて説明する。
図8は、第3の実施形態に係るプローブ1Bの一例を示す図である。
図9は、図8において螺旋状ばね20を軸方向に切断してその内部を図解した図である。
図10は、図9において螺旋状ばね20の一部を拡大して示した図である。 <Third Embodiment>
Next, a probe according to a third embodiment of the present invention will be described.
FIG. 8 is a diagram illustrating an example of a
FIG. 9 is a diagram illustrating the inside of the
FIG. 10 is an enlarged view of a part of the
図8~図10に示すプローブ1Bは、次の点で図1~図3に示すプローブ1と異なっている。
The probe 1B shown in FIGS. 8 to 10 is different from the probe 1 shown in FIGS. 1 to 3 in the following points.
まず、図8~図10に示すプローブ1Bの螺旋状ばね20は、密巻き部22の端(ばね部23に対して反対側の端)に延設されたピッチ巻き部24を有する。ピッチ巻き部24においては、導線が一定の間隔で巻かれている。
First, the spiral spring 20 of the probe 1B shown in FIG. 8 to FIG. 10 has a pitch winding portion 24 extending at the end of the close winding portion 22 (the end opposite to the spring portion 23). In the pitch winding part 24, the conducting wire is wound at a constant interval.
また、図8~図10に示すプローブ1Bの棒状導体10は、ピッチ巻き部24と螺合する螺旋状の突条17が小径部12に形成されている。
Further, in the rod-shaped conductor 10 of the probe 1B shown in FIGS. 8 to 10, a spiral protrusion 17 that is screwed with the pitch winding portion 24 is formed in the small diameter portion 12.
この他、図8~図10に示すプローブ1Bでは密巻き部22の中間の締め付け部201が省略されている。
In addition, in the probe 1B shown in FIGS. 8 to 10, the tightening portion 201 in the middle of the closely wound portion 22 is omitted.
図8~図10に示すプローブ1Bを組み立てる場合は、まず小径部12を螺旋状ばね20のピッチ巻き部24の端から挿入する。ピッチ巻き部24の端が突条17に当接するまで挿入したら、次に螺旋状ばね20を回転させる。螺旋状ばね20を回転させると、ピッチ巻き部24の巻き線が突条17に沿って小径部12の周囲を回転しながら進んでいく。
When assembling the probe 1B shown in FIGS. 8 to 10, first, the small diameter portion 12 is inserted from the end of the pitch winding portion 24 of the spiral spring 20. Once the pitch winding portion 24 is inserted until the end of the pitch winding portion 24 comes into contact with the ridge 17, the spiral spring 20 is then rotated. When the spiral spring 20 is rotated, the winding of the pitch winding portion 24 advances along the protrusion 17 while rotating around the small diameter portion 12.
ピッチ巻き部24の巻き線が段差14に到達しても更に螺旋状ばね20を回転させ続けると、ピッチ巻き部24の端部が圧縮されて螺旋状ばね20を押し戻す方向に弾性力が生じる。この弾性力により、ピッチ巻き部24の巻き線は突条17と強く噛み合わされ、小径部12にしっかりと固定される。
Even if the winding of the pitch winding portion 24 reaches the step 14, if the spiral spring 20 is further rotated, the end portion of the pitch winding portion 24 is compressed and an elastic force is generated in the direction of pushing back the spiral spring 20. Due to this elastic force, the winding of the pitch winding portion 24 is strongly meshed with the ridge 17 and is firmly fixed to the small diameter portion 12.
このように、本実施形態では、ピッチ巻き部24と突条17を螺合させる構造によって、螺旋状ばね20の端部を小径部12の所定の位置に安定に固定できる。
また、突条17に沿って進むピッチ巻き部24の巻き線に当接して巻き線の進行を止めるように段差14が設けられているので、巻き線と突条17とのかみ合いが強くなり、上記の固定をより安定化できる。 Thus, in this embodiment, the end of thespiral spring 20 can be stably fixed at a predetermined position of the small diameter portion 12 by the structure in which the pitch winding portion 24 and the protrusion 17 are screwed together.
In addition, since thestep 14 is provided so as to stop the progress of the winding by coming into contact with the winding of the pitch winding portion 24 proceeding along the ridge 17, the engagement between the winding and the ridge 17 becomes strong, The above fixation can be further stabilized.
また、突条17に沿って進むピッチ巻き部24の巻き線に当接して巻き線の進行を止めるように段差14が設けられているので、巻き線と突条17とのかみ合いが強くなり、上記の固定をより安定化できる。 Thus, in this embodiment, the end of the
In addition, since the
更に、図11に示すように、締め付け部202と係合する溝16を設けることで、上記の固定を更に安定化できる。
Furthermore, as shown in FIG. 11, the fixing can be further stabilized by providing the groove 16 that engages with the tightening portion 202.
以上、本発明の幾つかの実施形態について説明したが、本発明は上述した実施形態のみに限定されるものではなく、種々のバリエーションを含んでいる。
As mentioned above, although several embodiment of this invention was described, this invention is not limited only to embodiment mentioned above, Various modifications are included.
上述の実施形態では、密巻き部21の先にテーパー部203を設けて電極との接触圧を高めている。この部分に関しては、例えば図12に示すように、電極に接触する端部とテーパー部203との間に巻き径が一定のストレート部204を設けてもよい。これにより、ストレート部204のみを貫通する小径の孔によって密巻き部21の先端を支えることができるようになる。
例えば図13に示すプローブ装置では、密巻き部21の先端を挿入するガイド孔36の径を、ストレート部204の径より大きくかつテーパー部203の径より小さくしている。これにより、ガイド孔36はストレート部204のみを貫通し、プローブ1の全体がガイド孔36から飛び出すことを防止できる。 In the above-described embodiment, thetaper portion 203 is provided at the tip of the densely wound portion 21 to increase the contact pressure with the electrode. With regard to this portion, for example, as shown in FIG. 12, a straight portion 204 having a constant winding diameter may be provided between the end portion in contact with the electrode and the tapered portion 203. Thereby, the front-end | tip of the closely wound part 21 can be supported now by the small diameter hole which penetrates only the straight part 204. FIG.
For example, in the probe device shown in FIG. 13, the diameter of theguide hole 36 into which the tip of the densely wound portion 21 is inserted is larger than the diameter of the straight portion 204 and smaller than the diameter of the tapered portion 203. Thereby, the guide hole 36 penetrates only the straight portion 204, and the entire probe 1 can be prevented from jumping out of the guide hole 36.
例えば図13に示すプローブ装置では、密巻き部21の先端を挿入するガイド孔36の径を、ストレート部204の径より大きくかつテーパー部203の径より小さくしている。これにより、ガイド孔36はストレート部204のみを貫通し、プローブ1の全体がガイド孔36から飛び出すことを防止できる。 In the above-described embodiment, the
For example, in the probe device shown in FIG. 13, the diameter of the
上述の実施形態では、密巻き部22に設けた締め付け部201,202が棒状導体10を締め付けることにより螺旋状ばね20を棒状導体10に固定しているが、これに加えて、密巻き部22の一部を棒状導体10に溶接してもよい。これにより、上記の固定を更に強化できる。
In the above-described embodiment, the tightening portions 201 and 202 provided in the densely wound portion 22 fasten the rod-shaped conductor 10 to fix the spiral spring 20 to the rod-shaped conductor 10. May be welded to the rod-shaped conductor 10. Thereby, said fixation can be further strengthened.
上述の実施形態では、密巻き部22の中に締め付け部201,202を設けているが、密巻き部22を省略して、ばね部23の端に締め付け部を設けてもよい。
In the above-described embodiment, the tightening portions 201 and 202 are provided in the tightly wound portion 22, but the tightly wound portion 22 may be omitted and a tightening portion may be provided at the end of the spring portion 23.
上述の実施形態では締め付け部を1つ若しくは2つ設けているが、更に多くの締め付け部を設けてもよい。
In the above-described embodiment, one or two fastening portions are provided, but more fastening portions may be provided.
1,1A,1B…プローブ、10…棒状導体、11,12…小径部、13…大径部、14…段差、15,16…溝、17…突条、101,102…テーパー、20…螺旋状ばね、21,22…密巻き部、23…ばね部、24…ピッチ巻き部、201,202…締め付け部、203…テーパー部、204…ストレート部、30…多層基板、31,32,39…電極、33…上板、34…スペーサ、35…下板、36,37…ガイド孔、38…ウェハ、3…メッキ、4…レジスト
DESCRIPTION OF SYMBOLS 1,1A, 1B ... Probe, 10 ... Rod-shaped conductor, 11, 12 ... Small diameter part, 13 ... Large diameter part, 14 ... Level difference, 15, 16 ... Groove, 17 ... Projection, 101, 102 ... Taper, 20 ... Spiral Shape springs, 21, 22 ... closely wound portions, 23 ... spring portions, 24 ... pitch winding portions, 201, 202 ... tightening portions, 203 ... taper portions, 204 ... straight portions, 30 ... multilayer substrates, 31, 32, 39 ... Electrode 33 ... Upper plate 34 ... Spacer 35 ... Lower plate 36, 37 ... Guide hole 38 ... Wafer 3 ... Plating 4 ... Resist
Claims (13)
- 導線を巻いて形成された螺旋状ばねと、
前記螺旋状ばねの内側に挿入される棒状導体と、
を有し、
前記螺旋状ばねは、
前記棒状導体を締め付ける締め付け部と、
前記導線が密に巻かれており、端部において電極と接触する第1密巻き部と、
前記締め付け部と前記第1密巻き部との間において伸縮するばね部と、
を有し、
前記ばね部が伸縮していないとき、前記棒状導体の先端部が前記第1密巻き部の内側に位置する、
プローブ。 A spiral spring formed by winding a conducting wire;
A rod-shaped conductor inserted inside the spiral spring;
Have
The spiral spring is
A tightening portion for tightening the rod-shaped conductor;
The conductive wire is densely wound, and a first densely wound portion that contacts the electrode at the end;
A spring portion that expands and contracts between the tightening portion and the first closely wound portion;
Have
When the spring portion is not expanded or contracted, a tip end portion of the rod-shaped conductor is located inside the first densely wound portion.
probe. - 前記棒状導体は、前記先端部において前記第1密巻き部の内面と接触するテーパー状の斜面を有する、
請求項1に記載のプローブ。 The rod-shaped conductor has a tapered slope that contacts the inner surface of the first densely wound portion at the tip.
The probe according to claim 1. - 前記第1密巻き部は、前記電極と接触する端部に向かって巻き径が細くなるテーパー部を有する、
請求項2に記載のプローブ。 The first densely wound portion has a tapered portion whose winding diameter becomes narrower toward an end portion in contact with the electrode.
The probe according to claim 2. - 前記第1密巻き部は、前記電極と接触する端部と前記テーパ部との間に巻き径が一定のストレート部を有する、
請求項3に記載のプローブ。 The first densely wound portion has a straight portion having a constant winding diameter between an end portion in contact with the electrode and the tapered portion.
The probe according to claim 3. - 前記第1密巻き部に対して反対側の前記ばね部の端に延設された第2密巻き部を有し、
前記第2密巻き部の少なくとも一部の巻き線が前記締め付け部と前記ばね部との間に介在している、
請求項3又は4に記載のプローブ。 A second densely wound portion extending at an end of the spring portion opposite to the first densely wound portion;
The winding of at least a part of the second densely wound portion is interposed between the tightening portion and the spring portion,
The probe according to claim 3 or 4. - 前記締め付け部は、
前記第2密巻き部の中間に形成される少なくとも1つの第1締め付け部と、
前記ばね部に対して反対側の前記第2密巻き部の端に形成される第2締め付け部と、
を有する、
請求項5に記載のプローブ。 The tightening part is
At least one first tightening portion formed in the middle of the second densely wound portion;
A second tightening portion formed at an end of the second densely wound portion opposite to the spring portion;
Having
The probe according to claim 5. - 前記棒状導体は、前記締め付け部と係合する溝を有する、
請求項5に記載のプローブ。 The rod-shaped conductor has a groove that engages with the tightening portion.
The probe according to claim 5. - 前記棒状導体は、
前記第1締め付け部と係合する第1の溝、及び/又は、
前記第2締め付け部と係合する第2の溝
を有する、
請求項6に記載のプローブ。 The rod-shaped conductor is
A first groove engaged with the first clamping part, and / or
Having a second groove engaging with the second tightening portion;
The probe according to claim 6. - 前記螺旋状ばねは、前記ばね部に対して反対側の前記第2密巻き部の端に延設され、前記導線が一定の間隔で巻かれたピッチ巻き部を有し、
前記棒状導体は、前記ピッチ巻き部と螺合する螺旋状の突条を有する、
請求項5乃至8に記載のプローブ。 The spiral spring has a pitch winding portion that extends to an end of the second dense winding portion on the opposite side to the spring portion, and the conductive wire is wound at a constant interval.
The rod-shaped conductor has a spiral protrusion that is screwed with the pitch winding portion.
The probe according to claim 5. - 前記棒状導体は、前記電極と接触する前記第1密巻き部の端部に対して反対側の前記螺旋状ばねの端部と当接する段差を有する、
請求項5乃至9に記載のプローブ。 The rod-shaped conductor has a step that abuts against the end of the spiral spring opposite to the end of the first densely wound portion that contacts the electrode.
The probe according to claim 5. - 前記棒状導体は、
前記螺旋状ばねに挿入される棒部と、
前記棒部に所定の金属をメッキしたメッキ部と
を有し、
前記段差が前記メッキ部の縁によって形成される、
請求項10に記載のプローブ。 The rod-shaped conductor is
A rod portion inserted into the helical spring;
A plating part in which a predetermined metal is plated on the bar part,
The step is formed by an edge of the plated portion;
The probe according to claim 10. - 前記第2密巻き部の少なくとも一部が前記棒状導体に溶接されている、
請求項5乃至11に記載のプローブ。 At least a portion of the second densely wound portion is welded to the rod-shaped conductor;
The probe according to claim 5. - 両端がそれぞれ電極に接触する複数のプローブと、
前記プローブの一方の端の尖端が貫通する孔を備えた第1の絶縁板と、
前記プローブの他方の端の尖端が貫通する孔を備えた第2の絶縁板と、
前記第1の絶縁板と前記第2の絶縁板とを支えるスペーサと、
を有し、
前記プローブは、
導線を巻いて形成された螺旋状ばねと、
前記螺旋状ばねの内側に挿入される棒状導体と、
を有し、
前記螺旋状ばねは、
前記棒状導体を締め付ける締め付け部と、
前記導線が密に巻かれており、端部において電極と接触する第1密巻き部と、
前記締め付け部と前記第1密巻き部との間において伸縮するばね部と、
を有し、
前記ばね部が伸縮していないとき、前記棒状導体の先端部が前記第1密巻き部の内側に位置する、
プローブ装置。
A plurality of probes whose ends are in contact with the electrodes,
A first insulating plate having a hole through which the tip of one end of the probe passes;
A second insulating plate having a hole through which the tip of the other end of the probe passes;
A spacer for supporting the first insulating plate and the second insulating plate;
Have
The probe is
A spiral spring formed by winding a conducting wire;
A rod-shaped conductor inserted inside the spiral spring;
Have
The spiral spring is
A tightening portion for tightening the rod-shaped conductor;
The conductive wire is densely wound, and a first densely wound portion that contacts the electrode at the end;
A spring portion that expands and contracts between the tightening portion and the first closely wound portion;
Have
When the spring portion is not expanded or contracted, a tip end portion of the rod-shaped conductor is located inside the first densely wound portion.
Probe device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/002431 WO2010140184A1 (en) | 2009-06-01 | 2009-06-01 | Probe and probe device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/002431 WO2010140184A1 (en) | 2009-06-01 | 2009-06-01 | Probe and probe device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140184A1 true WO2010140184A1 (en) | 2010-12-09 |
Family
ID=43297333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/002431 WO2010140184A1 (en) | 2009-06-01 | 2009-06-01 | Probe and probe device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010140184A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011048890A1 (en) * | 2009-10-23 | 2011-04-28 | 株式会社ヨコオ | Contact probe and socket |
JP2013096699A (en) * | 2011-10-27 | 2013-05-20 | Japan Electronic Materials Corp | Electric contactor structure |
CN109143024A (en) * | 2017-06-28 | 2019-01-04 | 株式会社友华 | Contact measuring head and checking tool |
WO2021172061A1 (en) * | 2020-02-26 | 2021-09-02 | 日本電産リード株式会社 | Cylindrical body, contact terminal, inspection jig, and inspection device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63161366U (en) * | 1987-04-10 | 1988-10-21 | ||
JPH10312845A (en) * | 1997-05-09 | 1998-11-24 | Yokowo Co Ltd | Spring connector and device using the same |
WO2002025778A1 (en) * | 2000-09-22 | 2002-03-28 | Shin-Etsu Polymer Co., Ltd. | Spring element, press-clamped connector, and holder with probe for electro-acoustic component |
JP2003178848A (en) * | 2001-12-07 | 2003-06-27 | Advanex Inc | Socket for semiconductor package |
JP2004085260A (en) * | 2002-08-23 | 2004-03-18 | Tokyo Electron Ltd | Probe pin and contactor |
JP2004152495A (en) * | 2002-10-28 | 2004-05-27 | Yamaichi Electronics Co Ltd | Ic socket for fine pitch ic package |
JP2004251884A (en) * | 2002-07-18 | 2004-09-09 | Aries Electronics Inc | Integrated circuit test probe |
WO2007005667A2 (en) * | 2005-06-30 | 2007-01-11 | Interconnect Devices, Inc. | Dual tapered spring probe |
JP4031007B2 (en) * | 2005-07-15 | 2008-01-09 | 日本電子材料株式会社 | Vertical coil spring probe and probe unit using the same |
-
2009
- 2009-06-01 WO PCT/JP2009/002431 patent/WO2010140184A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63161366U (en) * | 1987-04-10 | 1988-10-21 | ||
JPH10312845A (en) * | 1997-05-09 | 1998-11-24 | Yokowo Co Ltd | Spring connector and device using the same |
WO2002025778A1 (en) * | 2000-09-22 | 2002-03-28 | Shin-Etsu Polymer Co., Ltd. | Spring element, press-clamped connector, and holder with probe for electro-acoustic component |
JP2003178848A (en) * | 2001-12-07 | 2003-06-27 | Advanex Inc | Socket for semiconductor package |
JP2004251884A (en) * | 2002-07-18 | 2004-09-09 | Aries Electronics Inc | Integrated circuit test probe |
JP2004085260A (en) * | 2002-08-23 | 2004-03-18 | Tokyo Electron Ltd | Probe pin and contactor |
JP2004152495A (en) * | 2002-10-28 | 2004-05-27 | Yamaichi Electronics Co Ltd | Ic socket for fine pitch ic package |
WO2007005667A2 (en) * | 2005-06-30 | 2007-01-11 | Interconnect Devices, Inc. | Dual tapered spring probe |
JP4031007B2 (en) * | 2005-07-15 | 2008-01-09 | 日本電子材料株式会社 | Vertical coil spring probe and probe unit using the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011048890A1 (en) * | 2009-10-23 | 2011-04-28 | 株式会社ヨコオ | Contact probe and socket |
JP2011089930A (en) * | 2009-10-23 | 2011-05-06 | Yokowo Co Ltd | Contact probe and socket |
JP2013096699A (en) * | 2011-10-27 | 2013-05-20 | Japan Electronic Materials Corp | Electric contactor structure |
CN109143024A (en) * | 2017-06-28 | 2019-01-04 | 株式会社友华 | Contact measuring head and checking tool |
WO2021172061A1 (en) * | 2020-02-26 | 2021-09-02 | 日本電産リード株式会社 | Cylindrical body, contact terminal, inspection jig, and inspection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101141206B1 (en) | Inspection fixture | |
KR101321355B1 (en) | Probe and fixture | |
KR100911676B1 (en) | Contactor, method for manufacturing such contactor, and testing method using such contactor | |
JP4833011B2 (en) | Socket for electrical parts | |
JP2006023271A (en) | Semiconductor inspection probe card | |
CN112005121B (en) | Cylindrical body and method for manufacturing same | |
KR20130105326A (en) | Probe and connection jig | |
CN112600006B (en) | Electrical contact, electrical connection structure and electrical connection device | |
KR101157879B1 (en) | Inspection fixture, inspection probe | |
JP5824290B2 (en) | Inspection jig and contact | |
CN113740564B (en) | Electrical contact and method for producing an electrical contact | |
WO2010140184A1 (en) | Probe and probe device | |
JP5845678B2 (en) | Inspection contact and inspection jig | |
CN112601965A (en) | Inspection jig, inspection device, and contact terminal | |
KR102534435B1 (en) | Electrical contact structure of electrical contactor and electrical connecting apparatus | |
JP2012057995A (en) | Inspection tool and contactor | |
JP2010276579A (en) | Electric contact and inspection fixture provided with the same | |
JP2012057995A5 (en) | ||
JP2005326307A (en) | Electronic component inspection probe, and electronic component inspection socket equipped therewith | |
JP2007127488A (en) | Probe card | |
KR20090073747A (en) | Probe unit and probe card | |
WO2024034212A1 (en) | Electric contact | |
WO2024195794A1 (en) | Electrical contact and method for manufacturing electrical contact | |
JP2007109414A (en) | Socket for integrated circuit | |
JP2001023744A (en) | Multipolar connector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09845470 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09845470 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |