WO2010098358A1 - 上肢動作補助装置 - Google Patents
上肢動作補助装置 Download PDFInfo
- Publication number
- WO2010098358A1 WO2010098358A1 PCT/JP2010/052883 JP2010052883W WO2010098358A1 WO 2010098358 A1 WO2010098358 A1 WO 2010098358A1 JP 2010052883 W JP2010052883 W JP 2010052883W WO 2010098358 A1 WO2010098358 A1 WO 2010098358A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axis
- pressure sensor
- force
- operation unit
- shaft
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 139
- 210000001364 upper extremity Anatomy 0.000 title claims abstract description 88
- 238000001514 detection method Methods 0.000 claims abstract description 166
- 230000002093 peripheral effect Effects 0.000 description 30
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000005489 elastic deformation Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/16—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0274—Stretching or bending or torsioning apparatus for exercising for the upper limbs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/085—Force or torque sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0003—Home robots, i.e. small robots for domestic use
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G21/00—Table-ware
- A47G21/08—Serving devices for one-handed persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5007—Control means thereof computer controlled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5061—Force sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5069—Angle sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5071—Pressure sensors
Definitions
- the present invention relates to an upper limb motion assisting device that assists the upper limb motion of a person with a disability in the upper limb such as a physically handicapped person or an elderly person.
- the articulated arm in order to allow the articulated arm to move naturally following the movement of the person being assisted, the articulated arm is configured to be movable in the X, Y, Z axis directions and around each axis.
- it is necessary to drive the multi-joint arm by decomposing and detecting the motion input by the person being assisted into the motion in the X, Y, Z-axis directions and the 6-axis directions around each axis.
- the upper limb movement assisting device that is assumed to be used by elderly people or persons with disabilities who are difficult to move freely based on their own will, excessive force is input to the brace etc. against the will of the supportee Sometimes.
- the force input to the upper limb movement assisting device according to the movement of the supportee is received by the six-axis force sensor that detects the force, the load resistance of the six-axis force sensor is reduced.
- the 6-axis force sensor is damaged.
- the 6-axis force sensor is extremely expensive, and the use of the 6-axis force sensor not only increases the manufacturing cost of the upper limb movement assist device, but also the 6-axis force sensor is damaged. This also increases the cost of repair, and is one of the factors that hinder the spread of upper limb movement assist devices.
- the present invention has been proposed to suitably solve these problems, and provides an upper limb motion assisting device capable of detecting motions in six axial directions with an inexpensive configuration.
- the purpose is to do.
- an upper limb movement assisting device Provided with an articulated arm (16) having an operation part (32, 94) that can be gripped by an assistant, and moves the articulated arm (16) in a three-dimensional manner in response to an operation on the operation part (32, 94) It is an upper limb motion assisting device that assists the upper limb motion of the assisting person, Provided in the operation section (32, 94), extending in the X-axis direction along the operation section (32, 94), the Y-axis direction orthogonal to the X-axis, and the Z-axis direction orthogonal to the XY axis First detection means (50, 110) capable of detecting movement of the operation unit (32, 94); The operation unit (32, 94) is provided to be separated from the first detection means (50, 110) in the X-axis direction, and detects the movement of the operation unit (32,
- the articulated arm connected to the first to third detection means (50, 64, 74, 108, 110, 112) and based on the detection signal input from the first to third detection means (50, 64, 74, 108, 110, 112)
- the control means (14) Based on the detection signal input from the first detection means (50, 110) by the movement of the operation unit (32, 94) in the X-axis direction, the operation unit (32, 94) is moved in the X-axis direction.
- the articulated arm (16) is driven and controlled to move the operation unit (32, 94) around the axis, Based on the detection signals input from the first detection means (50, 110) and the second detection means (64, 112) due to the movement of the operation unit (32, 94) in the Z-axis direction, The articulated arm (16) is driven and controlled to move the operation unit (32, 94) around the axis, Based on the detection signal input from the third detection means (74, 108) by the movement of the operation unit (32, 94) around the X axis, the operation unit (32, 94) is rotated around the X axis.
- the gist of the invention is to drive and control the articulated arm (16).
- the X-axis direction along the operation unit gripped by the assistant the Y-axis direction orthogonal to the X-axis, and the Z-axis direction orthogonal to the XY axis, respectively.
- a first detection unit capable of detecting movement of the operation unit to the second position and a second detection unit configured to detect movement of the operation unit in the Y-axis direction and the Z-axis direction provided at a position separated from the first detection unit.
- each of the first to third detection means according to the present invention may be a single sensor or a combination of a plurality of sensors.
- the operation unit (32) includes a shaft-shaped portion (34) provided on the operation arm (26) constituting the multi-joint arm (16), and an extra person to be supported by being extrapolated to the shaft-shaped portion (34).
- the first detection means (50) includes a first X-axis pressure sensor (52) for detecting a force for moving the grip portion (44) in the positive direction of the X axis, and the grip portion (44) for the X axis.
- the second detection means (64) includes a third Y-axis pressure sensor (66) for detecting a force for moving the grip portion (44) in the positive direction of the Y axis, and the grip portion (44) for the Y axis.
- the third detection means (74) includes a first X-axis pressure sensor (76) that detects a force that moves the gripping part (44) in a positive rotation direction around the X axis, and the gripping part (44).
- the control means (14) Based on detection signals input from the first and second X-axis pressure sensors (52, 54), the articulated arm (16) is driven and controlled to move the operation unit (32) in the X-axis direction,
- the multi-joint arm is configured to move the operation portion (32) in the Y-axis direction and the Z-axis direction based on detection signals input from the first to fourth Y-axis pressure sensors (56, 58, 66, 68).
- the multi-joint arm is configured to move the operation unit (32) in the Z-axis direction and the Y-axis direction based on detection signals input from the first to fourth Z-axis pressure sensors (60, 62, 70, 72). (16) is driven and controlled, Based on the detection signals input from the first and second X-axis pressure sensors (76, 78), the articulated arm (16) is driven and controlled to rotate the operation unit (32) about the X-axis.
- the gist is to be configured as follows.
- the first and second X-axis pressure sensors, the first and second Y-axis pressure sensors, the first and second Z-axis pressure sensors are provided as the first detection means
- the third and fourth Y-axis pressure sensors, the third and fourth Z-axis pressure sensors as the second detection means, and by providing the first and second X-axis pressure sensors as the third detection means the six axes
- the movement in the X, Y, Z axis directions and the six axis directions around each axis can be detected without adopting a force sensor, and the manufacturing cost and maintenance cost of the upper limb movement assisting device can be suppressed at a low cost.
- the operation in the six-axis direction can be detected using only the pressure sensor having excellent load resistance, the reliability against failure or the like can be improved.
- the operating portion (94) includes a shaft-like portion (96) provided integrally with an arm body (92) of the multi-joint arm (16), and the shaft-like shape.
- a grip part (100) that is extrapolated to the part (96) and can be gripped by the assistant
- the first detection means (110) is a three-axis force sense that detects a force with the input shaft connected to the shaft-like portion (96) and moving the grip portion (100) in the X, Y, and Z-axis directions.
- the second detection means (112) is provided between the shaft-shaped portion (96) and the gripping portion (100) so as to be spaced apart from each other in the circumferential direction of the shaft-shaped portion (96).
- a plurality of pressure sensors (112) for detecting a force for moving (100) in the Y-axis and Z-axis directions is composed of a position detection sensor (108) for detecting the rotational position of the shaft portion (96),
- the articulated arm (16) is driven to move the operation unit (94) in the X-axis direction based on a detection signal of force acting in the X-axis direction input from the three-axis force sensor (110).
- a three-axis force sensor capable of detecting the action of force in the X, Y, and Z-axis directions on the operation unit is provided as the first detection means
- a pressure sensor capable of detecting the action of force in the Y and Z-axis directions on the operation unit is provided as detection means
- a position detection sensor capable of detecting rotation of the operation part around the X axis is provided as third detection means. Therefore, it is possible to detect movements in the X, Y, Z axis directions and the six axis directions around each axis without adopting a six axis force sensor, and the manufacturing cost and maintenance cost of the upper limb movement assist device can be reduced. Can be suppressed.
- the grip portion (44, 100) is relatively located with respect to the shaft portion (34, 96) between the shaft portion (34, 96) and the grip portion (44, 100).
- urging members 120, 121, 130, 131 that are elastically deformed by proximity movement.
- the gripping parts (44, 100) are moved relatively close to the shaft-like parts (34, 96) from the balanced state, and the pressure sensors (52,54,56,58,60,62,66,68,70,72,76,78) with respect to the shaft-like part (34,96) so that the detection distance until force is detected is equivalent.
- the gripping part (44, 100) is held. That is, in the upper limb motion assisting device according to the fourth aspect, it is possible to suppress variation in time until the pressure sensor detects the movement of the grip portion, and to reduce the time lag until detection by the pressure sensor. Further, the urging member can hold the grip portion with respect to the shaft portion without rattling.
- the urging member (130, 131) is connected to each pressure sensor (52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 76, 78).
- Pressure sensor (52, 54, 56, 58, 60, 62, 66) corresponding to the biasing member (130, 131) elastically deformed when the gripping part (44, 100) moves close to the shaft-like part (34, 96) , 68, 70, 72, 76, 78).
- the biasing member that is elastically deformed when the gripping portion moves directly presses the pressure sensor since the biasing member that is elastically deformed when the gripping portion moves directly presses the pressure sensor, it is possible to detect a minute movement of the gripping portion. Detection accuracy can be increased.
- the upper limb motion assisting device of the present invention it is possible to drive the articulated arm by detecting the motion in the 6-axis direction by an inexpensive detection means without using the 6-axis force sensor.
- FIG. 6 is a cross-sectional view of a main part showing an operation arm obtained by breaking the operation unit according to the first embodiment along the XY plane when viewed from the positive direction of the Z axis.
- FIG. 5 is a cross-sectional view of a principal part showing an operation arm obtained by breaking the operation unit according to the first embodiment along an XZ plane when viewed from the positive direction of the Y axis.
- FIG. 4 is an enlarged cross-sectional view of a main part of the operation unit in FIG. 3.
- FIG. 6 is a perspective view illustrating a main part of a shaft-like portion of the operation unit according to the first embodiment.
- FIG. 3 is a main part sectional view showing a state in which the operation part according to the first embodiment is broken along a YZ plane. It is a block diagram which shows the relationship between the control apparatus which concerns on Example 1, each detection means, and a drive motor.
- FIG. 3 is a cross-sectional view of a main part showing a state in which the operation unit according to the first embodiment is broken along the XY plane, where (a) shows a state where the first X-axis pressure sensor is narrowed, and (b) shows the second X The shaft pressure sensor is shown in a narrowed state.
- FIG. 3 is a main part sectional view showing a state in which the operation part according to the first embodiment is broken along a YZ plane. It is a block diagram which shows the relationship between the control apparatus which concerns on Example 1, each detection means, and a drive motor.
- FIG. 3 is a cross-sectional view of a main part showing a state in which the operation unit according to the first embodiment is broken along the
- FIG. 3 is a cross-sectional view of a principal part showing a state in which the operation unit according to the first embodiment is broken along the XY plane, where (a) shows a state in which the first and third Y-axis pressure sensors are narrowed by substantially the same force. (B) shows a state in which the second and fourth Y-axis pressure sensors are narrowed with substantially the same force.
- FIG. 3 is a cross-sectional view of a principal part showing a state in which the operation unit according to the first embodiment is broken along the XY plane, where (a) is a state in which the first Y-axis pressure sensor is narrowed with a larger force than the third Y-axis pressure sensor.
- FIG. 3 is a cross-sectional view of a principal part showing a state in which the operation unit according to the first embodiment is broken along the XY plane, where (a) is a state where the second Y-axis pressure sensor is narrowed with a larger force than the fourth Y-axis pressure sensor. (B) shows a state in which the fourth Y-axis pressure sensor is narrowed with a larger force than the second Y-axis pressure sensor.
- FIG. 3 is a cross-sectional view of a main part showing a state in which the operation unit according to the first embodiment is broken along the XY plane, where (a) shows a state in which the first and fourth Y-axis pressure sensors are narrowed, and (b) Indicates a state where the second and third Y-axis pressure sensors are narrowed.
- FIG. 3 is a cross-sectional view of a main part showing a state in which the operation unit according to the first embodiment is broken along the YZ plane when viewed from the positive direction of the X axis, and (a) shows a pressure sensor around the first X axis being narrowed.
- (B) shows a state in which the pressure sensor around the second X-axis is narrowed.
- FIG. 10 is a cross-sectional view of a principal part showing an operation arm obtained by breaking an operation unit according to a second embodiment along an XY plane when viewed from the positive direction of the Z axis.
- FIG. 10 is a cross-sectional view of a principal part showing an operation arm obtained by breaking an operation unit according to a second embodiment along an XZ plane when viewed from the positive direction of the Y axis.
- It is a perspective view which shows the relationship between the triaxial force sensor which concerns on Example 2, and a shaft-shaped part.
- It is a block diagram which shows the relationship between the control apparatus which concerns on Example 2, each detection means, and a drive motor.
- (a) is principal part sectional drawing which shows the state which fractured
- (b) is the state which fractured
- (a) is principal part sectional drawing which shows the state which fractured
- the upper limb movement assisting device 10 includes a device main body 12 placed on various installation bases 82, an articulated arm 16 provided on the device main body 12, It is basically composed of an auxiliary device 30 provided on the free end side of the articulated arm 16.
- the apparatus main body 12 houses a control device (control means) 14 (see FIG. 7), a power supply device (not shown), and the like that drive and control drive motors that drive the arms of the articulated arm 16.
- a control device control means
- a power supply device not shown
- the installation stand 82 on which the apparatus main body 12 is placed for example, a desk, a washstand, a dressing table, a dedicated stand for placing the upper limb movement assisting device 10 and the like can be mentioned, but is not limited thereto. Any device may be used as long as the upper limb motion assisting device 10 can be installed movably.
- the articulated arm 16 is rotatably supported by the apparatus main body 12, and is rotated (turned) around a rotation axis extending in the vertical direction.
- a second axis arm 20 pivotally supported with respect to the first axis arm 18; a third axis arm 22 pivotally supported with respect to the second axis arm 20; and the third axis arm.
- a fourth axis arm 24 rotatably connected to the third axis arm 22 and rotatable about the third axis arm 22; and an operation arm 26 rotatably connected to the fourth axis arm 24; And an attachment arm 28 provided at an end of the operation arm 26 and rotatably connected around the axis of the operation arm 26, and the auxiliary instrument 30 is detachably attached to the attachment arm 28.
- the apparatus main body 12 is provided with a first drive motor 17 for bending the first shaft arm 18, and the first drive arm 19 for bending the second shaft arm 20 is disposed on the first shaft arm 18.
- the second axis arm 20 is provided with a third drive motor 21 for bending the third axis arm 22, and the third axis arm 22 rotates the fourth axis arm 24 about the axis.
- the fourth drive motor 23 is disposed, the fourth shaft arm 24 is provided with a fifth drive motor 25 for bending the operation arm 26, and the operation arm 26 is configured to rotate the attachment arm 28.
- a drive motor 27 is provided so that the corresponding arm 18, 20, 22, 24, 26, 28 can be operated independently by driving the drive motors 17, 19, 21, 23, 25, 27. ing.
- the drive motors 17, 19, 21, 23, 25, 27 are electrically connected to the control device 14, and the drive motors 17, 19, 21, 23, 27 are controlled based on the control of the control device 14.
- a spoon-like instrument is employed as the auxiliary instrument 30, and the auxiliary instrument 30 extends in the direction of the rotation axis of the mounting arm 28.
- a spoon is shown as an example of the auxiliary instrument 30, but an auxiliary instrument including a fork, a toothbrush, a writing instrument and the like as an instrument main body is separately prepared so that the auxiliary instrument 30 can be appropriately replaced. It has become.
- the operation arm 26 is formed in a substantially cylindrical rod shape, and is rotatably supported with respect to the fourth axis arm 24 at a substantially intermediate position in the longitudinal direction. Then, the mounting arm 28 (auxiliary instrument 30) is connected to one end of the operation arm 26, and the other side of the operation arm 26 opposite to the connection end of the mounting arm 28 is supported.
- An operation unit 32 is formed for a person to hold and operate.
- the operation portion 32 is provided with a shaft-shaped portion 34 provided on a main body portion 32a of the operation arm 26 on which the sixth drive motor 27 is disposed, and can be gripped by an auxiliary person by being extrapolated to the shaft-shaped portion 34. And a gripping portion 44. Between the shaft-like portion 34 and the grip portion 44, first to third detection means 50, 64, and 74 (described later) that can detect the movement of the operation portion 32 (the grip portion 44) are disposed. Has been.
- the longitudinal direction of the operation portion 32 is the X axis
- the operation on the fourth axis arm 24 is orthogonal to the X axis.
- the extending direction of the rotation axis of the arm 26 is defined as a Y axis
- the direction orthogonal to the X axis and the Y axis is defined as a Z axis.
- the connecting direction of the mounting arm 28 (auxiliary instrument 30) is the positive direction (front) of the X axis
- the opposite direction is the negative direction (rear) of the X axis
- the fourth axis is the Y axis.
- the direction in which the arm 24 approaches the operation arm 26 is the positive direction of the Y axis
- the opposite direction is the negative direction of the Y axis
- the upper direction in the state where the X and Y axes are horizontally oriented is the positive direction of the Z axis.
- the lower part will be described as the negative direction of the Z axis.
- the clockwise direction is set as the positive rotation direction and the rotation in the opposite direction is set as the negative rotation direction with reference to the posture of the X axis in the positive direction
- the Y axis rotation (Yr) With respect to the rotation direction of the Z axis, the clockwise direction is set as the positive rotation direction and the rotation in the opposite direction is set as the negative rotation direction on the basis of the posture facing the positive direction of the Y axis, and the rotation direction around the Z axis (Zr)
- arrows are attached in the positive direction of the X, Y, and Z axes and in the positive rotation direction around each axis (Xr, Yr, Zr).
- the shaft-like portion 34 of the operation portion 32 has four projecting pieces 36, 38, 40 at positions displaced by 90 ° in the circumferential direction (around the X axis) of the shaft body 34a. , 42 project radially.
- the two projecting pieces 36, 40 are located on the XY plane, and the remaining two projecting pieces 38, 42 are disposed on the XZ plane. Located on the top.
- the protruding piece positioned in the negative Y-axis direction with respect to the shaft body 34a is referred to as a first protruding piece 36, and the protruding piece positioned in the negative Z-axis direction with respect to the shaft body 34a is referred to as the second protruding piece.
- the protruding piece positioned in the positive direction of the Y-axis with respect to the shaft body 34a is referred to as a third protruding piece 40
- the protruding piece positioned in the positive direction of the Z-axis with respect to the shaft body 34a is referred to as the first protruding piece.
- This is referred to as a four-projection piece 42.
- each of the first to fourth projecting pieces 36, 38, 40, 42 extends over substantially the entire length in the longitudinal direction of the shaft body 34a.
- the grip 44 is formed on the outer peripheral surface of a cylindrical tubular body 46 that surrounds the projecting ends of the first to fourth projecting pieces 36, 38, 40, 42.
- An elastic member 48 made of silicon rubber, elastic foam or the like is disposed to enhance the grip performance of the grip portion 44.
- a rear support plate 46a is formed at the rear end of the cylindrical body 46 so as to close the rear opening of the cylindrical body 46 and oppose the rear ends of the projecting pieces 36, 38, 40, 42.
- a front support plate 46b is formed at the front end portion of the cylindrical body 46 so as to face the front end portions of the projecting pieces 36, 38, 40, 42, and the shaft is moved by moving the gripping portion 44 in the X-axis direction.
- the grip portion 44 is configured not to drop off from the shape portion 34.
- a pair of sandwiching pieces 46c, 46d spaced apart in the circumferential direction are formed on the inner peripheral surface of the cylindrical body 46 so as to protrude inward.
- the pair of sandwiching pieces 46c, 46d are spaced apart by 90 ° in the circumferential direction of the cylindrical body 46 corresponding to the first to fourth projecting pieces 36, 38, 40, 42 formed on the shaft-like portion 34. 4 sets are provided, and corresponding protruding pieces 36, 38, 40, 42 are inserted between the pair of sandwiching pieces 46c, 46d. That is, the shaft-shaped portion 34 and the grip portion 44 are configured to be relatively unrotatable around the X axis.
- the sandwiching piece positioned in the negative rotation direction around the X axis with respect to the corresponding projecting pieces 36, 38, 40, 42 is referred to as the first sandwiching piece 46c, and the X axis
- the sandwiching piece positioned in the surrounding positive rotation direction is referred to as a second sandwiching piece 46d.
- the front end portions of the projecting pieces 36, 38, 40, 42 are provided between the rear end portions of the projecting pieces 36, 38, 40, 42 of the shaft-like portion 34 and the rear support plate 46 a of the tubular body 46.
- the first to third detection means 50, 64, and 74 are disposed in the gap between the shaft-shaped portion 34 and the grip portion 44 (tubular body 46).
- the first detection means 50 is provided at a rear end portion of the first protruding piece 36 as a detection sensor for detecting movement of the holding portion 44 in the X-axis direction, and the first protruding piece 36 and the holding portion 44.
- the first X-axis pressure sensor 52 located between the (rear support plate 46a) and the first projecting piece 36 and the grip 44 (front support plate 46b) provided at the front end of the first projecting piece 36.
- a second X-axis pressure sensor 54 located there.
- the first detection means 50 is provided as a detection sensor for detecting the movement of the grip portion 44 in the Y-axis direction, at a position in front of the protruding end portion of the first protruding piece 36, and the first protruding portion 50.
- the first Y-axis pressure sensor 56 positioned between the piece 36 and the gripping portion 44 (the inner peripheral surface of the cylindrical body 46) and the third protrusion provided at a position in front of the protruding end of the third protruding piece 40.
- a second Y-axis pressure sensor 58 positioned between the piece 40 and the grip portion 44 (the inner peripheral surface of the cylindrical body 46).
- the first detection means 50 is provided at a position in front of the protruding end portion of the second protruding piece 38 as a detection sensor for detecting movement of the grip portion 44 in the Z-axis direction.
- the first Z-axis pressure sensor 60 located between the piece 38 and the gripping portion 44 (the inner peripheral surface of the cylindrical body 46) and the fourth protrusion provided at a position in front of the protruding end of the fourth protruding piece 42.
- a second Z-axis pressure sensor 62 is provided between the piece 42 and the grip 44 (inner peripheral surface of the cylindrical body 46).
- the grip portion 44 when the grip portion 44 is moved in the positive direction of the X axis, the first X axis pressure provided between the rear end portion of the first protruding piece 36 and the rear support plate 46a of the grip portion 44.
- the force that moves the gripping portion 44 in the positive direction of the X-axis is detected by the sensor 52 being narrowed.
- the gripping portion 44 is moved in the negative direction of the X-axis
- the second X-axis pressure sensor 54 provided between the front end portion and the front support plate 46b of the grip portion 44 is narrowed, a force for moving the grip portion 44 in the negative direction of the X axis is detected.
- the first portion 36 and the grip portion 44 (the inner peripheral surface of the cylindrical body 46) provided between the first protrusion piece 36 and the grip portion 44 are provided.
- the first Y-axis pressure sensor 56 is narrowed, a force that moves the front position of the grip 44 in the positive direction of the Y axis is detected, and when the front position of the grip 44 is moved in the negative direction of the Y axis.
- the second Y-axis pressure sensor 58 provided between the third projecting piece 40 and the gripping portion 44 (the inner peripheral surface of the cylindrical body 46) is narrowed so that the front side position of the gripping portion 44 is reduced.
- a force to move in the negative direction of the Y axis is detected.
- the grip portion 44 is provided between the second projecting piece 38 and the grip portion 44 (the inner peripheral surface of the cylindrical body 46).
- the first Z-axis pressure sensor 60 is narrowed, a force that moves the front position of the grip portion 44 in the positive direction of the Z axis is detected, and the front position of the grip portion 44 is moved in the negative direction of the Z axis.
- the second Z-axis pressure sensor 62 provided between the fourth projecting piece 42 and the gripping portion 44 (the inner peripheral surface of the cylindrical body 46) is narrowed so that the front side position of the gripping portion 44 is reduced.
- the force that moves the Z in the negative direction of the Z-axis is detected.
- the first and second X-axis pressure sensors 52 and 54, the first and second Y-axis pressure sensors 56 and 58, and the first and second Z-axis pressure sensors 60 and 62 are connected to the control device 14, respectively.
- a detection signal corresponding to the magnitude of the force detected by each sensor 52, 54, 56, 58, 60, 62 is input to the control device 14.
- the second detection means 64 is a detection sensor for detecting the movement of the grip portion 44 in the Y-axis direction.
- a third Y-axis pressure sensor 66 provided between the first projecting piece 36 and the grip 44 (inner peripheral surface of the cylindrical body 46) provided at a rear position; and a projecting end portion of the third projecting piece 40.
- a fourth Y-axis pressure sensor 68 provided at the rear position and positioned between the third projecting piece 40 and the grip 44 (inner peripheral surface of the cylindrical body 46).
- the second detection means 64 is provided at a rear position of the projecting end portion of the second projecting piece 38 as a detection sensor for detecting the movement of the grip portion 44 in the Z-axis direction.
- the third Z-axis pressure sensor 70 located between the piece 38 and the gripping portion 44 (the inner peripheral surface of the cylindrical body 46) and the fourth protrusion provided at the rear position of the protruding end of the fourth protruding piece 42.
- a fourth Z-axis pressure sensor 72 located between the piece 42 and the grip 44 (inner peripheral surface of the cylindrical body 46).
- the grip portion 44 when the rear position of the grip portion 44 is moved in the positive direction of the Y-axis, the grip portion 44 is provided between the first projecting piece 36 and the grip portion 44 (the inner peripheral surface of the cylindrical body 46).
- the third Y-axis pressure sensor 66 When the third Y-axis pressure sensor 66 is narrowed, a force that moves the rear position of the grip portion 44 in the positive direction of the Y axis is detected, and the rear position of the grip portion 44 moves in the negative direction of the Y axis.
- the fourth Y-axis pressure sensor 68 provided between the third projecting piece 40 and the gripping portion 44 (the inner peripheral surface of the cylindrical body 46) is narrowed to reduce the pressure of the gripping portion 44.
- a force that moves the rear position in the negative direction of the Y-axis is detected.
- the rear position of the grip portion 44 is moved in the positive direction of the Z-axis, it is provided between the second projecting piece 38 and the grip portion 44 (the inner peripheral surface of the cylindrical body 46).
- the third Z-axis pressure sensor 70 is narrowed, a force for moving the rear position of the grip portion 44 in the positive direction of the Z axis is detected, and the rear position of the grip portion 44 is moved in the negative direction of the Z axis.
- the gripping portion 44 is narrowed by the fourth Z-axis pressure sensor 72 provided between the fourth projecting piece 42 and the gripping portion 44 (the inner peripheral surface of the cylindrical body 46).
- each of the third and fourth Y-axis pressure sensors 66 and 68 and the third and fourth Z-axis pressure sensors 70 and 72 is connected to the control device 14, and the sensors 66, 68, 70 and 72 are connected to each other.
- a detection signal corresponding to the magnitude of the force to be detected is input to the control device 14.
- the third detecting means 74 is a first X-axis surrounding pressure sensor 76 provided between the second projecting piece 38 and the corresponding first clamping piece 46c. And a second X-axis surrounding pressure sensor 78 provided between the second projecting piece 38 and the corresponding second clamping piece 46d. That is, when the grip 44 is rotated in the positive rotation direction around the X axis, the pressure sensor 76 around the first X axis provided between the second projecting piece 38 and the first clamping piece 46c is narrow.
- the force that rotates the grip 44 in the positive rotation direction around the X axis is detected, and when the grip 44 is rotated in the negative rotation around the X axis,
- the pressure sensor 78 around the second X axis provided between the two sandwiching pieces 46d is narrowed, a force for rotating the grip portion 44 in the negative rotation direction around the X axis is detected.
- each of the pressure sensors 76 and 78 around the first and second X axes is connected to the control device 14, and a detection signal corresponding to the magnitude of the force detected by each sensor 76 and 78 is transmitted to the control device 14. To be input.
- the main body 32a of the operation unit 32 is provided with a potentiometer 80 that detects the rotational position of the operation unit 32.
- the potentiometer 80 detects the rotation position of the operation unit 32 according to the rotation posture of the operation unit 32.
- the force detected by the pressure sensors 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 76, 78 is set so that the controller 14 performs gravity compensation.
- the supporter grips and moves the operation portion 32 (gripping portion 44) provided on the operation arm 26 of the multi-joint arm 16, thereby causing the shaft-like portion 34 of the operation portion 32 to move.
- the pressure sensor 52, 54, 56, 58, 60, 62, 66, 68 of the first to third detection means 50, 64, 74 provided between the holding portion 44 (tubular body 46).
- the first X-axis provided between the rear end portion of the first projecting piece 36 and the rear support plate 46a of the grip portion 44 in the shaft-shaped portion 34.
- the operation unit 32 auxiliary instrument 30
- the second X-axis pressure sensor 54 provided between the front end portion of the first protruding piece 36 and the front support plate 46b of the grip portion 44 in the shaft-like portion 34 is provided.
- the articulated joint 32 moves the operation unit 32 (auxiliary device 30) in the negative direction of the X-axis.
- the arm 16 is driven and controlled.
- the moving speed for moving the operation unit 32 in the positive direction of the X axis is appropriately variably controlled according to the magnitude of the force detected by the first X axis pressure sensor 52, and the moving speed for moving in the negative direction of the X axis. Is variably controlled according to the magnitude of the force detected by the second X-axis pressure sensor 54.
- the 1Y-axis pressure sensor 56 and the third Y-axis pressure sensor 66 are narrowed, and force detection signals of the same magnitude from the first Y-axis pressure sensor 56 and the third Y-axis pressure sensor 66 are sent to the control device 14.
- the articulated arm 16 is driven and controlled so as to translate the operation unit 32 (auxiliary instrument 30) in the positive direction of the Y-axis. Then, as shown in FIG.
- the 2Y-axis pressure sensor 58 and the fourth Y-axis pressure sensor 68 are narrowed, and force detection signals of the same magnitude from the second Y-axis pressure sensor 58 and the fourth Y-axis pressure sensor 68 are sent to the controller 14.
- the articulated arm 16 is driven and controlled to translate the operation unit 32 (auxiliary instrument 30) in the negative direction of the Y-axis.
- the moving speed for moving the operation unit 32 in the positive direction of the Y-axis is appropriately variably controlled according to the magnitude of the force detected by the first and third Y-axis pressure sensors 56 and 66, and the negative direction of the Y-axis.
- the moving speed at which the second and fourth Y-axis pressure sensors 58 and 68 are moved is variably controlled as appropriate.
- the force detected by the first Y-axis pressure sensor 56 under the condition that detection signals from the first Y-axis pressure sensor 56 and the third Y-axis pressure sensor 66 are input to the control device 14 is the third Y-axis.
- the operation unit 32 auxiliary device 30
- the operation unit 32 is moved in the positive direction of the Y axis while moving in the positive rotation direction around the Z axis. If the force detected by the first Y-axis pressure sensor 56 is smaller than the force detected by the third Y-axis pressure sensor 66 while the articulated arm 16 is driven and controlled to rotate in the direction shown in FIG.
- the articulated arm 16 is driven and controlled to rotate the operation unit 32 (auxiliary instrument 30) in the negative rotation direction around the Z axis while moving in the positive direction of the Y axis.
- the force detected by the second Y-axis pressure sensor 58 under the condition that detection signals from the second Y-axis pressure sensor 58 and the fourth Y-axis pressure sensor 68 are input to the control device 14 is the first. If the force detected by the 4Y-axis pressure sensor 68 is greater, as shown in FIG. 11 (a), the operation unit 32 (auxiliary instrument 30) is moved in the negative direction of the Y-axis while rotating negatively around the Z-axis.
- the articulated arm 16 When the articulated arm 16 is driven and controlled to rotate in the direction, while the force detected by the second Y-axis pressure sensor 58 is smaller than the force detected by the fourth Y-axis pressure sensor 68, FIG. As shown in FIG. 4, the articulated arm 16 is driven and controlled to rotate the operation unit 32 (auxiliary instrument 30) in the positive rotation direction around the Z axis while moving in the negative direction of the Y axis.
- the rotational speed at which the operation unit 32 is rotated in the positive rotation direction of the Z axis is appropriately variably controlled according to the magnitude of the force detected by the first and fourth Y axis pressure sensors 56 and 68,
- the rotational speed of rotation in the rotational direction is appropriately variably controlled according to the magnitude of the force detected by the second and third Y-axis pressure sensors 58 and 66.
- the first Z-axis pressure sensor 60 and the third Z-axis provided between the protruding end portion of the second protruding piece 38 in the shaft-shaped portion 34 and the grip portion 44 (inner peripheral surface of the cylindrical body 46).
- the pressure sensor 70 is narrowed and a force detection signal of the same magnitude is input to the control device 14 from each of the first Z-axis pressure sensor 60 and the third Z-axis pressure sensor 70,
- the multi-joint arm 16 is driven and controlled to translate the operation unit 32 (auxiliary instrument 30) in the positive direction of the Z-axis.
- the second Z-axis pressure sensor 62 and the fourth Z-axis pressure provided between the protruding end portion of the fourth protruding piece 42 in the shaft-shaped portion 34 and the grip portion 44 (inner peripheral surface of the cylindrical body 46).
- a force detection signal of the same magnitude is input from the second Z-axis pressure sensor 62 and the fourth Z-axis pressure sensor 72 to the control device 14, Z
- the articulated arm 16 is driven and controlled to translate the operation unit 32 in the negative direction of the shaft.
- the moving speed for moving the operation unit 32 in the positive direction of the Z-axis is appropriately variably controlled according to the magnitude of the force detected by the first and third Z-axis pressure sensors 60, 70, and the negative direction of the Z-axis
- the moving speed at which the second and fourth Z-axis pressure sensors 62 and 72 detect is variably controlled as appropriate.
- the force detected by the first Z-axis pressure sensor 60 under the condition that detection signals from the first Z-axis pressure sensor 60 and the third Z-axis pressure sensor 70 are input to the control device 14 is the third Z-axis.
- the articulated arm 16 moves the operation unit 32 (auxiliary instrument 30) in the positive rotation direction around the Y axis while moving the operation unit 32 (auxiliary device 30) in the positive direction of the Z axis.
- the operation unit 32 (auxiliary instrument 30) is moved in the positive direction of the Z-axis.
- the articulated arm 16 is driven and controlled to rotate in the negative rotation direction around the Y axis.
- the force detected by the second Z-axis pressure sensor 62 under the condition that detection signals from the second Z-axis pressure sensor 62 and the fourth Z-axis pressure sensor 72 are input to the control device 14 is the first.
- the multi-joint arm 16 is rotated so as to rotate the operation unit 32 (auxiliary device 30) in the positive rotation direction around the Y-axis while moving in the negative direction of the Z-axis.
- the operation unit 32 (auxiliary instrument 30) is moved in the negative direction of the Z-axis.
- the articulated arm 16 is driven and controlled to rotate in the negative rotation direction around the Y axis while being moved.
- the operation unit 32 is rotated in the negative rotation direction around the Y axis.
- the articulated arm 16 is driven and controlled so that detection signals from the second Z-axis pressure sensor 62 and the third Z-axis pressure sensor 70 are input to the control device 14, The articulated arm 16 is driven and controlled to move the operation unit 32 in the positive rotation direction.
- the rotational speed at which the operation unit 32 is rotated in the positive rotation direction of the Y axis is appropriately variably controlled according to the magnitude of the force detected by the first and fourth Z axis pressure sensors 60 and 72, and the negative rotation of the Y axis.
- the rotational speed of rotation in the direction is appropriately variably controlled according to the magnitude of the force detected by the second and third Z-axis pressure sensors 62 and 70.
- the first X-axis surrounding pressure sensor 76 provided between the second projecting piece 38 of the shaft-like portion 34 and the first clamping piece 46c of the gripping portion 44 has a narrow pressure.
- the detection signal from the pressure sensor 76 around the first X axis is input to the control device 14, the articulated arm 16 moves the operating unit 32 in the positive rotation direction around the X axis. Drive controlled.
- the second X-axis surrounding pressure sensor 78 provided between the second projecting piece 38 of the shaft-like portion 34 and the second clamping piece 46d of the grip portion 44 has a narrow pressure.
- the articulated arm 16 is driven to rotate the operation unit 32 in the negative rotation direction around the X axis. Be controlled.
- the rotational speed at which the operation unit 32 is rotated in the positive rotation direction of the X-axis is appropriately variably controlled according to the magnitude of the force detected by the first X-axis pressure sensor 76 and is rotated in the negative rotation direction of the X-axis.
- the rotational speed is appropriately variably controlled according to the magnitude of the force detected by the pressure sensor 78 around the second X axis.
- the first detection means 50 (first and second detection means 50) that can detect the movement of the operation unit 26 in the X, Y, and Z-axis directions on the operation unit 32 of the operation arm 26 operated by the assistant.
- the second detection means 64 (third and fourth Y-axis and Z-axis pressure sensors 66, 68, 70, 72) capable of detecting the movement of the operation unit 26 in the Y- and Z-axis directions is provided.
- third detection means 74 first and second pressure sensors 76 and 78 around the X axis
- third detection means 74 first and second pressure sensors 76 and 78 around the X axis
- the operation unit 32 is moved in the X, Y, and Z axes according to the force detected by each pressure sensor 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 76, 78. It is possible to move in any direction of the direction and the direction around each axis. Therefore, the articulated arm 16 can be moved naturally following the movement of the person being assisted, and the feeling of use of the upper limb movement assisting device 10 is enhanced.
- each of the first to third detection means 50, 64, 74 includes pressure sensors 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 76, excellent in load resistance. 78, the pressure sensors 52, 54, 56, 58, 60, 62 are provided even if an excessive force against the will of the person being assisted is input to the operation unit 32 (gripping unit 44). 66, 68, 70, 72, 76, 78 can be prevented from being damaged.
- the pressure sensors 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 76, and 78 that are extremely inexpensive compared to the 6-axis force sensor.
- the manufacturing cost can be reduced, and even if the pressure sensors 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 76, 78 are damaged, the repair cost of the upper limb movement assisting device 10 can be reduced.
- the articulated arm 16 can be freely moved in six axial directions in accordance with the movement of the arm to assist the movement, and the reliability against the failure of the upper limb movement assisting apparatus 10 can be improved. Can be suppressed.
- the upper limb movement assisting device is not limited to the above-described configuration, and various modifications can be made.
- the first X-axis pressure sensor is provided between the rear end portion of the first protruding piece of the shaft-like portion and the grip portion (rear support plate of the cylindrical body) in the operation portion, and the first Although the second X-axis pressure sensor is provided between the front end portion of the one protruding piece and the grip portion (front support plate of the cylindrical body), the present invention is not limited to this, and the second to fourth protruding portions
- the first and second X-axis pressure sensors may be provided corresponding to the front and rear ends.
- the first X-axis pressure sensor may be provided at a position where a force acts when the gripping part is moved in the positive direction of the X-axis between the shaft-like part and the gripping part.
- the pressure sensor may also be provided at a position where a force acts when the grip portion is moved in the negative direction of the X axis between the shaft-shaped portion and the grip portion.
- the first to fourth projecting pieces are formed on the shaft-shaped portion, and the first to fourth Y-axis pressure sensors and the first to fourth Z-axis pressure sensors are formed on the projecting ends of the projecting pieces. Although each is configured to be located, the present invention is not limited to this.
- the shaft-like portion is formed in a cylindrical shape without the first to fourth projecting pieces, and the first to fourth Y-axis pressure sensors and the first to fourth ZZ are arranged at positions spaced apart in the circumferential direction of the shaft-like portion. Even if each of the axial pressure sensors is arranged so that the pressure is narrowed between the inner peripheral surface of the cylindrical body, the same effect as the embodiment can be obtained. That is, with respect to the first to fourth Y-axis pressure sensors, the Y-axis pressure sensors are positioned on the XY plane, and the first, second Y-axis pressure sensors and the third and fourth Y-axis pressure sensors are separated from each other in the front-rear direction.
- each Z-axis pressure sensor is positioned on the XZ plane, and the first, second Z-axis pressure sensor, and the third and fourth Z-axis pressure sensors are moved back and forth. What is necessary is just to arrange
- four pressure sensors of the first and second Y-axis pressure sensors and the first and second Z-axis pressure sensors are provided as the first detection means at positions separated in the circumferential direction of the shaft-like portion.
- the present invention is not limited to this, and three or less or five or more pressure sensors may be spaced apart in the circumferential direction.
- a force that moves the front side position of the gripping part in the positive direction of the Y axis may be detected by a plurality of pressure sensors.
- the front side position of the gripping part is moved in the positive direction of the Y axis.
- a plurality of pressure sensors used to detect the force to be used becomes the first Y-axis pressure sensor. The same applies to a pressure sensor that detects a force that moves the front position of the gripping part in the positive direction of the Y axis, and a pressure sensor that detects a force that moves the front position of the gripping part in the positive or negative direction of the Z axis.
- the second Y-axis pressure sensor and the first and second Z-axis pressure sensors may be configured by a plurality of pressure sensors.
- the pressure sensors that are spaced apart in the circumferential direction are desirably provided at equal intervals, but the pressure sensors may be provided non-uniformly.
- the four third, fourth Y-axis pressure sensors and the third, fourth Z-axis pressure sensors are arranged at positions spaced apart in the circumferential direction of the shaft-shaped portion.
- the pressure sensor is arranged, the present invention is not limited to this, and three or less or five or more pressure sensors may be arranged apart from each other in the circumferential direction.
- a force that moves the rear position of the gripping part in the positive direction of the Y axis may be detected by a plurality of pressure sensors.
- the rear position of the gripping part is detected in the positive direction of the Y axis.
- a plurality of pressure sensors used to detect the force to move to the third Y-axis pressure sensor.
- a pressure sensor that detects a force that moves the rear position of the gripping part in the positive direction of the Y axis and a pressure sensor that detects a force that moves the rear position of the gripping part in the positive or negative direction of the Z axis.
- the fourth Y-axis pressure sensor and the third and fourth Z-axis pressure sensors may be configured by a plurality of pressure sensors.
- the pressure sensors that are spaced apart in the circumferential direction are desirably provided at equal intervals, but the pressure sensors may be provided non-uniformly.
- a pressure sensor around the first X-axis is disposed between the second protruding piece formed on the shaft-like portion and the first clamping piece formed on the cylindrical body, and the second protruding piece and the cylinder are arranged.
- the pressure sensor around the second X axis is arranged between the second sandwiching piece formed in the shape body, the present invention is not limited to this.
- the pressure sensor around the first X-axis may be provided at a position where a force acts when the gripping part is moved in the positive direction around the X-axis between the shaft-like part and the gripping part.
- the surrounding pressure sensor may also be provided at a position where a force acts when the gripping portion is moved in the negative direction around the X axis between the shaft-shaped portion and the gripping portion.
- each pressure sensor is provided on the shaft-like portion, but the same effect can be obtained even if a pressure sensor is provided on the grip portion side.
- the basic configuration of the upper limb motion assisting apparatus according to the second embodiment is the same as the configuration of the upper limb motion assisting apparatus 10 according to the first embodiment, and therefore, the same components are given the same reference numerals and description thereof is omitted. Only different configurations will be described.
- the operation arm 90 constituting the multi-joint arm 16 of the upper limb movement assisting device according to the second embodiment is formed in a substantially cylindrical rod shape, and the fourth axis at a substantially intermediate position in the longitudinal direction.
- An arm main body 92 that is pivotally supported with respect to the arm 24 and is connected to the mounting arm 28 (auxiliary device 30) at one end thereof, and is opposite to the connecting end of the mounting arm 28 in the arm main body 92.
- an operating portion 94 that is rotatably connected to the other end portion side, and the sixth drive motor 27 is disposed on the arm main body 92.
- the operation unit 94 is rotatably supported around the axis of the arm main body 92 and is provided with a main body 94a on which a three-axis force sensor (first detection means) 110 is disposed, and the main body 94a.
- the shaft-shaped portion 96 connected to the input shaft 110a of the three-axis force sensor 110 and the grip portion 100 that is extrapolated to the shaft-shaped portion 96 and can be gripped by the person being assisted.
- a pressure sensor (second detection means) 112 described later capable of detecting the movement of the operation unit 94 (gripping unit 100) is disposed between the shaft-shaped portion 96 and the gripping unit 100.
- the longitudinal direction of the operation portion 94 (the input shaft 110a of the triaxial force sensor 110) is the X axis
- the operation arm 26 for the fourth axis arm 24 is orthogonal to the X axis.
- the extending direction of the rotation axis is defined as the Y axis
- the direction orthogonal to the X axis and the Y axis is defined as the Z axis (see FIG. 14 or FIG. 15)
- the X, Y, Z axes and the respective axes The surrounding positive and negative directions are defined by the same criteria as in the first embodiment.
- the three-axis force sensor 110 detects the forces acting in the positive and negative directions of the X, Y, and Z axes when the operation unit 94 is operated by the input shaft 110a, and the control device 14 is configured to input a detection signal (see FIG. 17).
- a potentiometer (third detection means) 108 for detecting the rotational position of the operation unit 94 around the axis of the arm main body 92 is installed at a connection position between the arm main body 92 and the operation unit 94.
- a rotational position signal of the operation unit 94 detected by the potentiometer 108 is input to the control device 14.
- the shaft portion 96 is formed in a cylindrical shape
- the grip portion 100 is formed in a cylindrical shape that is extrapolated to the shaft portion 96.
- An elastic member 104 made of silicon rubber, elastic foam or the like is disposed on the outer peripheral surface of the body 98.
- the front end portion of the grip portion 100 abuts on the rear end portion of the main body portion 94 a of the operation portion 94 to restrict forward movement, and the disc is attached to the rear end portion of the shaft-like portion 96.
- the rearward movement is restricted by abutting on the lid member 106 and is held in a state in which the grip portion 100 is extrapolated with respect to the shaft-like portion 96.
- the grip portion 100 is locked so as not to rotate relative to the main body portion 94a of the operation portion 94, and a slight gap is defined between the grip portion 100 and the shaft-shaped portion 96.
- the shaft portion 96 is configured to be able to be displaced in the radial direction.
- a pressure sensor 112 as a second detecting means is provided.
- the pressure sensors 112 provided between the outer peripheral surface of the shaft-shaped portion 96 and the inner peripheral surface of the tubular body 102 are narrowed, thereby A force that moves the gripper 100 in the positive or negative direction of the Y and Z axes is detected.
- the rotational position of the operation unit 94 is always detected by the potentiometer 108, the relative position of each pressure sensor 112 with respect to the arm main body 92 is grasped, and the gripping unit is determined by the position of the pressure sensor 112 that detects force. It is recognized that a force is applied to move 100 in the positive or negative direction of the Y and Z axes.
- Each of the pressure sensors 112 is connected to the control device 14 and configured to input a detection signal detected by each pressure sensor 112 to the control device 14 (see FIG. 17).
- the three-axis force sensor 110 is the first and second X-axis pressure sensors 52 and 54, first and second Y of the upper limb motion assisting device 10 according to the first embodiment.
- the first and second Z-axis pressure sensors 60 and 62, the X-axis direction along the operation unit 94, the Y-axis direction orthogonal to the X-axis, and the Z-axis orthogonal to the XY axis It functions as a first detecting means for detecting the movement of the operation unit 94 in the axial direction.
- each of the pressure sensors 112 provided away from the three-axis force sensor 110 in the X-axis direction is connected to the upper limb motion assisting apparatus 10 according to the first embodiment.
- the potentiometer 108 is connected to the positive axis around the X axis in the same manner as the first and second X axis surrounding pressure sensors 70 and 72 of the upper limb movement assisting apparatus 10 according to the first embodiment. It functions as a third detection means capable of detecting the rotation of the operation unit 94 in the rotation direction and the negative rotation direction.
- the potentiometer 108 according to a force detection signal, a force detection signal in the positive and negative directions of the Y and Z axes detected by the pressure sensors 112, and rotation of the operation unit 94 (gripping unit 100) around the X axis.
- the operation unit 94 (gripping unit 100) in the X, Y, Z axis directions and the six axis directions around each axis by a combination of detection signals in the positive and negative rotation directions around the X axis detected by Can be detected, and the operation unit 94 (auxiliary instrument 30) can be moved in the X, Y, Z axis directions and in arbitrary directions around each axis.
- the articulated arm 16 can be moved naturally following the movement of the person being assisted, and the feeling of use of the upper limb movement assisting device is enhanced.
- the manufacturing cost of the upper limb motion assisting device is reduced by adopting the inexpensive three-axis force sensor 110 and pressure sensor 112 compared to the six-axis force sensor that can detect the movement in the six-axis direction with one sensor.
- the repair cost of the upper limb motion assisting device can be reduced. Since the pressure sensor 112 itself has excellent load resistance, even if an excessive force against the will of the person being assisted is input to the operation unit 94 (gripping unit 100), each pressure sensor 112 is It can be prevented from being damaged.
- the multi-joint arm 16 can be freely moved in six axes in accordance with the movement of the person being assisted, and the upper limb can be assisted.
- the reliability with respect to the failure of the motion assisting device can be improved, and the introduction cost and the maintenance cost of the upper limb motion assisting device can be suppressed.
- the upper limb movement assisting device is not limited to the above-described configuration, and various modifications can be made.
- the pressure sensor is arranged on the outer peripheral surface of the shaft-like portion, but the present invention is not limited to this.
- a protruding piece is formed on the shaft-like portion, and a pressure sensor is arranged at the protruding end portion of the protruding piece so that the pressure is narrowed between the inner peripheral surface of the cylindrical body. Even in this case, the same effect as the embodiment can be obtained.
- the four pressure sensors are arranged as the second detection means at positions spaced apart in the circumferential direction of the shaft-like portion.
- the present invention is not limited to this, and the number is three or less or five or more.
- These pressure sensors may be spaced apart in the circumferential direction. That is, a force that moves the gripping part in the Y-axis and Z-axis directions may be detected by a plurality of pressure sensors.
- the pressure sensors that are spaced apart in the circumferential direction are desirably provided at equal intervals, but the pressure sensors may be provided non-uniformly.
- each pressure sensor is provided on the shaft-like portion, but the same effect can be obtained even if a pressure sensor is provided on the grip portion side.
- the basic configuration of the upper limb motion assisting device according to the third embodiment is basically the same as the configuration of the upper limb motion assisting device 10 according to the first embodiment.
- the same components are denoted by the same reference numerals, description thereof is omitted, and only different configurations will be described.
- the operation arm 26 that constitutes the multi-joint arm 16 of the upper limb motion assisting apparatus 10 includes the first and the first between the shaft-like portion 34 and the grip portion 44 in the operation portion 32.
- Two spring members (biasing members) 120 and 121 are provided, and the first spring member 120 and the second spring member 121 are moved by moving the grip portion 44 relatively close to and away from the shaft-shaped portion 34.
- the first spring member 120 is disposed between the first to fourth projecting pieces 36, 38, 40, 42 formed on the shaft-like portion 34, respectively.
- the operation arm 26 includes four first spaced apart portions in the circumferential direction of the shaft-shaped portion 34 at three positions spaced in the axial direction of the shaft-shaped portion 34 (that is, the X-axis direction).
- Each of the spring members 120 is provided so that the grip portion 44 is held with respect to the shaft-shaped portion 34 by a total of twelve first spring members 120.
- the second spring member 121 is between the rear end portion of each protruding piece 36, 38, 40, 42 in the shaft-shaped portion 34 and the rear support wall 46a of the grip portion 44 (tubular body 46), and
- Each of the protruding pieces 36, 38, 40, 42 is disposed between the front end portion and the front support wall 46b of the grip portion 44 (tubular body 46).
- the gripping portion 44 is in contact with the shaft-shaped portion 34 in a state in which the first spring member 120 is balanced without applying an external force to the gripping portion 44.
- They configured to be held at substantially concentric positions. That is, as shown in FIG. 18, when the first spring members 120 are kept in balance, they are provided at the projecting ends of the first to fourth projecting pieces 36, 38, 40, 42 in the shaft-shaped part 34.
- the grip portion 44 (cylindrical body 46) so that the distances between the first to fourth Y-axis and first to fourth Z-axis pressure sensors 56, 58, 60, 62, 66, 68, 70, 72 are equal. Is retained.
- the Y axis and Z axis pressure sensors 56, 58, 60, 62, 66, 68, 70, 72 can be made constant, and a time lag can be prevented from occurring in detection by each of the Y-axis and Z-axis pressure sensors 56, 58, 60, 62, 66, 68, 70, 72.
- the first spring members 120 evenly in the circumferential direction of the shaft-shaped portion 34, the first spring members 120 in a state in which the first spring members 120 are kept in balance have a first corresponding to the second projecting piece 38.
- the grip portion 44 so that the distance from the clamping piece 46c to the first X-axis pressure sensor 76 and the distance from the second clamping piece 46d corresponding to the second protruding piece 38 to the second X-axis pressure sensor 78 are equal.
- the (tubular body 46) is held. Therefore, when the grip 44 is moved in the positive rotation direction or the negative rotation direction around the X axis, the time until the first X axis rotation pressure sensor 76 and the second X axis rotation pressure sensor 78 detect can be made constant. A time lag can be prevented from occurring in detection by the pressure sensors 76 and 78 when rotating around the axis.
- the gripping portion 44 from the rear end portion (the first X-axis pressure sensor 52) of each of the protruding pieces 36, 38, 40, 42 in the shaft-like portion 34. (Tubular body 46)
- the distance to the wall 46b is the same.
- the grip 44 when the grip 44 is moved in the X-axis direction, the time until the first X-axis pressure sensor 52 and the second X-axis pressure sensor 54 detect can be made constant, and the occurrence of a time lag until detection is similarly prevented. Is done.
- the grip portion 44 is held on the shaft-shaped portion 34 by the first and second spring members 120 and 121, rattling of the grip portion 44 is prevented and stable operation is possible.
- the upper limb motion assisting apparatus is not limited to the above-described configuration, and various modifications are possible.
- one urging member is provided between each protruding piece.
- the present invention is not limited to this, and a plurality of urging members are provided between the protruding pieces. It may be.
- the upper limb movement assisting device according to the first embodiment is described.
- the shaft-like portion is formed in a cylindrical shape, and the biasing member is An arrangement form can also be adopted.
- the spring member in the form of a coil spring is shown as the biasing member.
- the present invention is not limited to this, and various conventionally known members that express the biasing force by elastic deformation, such as a leaf spring and rubber. Can be adopted.
- the items described as the modifications of the first and second embodiments can be adopted for the upper limb movement assisting device according to the third embodiment.
- the basic configuration of the upper limb motion assisting device according to the fourth embodiment is basically the same as the configuration of the upper limb motion assisting device 10 according to the first embodiment, and thus the same as the upper limb motion assisting device 10 according to the first embodiment.
- the same reference numerals are omitted and the description thereof is omitted, and only different configurations will be described.
- the operation arm 26 that constitutes the multi-joint arm 16 of the upper limb motion assisting apparatus 10 has a third and a third between the shaft portion 34 and the grip portion 44 of the operation portion 32.
- Four spring members (biasing members) 130 and 131 are provided, and the third spring member 130 and the fourth spring member 131 are moved by moving the grip portion 44 relatively close to and away from the shaft-shaped portion 34. Configured to elastically deform.
- the third spring member 130 includes X-axis, Y-axis, and Z-axis pressure sensors 52, 54, 56, 58, 60, 62, 66, 68, 70, 72 and the grip portion 34.
- the fourth spring member 131 is disposed between the first X-axis pressure sensor 76 and the first clamping piece 46c, and between the second X-axis pressure sensor 78 and the second clamping piece 46d. . That is, the third and fourth spring members 130 and 131 that are elastically deformed when the grip portion 44 is moved relatively close to and away from the shaft-shaped portion 34 correspond to the corresponding pressure sensors 52, 54, 56, 58, 60,62,66,68,70,72,76,78, the force which each sensor 52,54,56,58,60,62,66,68,70,72,76,78 detects at this time A detection signal corresponding to the magnitude of the signal is input to the control device 14.
- the third and fourth spring members 130 and 131 are plate springs that are formed from an elongated thin spring steel and can be elastically deformed, and one end thereof is the gripping portion. 44 or the clamping piece 46c, the pressure sensor 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 76, 78 is contacted. Further, the pressure sensors 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 76, and 78 protrude to contact portions with the corresponding third and fourth spring members 130 and 131, respectively.
- each spring member 130, 131 is configured to make point contact with the corresponding pressure sensor 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 76, 78. Yes.
- the third and fourth spring members 130 and 131 that are elastically deformed when the grip portion 44 is moved relatively close to and away from the shaft-shaped portion 34 correspond to the corresponding pressure sensors 52, 54, 56, and 58.
- 60, 62, 66, 68, 70, 72, 76, 78 are pressed at points to improve the force detection accuracy.
- the third spring is interposed between the Y-axis and Z-axis pressure sensors 56, 58, 60, 62, 66, 68, 70, 72 and the grip portion 44. Since the member 130 is disposed, as in the third embodiment, in a state where the third spring members 130 are balanced without applying an external force to the gripping portion 44, the gripping portion 44 is in relation to the shaft-shaped portion 34. Are held in a substantially concentric position.
- the third spring member 130 disposed between the X-axis pressure sensors 52 and 54 and the grip portion 44 maintains a balance so that the protruding pieces 36, 38, 40, 42, the distance from the rear end portion (first X-axis pressure sensor 52) to the rear support wall 46a of the grip portion 44 (tubular body 46), and the front end portions (second X-axis) of the projecting pieces 36, 38, 40, 42.
- the distance from the pressure sensor 54) to the front support wall 46b of the grip 44 (tubular body 46) is configured to be equal.
- the pressure sensors 52, 54, and 56 are moved.
- 58, 60, 62, 66, 68, 70, 72 can be made constant to prevent time lag from occurring.
- the fourth spring member 131 disposed between the first X-axis pressure sensor 76 and the first clamping piece 46c and between the second X-axis pressure sensor 78 and the second clamping piece 46d is balanced.
- the second holding piece 46d corresponding to the second protruding piece 38 is set around the second X-axis.
- the grip portion 44 tubular body 46
- the grip 44 when the grip 44 is moved in the positive rotation direction or the negative rotation direction around the X axis, the time until the first X axis rotation pressure sensor 76 and the second X axis rotation pressure sensor 78 detect can be made constant, A time lag can be prevented from occurring in the detection by the pressure sensors 76 and 78 when rotating around the X axis.
- the pressure sensors 52, 54, and 56 are accompanied by the elastic deformation of the third and fourth spring members 130 and 131. , 58, 60, 62, 66, 68, 70, 72, 76, 78, the force can be directly transmitted, so that the minute movement of the grip 44 can be properly detected, and the detection accuracy can be improved. Figured. Further, since the grip portion 44 is held on the shaft-shaped portion 34 by the third and fourth spring members 130 and 131, rattling of the grip portion 44 is prevented and stable operation is possible.
- the upper limb movement assisting apparatus is not limited to the above-described configuration, and various modifications are possible.
- the urging member is configured to come into contact with the pressure sensor via the protruding portion.
- the urging member may be configured to be in direct contact with the pressure sensor.
- the upper limb movement assisting device according to the first embodiment has been described.
- the shaft-like portion is formed in a cylindrical shape, and the biasing member is An arrangement form can also be adopted.
- Example 4 a configuration in which an urging member is disposed as in the fourth embodiment can be adopted for a configuration in which a pressure sensor and a triaxial force sensor are used together.
- a spring member in the form of a leaf spring is shown as the biasing member.
- the present invention is not limited to this, and various conventionally known members that express biasing force by elastic deformation, such as a coil spring or rubber. Can be adopted.
- the items described as the modified examples of the first to third embodiments can be adopted for the upper limb movement assisting device according to the fourth embodiment.
- Control device 16 Articulated Arm 32 Operation Unit 34 Axial Part 44 Gripping Part 50 First Detection Means 52 First X Axis Pressure Sensor 54 Second X Axis Pressure Sensor 56 First Y Axis Pressure Sensor 58 Second Y Axis Pressure Sensor 60 First Z Axis Pressure Sensor 62 Second Z axis pressure sensor 64 Second detection means 66 Third Y axis pressure sensor 68 Fourth Y axis pressure sensor 70 Third Z axis pressure sensor 72 Fourth Z axis pressure sensor 74 Third detection means 76 First X axis circumference pressure sensor 78 Second X axis circumference pressure sensor 92 Arm body 94 Operation section 96 Axis section 100 Grip section 108 Potentiometer (third detection means, position detection sensor) 110 3-axis force sensor (first detection means) 112 Pressure sensor (second detection means) 120 First spring member (biasing member) 121 Second spring member (biasing member) 130 Third spring member (biasing member) 131 Fourth spring member (biasing member)
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Robotics (AREA)
- Rehabilitation Therapy (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Human Computer Interaction (AREA)
- Pain & Pain Management (AREA)
- Epidemiology (AREA)
- Manipulator (AREA)
- Rehabilitation Tools (AREA)
Abstract
【課題】安価な構成で6軸方向の動作を検出可能な上肢動作補助装置を提供する。 【解決手段】被補助者が把持操作可能な操作部(32)に沿うX軸方向、該X軸に直交するY軸方向、X―Y軸に直交するZ軸方向の夫々への操作部(32)の移動を引き起こす力を検出可能な第1の検出手段(52,54,56,58,60,62)と、第1の検出手段(52,54,56,58,60,62)に対してX軸方向に離間配置されてY軸方向およびZ軸方向への操作部(32)の移動を引き起こす力を検出可能な第2の検出手段(66,68,70,72)と、X軸の軸周りの操作部(32)の回転又は当該回転を引き起こす力を検出可能な第3の検出手段(76,78)と、第1~第3の検出手段(52,54,56,58,60,62,66,68,70,72,76,78)に接続される制御手段(14)とを設けて、第1~第3の検出手段(52,54,56,58,60,62,66,68,70,72,76,78)から入力される検出信号に基づいて多関節アームを駆動制御する。
Description
本発明は、上肢に障害をもつ身体障害者や高齢者等の被補助者の上肢動作を補助する上肢動作補助装置に関するものである。
従来、自分の意思に従って上肢を自由に動かせない高齢者や障害者等のために、自力で食事動作やその他の日常生活動作等を行なえるように上肢の動きを補助するロボットが知られている(例えば特許文献1)。この特許文献1に記載された上肢動作補助装置では、台等に多関節アームの基端部が接続された本体を固定して安定性を高めつつ、該多関節アームの自由端部側に設けた装具を被補助者の上肢に装着して、被補助者が動いた際に装具に加えられた力情報に基づいて自由端部を移動させることにより、上肢動作を補助するよう構成されている。
前述した上肢動作補助装置において、多関節アームを被補助者の動作に追従して自然に動作させるためには、該多関節アームをX,Y,Z軸方向および各軸周りに動作可能に構成すると共に、被補助者が装具に入力する動作をX,Y,Z軸方向および各軸周りの6軸方向の動作に分解して検出して多関節アームを駆動する必要がある。このような6軸方向の動作を検出するには、装具等に6軸力覚センサを配設して、該6軸力覚センサの検出信号に基づいて多関節アームを作動することが考えられる。
ところで、自己意思に基づいて自由に動作することが困難な高齢者や障害者等の利用を想定した上肢動作補助装置では、被支援者の意志に反して装具等に過大な力が入力されることがある。ここで、被支援者の動作に応じて上肢動作補助装置に入力される力は、力を検出する前記6軸力覚センサで受け止められることになるため、該6軸力覚センサの耐荷重を超えた力が入力された場合に、当該6軸力覚センサの損傷を来すことになる。しかしながら、現状において6軸力覚センサは極めて高価なものであり、該6軸力覚センサを採用することで上肢動作補助装置の製造コストが嵩むばかりでなく、6軸力覚センサが損傷した場合の修理費用も嵩むことから、上肢動作補助装置の普及を阻害する要因の1つともなっている。
そこで本発明は、従来の技術に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、安価な構成で6軸方向の動作を検出可能な上肢動作補助装置を提供することを目的とする。
前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る上肢動作補助装置は、
被補助者が把持操作可能な操作部(32,94)を有する多関節アーム(16)を備え、該操作部(32,94)に対する操作に応じて多関節アーム(16)を三次元動作することで被補助者の上肢動作を補助する上肢動作補助装置であって、
前記操作部(32,94)に設けられ、該操作部(32,94)に沿うX軸方向、該X軸に直交するY軸方向、X―Y軸に直交するZ軸方向の夫々への操作部(32,94)の移動を検出可能な第1の検出手段(50,110)と、
前記操作部(32,94)に前記第1の検出手段(50,110)とX軸方向に離間するよう設けられ、前記Y軸方向およびZ軸方向への操作部(32,94)の移動を検出可能な第2の検出手段(64,112)と、
前記操作部(32,94)に設けられ、X軸の軸周りへの操作部(32,94)の回転を検出可能な第3の検出手段(74,108)と、
前記第1~第3の検出手段(50,64,74,108,110,112)に接続されて、該第1~第3の検出手段(50,64,74,108,110,112)から入力される検出信号に基づいて前記多関節アーム(16)を駆動制御する制御手段(14)とを備え、
前記制御手段(14)は、
前記操作部(32,94)のX軸方向への移動により前記第1の検出手段(50,110)から入力される検出信号に基づいて、該X軸方向へ操作部(32,94)を移動させるよう前記多関節アーム(16)を駆動制御し、
前記操作部(32,94)のY軸方向への移動により前記第1の検出手段(50,110)および第2の検出手段(64,112)から入力される検出信号に基づいて、該Y軸方向およびZ軸周りへ操作部(32,94)を移動させるよう前記多関節アーム(16)を駆動制御し、
前記操作部(32,94)のZ軸方向への移動により前記第1の検出手段(50,110)および第2の検出手段(64,112)から入力される検出信号に基づいて、該Z軸方向およびY軸周りへ操作部(32,94)を移動させるよう前記多関節アーム(16)を駆動制御し、
前記操作部(32,94)のX軸周りへの移動により前記第3の検出手段(74,108)から入力される検出信号に基づいて、該X軸周りへ操作部(32,94)を回転させるよう前記多関節アーム(16)を駆動制御することを要旨とする。
被補助者が把持操作可能な操作部(32,94)を有する多関節アーム(16)を備え、該操作部(32,94)に対する操作に応じて多関節アーム(16)を三次元動作することで被補助者の上肢動作を補助する上肢動作補助装置であって、
前記操作部(32,94)に設けられ、該操作部(32,94)に沿うX軸方向、該X軸に直交するY軸方向、X―Y軸に直交するZ軸方向の夫々への操作部(32,94)の移動を検出可能な第1の検出手段(50,110)と、
前記操作部(32,94)に前記第1の検出手段(50,110)とX軸方向に離間するよう設けられ、前記Y軸方向およびZ軸方向への操作部(32,94)の移動を検出可能な第2の検出手段(64,112)と、
前記操作部(32,94)に設けられ、X軸の軸周りへの操作部(32,94)の回転を検出可能な第3の検出手段(74,108)と、
前記第1~第3の検出手段(50,64,74,108,110,112)に接続されて、該第1~第3の検出手段(50,64,74,108,110,112)から入力される検出信号に基づいて前記多関節アーム(16)を駆動制御する制御手段(14)とを備え、
前記制御手段(14)は、
前記操作部(32,94)のX軸方向への移動により前記第1の検出手段(50,110)から入力される検出信号に基づいて、該X軸方向へ操作部(32,94)を移動させるよう前記多関節アーム(16)を駆動制御し、
前記操作部(32,94)のY軸方向への移動により前記第1の検出手段(50,110)および第2の検出手段(64,112)から入力される検出信号に基づいて、該Y軸方向およびZ軸周りへ操作部(32,94)を移動させるよう前記多関節アーム(16)を駆動制御し、
前記操作部(32,94)のZ軸方向への移動により前記第1の検出手段(50,110)および第2の検出手段(64,112)から入力される検出信号に基づいて、該Z軸方向およびY軸周りへ操作部(32,94)を移動させるよう前記多関節アーム(16)を駆動制御し、
前記操作部(32,94)のX軸周りへの移動により前記第3の検出手段(74,108)から入力される検出信号に基づいて、該X軸周りへ操作部(32,94)を回転させるよう前記多関節アーム(16)を駆動制御することを要旨とする。
すなわち、請求項1に係る上肢動作補助装置では、被補助者が把持操作する操作部に沿うX軸方向、該X軸に直交するY軸方向、X―Y軸に直交するZ軸方向の夫々への操作部の移動を検出可能な第1の検出手段と、第1の検出手段から離間する位置に設けられたY軸方向およびZ軸方向への操作部の移動を検出可能な第2の検出手段と、X軸の軸周りへの操作部の回転を検出可能な第3の検出手段とを独立して設けることで、6軸力覚センサを採用することなくX,Y,Z軸方向および各軸周りの6軸方向の動作を検出することができ、上肢動作補助装置の製造コストや維持コスト等を低廉に抑制し得る。
ここで、本発明に係る第1~3の検出手段の夫々は、単体のセンサであってもよく、複数のセンサを組み合わせたものであってもよい。
ここで、本発明に係る第1~3の検出手段の夫々は、単体のセンサであってもよく、複数のセンサを組み合わせたものであってもよい。
請求項2に係る上肢動作補助装置では、
前記操作部(32)は、前記多関節アーム(16)を構成する操作アーム(26)に設けられた軸状部(34)と、該軸状部(34)に外挿されて被補助者が把持操作可能な把持部(44)とから構成されて、該軸状部(34)と把持部(44)との間に前記第1~第3の検出手段(50,64,74)が配設され、
前記第1の検出手段(50)は、前記把持部(44)をX軸の正方向へ移動させる力を検出する第1X軸圧力センサ(52)と、前記把持部(44)をX軸の負方向へ移動させる力を検出する第2X軸圧力センサ(54)と、前記把持部(44)をY軸の正方向へ移動させる力を検出する第1Y軸圧力センサ(56)と、前記把持部(44)をY軸の負方向へ移動させる力を検出する第2Y軸圧力センサ(58)と、前記把持部(44)をZ軸の正方向へ移動させる力を検出する第1Z軸圧力センサ(60)と、前記把持部(44)をZ軸の負方向へ移動させる力を検出する第2Z軸圧力センサ(62)とからなり、
前記第2の検出手段(64)は、前記把持部(44)をY軸の正方向へ移動させる力を検出する第3Y軸圧力センサ(66)と、前記把持部(44)をY軸の負方向へ移動させる力を検出する第4Y軸圧力センサ(68)と、前記把持部(44)をZ軸の正方向へ移動させる力を検出する第3Z軸圧力センサ(70)と、前記把持部(44)をZ軸の負方向へ移動させる力を検出する第4Z軸圧力センサ(72)とからなり、
前記第3の検出手段(74)は、前記把持部(44)をX軸周りの正回転方向へ移動させる力を検出する第1X軸周り圧力センサ(76)と、前記把持部(44)をX軸周りの負回転方向へ移動させる力を検出する第2X軸周り圧力センサ(78)とからなり、
前記制御手段(14)は、
前記第1および第2X軸圧力センサ(52,54)から入力される検出信号に基づいて、前記操作部(32)をX軸方向に移動させるよう前記多関節アーム(16)を駆動制御し、
前記第1~第4Y軸圧力センサ(56,58,66,68)から入力される検出信号に基づいて、前記操作部(32)をY軸方向およびZ軸周りに移動させるよう前記多関節アーム(16)を駆動制御し、
前記第1~第4Z軸圧力センサ(60,62,70,72)から入力される検出信号に基づいて、前記操作部(32)をZ軸方向およびY軸周りに移動させるよう前記多関節アーム(16)を駆動制御し、
前記第1および第2X軸周り圧力センサ(76,78)から入力される検出信号に基づいて、前記操作部(32)をX軸周りに回転させるよう前記多関節アーム(16)を駆動制御するよう構成されることを要旨とする。
前記操作部(32)は、前記多関節アーム(16)を構成する操作アーム(26)に設けられた軸状部(34)と、該軸状部(34)に外挿されて被補助者が把持操作可能な把持部(44)とから構成されて、該軸状部(34)と把持部(44)との間に前記第1~第3の検出手段(50,64,74)が配設され、
前記第1の検出手段(50)は、前記把持部(44)をX軸の正方向へ移動させる力を検出する第1X軸圧力センサ(52)と、前記把持部(44)をX軸の負方向へ移動させる力を検出する第2X軸圧力センサ(54)と、前記把持部(44)をY軸の正方向へ移動させる力を検出する第1Y軸圧力センサ(56)と、前記把持部(44)をY軸の負方向へ移動させる力を検出する第2Y軸圧力センサ(58)と、前記把持部(44)をZ軸の正方向へ移動させる力を検出する第1Z軸圧力センサ(60)と、前記把持部(44)をZ軸の負方向へ移動させる力を検出する第2Z軸圧力センサ(62)とからなり、
前記第2の検出手段(64)は、前記把持部(44)をY軸の正方向へ移動させる力を検出する第3Y軸圧力センサ(66)と、前記把持部(44)をY軸の負方向へ移動させる力を検出する第4Y軸圧力センサ(68)と、前記把持部(44)をZ軸の正方向へ移動させる力を検出する第3Z軸圧力センサ(70)と、前記把持部(44)をZ軸の負方向へ移動させる力を検出する第4Z軸圧力センサ(72)とからなり、
前記第3の検出手段(74)は、前記把持部(44)をX軸周りの正回転方向へ移動させる力を検出する第1X軸周り圧力センサ(76)と、前記把持部(44)をX軸周りの負回転方向へ移動させる力を検出する第2X軸周り圧力センサ(78)とからなり、
前記制御手段(14)は、
前記第1および第2X軸圧力センサ(52,54)から入力される検出信号に基づいて、前記操作部(32)をX軸方向に移動させるよう前記多関節アーム(16)を駆動制御し、
前記第1~第4Y軸圧力センサ(56,58,66,68)から入力される検出信号に基づいて、前記操作部(32)をY軸方向およびZ軸周りに移動させるよう前記多関節アーム(16)を駆動制御し、
前記第1~第4Z軸圧力センサ(60,62,70,72)から入力される検出信号に基づいて、前記操作部(32)をZ軸方向およびY軸周りに移動させるよう前記多関節アーム(16)を駆動制御し、
前記第1および第2X軸周り圧力センサ(76,78)から入力される検出信号に基づいて、前記操作部(32)をX軸周りに回転させるよう前記多関節アーム(16)を駆動制御するよう構成されることを要旨とする。
すなわち、請求項2に係る上肢動作補助装置では、第1の検出手段として、第1および第2X軸圧力センサ、第1および第2Y軸圧力センサ、第1および第2Z軸圧力センサを設け、第2の検出手段として、第3および第4Y軸圧力センサ、第3および第4Z軸圧力センサを設けると共に、第3の検出手段として、第1および第2X軸周り圧力センサを設けることで、6軸力覚センサを採用することなくX,Y,Z軸方向および各軸周りの6軸方向の動作を検出することができ、上肢動作補助装置の製造コストや維持コスト等を低廉に抑制し得る。また、耐荷重性に優れた圧力センサのみを用いて6軸方向の動作を検出することができるから、故障等に対する信頼性の向上が図られる。
請求項3に係る上肢動作補助装置では、前記操作部(94)は、前記多関節アーム(16)のアーム本体(92)と一体的に設けられた軸状部(96)と、該軸状部(96)に外挿されて被補助者が把持操作可能な把持部(100)とから構成されて、
前記第1の検出手段(110)は、入力軸が前記軸状部(96)に連結されて前記把持部(100)をX,Y,Z軸方向へ移動させる力を検出する3軸力覚センサ(110)から構成され、
前記第2の検出手段(112)は、前記軸状部(96)と把持部(100)との間に、該軸状部(96)の周方向に離間して設けられて、該把持部(100)をY軸,Z軸方向へ移動させる力を検出する複数の圧力センサ(112)から構成され、
前記第3の検出手段(74,108)は、前記軸状部(96)の回転位置を検出する位置検出センサ(108)から構成され、
前記制御手段(14)は、
前記3軸力覚センサ(110)から入力されるX軸方向へ作用する力の検出信号に基づいて、前記操作部(94)をX軸方向に移動させるよう前記多関節アーム(16)を駆動制御し、
前記3軸力覚センサ(110)から入力されるY軸方向へ作用する力の検出信号と、前記圧力センサ(112)から入力されるY軸方向へ作用する力の検出信号とに基づいて、前記操作部(94)をY軸方向およびZ軸周りに移動させるよう前記多関節アーム(16)を駆動制御し、
前記3軸力覚センサ(110)から入力されるZ軸方向へ作用する力の検出信号と、前記圧力センサ(112)から入力されるZ軸方向へ作用する力の検出信号とに基づいて、前記操作部(94)をZ軸方向およびY軸周りに移動させるよう前記多関節アーム(16)を駆動制御し、
前記位置検出センサ(108)から入力されるX軸周りへ回転変位する検出信号に基づいて前記操作部(94)をX軸周りに回転させるよう前記多関節アーム(16)を駆動制御するよう構成されることを要旨とする。
前記第1の検出手段(110)は、入力軸が前記軸状部(96)に連結されて前記把持部(100)をX,Y,Z軸方向へ移動させる力を検出する3軸力覚センサ(110)から構成され、
前記第2の検出手段(112)は、前記軸状部(96)と把持部(100)との間に、該軸状部(96)の周方向に離間して設けられて、該把持部(100)をY軸,Z軸方向へ移動させる力を検出する複数の圧力センサ(112)から構成され、
前記第3の検出手段(74,108)は、前記軸状部(96)の回転位置を検出する位置検出センサ(108)から構成され、
前記制御手段(14)は、
前記3軸力覚センサ(110)から入力されるX軸方向へ作用する力の検出信号に基づいて、前記操作部(94)をX軸方向に移動させるよう前記多関節アーム(16)を駆動制御し、
前記3軸力覚センサ(110)から入力されるY軸方向へ作用する力の検出信号と、前記圧力センサ(112)から入力されるY軸方向へ作用する力の検出信号とに基づいて、前記操作部(94)をY軸方向およびZ軸周りに移動させるよう前記多関節アーム(16)を駆動制御し、
前記3軸力覚センサ(110)から入力されるZ軸方向へ作用する力の検出信号と、前記圧力センサ(112)から入力されるZ軸方向へ作用する力の検出信号とに基づいて、前記操作部(94)をZ軸方向およびY軸周りに移動させるよう前記多関節アーム(16)を駆動制御し、
前記位置検出センサ(108)から入力されるX軸周りへ回転変位する検出信号に基づいて前記操作部(94)をX軸周りに回転させるよう前記多関節アーム(16)を駆動制御するよう構成されることを要旨とする。
すなわち、請求項3に係る上肢動作補助装置では、第1の検出手段として、操作部に対するX,Y,Z軸方向への力の作用を検出可能な3軸力覚センサを設け、第2の検出手段として操作部に対するY,Z軸方向への力の作用を検出可能な圧力センサを設けると共に、第3の検出手段として操作部のX軸周りへの回転を検出可能な位置検出センサを設けることで、6軸力覚センサを採用することなくX,Y,Z軸方向および各軸周りの6軸方向の動作を検出することができ、上肢動作補助装置の製造コストや維持コスト等を低廉に抑制し得る。
請求項4に係る上肢動作補助装置では、前記軸状部(34,96)および前記把持部(44,100)の間には、軸状部(34,96)に対する把持部(44,100)の相対的な近接移動により弾性変形される付勢部材(120,121,130,131)が設けられ、
前記各付勢部材(120,121,130,131)が均衡を保った均衡状態では、該均衡状態から前記軸状部(34,96)に対して把持部(44,100)が相対的に近接移動されて前記各圧力センサ(52,54,56,58,60,62,66,68,70,72,76,78)で力を検出するまでの検出距離を同等になるよう該軸状部(34,96)に対して把持部(44,100)が保持されるようにしたことを要旨とする。
すなわち、請求項4に係る上肢動作補助装置では、把持部を移動して圧力センサが検出するまでの時間のばらつきを抑制でき、圧力センサによる検出までのタイムラグを軽減できる。また、付勢部材により、把持部を軸状部に対してがたつきなく保持することができる。
前記各付勢部材(120,121,130,131)が均衡を保った均衡状態では、該均衡状態から前記軸状部(34,96)に対して把持部(44,100)が相対的に近接移動されて前記各圧力センサ(52,54,56,58,60,62,66,68,70,72,76,78)で力を検出するまでの検出距離を同等になるよう該軸状部(34,96)に対して把持部(44,100)が保持されるようにしたことを要旨とする。
すなわち、請求項4に係る上肢動作補助装置では、把持部を移動して圧力センサが検出するまでの時間のばらつきを抑制でき、圧力センサによる検出までのタイムラグを軽減できる。また、付勢部材により、把持部を軸状部に対してがたつきなく保持することができる。
請求項5に係る上肢動作補助装置では、前記付勢部材(130,131)は、前記各圧力センサ(52,54,56,58,60,62,66,68,70,72,76,78)に接触した状態で設けられて、
前記軸状部(34,96)に対する前記把持部(44,100)の近接移動時に弾性変形した前記付勢部材(130,131)がす対応の圧力センサ(52,54,56,58,60,62,66,68,70,72,76,78)が押圧するよう構成されたことを要旨とする。
すなわち、請求項5に係る上肢動作補助装置では、把持部の移動時に弾性変形した付勢部材が圧力センサを直接押圧するから、該把持部の微小な移動を検出することができ、圧力センサによる検出精度を高めることができる。
前記軸状部(34,96)に対する前記把持部(44,100)の近接移動時に弾性変形した前記付勢部材(130,131)がす対応の圧力センサ(52,54,56,58,60,62,66,68,70,72,76,78)が押圧するよう構成されたことを要旨とする。
すなわち、請求項5に係る上肢動作補助装置では、把持部の移動時に弾性変形した付勢部材が圧力センサを直接押圧するから、該把持部の微小な移動を検出することができ、圧力センサによる検出精度を高めることができる。
本発明に係る上肢動作補助装置によれば、6軸力覚センサを用いることなく、安価な検出手段により6軸方向の動作を検出して多関節アームを駆動することが可能となる。
次に、本発明に係る上肢動作補助装置につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。
図1に示すように、実施例1に係る上肢動作補助装置10は、各種の設置台82上に載置される装置本体12と、該装置本体12に設けられた多関節アーム16と、該多関節アーム16の自由端部側に設けられた補助器具30とから基本的に構成されている。前記装置本体12には、前記多関節アーム16の各アームを駆動する駆動モータを駆動制御する制御装置(制御手段)14(図7参照)や電源装置(図示せず)等が収容されている。なお、前記装置本体12を載置する設置台82としては、例えば、机や洗面台、化粧台、上肢動作補助装置10を置くための専用台等が挙げられるが、これに限られるものではなく、上肢動作補助装置10を移動可能に設置し得るものであれば何れのものであってもよい。
前記多関節アーム16は、図1に示すように、前記装置本体12に回転可能に支持され、鉛直方向に延在する回転軸を中心に回転(旋回)される第1軸アーム18と、該第1軸アーム18に対して屈曲可能に軸支された第2軸アーム20と、該第2軸アーム20に対して屈曲可能に軸支された第3軸アーム22と、該第3軸アーム22に対して回転可能に連結され、該第3軸アーム22の軸周りに回転可能な第4軸アーム24と、該第4軸アーム24に対して屈曲可能に連結された操作アーム26と、該操作アーム26の端部に設けられて操作アーム26の軸周りに回転可能に連結された取付アーム28とを備え、該取付アーム28に対して前記補助器具30が着脱可能に取付けられている。また、前記装置本体12には、第1軸アーム18を屈曲動作させる第1駆動モータ17が配設され、第1軸アーム18には、第2軸アーム20を屈曲動作させる第2駆動モータ19が配設され、第2軸アーム20には、第3軸アーム22を屈曲動作させる第3駆動モータ21が配設され、第3軸アーム22には、第4軸アーム24を軸周りに回転させる第4駆動モータ23が配設され、第4軸アーム24には、操作アーム26を屈曲動作させる第5駆動モータ25が配設され、操作アーム26には、取付アーム28を回転させる第6駆動モータ27が配設されて、各駆動モータ17,19,21,23,25,27の駆動により対応のアーム18,20,22,24,26,28を独立して動作させ得るようになっている。そして、各駆動モータ17,19,21,23,25,27は、前記制御装置14に電気的に接続されており、制御装置14の制御に基づいて各駆動モータ17,19,21,23,25,27を駆動することで、前記各アーム18,20,22,24,26,28が協働して多関節アーム16の自由端部に位置する補助器具30を三次元移動させ得るよう構成されている。なお、実施例では補助器具30としてスプーン状の器具が採用されており、前記取付アーム28の回転軸方向に補助器具30が延在するよう構成されている。なお、図2には、補助器具30の例としてスプーンを示したが、フォークや、歯ブラシ、筆記用具等を器具本体とした補助器具が別途準備されており、補助器具30を適宜交換し得るようになっている。
前記操作アーム26は、図2または図3に示すように、略円筒棒状に形成されて、長手方向の略中間位置で前記第4軸アーム24に対して回転可能に軸支されている。そして、前記操作アーム26の一方端部に前記取付アーム28(補助器具30)が連結され、該操作アーム26において前記取付アーム28の連結端部とは反対側の他方端部側に、被補助者が把持操作する操作部32が形成されている。前記操作部32は、前記第6駆動モータ27が配設される操作アーム26の本体部32aに設けられた軸状部34と、該軸状部34に外挿されて被補助者が把持可能な把持部44とから構成されている。そして、前記軸状部34と把持部44との間に、前記操作部32(把持部44)の移動を検出可能な第1~第3の検出手段50,64,74(後述)が配設されている。
なお、以下の説明では、図2または図3に示すように、前記操作部32(軸状部34)の長手方向をX軸とし、該X軸に直交して前記第4軸アーム24に対する操作アーム26の回転軸の延在方向をY軸とし、該X軸,Y軸の夫々に直交する方向をZ軸として説明する。また、前記操作部32において取付アーム28(補助器具30)の連結方向をX軸の正方向(前方)とすると共に反対方向をX軸の負方向(後方)とし、Y軸において前記第4軸アーム24から操作アーム26へ近接する方向をY軸の正方向とすると共に反対方向をY軸の負方向とし、X軸,Y軸を水平に向けた状態における上方をZ軸の正方向とすると共に下方をZ軸の負方向として説明する。更に、X軸周り(Xr)の回転方向に関して、X軸の正方向を向く姿勢を基準に時計回り方向を正回転方向とすると共に反対方向の回転を負回転方向とし、Y軸周り(Yr)の回転方向に関して、Y軸の正方向を向く姿勢を基準に時計回り方向を正回転方向とすると共に反対方向の回転を負回転方向とし、Z軸周り(Zr)の回転方向に関して、Z軸の正方向を向く姿勢を基準に時計回り方向を正回転方向とすると共に反対方向の回転を負回転方向として説明する。なお、各図に示した座標において、X,Y,Z軸の正方向および各軸周り(Xr,Yr,Zr)の正回転方向に矢印を付してある。
前記操作部32の軸状部34は、図2~図5に示すように、軸本体34aの周方向(X軸周り)に90°ずつ変位した位置に、4つの突出片36,38,40,42が放射状に突出するよう形成されている。ここで、前記4つの突出片36,38,40,42の内、2つの突出片36,40がX-Y平面上に位置すると共に、残りの2つの突出片38,42がX-Z平面上に位置している。なお、前記軸本体34aに対してY軸の負方向に位置する突出片を第1突出片36と指称し、軸本体34aに対してZ軸の負方向に位置する突出片を第2突出片38と指称し、軸本体34aに対してY軸の正方向に位置する突出片を第3突出片40と指称すると共に、軸本体34aに対してZ軸の正方向に位置する突出片を第4突出片42と指称する。また、実施例では、前記第1~第4突出片36,38,40,42の夫々は、前記軸本体34aの長手方向略全長に亘って延在している。
前記把持部44は、図2~図6に示すように、前記第1~第4突出片36,38,40,42の突出端部を囲繞する円筒状の筒状体46の外周面に、シリコンゴムや弾性発泡体等からなる弾性部材48が配設されて、該把持部44のグリップ性を高めている。前記筒状体46の後端部には、該筒状体46後方開口を閉鎖して前記各突出片36,38,40,42の後端部に対向する後支持板46aが形成されると共に、該筒状体46の前端部には、各突出片36,38,40,42の前端部に対向する前支持板46bが形成されて、該把持部44のX軸方向への移動により軸状部34から把持部44が脱落しないよう構成されている。
また、前記筒状体46の内周面には、図6に示すように、周方向に離間する一対の挟持片46c,46dが内方へ突出するよう形成されている。前記一対の挟持片46c,46dは、前記軸状部34に形成した第1~第4突出片36,38,40,42に対応して筒状体46の周方向に90°ずつ離間する位置に4組設けられており、一対の挟持片46c,46dの間に、対応する突出片36,38,40,42が差し込まれるようになっている。すなわち、前記軸状部34と把持部44とは、前記X軸周りに相対的に回転不能に構成されている。なお、前記一対の挟持片46c,46dにおいて、対応の突出片36,38,40,42に対してX軸周りの負回転方向に位置する挟持片を第1挟持片46cと指称し、X軸周りの正回転方向に位置する挟持片を第2挟持片46dと指称する。ここで、前記軸状部34の各突出片36,38,40,42の後端部と筒状体46の後支持板46aとの間、各突出片36,38,40,42の前端部と筒状体46の前支持板46bとの間、各突出片36,38,40,42と筒状体46の内周面との間の夫々には、僅かな隙間が画成されており、該軸状部34と把持部44(筒状体46)との隙間に、前記第1~第3の検出手段50,64,74が配設されている。
次に、軸状部34と把持部44との間に配設される前記第1~第3の検出手段50,64,74につき説明する。
前記第1の検出手段50は、把持部44のX軸方向への移動を検出する検出センサとして、前記第1突出片36の後端部に設けられて該第1突出片36および把持部44(後支持板46a)の間に位置する第1X軸圧力センサ52と、該第1突出片36の前端部に設けられて第1突出片36および把持部44(前支持板46b)の間に位置する第2X軸圧力センサ54とを備えている。また、前記第1の検出手段50は、前記把持部44のY軸方向への移動を検出する検出センサとして、前記第1突出片36における突出端部の前方位置に設けられて該第1突出片36および把持部44(筒状体46の内周面)の間に位置する第1Y軸圧力センサ56と、前記第3突出片40における突出端部の前方位置に設けられて該第3突出片40および把持部44(筒状体46の内周面)の間に位置する第2Y軸圧力センサ58とを備える。更に、前記第1の検出手段50は、前記把持部44のZ軸方向への移動を検出する検出センサとして、前記第2突出片38における突出端部の前方位置に設けられて該第2突出片38および把持部44(筒状体46の内周面)の間に位置する第1Z軸圧力センサ60と、前記第4突出片42における突出端部の前方位置に設けられて該第4突出片42および把持部44(筒状体46の内周面)の間に位置する第2Z軸圧力センサ62とを備えている。
すなわち、前記把持部44をX軸の正方向へ移動した際には、前記第1突出片36の後端部と把持部44の後支持板46aとの間に設けられた前記第1X軸圧力センサ52が狭圧されることで該把持部44をX軸の正方向へ移動させる力が検出され、把持部44をX軸の負方向へ移動した際には、該第1突出片36の前端部と把持部44の前支持板46bとの間に設けられた前記第2X軸圧力センサ54が狭圧されることで把持部44をX軸の負方向へ移動させる力が検出される。また、前記把持部44の前側位置をY軸の正方向へ移動した際には、前記第1突出片36と把持部44(筒状体46の内周面)との間に設けられた前記第1Y軸圧力センサ56が狭圧されることで把持部44の前側位置をY軸の正方向へ移動させる力が検出され、把持部44の前側位置をY軸の負方向へ移動した際には、前記第3突出片40と把持部44(筒状体46の内周面)との間に設けられた前記第2Y軸圧力センサ58が狭圧されることで把持部44の前側位置をY軸の負方向へ移動させる力が検出される。同様に、前記把持部44の前側位置をZ軸の正方向へ移動した際には、前記第2突出片38と把持部44(筒状体46の内周面)との間に設けられた前記第1Z軸圧力センサ60が狭圧されることで把持部44の前側位置をZ軸の正方向へ移動させる力が検出され、把持部44の前側位置をZ軸の負方向へ移動した際には、前記第4突出片42と把持部44(筒状体46の内周面)との間に設けられた前記第2Z軸圧力センサ62が狭圧されることで把持部44の前側位置をZ軸の負方向へ移動させる力が検出されるようになっている。ここで、前記第1および第2X軸圧力センサ52,54、第1および第2Y軸圧力センサ56,58、第1および第2Z軸圧力センサ60,62の夫々は、前記制御装置14に接続されて、各センサ52,54,56,58,60,62が検出する力の大きさに応じた検出信号が制御装置14に入力されるようになっている。
また、図2~図5に示すように、前記第2の検出手段64は、前記把持部44のY軸方向への移動を検出する検出センサとして、前記第1突出片36における突出端部の後方位置に設けられて該第1突出片36および把持部44(筒状体46の内周面)の間に位置する第3Y軸圧力センサ66と、前記第3突出片40における突出端部の後方位置に設けられて該第3突出片40および把持部44(筒状体46の内周面)の間に位置する第4Y軸圧力センサ68とを備える。更に、前記第2の検出手段64は、前記把持部44のZ軸方向への移動を検出する検出センサとして、前記第2突出片38における突出端部の後方位置に設けられて該第2突出片38および把持部44(筒状体46の内周面)の間に位置する第3Z軸圧力センサ70と、前記第4突出片42における突出端部の後方位置に設けられて該第4突出片42および把持部44(筒状体46の内周面)の間に位置する第4Z軸圧力センサ72とを備えている。
すなわち、前記把持部44の後側位置をY軸の正方向へ移動した際には、前記第1突出片36と把持部44(筒状体46の内周面)との間に設けられた前記第3Y軸圧力センサ66が狭圧されることで把持部44の後側位置をY軸の正方向へ移動させる力が検出され、把持部44の後側位置をY軸の負方向へ移動した際には、前記第3突出片40と把持部44(筒状体46の内周面)との間に設けられた前記第4Y軸圧力センサ68が狭圧されることで把持部44の後側位置をY軸の負方向へ移動させる力が検出される。同様に、前記把持部44の後側位置をZ軸の正方向へ移動した際には、前記第2突出片38と把持部44(筒状体46の内周面)との間に設けられた前記第3Z軸圧力センサ70が狭圧されることで把持部44の後側位置をZ軸の正方向へ移動させる力が検出され、把持部44の後側位置をZ軸の負方向へ移動した際には、前記第4突出片42と把持部44(筒状体46の内周面)との間に設けられた前記第4Z軸圧力センサ72が狭圧されることで把持部44の後側位置をZ軸の負方向へ移動させる力が検出されるようになっている。ここで、前記第3および第4Y軸圧力センサ66,68、第3および第4Z軸圧力センサ70,72の夫々は、前記制御装置14に接続されて、各センサ66,68,70,72が検出する力の大きさに応じた検出信号が制御装置14に入力されるようになっている。
前記第3の検出手段74は、図4~図6、図13に示すように、前記第2突出片38と対応の第1挟持片46cとの間に設けられた第1X軸周り圧力センサ76と、該第2突出片38と対応の第2挟持片46dとの間に設けられた第2X軸周り圧力センサ78とから構成されている。すなわち、前記把持部44をX軸周りの正回転方向へ回転させた際には、前記第2突出片38と第1挟持片46cとの間に設けた前記第1X軸周り圧力センサ76が狭圧されることで把持部44をX軸周りの正回転方向へ回転させる力が検出され、把持部44をX軸周りの負回転方向へ回転させた際には、第2突出片38と第2挟持片46dとの間に設けた前記第2X軸周り圧力センサ78が狭圧されることで把持部44をX軸周りの負回転方向へ回転させる力が検出されるようになっている。ここで、前記第1および第2X軸周り圧力センサ76,78の夫々は、前記制御装置14に接続されて、各センサ76,78が検出する力の大きさに応じた検出信号が制御装置14に入力されるようになっている。
また、前記操作部32の本体部32aには、該操作部32の回転位置を検出するポテンショメータ80が設けられており、該ポテンショメータ80が検出する当該操作部32の回転姿勢に応じて、前記各圧力センサ52,54,56,58,60,62,66,68,70,72,76,78が検出する力を前記制御装置14で重力補償を実施するよう設定されている。
次に、実施例1に係る上肢動作補助装置10の動作態様につき説明する。前記上肢動作補助装置10では、前記多関節アーム16の操作アーム26に設けられた操作部32(把持部44)を被補助者が把持して動かすことにより、該操作部32の軸状部34と把持部44(筒状体46)との間に設けられた前記第1~第3の検出手段50,64,74の各圧力センサ52,54,56,58,60,62,66,68,70,72,76,78が力を検出し、各圧力センサ2,54,56,58,60,62,66,68,70,72,76,78の検出に応じて前記制御装置14が多関節アーム16の各駆動モータ17,19,21,23,25,27を駆動して補助器具30を三次元移動させる。
具体的には、図8(a)に示すように、前記軸状部34における第1突出片36の後端部と把持部44の後支持板46aとの間に設けられた前記第1X軸圧力センサ52が狭圧され、該第1X軸圧力センサ52からの検出信号が前記制御装置14に対して入力される場合には、X軸の正方向に操作部32(補助器具30)を移動させるよう前記多関節アーム16が駆動制御される。そして、図8(b)に示すように、前記軸状部34における第1突出片36の前端部と把持部44の前支持板46bとの間に設けられた前記第2X軸圧力センサ54が狭圧され、該第2X軸圧力センサ54からの検出信号が前記制御装置14に対して入力される場合には、X軸の負方向に操作部32(補助器具30)を移動させるよう多関節アーム16が駆動制御される。ここで、前記操作部32をX軸の正方向に移動させる移動速度は第1X軸圧力センサ52が検出する力の大きさに応じて適宜可変制御され、X軸の負方向に移動させる移動速度は第2X軸圧力センサ54が検出する力の大きさに応じて適宜可変制御される。
また、図9(a)に示すように、前記軸状部34における第1突出片36の突出端部と把持部44(筒状体46の内周面)との間に設けられた前記第1Y軸圧力センサ56および第3Y軸圧力センサ66が狭圧され、該第1Y軸圧力センサ56および第3Y軸圧力センサ66の夫々から同程度の大きさの力の検出信号が前記制御装置14に対して入力される場合には、Y軸の正方向に操作部32(補助器具30)を平行移動させるよう前記多関節アーム16が駆動制御される。そして、図9(a)に示すように、前記軸状部34における第3突出片40の突出端部と把持部44(筒状体46の内周面)との間に設けられた前記第2Y軸圧力センサ58および第4Y軸圧力センサ68が狭圧され、該第2Y軸圧力センサ58および第4Y軸圧力センサ68の夫々から同程度の大きさの力の検出信号が前記制御装置14に対して入力される場合には、Y軸の負方向に操作部32(補助器具30)を平行移動させるよう多関節アーム16が駆動制御される。ここで、前記操作部32をY軸の正方向に移動させる移動速度は第1および第3Y軸圧力センサ56,66が検出する力の大きさに応じて適宜可変制御され、Y軸の負方向に移動させる移動速度は、第2および第4Y軸圧力センサ58,68が検出する力の大きさに応じて適宜可変制御される。
また、前記第1Y軸圧力センサ56および第3Y軸圧力センサ66の夫々からの検出信号が前記制御装置14に対して入力される条件下において、第1Y軸圧力センサ56が検出する力が第3Y軸圧力センサ66が検出する力よりも大きい場合には、図10(a)に示すように、操作部32(補助器具30)をY軸の正方向に移動させつつZ軸周りの正回転方向に回転させるよう前記多関節アーム16が駆動制御される一方、第1Y軸圧力センサ56が検出する力が第3Y軸圧力センサ66が検出する力よりも小さい場合には、図10(b)に示すように、操作部32(補助器具30)をY軸の正方向に移動させつつZ軸周りの負回転方向に回転させるよう多関節アーム16が駆動制御される。同様に、前記第2Y軸圧力センサ58および第4Y軸圧力センサ68の夫々からの検出信号が前記制御装置14に対して入力される条件下において、第2Y軸圧力センサ58が検出する力が第4Y軸圧力センサ68が検出する力よりも大きい場合には、図11(a)に示すように、操作部32(補助器具30)をY軸の負方向に移動させつつZ軸周りの負回転方向に回転させるよう前記多関節アーム16が駆動制御される一方、第2Y軸圧力センサ58が検出する力が第4Y軸圧力センサ68が検出する力よりも小さい場合には、図11(b)に示すように、操作部32(補助器具30)をY軸の負方向に移動させつつZ軸周りの正回転方向に回転させるよう多関節アーム16が駆動制御される。
一方、図12(a)に示すように。前記第1Y軸圧力センサ56および第4Y軸圧力センサ68の夫々からの検出信号が前記制御装置14に対して入力される場合には、Z軸周りの正回転方向に操作部32を回転させるよう前記多関節アーム16が駆動制御され、前記第2Y軸圧力センサ58および第3Y軸圧力センサ66の夫々からの検出信号が前記制御装置14に対して入力される場合には、図12(b)に示すように、Z軸周りの負回転方向に操作部32を回転させるよう多関節アーム16が駆動制御される。このとき、前記操作部32をZ軸の正回転方向に回転させる回転速度は第1および第4Y軸圧力センサ56,68が検出する力の大きさに応じて適宜可変制御され、Z軸の負回転方向に回転させる回転速度は、第2および第3Y軸圧力センサ58,66が検出する力の大きさに応じて適宜可変制御される。
同様に、前記軸状部34における第2突出片38の突出端部と把持部44(筒状体46の内周面)との間に設けられた前記第1Z軸圧力センサ60および第3Z軸圧力センサ70が狭圧され、該第1Z軸圧力センサ60および第3Z軸圧力センサ70の夫々から同程度の大きさの力の検出信号が前記制御装置14に対して入力される場合には、Z軸の正方向に操作部32(補助器具30)を平行移動させるよう前記多関節アーム16が駆動制御される。また、前記軸状部34における第4突出片42の突出端部と把持部44(筒状体46の内周面)との間に設けられた前記第2Z軸圧力センサ62および第4Z軸圧力センサ72が狭圧され、該第2Z軸圧力センサ62および第4Z軸圧力センサ72の夫々から同程度の大きさの力の検出信号が前記制御装置14に対して入力される場合には、Z軸の負方向に操作部32を平行移動させるよう多関節アーム16が駆動制御される。このとき、前記操作部32をZ軸の正方向に移動させる移動速度は第1および第3Z軸圧力センサ60,70が検出する力の大きさに応じて適宜可変制御され、Z軸の負方向に移動させる移動速度は、第2および第4Z軸圧力センサ62,72が検出する力の大きさに応じて適宜可変制御される。
更に、前記第1Z軸圧力センサ60および第3Z軸圧力センサ70の夫々からの検出信号が前記制御装置14に対して入力される条件下において、第1Z軸圧力センサ60が検出する力が第3Z軸圧力センサ70が検出する力よりも小さい場合には、操作部32(補助器具30)をZ軸の正方向に移動させつつY軸周りの正回転方向に回転させるよう前記多関節アーム16が駆動制御される一方、第1Z軸圧力センサ60が検出する力が第3Z軸圧力センサ70が検出する力よりも大きい場合には、操作部32(補助器具30)をZ軸の正方向に移動させつつY軸周りの負回転方向に回転させるよう前記多関節アーム16が駆動制御される。同様に、前記第2Z軸圧力センサ62および第4Z軸圧力センサ72の夫々からの検出信号が前記制御装置14に対して入力される条件下において、第2Z軸圧力センサ62が検出する力が第4Z軸圧力センサ72が検出する力よりも大きい場合には、操作部32(補助器具30)をZ軸の負方向に移動させつつY軸周りの正回転方向に回転させるよう前記多関節アーム16が駆動制御される一方、第2Z軸圧力センサ62が検出する力が第4Z軸圧力センサ72が検出する力よりも小さい場合には、操作部32(補助器具30)をZ軸の負方向に移動させつつY軸周りの負回転方向に回転させるよう多関節アーム16が駆動制御される。
そして、前記第1Z軸圧力センサ60および第4Z軸圧力センサ72の夫々からの検出信号が前記制御装置14に対して入力される場合には、Y軸周りの負回転方向に操作部32を回転させるよう前記多関節アーム16が駆動制御され、前記第2Z軸圧力センサ62および第3Z軸圧力センサ70の夫々からの検出信号が前記制御装置14に対して入力される場合には、Y軸周りの正回転方向に操作部32を移動させるよう多関節アーム16が駆動制御される。なお、前記操作部32をY軸の正回転方向に回転させる回転速度は第1および第4Z軸圧力センサ60,72が検出する力の大きさに応じて適宜可変制御され、Y軸の負回転方向に回転させる回転速度は、第2および第3Z軸圧力センサ62,70が検出する力の大きさに応じて適宜可変制御される。
更に、図13(a)に示すように、前記軸状部34の第2突出片38と把持部44の第1挟持片46cとの間に設けた前記第1X軸周り圧力センサ76が狭圧され、該第1X軸周り圧力センサ76からの検出信号が前記制御装置14に対して入力される場合には、X軸周りの正回転方向に操作部32を回転させるよう前記多関節アーム16が駆動制御される。また、図13(b)に示すように、前記軸状部34の第2突出片38と把持部44の第2挟持片46dとの間に設けた前記第2X軸周り圧力センサ78が狭圧され、該第2X軸周り圧力センサ78からの検出信号が前記制御装置14に対して入力される場合には、X軸周りの負回転方向に操作部32を回転させるよう多関節アーム16が駆動制御される。そして、前記操作部32をX軸の正回転方向に回転させる回転速度は第1X軸周り圧力センサ76が検出する力の大きさに応じて適宜可変制御され、X軸の負回転方向に回転させる回転速度は、第2X軸周り圧力センサ78が検出する力の大きさに応じて適宜可変制御される。
すなわち、被補助者が把持操作する操作アーム26の操作部32に、X,Y,Z軸方向の夫々への操作部26の移動を検出可能な第1の検出手段50(第1および第2のX軸,Y軸,Z軸の各圧力センサ52,54,56,58,60,62)を設けると共に、該操作部32に対して第1の検出手段50からX軸方向に離間する位置に、Y,Z軸方向への操作部26の移動を検出可能な第2の検出手段64(第3および第4のY軸,Z軸の各圧力センサ66,68,70,72)を設け、更にX軸周りへの操作部26の移動を検出可能な第3の検出手段74(第1および第2のX軸周り圧力センサ76,78)を設けることで、X,Y,Z軸方向および各軸周り方向の6軸方向の動作を検出することができる。そして、各圧力センサ52,54,56,58,60,62,66,68,70,72,76,78が検出する力に応じて操作部32(補助器具30)をX,Y,Z軸方向および各軸周り方向の任意方向に移動することが可能となる。従って、被補助者の動作に追従して多関節アーム16を自然に動作させることができ、上肢動作補助装置10の使用感が高められる。
ここで、前記第1~第3検出手段50,64,74の夫々が、耐荷重性に優れた圧力センサ52,54,56,58,60,62,66,68,70,72,76,78により構成されているから、操作部32(把持部44)に対して被補助者の意志に反する過大な力が入力されたとしても、各圧力センサ52,54,56,58,60,62,66,68,70,72,76,78が損傷するのを防止できる。また、6軸力覚センサに比べて極めて安価な圧力センサ52,54,56,58,60,62,66,68,70,72,76,78を用いたことで、上肢動作補助装置10の製造コストを抑制し得ると共に、圧力センサ52,54,56,58,60,62,66,68,70,72,76,78が損傷したとしても、上肢動作補助装置10の修理費用を低廉に抑えることができる。すなわち、前記第1~第3検出手段50,64,74として圧力センサ52,54,56,58,60,62,66,68,70,72,76,78を採用することで、被補助者の動作に合わせて多関節アーム16を6軸方向に自由に動作させて動作補助し得ると共に、上肢動作補助装置10の故障に対する信頼性を向上でき、上肢動作補助装置10の導入コストや維持コストを抑制することが可能となる。
〔実施例1の変更例〕
なお、実施例1に係る上肢動作補助装置は、前述した構成に限られず種々の変更が可能である。
(1) 実施例1では、操作部における軸状部の第1突出片の後端部と把持部(筒状体の後支持板)との間に第1X軸圧力センサを設けると共に、該第1突出片の前端部と把持部(筒状体の前支持板)との間に第2X軸圧力センサを設けるよう構成したが、これに限られるものではなく、第2~第4突出部の前後の端部に対応して第1および第2X軸圧力センサを設けるようにしてもよい。また、第1X軸圧力センサは、前記軸状部と把持部との間において該把持部をX軸の正方向へ移動させた際に力が作用する位置に設ければよく、また第2X軸圧力センサについても、軸状部と把持部との間において該把持部をX軸の負方向へ移動させた際に力が作用する位置に設ければよい。
(2) 実施例1では、軸状部に第1~第4突出片を形成して、各突出片の突出端部に第1~第4Y軸圧力センサおよび第1~第4Z軸圧力センサの夫々を位置するよう構成したが、これに限られるものではない。例えば、軸状部を第1~第4突出片を備えない円筒形状に形成して、該軸状部の周方向に離間する位置に、第1~第4Y軸圧力センサおよび第1~第4Z軸圧力センサの夫々を配置して、筒状体の内周面との間で狭圧されるよう構成しても、実施例と同様の作用効果を得ることができる。すなわち、第1~第4Y軸圧力センサに関して、各Y軸圧力センサをX-Y平面上に位置すると共に第1,第2Y軸圧力センサと第3,第4Y軸圧力センサとが前後に離間する位置に配置し、第1~第4Z軸圧力センサに関して、各Z軸圧力センサをX-Z平面上に位置すると共に第1,第2Z軸圧力センサと第3,第4Z軸圧力センサとを前後に離間する位置に配置すればよい。
(3) 実施例1では、第1の検出手段として、軸状部の周方向に離間する位置に、第1,第2Y軸圧力センサおよび第1,第2Z軸圧力センサの4つの圧力センサを配置したが、これに限られるものではなく、3個以下または5個以上の圧力センサを周方向に離間して配置するようにしてもよい。すなわち、複数の圧力センサにより、把持部の前側位置をY軸の正方向へ移動させる力を検出するようにしてもよく、この場合には、把持部の前側位置をY軸の正方向へ移動させる力を検出するのに利用される複数の圧力センサが第1Y軸圧力センサとなる。また、把持部の前側位置をY軸の正方向へ移動させる力を検出する圧力センサ、把持部の前側位置をZ軸の正方向または負方向へ移動させる力を検出する圧力センサに関しても同様で、複数の圧力センサで第2Y軸圧力センサ、第1,第2Z軸圧力センサを構成するようにしてもよい。なお、周方向に離間する圧力センサは、等間隔に設けられることが望ましいが、不均一に圧力センサを設けてもよい。
(4) 同様に、実施例1では、第2の検出手段として、軸状部の周方向に離間する位置に、第3,第4Y軸圧力センサおよび第3,第4Z軸圧力センサの4つの圧力センサを配置したが、これに限られるものではなく、3個以下または5個以上の圧力センサを周方向に離間して配置するようにしてもよい。すなわち、複数の圧力センサにより、把持部の後側位置をY軸の正方向へ移動させる力を検出するようにしてもよく、この場合には、把持部の後側位置をY軸の正方向へ移動させる力を検出するのに利用される複数の圧力センサが第3Y軸圧力センサとなる。また、把持部の後側位置をY軸の正方向へ移動させる力を検出する圧力センサ、把持部の後側位置をZ軸の正方向または負方向へ移動させる力を検出する圧力センサに関しても同様で、複数の圧力センサで第4Y軸圧力センサ、第3,第4Z軸圧力センサを構成するようにしてもよい。なお、周方向に離間する圧力センサは、等間隔に設けられることが望ましいが、不均一に圧力センサを設けてもよい。
(5) 実施例1では、軸状部に形成した第2突出片と筒状体に形成した第1挟持片との間に第1X軸周り圧力センサを配置し、該第2突出片と筒状体に形成した第2挟持片との間に第2X軸周り圧力センサを配置するよう構成したが、これに限られるものではない。すなわち、第1X軸周り圧力センサは、軸状部と把持部との間において把持部をX軸周りの正方向へ移動させた際に力が作用する位置に設ければよく、また第2X軸周り圧力センサについても、軸状部と把持部との間において該把持部をX軸周りの負方向へ移動させた際に力が作用する位置に設ければよい。
(6) 実施例1では、各圧力センサを軸状部に設けるようにしたが、把持部側に圧力センサを設けても同様の作用効果を得ることができる。
なお、実施例1に係る上肢動作補助装置は、前述した構成に限られず種々の変更が可能である。
(1) 実施例1では、操作部における軸状部の第1突出片の後端部と把持部(筒状体の後支持板)との間に第1X軸圧力センサを設けると共に、該第1突出片の前端部と把持部(筒状体の前支持板)との間に第2X軸圧力センサを設けるよう構成したが、これに限られるものではなく、第2~第4突出部の前後の端部に対応して第1および第2X軸圧力センサを設けるようにしてもよい。また、第1X軸圧力センサは、前記軸状部と把持部との間において該把持部をX軸の正方向へ移動させた際に力が作用する位置に設ければよく、また第2X軸圧力センサについても、軸状部と把持部との間において該把持部をX軸の負方向へ移動させた際に力が作用する位置に設ければよい。
(2) 実施例1では、軸状部に第1~第4突出片を形成して、各突出片の突出端部に第1~第4Y軸圧力センサおよび第1~第4Z軸圧力センサの夫々を位置するよう構成したが、これに限られるものではない。例えば、軸状部を第1~第4突出片を備えない円筒形状に形成して、該軸状部の周方向に離間する位置に、第1~第4Y軸圧力センサおよび第1~第4Z軸圧力センサの夫々を配置して、筒状体の内周面との間で狭圧されるよう構成しても、実施例と同様の作用効果を得ることができる。すなわち、第1~第4Y軸圧力センサに関して、各Y軸圧力センサをX-Y平面上に位置すると共に第1,第2Y軸圧力センサと第3,第4Y軸圧力センサとが前後に離間する位置に配置し、第1~第4Z軸圧力センサに関して、各Z軸圧力センサをX-Z平面上に位置すると共に第1,第2Z軸圧力センサと第3,第4Z軸圧力センサとを前後に離間する位置に配置すればよい。
(3) 実施例1では、第1の検出手段として、軸状部の周方向に離間する位置に、第1,第2Y軸圧力センサおよび第1,第2Z軸圧力センサの4つの圧力センサを配置したが、これに限られるものではなく、3個以下または5個以上の圧力センサを周方向に離間して配置するようにしてもよい。すなわち、複数の圧力センサにより、把持部の前側位置をY軸の正方向へ移動させる力を検出するようにしてもよく、この場合には、把持部の前側位置をY軸の正方向へ移動させる力を検出するのに利用される複数の圧力センサが第1Y軸圧力センサとなる。また、把持部の前側位置をY軸の正方向へ移動させる力を検出する圧力センサ、把持部の前側位置をZ軸の正方向または負方向へ移動させる力を検出する圧力センサに関しても同様で、複数の圧力センサで第2Y軸圧力センサ、第1,第2Z軸圧力センサを構成するようにしてもよい。なお、周方向に離間する圧力センサは、等間隔に設けられることが望ましいが、不均一に圧力センサを設けてもよい。
(4) 同様に、実施例1では、第2の検出手段として、軸状部の周方向に離間する位置に、第3,第4Y軸圧力センサおよび第3,第4Z軸圧力センサの4つの圧力センサを配置したが、これに限られるものではなく、3個以下または5個以上の圧力センサを周方向に離間して配置するようにしてもよい。すなわち、複数の圧力センサにより、把持部の後側位置をY軸の正方向へ移動させる力を検出するようにしてもよく、この場合には、把持部の後側位置をY軸の正方向へ移動させる力を検出するのに利用される複数の圧力センサが第3Y軸圧力センサとなる。また、把持部の後側位置をY軸の正方向へ移動させる力を検出する圧力センサ、把持部の後側位置をZ軸の正方向または負方向へ移動させる力を検出する圧力センサに関しても同様で、複数の圧力センサで第4Y軸圧力センサ、第3,第4Z軸圧力センサを構成するようにしてもよい。なお、周方向に離間する圧力センサは、等間隔に設けられることが望ましいが、不均一に圧力センサを設けてもよい。
(5) 実施例1では、軸状部に形成した第2突出片と筒状体に形成した第1挟持片との間に第1X軸周り圧力センサを配置し、該第2突出片と筒状体に形成した第2挟持片との間に第2X軸周り圧力センサを配置するよう構成したが、これに限られるものではない。すなわち、第1X軸周り圧力センサは、軸状部と把持部との間において把持部をX軸周りの正方向へ移動させた際に力が作用する位置に設ければよく、また第2X軸周り圧力センサについても、軸状部と把持部との間において該把持部をX軸周りの負方向へ移動させた際に力が作用する位置に設ければよい。
(6) 実施例1では、各圧力センサを軸状部に設けるようにしたが、把持部側に圧力センサを設けても同様の作用効果を得ることができる。
次に、実施例2に係る上肢動作補助装置につき説明する。なお、実施例2に係る上肢動作補助装置の基本的構成は、実施例1に係る上肢動作補助装置10の構成と共通するので、同一の構成部材については同一の符号を伏して説明を省略し、異なる構成についてのみ説明する。
実施例2に係る上肢動作補助装置の多関節アーム16を構成する操作アーム90は、図14または図15に示すように、略円筒棒状に形成されて長手方向の略中間位置で前記第4軸アーム24に対して回転可能に軸支され、一方端部に前記取付アーム28(補助器具30)が連結されたアーム本体92と、該アーム本体92において前記取付アーム28の連結端部とは反対側の他方端部側に回転可能に連結される操作部94とから構成され、当該アーム本体92に前記前記第6駆動モータ27が配設されている。前記操作部94は、前記アーム本体92の軸周りに回転可能に軸支されて3軸力覚センサ(第1の検出手段)110が配設される本体部94aと、該本体部94aに設けられ、3軸力覚センサ110の入力軸110aに接続された軸状部96と、該軸状部96に外挿されて被補助者が把持可能な把持部100とから構成されている。そして、前記軸状部96と把持部100との間に、前記操作部94(把持部100)の移動を検出可能な後述の圧力センサ(第2の検出手段)112が配設されている。なお、実施例1と同様に、前記操作部94(3軸力覚センサ110の入力軸110a)の長手方向をX軸とし、該X軸に直交して前記第4軸アーム24に対する操作アーム26の回転軸の延在方向をY軸とし、該X軸,Y軸の夫々に直交する方向をZ軸とすると共に(図14または図15参照)、X,Y,Zの各軸および各軸周りの正方向、負方向は、実施例1と同一の基準により定義する。
すなわち、前記3軸力覚センサ110は、前記操作部94を操作した際にX,Y,Zの各軸の正方向および負方向へ作用する力を入力軸110aで検出して、前記制御装置14に検出信号を入力するよう構成されている(図17参照)。また、前記アーム本体92と操作部94との連結位置には、該アーム本体92の軸周りへの操作部94の回転位置を検出するポテンショメータ(第3の検出手段)108が設置されており、該ポテンショメータ108が検出する操作部94の回転位置信号が前記制御装置14に入力されるようになっている。すなわち、前記ポテンショメータ108により操作部94の回転位置を常に検出することで、X軸周りの正回転方向および負回転方向への操作部94の回転が検出されると共に、操作部94がX軸周りに回転された状態でも、前記3軸力覚センサ110に対して作用するX,Y,Zの各軸の正方向および負方向の力を正確に検出し得るようになっている。
また、前記軸状部96は、図14~図16に示すように、円筒状に形成されると共に、前記把持部100は、前記軸状部96に外挿される円筒状に形成される筒状体98の外周面に、シリコンゴムや弾性発泡体等からなる弾性部材104を配設して構成される。ここで、前記把持部100の前端部は、前記操作部94における本体部94aの後端部に当接して前方移動が規制されると共に、前記軸状部96の後端部に取付けられた円盤状の蓋部材106に当接して後方移動が規制され、該軸状部96に対して把持部100を外挿した状態で保持される。また、前記把持部100は、前記操作部94の本体部94aに対して相対的に回転不能に係止されると共に、前記軸状部96との間に僅かな隙間が画成されて、該軸状部96に対して径方向へ変位し得るよう構成される。そして、前記軸状部96と把持部100(筒状体102)との隙間に、該軸状部96の周方向に離間する複数箇所(実施例では90°ずつ変位した4箇所)に、第2の検出手段としての圧力センサ112が配設されている。従って、前記把持部100を移動した際には、前記軸状部96の外周面と筒状体102の内周面との間に設けられた前記各圧力センサ112が狭圧されることで該把持部100をY,Z軸の正方向または負方向へ移動させる力が検出される。ここで、前記ポテンショメータ108により操作部94の回転位置が常に検出されているから、前記アーム本体92に対する各圧力センサ112の相対位置が把握され、力を検出する圧力センサ112の位置により、把持部100をY,Z軸の正方向または負方向へ移動させる力が作用することが認識される。前記圧力センサ112の夫々は、前記制御装置14に接続されて、各圧力センサ112が検出した検出信号を制御装置14に入力するよう構成されている(図17参照)。
すなわち、実施例2に係る上肢動作補助装置において、前記3軸力覚センサ110が、実施例1に係る上肢動作補助装置10の第1および第2X軸圧力センサ52,54、第1および第2Y軸圧力センサ56,58,第1および第2Z軸圧力センサ60,62と同様に、前記操作部94に沿うX軸方向、該X軸に直交するY軸方向、X―Y軸に直交するZ軸方向の夫々への操作部94の移動を検出する第1の検出手段として機能している。そして、実施例2に係る上肢動作補助装置において、前記3軸力覚センサ110からX軸方向に離間して設けられた前記各圧力センサ112が、実施例1に係る上肢動作補助装置10の第3および第4Y軸圧力センサ66,68、第3および第4Z軸圧力センサ70,72と同様に、前記Y軸方向およびZ軸方向への操作部94の移動を検出する第2の検出手段として機能する。また、実施例2に係る上肢動作補助装置では、前記ポテンショメータ108が、実施例1に係る上肢動作補助装置10の第1および第2X軸周り圧力センサ70,72と同様に、X軸周りの正回転方向および負回転方向への操作部94の回転を検出可能な第3検出手段として機能している。
従って、実施例2に係る上肢動作補助においても、操作部94(把持部100)の移動に応じて前記3軸力覚センサ110が検出するX,Y,Z軸の正方向および負方向への力の検出信号、前記各圧力センサ112が検出するY,Z軸の正方向および負方向への力の検出信号、操作部94(把持部100)のX軸周りの回転に応じて前記ポテンショメータ108が検出するX軸周りの正回転方向および負回転方向への検出信号の組み合わせにより、X,Y,Z軸方向および各軸周り方向の6軸方向への操作部94(把持部100)の動作を検出して、操作部94(補助器具30)をX,Y,Z軸方向および各軸周り方向の任意方向に移動することが可能となる。これにより、被補助者の動作に追従して多関節アーム16を自然に動作させることができ、上肢動作補助装置の使用感が高められる。
また、1つのセンサで6軸方向の動作を検出可能な6軸力覚センサに比べて安価な3軸力覚センサ110および圧力センサ112を採用することで、上肢動作補助装置の製造コストを抑制し得ると共に、3軸力覚センサ110や圧力センサ112が損傷したとしても、上肢動作補助装置の修理費用を低廉に抑えることができる。そして、圧力センサ112自体は、耐荷重性に優れているから、操作部94(把持部100)に対して被補助者の意志に反する過大な力が入力されたとしても、各圧力センサ112が損傷するのを防止できる。すなわち、実施例2に係る上肢動作補助装置においても、実施例1と同様に、被補助者の動作に合わせて多関節アーム16を6軸方向に自由に動作させて動作補助し得ると共に、上肢動作補助装置の故障に対する信頼性を向上でき、上肢動作補助装置の導入コストや維持コストを抑制することが可能となる。
〔実施例2の変更例〕
なお、実施例2に係る上肢動作補助装置は、前述した構成に限られず種々の変更が可能である。
(1) 実施例2では、軸状部の外周面に圧力センサを配置するよう構成したが、これに限られるものではない。例えば、実施例1のように軸状部に突出片を形成して、突出片の突出端部に圧力センサを配置して、筒状体の内周面との間で狭圧されるよう構成しても、実施例と同様の作用効果を得ることができる。
(2) 実施例2では、第2の検出手段として、軸状部の周方向に離間する位置に4つの圧力センサを配置したが、これに限られるものではなく、3個以下または5個以上の圧力センサを周方向に離間して配置するようにしてもよい。すなわち、複数の圧力センサにより、把持部をY軸,Z軸方向へ移動させる力を検出するようにしてもよい。なお、周方向に離間する圧力センサは、等間隔に設けられることが望ましいが、不均一に圧力センサを設けてもよい。
(3) 実施例2では、各圧力センサを軸状部に設けるようにしたが、把持部側に圧力センサを設けても同様の作用効果を得ることができる。
なお、実施例2に係る上肢動作補助装置は、前述した構成に限られず種々の変更が可能である。
(1) 実施例2では、軸状部の外周面に圧力センサを配置するよう構成したが、これに限られるものではない。例えば、実施例1のように軸状部に突出片を形成して、突出片の突出端部に圧力センサを配置して、筒状体の内周面との間で狭圧されるよう構成しても、実施例と同様の作用効果を得ることができる。
(2) 実施例2では、第2の検出手段として、軸状部の周方向に離間する位置に4つの圧力センサを配置したが、これに限られるものではなく、3個以下または5個以上の圧力センサを周方向に離間して配置するようにしてもよい。すなわち、複数の圧力センサにより、把持部をY軸,Z軸方向へ移動させる力を検出するようにしてもよい。なお、周方向に離間する圧力センサは、等間隔に設けられることが望ましいが、不均一に圧力センサを設けてもよい。
(3) 実施例2では、各圧力センサを軸状部に設けるようにしたが、把持部側に圧力センサを設けても同様の作用効果を得ることができる。
次に、実施例3に係る上肢動作補助装置につき説明する。なお、実施例3に係る上肢動作補助装置の基本的構成は、実施例1に係る上肢動作補助装置10の構成と基本的に共通しているので、実施例1に係る上肢動作補助装置10と同一の構成部材については同一の符号を付して説明を省略し、異なる構成についてのみ説明する。
実施例3に係る上肢動作補助装置10の多関節アーム16を構成する操作アーム26は、図18に示すように、操作部32における軸状部34と把持部44との間に第1および第2バネ部材(付勢部材)120,121が設けられて、把持部44を軸状部34に対して相対的に近接および離間移動することで、第1バネ部材120および第2バネ部材121が弾性変形するよう構成される。ここで、前記第1バネ部材120は、前記軸状部34に形成された第1~第4突出片36,38,40,42の間に夫々配設されて、該第1バネ部材120の一方の端部が軸状部34の周面に固定されると共に、当該第1バネ部材120の他方の端部が前記把持部44の筒状体46に固定されている。また、前記第1バネ部材120は、前記軸状部34の軸方向(すなわちX軸方向)に離間する複数箇所(実施例3では3箇所)に配設されている(図18(b)参照)。すなわち、実施例3に係る操作アーム26には、軸状部34の軸方向(すなわちX軸方向)に離間する3箇所に、該軸状部34の周方向に離間して4個の第1バネ部材120が夫々設けられて、合計12個の第1バネ部材120により把持部44が軸状部34に対して保持されるようになっている。一方、前記第2バネ部材121は、前記軸状部34における各突出片36,38,40,42の後端部と把持部44(筒状体46)の後支持壁46aとの間、および各突出片36,38,40,42の前端部と把持部44(筒状体46)の前支持壁46bとの間に夫々配設されている。
このような実施例3に係る上肢動作補助装置10では、前記把持部44に外力を付与することなく前記第1バネ部材120が均衡を保った状態において、把持部44が軸状部34に対して略同心となる位置に保持されるよう構成されている。すなわち、図18に示すように、前記各第1バネ部材120が均衡を保った状態では、前記軸状部34における第1~第4突出片36,38,40,42の突出端部に設けられた第1~第4Y軸および第1~第4Z軸圧力センサ56,58,60,62,66,68,70,72までの間隔が同等となるよう前記把持部44(筒状体46)が保持される。従って、把持部44をY軸、Z軸、Y軸周り、Z軸周りの方向に移動した際に、各Y軸およびZ軸圧力センサ56,58,60,62,66,68,70,72が検出するまでの時間を一定にでき、各Y軸およびZ軸圧力センサ56,58,60,62,66,68,70,72による検出にタイムラグが生ずるのを防止し得る。同様に、前記第1バネ部材120を軸状部34の周方向に均等に配置することで、各第1バネ部材120が均衡を保った状態では、前記第2突出片38に対応する第1挟持片46cから第1X軸周り圧力センサ76までの間隔と、第2突出片38に対応する第2挟持片46dから第2X軸周り圧力センサ78までの間隔とが同等となるよう前記把持部44(筒状体46)が保持される。従って、把持部44をX軸周りの正回転方向または負回転方向に移動した際に、第1X軸周り圧力センサ76および第2X軸周り圧力センサ78が検出するまでの時間を一定にでき、X軸周りに回転した際の圧力センサ76,78による検出にタイムラグが生ずるのを防止し得る。
また、前記各第2バネ部材121が均衡を保った状態においては、前記軸状部34における各突出片36,38,40,42の後端部(第1X軸圧力センサ52)から把持部44(筒状体46)の後支持壁46aまでの間隔と、各突出片36,38,40,42の前端部(第2X軸圧力センサ54)から把持部44(筒状体46)の前支持壁46bまでの間隔が同等になるよう構成されている。従って、把持部44をX軸方向に移動した際に、第1X軸圧力センサ52および第2X軸圧力センサ54が検出するまでの時間を一定にでき、検出までのタイムラグが生ずるのも同様に防止される。また、前記第1および第2バネ部材120,121により把持部44を軸状部34に保持したから、把持部44のがたつきが防止され、安定した操作が可能となる。
〔実施例3の変更例〕
なお、実施例3に係る上肢動作補助装置は、前述した構成に限られず種々の変更が可能である。
(1) 実施例3では、各突出片の間に夫々1個の付勢部材を設けるようにしたが、これに限られるものではなく、複数の付勢部材を各突出片の間に設けるようにしてもよい。
(2) 実施例3では、実施例1に係る上肢動作補助装置に基づいて説明したが、実施例2に係る上肢動作補助装置のように軸状部を円筒状に形成して付勢部材を配設する形態も採用できる。同様に、圧力センサと3軸力覚センサを併用する構成に対しても、実施例3のように付勢部材を配設する構成を採用できることは当然である。
(3) 実施例3では、付勢部材としてコイルバネ形態のバネ部材を示したが、これに限られるものではなく、板バネやゴム等、その他弾性変形により付勢力を発現する従来公知の各種部材を採用可能である。
(4) 実施例3に係る上肢動作補助装置に対しても、実施例1および実施例2の変更例として示した各事項を採用できることは当然である。
なお、実施例3に係る上肢動作補助装置は、前述した構成に限られず種々の変更が可能である。
(1) 実施例3では、各突出片の間に夫々1個の付勢部材を設けるようにしたが、これに限られるものではなく、複数の付勢部材を各突出片の間に設けるようにしてもよい。
(2) 実施例3では、実施例1に係る上肢動作補助装置に基づいて説明したが、実施例2に係る上肢動作補助装置のように軸状部を円筒状に形成して付勢部材を配設する形態も採用できる。同様に、圧力センサと3軸力覚センサを併用する構成に対しても、実施例3のように付勢部材を配設する構成を採用できることは当然である。
(3) 実施例3では、付勢部材としてコイルバネ形態のバネ部材を示したが、これに限られるものではなく、板バネやゴム等、その他弾性変形により付勢力を発現する従来公知の各種部材を採用可能である。
(4) 実施例3に係る上肢動作補助装置に対しても、実施例1および実施例2の変更例として示した各事項を採用できることは当然である。
次に、実施例4に係る上肢動作補助装置につき説明する。なお、実施例4に係る上肢動作補助装置の基本的構成は、実施例1に係る上肢動作補助装置10の構成と基本的に共通しているので、実施例1に係る上肢動作補助装置10同一の構成部材については同一の符号を伏して説明を省略し、異なる構成についてのみ説明する。
実施例4に係る上肢動作補助装置10の多関節アーム16を構成する操作アーム26は、実施例3と同様に、操作部32の軸状部34と把持部44との間に第3および第4バネ部材(付勢部材)130,131が設けられて、把持部44を軸状部34に対して相対的に近接および離間移動することで、第3バネ部材130および第4バネ部材131が弾性変形するよう構成される。ここで、前記第3バネ部材130は、図19または図20に示すように、各X軸,Y軸,Z軸圧力センサ52,54,56,58,60,62,66,68,70,72と把持部34との間に配設されている。また、前記第4バネ部材131は、第1X軸周り圧力センサ76と第1挟持片46cとの間、および第2X軸周り圧力センサ78と第2挟持片46dとの間に夫々配設される。すなわち、把持部44を軸状部34に対して相対的に近接および離間移動した際に弾性変形した第3および第4バネ部材130,131が対応の各圧力センサ52,54,56,58,60,62,66,68,70,72,76,78を押圧し、このとき各センサ52,54,56,58,60,62,66,68,70,72,76,78が検出する力の大きさに応じた検出信号が制御装置14に入力されるよう構成される。
前記第3および第4バネ部材130,131は、図19または図20に示すように、細長の薄いバネ鋼から形成されて弾性変形が可能な板バネであり、一方の端部が前記把持部44または挟持片46cに固定された状態で対応の圧力センサ52,54,56,58,60,62,66,68,70,72,76,78に接触するようになっている。また、前記各圧力センサ52,54,56,58,60,62,66,68,70,72,76,78には、対応の第3および第4バネ部材130,131との接触部位に突出部132が設けられており、各バネ部材130,131が対応の圧力センサ52,54,56,58,60,62,66,68,70,72,76,78に点接触するよう構成されている。これにより、把持部44を軸状部34に対して相対的に近接および離間移動した際に弾性変形された第3および第4バネ部材130,131が対応の圧力センサ52,54,56,58,60,62,66,68,70,72,76,78を点で押圧し、力の検出精度を高めている。
このような実施例4に係る上肢動作補助装置10では、各Y軸,Z軸圧力センサ56,58,60,62,66,68,70,72と把持部44との間に前記第3バネ部材130を配設したことで、実施例3と同様に、把持部44に外力を付与することなく各第3バネ部材130が均衡を保った状態では、把持部44が軸状部34に対して略同心となる位置に保持される。また同様に、各X軸圧力センサ52,54と把持部44との間に配設された第3バネ部材130が均衡を保つことで、軸状部34における各突出片36,38,40,42の後端部(第1X軸圧力センサ52)から把持部44(筒状体46)の後支持壁46aまでの間隔と、各突出片36,38,40,42の前端部(第2X軸圧力センサ54)から把持部44(筒状体46)の前支持壁46bまでの間隔が同等になるよう構成されている。すなわち、実施例4に係る上肢動作補助装置10においても、把持部44をX軸、Y軸、Z軸、Y軸周り、Z軸周りの方向に移動した際に各圧力センサ52,54,56,58,60,62,66,68,70,72が検出するまでの時間を一定にしてタイムラグが生ずるのを防止し得る。
また、前記第1X軸周り圧力センサ76と第1挟持片46cとの間、および第2X軸周り圧力センサ78と第2挟持片46dとの間に夫々配設された第4バネ部材131が均衡を保った状態では、第2突出片38に対応する第1挟持片46cから第1X軸周り圧力センサ76までの間隔と、第2突出片38に対応する第2挟持片46dから第2X軸周り圧力センサ78までの間隔とが同等となるよう把持部44(筒状体46)が保持されるよう構成されている。これにより、把持部44をX軸周りの正回転方向または負回転方向に移動した際に、第1X軸周り圧力センサ76および第2X軸周り圧力センサ78が検出するまでの時間を一定にでき、X軸周りに回転した際の圧力センサ76,78による検出にタイムラグが生ずるのを防止し得る。
そして、図20(b)に示すように、前記把持部44が各方向に移動した際には、第3および第4バネ部材130,131の弾性変形に伴って各圧力センサ52,54,56,58,60,62,66,68,70,72,76,78に力がダイレクトに伝達されるから、該把持部44の微小な移動も適切に検知することができ、検知精度の向上が図られる。また、前記第3および第4バネ部材130,131により把持部44を軸状部34に保持したから、把持部44のがたつきが防止され、安定した操作が可能となる。
〔実施例4の変更例〕
なお、実施例4に係る上肢動作補助装置は、前述した構成に限られず種々の変更が可能である。
(1) 実施例4では、突出部を介して付勢部材を圧力センサに接触するよう構成したが、該付勢部材を圧力センサに対して直接接触させるよう構成してもよい。
(2) 実施例4では、実施例1に係る上肢動作補助装置に基づいて説明したが、実施例2に係る上肢動作補助装置のように軸状部を円筒状に形成して付勢部材を配設する形態も採用できる。同様に、圧力センサと3軸力覚センサを併用する構成に対しても、実施例4のように付勢部材を配設する構成を採用できることは当然である。
(3) 実施例4では、付勢部材として板バネ形態のバネ部材を示したが、これに限られるものではなく、コイルバネやゴム等、その他弾性変形により付勢力を発現する従来公知の各種部材を採用可能である。
(4) 実施例4に係る上肢動作補助装置に対しても、実施例1~3の変更例として示した各事項を採用できることは当然である。
なお、実施例4に係る上肢動作補助装置は、前述した構成に限られず種々の変更が可能である。
(1) 実施例4では、突出部を介して付勢部材を圧力センサに接触するよう構成したが、該付勢部材を圧力センサに対して直接接触させるよう構成してもよい。
(2) 実施例4では、実施例1に係る上肢動作補助装置に基づいて説明したが、実施例2に係る上肢動作補助装置のように軸状部を円筒状に形成して付勢部材を配設する形態も採用できる。同様に、圧力センサと3軸力覚センサを併用する構成に対しても、実施例4のように付勢部材を配設する構成を採用できることは当然である。
(3) 実施例4では、付勢部材として板バネ形態のバネ部材を示したが、これに限られるものではなく、コイルバネやゴム等、その他弾性変形により付勢力を発現する従来公知の各種部材を採用可能である。
(4) 実施例4に係る上肢動作補助装置に対しても、実施例1~3の変更例として示した各事項を採用できることは当然である。
14 制御装置(制御手段)
16 多関節アーム
32 操作部
34 軸状部
44 把持部
50 第1の検出手段
52 第1X軸圧力センサ
54 第2X軸圧力センサ
56 第1Y軸圧力センサ
58 第2Y軸圧力センサ
60 第1Z軸圧力センサ
62 第2Z軸圧力センサ
64 第2の検出手段
66 第3Y軸圧力センサ
68 第4Y軸圧力センサ
70 第3Z軸圧力センサ
72 第4Z軸圧力センサ
74 第3の検出手段
76 第1X軸周り圧力センサ
78 第2X軸周り圧力センサ
92 アーム本体
94 操作部
96 軸状部
100 把持部
108 ポテンショメータ(第3の検出手段、位置検出センサ)
110 3軸力覚センサ(第1の検出手段)
112 圧力センサ(第2の検出手段)
120 第1バネ部材(付勢部材)
121 第2バネ部材(付勢部材)
130 第3バネ部材(付勢部材)
131 第4バネ部材(付勢部材)
16 多関節アーム
32 操作部
34 軸状部
44 把持部
50 第1の検出手段
52 第1X軸圧力センサ
54 第2X軸圧力センサ
56 第1Y軸圧力センサ
58 第2Y軸圧力センサ
60 第1Z軸圧力センサ
62 第2Z軸圧力センサ
64 第2の検出手段
66 第3Y軸圧力センサ
68 第4Y軸圧力センサ
70 第3Z軸圧力センサ
72 第4Z軸圧力センサ
74 第3の検出手段
76 第1X軸周り圧力センサ
78 第2X軸周り圧力センサ
92 アーム本体
94 操作部
96 軸状部
100 把持部
108 ポテンショメータ(第3の検出手段、位置検出センサ)
110 3軸力覚センサ(第1の検出手段)
112 圧力センサ(第2の検出手段)
120 第1バネ部材(付勢部材)
121 第2バネ部材(付勢部材)
130 第3バネ部材(付勢部材)
131 第4バネ部材(付勢部材)
Claims (5)
- 被補助者が把持操作可能な操作部を有する多関節アームを備え、該操作部に対する操作に応じて多関節アームを三次元動作することで被補助者の上肢動作を補助する上肢動作補助装置であって、
前記操作部に設けられ、該操作部に沿うX軸方向、該X軸に直交するY軸方向、X―Y軸に直交するZ軸方向の夫々への操作部の移動を検出可能な第1の検出手段と、
前記操作部に前記第1の検出手段とX軸方向に離間するよう設けられ、前記Y軸方向およびZ軸方向への操作部の移動を検出可能な第2の検出手段と、
前記操作部に設けられ、X軸の軸周りへの操作部の回転を検出可能な第3の検出手段と、
前記第1~第3の検出手段に接続されて、該第1~第3の検出手段から入力される検出信号に基づいて前記多関節アームを駆動制御する制御手段とを備え、
前記制御手段は、
前記操作部のX軸方向への移動により前記第1の検出手段から入力される検出信号に基づいて、該X軸方向へ操作部を移動させるよう前記多関節アームを駆動制御し、
前記操作部のY軸方向への移動により前記第1の検出手段および第2の検出手段から入力される検出信号に基づいて、該Y軸方向およびZ軸周りへ操作部を移動させるよう前記多関節アームを駆動制御し、
前記操作部のZ軸方向への移動により前記第1の検出手段および第2の検出手段から入力される検出信号に基づいて、該Z軸方向およびY軸周りへ操作部を移動させるよう前記多関節アームを駆動制御し、
前記操作部のX軸周りへの移動により前記第3の検出手段から入力される検出信号に基づいて、該X軸周りへ操作部を回転させるよう前記多関節アームを駆動制御する
ことを特徴とする上肢動作補助装置。 - 前記操作部は、前記多関節アームを構成する操作アームに設けられた軸状部と、該軸状部に外挿されて被補助者が把持操作可能な把持部とから構成されて、該軸状部と把持部との間に前記第1~第3の検出手段が配設され、
前記第1の検出手段は、前記把持部をX軸の正方向へ移動させる力を検出する第1X軸圧力センサと、前記把持部をX軸の負方向へ移動させる力を検出する第2X軸圧力センサと、前記把持部をY軸の正方向へ移動させる力を検出する第1Y軸圧力センサと、前記把持部をY軸の負方向へ移動させる力を検出する第2Y軸圧力センサと、前記把持部をZ軸の正方向へ移動させる力を検出する第1Z軸圧力センサと、前記把持部をZ軸の負方向へ移動させる力を検出する第2Z軸圧力センサとからなり、
前記第2の検出手段は、前記把持部をY軸の正方向へ移動させる力を検出する第3Y軸圧力センサと、前記把持部をY軸の負方向へ移動させる力を検出する第4Y軸圧力センサと、前記把持部をZ軸の正方向へ移動させる力を検出する第3Z軸圧力センサと、前記把持部をZ軸の負方向へ移動させる力を検出する第4Z軸圧力センサとからなり、
前記第3の検出手段は、前記把持部をX軸周りの正回転方向へ移動させる力を検出する第1X軸周り圧力センサと、前記把持部をX軸周りの負回転方向へ移動させる力を検出する第2X軸周り圧力センサとからなり、
前記制御手段は、
前記第1および第2X軸圧力センサから入力される検出信号に基づいて、前記操作部をX軸方向に移動させるよう前記多関節アームを駆動制御し、
前記第1~第4Y軸圧力センサから入力される検出信号に基づいて、前記操作部をY軸方向およびZ軸周りに移動させるよう前記多関節アームを駆動制御し、
前記第1~第4Z軸圧力センサから入力される検出信号に基づいて、前記操作部をZ軸方向およびY軸周りに移動させるよう前記多関節アームを駆動制御し、
前記第1および第2X軸周り圧力センサから入力される検出信号に基づいて、前記操作部をX軸周りに回転させるよう前記多関節アームを駆動制御するよう構成される請求項1記載の上肢動作補助装置。 - 前記操作部は、前記多関節アームのアーム本体と一体的に設けられた軸状部と、該軸状部に外挿されて被補助者が把持操作可能な把持部とから構成されて、
前記第1の検出手段は、入力軸が前記軸状部に連結されて前記把持部をX,Y,Z軸方向へ移動させる力を検出する3軸力覚センサから構成され、
前記第2の検出手段は、前記軸状部と把持部との間に、該軸状部の周方向に離間して設けられて、該把持部をY軸,Z軸方向へ移動させる力を検出する複数の圧力センサから構成され、
前記第3の検出手段は、前記軸状部の回転位置を検出する位置検出センサから構成され、
前記制御手段は、
前記3軸力覚センサから入力されるX軸方向へ作用する力の検出信号に基づいて、前記操作部をX軸方向に移動させるよう前記多関節アームを駆動制御し、
前記3軸力覚センサから入力されるY軸方向へ作用する力の検出信号と、前記圧力センサから入力されるY軸方向へ作用する力の検出信号とに基づいて、前記操作部をY軸方向およびZ軸周りに移動させるよう前記多関節アームを駆動制御し、
前記3軸力覚センサから入力されるZ軸方向へ作用する力の検出信号と、前記圧力センサから入力されるZ軸方向へ作用する力の検出信号とに基づいて、前記操作部をZ軸方向およびY軸周りに移動させるよう前記多関節アームを駆動制御し、
前記位置検出センサから入力されるX軸周りへ回転変位する検出信号に基づいて前記操作部をX軸周りに回転させるよう前記多関節アームを駆動制御するよう構成される請求項1記載の上肢動作補助装置。 - 前記軸状部および前記把持部の間には、軸状部に対する把持部の相対的な近接移動により弾性変形される付勢部材が設けられ、
前記各付勢部材が均衡を保った均衡状態では、該均衡状態から前記軸状部に対して把持部が相対的に近接移動されて前記各圧力センサで力を検出するまでの検出距離を同等になるよう該軸状部に対して把持部が保持される請求項2または3記載の上肢動作補助装置。 - 前記付勢部材は、前記各圧力センサに接触した状態で設けられて、
前記軸状部に対する前記把持部の近接移動時に弾性変形した前記付勢部材が対応の圧力センサを押圧するよう構成された請求項4記載の上肢動作補助装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011501624A JP5493110B2 (ja) | 2009-02-26 | 2010-02-24 | 上肢動作補助装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-044504 | 2009-02-26 | ||
JP2009044504 | 2009-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010098358A1 true WO2010098358A1 (ja) | 2010-09-02 |
Family
ID=42665564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/052883 WO2010098358A1 (ja) | 2009-02-26 | 2010-02-24 | 上肢動作補助装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5493110B2 (ja) |
WO (1) | WO2010098358A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2682088A1 (en) * | 2011-02-28 | 2014-01-08 | Murata Machinery, Ltd. | Upper limp exercising device |
JP2015084801A (ja) * | 2013-10-28 | 2015-05-07 | 俊道 妻木 | 動作補助装置 |
CN109551457A (zh) * | 2017-09-25 | 2019-04-02 | 林宗正 | 可减少噪声的感测模块 |
JP2020130629A (ja) * | 2019-02-20 | 2020-08-31 | 宗正 林 | ノイズ低減可能なセンサモジュール |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015012962B4 (de) * | 2015-10-08 | 2024-08-22 | Franka Emika Gmbh | Robotersystem |
KR101854712B1 (ko) * | 2016-02-25 | 2018-05-23 | 코닉오토메이션 주식회사 | 전자동 업소용 취반기 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62162935A (ja) * | 1986-01-13 | 1987-07-18 | Agency Of Ind Science & Technol | 触覚センサ |
JPS6389278A (ja) * | 1986-10-02 | 1988-04-20 | 株式会社東芝 | 産業用ロボツト教示装置 |
JPH07253370A (ja) * | 1994-03-14 | 1995-10-03 | Mitsubishi Heavy Ind Ltd | 6分力の計測システム |
JPH11138468A (ja) * | 1997-11-07 | 1999-05-25 | Fujitsu Ltd | 機械の安定制御装置及びマスタ・スレーブ型ロボットの制御装置 |
JPH11253504A (ja) * | 1998-03-12 | 1999-09-21 | Sanyo Electric Co Ltd | 上肢動作補助装置 |
JP2000246674A (ja) * | 1999-02-26 | 2000-09-12 | Sony Corp | 力覚提示装置 |
US20020064438A1 (en) * | 2000-05-08 | 2002-05-30 | Osborne William Joseph | Self-feeding apparatus with hover mode |
JP2007522838A (ja) * | 2004-02-05 | 2007-08-16 | モトリカ インク | 微細運動制御のリハビリテーション |
WO2008123200A1 (ja) * | 2007-03-27 | 2008-10-16 | Gifu University | 動作支援装置およびその制御方法 |
WO2009034732A1 (ja) * | 2007-09-10 | 2009-03-19 | Gifu University | 動作支援装置およびその制御方法 |
-
2010
- 2010-02-24 WO PCT/JP2010/052883 patent/WO2010098358A1/ja active Application Filing
- 2010-02-24 JP JP2011501624A patent/JP5493110B2/ja not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62162935A (ja) * | 1986-01-13 | 1987-07-18 | Agency Of Ind Science & Technol | 触覚センサ |
JPS6389278A (ja) * | 1986-10-02 | 1988-04-20 | 株式会社東芝 | 産業用ロボツト教示装置 |
JPH07253370A (ja) * | 1994-03-14 | 1995-10-03 | Mitsubishi Heavy Ind Ltd | 6分力の計測システム |
JPH11138468A (ja) * | 1997-11-07 | 1999-05-25 | Fujitsu Ltd | 機械の安定制御装置及びマスタ・スレーブ型ロボットの制御装置 |
JPH11253504A (ja) * | 1998-03-12 | 1999-09-21 | Sanyo Electric Co Ltd | 上肢動作補助装置 |
JP2000246674A (ja) * | 1999-02-26 | 2000-09-12 | Sony Corp | 力覚提示装置 |
US20020064438A1 (en) * | 2000-05-08 | 2002-05-30 | Osborne William Joseph | Self-feeding apparatus with hover mode |
JP2007522838A (ja) * | 2004-02-05 | 2007-08-16 | モトリカ インク | 微細運動制御のリハビリテーション |
WO2008123200A1 (ja) * | 2007-03-27 | 2008-10-16 | Gifu University | 動作支援装置およびその制御方法 |
WO2009034732A1 (ja) * | 2007-09-10 | 2009-03-19 | Gifu University | 動作支援装置およびその制御方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2682088A1 (en) * | 2011-02-28 | 2014-01-08 | Murata Machinery, Ltd. | Upper limp exercising device |
EP2682088A4 (en) * | 2011-02-28 | 2015-04-15 | Murata Machinery Ltd | TRAINING DEVICE FOR THE TOP EXTREMITIES |
JP2015084801A (ja) * | 2013-10-28 | 2015-05-07 | 俊道 妻木 | 動作補助装置 |
CN109551457A (zh) * | 2017-09-25 | 2019-04-02 | 林宗正 | 可减少噪声的感测模块 |
US10918335B2 (en) | 2017-09-25 | 2021-02-16 | Zhong-Jheng Lin | Sensing module capable of reducing noise |
JP2020130629A (ja) * | 2019-02-20 | 2020-08-31 | 宗正 林 | ノイズ低減可能なセンサモジュール |
Also Published As
Publication number | Publication date |
---|---|
JP5493110B2 (ja) | 2014-05-14 |
JPWO2010098358A1 (ja) | 2012-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5493110B2 (ja) | 上肢動作補助装置 | |
CA2633395C (en) | Parallel manipulator | |
JP5241781B2 (ja) | ロボット指アセンブリ | |
EP2919948B1 (en) | Hand controller device | |
JP6756166B2 (ja) | 力覚センサーユニットおよびロボット | |
EP2355958B1 (en) | Portable robotic arm | |
JP2011072186A (ja) | ロータリ直列型弾性アクチュエータ | |
US20060106369A1 (en) | Haptic interface for force reflection in manipulation tasks | |
Parietti et al. | Series viscoelastic actuators can match human force perception | |
JP2005098957A (ja) | 衝突試験用模擬人体の腕機構 | |
JP2009125886A (ja) | ロボットアーム | |
Laliberté et al. | Low-impedance displacement sensors for intuitive physical human–robot interaction: Motion guidance, design, and prototyping | |
JP5388686B2 (ja) | 5指型ハンド装置 | |
CN113194870A (zh) | 使用者界面装置、手术机器人装置的主控制台及其操作方法 | |
JP2007152528A (ja) | 関節装置、関節装置を用いたフィンガーユニット、及び、ユニバーサルロボットハンド | |
JP2008100323A (ja) | 把持型ロボットハンド | |
JP2007526967A (ja) | 並進3自由度を提供する平行運動伝達構造を有する運動伝達装置 | |
JP2008105116A (ja) | 2指把持型ロボットハンド | |
Alqasemi et al. | Design and construction of a robotic gripper for activities of daily living for people with disabilities | |
WO2006037017A2 (en) | Force reflecting haptic interface | |
JPS63251186A (ja) | ロボツト用ハンド | |
JPH03281188A (ja) | 指に回転体を有するロボットの把持装置 | |
CN113180893A (zh) | 仿生手装置及其控制方法 | |
JP2009219647A (ja) | 上肢動作補助装置 | |
JPH07148684A (ja) | マスタ・スレーブシステムのマスタアーム装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10746238 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011501624 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10746238 Country of ref document: EP Kind code of ref document: A1 |