WO2010096993A1 - 一种业务适配的方法和业务适配装置 - Google Patents
一种业务适配的方法和业务适配装置 Download PDFInfo
- Publication number
- WO2010096993A1 WO2010096993A1 PCT/CN2009/075499 CN2009075499W WO2010096993A1 WO 2010096993 A1 WO2010096993 A1 WO 2010096993A1 CN 2009075499 W CN2009075499 W CN 2009075499W WO 2010096993 A1 WO2010096993 A1 WO 2010096993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- service
- unit
- bandwidth
- gem
- frame
- Prior art date
Links
- 230000006978 adaptation Effects 0.000 title claims abstract description 156
- 238000000034 method Methods 0.000 title claims abstract description 68
- 230000003287 optical effect Effects 0.000 claims abstract description 41
- 238000005538 encapsulation Methods 0.000 claims abstract description 9
- 230000005540 biological transmission Effects 0.000 claims description 34
- 238000012544 monitoring process Methods 0.000 claims description 30
- 238000009432 framing Methods 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 19
- 238000009499 grossing Methods 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 9
- PUVAFTRIIUSGLK-UHFFFAOYSA-M trimethyl(oxiran-2-ylmethyl)azanium;chloride Chemical group [Cl-].C[N+](C)(C)CC1CO1 PUVAFTRIIUSGLK-UHFFFAOYSA-M 0.000 claims description 8
- 230000002776 aggregation Effects 0.000 claims description 5
- 238000004220 aggregation Methods 0.000 claims description 5
- 230000003139 buffering effect Effects 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 230000004931 aggregating effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 12
- 238000007726 management method Methods 0.000 description 12
- 238000013507 mapping Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000004422 calculation algorithm Methods 0.000 description 6
- 230000006855 networking Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000013524 data verification Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/16—Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
- H04J3/1694—Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/16—Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
- H04J3/1605—Fixed allocated frame structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J2203/00—Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
- H04J2203/0001—Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
- H04J2203/0064—Admission Control
- H04J2203/0067—Resource management and allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0071—Provisions for the electrical-optical layer interface
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a service adaptation method and a service adaptation device.
- the rate of data services such as Ethernet does not match the payload of the SDH system.
- the rate of the Ethernet service includes: 10 Mbit. /s, 100Mbit/s and 1000Mbit/s, etc.;
- the payload of the SDH system includes 2Mbit/s, 34Mbit/s, and 140Mbit/s, etc.), resulting in low bandwidth utilization in the SDH system.
- multiple virtual containers VCs, Virtual Concatenations
- VCG virtual concatenation group
- Ethernet technology With its open standards, high performance, and low cost, Ethernet technology is rapidly evolving in the implementation of multi-service bearers. However, due to its inherent storage and forwarding mechanism, Ethernet technology has a large jitter of service delay, and QoS (Quality of Service) is difficult to guarantee. For Time Division Multiplex (TDM) services, it is implemented by Circuit Simulation (CES) technology. However, since the Ethernet system does not support transparent transmission of clock performance, the quality of clock transmission is not guaranteed, and it is difficult to support clock-sensitive service access.
- TDM Time Division Multiplex
- CES Circuit Simulation
- the inventors of the present invention have found that the existing technologies for implementing multiple service bearers have disadvantages such as complicated implementation technology, no support for dynamic bandwidth adjustment, and low QoS performance. And because in recent years, many large telecom operators have chosen Gigabit passive light As a solution for future large-bandwidth fiber access, the network (GPON, Gigabit-Passive Optical Network) puts higher requirements on metropolitan area network equipment to support future fiber access (FTTx, Fiber To The Building/Cabinet/Curb). /Home, the development of fiber-optic buildings, roadside machines, homes and other forms of access, but not in the prior art.
- GPON Gigabit-Passive Optical Network
- the embodiments of the present invention provide a service adaptation method and a service adaptation apparatus, which implement a technology that is relatively simple and can guarantee multiple service access and bearer requirements of QoS.
- An embodiment of the present invention provides a service adaptation apparatus, including:
- the service access unit is configured to obtain service data, where the service data includes: GEM, GPON Encapsulation Method, GPON encapsulation format, frame, TDM service data, SDH service data/ Synchronous Optical Networking (SONET) Service Data/Asynchronous Transfer Mode (ATM) service data, and Ethernet service data.
- GEM Global System for Mobile Communications
- GPON Encapsulation Method GPON encapsulation format
- frame TDM service data
- ATM Synchronous Optical Networking
- Ethernet service data Ethernet service data
- E-GEM An enhanced GPON Encapsulation Method (E-GEM), configured to encapsulate the service data obtained by the service access unit into a unified E-GEM frame, where E-GEM frame includes at least identification purposes and business payload length indicator (PLI, payload length identifier) 0
- the embodiment of the invention further provides a method for service adaptation, including:
- service data includes: GEM frame, TDM service data, SDH service data/SONET service data/ATM service data, and Ethernet service data.
- the obtained service data is encapsulated into a unified form of E-GEM frames.
- the service adaptation apparatus of the embodiment of the present invention can directly and conveniently implement various types by mapping different types of services to a unified Gigabit passive optical network encapsulation E-GEM frame in a service adaptation layer.
- the uniform configuration of the service facilitates the unified management and transmission of various service data by the upper layer of the network.
- FIG. 1 is a schematic diagram of a network architecture for multi-service transmission
- FIG. 2 is a schematic diagram corresponding to the technical architecture shown in FIG. 1;
- FIG. 3 is a schematic diagram showing the logical structure of a service adaptation apparatus according to Embodiment 1 of the present invention
- FIG. 4 is an E-GEM frame format formed in the service adaptation apparatus according to Embodiment 1;
- T-CONT Transmission Container
- FIG. 6 is a schematic diagram showing the logical configuration of a service adaptation apparatus according to Embodiment 2 of the present invention
- FIG. 7 is a schematic diagram of mapping a GEM frame of a GPON system to an E-GEM frame according to Embodiment 2 of the present invention
- FIG. 10 is a schematic diagram of mapping a TDM service to an E-GEM frame according to Embodiment 3 of the present invention
- FIG. 6 is a schematic diagram showing the logical configuration of a service adaptation apparatus according to Embodiment 2 of the present invention
- FIG. 7 is a schematic diagram of mapping a GEM frame of a GPON system to an E-GEM frame according to Embodiment 2 of the present invention
- FIG. 10 is a schematic diagram of mapping a TDM service to an E-GEM frame according to Embodiment 3 of the present invention
- FIG. 11 is a schematic diagram showing the logical configuration of a service adaptation apparatus according to Embodiment 5 of the present invention
- FIG. 12 is a schematic diagram of mapping Ethernet service data to an E-GEM frame according to Embodiment 3 of the present invention
- FIG. 14 is a schematic flow chart of a method for service adaptation according to Embodiment 8 of the present invention
- FIG. 14 is a schematic diagram of a GPON system according to Embodiment 8 of the present invention
- FIG. 14b is a schematic flowchart of a method for service adaptation of TDM service data in Embodiment 8 of the present invention
- 14c is a schematic flow chart of a method for service adaptation of an Ethernet service according to Embodiment 8 of the present invention. detailed description
- the network nodes on the ring are divided into two types: S node and N node.
- the N node is an ordinary service access point, and the S node has a function of an N node, and is also a node where the upper layer network and the ring structure network are connected.
- a service suitable according to an embodiment of the present invention The distribution device is included in the N node and the S node, so that the network can carry multiple service types. Among them, the multiple service types carried by the network can further distinguish categories, including the following three types:
- the FB (Fixed Bandwidth) service is mainly used to carry services with strict bandwidth and delay guarantee, such as TDM service, SDH/Synchronous Optical Networking (SONET) service/Asynchronous transmission mode (ATM). , Asynchronous Transfer Mode, etc., where SDH service data, SONET service data, and ATM service data have the same characteristics as TDM services, and are fixed rate and continuous stream services, so for such services Processing is similar to TDM services.
- SDH service data, SONET service data, and ATM service data are also treated as TDM service data.
- the second is the Assured Bandwidth (AB) service, such as on-demand services or leased line services;
- AB Assured Bandwidth
- the third is to try to ensure (BE, Best Effort) business, such as Internet browsing common Internet services.
- BE Best Effort
- the network is equivalent to an aggregation network, and the aggregation node is an S node.
- FB services the network is equivalent to a peer-to-peer switching network, and can access or drop TDM services from any node. , SDH / SONET / ATM business or dedicated lines and other services.
- the N1 and N5 nodes in Figure 1 are connected to a Passive Optical Network (PON), which may be a GPON network, and an Optical Network Unit (ONU). Transmitting various service data, such as a local area network (LAN) or a digital Subscriber Line Access Multiplexer (DSLAM), to the service data through an Optical Distribution Network (ODN) N1 and N5 nodes; Nodes N2, N3, and N4 are connected to the TDM service and Ethernet (ETH) data services. S1 and S2 are backups of each other and connect to the upper layer service network. Each node can support multiple service transmissions and guarantee the QoS requirements of the service.
- PON Passive Optical Network
- ONU Optical Network Unit
- ODN Optical Distribution Network
- S1 and S2 are backups of each other and connect to the upper layer service network.
- Each node can support multiple service transmissions and guarantee the QoS requirements of the service.
- Figure 2 is a corresponding technical architecture, including: a service adaptation layer, a channel layer, and a physical layer.
- the service adaptation layer encapsulates the received different types of services into a unified E-GEM frame, and includes a unique identifier for each service in the network in the E-GEM frame.
- the traffic transmitted from the service side to the node can mainly include three types:
- the first is the service transmitted to the node through the GPON interface.
- These services are encapsulated in the GEM frame.
- the GEM frame of the GPON is regarded as one of the client signals, which facilitates smooth connection with the GPON. To land;
- the second is the TDM service directly transmitted to the node
- the third is data services such as Ethernet that are directly transmitted to the node.
- the node In the service adaptation layer, the node encapsulates different types of data services sent by the lower layer network into a unified E-GEM frame; and decapsulates the E-GEM frame for the data frame sent by the upper layer network.
- multiple E-GEM frames are encapsulated into different types of channel layer data frames (T-CONT, Transmission Container) according to factors such as service type, destination address, and priority.
- T-CONT frames are encapsulated into physical layer data frames, and then physical layer data frames are sent to the upper layer network.
- the embodiment of the present invention provides a service adaptation apparatus, as shown in FIG. 3, including: a service access unit 10 and an E-GEM adaptation unit 21, where the service access unit 10 has a first-level dynamic bandwidth allocation (DBA). , Dynamic Bandwidth Allocation) unit, that is, DBA1 unit (in the embodiment of the present invention, the first-level dynamic bandwidth allocation unit is called DBA1 unit, the 1.5-level dynamic bandwidth allocation unit is called DBA1.5 unit, and so on), and the DBA1 unit A bandwidth request for collecting service ports in the service adaptation device, and performing calculation and judgment according to the type, priority, and service level of the service within the allowed bandwidth, and allocating services according to the result of calculation and judgment Bandwidth, and is delivered to each service port.
- DBA Dynamic Bandwidth Allocation
- the DBA1 will also send the bandwidth request to the upper DBA unit, such as the DBA1.5 unit, which is calculated by the upper DBA unit. After the judgment, the allowed bandwidth is delivered.
- the service access unit 10 is configured to obtain service data, where the service data may be: a GEM frame, and/or TDM service data, and/or an Ethernet service data.
- the TDM service data described herein may also be service data of fixed rate and continuous code streams such as SDH, SONET or ATM.
- the E-GEM adaptation unit 21 is configured to encapsulate the service data acquired by the service access unit 10 into an E-GEM frame, where the E-GEM frame includes a destination identifier of the service and a payload length indication (PLI) ).
- PLI payload length indication
- the service adaptation apparatus may further include: a T-CONT framing unit 31 and a T-CONT solution. Frame unit 32.
- the T-CONT framing unit 31 is configured to encapsulate the E-GEM frame of the service data into a T-CONT frame for monitoring, scheduling, transmitting, and managing;
- the service adaptation device is configured to perform service adaptation and bearer on the service data in the uplink direction.
- the service adaptation device may further include:
- a T-CONT demapping unit 32 configured to solve an E-GEM frame from a T-CONT frame in a service falling direction
- the E-GEM de-adaptive unit 22 is configured to decapsulate the E-GEM frame extracted by the T-CONT de-framing unit 32 into corresponding service data.
- the service access unit 10 is further configured to de-E-GEM The corresponding service data obtained by the decapsulation of the unit 22 is sent to the corresponding terminal.
- FIG. 4 is a service adaptation layer E-GEM frame format in the embodiment of the present invention:
- the E-GEM frame format includes a frame header, an address identifier, and payload data.
- the frame header includes a payload length, a port identifier (Port-ID, Port-IDentity), a frame type, and a header check.
- the address identifier is divided into a destination identifier and a source identifier.
- Frame header includes four fields: payload length, service identifier, frame type, and header check. To facilitate determining the starting position of the frame, the length of each field in the frame header can be fixed, for example, fixed to The length of 5 bytes (byte). Among them, the meaning of each field is as follows:
- the payload length is the length of the payload data, in bytes
- a service identifier is an identifier of a service in a network node, for example, a specific service type, a physical port, or the like;
- the frame type is used for indicating a header frame, an intermediate frame, or a trailer frame when a packet with a data length that is too long is required.
- the header check is a cyclic redundancy check on the data of each field in the frame header.
- the address identifier includes: a destination identifier and a source identifier, where the destination identifier indicates a drop point of the service in the network, and the source identifier indicates a starting point of the service in the network.
- the length of the address identifier field may also be fixed. For example, the destination identifier and the source identifier are fixed to 2 bytes.
- a simple identification method can use the network node identifier together with the service identifier to uniquely identify a service within the network.
- the service identifier of the frame header may be further extended in the address identifier.
- the first-level service identifier is such that the network node identifier and the service identifier extended in the address identifier together with the service identifier in the frame header uniquely identify a service in the network.
- each service has a unique identifier in the network to facilitate network management or host configuration, tracking and management.
- Payload data The length of this field can vary depending on the value range of the payload length in the frame header.
- the address identification segment may not be set to ensure that the idle frame has a minimum length, so that there is more flexibility to fill the empty time slot between valid frames.
- the maximum value of the payload length cannot be satisfied, it can be fragmented into multiple frames for assembly, which is indicated by the frame type in the frame header.
- the E-GEM frame format of the embodiment of the present invention adds the destination identifier and the source identifier of the service, and the service identifier of the frame header is also compared with the GEM frame in the GPON system.
- the service identifier in the E-GEM frame format of the embodiment of the present invention has been extended to a larger networking scope, for example, it can exist between any node in the network, and together with the destination identifier and the source identifier, a service is given.
- the unique identifier in the entire network which can conveniently schedule services on the entire network, breaks through the limitation of the GEM frame in the traditional GPON system only for the access layer and the point-to-multipoint structure.
- TDM services, SDH/SONET/ATM services, and Ethernet services can be adapted to E-GEM frames.
- the Ethernet service can be sent to the service adaptation layer after Layer 2 switching, and mapped to an E-GEM frame. Different service types are mapped to a unified form of E-GEM frames. An example will be described later.
- FIG. 5 it is a channel layer T-CONT frame format in the embodiment of the present invention:
- the T-CONT frame format includes a frame header, a channel overhead, and payload data. The following is a detailed description of each part:
- Frame header Includes three fields: payload length, other extension fields, and header check. In order It is convenient to determine the starting position of the frame, and the length of each field in the frame header can be set to be fixed. Among them, the meaning of each field is as follows:
- the payload length is the length of the payload data, in bytes
- the extended field can select more important information, add the check of the header, such as the channel identifier, etc.
- the header check is to perform cyclic redundancy check on the data of each field in the frame header. Several bytes are checked to capture and synchronize the frame header. On the other hand, some important information, such as payload length and channel identification, can be checked and corrected, thus improving the reliability of service transmission. .
- Channel overhead Includes channel identification, data checksum, and monitoring fields. among them:
- the channel identifier is a unique serial number assigned to the T-CONT frame generated by all nodes in the network.
- the serial number is uniformly allocated by the host to facilitate positioning, cross-connection, monitoring, and management during subsequent transmission.
- the data check is used to detect the data transmission quality of the channel layer, and is represented by a bit error rate. According to a preset threshold of the bit error rate, signal degradation or signal failure can be judged.
- the BIP (Bit Interleaved Parity) check mode can be used to perform BIP check on the T-CONT frame, and the bit error rate is represented by the error block ratio to facilitate monitoring of the T-mark by the same identifier.
- the monitoring field can be used to deliver alarms and performance generated within the channel, as well as bandwidth request escalation or other information, enabling end-to-end alarm and performance monitoring for the channel.
- the monitoring field may include a Remote Error Indication (REI), a Remote Defect Indication (RDI), and a Dynamic Bandwidth Report (DBR).
- REI Remote Error Indication
- RDI Remote Defect Indication
- DBR Dynamic Bandwidth Report
- Payload data The data area of the T-CONT channel layer is used to carry E-GEM frames and consists of multiple E-GEM frames.
- the length of the data area may vary depending on the range of the payload length in the T-CONT frame header, and the payload length is required to be greater than or equal to the sum of the lengths of the multiple E-GEM frames carried.
- the payload length When the payload length is 0, it indicates that this is an idle frame (IDLE frame) and does not carry any E-GEM frames.
- the channel overhead field may not be set to ensure that the idle frames have a minimum length, which allows for greater flexibility to fill empty slots between valid frames.
- the payload length When the payload length is greater than the sum of the lengths of the multiple E-GEM frames carried, it can be filled with a free byte.
- the more important channel identifier can be placed in the frame header, such as in the extension field, so that the channel identifier can also participate in the header check of the frame header, and even error detection and error correction. In this way, the channel overhead will include the data checksum monitoring field.
- dynamic bandwidth request reporting can also be included in the channel overhead.
- each node first collects bandwidth requests for all services in the node, and then sends a bandwidth demand report of the node to the dynamic bandwidth algorithm unit.
- the dynamic bandwidth algorithm unit calculates and judges the bandwidth bandwidth of the current network, the bandwidth requirements of each node, the service priority, and the service level. Finally, the bandwidth allocation information is sent to each node.
- the Dynamic Bandwidth Report DBR here is used by nodes to send real-time dynamic bandwidth demand reports to the Dynamic Bandwidth Algorithm Unit.
- the dynamic bandwidth algorithm unit can be located in the host or an algorithm module in the master node in the network.
- E-GEM frames are classified according to service type, destination address, and priority, and E-GEM frames of the same service type, and/or the same destination address, and/or the same priority are encapsulated into one T-CONT frame.
- FB Fixed Bandwidth
- AB sured Bandwidth
- BE Best Effort
- the same type of E-GEM frames are grouped into one T-CONT frame, and the T-CONT frame can also be divided into FB class, AB class, and BE class, such as TDM service or E line service.
- - GEM frame which can form an FB type T-CONT
- an E-GEM frame of an on-demand service or a dedicated line service can form an AB-type T-CONT
- a web browsing downloading a file-type service E-GEM frame, Form a T-CONT of type BE.
- the high-priority T-CONT can be guaranteed bandwidth and sent preferentially.
- the low-priority T-CONT can be in the remaining bandwidth. Redistribution, thus achieving the fairness of bandwidth allocation and different levels of service quality.
- the adaptation device can encapsulate different types of services to be unified compared with the SDH device.
- the form of the E-GEM frame ensures uniform access to multiple services and has fewer layers (only three layers), which simplifies the intermediate processing process, is simple to implement, and saves costs.
- Compared with the GPON system it draws on the advantages of the T-CONT frame in the GPON system and enhances the OAM function. It can break through the limitations of GPON only in the access layer range and in the upload direction, and can be extended to a wider range of applications. Support various network networking forms; In addition to conveniently carrying TDM services and Ethernet services, it can also be smoothly interfaced with GPON signals to better support future FTTx development.
- an E-GEM frame in a service adaptation layer in a unified form can be encapsulated in a plurality of different types of services, so that a unified manner of multiple services can be implemented simply and conveniently.
- Incoming and adapting it is convenient for the upper layer of the network to uniformly manage and transmit various business data.
- the present embodiment provides a service adaptation apparatus.
- this embodiment is a preferred embodiment of a service adaptation apparatus provided in Embodiment 1, and is mainly directed to the service access in FIG.
- the service data acquired by the unit 10 is GEM data.
- the service adaptation device includes: a first service access unit 100 and a first E-GEM adaptation unit 201.
- the T-CONT framing unit 31 is specifically referred to as a first T-CONT framing unit 301 in FIG. 3; the T-CONT de-frame unit 32 in FIG. 3 is specifically referred to as a first
- the T-CONT de-frame unit 302 is specifically referred to as the first E-GEM adaptation unit 201 in FIG. 3; the E-GEM de-adapment unit 22 in FIG. 3 is specifically referred to as the first E. - GEM de-adaptation unit 202.
- the first service access unit 100 is configured to acquire a GEM frame.
- the first E-GEM adaptation unit 201 is configured to encapsulate the acquired GEM frame into an E-GEM frame.
- the first service access unit 100 further includes: an optical module 101 and a GPON-Media Access Control (GPON-Media Access Control) 102.
- GPON-Media Access Control GPON-Media Access Control
- the optical module 101 is configured to convert an optical signal sent by the optical network unit (ONU unit) 800 through an optical distribution network (ODN, including an optical splitter, an optical fiber, etc.) 700 into an electrical signal;
- ODN optical distribution network
- the G-MAC unit 102 is configured to decapsulate a GPON physical layer data frame (GTC, GPON Transmission Convergence) from the electrical signal converted by the optical module 101, obtain a T-CONT frame, and further perform a T-CONT frame. Decapsulate to get a GEM frame.
- GTC GPON physical layer data frame
- the service data acquired in the first service access unit 100 is transmitted by the network of the GPON system.
- the transmitted data, the optical module 101 converts the burst mode optical signal transmitted by the ONU unit 800 and transmitted via the ODN network 700 into an electrical signal;
- the G-MAC unit 102 decapsulates the GTC frame to obtain each T-CONT frame. , and further decapsulate the T-CONT, and then obtain the GEM frame.
- the service adaptation apparatus may further include a first T-CONT framing unit 301, configured to encapsulate the GEM frame acquired by the G-MAC unit 102 into an E-GEM frame, and further encapsulate the packet into a T-CONT frame.
- a first T-CONT framing unit 301 configured to encapsulate the GEM frame acquired by the G-MAC unit 102 into an E-GEM frame, and further encapsulate the packet into a T-CONT frame.
- the first T-CONT framing unit 301 is optional.
- the signal sent by the service adaptation apparatus provided by the embodiment to the interleaving unit 400 may be an E-GEM frame or a T-CONT frame.
- the former is used as the interface between the service adaptation device and the crossover unit 400, and the "centralized E-GEM local exchange" can be conveniently implemented in the crossover unit 400 for the service exchange between different branch ports in the node. Minimize the fluctuations and impacts on bandwidth between nodes in the network. The latter can ensure that the interfaces between the units (including the line unit, the service adaptation device, etc.) and the cross unit 400 in the node are consistent, which is beneficial to the flexible configuration of the cross capacity.
- the logical units connected to the service adaptation apparatus include: a cross unit 400, a DBA 1.5 unit 500, a DBA2 unit 600, an ODN network 700, and an ONU unit 800.
- the DBA1.5 unit 500 which is located inside the node, is used for bandwidth adjustment between more than one service adaptation device inside the node, and can be generally referred to as "1.5 level DBA".
- the 1.5-level DBA unit 500 performs calculation and judgment according to information such as bandwidth requirements, service types, priorities, and QoS service levels reported by each service adaptation device in the node, and finally sends the bandwidth allocation result to each service adaptation device, thereby realizing Bandwidth sharing and fair competition between various service adaptation devices within the node.
- the first service access unit 100 in the service adaptation apparatus provided in this embodiment may further include the first DBA1 unit 103;
- a DBA1 unit 103 may be specifically in the G-MAC unit 102;
- the first DBA1 unit 103 is configured to collect bandwidth requirements of services in each ONU, and perform bandwidth allocation and adjustment on services accessed by each ONU according to bandwidth requirements within a bandwidth allowed by the first DBA1 unit 103, for example, according to services. After the information such as type, priority, and service level is calculated and judged, bandwidth is allocated for the services in each ONU. When the total bandwidth of the ONU application exceeds the bandwidth allowed by the first DBA1 unit 103, the first DBA1 unit 103 also reports the transmission bandwidth requirement to the upper DBA unit (such as the DBA1.5 unit), and receives the The upper level DBA unit according to the bandwidth requirement The bandwidth allocation information is reported, and bandwidth adjustment is performed on the service accessed by the ONU according to the bandwidth allocation information.
- the upper DBA unit such as the DBA1.5 unit
- the first DBA1 unit 103 may be a DBA module of the GPON system, which may also be referred to herein as a "level 1 DBA" for bandwidth adjustment between service ports in all ONUs connected to the service adaptation device.
- the DBA2 unit 600 (also known as the secondary DBA unit) 600 is an independent bandwidth adjustment algorithm module, which can be located in the network host or in the primary node (S node) in Figure 1, as the previous one of the DBA1.5 unit.
- Level DBA unit used to perform bandwidth adjustment between nodes of the network according to the bandwidth requirement report sent by the DBA1.5 unit.
- the service adaptation device can process the transmission of the service and realize the network connection with the GPON system.
- the service adaptation device may further include a first E-GEM solution adaptation unit 202;
- the first E-GEM solution adaptation unit 202 is configured to decapsulate an E-GEM frame acquired from a channel layer into a GEM frame;
- the first service access unit 100 is further configured to process the GEM frame obtained by decapsulating the E-GEM frame in the falling direction to be opposite to the uploading direction, which may be:
- the G-MAC unit 102 is further configured to encapsulate the GEM frame obtained by decapsulating the E-GEM frame in the falling direction into a T-CONT data frame of the GPON system, and further encapsulated into a GTC frame;
- the optical module 101 is further configured to convert the GTC frame from the electrical signal to the optical signal, and the device may be further configured to: the first T-CONT de-frame unit 302;
- the first T-CONT deframing unit 302 is configured to decapsulate the acquired T-CONT frame in the falling direction to obtain an E-GEM frame in a falling direction.
- FIG. 7 shows that mapping the GEM frame of the GPON system to the E-GEM frame of the embodiment.
- schematic diagram The mapping from the GEM frame to the E-GEM is because the service identifier (Port-ID) in the original GEM frame exists only between the GPON branch OLT and the ONU, and the E-GEM frame adds the source and destination identifiers of the service.
- the service identifier (Port-ID) will be associated with the tributary port identifier (TI-ID) and the network node identifier (Node-ID) to identify a larger range of services in the network, hence the Port-ID.
- TI-ID tributary port identifier
- Node-ID network node identifier
- Re-assignment is required, and the corresponding HEC checksum needs to be recalculated.
- Other PLI and PTI values, as well as payload data can be directly copied to the corresponding domain of the E-GEM frame.
- DN-ID Disposination Node IDentity
- SN-ID Source Node IDentity
- Figure 8 shows the E-GEM frame structure and T-CONT frame structure implemented after the GPON system is improved:
- the definition of the frame header can completely borrow the existing GEM frame header, which is 5 bytes in total.
- the meanings of the fields corresponding to the E-GEM frame header are as follows:
- PLI payload length indication
- 12 bits bits
- byte allowing up to 4095 bytes of payload data. If the user data is greater than the maximum length, it must be truncated. Fragments smaller than 4095 are transmitted;
- Port-ID (service identifier), 12bit, can provide up to 4096 unique service identifiers;
- ⁇ payload type indication
- 3bit used to indicate the type of payload data and the corresponding processing method, as shown in Table 1 below;
- HEC Header Error Control
- OAM data 100 non-user data, OAM data
- the 16-bit can be considered and divided into two identifier domains: Node-ID (network node identifier) 6bit, TI-ID (branch port identifier) ) 10bit.
- the former indicates that there are up to 64 nodes in the network, and the latter can be combined with the Port-ID of the frame header to identify a larger range of service types.
- the three IDs of Node-ID + TI-ID + Port-ID are combined to uniquely specify each service in the network hierarchically.
- the TI-ID can correspond to a tributary board or port within a network node device:
- each ODN interface can be assigned a TI-ID, which belongs to the 0NU of the same 0DN network, and different services continue to allocate different Port-IDs;
- TI-ID For a TDM service, such as an E1 service, you can assign a TI-ID to different boards, and then assign different port IDs to multiple E1 interfaces on the board. You can also assign TI-IDs directly to all El interfaces in the node.
- the TI-ID can be a physical port, and the Port-ID corresponds to a virtual local area network (VLAN) identifier.
- VLAN virtual local area network
- the length is specified by the PLI and is variable from 0 to 4095.
- T-PLI1 In addition to the payload data length T-PLI1 of the T-CONT frame, other extension identifiers can be considered, such as T-PLI2 (T-CONT PLI). Considering that the bandwidth of a T-CONT channel to transmit data is allowed to reach 2.5G, 10G or even a larger rate range, the length of the T-CONT frame length (including the payload data area) will reach 38,880 bytes, 155,520 bytes or more, and T can be arranged.
- the indication range of -PLI1 is 20bit.
- the T-HEC check can draw on the existing 13-bit long cyclic redundancy check.
- the channel identifier (Alloc-ID, Alloc-IDentity) can be considered to be 2 bytes, a total of 16 bits, and divided into two identification fields: Node-ID, Node-IDentity 6bit, channel serial number (Seq-ID, Seq - IDentity) lObit, which means that up to 1024 T-CONT frames can be grouped in one node.
- the channel identifier is an important indication, it can also be arranged in the frame header area, for example, instead of the extension identifier T-PLI2, participating in the check and error correction of the frame header.
- Data verification can use a simple BIP-8 check.
- the monitoring byte M1 includes a 4-bit remote error indication REI, a lbit remote defect indication RDI, and a 2-bit bandwidth request DBR. The meanings of the DBRs of different data are shown in Table 2 below. DBR data type
- the length is specified by T-PLI1 and contains multiple E-GEM frames.
- the T-CONT frame is only in the access layer range, and the data is transmitted from multiple points to one point in the uplink direction between the ONU and the OLT.
- the concept of T-CONT is proposed in the GPON system, mainly for the implementation of QoS requirements of different service types.
- Its management overhead is in addition to the uplink signaling channel (PLOAMu, Physical Layer OAM upstream, uplink physical layer operation, management and maintenance).
- PLOAMu Physical Layer OAM upstream
- DBRu Dynamic Bandwidth Report upstream
- no other management overheads such as data check, performance, and alarm monitoring are defined.
- Etc. so its OAM (Operation, Administration, Management) capabilities are weak, making it difficult to implement other functions, such as cross-connection, monitoring and protection, and cannot be extended to a wider range of network applications.
- the channel layer T-CONT frame retains the dynamic bandwidth reporting function, and can initiate a dynamic bandwidth allocation request when the bandwidth of the service type of the bearer changes.
- the frame header positioning function has been added to adapt to a wider range of applications; data verification function, performance and alarm monitoring have been added, and end-to-end monitoring and management of the channel layer can be realized, and channel layer allocation is conditionally implemented.
- Within the time slot it can function as a truly independent transmission channel.
- the VC container compared to the rigid transport channel VC (Virtual Container) in the SDH system, the VC container has a fixed-length bandwidth utilization ratio of 4 ⁇ ; and it can also be combined with the DBA mechanism for the entire network to achieve dynamic bandwidth adjustment. Convenient, especially suitable for future IPTV, BOD and other services.
- the service adaptation device to encapsulate the GEM frame into an E-GEM frame, it is possible to break through the limitation in the GPON system only in the access layer range and in the uplink direction, and can be extended to more Wide range of applications, support a variety of network networking; in addition to conveniently carrying TDM In addition to business and Ethernet services, it can also naturally interface with GPON signals to better support future FTTx development.
- This embodiment provides a service adaptation apparatus.
- this embodiment is a preferred embodiment of a service adaptation apparatus provided in Embodiment 1, and is mainly directed to the service access in FIG.
- the service data acquired by the unit 10 is TDM data.
- the service adaptation device includes: a second service access unit A10 and a second E-GEM adaptation unit A201.
- the service access unit 10 in FIG. 3 is specifically referred to as a second service access unit A10; and the T-CONT framing unit 31 in FIG.
- the T-CONT framing unit A301 is specifically referred to as the second T-CONT de-frame unit A302 in FIG. 3;
- the E-GEM adaptation unit 21 in FIG. 3 is specifically referred to as the second E. - GEM adaptation unit A201;
- the E-GEM de-adaptation unit 22 in FIG. 3 is specifically referred to as a second E-GEM de-adaptation unit A202.
- the service adaptation apparatus may further include any one or more of the second E-GEM de-adaptive unit A202, the second T-CONT framing unit A301, or the second T-CONT de-frame unit A302.
- the second T-CONT framing unit A301 and the second T-CONT demapping unit A302 reference may be made to the first T-CONT framing unit 301 and the first T-CONT demapping unit 302 in the second embodiment. The description will not be repeated here.
- the second service access unit A10 further includes: a Line Interface Unit (LIU) A101, and a Clock and Data Recovery (CDR) unit A102.
- LIU Line Interface Unit
- CDR Clock and Data Recovery
- the line interface unit A101 is configured to demodulate and decode the acquired TDM service signal; and the received line, such as the encoded and modulated TDM service signal in the cable, is demodulated and decoded;
- the CDR unit A102 is configured to recover the clock and data of the TDM service signal decoded by the line interface unit A101, that is, obtain TDM service data.
- the second service access unit A10 may further include: a framer (Framer) unit A103, and the framer (framer) unit A103, configured to perform deframing (falling direction) or formation of TDM service data. Monitor and manage TDM service data when processing in the frame (upload direction) Fault analysis and location on the TDM service signal transmission path.
- a framer (Framer) unit A103 configured to perform deframing (falling direction) or formation of TDM service data.
- the second E-GEM adaptation unit A201 is configured to convert the obtained TDM service data into an E-GEM frame.
- Figure 10 shows a schematic diagram of mapping TDM traffic to E-GEM frames:
- the PLI value can be adjusted once in the range of ⁇ lbyte.
- the E1 service 2.048 Mbps signal
- the frame rate is 8 kHz
- the value of the PLI is fixed to 32 bytes; when the clocks between the two are not synchronized, that is, when there is a frequency difference
- the PLI will take values among the three values of 31, 32, and 33.
- the data buffer since the value of the PLI is in bytes, when the E1 signal is mapped to the data payload area of the E-GEM frame, the data buffer must wait until every 8 bits. That is, when 1 byte is obtained, the value of PLI will be adjusted once within ⁇ 1.
- the working principle is opposite to that of the second E-GEM adaptation unit A201, and details are not described herein again.
- FIG. 9 the logical unit connected to the service adaptation apparatus is also shown in FIG. 9 including: the intersection unit 400, the DBA1.5 unit 500, and the DBA2 unit 600, and the related description is also referred to. The description of Figure 6.
- the service adaptation device of the TDM service there is no DBA1 unit as defined in FIG. 6. Since the TDM service is a continuous code stream and a fixed rate service, the delay and jitter are highly required, and the classification is performed. For the FB service, the bandwidth and delay of the TDM service need to be strictly guaranteed. Therefore, when accessing the service of any rate, the clock frequency information (that is, the bandwidth requirement information) of the TDM service detected by the CDR unit A102 needs to be sent to the DBA1.5 unit, and the DBA1.5 unit strictly guarantees the bandwidth of the service.
- the CDR unit A102 is used to transmit clock frequency information to the DBA 1.5 unit. In a simpler manner, when the rate of the TDM service signal is known, the reporting process of the CDR unit A102 can be avoided, and the uplink bandwidth of the service can be directly delivered and assigned by the DBA2 unit.
- the device can implement
- the TDM service data is encapsulated into an E-GEM frame, which satisfies the high requirements of the TDM service for delay, and implements clock-sensitive service access.
- An embodiment of the present invention provides a service adaptation apparatus.
- the apparatus includes All of the logic units in the apparatus provided in the third embodiment.
- This embodiment is similar to the service adaptation device provided in the third embodiment (refer to the previous embodiment, and details are not described herein again), except that the second service access unit A10 may further include: a traffic management unit A104; the first TM unit A104, configured to convert TDM service data acquired in the CDR unit A102 into a GEM frame;
- the first TM unit A104 can also be used to convert GEM frames to TDM traffic data when in the direction of the drop.
- the E-GEM adaptation unit (the second E-GEM adaptation unit A201 in FIG. 9) is specifically used for GEM frame encapsulation of the TDM service data into which the first TM unit A 104 is converted. It is an E-GEM frame.
- the method for adapting the TDM service data to the GEM frame may refer to the technology in the existing GPON, and details are not described herein.
- the first TM unit A104 can also be used to control the traffic of the service; specifically, the service bandwidth is monitored and smoothed, and the bandwidth requirement report is reported to the DBA unit in the upper level, and the bandwidth requirement report reported by the upper-level DBA unit is obtained according to the reported bandwidth requirement.
- the bandwidth allocation information is delivered.
- the upper-level DBA unit sends the bandwidth allocation information according to the calculated bandwidth requirement report.
- its bandwidth is its rate.
- the apparatus can encapsulate the TDM service data into an E-GEM frame, meet the bandwidth and delay requirements of the TDM service, and implement clock-sensitive service access.
- the present embodiment provides a service adaptation apparatus.
- this embodiment is a preferred embodiment of a service adaptation apparatus provided in the first embodiment, which is mainly directed to the service access in FIG.
- the service data acquired by the unit 10 is Ethernet service data.
- the service adaptation device includes: a third service access unit B10 and a third E-GEM adaptation unit B20L
- the service access unit 10 in FIG. 3 is specifically referred to as a third service access unit B10; and the T-CONT framing unit 31 in FIG. three T-CONT framing unit B301;
- the T-CONT de-frame unit 32 in FIG. 3 is specifically referred to as a third T-CONT de-frame unit B302;
- the E-GEM adaptation unit 21 in FIG. 3 is specifically referred to as a third E- GEM adaptation unit B201;
- the E-GEM de-adaptation unit 22 in FIG. 3 is specifically referred to as a third E-GEM de-adaptive unit B202.
- the service adaptation apparatus may further include: any one or more of the third E-GEM de-adaptive unit B202, the third T-CONT framing unit B301, or the third T-CONT demapping unit B302.
- the third T-CONT framing unit B301 and the third T-CONT demapping unit B302 reference may be made to the first T-CONT framing unit 301 and the first T-CONT demapping unit 302 in Embodiment 2, respectively. instruction of.
- the third service access unit B10 further includes: a physical layer (PHY, Physical Layer) processing unit B101;
- the PHY processing unit B101 is configured to obtain Ethernet service data, that is, receive Ethernet service data sent from a line, such as a cable or an optical fiber, specifically, demodulate and decode the signal transmitted on the line, and convert the signal into a digital A signal from which Ethernet traffic data is parsed.
- the third E-GEM adaptation unit B201 is configured to convert the Ethernet service data acquired in the PHY processing unit B101 into an E-GEM frame, and send the E-GEM frame to the third T-CONT framing unit B301.
- Ethernet frame The structure of the Ethernet frame is the same as that of the prior art and will not be described in detail herein.
- the method of discarding the Ethernet frame interval and the preamble can be used to ensure the integrity of the Ethernet frame.
- the length/type field in the Ethernet frame can be used to determine the length of the Ethernet frame data.
- other fields of the Ethernet frame are fixed lengths, so that the value of the PLI can be determined, and then the Ethernet frame is mapped to the data area of the E-GEM frame.
- the Ethernet super long frame length is greater than 4095, multiple consecutive E-GEM frames can be used for fragment transmission.
- the working principle is opposite to that of the third E-GEM adaptation unit B201, and details are not described herein again.
- the third service access unit B10 may further include: a Layer 2 Switch (L2S) unit B 102;
- L2S Layer 2 Switch
- the L2S unit B102 is configured to perform convergence, aggregation, or exchange on the acquired Ethernet service data.
- For the Ethernet service there are currently four rates of 10M/100/1G/10G, taking the 1G rate as an example.
- the true rate on the cable is 1.25 Gbits/s, which is 1.25 Gbits per second. This is called "line speed”.
- Ethernet services are transmitted in MAC frames.
- Each MAC frame includes frames. Head and end of frame, a complete Ethernet frame between the frame header and the end of the frame, called a "packet", and between adjacent packets, there are a large number of gaps, which are padding codes. Called "frame interval", these padding codes are invalid data, affecting bandwidth efficiency, and wasting cable investment and port cost.
- FIG. 11 the logical unit connected to the service adaptation apparatus is also shown in FIG. 11 including: the intersection unit 400, the DBA1.5 unit 500, and the DBA2 unit 600, and the related description is also referred to. The description of Figure 6.
- the DBA1 unit ie, the first DBA1 unit in FIG. 6, as clearly defined in FIG. 6, where the DBA1 unit can be implemented in the L2S unit B102, and the L2S unit B102 is received.
- the remaining service data is aggregated and the bandwidth is converged, and the bandwidth that needs to be sent in the uplink direction is reported to the upper-level DBA unit as the bandwidth request of the DBA1 unit in FIG.
- the DBA1.5 unit obtains the allocated bandwidth after obtaining the bandwidth information calculated and judged by the upper-level DBA unit.
- the service type indicated by the different VLAN identifiers (such as FB, AB, and BE services), and priority are further differentiated for different physical ports or different services in the same physical port.
- the QoS class of service controls the ingress traffic of the service port through a Pause frame (indicating a paused OAM frame) or a backpressure mechanism. It can be seen that the function of DBA1 can be fully realized in the L2S unit.
- the apparatus can implement the encapsulation of the Ethernet service data into an E-GEM frame and transmit it in the new network.
- the device provided by the embodiment has high bandwidth utilization, convenient adjustment, and simple implementation.
- An embodiment of the present invention provides a service adaptation apparatus. Referring still to FIG. 11, the embodiment is related to The service adaptation device provided in the fifth embodiment is similar, except that the third service access unit B10 may further include: a second TM unit B103;
- the second TM unit B 103 is configured to convert the acquired Ethernet service data into a GEM frame
- the third E-GEM adaptation unit B201 is specifically configured to convert the second TM unit B103 into a GEM frame package. It is an E-GEM frame.
- the second TM unit B 103 can also be used to convert GEM frames to Ethernet traffic data when in the direction of the drop. From the adaptation and de-adaptation between Ethernet service data and GEM frames, reference can be made to existing
- the other logic units in the service adaptation apparatus provided in this embodiment are the same as the logic units in the apparatus provided in the fifth embodiment.
- the description in the fifth embodiment can be referred to.
- the second TM unit B103 can also implement dynamic bandwidth adjustment, that is, for bandwidth monitoring and smoothing, and send the monitored and smoothed bandwidth result to the upper DBA unit, such as the DBA1.5 unit, and receive
- the bandwidth allocation information delivered by the upper-level DBA unit is used for bandwidth adjustment according to the bandwidth allocation information.
- the bandwidth monitoring smoothing unit and the back pressure control unit need to be designed in the TM module to implement bandwidth demand report reporting, receiving bandwidth allocation information, traffic buffering, and traffic back pressure control. Ensure that the service is sent out with the average bandwidth processing power. Therefore, the second TM unit B103 may further include: a bandwidth monitoring smoothing unit B1031 and a back pressure control unit B1032.
- the bandwidth monitoring and smoothing unit B1031 is configured to monitor the bandwidth of the data service, and after smoothing, report the bandwidth requirement report to the DBA unit in the upper level, for example, reporting the bandwidth requirement report to the DBA1.5 unit; and the back pressure control unit B1032 is configured to receive The first-level DBA unit, for example, the DBA1.5 unit reports the bandwidth allocation information that is sent after being calculated and judged according to the bandwidth requirement reported by the bandwidth monitoring and smoothing unit B1031.
- the back pressure control is initiated when the allocated bandwidth does not meet the demand.
- the current traffic buffering and back-pressure mechanism ensures high-priority service reception and transmission, and suppresses the transmission of low-priority services. That is, high-priority services preempt low-priority services.
- the apparatus can implement the device bandwidth utilization ratio of the device provided by the embodiment in comparison with the manner of carrying the data service in the SDH system. High, with bandwidth dynamic adjustment, easy to implement.
- Example 7
- Embodiment 2 to 6 are all single-type service adaptation apparatuses.
- Embodiment 2 to The service adaptation device provided in Embodiment 6 may be a board as described in the respective embodiments, and a plurality of boards are placed in the node N or the node S as shown in FIG. 1.
- the access and adaptation methods of different types of services provided in the second embodiment to the sixth embodiment can be combined in any manner to be designed as a single board.
- a multi-service adaptation device provided by an embodiment.
- the multi-service adaptation device of the three service adaptation devices provided for the second, fourth and sixth embodiments as shown in FIG. In Figure 13:
- the E-GEM adaptation unit includes: a first E-GEM adaptation unit 201 in FIG. 6, a second E-GEM adaptation unit A201 in FIG. 9, and a third E-GEM adaptation unit B201 in FIG.
- the E-GEM adaptation unit can be used to adapt various services to E-GEM frames;
- the E-GEM de-adaptive unit includes: a first E-GEM de-adaptive unit as in FIG. 6, a second E-GEM de-adaptive unit in FIG. 9, and a third E-GEM de-adaptive in FIG.
- the E-GEM de-adaptive unit can be used to decouple the falling E-GEM frame into various corresponding service data, that is, into GEM frame, TDM data or Ethernet service data.
- the reference symbols in the figure of the E-GEM adaptation unit and the E-GEM adaptation unit are both C10. Similarly, the reference symbols of the T-CONT framing unit and the T-CONT deframe unit are C30. .
- the service access unit of a service adaptation apparatus includes: a first service access unit 10 as shown in FIG. 6, and a second service access unit shown in FIG. A10 and the third service access unit B10 shown in FIG. 11 can be referred to the description in the foregoing Embodiments 2 to 6.
- the service adaptation apparatus When the service adaptation apparatus provided by the embodiment receives a plurality of service data, the service data received by the service access unit encapsulates an E-GEM frame called a unified form by using an E-GEM adaptation unit, and may further Multiple E-GEM frames are encapsulated into T-CONT frames according to the same service type, same destination address, and priority.
- the multi-service adaptation apparatus in this embodiment also has bandwidth monitoring, reporting, and receiving bandwidth allocation information.
- the service bandwidth adjustment function is as follows:
- all services have a bandwidth monitoring module, such as the first DBA1 of the GPON branch.
- the unit, the CDR unit of the TDM service, the L2S unit or the TM unit of the Ethernet service, and the result of the bandwidth monitoring module, that is, the bandwidth requirement report is sent to the upper DBA unit (for example, the DBA1.5 unit, the reporting method is as described in the foregoing three
- the description of the branch service is then calculated and judged by the upper-level DBA unit, and the bandwidth is allocated for information such as the type, priority, and QoS service level of various services in the multi-service tributary unit in this embodiment.
- the bandwidth allocation information of each service is sent to the bandwidth control module of each service (such as the first DBA1 unit of the GPON branch, the L2S unit or the TM unit of the data service, etc., which is directly configured for the TDM service), and controls the entrance of each service.
- Bandwidth traffic, FB, AB, and BE services can preempt low-priority services with high priority, ensuring that high-priority services in the tributary unit preferentially allocate bandwidth and transmission, and low-priority services continue to allocate bandwidth in the remaining bandwidth. In order to achieve a variety of service bandwidth sharing, fair competition, and achieve the purpose of non-blocking transmission.
- the service adaptation apparatus may further include: an E-GEM local switching unit C40, according to the destination identifier and the source identifier in the E-GEM frame, if both the destination identifier and the source identifier are If it points to the port of this node, it means that the service needs to be exchanged locally.
- the service identifier is further checked, and the service is exchanged to other ports in the node indicated by the destination identifier. For E-GEM frames that do not need to be exchanged locally, they are sent to the T-CONT framing unit.
- the local exchange between different services is handled by the E-GEM local switching unit C40 in the service adaptation apparatus, and the remaining services and bandwidth are transmitted to the T-CONT framing unit, thereby reducing the fluctuation of the bandwidth between the network nodes.
- the service adaptation apparatus of the embodiment of the present invention can implement various forms of services to be uniformly encapsulated into the service adaptation layer E-GEM frame, and various service types only need to pass through one layer.
- E-GEM frame adaptation and then directly to the channel layer T-CONT frame, the technology is simple, the level is small, the intermediate processing process is greatly simplified, and the cost is saved;
- the management overhead of the two-layer structure is simple and reasonable, and can reflect the main alarms and Performance monitoring;
- the length of two layers of data frames can be adjusted in units of lbytes, the bandwidth utilization is high, and the dynamic bandwidth adjustment can be realized by combining the DBA mechanism; the QoS implementation mechanism is flexible and convenient.
- the service adaptation apparatus can uniformly encapsulate various forms of services into the E-GEM frame of the service adaptation layer, and the multiple at the channel layer according to the same service type, the same destination address, and the priority.
- the E-GEM frames form a T-CONT frame, and according to the priority of the T-CONT type, the QoS requirements of different services can be conveniently implemented.
- the first embodiment to the seventh embodiment are descriptions of the device provided by the technical solution, and the following embodiment 8 is a description of the method provided by the technical solution.
- Step 1 Acquire service data
- the service data includes: GEM frame, and/or TDM service data, and/or Ethernet.
- the TDM service data may also be service data of fixed rate and continuous code streams such as SDH, SONET or ATM.
- Step 2 Encapsulate the obtained service data into an E-GEM frame, where the E-GEM frame includes at least a payload length indication (PLI) and a destination identifier of the service.
- PLI payload length indication
- the method may further include: encapsulating the E-GEM frame of the service data into a T-CONT frame for monitoring, scheduling, transmitting, and managing.
- the method may further include: decompressing the E-GEM frame from the T-CONT frame in the direction of the service drop, decapsulating the corresponding service data from the E-GEM frame in the falling direction of the service, and decapsulating the corresponding service data.
- the business data is sent to the corresponding terminal.
- the method can implement one or more services to be encapsulated into a unified E-GEM frame in the service adaptation layer, and conveniently form an E-GEM frame encapsulating the same type of service in the channel layer.
- the same type of T-CONT frame, and according to the priority of the T-CONT type, can easily realize the QoS requirements of different services.
- the method for obtaining service data in step 1 of the method may be different, and the steps 1 and 2 are specifically described below in combination with different services.
- step 1 further includes:
- Step A1 converting an optical signal sent by the optical network unit ONU through the ODN network into an electrical signal
- Step A2 Obtain a GTC frame from the electrical signal, decapsulate the T-CONT frame of the GPON system, and further decapsulate the GEM frame.
- the service adaptation device can obtain the service data, that is, the GEM frame, by the foregoing steps A1 and A2.
- Step A3 Encapsulate the GEM frame obtained in step A2 into an E-GEM frame.
- the bandwidth requirement report of each service port of the remote ONU carried in the T-CONT frame in the GPON system in the service adaptation device is also collected, and then provided to the DBA unit, after being calculated and judged by the DBA unit according to the bandwidth requirement report.
- the bandwidth adjustment information is used to adjust the bandwidth of the service accessed by the ONU according to the bandwidth allocation information; that is, after step A2 and before step A3, the method may further include:
- Step A4 Sending a bandwidth requirement report to the DBA unit (for example, a DBA1 unit), and receiving, by the DBA unit, the bandwidth allocation information that is calculated and determined according to the bandwidth requirement report, and the service that is accessed by the ONU according to the bandwidth allocation information.
- Bandwidth adjustment of course, if the total bandwidth requirement of the services in each ONU exceeds the bandwidth allowed by the DBA1 unit, the transmission bandwidth requirement is reported to the upper DBA unit (such as DBA1.5 unit), and the upper DBA is received.
- the unit reports the bandwidth allocation information delivered according to the bandwidth requirement, and performs bandwidth adjustment on the service accessed by the ONU according to the bandwidth allocation information. If the bandwidth allocated by the upper-level DBA unit still cannot meet the bandwidth requirement of the service in each ONU.
- the high-priority service is received and sent to suppress the transmission of the low-priority service, that is, the high-priority service preempts the low-priority service.
- the step of adding the step A4 enables the service adaptation device to monitor the bandwidth usage of the current service data, and also facilitates the device to dynamically adjust the bandwidth occupied by the service data to meet the QoS requirements of various services.
- a service adaptation method provided in this embodiment may specifically include:
- Step B1 Demodulating and decoding the obtained TDM service signal
- Step B2 recover the clock and data of the decoded TDM service signal, and obtain the TDM service data.
- the TDM service data is finally obtained, and it is necessary to The solution is that the TDM service data is a fixed rate and a continuous stream.
- Step B3 Encapsulate the TDM service data into an E-GEM frame.
- the method can encapsulate the TDM service data into an E-GEM frame, meet the high requirements of the TDM service for delay, and implement clock-sensitive service access.
- the method may further include:
- Step B4 Convert TDM service data into GEM frames
- step B3 specifically includes: encapsulating the GEM frame converted into step B4 into an E-GEM frame; thereafter, the E-GEM frame may also be encapsulated into a T-CONT frame for monitoring, scheduling, and management.
- the method may further include:
- the DBA unit in the network obtains the bandwidth information occupied by the TDM service data, which facilitates the configuration of the bandwidth of the TDM service by the DBA unit in the network, and satisfies the QoS requirement of the TMD service.
- a service adaptation method provided in this embodiment may specifically include:
- Step C1 Obtain Ethernet service data.
- Step C2 Encapsulating the Ethernet service data into an E-GEM frame.
- the method may further include:
- step C3 By adding step C3 to improve bandwidth utilization, the bandwidth after local switching and convergence is continued to reduce the bandwidth fluctuation between other nodes in the network.
- step C4 it is to utilize the existing technology for adapting Ethernet service data to GEM frames in the GPON system.
- the GEM frame is further encapsulated into an E-GEM frame, which is a unified processing module regardless of the specific service type. For specific implementation, refer to the description in the second embodiment.
- step C3 before C4, the method may further include step C5;
- Step C5 Monitor the bandwidth of the data service and perform smoothing processing.
- the DBA unit in the upper level for example, the DBA1.5 unit reports the bandwidth requirement report, and receives the bandwidth allocation issued by the upper-level DBA unit according to the calculation and judgment of all the bandwidth requirements. information. If the allocated bandwidth does not meet the requirements, the traffic buffering and back-pressure mechanism will ensure that the high-priority services are received and sent, and the low-priority services are suppressed. That is, the high-priority services preempt the low-priority services.
- the traffic buffering and back-pressure mechanism will ensure that the high-priority services are received and sent, and the low-priority services are suppressed. That is, the high-priority services preempt the low-priority services.
- the GEM frame, the TDM service data, or the Ethernet service data is taken as an example.
- the obtaining the service data may further include: acquiring the SDH service data/SONET service data/ATM.
- the encapsulating the obtained service data into an E-GEM frame may further include: encapsulating the obtained SDH service data/SONET service data/ATM service data into an E-GEM frame, and implementing the same
- the embodiments provided by the invention are similar, and are not described herein again.
- the device that is specifically implemented may be any or any combination of devices that implement the schemes of GEM frames, TDM service data, or Ethernet service data.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Time-Division Multiplex Systems (AREA)
Description
一种业务适配的方法和业务适配装置
本申请要求于 2009 年 2 月 25 日提交中国专利局、 申请号为 200910006855.4、 发明名称为 "一种业务适配的方法和业务适配装置" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 具体涉及一种业务适配的方法和业务适配装 置。
背景技术
随着网络通信技术的发展,现有的网络可以承载多种业务,如语音、视频、 网络游戏、 网络浏览等。 目前城域网络中实现多种业务承载的技术有多种, 包 括: 基于同步数字体系 (SDH, Synchronous Digital Hierarchy )体制的技术、 以太网技术等。
其中, 当使用 SDH体制中的设备来承载以太网 (ETH, Ethernet )等数据 业务时, 由于以太网等数据业务的速率与 SDH体制的净负荷不匹配(如, 以 太网业务的速率包括: 10Mbit/s、 100Mbit/s和 1000Mbit/s等; SDH体制的净 负荷包括 2Mbit/s、 34Mbit/s和 140Mbit/s等), 导致 SDH体制中带宽的利用率 低。 为了解决这个问题, 在 SDH 体制中将多个虚容器 ( VC , Virtual Concatenation )级联起来, 形成一个虚拟级联组(VCG, Virtual Concatenation Group ), 实现宽带业务传输。 但是该技术实现起来复杂, 无法实现动态带宽调 整。
以太网技术凭借其开放的标准、 高性能、 低成本等优势, 在多业务承载的 实现上发展迅速。但是以太网技术因其固有的存储转发机制,存在业务时延抖 动较大的问题, 服务质量(QoS, Quality of Service )难以保证。 对于时分复用 ( TDM, Time Division Multiplex ) 业务, 通过电路仿真 ( CES )技术来实现。 但由于以太网体制不支持时钟性能的透传, 时钟传递质量没有保障,难以支持 对时钟敏感的业务接入。
在对现有技术的研究和实践过程中,本发明的发明人发现: 现有的实现多 种业务承载的技术存在实现技术复杂、不支持动态带宽调整功能、 QoS性能低 等缺点。 又因为近年来,很多大的电信营运商项目都选择了基于吉比特无源光
网络( GPON , Gigabit-Passive Optical Network )作为未来大宽带光纤接入的解 决方案,对城域网设备提出了更高的要求, 以支持未来光纤接入(FTTx, Fiber To The Building/Cabinet/Curb/Home, 光纤到大楼、 路边机拒、 家庭等多种形式 的接入) 的发展, 而现有技术中还不能实现。
发明内容
本发明实施例提供一种业务适配的方法和业务适配装置, 实现了相对简 单、 且可以保证 QoS要求的多种业务接入和承载的技术。
本发明实施例提供了一种业务适配装置, 包括:
业务接入单元, 用于获取业务数据, 所述业务数据包括: 吉比特无源光网 络净荷数据的封装形式( GEM, GPON Encapsulation Method, GPON封装形式) 帧、 TDM业务数据、 SDH业务数据 /同步光网络( SONET, Synchronous Optical Networking )业务数据 /异步传输模式(ATM, Asynchronous Transfer Mode )业 务数据, 以及以太网业务数据。
增强型吉比特无源光网络封装形式 ( E-GEM , Enhanced GPON Encapsulation Method )适配单元, 用于将所述业务接入单元获取到的业务数据 封装为统一形式的 E-GEM帧, 所述 E-GEM帧至少包括业务的目的标识和净荷 长度指示(PLI, Payload Length Identifier )0
本发明实施例还提供了一种业务适配的方法, 包括:
获取业务数据, 所述业务数据包括: GEM帧、 TDM业务数据、 SDH业务 数据 / SONET业务数据 /ATM业务数据, 以及以太网业务数据。
将所述获取的业务数据封装为统一形式的 E-GEM帧。
本发明实施例的业务适配装置,通过在业务适配层将不同类型的业务映射 到统一形式的增强型吉比特无源光网络封装 E-GEM帧中, 从而可以简单、 方 便地实现多种业务统一形式的适配,便于网络上层对各种业务数据的统一管理 和传输。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付
出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1是一种多业务传输的网络架构简图;
图 2是对应图 1所示的技术架构简图;
图 3是本发明实施例一提供的一种业务适配装置的逻辑构成简图; 图 4是实施例一提供的业务适配装置中形成的 E-GEM帧格式;
图 5是实施例一提供的业务适配装置中形成的通道层数据帧 ( T-CONT, Transmission Container )格式;
图 6是本发明实施例二提供的一种业务适配装置的逻辑构成简图; 图 7是本发明实施例二中 GPON体制的 GEM帧映射到 E-GEM帧的示意图; 图 9是本发明实施例三提供的一种业务适配装置的逻辑构成简图; 图 10是本发明实施例三中 TDM业务映射到 E-GEM帧的示意图;
图 11本发明实施例五提供的一种业务适配装置的逻辑构成简图; 图 12是本发明实施例三中以太网业务数据映射到 E-GEM帧的示意图; 图 13是本发明实施例七提供的一种多业务适配装置的逻辑构成简图; 图 14是本发明实施例八提供的一种业务适配的方法的流程简图; 图 14a是本发明实施例八中对于 GPON体制中业务适配的方法流程简图; 图 14b是本发明实施例八中对于 TDM业务数据的业务适配的方法流程简 图;
图 14c是本发明实施例八中对于以太网业务的业务适配的方法流程简图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为了便于理解本发明实施例, 首先,对本发明实施例应用的场景做必要的 说明。 参见图 1所示一种多业务传输的网络, 环上的网络节点分为 S节点和 N节 点两种。 其中, N节点是普通的业务接入点, S节点除了具备 N节点的功能夕卜, 还是上层网络与该环结构的网络对接的节点。本发明实施例提供的一种业务适
配装置就包括在 N节点和 S节点中, 使得该网络可以承载多种业务类型。 其中, 该网络^载的多种业务类型可以进一步区分类别, 包括以下三种:
一是固定带宽 (FB, Fixed Bandwidth )类业务, 主要用于承载带宽和时 延严格保证的业务,如 TDM业务、 SDH业务 /同步光网络( SONET, Synchronous Optical Networking )业务 /异步传输模式 ( ATM, Asynchronous Transfer Mode ) 业务、 或专线业务等; 其中, SDH业务数据、 SONET业务数据和 ATM业务数 据具备和 TDM业务相同的特征, 都是固定速率、 连续码流的业务, 所以对这 类业务的处理和 TDM业务类似。 为了描述方便, 在本发明实施例中, 把 SDH 业务数据、 SONET业务数据和 ATM业务数据也当作 TDM业务数据来处理。
二是带宽保证业务(AB, Assured Bandwidth )类业务, 如点播类业务或 专线业务等;
三是尽力保证(BE, Best Effort )类业务, 如网络浏览类普通上网业务等。 对于 AB类和 BE类业务, 该网络相当于一种汇聚网络, 汇聚节点是 S节点; 对于 FB类业务, 该网络相当于一种对等交换网络, 可以从任意一个节点接入 或下落 TDM业务、 SDH/ SONET/ ATM业务或专线等业务。
作为一个例子, 图 1中通过 Nl、 N5节点对接的是接入层无源光网络(PON, Passive Optical Network ) , 具体可以是一个 GPON体制的网络, 终端设备光网 络单元 ( ONU, Optical Network Unit )通过光分布网( ODN, Optical Distribution Network )将多种业务数据, 比如局域网 (LAN, Local Area Network )或数字 用户线 甚入复用器( DSLAM, Digital Subscriber Line Access Multiplexer)等 业务数据传输到 Nl和 N5节点; 节点 N2、 N3和 N4对接的是直接上下的 TDM业 务和以太网 (ETH )等数据业务, S1和 S2互为备份, 对接上层业务网络。 每个 节点都可以支持多种业务传输, 且保证业务的 QoS要求。
图 2是对应的技术架构, 包括: 业务适配层、 通道层和物理层。 业务适配 层将接收到的不同类型的业务封装到统一形式的 E-GEM帧中, 在 E-GEM帧中 包含对每一条业务在网络中的唯一标识。 图 2中所示, 从业务侧传送到节点的 业务可以主要包括三种:
一是通过 GPON接口传输到节点的业务, 这些业务封装在 GEM帧中, 在这 里 GPON的 GEM帧被看作是客户信号之一, 方便和 GPON平滑对接, 业务不需
要落地;
二是直接传输到节点的 TDM业务;
三是直接传输到节点的以太网等数据业务。
在业务适配层,节点将下层网络发送来的不同类型的数据业务封装到统一 形式的 E-GEM帧; 对于上层网络发送来的数据帧故 E-GEM帧的解封装处理。
在通道层, 根据业务类型、 目的地址和优先级等因素, 把多个 E-GEM帧 封装为不同类型的通道层数据帧 ( T-CONT, Transmission Container );
在物理层, 将所有的 T-CONT帧封装为物理层数据帧, 然后将物理层数据 帧发送给上层网络。
以上是对上传方向实现多业务传送的说明,对于下落方向, 与以上的说明 的过程相反, 此处不再赘述。 下面结合具体的实施例对本发明实施例提供的一 种业务适配装作说明。
实施例一
本发明实施例提供一种业务适配装置, 参见图 3所示, 包括: 业务接入单 元 10和 E-GEM适配单元 21 , 其中, 业务接入单元 10中具有一级动态带宽分配 ( DBA, Dynamic Bandwidth Allocation )单元, 即 DBA1单元(在本发明实施 例中, 一级动态带宽分配单元称为 DBA1单元, 1.5级动态带宽分配单元则称为 DBA1.5单元, 依次类推), 该 DBA1单元用于收集该业务适配装置内各业务端 口的带宽请求, 在允许的带宽范围内, 根据业务的类型、优先级和服务等级等 条件进行计算和判断后,根据计算和判断的结果分配各业务的带宽, 并下发到 各业务端口。 如果收集的各端口业务的带宽请求总和超出了 DBA1单元所允许 的带宽范围,该 DBA1还将会把带宽请求发送到上一级 DBA单元, 比如 DBA1.5 单元, 由上一级 DBA单元计算、 判断后下发所允许的带宽。
所述业务接入单元 10, 用于获取业务数据, 其中, 该业务数据可以是: GEM帧、 和 /或 TDM业务数据、 和 /或以太网业务数据等。 这里所述的 TDM业 务数据还可以是 SDH、 SONET或 ATM等固定速率和连续码流的业务数据。
所述 E-GEM适配单元 21 , 用于将所述业务接入单元 10获取到的业务数据 封装为 E-GEM帧, 所述 E-GEM帧包括业务的目的标识和净荷长度指示( PLI )。
优选的, 该业务适配装置还可以包括: T-CONT成帧单元 31和 T-CONT解
帧单元 32。
其中, T-CONT成帧单元 31 ,用于将业务数据的 E-GEM帧封装成为 T-CONT 帧以进行监控、 调度、 传送和管理;
以上该业务适配装置实现了对上传方向业务数据进行业务适配和承载 ,对 于下落数据的处理, 为了满足该业务适配装置对下落方向的数据的处理, 该业 务适配装置还可以包括:
T-CONT解帧单元 32, 用于在业务下落方向, 从 T-CONT帧中解出 E-GEM 帧;
E-GEM解适配单元 22,用于将 T-CONT解帧单元 32解出的 E-GEM帧解封装 为对应的业务数据; 则业务接入单元 10还用于将 E-GEM解适配单元 22解封装 得到的对应的业务数据发送到该对应的终端。
为了便于理解, 参见图 4是本发明实施例中业务适配层 E-GEM帧格式: 该 E-GEM帧格式包括帧头部、 地址标识和净荷数据三部分。 帧头部包括 净荷长度、 业务标识(Port-ID, Port- IDentity ), 帧类型、 头校验四个字段; 地 址标识分为目的标识和源标识。 下面对各部分进行详细说明:
( 1 ) 帧头部: 包括净荷长度、 业务标识、 帧类型和头校验这四个字段, 为了方便确定帧的起始位置, 可以使帧头部中各字段的长度固定, 比如固定为 5字节 (byte ) 的长度。 其中, 各字段的含义如下:
净荷长度是指净荷数据的长度, 单位为 byte;
业务标识是对网络节点中业务的标识, 比如可以对应到具体的业务类型、 物理端口等;
帧类型是对于某些数据长度超长的数据包, 需要多个帧分片封装承载时, 用来指示头帧、 中间帧或者尾帧;
头校验是对帧头部各字段的数据进行循环冗余校验。
( 2 )地址标识: 包括目的标识和源标识 , 所述目的标识表示业务在网络 中的下落点, 所述源标识表示业务在网络中的起始点。该地址标识字段的长度 也可以是固定的, 比如目的标识和源标识都固定为 2byte。
一种简单的标识方法可以釆用网络节点标识和所述业务标识一起,在本网 络内唯一标识一条业务。
除此之外, 为了适应更多数量的业务和更大范围的应用, 除了所述网络节 点标识外,还可以在上述帧头部的业务标识的基础上,在所述地址标识中再扩 展增加一级业务标识 ,使所述网络节点标识和在地址标识中扩展的业务标识与 所述帧头部中的业务标识一起, 在本网络内唯一标识一条业务。
也就是说,在网络中对每一条业务有唯一的标识, 以方便网管或主机对业 务配置、 跟踪和管理。
( 3 ) 净荷数据: 该字段的长度可以变化, 取决于帧头部中的净荷长度的 取值范围。
当净荷长度为 0时, 表明这是一个空闲帧 (IDLE帧)。 对于空闲帧, 可以 不设置地址标识段, 以保证空闲帧有最小的长度, 这样可以有更大的灵活性, 来填充有效帧之间的空时隙。
对于大带宽的业务,如果净荷长度的最大值都不能满足时, 可以分片到多 个帧中来组装, 这由帧头部中的帧类型来指示。
由上述 E-GEM帧格式可以看出,与 GPON体制中的 GEM帧相比,本发明实 施例的 E-GEM帧格式中增加了业务的目的标识和源标识, 而且帧头部的业务 标识也不像 GPON体制中仅在一个 GPON系统内的光线路终端 ( OLT , Optical Line Terminals )和 ONU之间存在。 本发明实施例的 E-GEM帧格式中的业务标 识, 已经拓展到更大的组网范围, 如可以在网络中任何节点之间存在, 它和目 的标识、 源标识一起, 给出一条业务在整个网络中唯一的标识, 从而可以方便 在整个网络上调度业务, 突破了传统的 GPON体制中 GEM帧仅用于接入层、 点 到多点结构的限制。
在实际应用中, 可以将 TDM业务、 SDH/SONET/ATM业务, 以及以太网业 务, 适配到 E-GEM帧中。 所述以太网业务可经过二层交换后送到业务适配层, 映射为 E-GEM帧。 不同的业务类型, 映射到统一形式的 E-GEM帧中。 对此后 面将会举例进行说明。
参照图 5 , 是本发明实施例中通道层 T-CONT帧格式:
该 T-CONT帧格式包括帧头部、 通道开销和净荷数据三部分。 下面对各部 分进行伴细说明:
( 1 ) 帧头部: 包括净荷长度、 其它扩展字段和头校验这三个字段。 为了
方便确定帧的起始位置, 可以设定帧头部中各字段的长度固定。 其中, 各字段 的含义如下:
净荷长度是指净荷数据的长度, 单位为 byte;
扩展字段可以选择比较重要的信息, 加入头部的校验, 如通道标识等; 头校验是对帧头部各字段的数据进行循环冗余校验,这种校验一方面可以 通过对少数几个字节进行校验来捕获和同步帧头,另一方面还可以对一些比较 重要的信息, 比如净荷长度、 通道标识等, 进行校验和纠错, 从而提高了业务 传输的可靠性。
( 2 )通道开销: 包括通道标识、 数据校验和监控字段。 其中:
通道标识是对网络中所有节点产生的 T-CONT帧赋予的一个唯一的序列 号, 该序列号由主机统一分配, 以方便后续传送过程中的定位、 交叉连接、 监 控和管理等。
数据校验用于检测通道层的数据传送质量, 用误码率来表示,根据预先设 定的误码率的阈值, 可以判断信号劣化或信号失效。 比如, 可以釆用 BIP ( Bit Interleaved Parity, 位交叉奇偶)校验方式, 对 T-CONT帧进行 BIP校验, 误码 率则用误码块比率来表示, 以方便监控由相同标识的 T-CONT帧构成的数据传 输通道中数据的传输质量和性能。
监控字段可以用来传递该通道内产生的告警和性能,以及带宽请求上报或 其它信息,从而可以实现针对该通道端到端的告警和性能监控。该监控字段可 以包含远端差错指示 (REI, Remote error indication ), 远端缺陷指示 (RDI, Remote Defect Indication )和动态宽带报告( DBR, Dynamic Bandwidth Report )。
( 3 ) 净荷数据: T-CONT通道层的数据区用来承载 E-GEM帧, 由多个 E-GEM帧构成。 数据区的长度可以变化, 取决于 T-CONT帧头部中的净荷长度 的取值范围, 要求净荷长度大于或等于承载的多个 E-GEM帧的长度总和。
当净荷长度为 0时,表明这是一个空闲帧(IDLE帧),没有承载任何 E-GEM 帧。 对于空闲帧, 可以不设置通道开销字段, 以保证空闲帧有最小的长度, 这 样可以有更大的灵活性, 来填充有效帧之间的空时隙。
当净荷长度大于承载的多个 E-GEM帧的长度总和时, 可以使用空闲 byte 来填充。
式, 还可以有其他格式。 比如, 可以将比较重要的通道标识放入帧头部中, 如 放入扩展字段中, 这样, 通道标识也可以参与帧头部的头校验, 甚至检错和纠 错。 在这种方式下, 通道开销将包括数据校验和监控字段。
除此之外, 为了方便动态带宽的调整,在通道开销中还可以包括动态带宽 请求报告。在基于动态带宽调整的网络中, 首先由各节点收集本节点内所有业 务的带宽请求, 然后向动态带宽算法单元发出本节点的带宽需求报告。动态带 宽算法单元根据当前网络中线路带宽资源, 以及各节点的带宽需求、业务优先 级、服务等级等条件进行计算和判断, 最后下发带宽分配信息给每个节点。 这 里的动态带宽报告 DBR就是用于节点向动态带宽算法单元发送实时的动态带 宽需求报告。动态带宽算法单元可以位于主机,也可以是网络中主节点内的一 个算法模块。
把不同类型的业务, 封装到统一形式的 E-GEM中。 根据业务类型、 目的 地址、 以及优先级对 E-GEM帧进行分类, 将相同业务类型、 和 /或相同目的地 址、 和 /或相同优先级的 E-GEM帧封装成一个 T-CONT帧。
对不同的业务, 可以进一步分为 FB ( Fixed Bandwidth, 固定带宽)类业 务、 AB ( Assured Bandwidth, 带宽保证)类业务、 BE ( Best Effort, 尽力保证) 类业务等少数几个类型。 特别地, 根据业务类型, 把相同类型的 E-GEM帧组 成一个 T-CONT帧, 对 T-CONT帧也可以相应地区分为 FB类、 AB类和 BE类, 如 TDM业务或专线业务的 E-GEM帧, 可以组成 FB类型的 T-CONT; 点播类业务 或专线业务的 E-GEM帧, 可以组成 AB类型的 T-CONT; 而网页浏览、 下载文 件类业务的 E-GEM帧, 则可以组成 BE类型的 T-CONT。 这样, 就可以根据网络 中线路带宽资源、 各节点的请求带宽、 业务优先级等信息, 为高优先级的 T-CONT提供保证带宽并优先发送, 低优先级的 T-CONT可以在剩余带宽里再 分配, 从而实现了带宽分配的公平性和不同等级的服务质量。
通过以上对本实施例提供的一种业务适配装置的说明,和对在该装置中存 在的数据形式的说明, 可知: 与 SDH设备相比, 该适配装置可以将不同类型 的业务封装到统一形式的 E-GEM帧, 保证多业务统一形式接入, 并且层次少 (只有三层), 简化了中间处理过程, 实现简单, 节约成本。
与 GPON体制相比,借鉴了 GPON体制中 T-CONT帧的优势,增强了 OAM 功能, 可以突破在 GPON仅在接入层范围、 在上传方向使用的限制, 可以扩 展到更广泛的应用场合, 支持各种网络组网形式; 除了方便地承载 TDM业务 和以太网业务等外, 还可以和 GPON信号平滑对接, 更好地支持未来的 FTTx 发展。
利用本发明实施例提供的适配业务装置,可以实现将多种不同类型的业务 封装到统一形式的业务适配层中 E-GEM帧, 从而可以简单、 方便地实现多种 业务统一形式的接入和适配, 便于网络上层对各种业务数据的统一管理和传 输。
实施例二
本实施例提供一种业务适配装置, 参见图 6所示, 本实施例是实施例一中 的提供的一种业务适配装置的一个优选的实施例, 主要是针对图 3中业务接入 单元 10获取的业务数据为 GEM数据。
该业务适配装置包括: 第一业务接入单元 100和第一 E-GEM适配单元 201 ; 需说明的是, 为了描述方便, 在本实施例中, 将图 3中业务接入单元 10具 体称为第一业务接入单元 100; 将图 3中 T-CONT成帧单元 31具体称为第一 T-CONT成帧单元 301; 将图 3中 T-CONT解帧单元 32具体称为第一 T-CONT解帧 单元 302; 将图 3中 E-GEM适配单元 21具体称为第一 E-GEM适配单元 201 ; 将图 3中 E-GEM解适配单元 22具体称为第一 E-GEM解适配单元 202。
其中,第一业务接入单元 100,用于获取 GEM帧; 第一 E-GEM适配单元 201 用于将获取的 GEM帧封装成 E-GEM帧。
优选的, 该第一业务接入单元 100中进一步包括: 光模块 101和 GPON媒体 访问控制单元 (G-MAC单元, GPON-Media Access Control ) 102。
其中,光模块 101 ,用于将光网络单元(ONU单元) 800经光分布网(ODN, 包括光分路器和光纤等 ) 700发送来的光信号转换为电信号;
G-MAC单元 102,用于从光模块 101转换的电信号中,对 GPON的物理层数 据帧(GTC, GPON Transmission Convergence )进行解封装, 得到 T-CONT帧, 并进一步对 T-CONT帧进行解封装以获取 GEM帧。
对于第一业务接入单元 100中获取的业务数据是由 GPON体制的网络中传
送的数据, 光模块 101将 ONU单元 800发送的, 经由 ODN网络 700传送的突发模 式的光信号, 转换为电信号; G-MAC单元 102具体对 GTC帧解封装, 获取各个 T-CONT帧, 并进一步对 T-CONT解封装, 再获取 GEM帧。
该业务适配装置还可以包括第一 T-CONT成帧单元 301 , 用于将 G-MAC单 元 102获取的 GEM帧封装为 E-GEM帧后, 进一步封装为 T-CONT帧。
该第一 T-CONT成帧单元 301作为可选,本实施例提供的业务适配装置发送 给交叉单元 400的信号可以是 E-GEM帧, 也可以是 T-CONT帧。 选用前者作为 业务适配装置与交叉单元 400之间的接口, 可以方便在交叉单元 400实现 "集中 式的 E-GEM本地交换", 用于本节点内部不同支路端口之间的业务交换, 以尽 量减少对网络中各节点之间带宽的波动和影响。选用后者可以保证节点内各单 元(包括线路单元、 业务适配装置等)和交叉单元 400之间的接口一致, 有利 于交叉容量的灵活配置。
为了便于理解该实施例, 在图 6中还显示出与该业务适配装置相连的逻辑 单元包括: 交叉单元 400、 DBA1.5单元 500、 DBA2单元 600、 ODN网络 700和 ONU单元 800。
其中, DBA1.5单元 500, 该单元位于本节点内部, 用于对本节点内部多于 1个业务适配装置之间的带宽调整, 通常可以称为 "1.5级 DBA"。 1.5级 DBA单 元 500根据本节点内部各个业务适配装置上报的带宽需求、业务种类、优先级、 QoS服务等级等信息进行计算和判断, 最终把带宽分配结果发给各个业务适配 装置, 从而实现本节点内部各个业务适配装置之间带宽的共享和公平竟争。
为了便于理解以上对 DBA1.5单元的说明, 还需要理解的是, 本实施例提 供的业务适配装置中的第一业务接入单元 100中还可以包括第一 DBA1单元 103; 当然, 该第一 DBA1单元 103具体可以在 G-MAC单元 102中;
第一 DBA1单元 103 , 用于收集各 ONU中业务的带宽需求, 在第一 DBA1 单元 103允许的带宽范围内, 根据带宽需求对各 ONU中接入的业务进行带宽分 配和调整, 比如根据业务的类型、 优先级、 服务等级等信息计算和判断后, 为 各 ONU中的业务分配带宽。 当所述 ONU申请的总带宽超出第一 DBA1单元 103 所允许的带宽范围时, 第一 DBA1单元 103还将发送带宽需求报告给上一级 DBA单元(比如 DBA1.5单元),并接收所述上一级 DBA单元根据所述带宽需求
报告下发的带宽分配信息, 根据所述带宽分配信息对 ONU接入的业务进行带 宽调整。 需说明的是, 如果上一级 DBA单元分配给第一 DBA1单元的带宽仍然 不能满足各 ONU中业务的带宽请求总和, 则保证高优先级业务接收和发送, 抑制低优先级业务的发送, 即高优先级业务抢占低优先级业务。
该第一 DBA1单元 103可以是 GPON体制的 DBA模块, 这里也可以称为 "1 级 DBA" , 用于与该业务适配装置相连的所有 ONU中各业务端口之间的带宽调
DBA2单元(也称为二级 DBA单元) 600是一个独立的带宽调整算法模块, 可以位于网络主机, 也可以位于图 1中的主节点 (S节点) 内, 其作为 DBA1.5 单元的上一级 DBA单元, 用于根据 DBA1.5单元发送的带宽需求报告, 对网络 各个节点之间进行带宽调整。
该业务适配装置可以对业务的传输进行处理, 实现与 GPON体制的网络对 接。
对于下落方向传输的数据, 业务适配装置中还可以包括第一 E-GEM解适 配单元 202;
所述第一 E-GEM解适配单元 202,用于将从通道层获取的 E-GEM帧解封装 成 GEM帧;
则第一业务接入单元 100还用于在下落方向, 将 E-GEM帧解封装后获取的 GEM帧做与上传方向相反的处理, 具体可以是:
G-MAC单元 102中还用于将下落方向的 E-GEM帧解封装后获取的 GEM帧 封装为 GPON体制的 T-CONT数据帧, 并进一步封装为 GTC帧;
光模块 101还用于将 GTC帧从电信号转换为光信号, 经 ODN网络发送给 本实施例提供的装置中当然还可以包括: 第一 T-CONT解帧单元 302;
所述第一 T-CONT解帧单元 302, 用于在下落方向将获取的 T-CONT帧解封 装, 以获取下落方向的 E-GEM帧。
为了更好的理解该业务适配装置中各种数据帧的转换过程, 请参见图 7 和图 8, 其中, 图 7示出了将 GPON体制的 GEM帧映射到本实施例 E-GEM 帧的示意图:
从 GEM帧到 E-GEM的映射 , 由于原来 GEM帧中的业务标识( Port-ID ) 只存在 GPON支路 OLT和 ONU之间 ,而 E-GEM帧增加了业务的源和目的标 识后, 应用到了更大的网络范围, 业务标识 (Port-ID ) 将和支路端口标识 ( TI-ID )、 网络节点标识(Node-ID )—起, 标识网络中更大范围的业务, 因 此 Port-ID需要重新赋值, 相应的 HEC校验也随之需要重新计算, 其它的 PLI 和 PTI的值、 以及净荷数据, 都可以直接复制到 E-GEM帧相应的域中。
另外, 需说明的是, 图 7中还给出了 DN-ID ( Destination Node IDentity ) 和 SN-ID ( Source Node IDentity ),其中, DN-ID分指的是目的节点标识, SN-ID 指的是源节点标识。
图 8所示为将 GPON体制改进后实现的 E-GEM帧结构及 T-CONT帧结构:
( 1 )业务适配层
A、 帧头部的定义可以完全借用现有的 GEM帧头部, 共 5byte, 对应于 E-GEM帧头部的各字段含义如下:
PLI (净荷长度指示), 12位(bit ), 用于指示净荷数据的长度, 单位为字 节(byte ), 允许净荷数据最多 4095个 byte, 如果用户数据大于最大长度, 则必 须截成小于 4095的碎片进行传输;
Port-ID (业务标识), 12bit, 可以最多提供 4096个唯一的业务标识; ΡΉ (净荷类型指示), 3bit, 用于指示净荷数据的类型以及相应的处理方 法, 详见下表 1 ;
HEC (信头差错控制), 提供 13bit的循环冗余校验。
PTI 含义
000 用户数据, 没有拥塞, 非尾帧
001 用户数据, 没有拥塞, 尾帧
010 用户数据, 有拥塞, 非尾帧
011 用户数据, 有拥塞, 尾帧
100 非用户数据, OAM数据
101 保留
110 保留
I in I 保留 I
B、 在 GPON体制的 GEM帧的基础之上, 增加了目的标识和源标识, 可以 考虑安排 16bit, 分成两个标识域: Node-ID (网络节点标识) 6bit、 TI-ID (支 路端口标识)10bit。前者表明网络中最多 64个节点,后者可以和帧头部的 Port-ID 一起, 标识更大范围的业务类型。 这样, Node-ID + TI-ID + Port-ID三个标识合 在一起, 可以分层次地唯一指定网络中的每一条业务。 比如, TI-ID可以对应 为网络节点设备内的支路板或端口:
对于 GPON支路, 有多个 ODN接口, 每个 ODN接口可以分配一个 TI-ID, 属于同一个 0DN网络的 0NU上, 不同的业务继续分配不同的 Port-ID;
对于 TDM业务, 如 E1业务, 可以先按照不同单板分配 TI-ID, 再给板内的 多个 E1接口分配不同的 Port-ID, 也可以直接为节点内部所有的 El接口分配 TI-ID;
对于以太网业务, TI-ID可以是物理端口, Port-ID对应为虚拟局域网 ( VLAN , Virtual Local Area Network )标识等。
总之, 可以釆用多种方法来标识业务。
C、 对于净荷数据区, 长度由 PLI指定, 在 0 ~ 4095之间可变。
( 2 )通道适配层
A、 帧头部除了 T-CONT帧的净荷数据长度 T-PLI1之外, 还可以考虑其它 的扩展标识, 如图中的 T-PLI2 (即 T-CONT PLI )。 考虑到一个 T-CONT通道传 送数据的带宽允许达到 2.5G、 10G甚至更大速率范围, T-CONT帧长(包含净 荷数据区)的长度将达到 38880byte、 155520byte或更大数量, 可以安排 T-PLI1 的指示范围为 20bit。 T-HEC校验可以借鉴现有的 13bit长循环冗余校验。
B、 在通道开销区, 通道标识(Alloc-ID, Alloc-IDentity )可以考虑安排 2byte, 共 16bit, 分为两个标识域: 网络节点标识(Node-ID, Node -IDentity ) 6bit、 通道序列号 ( Seq-ID, Seq -IDentity ) lObit, 这意味着在一个节点内最多 可以组 1024个 T-CONT帧。 考虑到通道标识是一个艮重要的指示, 也可以安排 到帧头部区域, 比如取代扩展标识 T-PLI2, 参与帧头部的校验和纠错。 数据校 验可以釆用简单的 BIP-8校验。 监控字节 Ml包含有 4bit远端差错指示 REI、 lbit 远端缺陷指示 RDI、 2bit带宽请求 DBR, 不同数据的 DBR的含义详见下表 2。
DBR 数据类型
00 正常数据
01 带宽请求(8Bytes )
10 保留
11 保留
C、 对于净荷数据区, 长度由 T-PLI1指定, 包含有多个 E-GEM帧。
在 GPON体制中, T-CONT帧仅在接入层范围, 在 ONU和 OLT之间的上行 方向、 由多点到一点发送数据适用。 在 GPON体制中提出 T-CONT的概念, 主 要是为了不同业务类型 QoS要求的实现, 它的管理开销除了上行方向信令通道 ( PLOAMu, Physical Layer OAM upstream, 上行方向物理层操作、 管理和维 护)、 上行方向功率电平序歹 'J ( PLSu, Physical Layer Sequence upstream )和上 行方向动态带宽报告 ( DBRu, Dynamic Bandwidth Report upstream )之外, 没 有定义其它管理开销, 如数据校验、 性能和告警监控等, 所以它的操作管理和 维护 (OAM, Operation, Administration, Management ) 能力较弱, 难以实现 其它的功能, 如交叉连接、 监控和保护等, 不能扩展到更大范围的网络应用。
在本发明实施例中, 通道层 T-CONT帧保留了动态带宽报告功能, 可以在 承载的业务类型带宽发生变化时, 发起动态带宽分配请求。 在 OAM方面, 增 加了帧头定位功能, 以适应更广泛的应用场合; 增加了数据校验功能, 以及性 能和告警监控, 可以实现通道层端到端的监控和管理, 并且有条件实现通道层 分配的时隙内, 可以起到一个真正独立的传送通道的作用。 此外, 相比 SDH 体制中的刚性传送通道 VC ( Virtual Container, 虚容器), VC容器是固定长度 带宽利用率 4艮高; 而且,还可以结合面向全网的 DBA机制, 实现动态带宽调整 也很方便, 特别适合于未来 IPTV、 BOD等业务。
通过以上对本实施例的说明, 釆用该业务适配装置通过将 GEM帧封装为 E-GEM帧,可以突破在 GPON体制中仅在接入层范围、在上行方向使用的限制, 可以扩展到更广泛的应用场合,支持各种网络组网形式;除了方便地承载 TDM
业务和以太网业务等业务外, 还可以和 GPON信号自然对接, 更好地支持未来 的 FTTx发展。
实施例三
本实施例提供一种业务适配装置, 参见图 9所示, 本实施例是实施例一中 的提供的一种业务适配装置的一个优选的实施例, 主要是针对图 3中业务接入 单元 10获取的业务数据为 TDM数据。
该业务适配装置包括: 第二业务接入单元 A10和第二 E-GEM适配单元 A201。
需说明的是, 为了描述方便, 在本实施例中, 将图 3中业务接入单元 10具 体称为第二业务接入单元 A10; 将图 3中 T-CONT成帧单元 31具体称为第二 T-CONT成帧单元 A301; 将图 3中 T-CONT解帧单元 32具体称为第二 T-CONT解 帧单元 A302; 将图 3中 E-GEM适配单元 21具体称为第二 E-GEM适配单元 A201 ; 将图 3中 E-GEM解适配单元 22具体称为第二 E-GEM解适配单元 A202。
该业务适配装置还可以包括第二 E-GEM解适配单元 A202、 第二 T-CONT 成帧单元 A301或者第二 T-CONT解帧单元 A302的其中任意一项或者几项。 其 中, 第二 T-CONT成帧单元 A301和第二 T-CONT解帧单元 A302的说明, 可以分 别参考实施例二中第一 T-CONT成帧单元 301、 第一 T-CONT解帧单元 302的说 明, 在此不再赘述。
其中, 第二业务接入单元 A10进一步包括: 线路接口单元 (LIU, Line Interface Unit ) A101 , 时钟和数据恢复( CDR, Clock and Data Recovery )单 元 A102。
其中, 线路接口单元 A101 , 用于对获取的 TDM业务信号进行解调和解码; 即将接收的线路, 比如电缆中经过编码和调制的 TDM业务信号, 进行解调和 解码;
CDR单元 A102, 用于恢复线路接口单元 A101解码后的 TDM业务信号的时 钟和数据, 即获取 TDM业务数据。
优选地,第二业务接入单元 A10中还可以包括:成帧(Framer )单元 A103; 所述成帧( Framer )单元 A103, 用于当需要对 TDM业务数据进行解帧(下 落方向)或成帧 (上传方向)处理时, 对 TDM业务数据进行监控和管理, 方
便 TDM业务信号传送路径上的故障分析和定位。
第二 E-GEM适配单元 A201 , 用于将获取的 TDM业务数据转换为 E-GEM 帧。
图 10示出了将 TDM业务映射到 E-GEM帧的示意图:
对于 TDM业务的映射, 可以根据 TDM业务本身的速率和 E-GEM帧的速率 之差, 在数据緩存每增加或减少 1个 byte时, 自适应、 在 ± lbyte范围调整一次 PLI的值即可。 以 E1业务(2.048Mbps信号) 为例, 在帧频为 8KHz时, 当 E1信 号和 E-GEM帧同步时, PLI的值固定为 32byte; 当二者之间时钟不同步, 即存 在频率差异时, PLI将在 31、 32、 33三个值中取值, 由于 PLI的值是以 byte为单 位,所以在 E1信号映射到 E-GEM帧的数据净荷区时,数据緩存必须等到每 8bit, 即凑齐 1个 byte时, PLI的值才会在 ± 1范围内调整一次。
对于第二 E-GEM解适配单元 A202 , 其工作原理和第二 E-GEM适配单元 A201相反, 在此不再赘述。
还需要说明的是, 与图 6相似,在图 9中也显示出与该业务适配装置相连的 逻辑单元包括: 交叉单元 400、 DBA1.5单元 500和 DBA2单元 600, 有关的说明 也请参考对图 6的说明。
还需要说明的是, 在 TDM业务的业务适配装置中, 没有如图 6中明确的 DBA1单元, 由于 TDM业务是连续码流、 固定速率的业务, 对延时和抖动要求 很高, 归类为 FB业务, 需要严格保证 TDM业务的带宽和时延。 所以, 当接入 任意速率的业务时, 需要把 CDR单元 A102检测出来的 TDM业务的时钟频率信 息 (即带宽要求信息), 发送给 DBA1.5单元, DBA1.5单元严格保证该业务的 带宽, 这里, CDR单元 A102用于给 DBA1.5单元发送时钟频率信息。 更简单的 办法是, 当已知接入的 TDM业务信号的速率时, 可以避开 CDR单元 A102的上 报过程, 直接由 DBA2单元直接下发、 指配该业务的上行带宽。
通过以上对本实施例提供的业务适配装置的说明, 该装置可以实现将
TDM业务数据封装成为 E-GEM帧, 满足 TDM业务对时延的高要求, 实现了对 时钟敏感的业务接入。
实施例四
本发明实施例提供了一种业务适配装置, 仍然参见图 9所示, 该装置包括
实施例三提供的装置中的所有逻辑单元。该实施例与实施例三提供的业务适配 装置相似(可参见前面实施例, 在此不再赘述), 不同之处在于, 第二业务接 入单元 A10还可以包括: 第一流量管理( TM, Traffic Management )单元 A104; 所述第一 TM单元 A104, 用于将 CDR单元 A102中获取的 TDM业务数据转 换为 GEM帧;
该第一 TM单元 A104还可以用于当下落方向时, 将 GEM帧转换为 TDM业 务数据。
此时, 所述 E-GEM适配单元(在图 9中即为第二 E-GEM适配单元 A201 ), 具体用于将所述第一 TM单元 A104转换成的 TDM业务数据的 GEM帧封装为 E-GEM帧。
其中, GEM帧转换为 E-GEM帧可以参考图 7中说明, 其中, 将 TDM业务数 据适配到 GEM帧可以参考现有 GPON中的技术, 此处不赘述。
优选的, 第一 TM单元 A104还可以用于控制业务的流量; 具体为监测业务 带宽, 并做平滑处理, 向上一级 DBA单元上报带宽需求报告,获得上一级 DBA 单元根据上报的带宽需求报告下发的带宽分配信息;例如,上一级 DBA单元接 收到上报的带宽需求报告后,根据上报的带宽需求报告进行计算和判断后, 下 发带宽分配信息。 其中, 对于固定速率和连续码流的 TDM业务来说, 其所占 带宽即其速率。
通过以上对本实施例提供的业务适配装置的说明, 该装置可以实现将 TDM业务数据封装成为 E-GEM帧, 满足 TDM业务对带宽和时延的要求, 实现 了对时钟敏感的业务接入。
实施例五
本实施例提供一种业务适配装置, 参见图 11所示, 本实施例是实施例一中 的提供的一种业务适配装置的一个优选的实施例, 主要是针对图 3中业务接入 单元 10获取的业务数据为以太网业务数据。
该业务适配装置包括: 第三业务接入单元 B10和第三 E-GEM适配单元 B20L
需说明的是, 为了描述方便, 在本实施例中, 将图 3中业务接入单元 10具 体称为第三业务接入单元 B10; 将图 3中 T-CONT成帧单元 31具体称为第三
T-CONT成帧单元 B301; 将图 3中 T-CONT解帧单元 32具体称为第三 T-CONT解 帧单元 B302; 将图 3中 E-GEM适配单元 21具体称为第三 E-GEM适配单元 B201 ; 将图 3中 E-GEM解适配单元 22具体称为第三 E-GEM解适配单元 B202。
该业务适配装置还可以包括: 第三 E-GEM解适配单元 B202、 第三 T-CONT 成帧单元 B301或者第三 T-CONT解帧单元 B302的其中任意一项或者几项。 其 中, 第三 T-CONT成帧单元 B301和第三 T-CONT解帧单元 B302的说明, 可以分 别参考实施例二中第一 T-CONT成帧单元 301和第一 T-CONT解帧单元 302的说 明。
其中, 第三业务接入单元 B10进一步包括: 物理层(PHY, Physical Layer ) 处理单元 B101 ;
该 PHY处理单元 B101 , 用于获取以太网业务数据, 即接收从线路, 比如 电缆或光纤发来的以太网业务数据,具体可以是将线路上传输的信号进行解调 和解码, 并转换为数字信号, 从该数字信号中解析出以太网业务数据。
第三 E-GEM适配单元 B201 , 用于将 PHY处理单元 B101中获取的以太网业 务数据转换为 E-GEM帧, 将该 E-GEM帧发送给第三 T-CONT成帧单元 B301。
还需要说明的是, 以太网业务数据转换成为 E-GEM帧的转变过程可以参 见图 12所示的示意图:
以太网帧的结构与现有技术相同, 在此不再详细描述。
对于以太网业务的映射, 可以釆用丟弃以太网帧间隔和前导码的做法, 只 保证以太网帧的完整性, 从以太网帧中的长度 /类型域即可以确定以太网帧数 据的长度, 再加上以太网帧其它字段都是固定长度, 从而可以确定 PLI的值, 然后将以太网帧映射到 E-GEM帧的数据区即可。 当以太网超长帧长度大于 4095时, 可以釆用多个连续的 E-GEM帧来分片传送。
对于第三 E-GEM解适配单元 B202 , 其工作原理和第三 E-GEM适配单元 B201相反, 在此不再赘述。
优选的, 该第三业务接入单元 B10中还可以包括: 二层交换(L2S, Layer 2 Switch )单元 B 102;
L2S单元 B102, 用于对获取的以太网业务数据进行收敛、 汇聚或交换等处 理。 对于以太网业务而言, 目前有 10M/100/1G/10G四个速率, 以 1G速率为例,
在线缆上真实的速率是 1.25Gbits/s, 即每秒 1.25G个 bit, 这称之为 "线速", 以 太网业务都是以 MAC帧进行传输的, 每个 MAC帧都包括有帧头和帧尾, 在帧 头和帧尾之间一个完整的以太网帧, 称之为一个 "数据包", 而在相邻数据包 之间, 存在大量的的空隙, 该空隙为填充码, 称之为 "帧间隔", 这些填充码 都是无效数据, 会影响带宽效率, 以及浪费线缆投资和端口成本, 为了节省端 口和成本, 需要把一个设备里通过支路板上的以太网接口接进来的多路 1G端 口中的空白时隙去掉, 然后把各端口里的有效数据组成另外一个很满的 1G端 口 (或 10G端口), 从本设备的其它单板或接口发送出去, 其中, 这个很满的 端口就称之为上行端口(uplink ),而把"空白时隙去掉"则俗称为 "挤干水分", "挤干水分" 的这个过程就叫 "带宽收敛"; 而 "汇聚", 则指的是多个端口发 往相同的一个端口。 其中, 汇聚和收敛都是同时存在进行的。
还需要说明的是, 与图 6相似, 在图 11中也显示出与该业务适配装置相连 的逻辑单元包括: 交叉单元 400、 DBA1.5单元 500和 DBA2单元 600, 有关的说 明也请参考对图 6的说明。
还需要说明的是, 在本实施例中, 没有如图 6中明确的 DBA1单元(即图 6 中的第一 DBA1单元), 这里可以使用 L2S单元 B102中实现 DBA1单元, L2S单 元 B102对接收到的以太网业务数据完成本地交换后, 对剩余的业务数据进行 汇聚和带宽收敛,把最终需要往上行方向发送的带宽,作为如图 6中 DBA1单元 的带宽请求, 上报给上一级 DBA单元, 比如 DBA1.5单元, 在得到上一级 DBA 单元经过计算、 判断下发的带宽信息后, 获取所分配的带宽。 如果带宽不能满 足需求, 则对于不同的物理端口或者同一物理端口中的不同业务,还要进一步 区分不同 VLAN标识所指示的业务的类型 (如 FB类、 AB类、 BE类业务)、 优 先级和 QoS服务等级, 通过 Pause帧 (指示暂停发送的 OAM帧)或反压机制, 控制业务端口的入口流量。 可见, L2S单元中完全可以实现 DBA1的功能。
通过以上对本实施例提供的业务适配装置的说明,该装置可以实现将以太 网业务数据封装成为 E-GEM帧, 在新的网络中传送。 与 SDH承载数据业务的 方式相比, 本实施例提供的装置带宽利用率高、 调整更方便, 实现简单。
实施例六
本发明实施例提供了一种业务适配装置, 仍然参见图 11所示, 该实施例与
实施例五提供的业务适配装置相似, 不同之处在于第三业务接入单元 B10中还 可以包括: 第二 TM单元 B103;
第二 TM单元 B 103 , 用于将获取的以太网业务数据转换为 GEM帧; 所述第三 E-GEM适配单元 B201 ,具体用于将所述第二 TM单元 B103转换成 的 GEM帧封装为 E-GEM帧。
该第二 TM单元 B 103还可以用于当下落方向时 ,将 GEM帧转换为以太网业 务数据。 从以太网业务数据到 GEM帧之间的适配和解适配, 可以参考现有
GPON中的技术, 在此不再赘述。 将 GEM帧转换为 E-GEM帧可以参考图 7中的 说明。
本实施例提供的一种业务适配装置中的其他逻辑单元,与实施例五提供的 装置中的逻辑单元相同, 可以参考实施例五中的说明。
优选的, 第二 TM单元 B103, 还可以实现动态带宽调整功能, 即用于带宽 监测和平滑, 并把监测和平滑后的带宽结果发送给上一级 DBA单元, 比如 DBA1.5单元, 并接收上一级 DBA单元下发的带宽分配信息, 根据带宽分配信 息进行带宽调整。 具体可以是: 当不使用 L2S单元时, 就需要在 TM模块内设 计带宽监测平滑单元和反压控制单元, 用来实现带宽需求报告上报、接收带宽 分配信息、 流量緩存、 流量反压控制, 以保证在平均带宽的处理能力下, 把业 务发送完成。 因此,第二 TM单元 B103中还可以包括: 带宽监测平滑单元 B1031 和反压控制单元 B1032。
带宽监测平滑单元 B1031 , 用于监测数据业务带宽, 并^平滑处理后, 向 上一级 DBA单元上报带宽需求报告, 比如向 DBA1.5单元上报带宽需求报告; 反压控制单元 B1032, 用于接收上一级 DBA单元, 比如 DBA1.5单元, 根 据带宽监测平滑单元 B1031上报的带宽需求报告经过计算和判断后下发的带 宽分配信息。 在所分配的带宽不能满足需求时, 才启动反压控制。 通过当前流 量緩存和反压机制,保证高优先级业务接收和发送,抑制低优先级业务的发送, 即高优先级业务抢占低优先级业务。
通过以上对本实施例提供的业务适配装置的说明,该装置可以实现将以太 网业务封装成为 E-GEM帧, 与 SDH体制中承载数据业务的方式相比, 本实施 例提供的装置带宽利用率高、 具有带宽动态调整功能, 实现简单。
实施例七
本实施例提供一种业务适配装置, 需要说明的是, 以上实施例二至实施例 六提供的业务适配装置, 都是单一类型的业务适配装置, 在物理实现上, 实施 例二至实施例六提供的业务适配装置可以是如各个实施例中描述功能的单板, 将多个单板置入如图 1中所示的节点 N或者节点 S中。 事实上, 为了扩大每个单 板的功能,可以将实施例二至实施例六中提供的不同类型业务的接入和适配方 法, 以任意方式进行组合, 设计成为一块单板, 即获得本实施例提供的一种多 业务适配装置。
如图 13所示的为实施例二、四和六提供的三个业务适配装置组合成的多业 务适配装置。 在图 13中:
E-GEM适配单元包括: 如图 6中的第一 E-GEM适配单元 201、 图 9中的第二 E-GEM适配单元 A201和图 11中的第三 E-GEM适配单元 B201 ; 该 E-GEM适配单 元可以用于将各种业务适配到 E-GEM帧;
E-GEM解适配单元包括: 如图 6中的第一 E-GEM解适配单元、 图 9中的第 二 E-GEM解适配单元和图 11中的第三 E-GEM解适配单元; 该 E-GEM解适配单 元可以用于将下落方向的 E-GEM帧解适配成各种对应的业务数据, 即转换为 GEM帧、 TDM数据或者以太网业务数据。
其中, E-GEM适配单元与 E-GEM解适配单元在图中的附图标记都为 C10, 同理, T-CONT成帧单元和 T-CONT解帧单元的附图标记同为 C30.
如图 13中所示, 本实施例提供的一种业务适配装置的业务接入单元包括: 如图 6中所示的第一业务接入单元 10、 图 9所示第二业务接入单元 A10和图 11所 示第三业务接入单元 B10, 具体说明可以参考以上实施例二至六中的说明。
当本实施例提供的业务适配装置接收到多种业务数据时,经业务接入单元 接收的各种业务数据通过 E-GEM适配单元封装称为统一形式的 E-GEM帧, 并 可以进一步根据相同业务类型、相同目的地址、优先级等原则, 将多个 E-GEM 帧封装到 T-CONT帧。 参照实施例二至六中关于 GPON支路、 TDM业务支路和 以太网业务支路的动态带宽调整过程 ,本实施例中的多业务适配装置同样有带 宽监控、 上报、 接收带宽分配信息和业务带宽调整功能, 具体如下:
首先, 所有的业务都对应有带宽监控模块, 比如 GPON支路的第一 DBA1
单元、 TDM业务的 CDR单元、 以太网业务的 L2S单元或 TM单元等, 把带宽监 控模块得到的结果, 即带宽需求报告发给上一级 DBA单元(如 DBA1.5单元, 上报方式参见前述三种支路业务的说明), 然后由上一级 DBA单元进行计算和 判断, 针对本实施例中多业务支路单元内各种业务的类型、 优先级和 QoS服务 等级等信息来分配带宽,最后把各业务的带宽分配信息下发到各业务的带宽控 制模块(如 GPON支路的第一 DBA1单元、 数据业务的 L2S单元或 TM单元等, 对 TDM业务是直接配置), 控制各业务入口的带宽流量, FB类、 AB类和 BE类 业务依次可以高优先级抢占低优先级业务,保证该支路单元内高优先级业务优 先分配带宽和传送,低优先级业务在剩余带宽里继续分配带宽,从而实现多种 业务带宽共享、 公平竟争, 达到无阻塞传送的目的。
优选的, 如图 13所示, 本实施例提供的业务适配装置还可以包括: E-GEM 本地交换单元 C40, 根据 E-GEM帧中的目的标识和源标识, 如果目的标识和源 标识都是指向本节点端口, 则表示该业务需要在本地交换。进一步检查业务标 识,把该业务交换到目的标识指示的本节点内其它端口。对于不需要在本地交 换的 E-GEM帧, 发送给 T-CONT成帧单元。
通过该业务适配装置中的 E-GEM本地交换单元 C40处理不同业务之间的 本地交换, 剩余的业务和带宽才发送到 T-CONT成帧单元, 从而减少对网络节 点之间带宽的波动。
由上述实施例可见, 与传统 SDH体制相比, 本发明实施例的业务适配装 置可以实现各种形式的业务统一封装到业务适配层 E-GEM帧, 各种业务类型 只需通过一层 E-GEM帧适配, 然后直接到通道层 T-CONT帧, 技术简单、 层 次少, 大大简化了中间处理过程, 节省成本; 而且, 两层结构的管理开销简洁 合理, 能反映主要的告警和性能监控; 两层数据帧长度都可以按 lbyte为单位 调整, 带宽利用率高, 而且可以结合 DBA机制, 实现动态带宽调整; QoS实 现机制灵活方便。
与 GPON体制相比,借鉴了 GPON体制中 T-CONT帧的优势,增强了 OAM 功能, 可以突破在 GPON体制中仅在接入层范围、 点到多点结构、 在上行方 向使用的限制, 可以扩展到更广泛的应用场合, 支持各种网络组网形式; 除了 方便地承载 TDM业务和以太网业务外, 还可以和 GPON信号自然对接, 更好
地支持未来的 FTTx发展。
通过本发明实施例提供的业务适配装置,可以将各种形式的业务统一封装 到业务适配层 E-GEM帧, 在通道层根据相同业务类型、 相同目的地址、 优先 级等原则将多个 E-GEM帧组成一个 T-CONT帧, 并根据 T-CONT类型的优先 级, 可以很方便地实现不同业务的 QoS需求。
以上实施例一至七是对本技术方案提供的装置的说明,下面实施例八是对 本技术方案提供的方法的说明。
实施例八
本实施例提供一种业务适配的方法, 参见图 14所示, 该方法包括: 步骤 1 : 获取业务数据, 所述业务数据包括: GEM帧、 和 /或 TDM业务数 据、 和 /或以太网业务数据等。 其中, TDM业务数据还可以是 SDH、 SONET或 ATM等固定速率和连续码流的业务数据。
步骤 2: 将获取的业务数据封装为 E-GEM帧, 所述 E-GEM帧至少包括业务 的净荷长度指示( PLI )和目的标识, E-GEM帧的结构具体可参见前面实施例, 在此不再赘述。
在将获取的业务数据封装为 E-GEM帧之后, 该方法还可以包括: 将业务 数据的 E-GEM帧封装成为 T-CONT帧以进行监控、 调度、 传送和管理。
当然, 该方法还可以包括: 在业务下落方向, 从 T-CONT帧中解出 E-GEM 帧, 从业务下落方向的 E-GEM帧中解封装出对应的业务数据, 将解封装得到 的对应的业务数据发送到对应的终端。
通过以上对该方法的说明,该方法可以实现将一种或多种业务封装到业务 适配层中统一形式的 E-GEM 帧, 方便在通道层将封装有相同类型业务的 E-GEM帧组成同一个类型的 T-CONT帧, 并根据 T-CONT类型的优先级, 可 以很方便地实现不同业务的 QoS需求。
需要说明的是, 对于不同的业务数据, 该方法中步骤 1中获取业务数据的 方法会不同, 下面结合不同的业务对该步骤 1和步骤 2做具体的说明。
当该业务适配方法应用在将 GPON体制中 GEM数据的接入时,参见图 14a, 步骤 1中进一步包括:
步骤 A1 : 将光网络单元 ONU经过 ODN网络发来的光信号转换为电信号;
步骤 A2:从所述电信号中获取 GTC帧,从中解封装出 GPON体制的 T-CONT 帧, 并进一步解封装出 GEM帧; 具体可参见前面实施例, 在此不再赘述。
其中, 通过以上步骤 A1和步骤 A2使得该业务适配装置可以获取到业务 数据, 即 GEM帧。
步骤 A3: 将步骤 A2中获取的 GEM帧封装为 E-GEM帧。
优选的, 还可以收集该业务适配装置内 GPON体制中 T-CONT帧携带的 远端 ONU各业务端口的带宽需求报告, 然后提供给 DBA单元, 由 DBA单元 根据带宽需求报告经过计算和判断后下发带宽分配信息,在接收到带宽分配信 息后, 根据带宽分配信息对 ONU接入的业务进行带宽调整; 即在步骤 A2之 后和步骤 A3之前, 该方法还可以包括:
步骤 A4: 发送带宽需求报告给 DBA单元(比如 DBA1单元 ) , 接收所 述 DBA单元根据所述带宽需求报告计算和判断后下发的带宽分配信息, 根据 所述带宽分配信息对 ONU接入的业务进行带宽调整; 当然, 如果各 ONU中 业务的带宽需求总和超出 DBA1单元允许的带宽范围,则发送带宽需求报告给 上一级 DBA单元(比如 DBA1.5单元), 并接收所述上一级 DBA单元根据所 述带宽需求报告下发的带宽分配信息, 根据所述带宽分配信息对 ONU接入的 业务进行带宽调整, 如果上一级 DBA单元分配的带宽仍然不能满足各 ONU 中业务的带宽需求总和, 则保证高优先级业务接收和发送,抑制低优先级业务 的发送, 即高优先级业务抢占低优先级业务。 具体可参见前面的实施例, 在此 不再赘述。
其中, 通过增加步骤 A4使得该业务适配装置可以监测到当前的业务数据 的带宽使用情况,也方便该装置对业务数据占用带宽的动态调整, 满足各种业 务的 QoS要求。
对于 TDM业务数据, 参见图 14b, 本实施例提供的一种业务适配方法可 以具体包括:
步骤 B1 : 对获取的 TDM业务信号解调和解码;
步骤 B2: 恢复解码后的 TDM业务信号的时钟和数据, 获得所述 TDM业务 数据;
其中, 通过执行以上步骤 B1至 B2, 最终获取到 TDM业务数据, 还需要理
解的是, TDM业务数据是固定速率和连续码流。
步骤 B3: 将所述 TDM业务数据封装为 E-GEM帧。
通过以上步骤 B1至 B3的说明,该方法可以实现将 TDM业务数据封装成 为 E-GEM帧, 满足 TDM业务对时延的高要求, 实现了对时钟敏感的业务接 入。
优选的, 在步骤 B2之后, 该方法还可以包括:
步骤 B4: 将 TDM业务数据转换为 GEM帧;
因此, 步骤 B3具体包括: 将步骤 B4转换而成的 GEM帧封装为 E-GEM 帧; 此后, 还可以将 E-GEM帧封装成 T-CONT帧以进行监控、 调度和管理。
通过增加步骤 B4是为了利用 GPON体制中现有的将 TDM业务适配到
GEM帧的技术。 将 GEM帧进一步封装到 E-GEM帧, 与具体业务类型无关, 可以成为统一处理模块, 具体实现可以参考实施例二中的有关说明。
优选的, 在步骤 B2之后, 步骤 B3之前, 该方法还可以包括:
步骤 B5: 发送时钟频率信息给 DBA单元, 比如 DBA1.5单元。
通过增加步骤 B5使得网络中 DBA单元获取到 TDM业务数据所占用的带 宽信息,方便网络中 DBA单元对 TDM业务带宽的配置, 满足 TMD业务 QoS 要求。
另外, 在步骤 B2之后, 该方法还可以包括: 监测业务带宽, 并做平滑处 理, 向上一级 DBA单元, 比如 DBA1.5单元上报带宽需求报告, 获得上一级 DBA单元根据上报的带宽需求报告而下发的带宽分配信息。 对于固定速率和 连续码流的 TDM业务, 其所占带宽即其速率。 具体可参见前面实施例, 在此 不再赘述。
对于以太网业务, 参见图 14c, 本实施例提供的一种业务适配方法可以具 体包括:
步骤 C1 : 获取以太网业务数据;
步骤 C2: 将所述以太网业务数据封装为 E-GEM帧。
优选的, 该方法在步骤 C1之后, 和步骤 C2之前, 还可以包括:
步骤 C3: 对所述获取以太网业务数据进行收敛、 汇聚或交换;
步骤 C4: 将获取的以太网业务数据封装为 GEM帧;
因此, 步骤 C2具体包括: 将 GEM帧封装为 E-GEM帧。
通过增加步骤 C3是为了提高带宽利用率, 把经过本地交换和收敛后的带 宽继续后面的处理, 以减少对对网络中其它节点之间的带宽波动。通过增加步 骤 C4, 是为了利用 GPON体制中现有的将以太网业务数据适配到 GEM帧的 技术。 将 GEM帧进一步封装到 E-GEM帧, 与具体业务类型无关, 可以成为 统一处理模块, 具体实现可以参考实施例二中的有关说明。
通过步骤 C1至 C4的说明, 该方法可以实现将以太网业务封装成为 E-GEM 帧, 与 SDH体制中实现数据业务的承载相比, 该方法更灵活, 效率更高, 实现 简单。
另外, 在步骤 C3之后, C4之前, 该方法还可以包括步骤 C5;
步骤 C5: 监测数据业务带宽, 并做平滑处理, 向上一级 DBA单元, 比如 DBA1.5单元上报带宽需求报告, 接收上一级 DBA单元根据所有带宽需求报告 经过计算和判断后下发的带宽分配信息。如果所分配的带宽不能满足需求, 则 将通过流量緩存和反压机制,保证高优先级业务接收和发送,抑制低优先级业 务的发送, 即高优先级业务抢占低优先级业务。 具体可参见前面的实施例, 在 此不再赘述。
需说明的是, 在本发明实施例中, 均以获取 GEM帧、 TDM业务数据或 以太网业务数据为例进行说明, 其中, 获取业务数据还可以包括: 获取 SDH 业务数据 / SONET业务数据 /ATM业务数据; 相应地, 所述将获取的业务数据 封装为 E-GEM帧还可以包括: 将获取到的 SDH业务数据 / SONET业务数据 / ATM业务数据封装为 E-GEM帧, 其具体实施与本发明所提供的实施例类似, 在此不再赘述, 其具体实现的设备, 可以是实现 GEM帧、 TDM业务数据或 以太网业务数据三者的方案的设备的任一或任意组合。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读 存储介质中, 存储介质可以包括: ROM、 RAM, 磁盘或光盘等。
以上对本发明实施例所提供的一种业务适配装置和一种业务适配的方法 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,
对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。
Claims
1、 一种业务适配装置, 其特征在于, 包括:
业务接入单元, 用于获取业务数据, 所述业务数据包括: 吉比特无源光网 络净荷数据的封装形式 GEM帧、和 /或时分复用 TDM业务数据、和 /或以太网业 务数据;
增强型吉比特无源光网络封装形式 E-GEM适配单元, 用于将所述业务接 入单元获取到的业务数据封装为 E-GEM帧。
2、 根据权利要求 1所述的业务适配装置, 其特征在于, 所述装置还包括: 通道层数据帧 T-CONT成帧单元, 用于将业务数据的 E-GEM帧封装成为 T-CONT帧以进行监控、 调度、 传送和管理。
3、 根据权利要求 2所述的业务适配装置, 其特征在于, 所述装置还包括 T-CONT解帧单元和 E-GEM解适配单元;
所述 T-CONT解帧单元,用于在业务下落方向,从 T-CONT帧中解出 E-GEM 帧;
所述 E-GEM解适配单元,用于将 T-CONT解帧单元解出的 E-GEM帧解封装 为对应的业务数据;
所述业务接入单元, 还用于将 E-GEM解适配单元解封装得到的对应的业 务数据发送到对应的终端。
4、 根据权利要求 1至 3中任一项所述的业务适配装置, 其特征在于, 所述 的业务接入单元包括光模块和吉比特无源光网络媒体访问控制 G-MAC单元; 所述光模块,用于将光网络单元经过光分布网发送来的光信号转换为电信 所述吉比特无源光网络媒体访问控制 G-MAC单元, 用于从所述光模块转 换的电信号中,将吉比特无源光网络物理层数据帧 GTC帧解封装成 T-CONT帧, 然后对 T-CONT帧进行解封装以获取 GEM帧;
所述 E-GEM适配单元, 具体用于将所述 G-MAC单元获取到的 GEM帧封装 为 E-GEM帧。
5、 根据权利要求 4所述的业务适配装置, 其特征在于, 所述业务接入单元
还包括:
第一一级动态带宽分配单元, 用于收集各 0NU中业务的带宽需求报告, 根据带宽需求报告为各 0NU中的业务分配带宽; 如果各 ONU中业务的带宽需 求总和超出允许的带宽范围, 则发送带宽需求报告给上一级动态带宽分配单 元,并接收所述上一级动态带宽分配单元根据所述带宽需求报告下发的带宽分 配信息, 根据所述带宽分配信息对 ONU接入的业务进行带宽调整; 如果上一 级动态带宽分配单元分配给第——级动态带宽分配单元的带宽仍然不能满足 各 ONU中业务的带宽需求总和, 则保证高优先级业务接收和发送, 抑制低优 先级业务的发送。
6、 根据权利要求 1至 3中任一项所述的业务适配装置, 其特征在于, 所述 的业务接入单元包括:
线路接口单元, 用于对获取的 TDM业务信号进行解调和解码;
时钟和数据恢复单元, 用于恢复线路接口单元解码后的 TDM业务信号的 时钟和数据, 获得 TDM业务数据。
7、 根据权利要求 6所述的业务适配装置, 其特征在于, 所述业务接入单元 还包括第一流量管理单元和成帧单元;
所述第一流量管理单元, 将所述 TDM业务数据转换为 GEM帧;
所述 E-GEM适配单元, 具体用于将所述第一流量管理单元转换成的 GEM 帧封装为 E-GEM帧;
所述成帧单元, 用于对所述 TDM业务数据进行监控和管理。
8、 根据权利要求 7所述的业务适配装置, 其特征在于,
所述第一流量管理单元, 还用于监测业务带宽, 并做平滑处理, 向上一级 动态带宽分配单元上报带宽需求报告,获得上一级动态带宽分配单元根据上报 的带宽需求 告下发的带宽分配信息。
9、 根据权利要求 8所述的业务适配装置, 其特征在于, 所述时钟和数据恢 复单元还用于发送时钟频率信息给所述上一级动态带宽分配单元。
10、 根据权利要求 1至 3中任一项所述的业务适配装置, 其特征在于, 所述 的业务接入单元包括物理层 PHY处理单元;
所述物理层 PHY处理单元, 用于获取以太网业务数据;
所述 E-GEM适配单元, 具体用于将 PHY处理单元获取到的以太网业务数 据封装为 E-GEM帧。
11、 根据权利要求 10所述的业务适配装置, 其特征在于, 所述业务接入单 元还包括二层交换单元和第二流量管理单元;
所述二层交换单元,用于对获取的以太网业务数据进行收敛、汇聚或交换; 所述第二流量管理单元, 用于将所述获取的以太网业务数据转换为 GEM 帧;
所述 E-GEM适配单元, 具体用于将所述第二流量管理单元转换成的 GEM 帧封装为 E-GEM帧。
12、 根据权利要求 11所述的业务适配装置, 其特征在于, 所述第二流量管 理单元还包括带宽监测平滑单元和反压控制单元;
带宽监测平滑单元, 用于监测数据业务带宽, 并做平滑处理, 向上一级动 态带宽分配单元上报带宽需求报告;
反压控制单元,用于接收所述上一级动态带宽分配单元根据带宽监测平滑 单元上报的带宽需求报告而下发的带宽分配信息,在确定所分配的带宽不能满 足需求时, 通过流量緩存和反压机制, 保证高优先级业务接收和发送, 抑制低 优先级业务的发送。
13、 一种业务适配的方法, 其特征在于, 包括:
获取业务数据, 所述业务数据包括: 吉比特无源光网络净荷数据的封装形 式 GEM帧、 和 /或时分复用 TDM业务数据、 和 /或以太网业务数据;
将获取的业务数据封装为 E-GEM帧。
14、 根据权利要求 13所述的方法, 其特征在于, 所述将获取的业务数据封 装为 E-GEM帧之后还包括: 度、 传送和管理。
15、 根据权利要求 13所述的方法, 其特征在于, 还包括:
在业务下落方向, 从 T-CONT帧中解出 E-GEM帧;
将业务下落方向的 E-GEM帧解封装为对应的业务数据;
将解封装得到的对应的业务数据发送到对应的终端。
16、 根据权利要求 13至 15中任一项所述的方法, 其特征在于,
所述获取业务数据包括:将光网络单元经过光分布网发送来的光信号转换 为电信号;将所述电信号中的吉比特无源光网络物理层数据帧 GTC帧解封装成 T-CONT帧, 然后对 T-CONT帧进行解封装以获取 GEM帧;
所述将获取的业务数据封装为 E-GEM帧包括: 将所述 GEM帧封装为 E-GEM帧。
17、 根据权利要求 16所述的方法, 其特征在于, 所述对 T-CONT帧进行解 封装以获取 GEM帧之后, 还包括:
收集各 ONU中业务的带宽需求报告, 根据带宽需求报告为各光网络单元 中的业务分配带宽,如果各光网络单元中业务的带宽需求总和超出允许的带宽 范围, 则发送带宽需求报告给上一级动态带宽分配单元, 并接收所述上一级动 态带宽分配单元根据所述带宽需求 告下发的带宽分配信息,根据所述带宽分 配信息对 ONU接入的业务进行带宽调整, 如果上一级动态带宽分配单元分配 的带宽仍然不能满足各 ONU中业务的带宽需求总和, 则保证高优先级业务接 收和发送, 抑制低优先级业务的发送。
18、 根据权利要求 13至 15中任一项所述的方法, 其特征在于,
所述获取业务数据包括: 对获取的 TDM业务信号解调和解码, 恢复解码 后的 TDM业务信号的时钟和数据, 获得 TDM业务数据;
所述将获取的业务数据封装为 E-GEM帧包括: 将所述 TDM业务数据封装 为 E-GEM帧。
19、 根据权利要求 18所述的方法, 其特征在于, 所述恢复解码后的 TDM 业务信号的时钟和数据, 获得 TDM业务数据之后, 还包括:
将 TDM业务数据转换为 GEM帧;
所述将获取的业务数据封装为 E-GEM帧包括: 将所述 GEM帧封装为 E-GEM帧。
20、 根据权利要求 19所述的方法, 其特征在于, 所述获得 TDM业务数据
之后还包括:
监测业务带宽, 并做平滑处理, 向上一级动态带宽分配单元上报带宽需求 报告,获得所述上一级动态带宽分配单元根据上报的带宽需求报告而下发的带 宽分配信息。
21、 根据权利要求 20所述的方法, 其特征在于, 所述恢复解码后的 TDM 业务信号的时钟和数据之后, 还包括:
发送时钟频率信息给所述上一级动态带宽分配单元。
22、 根据权利要求 13至 15中任一项所述的方法, 其特征在于,
所述获取业务数据包括: 获取以太网业务数据;
所述将获取的业务数据封装为 E-GEM帧, 包括: 将所述以太网业务数据 封装为 E-GEM帧。
23、 根据权利要求 22所述的方法, 其特征在于, 所述获取以太网业务数据 之后, 还包括:
对所述获取以太网业务数据进行收敛、 汇聚或交换, 并将所述获取的以太 网业务数据转换为 GEM帧;
所述将获取的业务数据封装为 E-GEM 帧包括: 将所述 GEM 帧封装为 E-GEM帧。
24、 根据权利要求 23所述的方法, 其特征在于, 所述获取以太网业务数 据进行收敛、 汇聚或交换之后还包括:
监测数据业务带宽, 并做平滑处理, 向上一级动态带宽分配单元上报平均 带宽需求报告,接收上一级动态带宽分配单元根据所述带宽需求报告而下发的 带宽分配信息,如果所分配的带宽不能满足需求,则通过流量緩存和反压机制, 保证高优先级业务接收和发送, 抑制低优先级业务的发送。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09840661A EP2395682A4 (en) | 2009-02-25 | 2009-12-11 | SERVICE ADJUSTMENT METHOD AND SERVICE ADJUSTMENT DEVICE |
US13/218,171 US20110305458A1 (en) | 2009-02-25 | 2011-08-25 | Method and device for service adaptation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910006855A CN101815229A (zh) | 2009-02-25 | 2009-02-25 | 一种业务适配的方法和业务适配装置 |
CN200910006855.4 | 2009-02-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/218,171 Continuation US20110305458A1 (en) | 2009-02-25 | 2011-08-25 | Method and device for service adaptation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010096993A1 true WO2010096993A1 (zh) | 2010-09-02 |
Family
ID=42622324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/075499 WO2010096993A1 (zh) | 2009-02-25 | 2009-12-11 | 一种业务适配的方法和业务适配装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110305458A1 (zh) |
EP (1) | EP2395682A4 (zh) |
CN (1) | CN101815229A (zh) |
WO (1) | WO2010096993A1 (zh) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101729371B (zh) * | 2008-10-31 | 2012-01-25 | 华为技术有限公司 | 一种业务传输的方法、及用于业务传输的装置 |
CN102065344B (zh) * | 2009-11-12 | 2016-09-07 | 中兴通讯股份有限公司 | 数据传输方法及吉比特无源光网络系统 |
US8693868B2 (en) * | 2010-03-16 | 2014-04-08 | Marvell Israel (M.I.S.L) Ltd. | Versatile optical network interface methods and systems |
WO2013181826A1 (zh) * | 2012-06-07 | 2013-12-12 | 华为技术有限公司 | Otn开销的发送、接收方法和装置 |
CN102932198B (zh) * | 2012-07-09 | 2016-06-22 | 北京中创信测科技股份有限公司 | 一种实现ps域分布式架构的信令监测装置 |
CN103634706B (zh) * | 2012-08-20 | 2017-08-04 | 华为技术有限公司 | 一种tdm业务的处理方法、装置及系统 |
KR102105186B1 (ko) * | 2013-03-18 | 2020-04-28 | 한국전자통신연구원 | 수동형 광 가입자 망의 광 선로 종단 장치 및 이를 이용한 상향 대역 제어 방법 |
ES2710703T3 (es) * | 2014-01-23 | 2019-04-26 | Huawei Tech Co Ltd | Método de comunicación de terminal de línea óptica y dispositivo con estructura de datos |
CN105812220A (zh) * | 2014-12-31 | 2016-07-27 | 北京华为数字技术有限公司 | 多种业务接入方法及装置 |
CN107409082B (zh) * | 2015-03-30 | 2020-05-26 | 日本电信电话株式会社 | 终端站装置以及带宽分配方法 |
CN109698732B (zh) * | 2017-10-23 | 2021-07-09 | 华为技术有限公司 | 传输数据的方法和装置 |
CN110519206B (zh) * | 2018-05-21 | 2020-10-27 | 中国移动通信有限公司研究院 | 无线回程节点的适配层的处理方法以及适配层 |
CN110858811B (zh) * | 2018-08-24 | 2022-01-18 | 华为技术有限公司 | 测量时延的方法和网络设备 |
JP7180298B2 (ja) * | 2018-11-13 | 2022-11-30 | 日本電信電話株式会社 | 光伝送システム及び非使用経路確認方法 |
CN109495322B (zh) * | 2018-12-25 | 2022-03-29 | 华为技术有限公司 | 网络故障定位方法、相关设备及计算机存储介质 |
CN110336615A (zh) * | 2019-07-12 | 2019-10-15 | 迈普通信技术股份有限公司 | 信息处理方法、装置及电子设备 |
WO2021024306A1 (ja) * | 2019-08-02 | 2021-02-11 | 日本電信電話株式会社 | 通信装置、及び通信方法 |
CN112713960B (zh) * | 2019-10-25 | 2024-10-29 | 中兴通讯股份有限公司 | 数据发送方法、接收方法、装置、通信节点及存储介质 |
CN114079550B (zh) * | 2020-08-14 | 2024-10-01 | 中兴通讯股份有限公司 | 数据发送、接收方法、装置、发送设备、接收设备及介质 |
CN113824649B (zh) * | 2021-09-17 | 2023-10-27 | 上海航天计算机技术研究所 | 面向固定帧长的数据流量控制装置 |
CN117675095A (zh) * | 2022-08-25 | 2024-03-08 | 中兴通讯股份有限公司 | 通信方法和系统、电子设备、计算机可读介质 |
CN116016341B (zh) * | 2022-12-28 | 2024-06-25 | 中国联合网络通信集团有限公司 | 远程控制系统、方法及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101005445A (zh) * | 2006-01-18 | 2007-07-25 | 华为技术有限公司 | 一种将业务流映射到业务传输通道的方法及光网络终端 |
CN101150876A (zh) * | 2006-09-19 | 2008-03-26 | 上海贝尔阿尔卡特股份有限公司 | 一种千兆无源光网络承载时分复用业务实现方法及其装置 |
CN101212821A (zh) * | 2006-12-26 | 2008-07-02 | 冲电气工业株式会社 | 无源光网络信号处理装置、信号处理方法及gtc帧 |
JP2008160659A (ja) * | 2006-12-26 | 2008-07-10 | Oki Electric Ind Co Ltd | 信号処理装置 |
EP2019519A1 (en) * | 2007-07-25 | 2009-01-28 | Nokia Siemens Networks Oy | Method for addressing ethernet streams with a structured GPON GEM Port ID |
CN101378388A (zh) * | 2007-08-28 | 2009-03-04 | 华为技术有限公司 | 一种无源光网络数据传输的方法、系统和设备 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8401014B2 (en) * | 2005-10-31 | 2013-03-19 | Telecom Italia S.P.A. | Method for transmitting data packets with different precedence through a passive optical network |
CN101662417B (zh) * | 2008-08-26 | 2011-12-21 | 华为技术有限公司 | 多业务适配和承载的方法及设备 |
-
2009
- 2009-02-25 CN CN200910006855A patent/CN101815229A/zh active Pending
- 2009-12-11 WO PCT/CN2009/075499 patent/WO2010096993A1/zh active Application Filing
- 2009-12-11 EP EP09840661A patent/EP2395682A4/en not_active Withdrawn
-
2011
- 2011-08-25 US US13/218,171 patent/US20110305458A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101005445A (zh) * | 2006-01-18 | 2007-07-25 | 华为技术有限公司 | 一种将业务流映射到业务传输通道的方法及光网络终端 |
CN101150876A (zh) * | 2006-09-19 | 2008-03-26 | 上海贝尔阿尔卡特股份有限公司 | 一种千兆无源光网络承载时分复用业务实现方法及其装置 |
CN101212821A (zh) * | 2006-12-26 | 2008-07-02 | 冲电气工业株式会社 | 无源光网络信号处理装置、信号处理方法及gtc帧 |
JP2008160659A (ja) * | 2006-12-26 | 2008-07-10 | Oki Electric Ind Co Ltd | 信号処理装置 |
EP2019519A1 (en) * | 2007-07-25 | 2009-01-28 | Nokia Siemens Networks Oy | Method for addressing ethernet streams with a structured GPON GEM Port ID |
CN101378388A (zh) * | 2007-08-28 | 2009-03-04 | 华为技术有限公司 | 一种无源光网络数据传输的方法、系统和设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2395682A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP2395682A1 (en) | 2011-12-14 |
US20110305458A1 (en) | 2011-12-15 |
CN101815229A (zh) | 2010-08-25 |
EP2395682A4 (en) | 2011-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010096993A1 (zh) | 一种业务适配的方法和业务适配装置 | |
US8462656B2 (en) | Method and apparatus for multi-service adaptation and carriage | |
US8824504B2 (en) | Packet add/drop multiplexer and data transmission method of packet add/drop multiplexer | |
JP4169595B2 (ja) | 可変長パケットを利用するポイントツーマルチポイント受動光ネットワーク | |
EP2348691B1 (en) | Service transmission method and service transmission apparatus | |
US8787759B2 (en) | Dynamic bandwidth allocation apparatus and method and optical line terminal in PON system | |
JP5065492B2 (ja) | 受動光ネットワークデータ伝送のための方法およびシステム | |
WO2004036836A1 (fr) | Procede d'emission de service de donnees sur un reseau numerique synchrone | |
WO2008040142A1 (fr) | Procédé, système et dispositif de transmission de données | |
JP2007500459A (ja) | 光ファイバ伝送システム、光ファイバ伝送実施方法、および端末処理機器 | |
WO2011057545A1 (zh) | 传输多路业务的方法和装置 | |
WO2009021376A1 (fr) | Dispositif ethernet et procédé de traitement d'affaire ethernet basé sur l hiérarchie numérique synchrone (sdh) | |
WO2006026913A1 (fr) | Procede et systeme de mise en oeuvre d'un service dans la couche de transport d'un reseau ngn | |
CN101753249A (zh) | 包分插复用设备及包分插复用设备的数据传输方法 | |
CN102055727A (zh) | 多业务传送网中的数据封装方法、封装设备和支路单元 | |
WO2011006403A1 (zh) | 一种数据传输方法、系统以及运营商边缘节点 | |
WO2009155832A1 (zh) | 一种点到多点光接入系统,及其数据传送方法和设备 | |
CN101668003B (zh) | 数据帧传输方法、设备及系统 | |
WO2007131405A1 (fr) | Dispositif et procédé pour mettre en oeuvre la transmission de convergence et de non convergence d'une pluralité de services multitrajet | |
WO2021073406A1 (zh) | 一种业务数据的传输方法、相关设备以及数字处理芯片 | |
WO2011150807A1 (zh) | 带宽分配方法及实现带宽分配的设备 | |
CN108737911B (zh) | 基于广义光突发交换的potn业务承载方法及系统 | |
WO2007076700A1 (fr) | Dispositif de transmission sur un reseau de transmission numerique par synchronisation de fibres separees a services multiples et procede de transmission | |
WO2011079687A1 (zh) | 微波接入方法及多业务传送设备 | |
WO2011140916A1 (zh) | 多环组网中业务的传输方法和网络设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09840661 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009840661 Country of ref document: EP |