Nothing Special   »   [go: up one dir, main page]

WO2010004764A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2010004764A1
WO2010004764A1 PCT/JP2009/003244 JP2009003244W WO2010004764A1 WO 2010004764 A1 WO2010004764 A1 WO 2010004764A1 JP 2009003244 W JP2009003244 W JP 2009003244W WO 2010004764 A1 WO2010004764 A1 WO 2010004764A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
zoom
image
correction
unit
Prior art date
Application number
PCT/JP2009/003244
Other languages
English (en)
French (fr)
Inventor
岡本晃宏
宇野哲司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010503149A priority Critical patent/JPWO2010004764A1/ja
Priority to US13/002,784 priority patent/US20110122268A1/en
Publication of WO2010004764A1 publication Critical patent/WO2010004764A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • the present invention relates to an imaging apparatus, and more particularly to an imaging apparatus having a camera shake correction function.
  • Patent Document 1 discloses a digital camera equipped with a camera shake correction function.
  • This digital camera drives the camera shake correction function when the zoom magnification is larger than the reference magnification, and stops the camera shake correction function when the zoom magnification is smaller than the reference magnification.
  • an image stabilization operation can be performed at a zoom magnification at which camera shake is conspicuous, and image shake due to camera shake can be canceled. Accordingly, it is possible to perform camera shake correction with less shaking according to the zoom magnification.
  • the digital camera disclosed in Patent Document 1 completely stops the camera shake correction function when the zoom magnification is smaller than the reference magnification. Therefore, in this case, the digital camera does not correct any user shake.
  • An imaging apparatus is an imaging apparatus capable of changing a zoom magnification, an optical system that forms a subject image, an imaging element that captures a subject image formed by the optical system, and a subject on the imaging element
  • the control unit includes: a correction unit that reduces image blur; and a control unit that selects any one of a plurality of control modes according to a zoom magnification and controls the correction unit based on the selected control mode.
  • the control unit controls the correction unit to reduce blurring of the subject image during still image shooting and not to reduce blurring of the subject image during a non-shooting period other than during still image shooting.
  • the imaging apparatus further includes a zoom lens that changes a zoom magnification by moving along an optical axis, a lens driving unit that drives the zoom lens, and a detection unit that detects a position of the zoom lens,
  • the control unit may select one of a plurality of control modes according to the detection result by the detection unit.
  • a first control mode in which the control unit controls the correction unit to continuously reduce blurring of the subject image regardless of whether or not the still image is captured and the control And a second control mode for controlling the correction unit to reduce blur of the subject image during the still image capturing and not to reduce blur of the subject image during the non-shooting period
  • the control unit may perform the second operation when the zoom lens is within a range including the wide-angle end.
  • a control mode may be selected, and the first control mode may be selected when the zoom lens is within a range including the telephoto end.
  • the optical system includes a correction lens that is movable in a plane perpendicular to the optical axis, and the correction unit drives the correction lens of the optical system in the plane, thereby
  • the control unit sets the position of the correction lens in the plane in advance.
  • the correction unit may be controlled to move to the reference position.
  • the control unit may control the correction unit to move to the center in the plane as the reference position.
  • the imaging apparatus further includes an operation unit for a user to change the zoom magnification, and the lens driving unit drives the zoom lens in response to the zoom magnification changing operation via the operation unit. While the zoom lens is being driven, the control unit may control the correction unit so as to limit a movement range of the correction lens.
  • the imaging device includes an operation unit for a user to change the zoom magnification, and a part of image data corresponding to the subject image generated based on an output from the imaging device, to the operation unit.
  • An image processing unit that enlarges according to the zoom magnification set via the control unit, and the control unit selects one of a plurality of control modes according to the zoom magnification set via the operation unit. May be.
  • the control unit As one of a plurality of control modes, the control unit generates a command value for reducing the blur of the subject image caused by the blur of the own device when capturing a still image, There is a control mode in which a command value for reducing blurring of the subject image is not generated during a non-photographing period other than during imaging.
  • the present invention can provide an imaging device capable of capturing a good-looking image while performing a certain amount of camera shake correction at any zoom magnification.
  • FIG. 1 is a block diagram illustrating a configuration of a digital camera 100.
  • FIG. 2 is a rear view of the digital camera 100.
  • FIG. 6 is a diagram illustrating a relationship between a lens position command value that the controller 210 instructs the OIS actuator 150 and the exposure state of the CCD image sensor 180 when the digital camera 100 is set to MODE1.
  • FIG. 6 is a diagram illustrating a relationship between a lens position command value that the controller 210 instructs the OIS actuator 150 and the exposure state of the CCD image sensor 180 when the digital camera 100 is set to MODE2.
  • FIG. 6 is a flowchart for explaining an example of the operation of the digital camera 100 according to the first embodiment. 6 is a flowchart for explaining control of a camera shake correction mode when a zoom operation is performed.
  • (A) is a figure which shows the maximum movable range of the correction lens when the zoom lever 260 is not operated
  • (b) is a figure which shows the movable range of the correction lens when the zoom lever 260 is operated.
  • 10 is a flowchart for explaining an example of the operation of the digital camera 100 according to the second embodiment.
  • Embodiment 1 a first embodiment when the present invention is applied to a digital still camera (hereinafter referred to as a digital camera) will be described with reference to the drawings.
  • the digital camera according to the present embodiment is a digital camera including an optical image stabilization mechanism (Optical Image Stabilizer; hereinafter referred to as “OIS”) and a gyro sensor.
  • OIS optical Image Stabilizer
  • the digital camera detects the shaking state of its own device by looking at the output from the gyro sensor.
  • the digital camera drives the OIS according to the detection result of the shaking state of the own device. Thereby, the digital camera can capture an image with less influence of camera shake by the user.
  • a camera shake correction function Such a function of capturing an image in which the influence of the user's camera shake is suppressed.
  • the present invention has been made in order to provide an imaging apparatus that can capture an image that is less affected by camera shake and has a good appearance in an imaging apparatus having a camera shake correction function.
  • FIG. 1 is a block diagram showing the configuration of the digital camera 100.
  • the digital camera 100 captures a subject image formed by an optical system including the zoom lens 110 and the like with a CCD image sensor 180.
  • the CCD image sensor 180 outputs an electrical signal corresponding to the amount of received light.
  • Image data corresponding to the subject image can be obtained by performing processing such as AD conversion on the electrical signal.
  • processing such as AD conversion on the electrical signal.
  • the CCD image sensor 180 generates image data.
  • the image data generated by the CCD image sensor 180 is subjected to various processes by the image processing unit 190 and stored in the memory card 240.
  • the image data stored in the memory card 240 can be displayed on the liquid crystal monitor 270.
  • the configuration of the digital camera 100 will be described in detail.
  • the optical system of the digital camera 100 includes a zoom lens 110, an OIS lens 140, and a focus lens 170.
  • the zoom lens 110 is moved along the optical axis of the optical system by being driven by the zoom motor 130 to enlarge or reduce the subject image.
  • the OIS lens 140 is a correction lens that can move within a plane perpendicular to the optical axis.
  • the OIS lens 140 is driven in a direction to cancel out the shake of the digital camera 100 by the OIS actuator, thereby reducing the shake of the subject image.
  • the focus lens 170 adjusts the focus of the subject image by moving along the optical axis of the optical system.
  • the zoom motor 130 drives the zoom lens 110.
  • the zoom motor 130 may be realized by a pulse motor, a DC motor, a linear motor, a servo motor, or the like.
  • the zoom motor 130 may drive the zoom lens 110 via a mechanism such as a cam mechanism or a ball screw.
  • the detector 120 detects where the zoom lens 110 exists on the optical axis.
  • the detector 120 outputs a signal related to the position of the zoom lens by a switch such as a brush in accordance with the movement of the zoom lens 110 in the optical axis direction. If the zoom motor 130 is a pulse motor, the detector 120 only detects the origin of the zoom lens 110 when the power is turned on. After detecting the origin, the controller 210 recognizes the position of the zoom lens 110 on the optical axis by recognizing the number of transmitted pulses.
  • the OIS actuator 150 drives the correction lens in the OIS lens 140 in a plane perpendicular to the optical axis.
  • the OIS actuator 150 is realized by a planar coil, an ultrasonic motor, or the like.
  • the CCD image sensor 180 captures a subject image formed by an optical system including the zoom lens 110 and generates image data.
  • the CCD image sensor 180 performs various operations such as exposure, transfer, and electronic shutter.
  • an AD converter (not shown) is integrated and mounted on the CCD image sensor 180, and an analog electric signal is converted into digital image data.
  • the image processing unit 190 performs various processes on the image data generated by the CCD image sensor 180. For example, the image processing unit 190 performs processing on the image data generated by the CCD image sensor 180 to generate image data to be displayed on the liquid crystal monitor 270 or image data to be re-stored in the memory card 240. Is generated. For example, the image processing unit 190 performs various processes such as gamma correction, white balance correction, and flaw correction on the image data generated by the CCD image sensor 180. Further, the image processing unit 190 compresses the image data with respect to the image data generated by the CCD image sensor 180 by a compression format or the like conforming to the JPEG standard. The image processing unit 190 can be realized by a DSP or a microcomputer. Further, the image processing unit 190 enlarges a part of the image data corresponding to the subject image generated based on the output from the image sensor according to the zoom magnification instructed by the user.
  • the controller 210 controls the whole.
  • the controller 210 can be realized by a semiconductor element or the like.
  • the controller 210 may be configured only by hardware, or may be realized by combining hardware and software.
  • the controller 210 is realized by a microcomputer.
  • the memory 200 functions as a work memory for the image processing unit 190 and the controller 210.
  • the memory 200 can be realized by, for example, a DRAM or a ferroelectric memory.
  • the liquid crystal monitor 270 can display an image indicated by the image data generated by the CCD image sensor 180 and an image indicated by the image data read from the memory card 240.
  • the gyro sensor 220 is composed of a vibration material such as a piezoelectric element.
  • the gyro sensor 220 vibrates a vibration material such as a piezoelectric element at a constant frequency, converts a force due to Coriolis force into a voltage, and obtains angular velocity information.
  • the controller 210 obtains angular velocity information from the gyro sensor 220, outputs a command value to the OIS actuator 150 in a direction to cancel out the shaking, and drives the OIS lens 140 to be given to the digital camera 100 by the user. Camera shake is corrected.
  • the digital camera 100 uses the gyro sensor 220 to detect the shaking of the own device due to the shaking of the user.
  • a configuration is not necessarily required.
  • two images continuously generated by the CCD image sensor 180 may be compared, and it may be determined that camera shake has occurred when all the pixels are moving. At this time, the camera shake amount may be detected from the movement amount of the same subject among the two images generated successively.
  • the memory card 240 is detachable from the card slot 230.
  • the card slot 230 can be mechanically and electrically connected to the memory card 240.
  • the memory card 240 includes a flash memory, a ferroelectric memory, and the like, and can store data.
  • the shutter button 250 receives an image capturing instruction from the user.
  • the zoom lever 260 receives a zoom magnification instruction from the user.
  • FIG. 2 is a rear view of the digital camera 100.
  • the digital camera 100 includes a shutter button 250 and a zoom lever 260 on the upper surface.
  • the shutter button 250 is provided on the upper surface of the digital camera 100 so as to be pressed.
  • the user can perform AF control and AE control by half-pressing the shutter button 250.
  • the user can capture an image by fully pressing the shutter button 250.
  • the zoom lever 260 is provided around the shutter button 250 so as to be rotated clockwise or counterclockwise.
  • the user can change the zoom magnification of the subject image by rotating the zoom lever 260. For example, when the zoom lever 260 is rotated clockwise (rightward), the subject image is enlarged, and when the zoom lever 260 is rotated counterclockwise (leftward), the subject image is reduced.
  • the digital camera 100 can perform camera shake correction by at least two methods (control modes).
  • the digital camera 100 has at least two modes, MODE1 and MODE2, as camera shake correction control modes. Hereinafter, these two modes will be described.
  • control mode corresponding to MODE2 below is included, the number of control modes is arbitrary.
  • FIG. 3 is a diagram showing the relationship between the lens position command value that the controller 210 instructs the OIS actuator 150 and the exposure state of the CCD image sensor 180 when the digital camera 100 is set to MODE1.
  • FIG. 3A is a diagram showing a change with time of the lens position command value output from the controller 210 to the OIS actuator 150.
  • FIG. 3B is a diagram showing a change in the exposure state of the CCD image sensor 180.
  • FIG. 3C is a diagram showing the occurrence time of each event.
  • the controller 210 continues the operation for the OIS actuator 150 to correct the shake of the captured image within the period from the still image capturing operation to the next still image capturing operation.
  • Such a camera shake correction mode is referred to as MODE1.
  • camera shake correction can be performed even when a still image is not being captured.
  • camera shake correction control can be performed on a through image for determining the composition of a still image.
  • the controller 210 can drive the OIS actuator 150 regardless of the exposure state of the CCD image sensor 180, so that camera shake correction can be controlled relatively easily.
  • FIG. 4 is a diagram showing the relationship between the lens position command value that the controller 210 instructs the OIS actuator 150 and the exposure state of the CCD image sensor 180 when the digital camera 100 is set to MODE2.
  • FIG. 4A is a diagram showing a change with time of the lens position command value output from the controller 210.
  • FIG. 4B is a diagram showing a change in the exposure state of the CCD image sensor 180.
  • FIG. 4C is a diagram showing the occurrence time of each event.
  • the shutter button 250 is half-pressed at time t21, the shutter button 250 is fully pressed at time t23, and the CCD image sensor 180 is exposed between time t24 and time t25.
  • the OIS actuator 150 interrupts the operation for correcting the shake of the captured image within the period from the still image capturing operation to the next still image capturing operation. That is, there is a period in which the OIS actuator 150 interrupts the operation for correcting the shake of the captured image within the period in which the CCD image sensor 180 generates the through image.
  • the “through image” means a subject image received by the CCD 180 at a timing when a still image is not taken. Since the through image is displayed as a moving image on the liquid crystal monitor 270, it is used to determine the composition of the photograph and the like before taking a still image.
  • the period for interrupting the operation for correcting the shake of the captured image in the period from the still image capturing operation to the next still image capturing operation described above is referred to as “other than the still image capturing operation”. It is defined as “non-photographing period”.
  • “At the time of still image capturing” refers to a period during which an image capturing operation is performed. More precisely, the imaging operation is performed in a period from the completion of exposure preparation after the shutter button 250 is fully pressed to the completion of exposure of the CCD image sensor 180. The timing at which the imaging operation is performed is referred to as “at the time of still image imaging”. “When exposure preparation is complete” means a point in time when focus control is completed and the OIS actuator 150 drives the OIS lens 140 to stably perform camera shake correction, from time t23 in FIG. Coming between t24. The completion of exposure means, for example, the time point t25 in FIG.
  • the imaging operation is completed in, for example, 0.1 second, it is recognized as a certain time, not a period with a certain width for humans.
  • MODE 2 is a mode having a period in which the OIS lens 140 is always driven when a still image is captured and the OIS lens 140 is not driven when a through image (moving image) is displayed.
  • the controller 210 controls the OIS actuator 150 with MODE 2
  • the correction lens is driven only when necessary for capturing a still image. Therefore, since the correction lens is not driven at other times, the power consumed by the OIS actuator 150 can be reduced.
  • the camera shake correction function is operating during the period from time t23 to t24. This is because the camera shake correction operation during the exposure period is stably performed by performing exposure after operating the camera shake correction function in advance.
  • the camera shake correction function is not deactivated (turned off) immediately after the exposure period ends, and the camera shake correction function is enabled until time t26 thereafter.
  • the camera shake correction operation is completely stably performed at least during the exposure period. Therefore, after the time t26, a non-photographing period other than during still image capturing starts. Therefore, in this operation example, “drive the correction lens only when necessary for capturing a still image” does not indicate only the operation of the camera shake correction function in the exposure period (from time t24 to time t25), but before exposure. This is a concept including a period (time t23 to time t24) and a period after exposure (after time t25).
  • the lens position command value is maintained at a constant value during a period other than the control period (t23 to t25) required for still image capturing (this period includes the above-mentioned “non-imaging period”). It is output. However, this is an example, and other values may be output.
  • the lens position command value during a period other than the control period (t23 to t25) necessary for still image capturing is set to a value smaller than the lens position command value for the control period (t23 to t25) necessary for still image capturing. It may be. That is, a control mode for reducing the amplitude driven by the correction lens may be provided.
  • a plurality of control modes in which the controller 210 controls the OIS actuator 150 is provided, and an operation mode corresponding to the above-described MODE 2 may be provided.
  • FIG. 5 is a flowchart for explaining an example of the operation of the digital camera 100.
  • the digital camera 100 determines which position the zoom lens 110 is in (S110). If it is determined that the zoom lens 110 is within the range including the telephoto end, the controller 210 controls the OIS actuator 150 with MODE1 (S120). On the other hand, when determining that the zoom lens 110 is in a range including the wide-angle end, the controller 210 controls the OIS actuator 150 with MODE2 (S130).
  • the range in which the zoom lens 110 can move is divided into two ranges (“range including the wide-angle end” and “range including the telephoto end”) at the center thereof. However, it is not always necessary to divide at the center.
  • the range in which the zoom lens 110 can move may be divided into two ranges at an arbitrary point, and one may be a “range including the wide-angle end” and the other may be a “range including the telephoto end”.
  • the reason why the range in which the zoom lens 110 can move is divided into “a range including the wide-angle end” and “a range including the telephoto end”.
  • the captured image captured by the CCD image sensor 180 is easily affected by camera shake. This is because when the zoom lens 110 is within the range including the telephoto end, a narrow range is imaged as compared to when the zoom lens 110 is within the range including the wide-angle end. Therefore, the subject moves more greatly with a slight camera shake, and the composition changes greatly. Therefore, when the zoom lens 110 is within the range including the telephoto end, the controller 210 controls the OIS actuator 150 with MODE 1 that always drives the OIS lens 140 even during the through image generation. Accordingly, the digital camera 100 can capture an image with little influence of camera shake even when the zoom lens 110 is in a range including the telephoto end.
  • contrast AF is a technique in which the position where the contrast value is the highest is the in-focus position, and is also called hill-climbing AF. That is, in contrast AF, it is necessary to acquire image data of a plurality of images before imaging, and find an image having the largest contrast value while comparing the contrast values of the image data. For this reason, when a camera shake greatly affects image capturing, the composition of the image to be captured changes in the first place, making it impossible to compare contrast values between images before and after the comparison target. As a result, it may take time for autofocus control by contrast AF. In addition, the accuracy of contrast AF may be lowered.
  • the controller 210 controls the OIS actuator 150 with MODE 1 that always drives the OIS lens 140 even during the through image generation.
  • the digital camera 100 can perform contrast AF at a relatively high speed. Further, the digital camera 100 can relatively improve the accuracy of contrast AF.
  • the controller 210 controls the OIS actuator 150 with MODE 2 that drives the correction lens of the OIS lens 140 only when necessary for capturing a still image. As described above, the controller 210 controls the OIS actuator 150 with MODE 2 so that the correction lens is driven only when it is necessary to capture a still image. Therefore, since the correction lens is not driven at other times, the power consumed by the OIS actuator 150 can be reduced.
  • FIG. 6 is a flowchart for explaining the control of the camera shake correction mode when the zoom operation is performed.
  • the digital camera 100 determines which position the zoom lens 110 is in (S210). If it is determined that the zoom lens 110 is in a range including the wide-angle end, the controller 210 controls the OIS actuator 150 with MODE2 (S230). On the other hand, when determining that the zoom lens 110 is within the range including the telephoto end, the controller 210 controls the OIS actuator 150 with MODE 1 (S220).
  • the controller 210 monitors whether or not the zoom lever 260 is operated by the user (S240). When the zoom lever 260 is operated by the user, the controller 210 controls the OIS actuator 150 to drive the correction lens within a range narrower than the range in which the correction lens of the OIS lens 140 can be driven in the normal MODE 1. (S250).
  • the correction lens of the OIS lens 140 can move within a range of L distance. That is, the maximum movable range is L.
  • the movable range of the correction lens of the OIS lens 140 changes depending on whether or not the zoom lever 260 is operated.
  • the reason why the correction lens of the OIS lens 140 is driven within a range narrower than the maximum movable range during the operation of the zoom lever 260 is that the user does not shoot during the operation of the zoom lever 260. It is because it does not care about the influence of Further, during the operation of the zoom lever 260, since the user does not perform the contrast AF operation, it is not necessary to consider the improvement of the contrast AF accuracy.
  • the zoom lens 110 When the zoom lens 110 is moved from the range including the telephoto end to the range including the wide-angle end by the operation of the zoom lever 260, the camera shake correction mode shifts from MODE1 to MODE2. At this time, it is necessary to move the correction lens of the OIS lens 140 to the center position. However, in this case, if the correction lens is moved greatly, the image is greatly shaken. Therefore, in order to reduce the movement amount of the correction lens, the OIS actuator 150 drives the correction lens of the OIS lens 140 within a narrow range during the operation of the zoom lever 260.
  • the controller 210 monitors whether or not the zoom lens 110 has moved to a range including the wide angle end (S260). If the controller 210 determines that it has moved to a range including the wide-angle end, the controller 210 shifts the camera shake correction mode from MODE1 to MODE2 (S270). When the camera shake correction mode is shifted from MODE 1 to MODE 2, the controller 210 moves the correction lens in the OIS lens 140 to the center of the OIS lens 140 (S280). This is because the correction lens of the OIS lens 140 always moves in the direction of canceling out the influence of the hand shake by the user in MODE1, whereas the shutter button 250 is fully pressed in MODE2.
  • the correction lens of the OIS lens 140 is fixed in the center, and the driving of the correction lens of the OIS lens 140 is started in a direction that cancels out the hand shake of the user in response to the shutter button 250 being fully pressed. is there. Therefore, by moving the correction lens of the OIS lens 140 to the center of the OIS lens 140 when shifting from MODE1 to MODE2, the digital camera 100 corrects camera shake in MODE2 even when the shutter button 250 is fully pressed thereafter. It can be carried out.
  • the controller 210 When the correction lens is moved to the center of the OIS lens 140, the controller 210 continues to capture the subject image in MODE2 (S290).
  • the digital camera 100 when the zoom lever 260 is operated, the digital camera 100 according to the present embodiment drives the correction lens of the OIS lens 140 in a narrower range than when the zoom lever 260 is not operated.
  • the camera shake correction mode is shifted from MODE 1 to MODE 2
  • the correction lens of the OIS lens 140 is moved to the center of the OIS lens 140
  • the distance that the correction lens moves is reduced.
  • the amount of shake of the captured image can be reduced by moving the correction lens toward the center when the camera shake correction mode is shifted.
  • the digital camera 100 moves the OIS lens 140 to the center when shifting the camera shake correction mode from MODE1 to MODE2.
  • the correction lens of the OIS lens 140 can be moved from the center, so that camera shake correction in MODE2 can be performed with a higher system. it can.
  • the digital camera 100 moves the OIS lens 140 to the center when shifting the camera shake correction mode from MODE1 to MODE2.
  • the control method at this time may move quickly to the center or gradually move to the center. These mean that the driving speed of the OIS lens 140 may be variously changed.
  • the correction lens is moved from the center of the OIS lens 140 when performing the shake correction of MODE 2 even when the user fully presses the shutter button 250 immediately after moving to MODE 2. Therefore, it is possible to perform camera shake correction.
  • the lens gradually moves to the center the correction lens does not suddenly move to the center when the mode is shifted to MODE2, so that the captured image does not shake greatly for a moment. As a result, when the user moves from MODE 1 to MODE 2, the user feels uncomfortable.
  • the digital camera 100 selects one of a plurality of control modes according to the zoom magnification, and controls the OIS lens 140 based on the selected control mode.
  • the OIS lens 140 is driven at the time of still image capturing, and at least the control mode has a period during which the OIS lens 140 is not driven during a non-photographing period (for example, when displaying a through image) other than at the time of still image capturing. Accordingly, the digital camera 100 can automatically set a better camera shake mode according to the influence of the user's camera shake.
  • the digital camera 100 includes a detector 120 that detects the position of the zoom lens 110, and the control mode of the OIS lens 140 is selected from a plurality of control modes according to the detection result by the detector 120. select.
  • the control mode includes at least a control mode in which the OIS lens 140 is driven during still image capturing and the OIS lens 140 is not driven during moving image capturing.
  • the digital camera 100 can capture an image with less influence of camera shake according to the position of the zoom lens 110.
  • the digital camera 100 drives the correction lens only when necessary for capturing a still image according to the position of the zoom lens 110. Therefore, since the correction lens is not driven at other times, the power consumed by the OIS actuator 150 can be reduced.
  • the controller 210 when the range in which the zoom lens 110 is movable is divided into two at arbitrary points, the controller 210 is within the range including the telephoto end of the zoom lens 110.
  • the OIS actuator 150 is controlled so as to drive the OIS lens 140 for a long period of time compared to the case where the OIS lens 140 is within the range including the wide-angle end.
  • the digital camera 100 can capture an image with little influence of camera shake even when the zoom lens 110 is within the range including the telephoto end.
  • the digital camera 100 drives the correction lens only when necessary for capturing a still image. Therefore, since the correction lens is not driven at other times, the power consumed by the OIS actuator 150 can be reduced.
  • the controller 210 when the range in which the zoom lens 110 is movable is divided into two at arbitrary points, the controller 210 is within the range including the telephoto end of the zoom lens 110.
  • the OIS lens 140 is controlled to be driven at all times, and when the zoom lens 110 is within a range including the wide angle end, the OIS actuator 150 is controlled to drive the OIS lens 140 for a predetermined period. It may be.
  • the digital camera 100 can capture an image with little influence of camera shake even when the zoom lens 110 is in a range including the telephoto end.
  • the digital camera 100 drives the correction lens only when necessary for capturing a still image. Therefore, since the correction lens is not driven at other times, the power consumed by the OIS actuator 150 can be reduced.
  • the OIS lens 140 is a correction lens that is movable in a plane perpendicular to the optical axis in order to correct blurring of the subject image formed on the CCD image sensor 180. is there.
  • the controller 210 responds as the zoom lens 110 moves from the telephoto end range to the range including the wide angle end.
  • the correction lens may be controlled to move to the center of the movable surface.
  • the correction lens of the OIS lens 140 can be moved from the center, so that camera shake correction in MODE2 can be performed with higher accuracy. It can be carried out.
  • the digital camera 100 further includes a zoom lever 260 that receives an operation by the user.
  • the zoom motor 130 drives the zoom lens 110 in response to the zoom lever 260 accepting an operation by the user, and the OIS actuator 150 is an OIS lens when the zoom lever 260 accepts an operation by the user.
  • the driving range for driving 140 is suppressed.
  • Embodiment 2 A second embodiment when the present invention is applied to a digital still camera (hereinafter referred to as a digital camera) will be described below with reference to the drawings. Note that description of parts common to the digital camera 100 according to the first embodiment is omitted. In addition, a common configuration with the digital camera 100 according to the first embodiment will be described using the same reference numerals. For convenience, the digital camera according to the present embodiment is also described with reference numeral 100.
  • the digital camera according to the present embodiment does not include the zoom lens 110, the detector 120, and the zoom motor 130.
  • the image processing unit 190 can perform electronic zoom processing.
  • the image processing unit 190 electronically enlarges or reduces the image data generated by the CCD image sensor 180.
  • the image processing unit 190 appropriately performs processes such as a part of the image data cutout process, a thinning process, and an interpolation process on the image data generated by the CCD image sensor 180.
  • the image processing unit 190 can convert the resolution of the image data.
  • FIG. 8 is a flowchart for explaining an example of the operation of the digital camera 100.
  • the controller 210 determines the cut-out zoom magnification of the image data generated by the image processing unit 190 (S310). In other words, the controller 210 determines whether or not the image data generated by the CCD image sensor 180 is electronically zoomed by the image processing unit 190. It is determined whether or not the threshold value is exceeded (S310). Here, any value may be used for the predetermined threshold. If the controller 210 determines that the cut-out zoom magnification of the image data generated by the image processing unit 190 exceeds a predetermined threshold value, the controller 210 controls the OIS actuator 150 to be driven by MODE 1 (S320).
  • the controller 210 controls the OIS actuator 150 to be driven by MODE 2 (S330).
  • the threshold value is set to double in a digital camera with a wide-angle end of 25 mm. It is MODE2 until the zoom magnification exceeds 2 times, and when the zoom magnification exceeds 2 times (which means that the focal length is 50 mm), the control mode MODE2 is switched to the MODE1.
  • the focal length is proportional to the zoom magnification.
  • the controller 210 controls the OIS actuator 150 with MODE 1 that always drives the OIS lens 140 even during the through image generation. Accordingly, the digital camera 100 can capture an image with little influence of camera shake even when the cut-out zoom magnification is higher than a predetermined threshold.
  • contrast AF sin-called hill-climbing AF
  • the controller 210 controls the OIS actuator 150 with MODE 1 that always drives the OIS lens 140 even during the through image generation.
  • the digital camera 100 can perform contrast AF at a relatively high speed.
  • contrast AF when performing electronic zoom, if contrast AF is performed using image data before clipping, contrast AF can be performed at a relatively high speed.
  • the AF frame is set for a certain range of pixels of the CCD image sensor 180, and the pixel values of those pixels are used.
  • the AF frame set in the image data before cutting out is enlarged as a part of the image is cut out and enlarged. Therefore, the size of the AF frame indicating the focus position changes according to the cut-out zoom magnification.
  • this is not preferable when the electronic zoom is used as an extension of the optical zoom. Therefore, when contrast AF is performed based only on image data that has been cut out of the captured image data, the contrast AF can be performed at a relatively high speed by performing control as in the digital camera 100 according to the present embodiment. .
  • the controller 210 controls the OIS actuator 150 with MODE 2 that drives the correction lens of the OIS lens 140 only when necessary for capturing a still image. As described above, the controller 210 controls the OIS actuator 150 with MODE 2 so that the correction lens is driven only when it is necessary to capture a still image. Therefore, since the correction lens is not driven at other times, the power consumed by the OIS actuator 150 can be reduced.
  • the digital camera 100 has a plurality of control modes for the OIS lens 140 according to the enlargement magnification when a part of the image data generated by the CCD image sensor 180 is cut out and enlarged. Select from the control modes.
  • a control mode the OIS lens 140 is driven when a still image is captured, and the OIS lens 140 is not driven during a non-photographing period (for example, when a through image is displayed) other than when a still image is captured.
  • the digital camera 100 can capture an image with little influence of camera shake even when the cut-out zoom magnification is higher than a predetermined threshold.
  • the digital camera 100 drives the correction lens only when necessary for capturing a still image. As a result, since the digital camera 100 does not drive the correction lens at other times, the power consumed by the OIS actuator 150 can be reduced.
  • the correction lens of the OIS lens 140 when the zoom lens 110 moves and moves from the range including the telephoto end to the range including the wide-angle end, the correction lens of the OIS lens 140 is moved to the center.
  • the correction lens when the zoom lens 110 moves from the range including the telephoto end to the range including the wide-angle end, the correction lens may be fixed at a position where the correction lens of the OIS lens 140 is located.
  • the zoom lens 110 when the zoom lens 110 exists in a range including the telephoto end and the zoom operation is received from the user, the movement amount of the correction lens in MODE 1 is always suppressed.
  • the zoom lens 110 may be configured to suppress the movement amount of the correction lens only when the zoom lens 110 is in a range including the telephoto end and in the vicinity of an arbitrary point for switching between MODE1 and MODE2. .
  • the present invention can also be applied to an imaging apparatus capable of performing both optical zoom and electronic zoom.
  • the focal length of the zoom lens 110 is converted into the focal length of a 35 (mm) photographic film based on the size of the CCD image sensor 180, and the focal length converted to 35 (mm) is multiplied by the cut-out magnification.
  • the value thus obtained exceeds a predetermined threshold value, it is possible to configure whether to use MODE1 or MODE2 as a camera shake correction mode.
  • the electronic zoom when the zoom lens 110 reaches the telephoto end by the optical zoom, when performing further zooming, the electronic zoom may be performed.
  • the camera shake correction control mode can be switched from MODE2 to MODE1 during the optical zoom, and can be always controlled as MODE1 during the electronic zoom.
  • the control of the controller 210 with respect to the detector 120, the image processing unit 190, and the OIS actuator 150 becomes simple.
  • the optical zoom may always operate in MODE2, and may operate in MODE1 above the threshold magnification in the magnification range of the electronic zoom after the optical zoom. In either case, the control mode is switched depending on the magnification or the focal length.
  • the range in which the zoom lens 110 is movable is divided into two ranges, and the control method of the OIS lens 140 is different for each range.
  • the range in which the zoom lens 110 is movable may be divided into three or four, and the control method of the OIS lens 140 may be different for each range.
  • the division method is, for example, equal division.
  • the range in which the zoom lens 110 is movable may be divided into a plurality of ranges, and the control method of the OIS lens 140 may be adjusted for each range.
  • FIG. 1 illustrates an optical system having a three-group configuration
  • a lens configuration having another group configuration may be used.
  • the zoom lens 110 is a component of the optical system, but neither the OIS lens 140 nor the OIS actuator 150 is an essential component.
  • a camera shake correction may be performed by providing an actuator that drives the position of the CCD image sensor 180 in a direction that cancels the camera shake of the user.
  • the lenses 110 and 170 constituting the optical system are described as one lens in the drawing. However, each of the lenses 110 and 170 may be a lens group including a plurality of lenses.
  • the CCD image sensor 180 is exemplified as the imaging means, but the present invention is not limited to this.
  • it may be composed of a CMOS image sensor or an NMOS image sensor.
  • the image processing unit 190 and the controller 210 may be configured by one semiconductor chip or may be configured by separate semiconductor chips.
  • controller 210 When the controller 210 is realized by a microcomputer, the processing described using the flowchart in the attached drawings can be realized as a program executed by the microcomputer. Such a computer program is recorded on a recording medium such as a CD-ROM and distributed as a product to the market, or transmitted through an electric communication line such as the Internet.
  • an optical system for forming a subject image An image sensor for capturing the subject image; A sensor for detecting blur of the device itself; A drive unit that is provided for the optical system or the image sensor and drives the optical system or the image sensor; A control unit that generates a command value for driving the drive unit based on the detected shake of the own device, and
  • the optical system has a zoom lens that changes the zoom magnification of the subject image by moving along the optical axis, The control unit selects one of a plurality of control modes based on the zoom magnification or focal length determined according to the position of the zoom lens, and generates the command value based on the selected control mode.
  • the control unit As one of the plurality of control modes, the control unit generates a command value for reducing blurring of the subject image due to blurring of the subject apparatus during still image capturing, and during the still image capturing.
  • An imaging apparatus that includes a control mode that does not generate a command value for reducing blurring of the subject image during a non-shooting period other than.
  • the said control part is an imaging device of the said item (1) which specifies the said zoom magnification or the said focal distance based on the detection result of the position of the said zoom lens.
  • the imaging device captures the subject image by exposure
  • the control unit generates a command value for reducing blurring of the subject image during a period from the start of the preparation for the exposure to the completion of the exposure, which is at the time of capturing the still image.
  • the imaging device according to item (2).
  • Control mode A second control mode in which the control unit generates a command value for continuously reducing blurring of the subject image regardless of whether or not the still image is being captured.
  • the control unit selects the first control mode when the zoom lens is in a range including the wide-angle end, and selects the second control mode when the zoom lens is in a range including the telephoto end.
  • the imaging device according to item (3), which is selected.
  • the control unit has a different length of time for reducing blur of the subject image depending on whether the zoom lens is in a range including the wide-angle end or whether the zoom lens is in a range including the telephoto end.
  • the control unit causes the subject image to blur for a longer time than when the zoom lens is in a range including the wide-angle end.
  • the control unit instructs to continuously reduce blurring of the subject image regardless of whether or not the still image is being captured.
  • the optical system includes a correction lens that is movable in a plane perpendicular to the optical axis
  • the drive unit drives the correction lens of the optical system in the plane based on the command value
  • the range in which the zoom lens can be driven is divided into a range including a telephoto end and a range including a wide-angle end
  • the control unit When the zoom lens moves from a range including the telephoto end to a range including the wide-angle end, the control unit generates a command value for moving the position of the correction lens to a predetermined reference position in the plane.
  • the imaging device according to item (2).
  • the apparatus further includes an operation unit for the user to change the zoom magnification,
  • the lens driving unit drives the zoom lens in response to the zoom magnification changing operation via the operation unit,
  • an operation unit for a user to change the zoom magnification An image processing unit that expands a part of the image data corresponding to the subject image generated based on the output from the imaging element in accordance with the zoom magnification;
  • the said control part is an imaging device of the said item (2) which specifies the said zoom magnification or the said focal distance based on the change operation of the said zoom magnification via the said operation part.
  • an optical system for forming a subject image An image sensor for capturing the subject image; A sensor for detecting blur of the device itself; An image processing unit that generates a part of image data corresponding to the subject image generated based on an output from the image sensor according to a zoom magnification; A drive unit that is provided for the optical system or the image sensor and drives the optical system or the image sensor; A control unit that generates a command value for driving the drive unit based on the detected shake of the own device, and The control unit selects one of a plurality of control modes based on the zoom magnification or focal length determined according to the zoom magnification, and generates the command value based on the selected control mode, As one of the plurality of control modes, the control unit generates a command value for reducing blurring of the subject image due to blurring of the subject apparatus during still image capturing, and during the still image capturing.
  • An imaging apparatus that includes a control mode that does not generate a command value for reducing blurring of the subject image during a non-shooting
  • the present invention can be applied to a digital still camera or a movie.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

 いずれのズーム倍率によってもある程度の手振れ補正を行いつつ、ある程度の省電力を実現可能な撮像装置を提供することを目的とする。  ズーム倍率を変更可能な撮像装置は、被写体像を形成する光学系と、光学系で形成される被写体像を撮像する撮像素子と、撮像素子上における被写体像のぶれを軽減する補正部と、ズーム倍率に応じて複数の制御モードの中からいずれかを選択し、選択した制御モードに基づいて補正部を制御する制御部とを備えている。制御モードとして、制御部が、静止画撮像時に被写体像のぶれを軽減し、静止画撮像時以外の非撮影期間中には被写体像のぶれを軽減しないよう補正部を制御する制御モードを少なくとも有している。

Description

撮像装置
 本発明は撮像装置に関し、特に、手振れ補正機能を有する撮像装置に関する。
 近年、手振れ補正機能を搭載したカメラの普及が進んでいる。
 たとえば特許文献1は、手振れ補正機能を搭載したデジタルカメラを開示する。このデジタルカメラは、ズーム倍率が基準の倍率より大きい場合には、手振れ補正機能を駆動させ、ズーム倍率が基準の倍率より小さい場合には、手振れ補正機能を停止させる。手振れの目立たないズーム倍率では防振動作を強制的にオフすることにより、防振動作に起因する不自然な画像の揺れの発生を防止できる。また、手振れが目立つズーム倍率では防振動作を行い、手振れに起因する画像の揺れをキャンセルできる。これにより、ズーム倍率に応じた、揺れの少ない手振れ補正を行うことができる。
特開2005-195656号公報
 しかしながら、特許文献1に開示されているデジタルカメラは、ズーム倍率が基準の倍率より小さい場合には、手振れ補正機能を完全に停止させる。従って、この場合において、このデジタルカメラは、使用者の手振れを一切補正しない。
 手振れが目立たない倍率であるとしても、手振れの補正が必要な状況も十分想定される。そのような状況下で手振れが補正されなければ、被写体がぶれて撮影されてしまう。そのような撮影の失敗は、使用者にとって取り返しのつかない事態を招く。
 本発明は、いずれのズーム倍率によってもある程度の手振れ補正を行いつつ、見栄えの良い画像を撮像可能な撮像装置を提供することを目的とする。
 本発明による撮像装置は、ズーム倍率を変更可能な撮像装置であって、被写体像を形成する光学系と、前記光学系で形成される被写体像を撮像する撮像素子と、前記撮像素子上における被写体像のぶれを軽減する補正部と、ズーム倍率に応じて複数の制御モードの中からいずれかを選択し、前記選択した制御モードに基づいて前記補正部を制御する制御部とを備え、前記制御モードとして、前記制御部が、静止画撮像時に前記被写体像のぶれを軽減し、前記静止画撮像時以外の非撮影期間中には前記被写体像のぶれを軽減しないよう前記補正部を制御する制御モードを少なくとも有する。
 前記撮像装置は、光軸に沿って移動することによりズーム倍率を変更するズームレンズと、前記ズームレンズを駆動するレンズ駆動部と、前記ズームレンズの位置を検出する検出部とをさらに備え、前記制御部は、前記検出部による検出結果に応じて複数の制御モードの中からいずれかを選択してもよい。
 前記複数の制御モードとして、前記制御部が、前記静止画撮像時か否かにかかわらず、前記被写体像のぶれを継続して軽減するよう前記補正部を制御する第1制御モードと、前記制御部が、前記静止画撮像時に前記被写体像のぶれを軽減し、前記非撮影期間中には前記被写体像のぶれを軽減しないよう前記補正部を制御する第2制御モードとが含まれており、前記ズームレンズが駆動可能な範囲を、望遠端を含む範囲と広角端を含む範囲とに区分したとき、前記制御部は、前記ズームレンズが前記広角端を含む範囲内にあるときは前記第2制御モードを選択し、前記ズームレンズが前記望遠端を含む範囲内にあるときは前記第1制御モードを選択してもよい。
 前記光学系は、前記光軸に垂直の面内で移動可能である補正レンズを有しており、前記補正部は、前記光学系の補正レンズを前記面内で駆動させることにより、前記撮像素子上における被写体像のぶれを軽減し、前記ズームレンズが、前記望遠端を含む範囲から広角端を含む範囲に移動すると、前記制御部は、前記補正レンズの位置を前記面内に予め定められた基準位置に移動させるよう前記補正部を制御してもよい。
 前記制御部は、前記基準位置として、前記面内の中心に移動させるよう前記補正部を制御してもよい。
 前記撮像装置は、使用者が前記ズーム倍率を変更するための操作部をさらに備え、前記レンズ駆動部は、前記操作部を介した前記ズーム倍率の変更操作に応じて、前記ズームレンズを駆動し、前記ズームレンズが駆動されている間は、前記制御部は、前記補正レンズの移動範囲を制限するように前記補正部を制御してもよい。
 前記撮像装置は、使用者が前記ズーム倍率を変更するための操作部と、前記撮像素子からの出力に基づいて生成された、前記被写体像に対応する画像データの一部を、前記操作部を介して設定されたズーム倍率に応じて拡大する画像処理部とをさらに備え、前記制御部は、前記操作部を介して設定されたズーム倍率に応じて複数の制御モードの中からいずれかを選択してもよい。
 本発明によれば、複数の制御モードのうちの一つとして、制御部が、静止画撮像時に自装置のぶれに起因する前記被写体像のぶれを軽減させるための指令値を生成し、静止画撮像時以外の非撮影期間中には被写体像のぶれを軽減させるための指令値を生成しない制御モードを有している。これにより、本発明は、いずれのズーム倍率によってもある程度の手振れ補正を行いつつ、見栄えの良い画像を撮像可能な撮像装置を提供することができる。
デジタルカメラ100の構成を示すブロック図である。 デジタルカメラ100の背面図である。 デジタルカメラ100がMODE1に設定されている場合に、コントローラー210がOISアクチュエータ150に対して指示するレンズ位置指令値とCCDイメージセンサー180の露光状態との関係を示す図である。 デジタルカメラ100がMODE2に設定されている場合に、コントローラー210がOISアクチュエータ150に対して指示するレンズ位置指令値とCCDイメージセンサー180の露光状態との関係を示す図である。 実施形態1によるデジタルカメラ100の動作の一例を説明するためのフローチャートである。 ズーム操作がされた場合の手振れ補正モードの制御を説明するためのフローチャートである。 (a)はズームレバー260が操作されていない場合の補正レンズの最大可動範囲を示す図であり、(b)はズームレバー260が操作された場合の補正レンズの可動範囲を示す図である。 実施形態2によるデジタルカメラ100の動作の一例を説明するためのフローチャートである。
〔1.実施の形態1〕
 以下、本発明をデジタルスチルカメラ(以下、デジタルカメラ)に適用した場合の実施の形態1について図面を参照しながら説明する。
 〔1-1.概要〕
 本実施形態にかかるデジタルカメラは、光学式手振れ補正機構(Optical Image Stabilizer;以下「OIS」と記述する。)とジャイロセンサーとを備えるデジタルカメラである。デジタルカメラは、ジャイロセンサーからの出力を見ることにより自装置の揺れ状態を検出する。デジタルカメラは、自装置の揺れ状態の検出結果に応じてOISを駆動する。これにより、デジタルカメラは、使用者による手振れの影響が少ない画像を撮像することができる。このような使用者の手振れの影響を抑えた画像を撮像する機能を手振れ補正機能という。
 本発明は、手振れ補正機能を有する撮像装置において、手振れの影響が少なく、かつ、見栄えの良い画像を撮像可能にする撮像装置を提供するためになされたものである。
 〔1-2.構成〕
  〔1-2-1.電気的構成〕
 本実施形態にかかるデジタルカメラの電気的構成について、図1を用いて説明する。
 図1は、デジタルカメラ100の構成を示すブロック図である。デジタルカメラ100は、ズームレンズ110等からなる光学系により形成された被写体像をCCDイメージセンサー180で撮像する。CCDイメージセンサー180は、受けた光の量に応じた電気信号を出力する。この電気信号に対し、AD変換などの処理を行うことにより、被写体像に対応する画像データを得ることができる。説明の便宜上、以下では、CCDイメージセンサー180が画像データを生成すると説明する。
 CCDイメージセンサー180で生成された画像データは、画像処理部190で各種処理が施され、メモリカード240に格納される。また、メモリカード240に格納された画像データは、液晶モニタ270で表示可能である。以下、デジタルカメラ100の構成を詳細に説明する。
 デジタルカメラ100の光学系は、ズームレンズ110、OISレンズ140、フォーカスレンズ170を含む。ズームレンズ110は、ズームモータ130によって駆動されることにより、光学系の光軸に沿って移動され、被写体像を拡大又は縮小する。OISレンズ140は、内部に光軸に垂直な面内で移動可能な補正レンズである。OISレンズ140は、OISアクチュエータによってデジタルカメラ100の振れを相殺する方向に駆動されることにより、被写体像の振れを低減する。フォーカスレンズ170は、光学系の光軸に沿って移動することにより、被写体像の焦点を調整する。
 ズームモータ130は、ズームレンズ110を駆動する。ズームモータ130は、パルスモータやDCモータ、リニアモータ、サーボモータなどで実現してもよい。ズームモータ130は、カム機構やボールネジなどの機構を介してズームレンズ110を駆動するようにしてもよい。検出器120は、ズームレンズ110が光軸上でどの位置に存在するのかを検出する。検出器120は、ズームレンズ110の光軸方向への移動に応じて、ブラシ等のスイッチによりズームレンズの位置に関する信号を出力する。なお、ズームモータ130がパルスモータである場合には、検出器120は、電源ON時にズームレンズ110の原点検出のみを行う。原点検出後においては、コントローラー210は、発信したパルス数を認識することにより、ズームレンズ110の光軸上における位置を認識する。
 OISアクチュエータ150は、OISレンズ140内の補正レンズを光軸と垂直な面内で駆動させる。OISアクチュエータ150は、平面コイルや超音波モータなどで実現される。
 CCDイメージセンサー180は、ズームレンズ110等からなる光学系で形成された被写体像を撮像して、画像データを生成する。CCDイメージセンサー180は、露光、転送、電子シャッタなどの各種動作を行う。なお、本実施形態では、CCDイメージセンサー180にAD変換器(図示せず)が一体化されて実装されており、アナログ形式の電気信号をデジタル形式の画像データに変換する。
 画像処理部190は、CCDイメージセンサー180で生成された画像データに対して各種の処理を施す。たとえば画像処理部190は、CCDイメージセンサー180で生成された画像データに対して処理を施し、液晶モニタ270に表示するための画像データを生成したり、メモリカード240に再格納するための画像データを生成する。例えば、画像処理部190は、CCDイメージセンサー180で生成された画像データに対してガンマ補正やホワイトバランス補正、傷補正などの各種処理を行う。また、画像処理部190は、CCDイメージセンサー180で生成された画像データに対して、JPEG規格に準拠した圧縮形式等により画像データを圧縮する。画像処理部190は、DSPやマイコンなどで実現可能である。さらに画像処理部190は、撮像素子からの出力に基づいて生成された被写体像に対応する画像データの一部を、使用者から指示されたズーム倍率に応じて拡大する。
 コントローラー210は、全体を制御する。コントローラー210は、半導体素子などで実現可能である。コントローラー210は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。たとえば、コントローラー210はマイコンによって実現される。
 メモリ200は、画像処理部190及びコントローラー210のワークメモリとして機能する。メモリ200は、例えば、DRAM、強誘電体メモリなどで実現できる。
 液晶モニタ270は、CCDイメージセンサー180で生成した画像データが示す画像や、メモリカード240から読み出した画像データが示す画像を表示可能である。
 ジャイロセンサー220は、圧電素子等の振動材等で構成される。ジャイロセンサー220は、圧電素子等の振動材を一定周波数で振動させコリオリ力による力を電圧に変換して角速度情報を得る。コントローラー210がジャイロセンサー220から角速度情報を得て、この揺れを相殺する方向にOISアクチュエータ150に対して指令値を出力してOISレンズ140を駆動させることにより、使用者によりデジタルカメラ100に与えられる手振れは補正される。
 なお、本実施の形態にかかるデジタルカメラ100は、ジャイロセンサー220を用いることにより、使用者の手振れによる自装置の揺れを検出する。しかしながら、必ずしもこのような構成である必要はない。例えば、CCDイメージセンサー180で連続して生成された2枚の画像を比較し、全ての画素が動いているような場合に手振れが生じたと判断してもよい。その際に、連続して生成された2枚の画像のうちの同一の被写体の移動量から手振れ量を検出するような構成としてもよい。
 カードスロット230は、メモリカード240を着脱可能である。カードスロット230は、機械的及び電気的にメモリカード240と接続可能である。メモリカード240は、フラッシュメモリや強誘電体メモリなどを内部に含み、データを格納可能である。
 シャッタボタン250は、使用者から画像の撮像指示を受け付ける。ズームレバー260は、使用者からズーム倍率の指示を受け付ける。
  〔1-2-2.背面構成〕
 本実施形態にかかるデジタルカメラ100の背面構成について図2を用いて説明する。
 図2は、デジタルカメラ100の背面図である。デジタルカメラ100は、上面にシャッタボタン250とズームレバー260とを備えている。シャッタボタン250は、デジタルカメラ100の上面に押し込み可能に設けられている。使用者は、シャッタボタン250を半押しすることにより、AF制御やAE制御を行うことができる。また、使用者は、シャッタボタン250を全押しすることにより、画像の撮像を行うことができる。また、ズームレバー260は、シャッタボタン250の周りに、時計回りまたは反時計回りに回転可能に設けられている。使用者は、ズームレバー260を回転操作することにより、被写体像のズーム倍率を変更することができる。例えば、ズームレバー260を時計回り(右方向)に回転させると、被写体像は拡大され、ズームレバー260を反時計回り(左方向)に回転させると、被写体像は縮小される。
 〔1-3.手振れ補正方法〕
 本実施形態によるデジタルカメラ100は、少なくとも2種類の方法(制御モード)で手振れ補正を行うことができる。デジタルカメラ100は、手振れ補正の制御モードとして少なくともMODE1とMODE2との2種類のモードを有する。以下、この二つのモードについて説明する。
 なお、少なくとも2種類の制御モードを有することは一例である。下記のMODE2に対応する制御モードが含まれていれば、制御モードの数は任意である。
  〔1-3-1.MODE1〕
 MODE1について図3を用いて説明する。
 図3は、デジタルカメラ100がMODE1に設定されている場合に、コントローラー210がOISアクチュエータ150に対して指示するレンズ位置指令値とCCDイメージセンサー180の露光状態との関係を示す図である。
 図3(a)は、コントローラー210がOISアクチュエータ150に対して出力するレンズ位置指令値の経時変化を示す図である。図3(b)は、CCDイメージセンサー180の露光状態の変化を示す図である。図3(C)は、各イベントの発生時刻を示す図である。ここでは、各イベントと時刻との対応関係の一例として、次のような対応関係があるとする。すなわち、時刻t11にシャッタボタン250が半押しされ、時刻t13にシャッタボタン250が全押しされ、時刻t13から時刻t15の間にCCDイメージセンサー180が露光される。図3に示す通り、コントローラー210は、静止画像の撮像動作から次の静止画像の撮像動作までの期間内において、OISアクチュエータ150が撮像画像のぶれを補正するための動作を続行する。このような手振れ補正のモードをMODE1という。
 コントローラー210がMODE1でOISアクチュエータ150を制御することにより、静止画の撮像時以外においても手振れ補正を行うことができる。例えば、静止画像の構図を決めるためのスルー画像に対しても手振れ補正制御を行うことができる。また、MODE1では、コントローラー210は、CCDイメージセンサー180の露光状態とは関係なくOISアクチュエータ150を駆動できるので、手振れ補正の制御を比較的容易に行うことができる。
  〔1-3-2.MODE2〕
 次にMODE2について図4を用いて説明する。
 図4は、デジタルカメラ100がMODE2に設定されている場合に、コントローラー210がOISアクチュエータ150に対して指示するレンズ位置指令値とCCDイメージセンサー180の露光状態との関係を示す図である。
 図4(a)は、コントローラー210が出力するレンズ位置指令値の経時変化を示す図である。図4(b)は、CCDイメージセンサー180の露光状態の変化を示す図である。図4(c)は各イベントの発生時刻を示す図である。ここでは、各イベントと時刻との対応関係の一例として、次のような対応関係があるとする。すなわち、時刻t21にシャッタボタン250が半押しされ、時刻t23にシャッタボタン250が全押しされ、時刻t24から時刻t25の間にCCDイメージセンサー180が露光される。
 図4に示す通り、静止画像の撮像動作から次の静止画像の撮像動作までの期間内において、OISアクチュエータ150が撮像画像のぶれを補正するための動作を中断する期間が存在する。つまり、CCDイメージセンサー180がスルー画像を生成する期間内において、OISアクチュエータ150が撮像画像のぶれを補正するための動作を中断する期間が存在する。ここでいう「スルー画像」とは、静止画像を撮影しないタイミングにおいてCCD180が受けている被写体像を意味している。スルー画像は、液晶モニタ270に動画として表示されているため、静止画像の撮影前において、写真の構図等を決定するために利用される。
 上述した、静止画像の撮像動作から次の静止画像の撮像動作までの期間内における、撮像画像のぶれを補正するための動作を中断する期間を、本明細書では、「静止画撮像時以外の非撮影期間」と定義する。
 「静止画撮像時」とは、撮像動作が行われている期間をいう。より厳密には、撮像動作は、シャッタボタン250が全押しされた後の露光の準備完了時から、CCDイメージセンサー180の露光の完了時までの期間において行われる。その撮像動作が行われているタイミングを「静止画撮像時」という。「露光の準備完了時」は、焦点制御が完了するとともに、OISアクチュエータ150がOISレンズ140を駆動し、安定して手振れ補正が行われるようになった時点を意味し、図4の時刻t23からt24間での間に到来する。また、露光の完了は、たとえば図4の時刻t25の時点を意味する。
 なお、撮像動作はたとえば0.1秒で完了するため、人間にとっては一定の幅をもった期間ではなく、ある時刻として認識されることに留意されたい。
 このような手振れ補正のモードをMODE2という。MODE2は、静止画撮像時は常にOISレンズ140を駆動し、スルー画像(動画)表示時はOISレンズ140を駆動させない期間を有するモードである。
 コントローラー210がMODE2でOISアクチュエータ150を制御することにより、補正レンズは、静止画の撮像に必要なときだけ駆動されることとなる。そのため、それ以外のときには補正レンズを駆動しないので、OISアクチュエータ150で消費する電力を削減できる。
 なお、図4に示す通り、時刻t23からt24までの期間においても、手振れ補正機能は作動している。これは、予め手振れ補正機能を作動させた後に露光を行うことにより、露光期間中の手振れ補正動作を安定的に行うためである。
 なお、本実施形態では、露光期間終了後直ぐに手振れ補正機能を非作動(オフ)にせず、その後の時刻t26まで手振れ補正機能を有効にしている。これは、少なくとも露光期間中は完全に手振れ補正動作を安定的に行うためである。よって、その時刻t26以後に静止画撮像時以外の非撮影期間に入る。従って、この動作例では「静止画の撮像に必要なときだけ補正レンズを駆動する」とは、露光期間(時刻t24から時刻t25)での手振れ補正機能の作動のみを示すのではなく、露光前の期間(時刻t23から時刻t24)や露光後の期間(時刻t25以降)も含む概念である。
 仮に、露光が完全に完了する時刻t25以後に手振れ補正機能をオフにした場合には、その時点で撮像動作が完了したことになる。よって、「静止画の撮像に必要なときだけ補正レンズを駆動する」とは、露光期間(時刻t24から時刻t25)での手振れ補正機能の作動のみを示すことになる。そして、時刻t25以後は静止画撮像時以外の非撮影期間に入る。
 なお、MODE2では、静止画の撮像に必要な制御期間(t23~t25)以外の期間(この期間は、上述の「非撮影期間」を含む)は、レンズ位置指令値が一定値に維持されて出力されている。しかし、これは一例であり、他の値が出力されてもよい。例えば、静止画の撮像に必要な制御期間(t23~t25)以外の期間のレンズ位置指令値を静止画の撮像に必要な制御期間(t23~t25)のレンズ位置指令値より小さい値とするようにしてもよい。すなわち、補正レンズが駆動する振幅を小さくする制御モードを設けてもよい。コントローラー210がOISアクチュエータ150を制御する制御モードが複数設けられ、そのうち上述のMODE2に対応する動作モードが設けられていればよい。
 〔1-4.動作〕
  〔1-4-1.動作の一例〕
 デジタルカメラ100の動作の一例について図5を用いて説明する。図5は、デジタルカメラ100の動作の一例を説明するためのフローチャートである。
 デジタルカメラ100は、撮影モードに設定されると(S100)、ズームレンズ110がどの位置にあるかを判断する(S110)。ズームレンズ110が望遠端を含む範囲にあると判断すると、コントローラー210は、MODE1でOISアクチュエータ150を制御する(S120)。一方、ズームレンズ110が広角端を含む範囲にあると判断すると、コントローラー210は、MODE2でOISアクチュエータ150を制御する(S130)。なお、ここでは、ズームレンズ110が移動可能な範囲を、その中央で2つの範囲(「広角端を含む範囲」および「望遠端を含む範囲」)に分けている。しかし、必ずしも中央で分ける必要はない。ズームレンズ110が移動可能な範囲を任意の点で2つの範囲に分け、一方を「広角端を含む範囲」とし、他方を「望遠端を含む範囲」としてもよい。
 次に、ズームレンズ110が移動可能な範囲を、「広角端を含む範囲」と「望遠端を含む範囲」とに分けた理由を説明する。
 ズームレンズ110が望遠端を含む範囲内にある場合には、CCDイメージセンサー180が撮像している撮像画像は手振れの影響を受けやすい。これは、ズームレンズ110が望遠端を含む範囲内にある場合にはズームレンズ110が広角端を含む範囲内にある場合と比較して、狭い範囲を撮像することとなるからである。従って、少しの手振れで被写体がより大きく動いてしまい、構図が大きく変わってしまう。そこで、コントローラー210は、ズームレンズ110が望遠端を含む範囲内にある場合には、スルー画像生成中にも常にOISレンズ140を駆動するMODE1でOISアクチュエータ150を制御する。これにより、デジタルカメラ100は、ズームレンズ110が望遠端を含む範囲内にある場合であっても手振れの影響が少ない画像を撮像することが可能である。
 また、オートフォーカス(AF)としてコントラストAFを行う際に、このような制御を行うことは効果を有する。「コントラストAF」とは、コントラスト値が最も高くなる位置を合焦位置とする技術であり、山登りAFとも呼ばれている。つまり、コントラストAFは、撮像前に複数枚の画像の画像データを取得し、その画像データのコントラスト値を比較しながら、コントラスト値が最も大きくなる画像を探し出す必要がある。そのため、画像を撮像する際に手振れが大きく影響すると撮像する画像の構図がそもそも変わってしまい、比較対象の前後の画像間でのコントラスト値の比較を行うことができなくなってしまう。その結果、コントラストAFによるオートフォーカス制御に時間がかかってしまうおそれがある。また、コントラストAFの精度が下がってしまうおそれもある。そこで、コントローラー210は、ズームレンズ110が望遠端を含む範囲内にある場合には、スルー画像生成中にも常にOISレンズ140を駆動するMODE1でOISアクチュエータ150を制御する。これにより、デジタルカメラ100は、コントラストAFを比較的高速に行うことができる。また、デジタルカメラ100は、コントラストAFの精度を比較的向上させることができる。
 また、ズームレンズ110が広角端を含む範囲内にある場合には、CCDイメージセンサー180が撮像している撮像画像は手振れの影響を受けにくい。これは、ズームレンズ110が広角端を含む範囲にある場合にはズームレンズ110が望遠端を含む範囲にある場合と比較して広い範囲を撮像することとなるからである。従って、少しの手振れではあまり被写体が動かず、構図はあまり変わらない。そこで、コントローラー210は、ズームレンズ110が広角端を含む範囲にある場合には、静止画の撮像に必要なときだけOISレンズ140の補正レンズを駆動するMODE2でOISアクチュエータ150を制御する。このように、コントローラー210がMODE2でOISアクチュエータ150を制御することにより、静止画の撮像に必要なときだけ補正レンズを駆動することとなる。そのため、それ以外のときには補正レンズを駆動しないので、OISアクチュエータ150で消費する電力を削減できる。
  〔1-4-2.ズーム操作〕
 使用者によりズーム操作がされた場合の手振れ補正モードの制御について図6を用いて説明する。図6は、ズーム操作がされた場合の手振れ補正モードの制御を説明するためのフローチャートである。
 デジタルカメラ100は、撮影モードに設定されると(S200)、ズームレンズ110がどの位置にあるかを判断する(S210)。ズームレンズ110が広角端を含む範囲にあると判断すると、コントローラー210は、MODE2でOISアクチュエータ150を制御する(S230)。一方、ズームレンズ110が望遠端を含む範囲にあると判断すると、コントローラー210は、MODE1でOISアクチュエータ150を制御する(S220)。
 MODE1でOISアクチュエータ150を制御すると、コントローラー210は、使用者によりズームレバー260が操作されるか否かを監視する(S240)。使用者によりズームレバー260が操作されると、コントローラー210は、通常のMODE1の際にOISレンズ140の補正レンズを駆動可能な範囲よりも狭い範囲内で補正レンズを駆動させるようOISアクチュエータ150を制御する(S250)。
 ここで、狭い範囲とはどのような範囲かについて図7を用いて説明する。例えば、図7(a)に示すように、ズームレバー260が操作されていない場合には、OISレンズ140の補正レンズはLの距離の範囲で動くことが可能である。すなわち、移動可能な最大の範囲はLである。しかし、図7(b)に示すように、ズームレバー260が操作されている場合には、OISレンズ140の補正レンズはl(たとえばl=L/2)の範囲で駆動させる。このように、OISレンズ140の補正レンズは、ズームレバー260の操作の有無に応じて可動範囲が変わる。
 ズームレバー260の操作中にOISレンズ140の補正レンズを移動可能な最大の範囲よりも狭い範囲内で駆動させる理由は、ズームレバー260の操作中、使用者は撮影を行うわけではないので、手振れの影響をあまり気にしないからである。また、ズームレバー260の操作中において、使用者は、コントラストAF動作を行うわけではないので、コントラストAFの精度の向上を考慮する必要がないからである。
 ズームレバー260の操作により、ズームレンズ110が望遠端を含む範囲から広角端を含む範囲へと移動した際には、手振れ補正のモードはMODE1からMODE2へと移行する。この際、OISレンズ140の補正レンズを中央位置に移動させる必要がある。しかし、その場合に補正レンズを大きく移動させると、画像が大きく揺れる。従って、補正レンズの移動量を小さくするためにも、ズームレバー260の操作中においては、OISアクチュエータ150は、OISレンズ140の補正レンズを狭い範囲内で駆動させる。
 補正レンズの可動範囲が狭くなるようOISアクチュエータ150を制御すると、コントローラー210は、ズームレンズ110が広角端を含む範囲に移動したか否かを監視する(S260)。広角端を含む範囲に移動したと判断すると、コントローラー210は、手振れ補正のモードをMODE1からMODE2へと移行する(S270)。手振れ補正のモードをMODE1からMODE2へと移行すると、コントローラー210は、OISレンズ140内の補正レンズをOISレンズ140の中央へと移動させる(S280)。これは、MODE1の際には、OISレンズ140の補正レンズは使用者による手振れの影響を打ち消す方向に常に動いているのに対し、MODE2の際には、シャッタボタン250が全押しされるまでは、OISレンズ140の補正レンズを中央に固定しておき、シャッタボタン250が全押しされるのに応じて、使用者の手振れを相殺する方向にOISレンズ140の補正レンズの駆動を開始するためである。従って、MODE1からMODE2に移行した際にOISレンズ140の補正レンズをOISレンズ140の中央に移動することにより、デジタルカメラ100は、その後シャッタボタン250が全押しされた場合でもMODE2での手振れ補正を行うことができる。
 補正レンズをOISレンズ140の中央へと移動させると、コントローラー210は、MODE2での被写体像の撮影を継続する(S290)。
 このように、本実施形態にかかるデジタルカメラ100は、ズームレバー260が操作されている場合には、OISレンズ140の補正レンズをズームレバー260が操作されていない場合よりも狭い範囲で駆動する。これにより、手振れ補正のモードをMODE1からMODE2に移行する場合において、OISレンズ140の補正レンズをOISレンズ140の中央に移動させる際に、補正レンズが移動する距離が小さくなる。その結果、手振れ補正のモードが移行する際の補正レンズの中央への移動により、撮像画像が振れる量を小さくすることができる。
 また、本実施形態にかかるデジタルカメラ100は、手振れ補正のモードをMODE1からMODE2に移行する際に、OISレンズ140を中央に移動する。これにより、MODE1からMODE2へと移行した後に、シャッタボタン250が全押しされた場合でもOISレンズ140の補正レンズを中央から移動させることができるため、より高い制度でMODE2における手振れ補正を行うことができる。
 また、本実施形態にかかるデジタルカメラ100は、手振れ補正のモードをMODE1からMODE2に移行する際に、OISレンズ140を中央に移動する。このときの制御方法は、早急に中央に移動してもよいし、徐々に中央に移動してもよい。これらは、OISレンズ140の駆動速度は種々変更してもよいことを意味している。早急に中央に移動した場合には、MODE2に移行してすぐに使用者がシャッタボタン250を全押しした場合でも、MODE2の手振れ補正を行う際に、補正レンズをOISレンズ140の中央から移動させることにより、手振れ補正を行うことができる。また、徐々に中央に移動した場合には、MODE2に移行した際に、補正レンズが急に中央に動かないため、撮像画像が一瞬大きく揺れることがなくなる。その結果、MODE1からMODE2へ移行した場合に使用者が覚える違和感が低減される。
 以上説明したとおり、本実施形態にかかるデジタルカメラ100は、ズーム倍率に応じて複数の制御モードの中からいずれかを選択し、選択した制御モードに基づいてOISレンズ140を制御する。静止画撮像時はOISレンズ140を駆動し、静止画撮像時以外の非撮影期間(たとえばスルー画像表示時)はOISレンズ140を駆動させない期間を有する制御モードを少なくとも有する。これにより、デジタルカメラ100は、使用者の手振れが与える影響に応じて、より良い手振れモードに自動で設定することができる。
 また、本実施形態にかかるデジタルカメラ100は、ズームレンズ110の位置を検出する検出器120を備え、検出器120による検出結果に応じて、OISレンズ140の制御モードを複数の制御モードの中から選択する。制御モードとして、静止画撮像時はOISレンズ140を駆動し、動画撮像時はOISレンズ140を駆動させない期間を有する制御モードを少なくとも有する。
 これにより、デジタルカメラ100は、ズームレンズ110の位置に応じて、手振れの影響が少ない画像を撮像することが可能である。また、デジタルカメラ100は、ズームレンズ110の位置に応じて、静止画の撮像に必要なときだけ補正レンズを駆動することとなる。そのため、それ以外のときには補正レンズを駆動しないので、OISアクチュエータ150で消費する電力を削減できる。
 また、本実施形態にかかるデジタルカメラ100において、ズームレンズ110が移動可能な範囲を任意の点で二つに分けた場合において、コントローラー210は、ズームレンズ110がそのうちの望遠端を含む範囲内にあるときは、そのうちの広角端を含む範囲内にあるときと比較して、OISレンズ140を長期間駆動させるようOISアクチュエータ150を制御する。
 これにより、デジタルカメラ100は、ズームレンズ110が望遠端を含む範囲内にある場合であっても手振れの影響が少ない画像を撮像することが可能である。また、デジタルカメラ100は、ズームレンズ110が広角端を含む範囲にある場合には、静止画の撮像に必要なときだけ補正レンズを駆動することとなる。そのため、それ以外のときには補正レンズを駆動しないので、OISアクチュエータ150で消費する電力を削減できる。
 また、本実施形態にかかるデジタルカメラ100において、ズームレンズ110が移動可能な範囲を任意の点で二つに分けた場合において、コントローラー210は、ズームレンズ110がそのうちの望遠端を含む範囲内にあるときは、OISレンズ140を常に駆動するように制御し、ズームレンズ110がそのうちの広角端を含む範囲内にあるときは、OISレンズ140を所定の期間駆動させるようOISアクチュエータ150を制御するようにしてもよい。
 これにより、デジタルカメラ100は、ズームレンズ110が望遠端を含む範囲にある場合であっても手振れの影響が少ない画像を撮像することが可能である。また、デジタルカメラ100は、静止画の撮像に必要なときだけ補正レンズを駆動することとなる。そのため、それ以外のときには補正レンズを駆動しないので、OISアクチュエータ150で消費する電力を削減できる。
 また、本実施形態にかかるデジタルカメラ100において、OISレンズ140は、CCDイメージセンサー180に形成される被写体像のぶれを補正するために、光軸に垂直の面内で移動可能である補正レンズである。ズームレンズ110が移動可能な範囲を任意の点で二つに分けた場合において、コントローラー210は、ズームレンズ110がそのうちの望遠端の範囲内から広角端を含む範囲内に移動するのに応じて、補正レンズを移動可能な面内の中心に移動させるよう制御するようにしてもよい。
 これにより、これにより、MODE1からMODE2へと移行した後に、シャッタボタン250が全押しされた場合でもOISレンズ140の補正レンズを中央から移動させることができるため、より高い精度でMODE2における手振れ補正を行うことができる。
 また、本実施形態にかかるデジタルカメラ100は、使用者による操作を受け付けるズームレバー260をさらに備えている。ズームモータ130は、ズームレバー260が使用者による操作を受け付けるのに応じて、ズームレンズ110を駆動し、OISアクチュエータ150は、ズームレバー260が使用者による操作を受け付けている場合には、OISレンズ140を駆動する駆動範囲を抑える。
 これにより、手振れ補正のモードをMODE1からMODE2に移行する場合において、OISレンズ140の補正レンズをOISレンズ140の中央に移動させる際に、補正レンズが移動する距離が小さくなる。その結果、手振れ補正のモードが移行する際の補正レンズの中央への移動により、撮像画像が振れる量を小さくすることができる。
〔2.実施形態2〕
 以下、本発明をデジタルスチルカメラ(以下、デジタルカメラ)に適用した場合の第2の実施形態を、図面を参照しながら説明する。なお、実施形態1にかかるデジタルカメラ100と共通の部分については説明を省略する。また、実施形態1にかかるデジタルカメラ100と共通の構成については、同一の符号を用いて説明する。なお、便宜上、本実施形態にかかるデジタルカメラに対しても、参照符号100を付して説明する。
 〔2-1.電気的構成〕
 本実施形態にかかるデジタルカメラは、実施形態1にかかるデジタルカメラとは異なり、ズームレンズ110、検出器120、ズームモータ130を有しない。その一方、本実施形態にかかるデジタルカメラ100において、画像処理部190は、電子ズーム処理を行うことができる。画像処理部190は、CCDイメージセンサー180で生成された画像データに対して電子的に拡大処理又は縮小処理を行う。その際、画像処理部190は、CCDイメージセンサー180で生成された画像データに対して、画像データの一部の切り出し処理や、間引き処理、補間処理などの処理を適宜実行する。要するに、画像処理部190は、画像データの解像度を変換することができる。
 〔2-2.動作の一例〕
 本実施形態にかかるデジタルカメラ100の動作の一例について図8を用いて説明する。
 図8は、デジタルカメラ100の動作の一例を説明するためのフローチャートである。
 デジタルカメラ100が使用者により撮影モードに設定されると(S300)、コントローラー210は、画像処理部190で生成された画像データの切り出しズーム倍率を判断する(S310)。つまり、コントローラー210は、CCDイメージセンサー180で生成された画像データが画像処理部190で電子ズームされているか否かを判断し、電子ズームがされている場合には、その切り出しズーム倍率が所定の閾値を超えているか否かを判断する(S310)。ここで、所定の閾値についてはどのような値を用いてもかまわない。ここで、画像処理部190で生成された画像データの切り出しズーム倍率が所定の閾値を超えていると判断すると、コントローラー210は、MODE1で駆動するようOISアクチュエータ150を制御する(S320)。
 一方、画像処理部190で生成された画像データの切り出しズーム倍率が所定の閾値以下であると判断すると、コントローラー210は、MODE2で駆動するようOISアクチュエータ150を制御する(S330)。
 たとえば、広角端が25mmのデジタルカメラにおいて、閾値を2倍に設定したとする。ズーム倍率が2倍を超えるまではMODE2であり、ズーム倍率が2倍を超えると(これは、焦点距離が50mmになることを意味する)、それまでの制御モードMODE2からMODE1に切り換える。なお、焦点距離はズーム倍率に比例する。
 このように制御する理由について次に述べる。切り出しズーム倍率が所定の閾値より高い場合には、画像処理部190が生成している撮像画像は手振れの影響を受けやすい。これは、切り出しズーム倍率が所定の閾値より高い場合には切り出しズーム倍率が所定の閾値より低い場合と比較して狭い範囲を撮像することとなるからである。従って、少しの手振れで被写体がより大きく動いてしまい、構図が大きく変わってしまう。そこで、コントローラー210は、切り出しズーム倍率が所定の閾値より高い場合には、スルー画像生成中にも常にOISレンズ140を駆動するMODE1でOISアクチュエータ150を制御する。これにより、デジタルカメラ100は、切り出しズーム倍率が所定の閾値より高い場合であっても手振れの影響が少ない画像を撮像することが可能である。
 また、実施形態1と同様の理由により、オートフォーカスとしてコントラストAF(いわゆる山登りAF)を行う際に、このような制御を行うとコントラストAFを比較的高速に行うことができ、かつ、コントラストAFの精度を比較的向上させることができる。そのため、コントローラー210は、切り出しズーム倍率が所定の閾値より高い場合には、スルー画像生成中にも常にOISレンズ140を駆動するMODE1でOISアクチュエータ150を制御する。これにより、デジタルカメラ100は、コントラストAFを比較的高速に行うことができる。
 なお、電子ズームを行う場合には、切り出しを行う前の画像データを用いてコントラストAFを行えば、コントラストAFを比較的高速に行うことができる。ただし、このような構成とすると、切り出しズーム倍率に応じて、合焦位置を示すAF枠の大きさが変化してしまう。より詳しく説明する。AF枠は、CCDイメージセンサー180のある一定範囲の画素に対して設定され、それらの画素の画素値が利用される。切り出しを行う前の画像データに設定されたAF枠は、画像の一部が切り出して拡大されるのに伴って、拡大されることになる。そのため、切り出しズーム倍率に応じて、合焦位置を示すAF枠の大きさが変化する。しかしながら、これでは、光学ズームの延長として電子ズームを用いる場合には好ましくない。従って、撮像した画像データのうち切り出した画像データのみに基づいてコントラストAFを行う場合には、本実施形態にかかるデジタルカメラ100のような制御を行うとコントラストAFを比較的高速に行うことができる。
 また、切り出しズーム倍率が所定の閾値より低い場合には、CCDイメージセンサー180が撮像している撮像画像は手振れの影響を受けにくい。これは、切り出しズーム倍率が所定の閾値より低い場合には所定の閾値より高い場合と比較して広い範囲を撮像することとなるからである。従って、少しの手振れではあまり被写体が動かず、構図はあまり変わらない。そこで、コントローラー210は、切り出しズーム倍率が所定の閾値より低い場合には、静止画の撮像に必要なときだけOISレンズ140の補正レンズを駆動するMODE2でOISアクチュエータ150を制御する。このように、コントローラー210がMODE2でOISアクチュエータ150を制御することにより、静止画の撮像に必要なときだけ補正レンズを駆動することとなる。そのため、それ以外のときには補正レンズを駆動しないので、OISアクチュエータ150で消費する電力を削減できる。
 以上説明したとおり、本実施形態にかかるデジタルカメラ100は、CCDイメージセンサー180により生成された画像データの一部を切り出し拡大処理したときの、拡大倍率に応じて、OISレンズ140の制御モードを複数の制御モードから選択する。制御モードとして、静止画撮像時はOISレンズ140を駆動し、静止画撮像時以外の非撮影期間(たとえばスルー画像表示時)はOISレンズ140を駆動させない。
 これにより、デジタルカメラ100は、切り出しズーム倍率が所定の閾値より高い場合であっても手振れの影響が少ない画像を撮像することが可能である。また、デジタルカメラ100は、静止画の撮像に必要なときだけ補正レンズを駆動することとなる。その結果、デジタルカメラ100は、それ以外のときには補正レンズを駆動しないので、OISアクチュエータ150で消費する電力を削減できる。
 以上、本発明の実施形態1および2を説明した。しかし、本発明は、これらには限定されない。以下、上述した実施形態の変形例を説明する。
 まず実施形態1では、ズームレンズ110が移動し、望遠端を含む範囲から広角端を含む範囲へと移動する際に、OISレンズ140の補正レンズを中央へと移動させる構成とした。しかしながら、ズームレンズ110が望遠端を含む範囲から広角端を含む範囲へと移動する際に、OISレンズ140の補正レンズがある位置に補正レンズを固定してもよい。
 また、実施形態1では、ズームレンズ110が望遠端を含む範囲に存在し、使用者からズーム操作を受け付けた場合に、常にMODE1における補正レンズの移動量を抑制することとした。しかしながら、必ずしもこのような構成である必要はない。例えば、ズームレンズ110が、望遠端を含む範囲であって、MODE1とMODE2とを切り替える任意の点の近傍の範囲に存在する場合にだけ、補正レンズの移動量を抑制するような構成としてもよい。
 また、実施形態1では、光学ズームのみを行えるとし、実施形態2では、電子ズームのみを行えるとした。しかしながら、本発明は、光学ズームと電子ズームの両方を行うことが可能な撮像装置にも適用可能である。この場合においては、ズームレンズ110の焦点距離をCCDイメージセンサー180のサイズに基づいて、35(mm)写真フィルムにおける焦点距離へと換算し、35(mm)換算した焦点距離に切り出し倍率を掛け合わせることにより求めた値が所定の閾値を超えるか否かによって、手振れ補正のモードとしてMODE1を使うかMODE2を使うかを分ける構成とすることもできる。
 また、光学ズームによってズームレンズ110が望遠端に到達した際に、それ以上のズームを行う場合には電子ズームを行う構成としてもよい。この場合には、閾値次第で、たとえば光学ズーム中に手振れ補正の制御モードをMODE2からMODE1に切り換え、電子ズーム中は常にMODE1として制御することが可能である。このような構成とすれば、ズームの制御と手振れ補正の制御との関係が単純となるため、検出器120と画像処理部190とOISアクチュエータ150とに対するコントローラー210の制御が単純となる。または、光学ズーム中は常にMODE2で動作し、光学ズーム後の電子ズームの倍率域の閾値倍率以上では、MODE1で動作してもよい。いずれも、倍率または焦点距離で、制御モードを切り換えることになる。
 また、実施形態1では、ズームレンズ110が移動可能な範囲を2つの範囲に分けて、それぞれの範囲ごとにOISレンズ140の制御方法を異ならせた。しかし、必ずしもこのような構成である必要はない。例えば、ズームレンズ110が移動可能な範囲を3つや4つに分け、それぞれの範囲ごとにOISレンズ140の制御方法を異ならせてもよい。分け方は、たとえば等分である。ズームレンズ110が移動可能な範囲を複数の範囲に分けて、それぞれの範囲ごとにOISレンズ140の制御方法を調整すればよい。
 また、図1に示されたデジタルカメラ100の光学系及び駆動系は、一例であり、これらに限定されない。例えば、図1では3群構成の光学系を例示しているが、他の群構成のレンズ構成としてもよい。また、図1ではズームレンズ110を光学系の構成要素としているが、また、OISレンズ140とOISアクチュエータ150とも必須の構成要素ではない。たとえば、CCDイメージセンサー180の位置を使用者の手振れを相殺する方向に駆動するアクチュエータを設け、手振れ補正を行ってもよい。また、光学系を構成するレンズ110および170は、図面上では1枚のレンズであるとして記載されている。しかしながら、レンズ110および170はそれぞれ、複数枚のレンズから構成されるレンズ群であってもよい。
 実施形態1~2では、撮像手段として、CCDイメージセンサー180を例示したが、本発明はこれに限定されない。例えば、CMOSイメージセンサーで構成してもよく、NMOSイメージセンサーで構成してもよい。
 画像処理部190とコントローラー210とは、1つの半導体チップで構成してもよく、別々の半導体チップで構成してもよい。
 コントローラー210がマイコンによって実現されるとき、添付の図面のうちのフローチャートを用いて説明する処理は、そのマイコンに実行されるプログラムとして実現され得る。そのようなコンピュータプログラムは、CD-ROM等の記録媒体に記録されて製品として市場に流通され、または、インターネット等の電気通信回線を通じて伝送される。
 上述した実施形態を一例として、本発明は以下の各項目に示すように記述することができる。
(1)被写体像を形成する光学系と、
 前記被写体像を撮像する撮像素子と、
 自装置のぶれを検出するセンサと、
 前記光学系または前記撮像素子に対して設けられ、前記光学系または前記撮像素子を駆動する駆動部と、
 検出された前記自装置のぶれに基づいて、前記駆動部を駆動するための指令値を生成する制御部と
 を備え、
 前記光学系は、光軸に沿って移動することによって前記被写体像のズーム倍率を変更するズームレンズを有しており、
 前記制御部は、前記ズームレンズの位置に応じて定まる、前記ズーム倍率または焦点距離に基づいて複数の制御モードの中からいずれかを選択し、選択した制御モードに基づいて前記指令値を生成し、
 前記複数の制御モードのうちの一つとして、前記制御部が、静止画撮像時に前記自装置のぶれに起因する前記被写体像のぶれを軽減させるための指令値を生成し、前記静止画撮像時以外の非撮影期間中には前記被写体像のぶれを軽減させるための指令値を生成しない制御モードが含まれている、撮像装置。
(2)前記ズームレンズを駆動するレンズ駆動部と、
 前記ズームレンズの位置を検出する検出器と
 をさらに備え、
 前記制御部は、前記ズームレンズの位置の検出結果に基づいて、前記ズーム倍率または前記焦点距離を特定する、上記項目(1)に記載の撮像装置。
(3)前記撮像素子は、露光によって前記被写体像を撮像し、
 前記制御部は、前記静止画撮像時である、前記露光のための準備を開始した後から前記露光が完了するまでの期間中は、前記被写体像のぶれを軽減させるための指令値を生成する、上記項目(2)に記載の撮像装置。
(4)前記複数の制御モードとして、
 前記制御部が、前記静止画撮像時に前記被写体像のぶれを軽減させるための指令値を生成し、前記非撮影期間中には前記被写体像のぶれを軽減させるための指令値を生成しない第1制御モードと、
 前記制御部が、前記静止画撮像時か否かにかかわらず、前記被写体像のぶれを継続して軽減させるための指令値を生成する第2制御モードと
 が含まれており、前記ズームレンズが駆動可能な範囲を、望遠端を含む範囲と広角端を含む範囲とに区分したとき、
 前記制御部は、前記ズームレンズが前記広角端を含む範囲内にあるときは前記第1制御モードを選択し、前記ズームレンズが前記望遠端を含む範囲内にあるときは前記第2制御モードを選択する、上記項目(3)に記載の撮像装置。
(5)前記ズームレンズが駆動可能な範囲を、望遠端を含む範囲と広角端を含む範囲とに区分したとき、
 前記制御部は、前記ズームレンズが前記広角端を含む範囲内にあるか、前記ズームレンズが前記望遠端を含む範囲内にあるかに応じて、前記被写体像のぶれを軽減させる時間長が異なる指令値を生成する、上記項目(3)に記載の撮像装置。
(6)前記ズームレンズが前記望遠端を含む範囲内にあるときは、前記制御部は、前記ズームレンズが前記広角端を含む範囲内にあるときよりも、前記被写体像のぶれを長時間にわたって軽減させるための指令値を生成する、上記項目(5)に記載の撮像装置。
(7)前記ズームレンズが前記望遠端を含む範囲内にあるときは、前記制御部は、前記静止画撮像時か否かにかかわらず、前記被写体像のぶれを継続して軽減させるための指令値を生成する、上記項目(6)に記載の撮像装置。
(8)前記光学系は、前記光軸に垂直の面内で移動可能である補正レンズを有しており、
 前記駆動部は、前記指令値に基づいて、前記光学系の補正レンズを前記面内で駆動させ、
 前記ズームレンズが駆動可能な範囲を、望遠端を含む範囲と広角端を含む範囲とに区分したとき、
 前記ズームレンズが、望遠端を含む範囲から広角端を含む範囲に移動すると、前記制御部は、前記補正レンズの位置を前記面内に予め定められた基準位置に移動させるための指令値を生成する、上記項目(2)に記載の撮像装置。
(9)前記制御部は、前記基準位置として、前記面内の中心に移動させるための指令値を生成する、上記項目(8)に記載の撮像装置。
(10)使用者が前記ズーム倍率を変更するための操作部をさらに備え、
 前記レンズ駆動部は、前記操作部を介した前記ズーム倍率の変更操作に応じて、前記ズームレンズを駆動し、
 前記ズームレンズが駆動されている間は、前記制御部は、前記補正レンズの移動範囲を制限した指令値を生成する、上記項目(8)に記載の撮像装置。
(11)前記制御部は、移動可能な最大の範囲よりも狭い範囲で前記補正レンズを移動させるための指令値を生成する、上記項目(10)に記載の撮像装置。
(12)使用者が前記ズーム倍率を変更するための操作部と、
 前記撮像素子からの出力に基づいて生成された、前記被写体像に対応する画像データの一部を前記ズーム倍率に応じて拡大する画像処理部と
 をさらに備え、
 前記制御部は、前記操作部を介した前記ズーム倍率の変更操作に基づいて、前記ズーム倍率または前記焦点距離を特定する、上記項目(2)に記載の撮像装置。
(13)被写体像を形成する光学系と、
 前記被写体像を撮像する撮像素子と、
 自装置のぶれを検出するセンサと、
 前記撮像素子からの出力に基づいて生成された、前記被写体像に対応する画像データの一部をズーム倍率に応じて拡大する画像処理部と、
 前記光学系または前記撮像素子に対して設けられ、前記光学系または前記撮像素子を駆動する駆動部と、
 検出された前記自装置のぶれに基づいて、前記駆動部を駆動するための指令値を生成する制御部と
 を備え、
 前記制御部は、前記ズーム倍率に応じて定まる、前記ズーム倍率または焦点距離に基づいて複数の制御モードの中からいずれかを選択し、選択した制御モードに基づいて前記指令値を生成し、
 前記複数の制御モードのうちの一つとして、前記制御部が、静止画撮像時に前記自装置のぶれに起因する前記被写体像のぶれを軽減させるための指令値を生成し、前記静止画撮像時以外の非撮影期間中には前記被写体像のぶれを軽減させるための指令値を生成しない制御モードが含まれている、撮像装置。
 本発明は、デジタルスチルカメラやムービーなどに適用可能である。
 100 デジタルカメラ
 110 ズームレンズ
 120 検出器
 130 ズームモータ
 140 OIS
 150 OISアクチュエータ
 160 検出器
 170 フォーカスレンズ
 180 CCDイメージセンサー
 190 画像処理部
 200 メモリ
 210 コントローラー
 220 ジャイロセンサー
 230 カードスロット
 240 メモリカード
 250 シャッタボタン
 260 ズームレバー
 270 液晶モニタ

Claims (7)

  1.  ズーム倍率を変更可能な撮像装置であって、
     被写体像を形成する光学系と、
     前記光学系で形成される被写体像を撮像する撮像素子と、
     前記撮像素子上における被写体像のぶれを軽減する補正部と、
     ズーム倍率に応じて複数の制御モードの中からいずれかを選択し、前記選択した制御モードに基づいて前記補正部を制御する制御部と
     を備え、前記制御モードとして、前記制御部が、静止画撮像時に前記被写体像のぶれを軽減し、前記静止画撮像時以外の非撮影期間中には前記被写体像のぶれを軽減しないよう前記補正部を制御する制御モードを少なくとも有する、撮像装置。
  2.  光軸に沿って移動することによりズーム倍率を変更するズームレンズと、
     前記ズームレンズを駆動するレンズ駆動部と、
     前記ズームレンズの位置を検出する検出部と
     をさらに備え、前記制御部は、前記検出部による検出結果に応じて複数の制御モードの中からいずれかを選択する、請求項1に記載の撮像装置。
  3.  前記複数の制御モードとして、
     前記制御部が、前記静止画撮像時か否かにかかわらず、前記被写体像のぶれを継続して軽減するよう前記補正部を制御する第1制御モードと、
     前記制御部が、前記静止画撮像時に前記被写体像のぶれを軽減し、前記非撮影期間中には前記被写体像のぶれを軽減しないよう前記補正部を制御する第2制御モードと
     が含まれており、前記ズームレンズが駆動可能な範囲を、望遠端を含む範囲と広角端を含む範囲とに区分したとき、
     前記制御部は、前記ズームレンズが前記広角端を含む範囲内にあるときは前記第2制御モードを選択し、前記ズームレンズが前記望遠端を含む範囲内にあるときは前記第1制御モードを選択する、請求項2に記載の撮像装置。
  4.  前記光学系は、前記光軸に垂直の面内で移動可能である補正レンズを有しており、
     前記補正部は、前記光学系の補正レンズを前記面内で駆動させることにより、前記撮像素子上における被写体像のぶれを軽減し、
     前記ズームレンズが、前記望遠端を含む範囲から広角端を含む範囲に移動すると、前記制御部は、前記補正レンズの位置を前記面内に予め定められた基準位置に移動させるよう前記補正部を制御する、請求項3に記載の撮像装置。
  5.  前記制御部は、前記基準位置として、前記面内の中心に移動させるよう前記補正部を制御する、請求項4に記載の撮像装置。
  6.  使用者が前記ズーム倍率を変更するための操作部をさらに備え、
     前記レンズ駆動部は、前記操作部を介した前記ズーム倍率の変更操作に応じて、前記ズームレンズを駆動し、
     前記ズームレンズが駆動されている間は、前記制御部は、前記補正レンズの移動範囲を制限するように前記補正部を制御する、請求項5に記載の撮像装置。
  7.  使用者が前記ズーム倍率を変更するための操作部と、
     前記撮像素子からの出力に基づいて生成された、前記被写体像に対応する画像データの一部を、前記操作部を介して設定されたズーム倍率に応じて拡大する画像処理部と
     をさらに備え、前記制御部は、前記操作部を介して設定されたズーム倍率に応じて複数の制御モードの中からいずれかを選択する、請求項1に記載の撮像装置。
PCT/JP2009/003244 2008-07-10 2009-07-10 撮像装置 WO2010004764A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010503149A JPWO2010004764A1 (ja) 2008-07-10 2009-07-10 撮像装置
US13/002,784 US20110122268A1 (en) 2008-07-10 2009-07-10 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008179832 2008-07-10
JP2008-179832 2008-07-10

Publications (1)

Publication Number Publication Date
WO2010004764A1 true WO2010004764A1 (ja) 2010-01-14

Family

ID=41506888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003244 WO2010004764A1 (ja) 2008-07-10 2009-07-10 撮像装置

Country Status (3)

Country Link
US (1) US20110122268A1 (ja)
JP (1) JPWO2010004764A1 (ja)
WO (1) WO2010004764A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061491A (ja) * 2011-09-13 2013-04-04 Canon Inc 光学機器およびそれを備えた撮像装置、光学機器の制御方法
US9699382B2 (en) 2014-12-10 2017-07-04 Samsung Electro-Mechanics Co., Ltd. Optical image stabilizer and method of decreasing power consumption
CN113589756A (zh) * 2021-10-08 2021-11-02 华兴源创(成都)科技有限公司 位移传感信号触发装置、设备、检测系统及相关方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506589B2 (ja) * 2010-08-02 2014-05-28 キヤノン株式会社 撮像装置及びその制御方法、プログラム、並びに記録媒体
US9124805B2 (en) * 2012-11-16 2015-09-01 Blackberry Limited Adapting an optical image stabilizer on a camera
EP2733922B1 (en) * 2012-11-16 2018-03-28 BlackBerry Limited Adapting an optical image stabilizer on a camera
US9552630B2 (en) * 2013-04-09 2017-01-24 Honeywell International Inc. Motion deblurring
JP2016537665A (ja) 2014-01-22 2016-12-01 エルジー エレクトロニクス インコーポレイティド カメラモジュール及びそのオートフォーカス方法
JP6389140B2 (ja) * 2015-04-03 2018-09-12 富士フイルム株式会社 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
US9930223B2 (en) 2016-03-09 2018-03-27 Lg Electronics Inc. Apparatus and method for controlling auto focus of camera module
KR20170126760A (ko) 2016-05-10 2017-11-20 엘지전자 주식회사 카메라 모듈 및 그의 오토 포커스 방법
KR102351542B1 (ko) * 2017-06-23 2022-01-17 삼성전자주식회사 시차 보상 기능을 갖는 애플리케이션 프로세서, 및 이를 구비하는 디지털 촬영 장치
CN113973171B (zh) * 2020-07-23 2023-10-10 宁波舜宇光电信息有限公司 多摄摄像模组、摄像系统、电子设备和成像方法
JP2022120683A (ja) * 2021-02-05 2022-08-18 キヤノン株式会社 画像処理装置及び画像処理方法、プログラム、記憶媒体
CN117221718A (zh) * 2022-06-02 2023-12-12 荣耀终端有限公司 一种相机的光学图像稳定装置的控制方法及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980535A (ja) * 1995-09-14 1997-03-28 Nikon Corp ブレ補正装置
JPH0980527A (ja) * 1995-09-08 1997-03-28 Nikon Corp ブレ補正機構を備える撮影装置
JP2003255423A (ja) * 2002-02-27 2003-09-10 Ricoh Co Ltd 振れ補正機能付き撮像装置
JP2004080457A (ja) * 2002-08-20 2004-03-11 Ricoh Co Ltd 画像入力装置
JP2005099831A (ja) * 2004-11-01 2005-04-14 Canon Inc 電子スチルカメラ
JP2006208872A (ja) * 2005-01-31 2006-08-10 Pentax Corp 光学装置及び手振れ補正装置の制御方法
JP2008046478A (ja) * 2006-08-18 2008-02-28 Olympus Imaging Corp ブレ補正装置及び撮影装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740472A (en) * 1995-09-14 1998-04-14 Nikon Corporation Vibration reduction device
JP3697129B2 (ja) * 2000-01-20 2005-09-21 キヤノン株式会社 撮像装置
JP2004229002A (ja) * 2003-01-23 2004-08-12 Sony Corp 撮像装置
JP2006079007A (ja) * 2004-09-13 2006-03-23 Konica Minolta Photo Imaging Inc デジタルカメラ
JP4022595B2 (ja) * 2004-10-26 2007-12-19 コニカミノルタオプト株式会社 撮影装置
TWI384321B (zh) * 2005-01-31 2013-02-01 Hoya Corp 光學影像穩定器及控制該光學影像穩定器之方法
JP4804166B2 (ja) * 2006-02-17 2011-11-02 キヤノン株式会社 撮像装置およびその制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980527A (ja) * 1995-09-08 1997-03-28 Nikon Corp ブレ補正機構を備える撮影装置
JPH0980535A (ja) * 1995-09-14 1997-03-28 Nikon Corp ブレ補正装置
JP2003255423A (ja) * 2002-02-27 2003-09-10 Ricoh Co Ltd 振れ補正機能付き撮像装置
JP2004080457A (ja) * 2002-08-20 2004-03-11 Ricoh Co Ltd 画像入力装置
JP2005099831A (ja) * 2004-11-01 2005-04-14 Canon Inc 電子スチルカメラ
JP2006208872A (ja) * 2005-01-31 2006-08-10 Pentax Corp 光学装置及び手振れ補正装置の制御方法
JP2008046478A (ja) * 2006-08-18 2008-02-28 Olympus Imaging Corp ブレ補正装置及び撮影装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061491A (ja) * 2011-09-13 2013-04-04 Canon Inc 光学機器およびそれを備えた撮像装置、光学機器の制御方法
US9699382B2 (en) 2014-12-10 2017-07-04 Samsung Electro-Mechanics Co., Ltd. Optical image stabilizer and method of decreasing power consumption
CN113589756A (zh) * 2021-10-08 2021-11-02 华兴源创(成都)科技有限公司 位移传感信号触发装置、设备、检测系统及相关方法
CN113589756B (zh) * 2021-10-08 2021-12-14 华兴源创(成都)科技有限公司 位移传感信号触发装置、设备、检测系统及相关方法

Also Published As

Publication number Publication date
US20110122268A1 (en) 2011-05-26
JPWO2010004764A1 (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
WO2010004764A1 (ja) 撮像装置
US9729773B2 (en) Interchangeable lens digital camera
JP4717748B2 (ja) カメラ本体及びそれを有するカメラシステム
US8514288B2 (en) Image capturing apparatus
KR100910295B1 (ko) 촬상장치, 떨림 보정방법 및 컴퓨터 판독 가능한 기억매체
US7830415B2 (en) Camera having an image stabilizer
US9380201B2 (en) Image capture apparatus and control method therefor
US10694109B2 (en) Imaging apparatus
KR101799597B1 (ko) 교환 렌즈, 교환 렌즈의 제어 방법 및 컴퓨터로 판독가능한 기록 매체
US8982246B2 (en) Imaging apparatus and camera body having optical zoom function and digital zoom function
JP5563163B2 (ja) 撮像装置および撮像方法
JP2016045426A (ja) 撮像装置及びその制御方法
JP2005215388A (ja) 交換レンズ及びそれを用いたカメラシステム
JP2012054920A (ja) 撮像装置
JP2016080918A (ja) 像振れ補正装置及びその制御方法
US9274402B2 (en) Imaging device that executes auto focus control by referring to distance image data regarding a depth of a region
JP7289055B2 (ja) 撮像装置
JP5886623B2 (ja) 撮像装置およびその制御方法
JP2016050973A (ja) 撮像装置及びその制御方法
JP2009284117A (ja) 撮像装置および撮像装置の制御方法
JP5455485B2 (ja) 撮像装置
JP2011071712A (ja) 立体撮像装置及び立体撮像方法
JP4258383B2 (ja) 撮像装置
JP5540935B2 (ja) 撮像装置
JP2006201568A (ja) 手ぶれ検出可能なカメラ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010503149

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13002784

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794211

Country of ref document: EP

Kind code of ref document: A1