Nothing Special   »   [go: up one dir, main page]

WO2010079756A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2010079756A1
WO2010079756A1 PCT/JP2010/000067 JP2010000067W WO2010079756A1 WO 2010079756 A1 WO2010079756 A1 WO 2010079756A1 JP 2010000067 W JP2010000067 W JP 2010000067W WO 2010079756 A1 WO2010079756 A1 WO 2010079756A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
door valve
processing apparatus
plasma processing
substrate
Prior art date
Application number
PCT/JP2010/000067
Other languages
English (en)
French (fr)
Inventor
若松貞次
亀崎厚治
菊池正志
神保洋介
江藤謙次
浅利伸
内田寛人
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to DE112010000781T priority Critical patent/DE112010000781T5/de
Priority to CN2010800041209A priority patent/CN102272895A/zh
Priority to KR1020117015408A priority patent/KR101289770B1/ko
Priority to JP2010545749A priority patent/JPWO2010079756A1/ja
Publication of WO2010079756A1 publication Critical patent/WO2010079756A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32743Means for moving the material to be treated for introducing the material into processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a plasma processing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2009-004025 filed on Jan. 9, 2009, the contents of which are incorporated herein by reference.
  • a plasma processing apparatus that decomposes a source gas using plasma and forms a thin film on a film formation surface of a substrate, for example.
  • 302 forms a processing chamber 301.
  • a shower plate 306 connected to an electrode flange and having a plurality of jet nozzles, and a heater 308 on which a substrate 307 is disposed.
  • a space 309 formed between the shower plate 306 and the electrode flange 304 is a gas introduction space into which the source gas is introduced. That is, the shower plate 30 divides the inside of the processing chamber 301 into a film formation space 305 in which a film is formed on the substrate 307 and a gas introduction space (space 309).
  • a ground plate 310 is connected to the heater 308.
  • the other end of the ground plate 310 is electrically connected to the vicinity of the inner bottom surface of the chamber 303.
  • the chamber 303 is connected to the ground potential.
  • the heater 308 functions as an anode electrode.
  • a high frequency power supply 311 is connected to the electrode flange 304.
  • the electrode flange 304 and the shower plate 306 function as a cathode electrode.
  • a shield cover 312 formed so as to cover the electrode flange 304 and connected to the chamber 303 is provided around the electrode flange 304.
  • the gas introduced into the gas introduction space is uniformly ejected from each ejection port of the shower plate 306 into the film formation space.
  • a high frequency power source is activated to apply a high frequency voltage to the electrode flange 304, and plasma is generated in the film formation space.
  • a desired film is formed by the source gas decomposed by the plasma reaching the film formation surface of the substrate.
  • the side wall of the chamber 303 is provided with a loading / unloading portion 313 used for unloading or loading the substrate 307 into / from the chamber 303, and a door valve 314 for opening and closing the substrate 307 is provided.
  • the path of the high-frequency current flowing through the inner surface of the chamber 303 where the carry-in / out part 313 is formed is longer than the path of the high-frequency current flowing through the inner surface of the chamber 303 where the carry-in / out part 313 is not formed.
  • the inductance increases in the path of the high-frequency current flowing through the inner surface where the carry-in / out section 313 is formed.
  • the present invention has been made in view of the above-described circumstances, and provides a plasma processing apparatus that can prevent an abnormal discharge at a carry-in / out section and increase an applicable high-frequency voltage.
  • a plasma processing apparatus of the present invention includes a chamber having a side wall, an electrode flange, an insulating flange sandwiched between the chamber and the electrode flange, and a processing chamber having a reaction chamber.
  • a substrate housed in the reaction chamber and having a processing surface is placed thereon, is provided on a side wall of the chamber, and a support unit that controls the temperature of the substrate, and unloads or carries the substrate into the reaction chamber.
  • a loading / unloading unit used for connecting the electrode flange, an RF power source for applying a high-frequency voltage, a first door valve provided in the loading / unloading unit for opening and closing the loading / unloading unit, and the chamber being electrically connected.
  • a second door valve having a surface portion located on the same plane as the inner surface of the chamber.
  • a current can be passed over the surface portion of the second door valve as a return current path in the carry-in / out portion.
  • the inductance in the vicinity of the carry-in / out section can be reduced.
  • the discharge space surrounded by the first door valve and the carry-in / out section can be closed. Therefore, when generating plasma, abnormal discharge in the carry-in / out section can be prevented, and the high-frequency voltage that can be applied to the electrode flange can be increased.
  • a said 2nd door valve has an edge part in which the elastic member which has electroconductivity is provided.
  • the second door valve and the chamber are electrically connected, and a current can be passed between the second door valve and the chamber as a return current path.
  • it can prevent that an edge part and a carrying in / out part collide. For this reason, damage to the second door valve or the chamber can be prevented, and the component life can be extended.
  • a gap is provided between the second door valve and the chamber, and the second door valve and the chamber are electrically connected.
  • a minimal gap of 1 mm or less is provided between the second door valve and the chamber.
  • the plasma processing apparatus of the present invention preferably includes a shower plate that is accommodated in the reaction chamber, is disposed to face the processing surface, and supplies a process gas toward the substrate.
  • the shower plate supplies the process gas
  • the RF power supply supplies the high-frequency voltage, so that the plasma-state process gas is obtained, the vapor phase growth reaction occurs on the processing surface of the substrate, and the thin film is processed.
  • a film can be formed on the surface.
  • a current can be passed over the surface portion of the second door valve as a return current path in the carry-in / out portion. For this reason, the inductance in the vicinity of the carry-in / out section can be reduced. Further, by providing the second door valve, the discharge space surrounded by the first door valve and the carry-in / out section can be closed. Therefore, when generating plasma, abnormal discharge in the carry-in / out section can be prevented, and the high-frequency voltage that can be applied to the electrode flange can be increased.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a plasma processing apparatus 1 in the present embodiment.
  • a plasma processing apparatus 1 that performs a plasma CVD method includes a processing chamber 101 having a film formation space 2a that is a reaction chamber.
  • the processing chamber 101 includes a vacuum chamber 2 (chamber), an electrode flange 4, and an insulating flange 81 sandwiched between the vacuum chamber 2 and the electrode flange 4.
  • An opening is formed in the bottom 11 (inner bottom surface) of the vacuum chamber 2.
  • a support column 25 is inserted into the opening, and the support column 25 is disposed in the lower portion of the vacuum chamber 2.
  • a plate-like heater 15 (support portion) is connected to the tip of the support column 25 (in the vacuum chamber 2).
  • an exhaust pipe 27 is connected to the vacuum chamber 2.
  • a vacuum pump 28 is provided at the tip of the exhaust pipe 27. The vacuum pump 28 reduces the pressure so that the inside of the vacuum chamber 2 is in a vacuum state.
  • the support column 25 is connected to an elevating mechanism (not shown) provided outside the vacuum chamber 2 and can move up and down in the vertical direction of the substrate 10. That is, the heater 15 connected to the tip of the support column 25 is configured to be able to move up and down in the vertical direction.
  • a bellows (not shown) is provided outside the vacuum chamber 2 so as to cover the outer periphery of the support column 25.
  • the electrode flange 4 has an upper wall 41 and a peripheral wall 43.
  • the electrode flange 4 is disposed such that the opening of the electrode flange 4 is positioned below in the vertical direction of the substrate 10.
  • a shower plate 5 is attached to the opening of the electrode flange 4.
  • a space 24 is formed between the electrode flange 4 and the shower plate 5.
  • the upper wall 41 of the electrode flange 4 faces the shower plate 5.
  • a gas inlet 42 is provided in the upper wall 41.
  • a gas introduction pipe 7 is provided between the process gas supply unit 21 and the gas introduction port 42 provided outside the processing chamber 101. One end of the gas introduction pipe 7 is connected to the gas introduction port 42, and the other end is connected to the process gas supply unit 21. Further, the gas introduction pipe 7 penetrates a shield cover 13 described later. Further, the process gas is supplied from the process gas supply unit 21 to the space 24 through the gas introduction pipe 7. That is, the space 24 functions as a gas introduction space into which process gas is introduced.
  • the electrode flange 4 and the shower plate 5 are each made of a conductive material.
  • a shield cover 13 is provided around the electrode flange 4 so as to cover the electrode flange 4.
  • the shield cover 13 is not in contact with the electrode flange 4 and is disposed so as to be continuous with the opening peripheral edge portion 14 of the vacuum chamber 2.
  • An RF power source 9 (high frequency power source) provided outside the vacuum chamber 2 is connected to the electrode flange 4 via a matching box 12.
  • the matching box 12 is attached to the shield cover 13.
  • the vacuum chamber 2 is grounded via the shield cover 13.
  • the electrode flange 4 and the shower plate 5 are configured as a cathode electrode 71.
  • a plurality of gas jets 6 are formed in the shower plate 5. The process gas introduced into the space 24 is ejected from the gas ejection port 6 into the film formation space 2 a in the vacuum chamber 2.
  • a gas introduction pipe 8 different from the gas introduction pipe 7 is connected to the film forming space 2 a of the vacuum chamber 2.
  • the gas introduction pipe 8 is provided with a fluorine gas supply unit 22 and a radical source 23.
  • the radical source 23 decomposes the fluorine gas supplied from the fluorine gas supply unit 22.
  • the gas introduction pipe 8 supplies fluorine radicals obtained by decomposing fluorine gas to the film formation space 2 a in the vacuum chamber 2.
  • the heater 15 is a plate-like member having a flat surface.
  • the substrate 10 is placed on the upper surface of the heater 15.
  • the heater 15 functions as a ground electrode, that is, an anode electrode 72.
  • the heater 15 is made of, for example, an aluminum alloy having conductivity.
  • the distance (gap) G1 between the processing surface 10a of the substrate 10 and the shower plate 5 is set to a narrow gap of 3 mm or more and 10 mm or less.
  • the gas hole 6 formed in the shower plate 5 is formed on the processing surface 10a of the substrate 10 when the minimum (limit) hole diameter is set to 0.3 mm.
  • the quality of the film may be affected by the hole diameter of the gas outlet 6 of the shower plate 5. Further, when the distance G1 is larger than 10 mm, powder may be generated during film formation.
  • a heater wire 16 is provided inside the heater 15.
  • the temperature of the heater 15 is adjusted to a predetermined temperature by the heater wire 16.
  • the heater wire 16 protrudes from a back surface 17 at a substantially central portion of the heater 15 as viewed from the vertical direction of the heater 15.
  • the heater wire 16 is inserted into a through hole 18 and a support column 25 formed in the substantially central portion of the heater 15 and led to the outside of the vacuum chamber 2.
  • the heater wire 16 is connected to a power source (not shown) outside the vacuum chamber 2 and adjusts the temperature of the heater 15 according to the power supplied from the power source.
  • a plurality of first ends (one ends) of a flexible earth plate 30 are connected to the outer peripheral edge of the heater 15 via attachment members 30a.
  • the ground plates 30 are arranged at substantially equal intervals along the outer peripheral edge of the heater 15.
  • the ground plate 30 electrically connects the heater 15 and the vacuum chamber 2.
  • the second end (the other end) of the earth plate 30 is electrically connected to the bottom 11 of the vacuum chamber 2.
  • the heater 15 functions as the anode electrode 72.
  • the earth plate 30 is made of, for example, a nickel alloy or an aluminum alloy.
  • the side wall 34 of the vacuum chamber 2 is formed with a loading / unloading portion 36 (loading / unloading port) used for unloading or loading the substrate 10.
  • a first door valve 55 that opens and closes the loading / unloading portion 36 is provided on the outer surface 35 constituting the side wall 34 of the vacuum chamber 2.
  • the first door valve 55 is slidable in the vertical direction.
  • the carry-in / out section 36 is opened, and the substrate 10 can be carried out or carried in (see FIG. 3).
  • the carry-in / out section 36 is closed, and the processing (film formation processing) of the substrate 10 can be performed (see FIG. 2). .
  • a second door valve 56 for opening and closing the carry-in / out portion 36 is provided on the inner side surface 33 constituting the side wall 34 of the vacuum chamber 2.
  • the second door valve 56 is slidable in the vertical direction.
  • the second door valve 56 has a surface portion 56a and an end portion 56b.
  • the surface portion 56a and the inner side surface 33 of the vacuum chamber 2 are on the same plane.
  • the second door valve 56 opens and closes the loading / unloading portion 36 in synchronization with the operation of the first door valve 55. That is, when the first door valve 55 slides downward, the second door valve 56 also slides downward (see FIG. 3). On the other hand, when the first door valve 55 slides upward, the second door valve 56 also slides upward (see FIG. 2).
  • the end 56b of the second door valve 56 is provided with a coil spring 57 (elastic member) having conductivity as a whole. That is, when the second door valve 56 is closed, the end 56 b does not contact the inner peripheral surface of the carry-in / out portion 36, and the coil spring 57 and the inner peripheral surface of the carry-in / out portion 36 come into contact. In the closed state of the second door valve 56, the end portion 56 b of the second door valve 56 and the vacuum chamber 2 are electrically connected via the coil spring 57.
  • a coil spring 57 elastic member
  • the vacuum chamber 2 is depressurized using the vacuum pump 28.
  • the first door valve 55 and the second door valve 56 are opened in a state where the inside of the vacuum chamber 2 is maintained in a vacuum (see FIG. 3), and the film formation space is formed from the outside of the vacuum chamber 2 through the loading / unloading portion 36 of the vacuum chamber 2.
  • substrate 10 is carried in toward 2a.
  • the substrate 10 is placed on the heater 15. After the board
  • the heater 15 Before the substrate 10 is placed, the heater 15 is positioned below the vacuum chamber 2. That is, since the space
  • the interval between the shower plate 5 and the substrate 10 is determined as desired so that the interval necessary for proper film formation is achieved, and this interval is maintained.
  • the distance G1 between the processing surface 10a of the substrate 10 and the shower plate 5 is 3 mm or more and 10 mm or less, that is, a narrow gap is set.
  • the process gas is introduced into the space 24 from the process gas supply unit 21 through the gas introduction pipe 7 and the gas introduction port 42. Then, a process gas is ejected from the gas ejection port 6 of the shower plate 5 into the film formation space 2a.
  • the RF power source 9 is activated to apply high frequency power to the electrode flange 4. Then, a high-frequency current flows from the surface of the electrode flange 4 to the surface of the shower plate 5, and discharge occurs between the shower plate 5 and the heater 15. Then, plasma is generated between the shower plate 5 and the processing surface 10 a of the substrate 10. The process gas is decomposed in the plasma thus generated to obtain a plasma process gas, a vapor phase growth reaction occurs on the processing surface 10a of the substrate 10, and a thin film is formed on the processing surface 10a.
  • the high-frequency current transmitted to the heater 15 flows to the inner surface of the bottom 11 of the vacuum chamber 2 through the earth plate 30.
  • the high-frequency current is returned through the shield cover 13 (return current).
  • the return current is transmitted from the bottom 11 of the vacuum chamber 2 to the inner surface 33 of the side wall 34 to the shield cover 13 (see FIG. 1). See right).
  • the return current is transmitted from the bottom part 11 of the vacuum chamber 2 to the coil spring 57 formed on the surface part 56 a and the end part 56 b of the second door valve 56. Is transmitted to the shield cover 13 (see the left side of FIG. 1 and FIG. 2). Therefore, high-frequency current is prevented from flowing through the inner surface of the carry-in / out section 36.
  • the surface portion 56a of the second door valve 56 and the inner surface 33 of the vacuum chamber 2 are on the same plane.
  • the distance of the return path when the high-frequency current flows through the surface portion 56 a of the second door valve 56 is the same as the distance of the return path when the high-frequency current flows through the inner surface 33 of the vacuum chamber 2.
  • the inductance is set to be the same regardless of the presence / absence of the carry-in / out portion 36.
  • the film forming material adheres to the inner surface 33 of the vacuum chamber 2 and the like, so that the inside of the vacuum chamber 2 is periodically cleaned.
  • the fluorine gas supplied from the fluorine gas supply unit 22 is decomposed by the radical source 23 to generate fluorine radicals.
  • the fluorine radicals pass through the gas introduction pipe 8 connected to the vacuum chamber 2 and pass through the vacuum chamber 2. To be supplied.
  • a chemical reaction occurs, and deposits attached to the members disposed around the film formation space 2a or the inner wall surface of the vacuum chamber 2 Is removed.
  • FIG. 4 is a table showing the sizes and operating conditions of the parts constituting the plasma processing apparatus 1.
  • FIG. 5 is a table comparing the conventional plasma processing apparatus and the plasma processing apparatus of the present invention. The magnitude of the high-frequency voltage Pf (Kw) that can be applied (applied) to the electrode flange 4 based on the conditions shown in FIG. Is shown.
  • the area of the electrode size that is, the length L1 in the longitudinal direction of the region of the shower plate 5 facing the substrate 10 is set to 1,600 mm, and the length in the short direction is It is set to 1,300 mm.
  • the susceptor size that is, the length L2 in the longitudinal direction of the region where the substrate 10 is placed on the heater 15 which is the anode electrode 72 is set to 1,700 mm, and the length in the short direction is 1,400 mm.
  • the RF frequency of the RF power source 9 is set to 27.12 MHz.
  • 1 (slm) SiH 4 (monosilane) and 25 (slm) H 2 (hydrogen) are used.
  • the distance G1 between the processing surface 10a of the substrate 10 and the shower plate 5 was changed to a range of 4 mm to 10 mm, and the pressure in the film formation space 2a was changed to a range of 700 Pa to 2000 Pa. .
  • the magnitude of the high-frequency voltage Pf (Kw) that can be applied to the electrode flange 4 was measured, and the conventional and the present invention were compared. Further, a ⁇ c-Si film was formed on the processing surface 10a of the substrate 10 under such conditions.
  • the plasma processing apparatus 1 of the present invention has the result that the high-frequency power that can be applied to the electrode flange 4 is larger than that in the conventional case in all the conditions (ES) of the distance G1 and all the pressure conditions. Obtained.
  • a high-frequency current can flow on the surface portion 56 a of the second door valve 56 as a return current path in the carry-in / out portion 36 of the vacuum chamber 2. For this reason, compared with the case where a return electric current flows into the 1st door valve 55, the inductance in the carrying in / out part 36 vicinity can be reduced. That is, on the return current path, the inductance is set to be the same on the entire circumference of the inner surface 33 of the vacuum chamber 2 regardless of the presence / absence of the loading / unloading portion 36. Further, by providing the second door valve 56, the discharge space (the space K in FIG. 1) surrounded by the first door valve 55 and the carry-in / out section can be closed. Therefore, when plasma is generated, abnormal discharge in the carry-in / out section 36 can be prevented, and the high-frequency voltage that can be applied to the electrode flange 4 can be increased.
  • the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. That is, the specific materials or configurations described in the present embodiment are examples of the present invention, and can be appropriately changed.
  • the first door valve 55 and the second door valve 56 are provided so as to slide in the vertical direction. When the door valves 55 and 56 slide upward, the loading / unloading portion 36 is closed, and the door valves 55 and 56 are moved downward. The structure in which the loading / unloading portion 36 is opened when the sliding movement is performed is described.
  • each door valve 55, 56 opens and closes the discharge inlet so that the substrate 10 can be carried out and carried in.
  • a structure may be employed in which the loading / unloading portion 36 is opened when the door valves 55 and 56 slide upward, and the loading / unloading portion 36 is closed when the door valves 55 and 56 slide downward.
  • a structure may be employed in which the loading / unloading portion 36 is opened and closed by the door valve rotating at a predetermined angle around the rotation axis.
  • the present invention is not limited to this structure, and the coil spring 57 may not be provided on the entire end portion 56b.
  • the coil spring 57 is not provided at the end portion 56b of the second door valve 56, and a structure in which a minimal gap G2 of 1 mm or less is provided between the end portion 56b and the loading / unloading portion 36 is adopted. May be.
  • the size of the gap G2 is set such that energization is possible between the end portion 56b and the carry-in / out portion 36. That is, when a high-frequency voltage is applied, the end portion 56b is electrically connected to the carry-in / out portion 36 via capacitive coupling as a return current path.
  • the plasma processing apparatus 1 uses a mixed gas of SiH 4 and H 2 as the process gas and the ⁇ c-Si film is formed on the processing surface 10a of the substrate 10 has been described.
  • the present invention is not limited to such film types, and a-Si (amorphous silicon), SiO 2 (oxide film), SiN (ticker film), and SiC (carbonized film) are formed using the plasma processing apparatus 1.
  • the above-described plasma processing apparatus 1 may be applied to a plasma processing apparatus that performs an etching process. In this case, the type or flow rate of the process gas is appropriately changed according to each processing condition.
  • the present invention is useful for a plasma processing apparatus that can prevent an abnormal discharge at the carry-in / out section and increase the applicable high-frequency voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

 このプラズマ処理装置は、側壁(34)を有するチャンバ(2)と、電極フランジ(4)と、前記チャンバ(2)及び前記電極フランジ(4)によって挟まれた絶縁フランジ(81)とから構成され、反応室(2a)を有する処理室(101)と、前記反応室(2a)内に収容され、処理面(10a)を有する基板(10)が載置される支持部(15)と、前記チャンバ(2)の前記側壁(34)に設けられた搬出入部(36)と、前記電極フランジ(4)に接続され、高周波電圧を印加するRF電源(9)と、前記搬出入部(36)に設けられ、前記搬出入部(36)を開閉する第一ドアバルブ(55)と、前記チャンバ(2)と電気的に接続され、前記チャンバ(2)の内側面(33)と同一平面上に位置する面部(56a)を有する第二ドアバルブ(56)とを含む。

Description

プラズマ処理装置
 本発明は、プラズマ処理装置に関する。
 本願は、2009年1月9日に出願された特願2009-004025号に基づき優先権を主張し、その内容をここに援用する。
 従来から、プラズマを用いて原料ガスを分解し、例えば、基板の被成膜面に薄膜を形成するプラズマ処理装置が知られている。このプラズマ処理装置においては、例えば、図7に示すように、成膜空間(反応室)305を有するように、チャンバ303と、電極フランジ304と、チャンバ303及び電極フランジ304によって挟まれた絶縁フランジ302とによって処理室301が構成されている。処理室301内には、電極フランジに接続され複数の噴出口を有するシャワープレート306と、基板307が配置されるヒータ308とが設けられている。シャワープレート306と電極フランジ304との間に形成される空間309は、原料ガスが導入されるガス導入空間である。即ち、シャワープレート30は、処理室301内を、基板307に膜が形成される成膜空間305と、ガス導入空間(空間309)とに区画している。
 ヒータ308には、アースプレート310の一端が接続されている。アースプレート310の他端は、チャンバ303の内底面近傍に電気的に接続されている。チャンバ303は、接地電位に接続されている。これによってヒータ308は、アノード電極として機能する。一方、電極フランジ304には高周波電源311が接続されている。電極フランジ304及びシャワープレート306は、カソード電極として機能する。電極フランジ304の周囲には、例えば、電極フランジ304を覆うように形成され、かつチャンバ303に接続されたシールドカバー312などが設けられている。
 このような構成において、ガス導入空間に導入されたガスは、シャワープレート306の各噴出口から成膜空間に均一に噴出される。このとき、高周波電源を起動して電極フランジ304に高周波電圧を印加し、成膜空間内にプラズマを発生させる。そして、プラズマによって分解された原料ガスが基板の被成膜面に到達することにより所望の膜が形成される。
 電極フランジ304に高周波電圧を印加してプラズマを発生させる際、プラズマの発生に伴って流れる電流は、図7の矢印に示すように、シャワープレート306,ヒータ308,及びアースプレート310の順に伝達される。また、この電流は、チャンバ303の内側面及びシールドカバー312に伝達され、電極フランジ304にリターンされる。プラズマの発生に伴う電流は、このような電流経路を通じて流れる(例えば、特許文献1参照)。
特開2008-244079号公報
 ところで、図8に示すように、チャンバ303の側壁には、基板307をチャンバ303内に搬出又は搬入するために用いられる搬出入部313が設けられ、これを開閉するドアバルブ314が設けられている場合が多い。
 このような場合、搬出入部313が形成されているチャンバ303の内側面を流れる高周波電流の経路は、搬出入部313が形成されていないチャンバ303の内側面を流れる高周波電流の経路よりも長くなる。これによって、搬出入部313が形成されている内側面を流れる高周波電流の経路において、インダクタンスが大きくなる。
 特に、基板307のサイズが大型化すると、高周波電圧を大きくする必要があるため、搬出入部313の近傍における異常放電が発生するおそれがある。
 このため、異常放電に起因するインピーダンスの不整合が生じ、電極フランジ304に印加できる高周波電圧が低下してしまうという課題がある。
 そこで、この発明は、上述した事情に鑑みてなされたものであって、搬出入部における異常放電を防止し、印加可能な高周波電圧を大きくすることができるプラズマ処理装置を提供する。
 上記の課題を解決するために、本発明のプラズマ処理装置は、側壁を有するチャンバと、電極フランジと、前記チャンバ及び前記電極フランジによって挟まれた絶縁フランジとから構成され、反応室を有する処理室と、前記反応室内に収容され、処理面を有する基板が載置され、前記基板の温度を制御する支持部と、前記チャンバの前記側壁に設けられ、前記反応室に前記基板を搬出又は搬入するために用いられる搬出入部と、前記電極フランジに接続され、高周波電圧を印加するRF電源と、前記搬出入部に設けられ、前記搬出入部を開閉する第一ドアバルブと、前記チャンバと電気的に接続され、前記チャンバの内側面と同一平面上に位置する面部を有する第二ドアバルブとを含む。
 このような構成においては、搬出入部におけるリターン電流の経路として、第二ドアバルブの面部上に電流を流すことができる。このため、搬出入部近傍におけるインダクタンスを低下させることができる。また、第二ドアバルブを設けることによって、第一ドアバルブと搬出入部とによって囲まれた放電空間を閉塞することができる。従って、プラズマを発生させる際、搬出入部内における異常放電を防止でき、電極フランジに印加できる高周波電圧を大きくすることができる。
 本発明のプラズマ処理装置においては、前記第二ドアバルブは、導電性を有する弾性部材が設けられる端部を有することが好ましい。
 このような構成においては、第二ドアバルブとチャンバとが電気的に接続され、リターン電流の経路として第二ドアバルブとチャンバとの間に電流すことができる。また、第二ドアバルブを閉じる際に、端部と搬出入部とが衝突することを防止することができる。このため、第二ドアバルブ又はチャンバの損傷を防止でき、部品寿命を長くすることができる。
 本発明のプラズマ処理装置においては、前記第二ドアバルブと前記チャンバとの間に間隙が設けられ、前記第二ドアバルブと前記チャンバとが電気的に接続されることが好ましい。
 この構成においては、例えば、第二ドアバルブとチャンバとの間に1mm以下の極小の間隙が設けられる。また、高周波電圧が印加されている際に、リターン電流の経路として、端部は容量結合を介して搬出入部に電気的に接続される。
 このような構成においては、第二ドアバルブの端部と搬出入部とが接触しないため、塵埃などが端部と搬出入部との間に堆積することを防止できる。
 本発明のプラズマ処理装置においては、前記反応室内に収容され、前記処理面に対向するように配置され、前記基板に向けてプロセスガスを供給するシャワープレートを含むことが好ましい。
 この構成においては、シャワープレートがプロセスガスを供給し、RF電源が高周波電圧を供給することにより、プラズマ状態のプロセスガスが得られ、基板の処理面上で気相成長反応が生じ、薄膜を処理面上に成膜することができる。
 本発明によれば、搬出入部におけるリターン電流の経路として、第二ドアバルブの面部上に電流を流すことができる。このため、搬出入部近傍におけるインダクタンスを低下させることができる。また、第二ドアバルブを設けることによって、第一ドアバルブと搬出入部とによって囲まれた放電空間を閉塞することができる。従って、プラズマを発生させる際、搬出入部内における異常放電を防止でき、電極フランジに印加できる高周波電圧を大きくすることができる。
本発明の実施形態におけるプラズマ処理装置の構成を示す概略断面図である。 本発明の実施形態におけるプラズマ処理装置の構成を示す概略断面図であって、図1において符号Aで示された部分を拡大して示した断面図である。 本発明の実施形態における第一ドアバルブ及び第二ドアバルブの動作を説明ための図である。 本発明の実施例におけるプラズマ処理装置の稼働条件を示す図である。 印加可能な高周波電圧の大きさに関し、本発明の実施例におけるプラズマ処理装置と従来のプラズマ処理装置との比較結果を示す図である。 本発明の実施形態の変形例における第二ドアバルブの構成を示す概略断面図である。 従来のプラズマ処理装置の構成を示す概略断面図である。 従来のプラズマ処理装置において、リターン電流の流れを示す図である。
 以下、本発明に係るプラズマ処理装置の実施形態を図面に基づき説明する。
 また、以下の説明に用いる各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。
 また、本実施形態においては、プラズマCVD法を用いた成膜装置を説明する。
 図1は、本実施形態におけるプラズマ処理装置1の構成を示す概略断面図である。
 図1に示すように、プラズマCVD法を実施するプラズマ処理装置1は、反応室である成膜空間2aを有する処理室101を含む。処理室101は、真空チャンバ2(チャンバ)と、電極フランジ4と、真空チャンバ2及び電極フランジ4に挟持された絶縁フランジ81とから構成されている。
 真空チャンバ2の底部11(内底面)には、開口部が形成されている。この開口部には支柱25が挿通され、支柱25は真空チャンバ2の下部に配置されている。支柱25の先端(真空チャンバ2内)には、板状のヒータ15(支持部)が接続されている。また、真空チャンバ2には、排気管27が接続されている。排気管27の先端には、真空ポンプ28が設けられている。真空ポンプ28は、真空チャンバ2内が真空状態となるように減圧する。
 また、支柱25は、真空チャンバ2の外部に設けられた昇降機構(不図示)に接続されており、基板10の鉛直方向において上下に移動可能である。つまり、支柱25の先端に接続されているヒータ15は、上下方向に昇降可能に構成されている。また、真空チャンバ2の外部においては、支柱25の外周を覆うようにベローズ(不図示)が設けられている。
 電極フランジ4は、上壁41と周壁43とを有する。電極フランジ4は、電極フランジ4の開口部が基板10の鉛直方向において下方に位置するように配置されている。また、電極フランジ4の開口部には、シャワープレート5が取り付けられている。これにより、電極フランジ4とシャワープレート5との間に空間24が形成されている。また、電極フランジ4の上壁41は、シャワープレート5に対向している。上壁41には、ガス導入口42が設けられている。
 また、処理室101の外部に設けられたプロセスガス供給部21とガス導入口42との間には、ガス導入管7が設けられている。ガス導入管7の一端は、ガス導入口42に接続され、他端は、プロセスガス供給部21に接続されている。また、ガス導入管7は、後述するシールドカバー13を貫通している。また、ガス導入管7を通じて、プロセスガス供給部21から空間24にプロセスガスが供給される。即ち、空間24は、プロセスガスが導入されるガス導入空間として機能している。
 電極フランジ4とシャワープレート5は、それぞれ導電材で構成されている。
 電極フランジ4の周囲には、電極フランジ4を覆うようにシールドカバー13が設けられている。シールドカバー13は、電極フランジ4と非接触であり、かつ、真空チャンバ2の開口周縁部14に連設するように配置されている。また、電極フランジ4には、真空チャンバ2の外部に設けられたRF電源9(高周波電源)がマッチングボックス12を介して接続されている。マッチングボックス12は、シールドカバー13に取り付けられている。
 即ち、真空チャンバ2は、シールドカバー13を介して接地されている。
 一方、電極フランジ4及びシャワープレート5はカソード電極71として構成されている。シャワープレート5には、複数のガス噴出口6が形成されている。空間24内に導入されたプロセスガスは、ガス噴出口6から真空チャンバ2内の成膜空間2aに噴出される。
 また、真空チャンバ2の成膜空間2aには、ガス導入管7とは異なるガス導入管8が接続されている。
 ガス導入管8にはフッ素ガス供給部22とラジカル源23とが設けられている。ラジカル源23は、フッ素ガス供給部22から供給されたフッ素ガスを分解する。ガス導入管8は、フッ素ガスが分解されて得られたフッ素ラジカルを、真空チャンバ2内の成膜空間2aに供給する。
 ヒータ15は、表面が平坦に形成された板状の部材である。ヒータ15の上面には、基板10が載置される。ヒータ15は、接地電極、つまりアノード電極72として機能する。このため、ヒータ15は、導電性を有する、例えば、アルミニウム合金で形成されている。基板10がヒータ15上に配置されると、基板10とシャワープレート5とは互いに近接して平行に位置される。より具体的には、基板10の処理面10aとシャワープレート5との間の距離(ギャップ)G1は、3mm以上10mm以下のナローギャップに設定されている。
 なお、距離G1が3mmよりも小さい場合、シャワープレート5に形成されているガス噴出口6の最小(限界)孔径が0.3mmに設定されているとき、基板10の処理面10aに形成される膜の品質がシャワープレート5のガス噴出口6の孔径の影響を受けるおそれがある。また、距離G1が10mmよりも大きい場合、成膜時にパウダーが生じるおそれがある。
 ヒータ15上に基板10が配置された状態で、ガス噴出口6からプロセスガスを噴出させると、プロセスガスは基板10の処理面10a上の空間に供給される。
 また、ヒータ15の内部にはヒータ線16が設けられている。ヒータ線16によってヒータ15の温度が所定の温度に調整される。ヒータ線16は、ヒータ15の鉛直方向から見たヒータ15の略中央部の裏面17から突出されている。ヒータ線16は、ヒータ15の略中央部に形成された貫通孔18及び支柱25の内部に挿通され、真空チャンバ2の外部へと導かれている。ヒータ線16は、真空チャンバ2の外部において、電源(不図示)に接続され、この電源から供給される電力に応じて、ヒータ15の温度を調節する。
 図1、図2に示すように、ヒータ15の外周縁には、可撓性を有するアースプレート30(プレート部材)の第1端(一端)が取り付け部材30aを介して複数接続されている。アースプレート30は、ヒータ15の外周縁に沿って略等間隔で配置されている。アースプレート30は、ヒータ15と真空チャンバ2とを電気的に接続する。アースプレート30の第2端(他端)は、真空チャンバ2の底部11に電気的に接続している。これによって、ヒータ15は、アノード電極72として機能する。アースプレート30は、例えば、ニッケル系合金又はアルミ合金などで形成されている。
 図1~図3に示すように、真空チャンバ2の側壁34には、基板10を搬出又は搬入するために用いられる搬出入部36(搬出入口)が形成されている。
 真空チャンバ2の側壁34を構成する外側面35には、搬出入部36を開閉する第一ドアバルブ55が設けられている。第一ドアバルブ55は、上下方向にスライド可能である。
 第一ドアバルブ55が下方(真空チャンバ2の底部11に向けた方向)にスライド移動したときは、搬出入部36が開口され、基板10を搬出又は搬入することができる(図3参照)。
 一方、第一ドアバルブ55が上方(電極フランジ4に向けた方向)にスライド移動したときは、搬出入部36が閉口され、基板10の処理(成膜処理)を行うことができる(図2参照)。
 また、真空チャンバ2の側壁34を構成する内側面33には、搬出入部36を開閉する第二ドアバルブ56が設けられている。第二ドアバルブ56は、上下方向にスライド可能である。第二ドアバルブ56は、面部56aと、端部56bを有する。面部56a及び真空チャンバ2の内側面33は、同一平面上にある。第二ドアバルブ56は、第一ドアバルブ55の動作に同期して搬出入部36を開閉する。即ち、第一ドアバルブ55が下方にスライド移動すると、第二ドアバルブ56も下方にスライド移動する(図3参照)。一方、第一ドアバルブ55が上方にスライド移動すると、第二ドアバルブ56も上方にスライド移動する(図2参照)。
 また、第二ドアバルブ56の端部56bには、全体に導電性を有するコイルスプリング57(弾性部材)が設けられている。即ち、第二ドアバルブ56の閉動作の際、端部56bは搬出入部36の内周面に接触せず、コイルスプリング57と搬出入部36の内周面とが接触する。第二ドアバルブ56の閉状態においては、第二ドアバルブ56の端部56bと真空チャンバ2とは、コイルスプリング57を介して電気的に接続される。
 次に、図1~図3に基づいて、プラズマ処理装置1を用いて基板10の処理面10aに膜を形成する場合の作用について説明する。
 まず、真空ポンプ28を用いて真空チャンバ2内を減圧する。真空チャンバ2内が真空に維持された状態で、第一ドアバルブ55及び第二ドアバルブ56が開き(図3参照)、真空チャンバ2の搬出入部36を介して、真空チャンバ2の外部から成膜空間2aに向けて基板10が搬入される。基板10は、ヒータ15上に載置される。基板10を搬入した後、図2に示すように、第一ドアバルブ55及び第二ドアバルブ56が閉じる(閉動作)。
 基板10を載置する前は、ヒータ15は真空チャンバ2内の下方に位置している。つまり、ヒータ15とシャワープレート5との間隔が広くなっているので、ロボットアーム(不図示)を用いて基板10をヒータ15上に容易に載置することができる。
 また、アースプレート30は可撓性を有しているので、ヒータ15が真空チャンバ2内の下方に位置しているときであっても、アースプレート30の第2端は、真空チャンバ2の底部11に接触されている(図3参照)。
 基板10がヒータ15上に載置された後には、昇降機構(不図示)が起動し、支柱25が上方へ押し上げられ、ヒータ15上に載置された基板10も上方へ移動する。これによって、適切に成膜を行うために必要な間隔になるようにシャワープレート5と基板10との間隔が所望に決定され、この間隔が維持される。
 具体的には、基板10の処理面10aとシャワープレート5との間の距離G1は、3mm以上、10mm以下であり、即ち、ナローギャップに設定される。
 その後、プロセスガス供給部21からガス導入管7及びガス導入口42を介して空間24にプロセスガスが導入される。そして、シャワープレート5のガス噴出口6から成膜空間2a内にプロセスガスが噴出される。
 次に、RF電源9を起動して電極フランジ4に高周波電力を印加する。
 すると、電極フランジ4の表面からシャワープレート5の表面を伝って高周波電流が流れ、シャワープレート5とヒータ15との間に放電が生じる。そして、シャワープレート5と基板10の処理面10aとの間にプラズマが発生する。
 こうして発生したプラズマ内でプロセスガスが分解され、プラズマ状態のプロセスガスが得られ、基板10の処理面10aで気相成長反応が生じ、薄膜が処理面10a上に成膜される。
 ヒータ15に伝達された高周波電流は、アースプレート30を介して真空チャンバ2の底部11の内面に流れる。そして、高周波電流は、シールドカバー13を伝ってリターンされる(リターン電流)。
 このとき、真空チャンバ2の搬出入部36が形成されていない部分において、リターン電流は、真空チャンバ2の底部11から側壁34の内側面33を伝ってシールドカバー13へと伝達される(図1の右側参照)。
 一方、真空チャンバ2の搬出入部36が形成されている部分においては、リターン電流は、真空チャンバ2の底部11から、第二ドアバルブ56の面部56a及び端部56bに形成されたコイルスプリング57を伝ってシールドカバー13へと伝達される(図1の左側及び図2参照)。従って、搬出入部36の内面に高周波電流が流れることが防止される。
 第二ドアバルブ56の面部56aと真空チャンバ2の内側面33とは同一平面上にある。このため、高周波電流が第二ドアバルブ56の面部56aを流れる場合のリターン経路の距離と、真空チャンバ2の内側面33を流れる場合のリターン経路の距離は同一になる。
 このため、リターン電流の経路において、つまり、真空チャンバ2の内側面33の全周において、搬出入部36の有無に関わらず、インダクタンスが同一に設定されている。
 また、上記のような成膜工程が何度か繰り返されると、真空チャンバ2の内側面33などに成膜材料が付着するため、真空チャンバ2内は定期的にクリーニングされる。クリーニング工程においては、フッ素ガス供給部22から供給されたフッ素ガスがラジカル源23によって分解され、フッ素ラジカルが生じ、フッ素ラジカルが真空チャンバ2に接続されたガス導入管8を通り、真空チャンバ2内に供給される。このように真空チャンバ2内の成膜空間2aにフッ素ラジカルを供給することによって、化学反応が生じ、成膜空間2aの周囲に配置された部材又は真空チャンバ2の内壁面に付着された付着物が除去される。
 次に、図1、図4、図5に基づいて、本発明の実施例を具体的に示して説明する。なお、本発明は、以下に記載された実施例に限定されない。
 図4は、プラズマ処理装置1を構成する部品のサイズ及び稼働条件を示す表である。図5は、従来のプラズマ処理装置と本発明のプラズマ処理装置とを比較した表であり、図4に示す条件に基づいて電極フランジ4に印加(投入)できる高周波電圧Pf(Kw)の大きさを示している。
 図1、図4に示すように、電極サイズの面積、つまり、基板10に対向するシャワープレート5の領域の長手方向の長さL1が1,600mmに設定され、かつ短手方向の長さが1,300mmに設定されている。また、サセプターサイズ、つまり、アノード電極72であるヒータ15に基板10が載置されている領域の長手方向の長さL2が1,700mmに設定され、かつ短手方向の長さが1,400mmに設定されている。更に、RF電源9のRF周波数が27.12MHzに設定されている。そして、プロセスガス供給部21から空間24へ導入されるプロセスガスの種類及び流量としては、1(slm)のSiH(モノシラン)及び25(slm)のH(水素)が用いられている。
 このような条件のもと、基板10の処理面10aとシャワープレート5との間の距離G1を4mm~10mmの範囲に変化させ、成膜空間2aの圧力を700Pa~2000Paの範囲に変化させた。このような条件及び範囲において、電極フランジ4に印加できる高周波電圧Pf(Kw)の大きさを測定し、従来と本発明とを比較した。また、このような条件のもと、基板10の処理面10aに、μc-Si膜を形成した。
 図5に示すように、全ての距離G1の条件(ES)、及び全ての圧力条件において、本発明のプラズマ処理装置1は、従来よりも電極フランジ4に印加できる高周波電力が大きくなるという結果を得た。
 従って、上述の実施形態によれば、真空チャンバ2の搬出入部36におけるリターン電流の経路として、第二ドアバルブ56の面部56a上に高周波電流を流すことができる。このため、第一ドアバルブ55にリターン電流が流れる場合と比較して、搬出入部36近傍におけるインダクタンスを低下させることができる。つまり、リターン電流の経路上、真空チャンバ2の内側面33の全周において、搬出入部36の有無に関わらず、インダクタンスが同一に設定されている。
 また、第二ドアバルブ56を設けることによって、第一ドアバルブ55と搬出入部とによって囲まれた放電空間(図1における空間K)を閉塞することができる。従って、プラズマを発生させる際、搬出入部36内における異常放電を防止でき、電極フランジ4に印加できる高周波電圧を大きくすることができる。
 また、第二ドアバルブ56の端部56bに、導電性を有するコイルスプリング57が設けられているので、第二ドアバルブ56と真空チャンバ2との電気的接続を維持しつつ、第二ドアバルブ56を閉じる際の端部56bと搬出入部36との衝突を防止することができる。このため、第二ドアバルブ56又は真空チャンバ2の損傷を防止でき、部品寿命を長くすることができる。
 なお、本発明の技術範囲は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。即ち、本実施形態で述べた具体的な材料又は構成等は本発明の一例であり、適宜変更が可能である。
 上述の実施形態において、第一ドアバルブ55及び第二ドアバルブ56が上下方向にスライドするように設けられ、ドアバルブ55,56が上方にスライド移動したとき搬出入部36が閉口され、ドアバルブ55,56が下方にスライド移動したとき搬出入部36が開口される構造について説明した。しかしながら、このような構造に限られず、各ドアバルブ55,56が基板10を搬出・搬入可能に排出入口を開閉する構造であれば、他の構造が採用されてもよい。例えば、ドアバルブ55,56が上方にスライド移動したとき搬出入部36を開口し、ドアバルブ55,56が下方にスライド移動したとき搬出入部36を閉口する構造が採用されてもよい。また、各ドアバルブ55,56の構造として、ドアバルブが回転軸を中心に所定角度で回転することによって搬出入部36が開閉される構造が採用されてもよい。
 更に、上述の実施形態では、全体に導電性を有するコイルスプリング57が第二ドアバルブ56の端部56bに設けられた構造について説明した。しかしながら、このような構造に限られず、コイルスプリング57を端部56bの全体に設けなくてもよい。
 また、図6に示すように、第二ドアバルブ56の端部56bにコイルスプリング57を設けず、端部56bと搬出入部36との間に1mm以下の極小の間隙G2が設けられた構造を採用してもよい。この構造においては、間隙G2の大きさは、端部56bと搬出入部36との間で通電可能に設定されている。つまり、高周波電圧が印加されている際に、リターン電流の経路として、端部56bは容量結合を介して搬出入部36に電気的に接続される。
 このような構造においては、第二ドアバルブ56の端部56bと搬出入部36とが接触しないため、例えば、塵埃などが端部56bと搬出入部36との間に堆積することを防止できる。
 更に、上述の実施例では、プラズマ処理装置1にプロセスガスとしてSiHとHとの混合ガスを用い、基板10の処理面10aにμc-Si膜を形成した場合について説明した。しかしながら、このような膜種に限らず、プラズマ処理装置1を利用してa-Si(アモルファスシリコン),SiO(酸化膜),SiN(チッカ膜),及びSiC(炭化膜)を形成することが可能である。また、基板10に所望の膜を形成する成膜処理に代えて、エッチング処理を行うプラズマ処理装置に上述したプラズマ処理装置1を適用してもよい。この場合、それぞれの処理条件に応じてプロセスガスの種類又は流量が適切に変更される。
 以上詳述したように、本発明は、搬出入部における異常放電を防止し、印加可能な高周波電圧を大きくすることができるプラズマ処理装置に有用である。
 1…プラズマ処理装置 2…真空チャンバ(チャンバ) 2a…成膜空間(反応室) 4…電極フランジ 5…シャワープレート 9…RF電源(電圧印加部) 10…基板 10a…処理面 15…ヒータ(支持部) 30…アースプレート(プレート部材) 33…内側面 34…側壁 35…外側面 36…搬出入部 55…第一ドアバルブ 56…第二ドアバルブ 56a…面部 56b…端部 57…コイルスプリング(弾性部材) 81…絶縁フランジ 101…処理室 G2…間隙。

Claims (4)

  1.  プラズマ処理装置であって、
     側壁を有するチャンバと、電極フランジと、前記チャンバ及び前記電極フランジによって挟まれた絶縁フランジとから構成され、反応室を有する処理室と、
     前記反応室内に収容され、処理面を有する基板が載置され、前記基板の温度を制御する支持部と、
     前記チャンバの前記側壁に設けられ、前記反応室に前記基板を搬出又は搬入するために用いられる搬出入部と、
     前記電極フランジに接続され、高周波電圧を印加するRF電源と、
     前記搬出入部に設けられ、前記搬出入部を開閉する第一ドアバルブと、
     前記チャンバと電気的に接続され、前記チャンバの内側面と同一平面上に位置する面部を有する第二ドアバルブと、
     を含むことを特徴とするプラズマ処理装置。
  2.  請求項1に記載のプラズマ処理装置であって、
     前記第二ドアバルブは、導電性を有する弾性部材が設けられる端部を有することを特徴とするプラズマ処理装置。
  3.  請求項1に記載のプラズマ処理装置であって、
     前記第二ドアバルブと前記チャンバとの間に間隙が設けられ、前記第二ドアバルブと前記チャンバとが電気的に接続されることを特徴とするプラズマ処理装置。
  4.  請求項1に記載のプラズマ処理装置であって、
     前記反応室内に収容され、前記処理面に対向するように配置され、前記基板に向けてプロセスガスを供給するシャワープレートを含むことを特徴とするプラズマ処理装置。
PCT/JP2010/000067 2009-01-09 2010-01-07 プラズマ処理装置 WO2010079756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112010000781T DE112010000781T5 (de) 2009-01-09 2010-01-07 Plasmaverarbeitungsvorrichtung
CN2010800041209A CN102272895A (zh) 2009-01-09 2010-01-07 等离子体处理装置
KR1020117015408A KR101289770B1 (ko) 2009-01-09 2010-01-07 플라즈마 처리 장치
JP2010545749A JPWO2010079756A1 (ja) 2009-01-09 2010-01-07 プラズマ処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009004025 2009-01-09
JP2009-004025 2009-01-09

Publications (1)

Publication Number Publication Date
WO2010079756A1 true WO2010079756A1 (ja) 2010-07-15

Family

ID=42316522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000067 WO2010079756A1 (ja) 2009-01-09 2010-01-07 プラズマ処理装置

Country Status (6)

Country Link
JP (1) JPWO2010079756A1 (ja)
KR (1) KR101289770B1 (ja)
CN (1) CN102272895A (ja)
DE (1) DE112010000781T5 (ja)
TW (1) TW201112885A (ja)
WO (1) WO2010079756A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028682A (ja) * 2010-07-27 2012-02-09 Mitsubishi Electric Corp プラズマ装置およびこれを用いた半導体薄膜の製造方法
JP2012186248A (ja) * 2011-03-04 2012-09-27 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
KR101771604B1 (ko) 2012-03-30 2017-08-25 어플라이드 머티어리얼스, 인코포레이티드 무선 주파수(rf) 리턴 경로를 갖는 기판 지지부
WO2017221829A1 (ja) * 2016-06-22 2017-12-28 株式会社アルバック プラズマ処理装置
JP2020181839A (ja) * 2019-04-23 2020-11-05 株式会社アルバック プラズマ処理装置
JP2020181840A (ja) * 2019-04-23 2020-11-05 株式会社アルバック プラズマ処理装置
CN112563158A (zh) * 2019-09-26 2021-03-26 株式会社爱发科 真空处理装置
KR20210089774A (ko) 2019-01-07 2021-07-16 가부시키가이샤 아루박 진공 처리 장치
KR20210090261A (ko) 2019-01-07 2021-07-19 가부시키가이샤 아루박 진공 처리 장치, 진공 처리 장치의 클리닝 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7201398B2 (ja) * 2018-11-08 2023-01-10 株式会社日立ハイテク プラズマ処理装置
JP7510457B2 (ja) * 2022-04-06 2024-07-03 株式会社アルバック プラズマ処理装置
CN115341198B (zh) * 2022-07-05 2023-08-04 湖南红太阳光电科技有限公司 一种平板式pecvd设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820879A (ja) * 1994-07-08 1996-01-23 Nissin Electric Co Ltd プラズマ処理装置
JPH11154599A (ja) * 1997-11-21 1999-06-08 Matsushita Electric Ind Co Ltd プラズマ処理装置
JP2001148378A (ja) * 1999-11-22 2001-05-29 Tokyo Electron Ltd プラズマ処理装置、クラスターツールおよびプラズマ制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819411B2 (ja) * 2005-06-22 2011-11-24 東京エレクトロン株式会社 プラズマ処理装置
JP4885586B2 (ja) * 2006-03-23 2012-02-29 東京エレクトロン株式会社 プラズマ処理装置
JP5022077B2 (ja) 2007-03-27 2012-09-12 株式会社アルバック 成膜装置
JP2009004025A (ja) 2007-06-21 2009-01-08 Ricoh Co Ltd レンズアクチュエータおよび光ピックアップならびに光学式記録/再生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820879A (ja) * 1994-07-08 1996-01-23 Nissin Electric Co Ltd プラズマ処理装置
JPH11154599A (ja) * 1997-11-21 1999-06-08 Matsushita Electric Ind Co Ltd プラズマ処理装置
JP2001148378A (ja) * 1999-11-22 2001-05-29 Tokyo Electron Ltd プラズマ処理装置、クラスターツールおよびプラズマ制御方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028682A (ja) * 2010-07-27 2012-02-09 Mitsubishi Electric Corp プラズマ装置およびこれを用いた半導体薄膜の製造方法
JP2012186248A (ja) * 2011-03-04 2012-09-27 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
KR101771604B1 (ko) 2012-03-30 2017-08-25 어플라이드 머티어리얼스, 인코포레이티드 무선 주파수(rf) 리턴 경로를 갖는 기판 지지부
WO2017221829A1 (ja) * 2016-06-22 2017-12-28 株式会社アルバック プラズマ処理装置
JPWO2017221829A1 (ja) * 2016-06-22 2018-11-29 株式会社アルバック プラズマ処理装置
KR20190019965A (ko) 2016-06-22 2019-02-27 가부시키가이샤 아루박 플라즈마 처리장치
KR20210089774A (ko) 2019-01-07 2021-07-16 가부시키가이샤 아루박 진공 처리 장치
US11901162B2 (en) 2019-01-07 2024-02-13 Ulvac, Inc. Vacuum processing apparatus and method of cleaning vacuum processing apparatus
KR20210090261A (ko) 2019-01-07 2021-07-19 가부시키가이샤 아루박 진공 처리 장치, 진공 처리 장치의 클리닝 방법
JP7245107B2 (ja) 2019-04-23 2023-03-23 株式会社アルバック プラズマ処理装置
JP2020181840A (ja) * 2019-04-23 2020-11-05 株式会社アルバック プラズマ処理装置
JP7264710B2 (ja) 2019-04-23 2023-04-25 株式会社アルバック プラズマ処理装置
JP2020181839A (ja) * 2019-04-23 2020-11-05 株式会社アルバック プラズマ処理装置
KR20210036807A (ko) 2019-09-26 2021-04-05 가부시키가이샤 아루박 진공 처리 장치
CN112563158A (zh) * 2019-09-26 2021-03-26 株式会社爱发科 真空处理装置
CN112563158B (zh) * 2019-09-26 2024-04-19 株式会社爱发科 真空处理装置

Also Published As

Publication number Publication date
KR20110094113A (ko) 2011-08-19
TW201112885A (en) 2011-04-01
JPWO2010079756A1 (ja) 2012-06-21
DE112010000781T5 (de) 2012-08-30
KR101289770B1 (ko) 2013-07-26
CN102272895A (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
WO2010079756A1 (ja) プラズマ処理装置
US20080230008A1 (en) Plasma species and uniformity control through pulsed vhf operation
TWI414628B (zh) 電漿處理裝置及電漿cvd成膜方法
US8906471B2 (en) Method of depositing metallic film by plasma CVD and storage medium
US20070227450A1 (en) Plasma Cvd Equipment
WO2009104379A1 (ja) 原子層成長装置および原子層成長方法
KR101802559B1 (ko) 기판 처리 장치
KR20100095427A (ko) 프로세싱 챔버의 개구를 밀봉하는 방법 및 장치
US20090314435A1 (en) Plasma processing unit
KR101971773B1 (ko) 기판 처리 장치
KR20150127537A (ko) 기판 처리 장치 및 플라즈마 처리 방법
US9196461B2 (en) Plasma processing apparatus
US10968514B2 (en) Substrate mounting table
JP5022077B2 (ja) 成膜装置
TW202232567A (zh) 蝕刻方法及電漿處理裝置
WO2010092758A1 (ja) 薄膜形成装置および薄膜形成方法
JP5394403B2 (ja) プラズマ処理装置
US20220262601A1 (en) Etching method and plasma processing apparatus
WO2010079740A1 (ja) プラズマ処理装置
TW201527587A (zh) 半導體系統組合件及操作方法
JP2021141188A (ja) プラズマ処理装置、半導体部材、及びエッジリング
JP2004047500A (ja) プラズマ処理装置およびその初期化方法
US20230282452A1 (en) Cleaning method, method of manufacturing semiconductor device, plasma treatment device, and outer circumferential ring set
JP2022074000A (ja) エッチング方法及びプラズマ処理装置
JP2010182729A (ja) プラズマcvd装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004120.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010545749

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117015408

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112010000781

Country of ref document: DE

Ref document number: 1120100007810

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10729176

Country of ref document: EP

Kind code of ref document: A1