WO2010016140A1 - Planar display panel control method and plasma display panel control method - Google Patents
Planar display panel control method and plasma display panel control method Download PDFInfo
- Publication number
- WO2010016140A1 WO2010016140A1 PCT/JP2008/064316 JP2008064316W WO2010016140A1 WO 2010016140 A1 WO2010016140 A1 WO 2010016140A1 JP 2008064316 W JP2008064316 W JP 2008064316W WO 2010016140 A1 WO2010016140 A1 WO 2010016140A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display panel
- phosphor
- plasma display
- phosphor layer
- color
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/20—Constructional details
- H01J11/34—Vessels, containers or parts thereof, e.g. substrates
- H01J11/42—Fluorescent layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/10—AC-PDPs with at least one main electrode being out of contact with the plasma
- H01J11/12—AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
Definitions
- the present invention relates to control of a plasma display panel, and more particularly to saturation luminance characteristics of a phosphor of the plasma display panel.
- PDP plasma display panel
- the display color of the display device using the PDP is determined by the balance between the emission color and emission intensity of the phosphor and the discharge gas, and an optical filter that adjusts the emission color.
- an optical filter that adjusts the emission color.
- a green phosphor Z n2 S i O 4: M n is mainly used in the current PDP for chromaticity good high luminance.
- the increase rate of the brightness of Z n2 S i O 4 : M n decreases as the display load factor decreases and the number of discharge pulses increases.
- Such a characteristic is generally called a luminance saturation characteristic, and the luminance saturation of the phosphor is relatively large.
- the emission color of (Y, G d ) BO 3 : T b is yellowish green, it is difficult to use it alone as a green phosphor. Therefore, when it is necessary to apply the same phosphor, it is often mixed with Zn 2 S i O 4 : M n or the like having good color purity.
- the red phosphor (Y, G d ) BO 3 : E u has a small luminance saturation, a high luminance and a small luminance deterioration, and is mainly used in the current PDP.
- (Y, G d ) BO 3 : E u has orange light emission having a peak at a wavelength of about 593 [nm].
- a display device using a PDP using this phosphor contains a dye that absorbs unnecessary orange light in an optical filter disposed in front of the PDP for the purpose of displaying red with sufficient color purity.
- the number of display discharges varies depending on the display load factor (ratio of the number of lighted cells in all cells). Therefore, for example, the chromaticity in the white display changes depending on the display load factor due to the difference in the luminance saturation characteristics of the phosphors.
- DCB D ynamic C olor B alance
- the chromaticity change in the deviation direction is more conspicuous than the chromaticity change in the color temperature direction.
- white balance adjustment is a control that affects the number of colors by the drive circuit.
- the white chromaticity at the reference display load factor is adjusted to a desired value. If the chromaticity difference between before and after the adjustment is large, the decrease in the number of colors is large as in the case of the adjustment by DCB. Decrease is a significant problem.
- the balance of each color should be adjusted so that the white chromaticity of the panel in combination with the optical filter that is placed in front of the panel and performs color adjustment is the chromaticity set for the TV. good.
- the film thickness of each phosphor is adjusted.
- the phosphor is designed to have an appropriate value including the above color balance.
- Other methods for adjusting the color balance of each color include adjusting the pitch of the partition walls, adjusting the aperture ratio of each color, and the like, and any method may be used.
- the preferred white color temperature varies from country to country. For example, in a Japanese TV, the color temperature is usually set to around 10000 [K]. In addition to being used in a setting called dynamic mode or standard mode, it is often used in a dark environment. A setting of a color temperature of about 6500 [K], generally called a cinema mode, for watching a movie is also used. In order to realize a plurality of reference whites having different color temperatures, it is necessary to adjust the number of colors of each color by the drive circuit. Since televisions are required to improve image quality in a balanced manner in various modes, it is preferable to eliminate factors that reduce the number of colors of each color as much as possible.
- HDTV standard high-definition broadcasting standard
- an extended color space a standard that realizes more faithful color reproducibility that is not restricted by the above standard called an extended color space will be widespread in the future, and a chromaticity design that meets the needs is required.
- Patent Document 1 A control method for suppressing color temperature and deviation within a predetermined range with respect to a change in display load factor is disclosed in Japanese Patent No. 3580732 (Patent Document 1).
- Patent Document 2 discloses (Y, Gd) Al 3 (BO 3 ): E u 3+ with improved luminance saturation characteristics as a red phosphor material.
- FIG. 10 is a graph showing the luminance saturation characteristics of the conventional embodiment.
- (Y, Gd) BO 3 : Eu is used as the phosphor material for the red phosphor layer
- Z n2 S i O 4 M n is used as the phosphor material for the green phosphor layer
- the blue phosphor layer is used.
- B a M g Al 10 O 17 as the phosphor material were used: E u.
- the luminance saturation characteristics of all the phosphors of red, green, and blue are scattered, so when correcting the white chromaticity with respect to the change in the display load factor, the number of colors of at least two colors is set. It needs to be lowered.
- the number of red and blue discharge pulses for green was reduced according to the reduction rate of the display load factor, but the number of colors including flesh color was greatly reduced and the image quality was lowered.
- Patent Document 1 mentions only the correction of green having the highest luminance saturation and the correction of blue having the smallest luminance, and red color correction is not taken into account, so that control of color temperature and deviation is not sufficient.
- Patent Document 2 does not consider the relationship with the luminance saturation characteristics of phosphors other than red phosphors.
- An object of the present invention is to provide means for realizing at least two colors substantially equal in saturation luminance characteristics of a phosphor of a plasma display panel and realizing color balance adjustment by a drive circuit with respect to a change in display load factor only in blue. is there.
- a flat display panel control method is intended for a flat display panel including phosphor layers of three different colors, and two colors of the three color phosphor layers are used.
- the characteristics of the number of display discharges and the discharge brightness of the phosphor layers are substantially the same, and the number of display discharges of the phosphor layers other than the two-color phosphor layers described above among the three-color phosphor layers is controlled.
- the discharge luminance of the flat display panel is controlled.
- the two-color phosphor layers of the target flat display panel are a red phosphor layer and a green phosphor layer, and the other phosphor layers are blue phosphor layers. It is also good.
- a plasma display panel control method includes a plasma in which a rear substrate side module including phosphor layers of three different colors and a front glass substrate side module including a display electrode are combined.
- the display panel is to be controlled, and the characteristics of the number of display discharges and the discharge luminance of the two-color phosphor layer among the three-color phosphor layers are substantially the same, and among the three-color phosphor layers
- the discharge brightness of the plasma display panel is controlled by controlling the number of display discharges of the phosphor layers other than the two-color phosphor layers.
- This plasma display panel control method may be characterized in that the two-color phosphor layers are a red phosphor layer and a green phosphor layer, and the other phosphor layers are blue phosphor layers.
- the material of the green phosphor layer is Z n2 S i O 4 : a M n
- a blue phosphor layer of material B a M g Al 10 O 17 may be characterized by an E u.
- the phosphor material of the red phosphor layer of the plasma display panel is (Y, G d ) BO 3 : E u and the material of the green phosphor layer is Z n2 S i O 4.
- M n and (Y, G d) BO 3 are those where the T b were mixed in a 35:65, a material of the blue phosphor layer B a M g Al 10 O 17 : as being a E u Also good.
- the phosphor material of the red phosphor layer of the plasma display panel is phosphor powder of (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : E u
- the green phosphor layer is made of Zn 2 S i O 4 : M n and (Y, G d ) BO 3 : T b by weight mixture ratio of the phosphor powder. 1: is obtained by mixing in 1, blue phosphor layers of material B a M g Al 10 O 17 : may be characterized by an E u.
- the phosphor material of the red phosphor layer of the plasma display panel is phosphor powder of (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : E u mixing weight ratio of 0.75: is obtained by mixing in 0.75, the green phosphor layer of material Z n2 S i O 4: M n and (Y, G d) BO 3 : a T b 0.7 : is obtained by mixing in 0.3, the blue phosphor layer of material B a M g Al 10 O 17 : may be characterized by an E u.
- the phosphor material of the red phosphor layer of the plasma display panel is phosphor powder of (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : E u
- the green phosphor layer is composed of Zn 2 S i O 4 : M n and (Y, G d ).
- the blue phosphor layer of material B a M g Al 10 O 17 may be characterized by an E u.
- FIG. 1 is a cross-sectional perspective view showing a general configuration of a PDP.
- the PDP 100 includes a front glass substrate side module and a back substrate side module.
- the front glass substrate side module is generally formed on the dielectric layer 17 and the dielectric layer 17 formed so as to cover the plurality of X electrodes 5 and Y electrodes 6 formed on the inner surface of the front glass substrate 11.
- the protective film layer 18 is exposed to the discharge space.
- the name of the front glass substrate 11 is “glass substrate”, but the material is not particularly limited.
- the material of the front glass substrate 11 may be glass, quartz glass, silicon or the like.
- the X electrode 5 and the Y electrode 6 are each composed of a transparent electrode 41 and a bus electrode 42 for reducing electric resistance.
- the X electrode 5 and Y electrode 6 without the transparent electrode 41 and the X electrode 5 and Y electrode 6 without the bus electrode 42 are also included in the range of the present invention.
- the transparent electrode 41 is made of a material such as ITO (Indium Tin Oxide).
- Bus electrodes 42 are formed, for example, C r / C u / C r ( chromium / copper / chromium) of a three-layer structure or A g (silver).
- the color of the reflection seen through the glass substrate is different. In the former, there is almost no coloring, but in the latter, the PDP may appear slightly yellow. Since coloring of the PDP deteriorates the appearance quality, it is adjusted as necessary by an optical filter disposed on the entire surface of the PDP display surface.
- the dielectric layer 17 is formed by forming a low melting point glass layer. Specifically, it is formed by applying a paste made of a low-melting glass and a binder on a substrate and baking it.
- the protective film layer 18 is provided for the purpose of preventing damage to the dielectric layer 17 due to ion collision caused by discharge during display.
- Protective film layer 18 is M g O, C a O, S r O, is such a material B a O.
- the back substrate module generally has a plurality of address electrodes A formed on the back substrate 21 in a direction crossing the display electrodes, a dielectric layer 27 covering the address electrodes A, and a dielectric between adjacent address electrodes A. It comprises a plurality of stripe-shaped barrier ribs 29 formed on the layer 27, and a phosphor layer 28 formed including a wall surface between the barrier ribs.
- the same material (material) as the front glass substrate 11 and the dielectric layer 17 in the front glass substrate side module can be used for the rear substrate 21 and the dielectric layer 27.
- the address electrode A is made of, for example, a metal layer such as element symbols Al, Cr, Cu, Ag, Au, or a three-layer structure of Cr / Cu / Cr.
- the partition walls 29 can be formed by applying a paste made of low melting point glass and a binder on the inner surface of the back substrate 21 on the dielectric layer 27, drying, and then cutting by sandblasting. Further, when a photosensitive resin is used for the binder, it can be formed by baking after exposure and development using a mask having a predetermined shape.
- the phosphor layer 28 is a phosphor that emits light when excited by plasma generated by applying a voltage to the X electrode 5, the Y electrode 6, and the address electrode A.
- the method for forming the phosphor layer 28 is not particularly limited.
- the phosphor layer 28 can be formed by applying a paste in which a phosphor is dispersed in a solution in which a binder is dissolved in a solvent between the partition walls 29 and baking it in an air atmosphere. It is necessary to use phosphors corresponding to the three primary colors as the phosphor layer 28. Those corresponding to each color are referred to as a red phosphor layer 28R, a green phosphor layer 28G, and a blue phosphor layer 28B, respectively.
- the front glass substrate side module and the rear substrate side module are sealed with a low melting point glass or the like for sealing so that the X electrode 5, the Y electrode 6 and the address electrode A are opposed to each other so as to face each other.
- a space surrounded by the front glass substrate 11, the rear substrate 21, the partition walls 29 of the rear substrate side module and the sealed outer periphery is filled with a discharge gas. Thereby, the formation of the PDP 100 is completed.
- an optical filter having general transmission characteristics as shown in FIG. FIG. 2 is a graph showing a transmission spectrum of a general optical filter for PDP.
- the phosphor film thickness of each color is adjusted in advance so that the white color of the PDP substantially matches the set value of the display device through the optical filter.
- the white color of the display device is the most used dynamic mode and standard mode, and the set value is 12000 [K] and the deviation is 0.
- the set value is 12000 [K] and the deviation is 0.
- the cinema mode is set as the main mode, it is desirable to set this chromaticity as a set value.
- the set value may be adopted so that the decrease in the number of colors due to white balance in both modes becomes substantially uniform.
- DCB is adjusted based on white with a display load factor of 100%, so that when the display load factor decreases, the phosphor with less luminance saturation matches the characteristics of the larger phosphor. Control.
- Table 1 summarizes each embodiment. See (Summary) at the end of the sentence for how to view this.
- number of colors which is expressed as a product of each color adjustment value. For example, if the value is 0.5, only half of the maximum number of gradations that can be expressed is shown. It means that there is no key.
- the PDP shown in the following embodiment is a DCB that adjusts the number of display discharges of one color phosphor layer among the three color phosphor layers to achieve an appropriate white balance.
- a control circuit for controlling is provided.
- the single-color phosphor layer referred to here is, for example, a blue phosphor, and the following embodiment will be described on the assumption of this.
- FIG. 3 is a graph showing the luminance saturation characteristics of the first embodiment.
- the luminance saturation characteristics of the red phosphor and the green phosphor are substantially the same.
- the number of blue discharge pulses may be reduced with respect to red and green according to the decrease in the display load factor. For example, when the relative luminance is set to 2.0, the number of display discharges of red and green is about 700 times. At this time, the luminance is reduced by making the number of blue display discharges slightly over 600 times. Make adjustments.
- the display load factor is adjusted to 100 [%].
- the number of colors at a display load factor of 10 [%] is 0.82 for all colors and 1.00 for skin color, and the number of gradations hardly decreases.
- the phosphors of the respective colors listed above have sufficiently good chromaticity, and the HDTV standard can be sufficiently exceeded by using the control of the present embodiment.
- the chromaticity of each color can satisfy the HDTV standard even if the transmission characteristics of the optical filter are substantially equal for each wavelength. In this case, it is not necessary to use an expensive absorbing dye for the optical filter, and there is almost no bluish color due to the dye, so that a television with good appearance quality can be obtained.
- the red phosphor of this embodiment has a short afterglow time, tailing of a moving image is less noticeable if the difference in the afterglow time is adjusted by adjusting the Mn concentration of the green phosphor. Therefore, it is preferable.
- FIG. 4 shows the red and green discharges according to the increase rate of the display load factor in order to correct the white chromaticity with respect to the change of the display load factor for the PDP using each phosphor under the conditions of the present embodiment. It is a graph showing the brightness
- the DCB adjustment value is adjusted based on the white color with a display load factor of 100 [%].
- the DCB is adjusted based on white with a display load factor of 10%.
- FIG. 5 is a graph showing the saturation luminance characteristics of the plasma display panel according to the third embodiment.
- the luminance saturation characteristics of the red phosphor and the green phosphor are substantially the same as in the first embodiment. Therefore, in the correction of the white chromaticity with respect to the change in the display load factor, there is almost no decrease in the number of red and green colors (the number of colors at the display load factor of 10 [%]: all colors 0.86, skin color 1.00). . This makes it possible to obtain a display device that is particularly excellent in skin tone gradation expression.
- This characteristic makes it possible to obtain a display device excellent in skin tone gradation expression.
- the HDTV standard can be realized even with an optical filter by the method of the present embodiment.
- FIG. 6 is a graph showing the saturation luminance characteristics of the plasma display panel according to the third embodiment.
- the luminance saturation characteristics of the red phosphor and the green phosphor are substantially the same as in the first embodiment. Therefore, in the correction of the white chromaticity with respect to the change in the display load factor, there is almost no decrease in the number of red and green colors (the number of colors at the display load factor of 10 [%]: all colors 0.88, flesh color 1.00). . This makes it possible to obtain a display device that is particularly excellent in skin tone gradation expression.
- the HDTV standard could be satisfied by including an optical filter.
- FIG. 7 is a graph showing the saturation luminance characteristics of the plasma display panel according to the fourth embodiment.
- the luminance saturation characteristics of the red phosphor and the green phosphor are substantially the same as in the first embodiment shown in FIG. Therefore, in the correction of the white chromaticity with respect to the change in the display load factor, there is almost no decrease in the number of red and green colors (the number of colors at the display load factor of 10 [%]: all colors 0.90, flesh color 1.00). . As a result, it is possible to obtain a display device that is particularly excellent in skin tone gradation expression, and in this embodiment, the HDTV standard can be satisfied by including an optical filter.
- FIG. 8 is a graph showing the saturation luminance characteristics of the plasma display panel according to the second embodiment.
- the luminance saturation characteristics of the red phosphor and the green phosphor are substantially equal. Therefore, there is almost no decrease in the number of red and green colors in the correction of white chromaticity with respect to the change in display load factor. That is, in the first embodiment (adjustment at the display load factor of 100 [%]), the number of colors at the display load factor of 10 [%] is 0.82 for all colors and 1.00 for skin color. On the other hand, in this embodiment, the number of colors at a display load factor of 10 [%] is 0.91 for all colors and 1.00 for skin color, and the number of colors as a whole improves.
- Tables 1 and 2 summarize the measurement results of the first to fifth embodiments.
- the adjustment value of DCB indicates the adjustment ratio of each color luminance by each adjustment.
- FIG. 9 is a graph showing the correlation between specific materials of the red phosphor layer and the green phosphor layer, in which (Equation 1) is graphed.
- Equation 1 it is important for control that the mixing ratios of specific materials in the red and green phosphor layers have a non-linear relationship. That is, it is important that the mixing ratio of the phosphor material is within the hatched area in FIG. Within this range, even if the white chromaticity is slightly deviated, it is not recognized by human eyes.
- the number of display discharges of the blue phosphor is controlled on the assumption that the number of red and green display discharges and the relative luminance are the same, but the blue phosphor and the other color have the same characteristics. You may adjust as follows.
- the present invention relates to the manufacture and control of plasma display panels.
- a display device using a plasma display panel employing the present invention can also be designed.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
Provided is means for substantially equalizing at least two colors for the saturation luminance characteristic of a fluorescent body of a plasma display panel and realizing color balance adjustment by a drive circuit for a change of a display load ratio only by the blue color. More specifically, (Y, Gd) PVO4: Eu is used as a material of a red fluorescent body layer (28R) and Zn2SiO4: Mn is used as the material of a green fluorescent body layer (28G). The two fluorescent bodies have a substantially identical feature of the relative luminance with respect to the number of display discharges . Accordingly, by reducing the number of display discharges of the blue fluorescent body layer (28B), it is possible to easily adjust the relative luminance.
Description
本発明はプラズマディスプレイパネルの制御、特に、プラズマディスプレイパネルの蛍光体の飽和輝度特性に関する。
The present invention relates to control of a plasma display panel, and more particularly to saturation luminance characteristics of a phosphor of the plasma display panel.
自己発光デバイスであるプラズマディスプレイパネル(PDP)の技術開発は、より高画質、高品位な方向へ進んでいる。同時に低コスト化の要求も強くなっている。高画質なPDPを提供するための課題の一つに色数(階調数)の低下の抑制が挙げられる。
The technological development of the plasma display panel (PDP), which is a self-luminous device, is proceeding in the direction of higher image quality and higher quality. At the same time, there is an increasing demand for cost reduction. One of the problems for providing a high-quality PDP is suppression of a decrease in the number of colors (the number of gradations).
PDPを用いた表示装置の表示色は、蛍光体と放電ガスそれぞれの発光色と発光強度のバランス、およびそれらの発光色を調整する光学フィルタにより決定される。ただし、表示負荷に応じて赤色、緑色、青色蛍光体の発光強度バランスが変化する場合においてはこれを駆動回路による調整で補正する必要がある。このような補正を行うと、階調が低下することにより画質が低下する。
The display color of the display device using the PDP is determined by the balance between the emission color and emission intensity of the phosphor and the discharge gas, and an optical filter that adjusts the emission color. However, when the emission intensity balance of the red, green, and blue phosphors changes according to the display load, it is necessary to correct this by adjustment by the drive circuit. When such correction is performed, the image quality deteriorates due to a decrease in gradation.
緑色蛍光体であるZn2SiO4:Mnは高輝度で色度が良いため現在のPDPにおいて主として用いられている。しかしながら、Zn2SiO4:Mnは表示負荷率が低下して放電パルス数が増加するにつれて輝度の増加率が低下する。このような特性を一般に輝度飽和特性と呼び、同蛍光体の輝度飽和は比較的大きい。
A green phosphor Z n2 S i O 4: M n is mainly used in the current PDP for chromaticity good high luminance. However, the increase rate of the brightness of Z n2 S i O 4 : M n decreases as the display load factor decreases and the number of discharge pulses increases. Such a characteristic is generally called a luminance saturation characteristic, and the luminance saturation of the phosphor is relatively large.
一方で輝度飽和の比較的小さい緑色蛍光体として(Y、Gd)BO3:Tbが挙げられる。同蛍光体はZn2SiO4:Mnに比べて駆動電圧が低いことが好ましい。しかし、(Y、Gd)BO3:Tbの発光色は黄緑色であるために単独で緑色蛍光体として使用することは困難である。従って、同蛍光体を適用する必要がある場合には、色純度の良いZn2SiO4:Mnなどと混合されることが多い。
On the other hand (Y, G d) as a relatively small green phosphor luminance saturation BO 3: T b and the like. The phosphor Z n2 S i O 4: It is preferable driving voltage is lower than the M n. However, since the emission color of (Y, G d ) BO 3 : T b is yellowish green, it is difficult to use it alone as a green phosphor. Therefore, when it is necessary to apply the same phosphor, it is often mixed with Zn 2 S i O 4 : M n or the like having good color purity.
赤色蛍光体である(Y、Gd)BO3:Euは輝度飽和が小さく高輝度かつ輝度劣化が小さく、現在のPDPにおいて主として用いられている。一方で、(Y、Gd)BO3:Euは波長約593[nm]をピークとするオレンジ色の発光を有する。このため、この蛍光体を使用したPDPを用いた表示装置では、十分な色純度の赤色を表示する目的でPDPの前面に配置される光学フィルタの中に不要なオレンジ発光を吸収する色素を含有させる必要がある。他に赤色蛍光体として用いられる(Y、Gd)PVO4:Euは、色純度が良いため光学フィルタに(Y、Gd)BO3:Euでは必要になる色素を含有させなくても十分な赤色純度を得ることができる。これによりコストを低減でき、かつ同色素によるフィルタの色付きが無くなる為に表示装置の非点灯時の反射色(物体色)の不自然な色付きを軽減することができる。また、1/10残光時間(輝度が1/10に減衰するまでの時間)が(Y、Gd)BO3:Euに比べて約1/2程度であり動画表示性能を向上できる点も好ましい。一方で、輝度飽和は(Y、Gd)BO3:Euに比べて大きく、緑色蛍光体Zn2SiO4:Mnと略同じ程度である。
The red phosphor (Y, G d ) BO 3 : E u has a small luminance saturation, a high luminance and a small luminance deterioration, and is mainly used in the current PDP. On the other hand, (Y, G d ) BO 3 : E u has orange light emission having a peak at a wavelength of about 593 [nm]. For this reason, a display device using a PDP using this phosphor contains a dye that absorbs unnecessary orange light in an optical filter disposed in front of the PDP for the purpose of displaying red with sufficient color purity. It is necessary to let In addition, since (Y, G d ) PVO 4 : E u used as a red phosphor has good color purity, the optical filter does not need to contain a dye necessary for (Y, G d ) BO 3 : E u. Sufficient red purity can be obtained. As a result, the cost can be reduced and the color of the filter due to the same pigment can be eliminated, so that the unnatural color of the reflected color (object color) when the display device is not lit can be reduced. In addition, the 1/10 afterglow time (time until the luminance is attenuated to 1/10) is about 1/2 of (Y, G d ) BO 3 : E u , and the video display performance can be improved. Is also preferable. On the other hand, luminance saturation is larger than that of (Y, G d ) BO 3 : E u , and is approximately the same as that of the green phosphor Z n2 S i O 4 : M n .
PDP用として主として用いられる青色蛍光体には、BaMgAl10O17:EuやCaMgSi2O6:Eu等があり、いずれも輝度飽和は上記の各蛍光体に比べて小さい。
The blue phosphor mainly used for the PDP, B a M g Al 10 O 17: E u and C a M g S i2 O 6 : There is E u like, both luminance saturation in each phosphor of the Smaller than that.
一般に、PDPは投入電力に上限を設けているため、表示負荷率(全セルに占める点灯セル数の比率)に応じて表示放電の回数が変化する。従って、上記の各蛍光体の輝度飽和特性の差によって、例えば白色表示における色度は表示負荷率に依存して変化する。これを補正するために、駆動回路により表示負荷率に対して各色のバランスを調整している(以下、DCB(Dynamic Color Balance)と称する)。特に、色温度方向の色度変化に対して偏差方向の色度変化は目立ちやすい。
In general, since the PDP has an upper limit on the input power, the number of display discharges varies depending on the display load factor (ratio of the number of lighted cells in all cells). Therefore, for example, the chromaticity in the white display changes depending on the display load factor due to the difference in the luminance saturation characteristics of the phosphors. To correct for this, to adjust the balance of each color to the display load factor by the drive circuit (hereinafter, referred to as DCB (D ynamic C olor B alance )). In particular, the chromaticity change in the deviation direction is more conspicuous than the chromaticity change in the color temperature direction.
駆動回路により色数に影響を与える制御として、他にホワイトバランス調整がある。同調整は、基準とする表示負荷率における白色色度を所望の値に調整するものであり、調整前後での色度差が大きいと、DCBによる調整と同様に色数の低下が大きく画質の低下が著しく問題となる。これを避けるためには、パネルの前面に配置されて色調整を担う光学フィルタと合わさった状態でのパネルの白色色度がテレビとしての設定色度になるよう各色のバランスを調整しておけば良い。各色のバランス調整には、例えば各蛍光体の膜厚を調整する。これは、一般にPDPに適用される蛍光体は高反射であり、自身が発光および反射層の役割を果すことから、蛍光体の膜厚が厚いほど高反射、高輝度になるためである。蛍光体の膜厚は、厚過ぎると放電空間を狭めるために駆動マージンが確保できなくなるので、上記の色バランスを含めて適切な値に設計される。各色の色バランスの調整方法は、他に隔壁のピッチの調整、各色の開口率の調整等があり、何れの方法を用いても良い。
Other white balance adjustment is a control that affects the number of colors by the drive circuit. In this adjustment, the white chromaticity at the reference display load factor is adjusted to a desired value. If the chromaticity difference between before and after the adjustment is large, the decrease in the number of colors is large as in the case of the adjustment by DCB. Decrease is a significant problem. To avoid this, the balance of each color should be adjusted so that the white chromaticity of the panel in combination with the optical filter that is placed in front of the panel and performs color adjustment is the chromaticity set for the TV. good. For the balance adjustment of each color, for example, the film thickness of each phosphor is adjusted. This is because phosphors generally applied to PDPs are highly reflective and play a role of light emitting and reflecting layers themselves, so that the thicker the phosphor film is, the higher the reflection and the higher the brightness. If the thickness of the phosphor is too thick, the drive space cannot be secured because the discharge space is narrowed. Therefore, the phosphor is designed to have an appropriate value including the above color balance. Other methods for adjusting the color balance of each color include adjusting the pitch of the partition walls, adjusting the aperture ratio of each color, and the like, and any method may be used.
一般に、テレビ用途での白色設定は複数選択可能である。好まれる白色の色温度は国により異なるとされ、例えば日本向けテレビでは通常は色温度が10000[K]前後に設定される一般にダイナミックモードや標準モードと呼ばれる設定で使用される他に、暗い環境で映画を観賞するための一般にシネマモードと呼ばれる色温度約6500[K]の設定も使用される。色温度の異なる複数の基準白色を実現するためには、駆動回路による各色の色数の調整が必要である。テレビとしては様々なモードでバランス良く画質を高めることが要求されるため、各色の色数を低下させる要因は可能な限り排除することが好ましい。
Generally, multiple white settings for TV use can be selected. The preferred white color temperature varies from country to country. For example, in a Japanese TV, the color temperature is usually set to around 10000 [K]. In addition to being used in a setting called dynamic mode or standard mode, it is often used in a dark environment. A setting of a color temperature of about 6500 [K], generally called a cinema mode, for watching a movie is also used. In order to realize a plurality of reference whites having different color temperatures, it is necessary to adjust the number of colors of each color by the drive circuit. Since televisions are required to improve image quality in a balanced manner in various modes, it is preferable to eliminate factors that reduce the number of colors of each color as much as possible.
また、テレビ用途では画質の中でも特に肌色の表現力を高めることが必要とされるので、特に赤と緑の色数を低下させないで使用することが好ましい。
Moreover, since it is necessary to enhance the expressiveness of the skin color especially in the image quality for television applications, it is particularly preferable to use it without reducing the number of red and green colors.
昨今ハイビジョン放送が普及する中で、テレビの3原色の色度値はハイビジョン放送の規格(HDTV規格)を満たすのが好ましいとされ、これが各色の色度設計における一つの目安となる。また、拡張色空間と呼ばれる上記規格に囚われないより忠実な色再現性を実現する規格が今後普及すると言われており、ニーズに見合った色度設計が必要になってきている。
In recent years, high-definition broadcasting has become widespread, and it is considered preferable that the chromaticity values of the three primary colors of TV satisfy the high-definition broadcasting standard (HDTV standard), which is one guideline for designing the chromaticity of each color. In addition, it is said that a standard that realizes more faithful color reproducibility that is not restricted by the above standard called an extended color space will be widespread in the future, and a chromaticity design that meets the needs is required.
表示負荷率の変化に対して色温度と偏差を所定の範囲内に抑制するための制御方法が特許第3580732号公報(特許文献1)に開示されている。
A control method for suppressing color temperature and deviation within a predetermined range with respect to a change in display load factor is disclosed in Japanese Patent No. 3580732 (Patent Document 1).
また、特開2007-262408号公報(特許文献2)には、赤色蛍光体材料として輝度飽和特性を改善した(Y、Gd)Al3(BO3):Eu
3+が開示されている。
特許第3580732号公報
特開2007-262408号公報
Japanese Patent Laid-Open No. 2007-262408 (Patent Document 2) discloses (Y, Gd) Al 3 (BO 3 ): E u 3+ with improved luminance saturation characteristics as a red phosphor material.
Japanese Patent No. 3580732 JP 2007-262408 A
従来、各色の蛍光体の輝度飽和特性がまちまちであった。
Conventionally, the luminance saturation characteristics of phosphors of various colors have varied.
図10は従来の実施の形態の輝度飽和特性を表すグラフである。
FIG. 10 is a graph showing the luminance saturation characteristics of the conventional embodiment.
この実施の形態においては、赤色蛍光体層の蛍光体材料として(Y、Gd)BO3:Eu、緑色蛍光体層の蛍光体材料としてZn2SiO4:Mn、青色蛍光体層の蛍光体材料としてBaMgAl10O17:Euを使用した。この場合、図に示す通り赤、緑、青の各蛍光体全ての輝度飽和特性がばらばらであるため、表示負荷率の変化に対する白色色度の補正を行う際には少なくとも2色の色数を低下させる必要がある。この例では表示負荷率の減少率に応じて緑に対する赤および青の放電パルス数を減少させたが、肌色を含む色数の低下が大きく画質が低下した。
In this embodiment, (Y, Gd) BO 3 : Eu is used as the phosphor material for the red phosphor layer, Z n2 S i O 4 : M n is used as the phosphor material for the green phosphor layer, and the blue phosphor layer is used. B a M g Al 10 O 17 as the phosphor material were used: E u. In this case, as shown in the figure, the luminance saturation characteristics of all the phosphors of red, green, and blue are scattered, so when correcting the white chromaticity with respect to the change in the display load factor, the number of colors of at least two colors is set. It needs to be lowered. In this example, the number of red and blue discharge pulses for green was reduced according to the reduction rate of the display load factor, but the number of colors including flesh color was greatly reduced and the image quality was lowered.
このように表示負荷率に対する白色の色補正を行うに当たり、複数色の階調を低下させてしまう問題があった。また、RGB(赤緑青)の三色のバランスをとる際に複雑な制御を要するなどの問題も生じうる。
As described above, there is a problem that the gradation of a plurality of colors is lowered when performing white color correction for the display load factor. Further, there may be a problem that complicated control is required when balancing the three colors of RGB (red, green, and blue).
特許文献1では輝度飽和が最も大きい緑色と最も小さい青色の補正のみについて言及されており、赤色の補正については考慮されていないために色温度と偏差の制御が十分ではない。
Patent Document 1 mentions only the correction of green having the highest luminance saturation and the correction of blue having the smallest luminance, and red color correction is not taken into account, so that control of color temperature and deviation is not sufficient.
また、特許文献2には赤色蛍光体以外の他の色の蛍光体の輝度飽和特性との関連性については考慮されていない。
Also, Patent Document 2 does not consider the relationship with the luminance saturation characteristics of phosphors other than red phosphors.
さらには、補正すべき色が赤色や緑色である場合、テレビとして重要とされる肌色の階調表現力が低下することが問題として存在する。
Furthermore, when the color to be corrected is red or green, there is a problem that the gradation expression power of skin color, which is important for a television, is lowered.
本発明の目的は、プラズマディスプレイパネルの蛍光体の飽和輝度特性について、少なくとも2色を略等しくし、表示負荷率の変化に対する駆動回路による色バランス調整を青色のみで実現する手段を提供することにある。
An object of the present invention is to provide means for realizing at least two colors substantially equal in saturation luminance characteristics of a phosphor of a plasma display panel and realizing color balance adjustment by a drive circuit with respect to a change in display load factor only in blue. is there.
本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。
The outline of a representative one of the inventions disclosed in the present application will be briefly described as follows.
本発明の代表的な実施の形態に関わる平面表示パネルの制御方法は、異なる三色の蛍光体層を含む平面表示パネルを対象とするものであって、三色の蛍光体層のうち二色の蛍光体層の表示放電回数と放電輝度との特性が略同一であり、三色の蛍光体層のうち既述の二色の蛍光体層以外の他の蛍光体層の表示放電回数を制御することで平面表示パネルの放電輝度を制御することを特徴とする。
A flat display panel control method according to a representative embodiment of the present invention is intended for a flat display panel including phosphor layers of three different colors, and two colors of the three color phosphor layers are used. The characteristics of the number of display discharges and the discharge brightness of the phosphor layers are substantially the same, and the number of display discharges of the phosphor layers other than the two-color phosphor layers described above among the three-color phosphor layers is controlled. Thus, the discharge luminance of the flat display panel is controlled.
この平面表示パネルの制御方法では、対象となる平面表示パネルの二色の蛍光体層が赤色蛍光体層及び緑色蛍光体層であり、他の蛍光体層が青色蛍光体層であることを特徴としても良い。
In this flat display panel control method, the two-color phosphor layers of the target flat display panel are a red phosphor layer and a green phosphor layer, and the other phosphor layers are blue phosphor layers. It is also good.
本発明の代表的な実施の形態に関わるプラズマディスプレイパネルの制御方法は、異なる三色の蛍光体層を含む背面基板側モジュールと、表示電極を含む前面ガラス基板側モジュールと、を添合するプラズマディスプレイパネルを制御対象とするものであって、三色の蛍光体層のうち二色の蛍光体層の表示放電回数と放電輝度との特性が略同一であり、三色の蛍光体層のうち二色の蛍光体層以外の他の蛍光体層の表示放電回数を制御することで該プラズマディスプレイパネルの放電輝度を制御することを特徴とする。
A plasma display panel control method according to a representative embodiment of the present invention includes a plasma in which a rear substrate side module including phosphor layers of three different colors and a front glass substrate side module including a display electrode are combined. The display panel is to be controlled, and the characteristics of the number of display discharges and the discharge luminance of the two-color phosphor layer among the three-color phosphor layers are substantially the same, and among the three-color phosphor layers The discharge brightness of the plasma display panel is controlled by controlling the number of display discharges of the phosphor layers other than the two-color phosphor layers.
このプラズマディスプレイパネルの制御方法では、二色の蛍光体層が赤色蛍光体層及び緑色蛍光体層であり、他の蛍光体層が青色蛍光体層であることを特徴としても良い。
This plasma display panel control method may be characterized in that the two-color phosphor layers are a red phosphor layer and a green phosphor layer, and the other phosphor layers are blue phosphor layers.
このプラズマディスプレイパネルの制御方法では、該プラズマディスプレイパネルの赤色蛍光体層の蛍光体材料が(Y、Gd)PVO4:Euであり、緑色蛍光体層の材料がZn2SiO4:Mnであり、青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴としても良い。
In the control method of the plasma display panel, the fluorescent material of the red phosphor layer of the plasma display panel (Y, G d) PVO 4 : a E u, the material of the green phosphor layer is Z n2 S i O 4 : a M n, a blue phosphor layer of material B a M g Al 10 O 17 : may be characterized by an E u.
このプラズマディスプレイパネルの制御方法では、該プラズマディスプレイパネルの赤色蛍光体層の蛍光体材料が(Y、Gd)BO3:Euであり、緑色蛍光体層の材料がZn2SiO4:Mnと(Y、Gd)BO3:Tbを35:65で混合したものであり、青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴としても良い。
In this plasma display panel control method, the phosphor material of the red phosphor layer of the plasma display panel is (Y, G d ) BO 3 : E u and the material of the green phosphor layer is Z n2 S i O 4. : M n and (Y, G d) BO 3 : are those where the T b were mixed in a 35:65, a material of the blue phosphor layer B a M g Al 10 O 17 : as being a E u Also good.
このプラズマディスプレイパネルの制御方法において、該プラズマディスプレイパネルの赤色蛍光体層の蛍光体材料が(Y、Gd)PVO4:Eu及び(Y、Gd)BO3:Euを蛍光体粉末の重量混合比1:1で混合したものであり、緑色蛍光体層の材料がZn2SiO4:Mn及び(Y、Gd)BO3:Tbを蛍光体粉末の重量混合比1:1で混合したものであり、青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴としても良い。
In this method for controlling a plasma display panel, the phosphor material of the red phosphor layer of the plasma display panel is phosphor powder of (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : E u The green phosphor layer is made of Zn 2 S i O 4 : M n and (Y, G d ) BO 3 : T b by weight mixture ratio of the phosphor powder. 1: is obtained by mixing in 1, blue phosphor layers of material B a M g Al 10 O 17 : may be characterized by an E u.
このプラズマディスプレイパネルの制御方法において、該プラズマディスプレイパネルの赤色蛍光体層の蛍光体材料が(Y、Gd)PVO4:Eu及び(Y、Gd)BO3:Euを蛍光体粉末の重量混合比0.75:0.75で混合したものであり、緑色蛍光体層の材料がZn2SiO4:Mn及び(Y、Gd)BO3:Tbを0.7:0.3で混合したものであり、青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴としても良い。
In this method for controlling a plasma display panel, the phosphor material of the red phosphor layer of the plasma display panel is phosphor powder of (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : E u mixing weight ratio of 0.75: is obtained by mixing in 0.75, the green phosphor layer of material Z n2 S i O 4: M n and (Y, G d) BO 3 : a T b 0.7 : is obtained by mixing in 0.3, the blue phosphor layer of material B a M g Al 10 O 17 : may be characterized by an E u.
このプラズマディスプレイパネルの制御方法において、該プラズマディスプレイパネルの赤色蛍光体層の蛍光体材料が(Y、Gd)PVO4:Eu及び(Y、Gd)BO3:Euを蛍光体粉末の重量混合比0.3:0.7で混合したものであり、緑色蛍光体層の材料が、前記緑色蛍光体層の材料がZn2SiO4:Mn及び(Y、Gd)BO3:Tbを重量混合比0.4:0.6で混合したものであり、青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴としても良い。
In this method for controlling a plasma display panel, the phosphor material of the red phosphor layer of the plasma display panel is phosphor powder of (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : E u The green phosphor layer is composed of Zn 2 S i O 4 : M n and (Y, G d ). BO 3: T b a weight mixing ratio of 0.4: is obtained by mixing in 0.6, the blue phosphor layer of material B a M g Al 10 O 17 : may be characterized by an E u.
本発明の代表的な実施の形態に関わるプラズマディスプレイパネルは、赤色蛍光体層、緑色蛍光体層及び青色蛍光体層を含み、赤色蛍光体層の材料は(Y,Gd)PVO4:Euを重量混合比X(0.00=<X=<1.00)含む混合材であり、緑色蛍光体層の材料はZnSiO4:Mnを重量混合比Y(0.00=<Y=<1.00)含む混合体であり、重量混合比X及び重量混合比Yとの間で、
Y=0.704X2―0.0568X+0.35
の式を満たすことを特徴とする。 The plasma display panel according to the exemplary embodiment of the present invention includes a red phosphor layer, a green phosphor layer, and a blue phosphor layer, and the material of the red phosphor layer is (Y, Gd) PVO 4 : Eu. It is a mixed material containing a weight mixing ratio X (0.00 = <X = <1.00), and the material of the green phosphor layer is ZnSiO 4 : Mn with a weight mixing ratio Y (0.00 = <Y = <1. 00) between the weight mixing ratio X and the weight mixing ratio Y,
Y = 0.704X 2 −0.0568X + 0.35
It satisfies the following formula.
Y=0.704X2―0.0568X+0.35
の式を満たすことを特徴とする。 The plasma display panel according to the exemplary embodiment of the present invention includes a red phosphor layer, a green phosphor layer, and a blue phosphor layer, and the material of the red phosphor layer is (Y, Gd) PVO 4 : Eu. It is a mixed material containing a weight mixing ratio X (0.00 = <X = <1.00), and the material of the green phosphor layer is ZnSiO 4 : Mn with a weight mixing ratio Y (0.00 = <Y = <1. 00) between the weight mixing ratio X and the weight mixing ratio Y,
Y = 0.704X 2 −0.0568X + 0.35
It satisfies the following formula.
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。
Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
本発明の代表的な実施の形態に関わる平面表示パネル及びプラズマディスプレイパネルの制御方法では、表示負荷率に対する白色色度の調整に関わる赤色及び緑色の階調低下が無いため、表示装置の使用上特に重要である肌色(黄色)の表現力が向上する。
In the control method of the flat display panel and the plasma display panel according to the representative embodiment of the present invention, since there is no gradation reduction of red and green relating to the adjustment of the white chromaticity with respect to the display load factor, The expression power of skin color (yellow), which is particularly important, is improved.
以下、図を用いて本発明の実施の形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の前提)
図1はPDPの一般的構成を表す断面斜視図である。 (Premise of implementation)
FIG. 1 is a cross-sectional perspective view showing a general configuration of a PDP.
図1はPDPの一般的構成を表す断面斜視図である。 (Premise of implementation)
FIG. 1 is a cross-sectional perspective view showing a general configuration of a PDP.
PDP100は前面ガラス基板側モジュールと背面基板側モジュールから構成される。
The PDP 100 includes a front glass substrate side module and a back substrate side module.
前面ガラス基板側モジュールは、一般的に、前面ガラス基板11内面に形成された複数本のX電極5及びY電極6を覆うように形成された誘電体層17、誘電体層17上に形成された放電空間に露出する保護膜層18から構成される。
The front glass substrate side module is generally formed on the dielectric layer 17 and the dielectric layer 17 formed so as to cover the plurality of X electrodes 5 and Y electrodes 6 formed on the inner surface of the front glass substrate 11. The protective film layer 18 is exposed to the discharge space.
前面ガラス基板11の名称は「ガラス基板」となっているが、その素材は特に限定するものではない。前面ガラス基板11の素材はガラス、石英ガラス、シリコンなどが考えられる。
The name of the front glass substrate 11 is “glass substrate”, but the material is not particularly limited. The material of the front glass substrate 11 may be glass, quartz glass, silicon or the like.
X電極5及びY電極6はそれぞれ透明電極41及び電気抵抗を下げるためのバス電極42から構成される。透明電極41の無いX電極5及びY電極6や、バス電極42の無いX電極5及びY電極6も本発明の射程に含まれる。
The X electrode 5 and the Y electrode 6 are each composed of a transparent electrode 41 and a bus electrode 42 for reducing electric resistance. The X electrode 5 and Y electrode 6 without the transparent electrode 41 and the X electrode 5 and Y electrode 6 without the bus electrode 42 are also included in the range of the present invention.
透明電極41はITO(Indium Tin Oxide:酸化インジウム錫)などの素材より形成される。
The transparent electrode 41 is made of a material such as ITO (Indium Tin Oxide).
バス電極42は、たとえばCr/Cu/Cr(クロム/銅/クロム)の3層構造やAg(銀)で形成される。電極材料により、ガラス基板を通して見える反射の色味が異なり、前者では、ほぼ色つきが無いが、後者ではPDPがやや黄色に見えることがある。PDPの色つきは外観品位を低下させるため、PDP表示面の全面に配される光学フィルタによって必要に応じて調整される。
Bus electrodes 42 are formed, for example, C r / C u / C r ( chromium / copper / chromium) of a three-layer structure or A g (silver). Depending on the electrode material, the color of the reflection seen through the glass substrate is different. In the former, there is almost no coloring, but in the latter, the PDP may appear slightly yellow. Since coloring of the PDP deteriorates the appearance quality, it is adjusted as necessary by an optical filter disposed on the entire surface of the PDP display surface.
誘電体層17は低融点ガラス層を形成することで構成する。具体的には、低融点ガラスとバインダとからなるペーストを基板上に塗布し、焼成することで形成する。
The dielectric layer 17 is formed by forming a low melting point glass layer. Specifically, it is formed by applying a paste made of a low-melting glass and a binder on a substrate and baking it.
保護膜層18は、表示の際の放電により生じるイオンの衝突により誘電体層17の損傷を防ぐことを目的として設けられる。保護膜層18はMgO、CaO、SrO、BaOなどを素材とする。
The protective film layer 18 is provided for the purpose of preventing damage to the dielectric layer 17 due to ion collision caused by discharge during display. Protective film layer 18 is M g O, C a O, S r O, is such a material B a O.
背面基板側モジュールは一般的に背面基板21上に前記表示電極と交差する方向に形成された複数本のアドレス電極A、アドレス電極Aを覆う誘電体層27、隣接するアドレス電極A間で誘電体層27上に形成された複数のストライプ状の隔壁29、隔壁間に壁面を含めて形成された蛍光体層28とからなる。
The back substrate module generally has a plurality of address electrodes A formed on the back substrate 21 in a direction crossing the display electrodes, a dielectric layer 27 covering the address electrodes A, and a dielectric between adjacent address electrodes A. It comprises a plurality of stripe-shaped barrier ribs 29 formed on the layer 27, and a phosphor layer 28 formed including a wall surface between the barrier ribs.
背面基板21及び誘電体層27には、前面ガラス基板側モジュールにおける前面ガラス基板11及び誘電体層17と同じ素材(材料)を使用することができる。
The same material (material) as the front glass substrate 11 and the dielectric layer 17 in the front glass substrate side module can be used for the rear substrate 21 and the dielectric layer 27.
アドレス電極Aは、たとえば元素記号Al、Cr、Cu、Ag、Auなどの金属層や、Cr/Cu/Crの3層構造からなる。
The address electrode A is made of, for example, a metal layer such as element symbols Al, Cr, Cu, Ag, Au, or a three-layer structure of Cr / Cu / Cr.
隔壁29は、背面基板21の内面に低融点ガラスとバインダからなるペーストを誘電体層27上に塗布し、乾燥した後サンドブラスト法で切削することで形成することができる。また、バインダに感光性の樹脂を使用した場合、所定形状のマスクを使用し露光及び現像した後に、焼成することでも形成可能である。
The partition walls 29 can be formed by applying a paste made of low melting point glass and a binder on the inner surface of the back substrate 21 on the dielectric layer 27, drying, and then cutting by sandblasting. Further, when a photosensitive resin is used for the binder, it can be formed by baking after exposure and development using a mask having a predetermined shape.
蛍光体層28はX電極5、Y電極6とアドレス電極Aへの電圧印加により生じたプラズマによって励起し、発光する蛍光体である。蛍光体層28の形成方法は特に限定されない。たとえば、溶媒中にバインダが溶解された溶液に蛍光体を分散させたペーストを隔壁29間に塗布し、空気雰囲気下で焼成することで蛍光体層28を形成することが可能である。なお、蛍光体層28として三原色に対応した蛍光体を用いる必要がある。各色に対応したものをそれぞれ赤色蛍光体層28R、緑色蛍光体層28G、青色蛍光体層28Bと表記する。
The phosphor layer 28 is a phosphor that emits light when excited by plasma generated by applying a voltage to the X electrode 5, the Y electrode 6, and the address electrode A. The method for forming the phosphor layer 28 is not particularly limited. For example, the phosphor layer 28 can be formed by applying a paste in which a phosphor is dispersed in a solution in which a binder is dissolved in a solvent between the partition walls 29 and baking it in an air atmosphere. It is necessary to use phosphors corresponding to the three primary colors as the phosphor layer 28. Those corresponding to each color are referred to as a red phosphor layer 28R, a green phosphor layer 28G, and a blue phosphor layer 28B, respectively.
その後、前面ガラス基板側モジュールと背面基板側モジュールを、X電極5、Y電極6とアドレス電極Aが直交するように互いの内面を対向させ、密封のため低融点ガラス等でシールする。前面ガラス基板11、背面基板21、背面基板側モジュールの隔壁29及びシールした外周に囲まれる空間に放電ガスを充填する。これによりPDP100の形成が完了する。
Thereafter, the front glass substrate side module and the rear substrate side module are sealed with a low melting point glass or the like for sealing so that the X electrode 5, the Y electrode 6 and the address electrode A are opposed to each other so as to face each other. A space surrounded by the front glass substrate 11, the rear substrate 21, the partition walls 29 of the rear substrate side module and the sealed outer periphery is filled with a discharge gas. Thereby, the formation of the PDP 100 is completed.
本発明においては、PDP100の前面に図2のような一般的な透過特性を有する光学フィルタを配置している。図2は一般的なPDP用光学フィルタの透過スペクトルを表すグラフである。本明細書において、特に記載の無い場合、PDPの白色は光学フィルタを通した、表示装置としての設定値に略一致するように予め各色の蛍光体膜厚が調整されている。本例では、設定値は表示装置の白色は最も使用されるダイナミックモード及び標準モードとし、12000[K]、偏差0とした。これにより、色温度の低いシネマモードを選択するときにはホワイトバランス調整により主として青色の色数低下が生じる。シネマモードを主モードとする場合、この色度を設定値とするのが望ましい。あるいは、両モードでのホワイトバランスによる色数低下が略均等になるように設定値を採用しても良い。
In the present invention, an optical filter having general transmission characteristics as shown in FIG. FIG. 2 is a graph showing a transmission spectrum of a general optical filter for PDP. In the present specification, unless otherwise specified, the phosphor film thickness of each color is adjusted in advance so that the white color of the PDP substantially matches the set value of the display device through the optical filter. In this example, the white color of the display device is the most used dynamic mode and standard mode, and the set value is 12000 [K] and the deviation is 0. As a result, when a cinema mode with a low color temperature is selected, the number of colors of blue mainly decreases due to white balance adjustment. When the cinema mode is set as the main mode, it is desirable to set this chromaticity as a set value. Alternatively, the set value may be adopted so that the decrease in the number of colors due to white balance in both modes becomes substantially uniform.
また、特に記載の無い場合、DCBは表示負荷率が100[%]の白色を基準として、表示負荷率が小さくなった場合に輝度飽和の少ない蛍光体が大きい蛍光体の特性に合うように調整する制御を行う。
Unless otherwise specified, DCB is adjusted based on white with a display load factor of 100%, so that when the display load factor decreases, the phosphor with less luminance saturation matches the characteristics of the larger phosphor. Control.
各実施の形態についてまとめたものが表1である。これの見方については文末の(まとめ)を参照されたい。なお、表1には「色数」の記載があるが、これは、各色調整値の積で表現され、たとえばその値が0.5であれば、最大で表現できる階調数の半分しか階調がないことを意味する。
Table 1 summarizes each embodiment. See (Summary) at the end of the sentence for how to view this. In Table 1, there is a description of “number of colors”, which is expressed as a product of each color adjustment value. For example, if the value is 0.5, only half of the maximum number of gradations that can be expressed is shown. It means that there is no key.
なお、図示してはいないが、以下の実施の形態に示されるPDPは、三色の蛍光体層のうち一色の蛍光体層の表示放電回数を調整して適切なホワイトバランスになるようにDCB制御する制御回路を備える。ここで言う一色の蛍光体層は例えば青色蛍光体であり、以下の実施の形態においてもこれを前提として説明する。
Although not shown, the PDP shown in the following embodiment is a DCB that adjusts the number of display discharges of one color phosphor layer among the three color phosphor layers to achieve an appropriate white balance. A control circuit for controlling is provided. The single-color phosphor layer referred to here is, for example, a blue phosphor, and the following embodiment will be described on the assumption of this.
(第1の実施の形態)
以下、第1の実施の形態についてグラフを用いて説明する。 (First embodiment)
Hereinafter, the first embodiment will be described using graphs.
以下、第1の実施の形態についてグラフを用いて説明する。 (First embodiment)
Hereinafter, the first embodiment will be described using graphs.
本実施の形態では、赤色蛍光体層28Rの材料として(Y、Gd)PVO4:Euを、緑色蛍光体層28Gの材料としてZn2SiO4:Mnを、青色蛍光体層28Bの材料としてBaMgAl10O17:Euの使用を想定する。図3は第1の実施の形態の輝度飽和特性を表すグラフである。
In the present embodiment, (Y, G d ) PVO 4 : E u is used as the material of the red phosphor layer 28R, Z n2 S i O 4 : M n is used as the material of the green phosphor layer 28G, and the blue phosphor layer B a M g Al 10 O 17 as a material for 28B: contemplates the use of E u. FIG. 3 is a graph showing the luminance saturation characteristics of the first embodiment.
図3からも明らかな通り、赤色蛍光体と緑色蛍光体の輝度飽和特性が略同等となる。表示負荷率が減少するにつれて、赤緑の輝度が青に対して相対的に低下する。したがって、表示負荷率の変化に対する白色色度の補正を行うためには、表示負荷率の減少に応じて赤緑に対して青の放電パルス数を減少させればよい。たとえば、相対輝度2.0にあわせようとした際には、赤色及び緑色の表示放電回数は約700回ほどであるが、このとき、青色の表示放電回数を600回強とすることで輝度の調整を図る。
As is clear from FIG. 3, the luminance saturation characteristics of the red phosphor and the green phosphor are substantially the same. As the display load factor decreases, the red-green luminance decreases relative to blue. Therefore, in order to correct the white chromaticity with respect to the change in the display load factor, the number of blue discharge pulses may be reduced with respect to red and green according to the decrease in the display load factor. For example, when the relative luminance is set to 2.0, the number of display discharges of red and green is about 700 times. At this time, the luminance is reduced by making the number of blue display discharges slightly over 600 times. Make adjustments.
この補正による赤及び緑の色数の低下はほとんど無い。これにより、特に肌色の階調表現に優れた表示装置が得られる。
こ の There is almost no decrease in the number of red and green colors due to this correction. As a result, a display device that is particularly excellent in skin tone gradation can be obtained.
具体的に、表示負荷率100[%]で調整した際のことを考える。この調整下で、表示負荷率10[%]での色数は、全色で0.82、肌色で1.00となり、ほとんど階調数の低下はおこらない。これにより、上記にあげた各色の蛍光体は十分に色度が良いので、本実施の形態の制御を用いることでHDTV規格を十分上回ることができる。
Specifically, consider the case where the display load factor is adjusted to 100 [%]. Under this adjustment, the number of colors at a display load factor of 10 [%] is 0.82 for all colors and 1.00 for skin color, and the number of gradations hardly decreases. As a result, the phosphors of the respective colors listed above have sufficiently good chromaticity, and the HDTV standard can be sufficiently exceeded by using the control of the present embodiment.
この実施の形態の変形例として、光学フィルタの透過特性を波長ごとに略同等にしても各色の色度はHDTV規格を満足させることが可能となる。この場合、光学フィルタに高価な吸収色素を使用する必要が無いほか、同色素による青み掛かった色つきがほとんど無く、外観品位の良いテレビを得ることができる。
As a modification of this embodiment, the chromaticity of each color can satisfy the HDTV standard even if the transmission characteristics of the optical filter are substantially equal for each wavelength. In this case, it is not necessary to use an expensive absorbing dye for the optical filter, and there is almost no bluish color due to the dye, so that a television with good appearance quality can be obtained.
また、本実施の形態の赤色蛍光体は残光時間が短いため、緑蛍光体のMn濃度を調整して残光時間の差が大きくなりすぎないよう設計すると、動画像の尾引きが目立ちにくくなるため好ましい。
In addition, since the red phosphor of this embodiment has a short afterglow time, tailing of a moving image is less noticeable if the difference in the afterglow time is adjusted by adjusting the Mn concentration of the green phosphor. Therefore, it is preferable.
なお、DCB制御の具体的な手法は特に本発明に特化したものを用いない。たとえば、特開2001-13920号公報記載の技術を用いて行えばよい。また、他の技術の採用も問題は無い。
It should be noted that a specific technique for DCB control is not particularly used for the present invention. For example, the technique described in Japanese Patent Laid-Open No. 2001-13920 may be used. There is no problem in adopting other technologies.
一方で、制御や制御基準を変えると上記の蛍光体を使用しても問題が生じる。図4は本実施の形態の条件の各蛍光体を用いたPDPに対して、表示負荷率の変化に対する白色色度の補正を行うため、表示負荷率の増加率に応じて赤色及び緑色の放電パルス数を減少させる制御を採用した際の輝度飽和特性を表すグラフである。
On the other hand, if the control or control standard is changed, there is a problem even if the above phosphor is used. FIG. 4 shows the red and green discharges according to the increase rate of the display load factor in order to correct the white chromaticity with respect to the change of the display load factor for the PDP using each phosphor under the conditions of the present embodiment. It is a graph showing the brightness | luminance saturation characteristic at the time of employ | adopting the control which reduces the number of pulses.
既に述べたとおり、本実施の形態ではDCBの調整値を表示負荷率100[%]の白色を基準として調整している。しかし、図4の例では表示負荷率10[%]の白色を基準としてDCBを調整したものである。
As already described, in the present embodiment, the DCB adjustment value is adjusted based on the white color with a display load factor of 100 [%]. However, in the example of FIG. 4, the DCB is adjusted based on white with a display load factor of 10%.
この場合、表示負荷率100[%]で調整したものと比べると色数が少ないだけでなく赤色及び緑色の調整を行うため肌色の階調表現力が大きく低下する。すなわち、表示負荷率100[%]を基準として調整した場合、表示負荷率10[%]での色数は全色で0.82、肌色が1.00である。一方、表示負荷率10[%]を基準として調整した場合、表示負荷率100[%]で1.00であった色数は全色及び肌色共に0.68となり、階調表現力が劣ることが分かる。
In this case, not only is the number of colors smaller than that adjusted with the display load factor of 100 [%], but also the red and green color adjustment is performed, so that the gradation expression of the skin color is greatly reduced. That is, when the display load factor is 100 [%], the number of colors at the display load factor of 10 [%] is 0.82 for all colors and the skin color is 1.00. On the other hand, when the display load factor of 10 [%] is adjusted as a reference, the number of colors that was 1.00 at the display load factor of 100 [%] is 0.68 for all colors and skin colors, resulting in poor gradation expression. I understand.
したがって、本実施の形態の採用にあっては制御の妥当性及び調整の妥当性を検討することが不可欠である。
Therefore, in adopting this embodiment, it is essential to examine the validity of control and the validity of adjustment.
なお、本実施の形態の構成において、緑蛍光体の混合比率(Y)のみを+20、+10、-10、-20%と変更して表示負荷率10%の色度が気になるか評価した。全ての条件において、表示負荷率10%における白色色度は多少ずれるものの、Yを±10%変更した場合にはその差がほとんど認識されなかった。また、Yを±20%変更した場合においては、設定値との色度差が僅かながらも感じられた。これは、表1に示す通り、表示負荷率10%での白色色度と設定色度の差が、相関色温度(Tcp)で200[K]以内かつ偏差で2[MPCD]以内であれば目立ちにくいことを示している。
In the configuration of this embodiment, only the mixing ratio (Y) of the green phosphor was changed to +20, +10, −10, −20%, and it was evaluated whether chromaticity with a display load factor of 10% was anxious. . Under all conditions, the white chromaticity at a display load factor of 10% was slightly shifted, but when Y was changed by ± 10%, the difference was hardly recognized. Further, when Y was changed by ± 20%, a slight difference in chromaticity from the set value was felt. As shown in Table 1, if the difference between the white chromaticity and the set chromaticity at a display load factor of 10% is within 200 [K] in the correlated color temperature (Tcp) and within 2 [MPCD] in deviation, It is inconspicuous.
(第2の実施の形態)
次に、第2の実施の形態について説明する。 (Second Embodiment)
Next, a second embodiment will be described.
次に、第2の実施の形態について説明する。 (Second Embodiment)
Next, a second embodiment will be described.
この実施の形態では、赤色蛍光体28Rの材料として(Y、Gd)PVO4:Eu及び(Y、Gd)BO3:Euを蛍光体粉末の重量混合比0.75:0.25で混合したもの、緑色蛍光体28Gの材料としてZn2SiO4:Mn及び(Y、Gd)BO3:Tbを蛍光体粉末の重量混合比0.7:0.3で混合したもの、青色蛍光体28Bの材料としてBaMgAl10O17:Euを使用した。図5は第3の実施の形態におけるプラズマディスプレイパネルの飽和輝度特性を表すグラフである。
In this embodiment, (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : E u are used as the material of the red phosphor 28R, and the weight mixing ratio of the phosphor powder is 0.75: 0. As a material of the green phosphor 28G, Zn 2 S i O 4 : M n and (Y, G d ) BO 3 : T b are mixed at a weight mixing ratio of phosphor powder of 0.7: 0.3. mixed ones, B a M g Al 10 O 17 as a material of the blue phosphor 28B: using E u. FIG. 5 is a graph showing the saturation luminance characteristics of the plasma display panel according to the third embodiment.
この実施の形態では、第1の実施の形態同様、赤色蛍光体と緑色蛍光体の輝度飽和特性が略同等となる。したがって、表示負荷率の変化に対する白色色度の補正において、赤色及び緑色の色数の低下はほとんど無い(表示負荷率10[%]での色数:全色0.86、肌色1.00)。これにより、特に肌色の階調表現力に優れた表示装置を得ることが可能となる。
In this embodiment, the luminance saturation characteristics of the red phosphor and the green phosphor are substantially the same as in the first embodiment. Therefore, in the correction of the white chromaticity with respect to the change in the display load factor, there is almost no decrease in the number of red and green colors (the number of colors at the display load factor of 10 [%]: all colors 0.86, skin color 1.00). . This makes it possible to obtain a display device that is particularly excellent in skin tone gradation expression.
この特性により肌色の階調表現に優れた表示装置を得ることが可能となる。また、本実施の形態の手法により光学フィルタ込みでもHDTV規格を実現することが可能となる。
This characteristic makes it possible to obtain a display device excellent in skin tone gradation expression. In addition, the HDTV standard can be realized even with an optical filter by the method of the present embodiment.
本実施の形態の構成において、緑蛍光体の混合比率(Y)のみを+20、+10、-10、-20%と変更して表示負荷率10%の色度が気になるか評価した。全ての条件において、表示負荷率10%における白色色度は多少ずれるものの、Yを±10%変更した場合にはその差がほとんど認識されなかった。また、Yを±20%変更した場合においては、設定値との色度差が僅かながらも感じられた。これは、表1に示す通り、表示負荷率10%での白色色度と設定色度の差が、相関色温度(Tcp)で200[K]以内かつ偏差で2[MPCD]以内であれば目立ちにくいことを示している。
In the configuration of this embodiment, only the mixing ratio (Y) of the green phosphor was changed to +20, +10, −10, −20%, and it was evaluated whether the chromaticity with a display load factor of 10% was anxious. Under all conditions, the white chromaticity at a display load factor of 10% was slightly shifted, but when Y was changed by ± 10%, the difference was hardly recognized. Further, when Y was changed by ± 20%, a slight difference in chromaticity from the set value was felt. As shown in Table 1, if the difference between the white chromaticity and the set chromaticity at a display load factor of 10% is within 200 [K] for the correlated color temperature (Tcp) and within 2 [MPCD] for the deviation, It is inconspicuous.
(第3の実施の形態)
以下で第3の実施の形態について説明する。 (Third embodiment)
The third embodiment will be described below.
以下で第3の実施の形態について説明する。 (Third embodiment)
The third embodiment will be described below.
この実施の形態では、赤色蛍光体28Rの材料として(Y、Gd)PVO4:Eu及び(Y、Gd)BO3:Euを蛍光体粉末の重量混合比0.5:0.5で混合したもの、緑色蛍光体28Gの材料としてZn2SiO4:Mn及び(Y、Gd)BO3:Tbを蛍光体粉末の重量混合比0.5:0.5で混合したもの、青色蛍光体28Bの材料としてBaMgAl10O17:Euを使用した。図6は第3の実施の形態におけるプラズマディスプレイパネルの飽和輝度特性を表すグラフである。
In this embodiment, (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : E u are used as the material of the red phosphor 28R, and the weight mixing ratio of the phosphor powder is 0.5: 0. 5 and the green phosphor 28G as materials of Zn 2 S i O 4 : M n and (Y, G d ) BO 3 : T b at a phosphor powder weight mixing ratio of 0.5: 0.5. mixed ones, B a M g Al 10 O 17 as a material of the blue phosphor 28B: using E u. FIG. 6 is a graph showing the saturation luminance characteristics of the plasma display panel according to the third embodiment.
この実施の形態では、第1の実施の形態同様、赤色蛍光体と緑色蛍光体の輝度飽和特性が略同等となる。したがって、表示負荷率の変化に対する白色色度の補正において、赤色及び緑色の色数の低下はほとんど無い(表示負荷率10[%]での色数:全色0.88、肌色1.00)。これにより、特に肌色の階調表現力に優れた表示装置を得ることが可能となる。
In this embodiment, the luminance saturation characteristics of the red phosphor and the green phosphor are substantially the same as in the first embodiment. Therefore, in the correction of the white chromaticity with respect to the change in the display load factor, there is almost no decrease in the number of red and green colors (the number of colors at the display load factor of 10 [%]: all colors 0.88, flesh color 1.00). . This makes it possible to obtain a display device that is particularly excellent in skin tone gradation expression.
また、本実施の形態においても光学フィルタ込みでHDTV規格を満足させることができた。
Also in this embodiment, the HDTV standard could be satisfied by including an optical filter.
本実施の形態の構成において、緑蛍光体の混合比率(Y)のみを+20、+10、-10、-20%と変更して表示負荷率10%の色度が気になるか評価した。全ての条件において、表示負荷率10%における白色色度は多少ずれるものの、Yを±10%変更した場合にはその差がほとんど認識されなかった。また、Yを±20%変更した場合においては、設定値との色度差が僅かながらも感じられた。これは、表1に示す通り、表示負荷率10%での白色色度と設定色度の差が、相関色温度(Tcp)で200[K]以内かつ偏差で2[MPCD]以内であれば目立ちにくいことを示している。
In the configuration of this embodiment, only the mixing ratio (Y) of the green phosphor was changed to +20, +10, −10, and −20%, and it was evaluated whether the chromaticity with a display load factor of 10% was anxious. Under all conditions, the white chromaticity at a display load factor of 10% was slightly shifted, but when Y was changed by ± 10%, the difference was hardly recognized. Further, when Y was changed by ± 20%, a slight difference in chromaticity from the set value was felt. As shown in Table 1, if the difference between the white chromaticity and the set chromaticity at a display load factor of 10% is within 200 [K] for the correlated color temperature (Tcp) and within 2 [MPCD] for the deviation, It is inconspicuous.
(第4の実施の形態)
以下で第4の実施の形態について説明する。 (Fourth embodiment)
The fourth embodiment will be described below.
以下で第4の実施の形態について説明する。 (Fourth embodiment)
The fourth embodiment will be described below.
この実施の形態では、赤色蛍光体28Rの材料として(Y、Gd)PVO4:Eu及び(Y、Gd)BO3:Euを蛍光体粉末の重量混合比0.3:0.7で混合したもの、緑色蛍光体28Gの材料としてZn2SiO4:Mn及び(Y、Gd)BO3:Tbを蛍光体粉末の重量混合比0.4:0.6で混合したもの、青色蛍光体28Bの材料としてBaMgAl10O17:Euを使用した。図7は第4の実施の形態におけるプラズマディスプレイパネルの飽和輝度特性を表すグラフである。
In this embodiment, (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : E u are used as the material of the red phosphor 28R, and the weight mixing ratio of the phosphor powder is 0.3: 0. 7 and green phosphor 28G as materials of Zn 2 S i O 4 : M n and (Y, G d ) BO 3 : T b at a phosphor powder weight mixing ratio of 0.4: 0.6. mixed ones, B a M g Al 10 O 17 as a material of the blue phosphor 28B: using E u. FIG. 7 is a graph showing the saturation luminance characteristics of the plasma display panel according to the fourth embodiment.
この実施の形態でも、図3に示す第1の実施の形態同様、赤色蛍光体と緑色蛍光体の輝度飽和特性が略同等となる。したがって、表示負荷率の変化に対する白色色度の補正において、赤色及び緑色の色数の低下はほとんど無い(表示負荷率10[%]での色数:全色0.90、肌色1.00)。これにより、特に肌色の階調表現力に優れた表示装置を得ることが可能となり、本実施の形態においても光学フィルタ込みでHDTV規格を満足させることができた。
Also in this embodiment, the luminance saturation characteristics of the red phosphor and the green phosphor are substantially the same as in the first embodiment shown in FIG. Therefore, in the correction of the white chromaticity with respect to the change in the display load factor, there is almost no decrease in the number of red and green colors (the number of colors at the display load factor of 10 [%]: all colors 0.90, flesh color 1.00). . As a result, it is possible to obtain a display device that is particularly excellent in skin tone gradation expression, and in this embodiment, the HDTV standard can be satisfied by including an optical filter.
本実施の形態の構成において、緑蛍光体の混合比率(Y)のみを+20、+10、-10、-20%と変更して表示負荷率10%の色度が気になるか評価した。全ての条件において、表示負荷率10%における白色色度は多少ずれるものの、Yを±10%変更した場合にはその差がほとんど認識されなかった。また、Yを±20%変更した場合においては、設定値との色度差が僅かながらも感じられた。これは、表1に示す通り、表示負荷率10%での白色色度と設定色度の差が、相関色温度(Tcp)で200[K]以内かつ偏差で2[MPCD]以内であれば目立ちにくいことを示している。
In the configuration of this embodiment, only the mixing ratio (Y) of the green phosphor was changed to +20, +10, −10, −20%, and it was evaluated whether the chromaticity with a display load factor of 10% was anxious. Under all conditions, the white chromaticity at a display load factor of 10% was slightly shifted, but when Y was changed by ± 10%, the difference was hardly recognized. Further, when Y was changed by ± 20%, a slight difference in chromaticity from the set value was felt. As shown in Table 1, if the difference between the white chromaticity and the set chromaticity at a display load factor of 10% is within 200 [K] in the correlated color temperature (Tcp) and within 2 [MPCD] in deviation, It is inconspicuous.
(第5の実施の形態)
最後に第5の実施の形態について説明する。 (Fifth embodiment)
Finally, a fifth embodiment will be described.
最後に第5の実施の形態について説明する。 (Fifth embodiment)
Finally, a fifth embodiment will be described.
本実施の形態では、赤色蛍光体層28Rの材料として(Y、Gd)BO3:Eu、緑色蛍光体28Gの材料としてZn2SiO4:Mnと(Y、Gd)BO3:Tbを0.35:0.65で混合したものを、青色蛍光体28Bの材料としてBaMgAl10O17:Euをそれぞれ使用する。図8は第2の実施の形態におけるプラズマディスプレイパネルの飽和輝度特性を表すグラフである。
In the present embodiment, (Y, G d ) BO 3 : E u is used as the material of the red phosphor layer 28R, and Z n2 S i O 4 : M n is used as the material of the green phosphor 28G and (Y, G d ) BO. 3: T b 0.35: a mixture with 0.65, blue phosphor 28B materials as B a M g Al 10 O 17 : using E u, respectively. FIG. 8 is a graph showing the saturation luminance characteristics of the plasma display panel according to the second embodiment.
この場合、図3に示す第1の実施の形態同様に、赤色蛍光体と緑色蛍光体の輝度飽和特性が略同等となる。したがって、表示負荷率の変化に対する白色色度の補正において赤色及び緑色の色数の低下がほとんど無い。すなわち、第1の実施の形態(表示負荷率100[%]における調整)では、表示負荷率10[%]での色数は、全色0.82、肌色1.00である。これに対し、本実施の形態では表示負荷率10[%]での色数は全色0.91、肌色1.00となり、全体として色数は向上する。
In this case, as in the first embodiment shown in FIG. 3, the luminance saturation characteristics of the red phosphor and the green phosphor are substantially equal. Therefore, there is almost no decrease in the number of red and green colors in the correction of white chromaticity with respect to the change in display load factor. That is, in the first embodiment (adjustment at the display load factor of 100 [%]), the number of colors at the display load factor of 10 [%] is 0.82 for all colors and 1.00 for skin color. On the other hand, in this embodiment, the number of colors at a display load factor of 10 [%] is 0.91 for all colors and 1.00 for skin color, and the number of colors as a whole improves.
本実施の形態の構成において、緑蛍光体の混合比率(Y)のみを-10、-20%と変更して表示負荷率10%の色度が気になるか評価した。全ての条件において、表示負荷率10%における白色色度は多少ずれるものの、Yを±10%変更した場合にはその差がほとんど認識されなかった。また、Yを±20%変更した場合においては、設定値との色度差が僅かながらも感じられた。これは、表1に示す通り、表示負荷率10%での白色色度と設定色度の差が、相関色温度(Tcp)で200[K]以内かつ偏差で2[MPCD]以内であれば目立ちにくいことを示している。
In the configuration of this embodiment, only the mixing ratio (Y) of the green phosphor was changed to −10 and −20%, and it was evaluated whether the chromaticity with a display load factor of 10% was anxious. Under all conditions, the white chromaticity at a display load factor of 10% was slightly shifted, but when Y was changed by ± 10%, the difference was hardly recognized. Further, when Y was changed by ± 20%, a slight difference in chromaticity from the set value was felt. As shown in Table 1, if the difference between the white chromaticity and the set chromaticity at a display load factor of 10% is within 200 [K] in the correlated color temperature (Tcp) and within 2 [MPCD] in deviation, It is inconspicuous.
(まとめ)
表1および表2は上記第1の実施の形態ないし第5の実施の形態の測定結果をまとめた表である。DCBの調整値は各調整による各色輝度の調整比を示す。 (Summary)
Tables 1 and 2 summarize the measurement results of the first to fifth embodiments. The adjustment value of DCB indicates the adjustment ratio of each color luminance by each adjustment.
表1および表2は上記第1の実施の形態ないし第5の実施の形態の測定結果をまとめた表である。DCBの調整値は各調整による各色輝度の調整比を示す。 (Summary)
Tables 1 and 2 summarize the measurement results of the first to fifth embodiments. The adjustment value of DCB indicates the adjustment ratio of each color luminance by each adjustment.
各表をまとめてみると、DCBを1色(青色)のみで可能にする赤色及び緑色の蛍光体層の材料の混合比率に次のような関係式が見出せる。
Summarizing each table, the following relational expression can be found in the mixing ratio of the red and green phosphor layer materials that enable DCB with only one color (blue).
0.704X2 - 0.0568X + 0.25 ≦ Y ≦ 0.704X2 - 0.0568X + 0.45 (式1)
X:赤蛍光体に占める(Y,Gd)PVO4:Euの混合比率
Y:緑蛍光体に占めるZnSiO4:Mnの混合比率 0.704X2-0.0568X + 0.25 ≤ Y ≤ 0.704X2-0.0568X + 0.45 (Formula 1)
X: Mixing ratio of (Y, Gd) PVO4: Eu in the red phosphor Y: Mixing ratio of ZnSiO4: Mn in the green phosphor
X:赤蛍光体に占める(Y,Gd)PVO4:Euの混合比率
Y:緑蛍光体に占めるZnSiO4:Mnの混合比率 0.704X2-0.0568X + 0.25 ≤ Y ≤ 0.704X2-0.0568X + 0.45 (Formula 1)
X: Mixing ratio of (Y, Gd) PVO4: Eu in the red phosphor Y: Mixing ratio of ZnSiO4: Mn in the green phosphor
図9は、この(式1)をグラフ化した、赤色蛍光体層及び緑色蛍光体層の特定の材質間での相関を表すグラフである。この図のように、赤色および緑色のそれぞれの蛍光体層の特定の材料の混合比率が非線形の関係を有することが制御に際して重要となる。即ち、蛍光体の材料の混合比率が図9の斜線範囲内にあることが重要である。この範囲内であれば白色色度は多少ずれていても人間の目には認識されない。
FIG. 9 is a graph showing the correlation between specific materials of the red phosphor layer and the green phosphor layer, in which (Equation 1) is graphed. As shown in this figure, it is important for control that the mixing ratios of specific materials in the red and green phosphor layers have a non-linear relationship. That is, it is important that the mixing ratio of the phosphor material is within the hatched area in FIG. Within this range, even if the white chromaticity is slightly deviated, it is not recognized by human eyes.
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更が可能であることは言うまでもない。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.
たとえば、上記実施の形態では、赤色と緑色の表示放電回数と相対輝度に関する特性が同等であるとして青色蛍光体の表示放電回数を制御したが、青色蛍光体と他の一色を同等の特性となるよう調整しても良い。
For example, in the above embodiment, the number of display discharges of the blue phosphor is controlled on the assumption that the number of red and green display discharges and the relative luminance are the same, but the blue phosphor and the other color have the same characteristics. You may adjust as follows.
本発明はプラズマディスプレイパネルの製造、及び制御に関わる。また本発明を採用したプラズマディスプレイパネルを利用した表示装置も設計可能である。
The present invention relates to the manufacture and control of plasma display panels. A display device using a plasma display panel employing the present invention can also be designed.
Claims (11)
- 異なる三色の蛍光体層を含む平面表示パネルの制御方法であって、
前記三色の蛍光体層のうち二色の蛍光体層の表示放電回数と放電輝度との特性が略同一であり、
前記三色の蛍光体層のうち前記二色の蛍光体層以外の他の蛍光体層の表示放電回数を制御することで該平面表示パネルの放電輝度を制御することを特徴とする平面表示パネルの制御方法。 A method for controlling a flat display panel including phosphor layers of different three colors,
Among the three-color phosphor layers, the characteristics of the display discharge frequency and discharge luminance of the two-color phosphor layers are substantially the same,
A flat display panel that controls the discharge luminance of the flat display panel by controlling the number of display discharges of the phosphor layers other than the two-color phosphor layers among the three-color phosphor layers. Control method. - 請求項1に記載の平面表示パネルの制御方法において、前記二色の蛍光体層が赤色蛍光体層及び緑色蛍光体層であり、前記他の蛍光体層が青色蛍光体層であることを特徴とする平面表示パネルの制御方法。 2. The method of controlling a flat display panel according to claim 1, wherein the two color phosphor layers are a red phosphor layer and a green phosphor layer, and the other phosphor layer is a blue phosphor layer. A method for controlling a flat display panel.
- 異なる三色の蛍光体層を含む背面基板側モジュールと、表示電極を含む前面ガラス基板側モジュールと、を添合するプラズマディスプレイパネルの制御方法であって、
前記三色の蛍光体層のうち二色の蛍光体層の表示放電回数と放電輝度との特性が略同一であり、
前記三色の蛍光体層のうち前記二色の蛍光体層以外の他の蛍光体層の表示放電回数を制御することで該プラズマディスプレイパネルの放電輝度を制御することを特徴とするプラズマディスプレイパネルの制御方法。 A method for controlling a plasma display panel, which combines a back substrate module including phosphor layers of different three colors and a front glass substrate module including display electrodes,
Among the three-color phosphor layers, the characteristics of the display discharge frequency and discharge luminance of the two-color phosphor layers are substantially the same,
A plasma display panel that controls the discharge luminance of the plasma display panel by controlling the number of display discharges of the phosphor layers other than the two-color phosphor layers out of the three-color phosphor layers. Control method. - 請求項3に記載のプラズマディスプレイパネルの制御方法において、前記二色の蛍光体層が赤色蛍光体層及び緑色蛍光体層であり、前記他の蛍光体層が青色蛍光体層であることを特徴とするプラズマディスプレイパネルの制御方法。 4. The method of controlling a plasma display panel according to claim 3, wherein the two-color phosphor layers are a red phosphor layer and a green phosphor layer, and the other phosphor layers are blue phosphor layers. A method for controlling a plasma display panel.
- 請求項4に記載のプラズマディスプレイパネルの制御方法において、該プラズマディスプレイパネルの前記赤色蛍光体層の蛍光体材料が(Y、Gd)PVO4:Euであり、前記緑色蛍光体層の材料がZn2SiO4:Mnであり、前記青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴とするプラズマディスプレイパネルの制御方法。 A control method of a plasma display panel according to claim 4, the fluorescent material of the red phosphor layer of the plasma display panel (Y, G d) PVO 4 : a E u, the green phosphor layer material There Z n2 S i O 4: a M n, the blue phosphor material of the layer B a M g Al 10 O 17 : controlling method for a plasma display panel, which is a E u.
- 請求項4に記載のプラズマディスプレイパネルの制御方法において、該プラズマディスプレイパネルの前記赤色蛍光体層の蛍光体材料が(Y、Gd)PVO4:Eu及び(Y、Gd)BO3:Euを蛍光体粉末の重量混合比0.3:0.7で混合したものであり、前記緑色蛍光体層の材料が、前記緑色蛍光体層の材料がZn2SiO4:Mn及び(Y、Gd)BO3:Tbを重量混合比0.4:0.6で混合したものであり、前記青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴とするプラズマディスプレイパネルの制御方法。 5. The method of controlling a plasma display panel according to claim 4, wherein the phosphor material of the red phosphor layer of the plasma display panel is (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : mixing weight ratio of the phosphor powder E u 0.3: is obtained by mixing in 0.7, the material of the green phosphor layer, the material of the green phosphor layer is Z n2 S i O 4: M n and (Y, G d) BO 3 : T b a weight mixing ratio of 0.4: is obtained by mixing in 0.6, the material of the blue phosphor layer B a M g Al 10 O 17 : in E u A method for controlling a plasma display panel, comprising:
- 請求項4に記載のプラズマディスプレイパネルの制御方法において、該プラズマディスプレイパネルの前記赤色蛍光体層の蛍光体材料が(Y、Gd)PVO4:Eu及び(Y、Gd)BO3:Euを蛍光体粉末の重量混合比0.5:0.5で混合したものであり、前記緑色蛍光体層の材料がZn2SiO4:Mn及び(Y、Gd)BO3:Tbを蛍光体粉末の重量混合比0.5:0.5で混合したものであり、前記青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴とするプラズマディスプレイパネルの制御方法。 5. The method of controlling a plasma display panel according to claim 4, wherein the phosphor material of the red phosphor layer of the plasma display panel is (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : mixing weight ratio of the phosphor powder E u 0.5: is obtained by mixing in 0.5, the material of the green phosphor layer is Z n2 S i O 4: M n and (Y, G d) BO 3 : T b phosphor powder mixing ratio by weight of 0.5: is obtained by mixing in 0.5, the blue phosphor layer of material B a M g Al 10 O 17 : and characterized in that the E u Control method for plasma display panel.
- 請求項4に記載のプラズマディスプレイパネルの制御方法において、該プラズマディスプレイパネルの前記赤色蛍光体層の蛍光体材料が(Y、Gd)PVO4:Eu及び(Y、Gd)BO3:Euを蛍光体粉末の重量混合比0.75:0.75で混合したものであり、前記緑色蛍光体層の材料がZn2SiO4:Mn及び(Y、Gd)BO3:Tbを0.7:0.3で混合したものであり、前記青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴とするプラズマディスプレイパネルの制御方法。 5. The method of controlling a plasma display panel according to claim 4, wherein the phosphor material of the red phosphor layer of the plasma display panel is (Y, G d ) PVO 4 : E u and (Y, G d ) BO 3 : mixing weight ratio of the phosphor powder E u 0.75: is obtained by mixing in 0.75, the material of the green phosphor layer is Z n2 S i O 4: M n and (Y, G d) BO 3 : the T b 0.7: is obtained by mixing in 0.3, the blue phosphor layer of material B a M g Al 10 O 17 : controlling method for a plasma display panel, characterized in that the E u .
- 請求項4に記載のプラズマディスプレイパネルの制御方法において、該プラズマディスプレイパネルの前記赤色蛍光体層の蛍光体材料が(Y、Gd)BO3:Euであり、前記緑色蛍光体層の材料がZn2SiO4:Mn及び(Y、Gd)BO3:Tbを0.35:0.65で混合したものであり、前記青色蛍光体層の材料がBaMgAl10O17:Euであることを特徴とするプラズマディスプレイパネルの制御方法。 5. The method of controlling a plasma display panel according to claim 4, wherein the phosphor material of the red phosphor layer of the plasma display panel is (Y, G d ) BO 3 : Eu , and the material of the green phosphor layer There Z n2 S i O 4: M n and (Y, G d) BO 3 : T b 0.35: is obtained by mixing in 0.65, the material of the blue phosphor layer B a M g Al A method for controlling a plasma display panel, which is 10 O 17 : Eu .
- 赤色蛍光体層、緑色蛍光体層及び青色蛍光体層を含むプラズマディスプレイパネルであって、
前記赤色蛍光体層の材料は(Y,Gd)PVO4:Euを重量混合比X(0.00=<X=<1.00)含む混合材であり、
前記緑色蛍光体層の材料はZnSiO4:Mnを重量混合比Y(0.00=<Y=<1.00)含む混合体であり、
前記重量混合比Xと前記重量混合比Yとが
0.704X2 - 0.0568X + 0.25 ≦ Y ≦ 0.704X2 - 0.0568X + 0.45
の関係を満たすことを特徴とするプラズマディスプレイパネル。 A plasma display panel comprising a red phosphor layer, a green phosphor layer and a blue phosphor layer,
The material of the red phosphor layer is a mixed material containing (Y, Gd) PVO4: Eu in a weight mixing ratio X (0.00 = <X = <1.00),
The material of the green phosphor layer is a mixture containing ZnSiO4: Mn in a weight mixing ratio Y (0.00 = <Y = <1.00),
The weight mixing ratio X and the weight mixing ratio Y are
0.704X2-0.0568X + 0.25 ≤ Y ≤ 0.704X2-0.0568X + 0.45
A plasma display panel characterized by satisfying the above relationship. - 請求項10記載のプラズマディスプレイパネルであって、
前記青色蛍光体層における表示放電回数を制御することで該平面表示パネルの放電輝度を制御する制御部を備えることを特徴とするプラズマディスプレイパネル。 The plasma display panel according to claim 10, wherein
A plasma display panel comprising a control unit for controlling the discharge luminance of the flat display panel by controlling the number of display discharges in the blue phosphor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/064316 WO2010016140A1 (en) | 2008-08-08 | 2008-08-08 | Planar display panel control method and plasma display panel control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/064316 WO2010016140A1 (en) | 2008-08-08 | 2008-08-08 | Planar display panel control method and plasma display panel control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010016140A1 true WO2010016140A1 (en) | 2010-02-11 |
Family
ID=41663369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/064316 WO2010016140A1 (en) | 2008-08-08 | 2008-08-08 | Planar display panel control method and plasma display panel control method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010016140A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1173138A (en) * | 1997-08-29 | 1999-03-16 | Hitachi Ltd | Red light emitting phosphor, and plasma display device and noble gas discharging light emitting device using it |
JP2002251962A (en) * | 2000-12-12 | 2002-09-06 | Koninkl Philips Electronics Nv | Plasma image screen having phosphor layer |
JP2003142005A (en) * | 2001-10-31 | 2003-05-16 | Hitachi Ltd | Plasma display device and image display system using the same |
JP2005140950A (en) * | 2003-11-06 | 2005-06-02 | Pioneer Plasma Display Corp | Color temperature change compensation method, image display method, and plasma display |
-
2008
- 2008-08-08 WO PCT/JP2008/064316 patent/WO2010016140A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1173138A (en) * | 1997-08-29 | 1999-03-16 | Hitachi Ltd | Red light emitting phosphor, and plasma display device and noble gas discharging light emitting device using it |
JP2002251962A (en) * | 2000-12-12 | 2002-09-06 | Koninkl Philips Electronics Nv | Plasma image screen having phosphor layer |
JP2003142005A (en) * | 2001-10-31 | 2003-05-16 | Hitachi Ltd | Plasma display device and image display system using the same |
JP2005140950A (en) * | 2003-11-06 | 2005-06-02 | Pioneer Plasma Display Corp | Color temperature change compensation method, image display method, and plasma display |
Non-Patent Citations (1)
Title |
---|
TERUO KURAI: "New explanation for Luminance Saturation", PROCEEDINGS OF THE 14TH INTERNATIONAL DISPLAY WORKSHOPS, vol. 3, 7 December 2007 (2007-12-07), pages 2151 - 2154 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100892025B1 (en) | Field emission display | |
JP3329285B2 (en) | Color plasma display panel | |
JP2006251702A (en) | Color liquid crystal display device | |
JP4740450B2 (en) | Fluorescent lamp and liquid crystal display device using the same | |
JP3576032B2 (en) | Gas discharge display | |
US20080048547A1 (en) | Plasma display device and light emitting device | |
JP3625719B2 (en) | Gas discharge display device | |
US20080042575A1 (en) | Dielectric layer, plasma display panel comprising dielectric layer, and method of fabricating dielectric layer | |
WO2010016140A1 (en) | Planar display panel control method and plasma display panel control method | |
KR19990088277A (en) | Color image display apparatus | |
US8115388B2 (en) | Plasma display device | |
JP2000348627A (en) | Substrate for alternating current plasma display panel, alternating current plasma display panel, and alternating current plasma display device | |
JP2008066161A (en) | Image display apparatus | |
KR100787429B1 (en) | Dielectric layer and plasma display panel having same | |
JPS6359506B2 (en) | ||
JP2615524B2 (en) | Gas discharge type display panel | |
EP2056329A2 (en) | Dielectric Material for Plasma Display Panel, and method of preparing the same | |
US20100156266A1 (en) | Gas discharge light emitting panel | |
KR100683769B1 (en) | Dielectric layer and plasma display panel having same | |
JPH08306326A (en) | Color cathode-ray tube | |
JP2004247166A (en) | Color image display device | |
JP2004014433A (en) | Color cathode-ray tube | |
EP1255238A1 (en) | Compensation method for improving color purity and color temperature of a plasma display panel | |
JP2009037147A (en) | Plasma display device | |
JP2009031593A (en) | Plasma display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08808837 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08808837 Country of ref document: EP Kind code of ref document: A1 |