Nothing Special   »   [go: up one dir, main page]

WO2010073801A1 - Illumination optical system, exposure apparatus, and device manufacturing method - Google Patents

Illumination optical system, exposure apparatus, and device manufacturing method Download PDF

Info

Publication number
WO2010073801A1
WO2010073801A1 PCT/JP2009/067925 JP2009067925W WO2010073801A1 WO 2010073801 A1 WO2010073801 A1 WO 2010073801A1 JP 2009067925 W JP2009067925 W JP 2009067925W WO 2010073801 A1 WO2010073801 A1 WO 2010073801A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
light
optical
illumination
optical system
Prior art date
Application number
PCT/JP2009/067925
Other languages
French (fr)
Japanese (ja)
Inventor
田中 裕久
Original Assignee
株式会社 ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ニコン filed Critical 株式会社 ニコン
Publication of WO2010073801A1 publication Critical patent/WO2010073801A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0095Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]

Definitions

  • the present invention relates to an illumination optical system that illuminates a surface to be irradiated based on light emitted from a light source, an exposure apparatus including the illumination optical system, and a device manufacturing method using the exposure apparatus.
  • an exposure apparatus for manufacturing a micro device such as a semiconductor integrated circuit includes an illumination optical system for guiding exposure light output from a light source to a mask such as a reticle on which a predetermined pattern is formed.
  • an illumination optical system is provided with a fly-eye lens as an optical integrator.
  • the illumination pupil at a position optically Fourier-transformed with respect to the irradiated surface of the mask on the exit surface side of the fly-eye lens is composed of a number of light sources.
  • a secondary light source is formed as a substantial surface light source. The secondary light source indicates a light intensity distribution at the illumination pupil (hereinafter referred to as “pupil intensity distribution”).
  • the exposure light from such a secondary light source is condensed by a condenser lens and then illuminates the mask in a superimposed manner.
  • the exposure light transmitted through the mask is irradiated onto a substrate such as a wafer to which a photosensitive material is applied via a projection optical system.
  • the mask pattern is projected and transferred (transferred) onto the substrate.
  • the fine pattern of the mask when the fine pattern of the mask is accurately transferred onto the substrate, not only the pupil intensity distribution is adjusted to a desired shape, but also the light intensity at each point on the substrate, which is the final irradiated surface, is approximately It is necessary to adjust uniformly. If there is variation in the light intensity at each point on the substrate, the line width of the pattern varies from position to position on the substrate, and the fine pattern of the mask is accurately applied to the substrate with the desired line width over the entire exposure area. There was a possibility that it could not be transferred.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an illumination optical system, an exposure apparatus, and a device manufacturing method capable of adjusting a light intensity distribution on an irradiated surface. There is.
  • the illumination optical system of the present invention is an illumination optical system (13) that illuminates the irradiated surface (Ra, Wa) with light (EL) from a light source (12), and the optical axis of the illumination optical system (13).
  • Wa Wa
  • a plurality of exit side optical surfaces 53, 53) arranged in planes (51a, 51b) intersecting the optical axis (AX) and individually corresponding to the plurality of entrance side optical surfaces (52, 54).
  • 55 forms a predetermined light intensity distribution on the illumination pupil plane (27) in the illumination optical path of the illumination optical system (13) when light (EL) from the light source (12) enters.
  • a dimming unit (66) disposed on the source (12) side for dimming a part of light (EL) incident on at least some of the incident side optical surfaces (52, 54).
  • the dimming portion (66, 66A) has a width along a first direction intersecting the optical axis direction of the illumination optical system in a plane intersecting the optical axis (AX).
  • the gist is that the length along the optical axis direction is longer than that.
  • part of the light that is about to enter at least some of the incident-side optical surfaces (52, 54) of the optical integrator (26) is a light source of the optical integrator (26). It is dimmed by the dimming part (66, 66A) arranged on the (12) side.
  • the light intensity distribution (also referred to as “pupil intensity distribution”) at each point on the irradiated surface (Ra, Wa) is independently adjusted by the light reducing action by the light reducing section (66, 66A). Therefore, it is possible to adjust the light intensity distribution at each point on the irradiated surface (Ra, Wa) to a distribution having substantially the same property.
  • the light intensity distribution on the irradiated surface can be adjusted.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • (A) is a schematic diagram which shows the illumination area
  • (b) is a schematic diagram which shows the static exposure area
  • FIG. 5 is an operation diagram schematically showing a relationship between an incident angle of exposure light with respect to a first micro fly's eye lens and a length along a Y-axis direction of a light shielding member.
  • (A) is a schematic diagram which shows 1st pupil intensity distribution in case each light shielding member is arrange
  • (b) is a schematic diagram which shows 2nd pupil intensity distribution.
  • (A) is a schematic diagram which shows the 1st pupil intensity distribution in case each light shielding member is arrange
  • (b) is a schematic diagram which shows a 2nd pupil intensity distribution.
  • DESCRIPTION OF SYMBOLS 11 Exposure apparatus, 12 ... Light source device, 13 ... Illumination optical system, 15 ... Projection optical system, 26 ... Optical integrator, 27 ... Illumination pupil plane, 36 ... Pupil intensity distribution measuring device, 40 ... Control apparatus, 42 ... Aperture stop , 50... First micro fly's eye lens as the first optical member, 51. Second micro fly's eye lens as the second optical member, 50 a, 51 a... Entrance surface, 50 b and 51 b. Cylindrical lens surface as a side optical surface, 53... Cylindrical lens surface as a first emission side optical surface, 54... Cylindrical lens surface as a second incidence side optical surface, 55 ...
  • the optical axis (vertical direction in FIG. 1) of the projection optical system 15 to be described later is referred to as the Z-axis direction
  • the horizontal direction in FIG. 1 is referred to as the Y-axis direction
  • the direction to do is referred to as the X-axis direction.
  • the exposure apparatus 11 of the present embodiment illuminates exposure light EL onto a transmissive reticle R on which a predetermined circuit pattern is formed, thereby providing a surface Wa (+ Z direction side surface).
  • 1 is an apparatus for projecting an image of a circuit pattern onto a wafer W coated with a photosensitive material such as a resist on the upper surface in FIG.
  • Such an exposure apparatus 11 includes an illumination optical system 13 that guides the exposure light EL emitted from the light source device 12 to an irradiated surface Ra (surface on the + Z direction side) of the reticle R, a reticle stage 14 that holds the reticle R, and a reticle.
  • a projection optical system 15 that guides the exposure light EL that has passed through R to the surface Wa of the wafer W, and a wafer stage 16 that holds the wafer W are provided.
  • the light source device 12 of this embodiment has an ArF excimer laser light source that outputs light having a wavelength of 193 nm, and light output from the ArF excimer laser light source is guided into the exposure device 11 as exposure light EL.
  • the illumination optical system 13 includes a shaping optical system 17 for converting the exposure light EL emitted from the light source device 12 into a parallel light beam having a predetermined cross-sectional shape (for example, a substantially rectangular cross section), and the shaping optical system 17. And a first reflection mirror 18 that reflects the exposure light EL emitted from the light to the reticle R side (here, the + Y direction side and the right side in FIG. 1).
  • a diffractive optical element 19 is provided on the exit side (reticle R side) of the first reflecting mirror 18.
  • the diffractive optical element 19 is formed by forming a plurality of steps having a pitch approximately equal to the wavelength of the exposure light EL on the glass substrate.
  • the diffractive optical element 19 receives the exposure light EL incident from the incident side (light source device 12 side). It has the effect of diffracting to a predetermined angle.
  • the diffractive optical element 19 for annular illumination when used, when the exposure light EL of a parallel light beam having a substantially rectangular cross section is incident on the diffractive optical element 19 from the incident side, the cross-sectional shape is changed from the diffractive optical element 19.
  • a luminous flux having an annular shape is emitted to the reticle R side.
  • the diffractive optical element 19 for illuminating a plurality of poles (two poles, four poles, eight poles, etc.)
  • exposure light EL of a parallel light beam having a substantially rectangular cross section enters the diffractive optical element 19 from the incident side.
  • a plurality of (for example, four) light beams corresponding to the number of poles are emitted to the reticle R side.
  • the illumination optical system 13 is provided with an afocal optical system 20 (also referred to as “non-focal optical system”) on which the exposure light EL emitted from the diffractive optical element 19 is incident.
  • the afocal optical system 20 includes a first lens group 21 (only one lens is shown in FIG. 1) and a second lens group 22 (shown in FIG. 1) arranged on the exit side from the first lens group 21. Only one lens is shown).
  • the focal position on the incident side of the afocal optical system 20 is substantially the same as the installation position of the diffractive optical element 19, and the focal position on the exit side of the afocal optical system 20 is a predetermined surface indicated by a broken line in FIG. It is formed so as to be substantially the same as the position 23.
  • the incident position of the exposure light EL is at a position optically conjugate with or near the illumination pupil plane 27 of the optical integrator 26 described later.
  • a correction filter 24 having a transmittance distribution with different transmittances is provided.
  • the correction filter 24 is a filter in which a light-shielding dot pattern made of chromium, chromium oxide, or the like is formed on a glass substrate whose incident side surface and emission side surface are parallel.
  • An optical system 25 is provided, and the zoom optical system 25 is disposed on the exit side with respect to the predetermined surface 23. Further, on the exit side of the zoom optical system 25, an optical integrator 26 and a distribution correction unit 31 for adjusting the amount of exposure light EL incident on the optical integrator 26 are provided.
  • the distribution correction unit 31 includes an illumination region ER1 (see FIG.
  • This is a unit for correcting the light intensity distribution at each point in (see FIG. 4B).
  • the specific configuration of the distribution correction unit 31 will be described later.
  • the optical integrator 26 has an incident surface (a surface on the ⁇ Y direction side, which is the left surface in FIG. 1) located at a focal position (also referred to as a pupil plane) on the exit side of the zoom optical system 25 or in the vicinity of the focal position.
  • a focal position also referred to as a pupil plane
  • the incident surface of the optical integrator 26 has a substantially Fourier transform relationship with the predetermined surface 23, and the incident surface of the optical integrator 26 is the pupil plane of the afocal optical system 20 (that is, the installation position of the correction filter 24).
  • an optically conjugate positional relationship is incident on such an optical integrator 26 in a state of being converted into a parallel light beam from the zoom optical system 25 side.
  • the optical integrator 26 wave-divides the incident exposure light EL into a plurality of light beams, and a predetermined light intensity distribution (also referred to as “pupil intensity distribution”) on the illumination pupil plane 27 located on the exit side (+ Y direction side). .).
  • the illumination pupil plane 27 on which the pupil intensity distribution is formed is also referred to as a secondary light source 60 (see FIG. 3) composed of a number of surface light sources.
  • an illumination aperture stop (not shown) is provided at a position optically conjugate with the entrance pupil plane of the projection optical system 15 and defines a range contributing to illumination of the secondary light source 60. Is provided.
  • This illumination aperture stop has a plurality of openings having different sizes and shapes.
  • an opening corresponding to the cross-sectional shape of the exposure light EL emitted from the secondary light source 60 is disposed in the optical path of the exposure light EL. That is, when the cross-sectional shape of the exposure light EL emitted from the secondary light source 60 is an annular shape, the illumination aperture stop is driven so that the opening corresponding to the annular shape is located in the optical path of the exposure light EL. It is supposed to be.
  • the illumination aperture stop has an opening having a shape corresponding to the quadrupole shape in the optical path of the exposure light EL.
  • a first condenser optical system 28 composed of at least one lens (only one is shown in FIG. 1), and the exit side of the first condenser optical system 28.
  • a reticle blind 29 (also referred to as a “mask blind”) disposed at a position optically conjugate with the irradiated surface Ra of the reticle R is provided.
  • the first condenser optical system 28 includes an optical element (lens) having power (reciprocal of focal length).
  • the reticle blind 29 is formed with a rectangular opening 29a whose longitudinal direction is the Z-axis direction and whose lateral direction is the X-axis direction.
  • the exposure light EL emitted from the first condenser optical system 28 illuminates the reticle blind 29 in a superimposed manner.
  • the optical element having power is an optical element in which the characteristics of the exposure light EL change when the exposure light EL enters the optical element.
  • a second condenser optical system 30 composed of a lens having power is provided on the exit side of the reticle blind 29, and the second condenser optical system 30 substantially receives light incident from the reticle blind 29 side. The light is converted into a parallel light beam.
  • An imaging optical system 32 is provided on the exit side of the second condenser optical system 30.
  • the imaging optical system 32 includes an incident side lens group 33, a second reflecting mirror 34 that reflects the exposure light EL emitted from the incident side lens group 33 to the ⁇ Z direction side (lower side in FIG. 1), And an exit side lens group 35 disposed on the exit side of the second reflecting mirror 34.
  • the incident side lens group 33 is composed of at least one optical element (lens) having power (only one is shown in FIG.
  • the emission side lens group 35 is at least one (one in FIG. 1). It is comprised from the optical element (lens) which has the power of only illustration.
  • the exposure light EL emitted from the imaging optical system 32 illuminates the irradiated surface Ra of the reticle R in a superimposed manner.
  • the shape of the opening 29a of the reticle blind 29 is rectangular as described above. Therefore, as shown in FIGS. 4A and 4B, the illumination area ER1 on the reticle R and the static exposure area ER2 on the wafer W are in the Y-axis direction as the first direction and short. Each is formed in a rectangular shape whose direction is the X-axis direction as the second direction.
  • the reticle stage 14 is arranged on the object plane side of the projection optical system 15 so that the mounting surface of the reticle R is substantially orthogonal to the optical axis direction (Z-axis direction) of the projection optical system 15.
  • the reticle stage 14 is provided with a reticle stage drive unit (not shown) that moves the held reticle R with a predetermined stroke in the X-axis direction.
  • the pupil intensity distribution measuring device 36 is a device that measures the pupil intensity distribution formed by each incident light incident on one point in the illumination area ER1 on the reticle R in the secondary light source 60 for each point (for each position).
  • the pupil intensity distribution measuring device 36 includes a beam splitter 37 that reflects part of the exposure light EL (also referred to as “reflected light”) emitted from the exit side lens group 35 toward the reticle R, and the beam splitter 37.
  • the detection unit 39 includes a CCD imaging device, a photodiode, and the like, and a detection signal corresponding to the incident reflected light is output from the detection unit 39 to the control device 40. And the control apparatus 40 derives
  • FIG. The pupil intensity distribution measuring device 36 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-54328, Japanese Patent Application Laid-Open No. 2003-22967, and US Patent Publication No. 2003/0038225 corresponding thereto.
  • the projection optical system 15 includes a lens barrel 41 filled with an inert gas such as nitrogen, and a plurality of lenses (not shown) are provided in the lens barrel 41 along the optical path (Z-axis direction) of the exposure light EL. Is provided.
  • an aperture stop 42 is disposed in the lens barrel 41 at a position that is optically Fourier-transformed with the installation position of the surface Wa of the wafer W and the installation position of the irradiated surface Ra of the reticle R. Then, the image of the circuit pattern on the reticle R illuminated with the exposure light EL is projected and transferred onto the wafer W on the wafer stage 16 in a state reduced to a predetermined reduction magnification via the projection optical system 15. .
  • the optical path indicates a path through which the exposure light EL is intended to pass in the use state.
  • the wafer stage 16 includes a planar mounting surface 43 that is substantially orthogonal to the optical axis of the projection optical system 15, and the wafer W is mounted on the mounting surface 43.
  • the wafer stage 16 is provided with a wafer stage driving unit (not shown) that moves the wafer W to be held in the X-axis direction with a predetermined stroke. Further, the wafer stage 16 is provided with a function of finely adjusting the position of the wafer W so that the surface Wa of the wafer W is perpendicular to the optical axis of the projection optical system 15.
  • the reticle R is driven from the + X direction side to the ⁇ X direction side (near the paper surface in FIG. 1) by driving the reticle stage driving unit. From the side to the back side of the drawing) at every predetermined stroke. Then, the illumination area ER1 on the reticle R moves from the ⁇ X direction side of the irradiated surface Ra of the reticle R along the + X direction side (in FIG. 1, from the back side to the front side of the paper). That is, the pattern of the reticle R is sequentially scanned from the ⁇ X direction side to the + X direction side.
  • the wafer W is driven from the ⁇ X direction side to the + X direction side at a speed ratio corresponding to the reduction magnification of the projection optical system 15 with respect to the movement of the reticle R along the X-axis direction by driving the wafer stage driving unit. Move synchronously. As a result, a pattern having a shape obtained by reducing the circuit pattern on the reticle R to a predetermined reduction ratio is formed in one shot region of the wafer W in accordance with the synchronous movement of the reticle R and the wafer W. When the pattern formation on one shot area is completed, the pattern formation on the other shot areas of the wafer W is continuously performed.
  • the optical integrator 26 includes a pair of micro fly's eye lenses 50 and 51 arranged along the optical axis AX of the illumination optical system 13 (indicated by a one-dot chain line in FIGS. 1 and 2). ing. These micro fly's eye lenses 50 and 51 are respectively arranged so that the illumination pupil plane 27 located on the exit side of the optical integrator 26 is formed at a position optically conjugate with the aperture stop 42 of the projection optical system 15. Yes.
  • an incident surface 50a that is substantially orthogonal to the optical axis AX of the illumination optical system 13. , 51a are formed.
  • exit surfaces 50b and 51b that are substantially orthogonal to the optical axis AX of the illumination optical system 13 are formed, respectively.
  • a plurality of (10 in FIG. 2) cylindrical lens surfaces 52 and 53 extending in the Z-axis direction as the third direction are on the incident surfaces 50a and 51a side of both the micro fly's eye lenses 50 and 51.
  • Each of the cylindrical lens surfaces 52 and 53 is formed so as to have a shape obtained by cutting a part of a cylinder, and the length (that is, the width) of each cylindrical lens surface 52 and 53 in the X-axis direction is the first.
  • a plurality (10 in FIG. 2) of cylindrical lens surfaces 54 and 55 extending in the X-axis direction are arranged along the Z-axis direction on the exit surfaces 50b and 51b side of both the micro fly's eye lenses 50 and 51, respectively. ing.
  • Each of the cylindrical lens surfaces 54 and 55 is formed to have a shape obtained by cutting a part of a cylinder, and the length (that is, the width) of each cylindrical lens surface 54 and 55 in the Z-axis direction is the first.
  • the second width H2 is wider than the first width H1.
  • the first width H1 and the second width H2 are the length in the X-axis direction and the length in the Z-axis direction of the opening 29a of the reticle blind 29, that is, the length in the X-axis direction of the illumination area ER1 and the still exposure area ER2. And the length in the Y-axis direction correspond to each other.
  • the exposure light EL that is, the parallel light beam
  • the exposure light EL incident along the optical axis AX of the illumination optical system 13 is incident on the incident surface 50a of the first micro fly's eye lens 50.
  • Each of the cylindrical lens surfaces 52 is divided into wavefronts at intervals of the first width H1 along the X-axis direction.
  • the light beams divided by the respective cylindrical lens surfaces 52 are focused on the corresponding cylindrical lens surfaces among the respective cylindrical lens surfaces 53 formed on the incident surface 51a of the second micro fly's eye lens 51. After that, the light is condensed on the illumination pupil plane 27 located on the exit side of the optical integrator 26.
  • the exposure light EL that is, the parallel light beam
  • the exposure light EL incident along the optical axis AX of the illumination optical system 13
  • Wavefront division is performed at intervals of the second width H2 along the Z-axis direction by the cylindrical lens surfaces 54 formed on the surface 50b.
  • the light beams divided by the respective cylindrical lens surfaces 54 are condensed on the corresponding cylindrical lens surfaces among the respective cylindrical lens surfaces 55 formed on the exit surface 51b of the second micro fly's eye lens 51.
  • the light is condensed on the illumination pupil plane 27 located on the exit side of the optical integrator 26.
  • a large number of point light sources 78 are formed on the illumination pupil plane 27.
  • the first width H1 and the second width H2 of the cylindrical lens surfaces 52 to 55 of the micro fly's eye lenses 50 and 51 are originally very narrow. Therefore, the number of wavefront divisions in the optical integrator 26 of the present embodiment is larger than when a fly-eye lens composed of a plurality of lens elements is used.
  • the global light intensity distribution formed on the incident side of the optical integrator 26 and the global light intensity distribution of the entire secondary light source formed on the illumination pupil plane 27 on the exit side are highly correlated with each other. Show the relationship. Therefore, the light intensity distribution on the incident side of the optical integrator 26 and on a surface optically conjugate with the incident side can also be referred to as a pupil intensity distribution.
  • a diffractive optical element for annular illumination when used as the diffractive optical element 19, an annular illumination field around the optical axis AX of the illumination optical system 13 is formed on the incident side of the optical integrator 26.
  • an annular secondary light source 60 is formed on the illumination pupil plane 27 located on the exit side of the optical integrator 26, the same as the annular illumination field formed on the incident side.
  • a diffractive optical element for multipole illumination is used as the diffractive optical element 19
  • a plurality of predetermined shapes (arc shape, circular shape) around the optical axis AX of the illumination optical system 13 are provided on the incident side of the optical integrator 26.
  • a multipolar illuminating field is formed.
  • a multipolar secondary light source 60 is formed on the illumination pupil plane 27 located on the exit side of the optical integrator 26, the same as the multipolar illumination field formed on the incident side.
  • a diffractive optical element 19 for quadrupole illumination is used.
  • the secondary light source 60 includes an arcuate first surface light source 60a positioned on the + X direction side of the optical axis AX of the illumination optical system 13, and a ⁇ X direction side of the optical axis AX of the illumination optical system 13.
  • a second arc surface-shaped second surface light source 60b is provided, and the distance between the first surface light source 60a and the optical axis AX is substantially equal to the distance between the second surface light source 60b and the optical axis AX.
  • the secondary light source 60 includes an arcuate third surface light source 60c positioned on the + Z direction side of the optical axis AX of the illumination optical system 13, and a circle positioned on the ⁇ Z direction side of the optical axis AX of the illumination optical system 13.
  • An arcuate fourth surface light source 60d is provided, and the distance between the third surface light source 60c and the optical axis AX is substantially equal to the distance between the fourth surface light source 60d and the optical axis AX.
  • Each of the surface light sources 60a to 60d is composed of a number of point light sources 78 (see FIG. 9) formed on the illumination pupil plane 27 by the optical integrator 26.
  • each exposure light EL emitted from each of the surface light sources 60a to 60d is guided onto the reticle R, as shown in FIG. 4A, the longitudinal direction is on the Y-axis on the irradiated surface Ra of the reticle R.
  • a rectangular illumination region ER1 that is a direction and whose short direction is the X-axis direction is formed.
  • a rectangular still exposure region ER2 corresponding to the illumination region ER1 on the reticle R is formed on the surface Wa of the wafer W.
  • each of the quadrupole pupil intensity distributions formed by the incident light incident on each point in the still exposure region ER2 (and the illumination region ER1) does not depend on the position where the exposure light EL is incident on each other. It has almost the same shape.
  • the light intensity of the quadrupole pupil intensity distribution for each point in the still exposure region ER2 (and the illumination region ER1) tends to vary depending on the position of the exposure light EL incident on the still exposure region ER2. There is.
  • exposure light EL also referred to as “first incident light”
  • first incident light incident on center points P1a and P1b in the Y-axis direction in the illumination region ER1 and the static exposure region ER2.
  • the light intensity of the third surface light source 61c and the fourth surface light source 61d arranged along the Z-axis direction is the first surface arranged along the X-axis direction.
  • the peripheral points P2a, P3a, P2b which are separated from the center points P1a, P1b in the Y-axis direction in the illumination region ER1 and the still exposure region ER2.
  • Each exposure light EL incident on P3b (hereinafter, light incident on the peripheral point P2b is also referred to as “second incident light” and light incident on the peripheral point P3b is also referred to as “third incident light”).
  • the light intensity of the third surface light source 62c and the fourth surface light source 62d arranged along the Z-axis direction is the first surface light source 62a arranged along the X-axis direction and It tends to be weaker than the light intensity of the second surface light source 62b.
  • the pupil intensity distributions 61 and 62 referred to here are obtained when the correction filter 24 and light shielding members 68, 69, 70, and 71 to be described later are not arranged in the optical path of the exposure light EL in the illumination optical system 13. It shows the light intensity distribution corresponding to each point P1b, P2b, P3b in the still exposure region ER2 formed on the illumination pupil plane 27 and a pupil conjugate plane optically conjugate with the illumination pupil plane 27.
  • the light intensity distribution along the Z-axis direction of the first pupil intensity distribution 61 corresponding to the center points P1a and P1b has the weakest center in the Z-axis direction as shown in FIG.
  • the distribution is a concave curve that gradually becomes stronger as the distance from the first Z-axis increases along the Z-axis direction.
  • the light intensity distribution along the Z-axis direction of each second pupil intensity distribution 62 corresponding to each peripheral point P2a, P2b, P3a, P3b has a center in the Z-axis direction as shown in FIG.
  • the distribution is a convex curved surface that becomes the strongest and gradually weakens as the distance from the center along the Z-axis direction increases.
  • the light intensity distribution along the Z-axis direction of the pupil intensity distributions 61 and 62 hardly depends on the position of each point along the X-axis direction in the illumination region ER1 and the still exposure region ER2, but the illumination region ER1 and There is a tendency to change depending on the position of each point along the Y-axis direction in the still exposure region ER2. Therefore, when the pupil intensity distributions 61 and 62 individually corresponding to the points P1b, P2b, and P3b along the Y-axis direction in the still exposure region ER2 are not uniform, the line width of the pattern formed on the wafer W is set. Variations may occur. In order to solve such a problem, a correction filter 24 and a distribution correction unit 31 are provided in the illumination optical system 13 of the present embodiment.
  • the correction filter 24 of this embodiment dimmes the light flux that constitutes the third surface light source 60c and the fourth surface light source 60d along the Z-axis direction among the secondary light sources 60 formed on the illumination pupil plane 27. On the other hand, it has a transmittance distribution that hardly diminishes the light beams constituting the first surface light source 60a and the second surface light source 60b along the X-axis direction.
  • the distribution correction unit 31 includes a support member 65 having a square ring shape, and one of the cylindrical lens surfaces 54 supported by the support member 65 and on the exit side of the first micro fly's eye lens 50. And a light shielding part 66 as a light reducing part for shielding part of the exposure light EL that is to be incident on the lens surface of the part.
  • the support member 65 is formed with an opening 65 a having a shape surrounding the optical path of the exposure light EL that can enter the micro fly's eye lenses 50 and 51.
  • Surface light sources 67a and 67b individually corresponding to the surface light sources 60a to 60d formed on the illumination pupil plane 27 on the incident surface 50a of the first micro fly's eye lens 50 by the exposure light EL that has passed through the opening 65a. , 67c, 67d are formed.
  • the light shielding portion 66 includes a plurality of (four in the present embodiment) light shielding members 68, 69, 70, 71 as light-reducing members that extend along the X-axis direction that is the direction in which the cylindrical lens surfaces 54, 55 extend.
  • a moving mechanism 72 for individually moving the light shielding members 68 to 71 and an advance / retreat mechanism (not shown) for moving the light shielding members 68 to 71 forward and backward between the optical path of the exposure light EL and the outside of the optical path are provided. ing.
  • the moving mechanism 72 is provided with a plurality of drive sources 73, 74, 75, and 76 that individually correspond to the light shielding members 68 to 71, and each of the drive sources 73 to 76 responds to a control command from the control device 40. Each is driven based on this.
  • Each of the drive sources 73 to 76 has a first driving force for moving the light shielding members 68 to 71 in the Z-axis direction that is the width direction of the cylindrical lens surfaces 54 and 55, and the light shielding members 68 to 71 to the optical axis.
  • the second driving force for moving in the Y-axis direction which is the direction, can be applied to each light shielding member 68-71.
  • Each of the light shielding members 68 to 71 includes a plurality (two in the present embodiment) of first light shielding members 68 and 69 positioned on the + X direction side (right side in FIG. 8) of the optical axis AX of the illumination optical system 13, and illumination.
  • the optical system 13 is classified into a plurality (two in the present embodiment) of second light shielding members 70 and 71 located on the ⁇ X direction side (left side in FIG. 8) of the optical axis AX.
  • the first light shielding members 68 and 69 are light shielding members respectively disposed in the optical path of the exposure light EL that forms the first surface light source 67a on the incident surface 50a of the first micro fly's eye lens 50.
  • Each of the second light shielding members 70 and 71 is a light shielding member disposed in the optical path of the exposure light EL that forms the second surface light source 67b on the incident surface 50a of the first micro fly's eye lens 50.
  • the light shielding member 68 to 71 shields part of the exposure light EL that is about to enter the first micro fly's eye lens 50, thereby exposing the exposure light EL.
  • the light intensity of each of the first surface light source 67a and the second surface light source 67b is weakened as compared with the case where the light source is not arranged in the optical path.
  • each of the light shielding members 68 to 71 extends along a direction (X-axis direction in this embodiment) corresponding to the scanning direction (X-axis direction) of the wafer W and the reticle R at the time of exposure. Each is formed in a quadrangular prism shape. Each of the light shielding members 68 to 71 has a length (hereinafter referred to as “width”) D in the Z-axis direction orthogonal to the Y-axis direction, which is the optical axis direction, of the second width of the cylindrical lens surfaces 54 and 55. Each is formed so as to be narrower than H2.
  • the light shielding members 68 to 71 are formed such that their length in the Y-axis direction (hereinafter simply referred to as “length”) L is longer than their width D. Moreover, the length L and the width D of each of the light shielding members 68 to 71 satisfy the following conditional expression (Expression 1).
  • L is the length of the light shielding members 68 to 71
  • D is the width of the light shielding members 68 to 71
  • is the incident angle of the exposure light with respect to the exit surface 50b of the first micro fly's eye lens 50.
  • the exposure light EL is always incident on the effective lens surface 77 regardless of the arrangement positions of the light shielding members 68 to 71.
  • the “effective lens surface 77” indicates a cylindrical lens surface on which the exposure light EL is incident among the cylindrical lens surfaces 54.
  • a parallel light beam is incident on the first micro fly's eye lens 50.
  • each incident light also referred to as a “light beam” constituting such a parallel light flux has an effective lens surface 77 with various incident angles ⁇ with respect to the exit surface 50 b of the first micro fly's eye lens 50.
  • the width D and the length L of each of the light shielding members 68 to 71 do not satisfy the conditional expression (Formula 1)
  • the exposure light EL that is about to enter the effective lens surface 77 is reflected on the effective lens surface 77. Since the light shielding members 68 to 71 are almost shielded from light, the exposure light EL may hardly enter. Therefore, each of the light shielding members 68 to 71 may be designed so as to satisfy the conditional expression (Expression 1).
  • each of the light shielding members 68 to 71 When each of the light shielding members 68 to 71 is disposed at a position corresponding to the boundary portion between the effective lens surfaces 77 adjacent in the Z-axis direction (hereinafter referred to as “boundary position”), as shown in FIG.
  • the light shielding members 68 to 71 allow the exposure light EL to enter the central portion of the effective lens surface 77 in the Z-axis direction, respectively.
  • each of the light shielding members 68 to 71 shields the exposure light EL that is about to enter both ends of the effective lens surface 77 in the Z-axis direction.
  • the exposure light EL is first incident light that forms the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 corresponding to the center point P1b of the still exposure region ER2. Further, most of the exposure light EL shielded by each of the light shielding members 68 to 71 from the illumination pupil plane 27 in a state having a predetermined angle with respect to the optical axis AX of the illumination optical system 13 when not shielded. Light that is emitted.
  • the dimming degree of each incident light incident on each point in the still exposure region ER2 is the center in the Y-axis direction (that is, the center point P1b). Is the smallest, and gradually increases with increasing distance from the center along the Y-axis direction.
  • the light intensities of the point light sources 78 constituting the first surface light source 61a and the second surface light source 61b are the light shielding members 68 to 71, respectively. Are hardly dimmed by each.
  • each point light source 78 constituting the third surface light source 61c and the fourth surface light source 61d their light intensity is not dimmed by the light shielding members 68 to 71. That is, when the light shielding members 68 to 71 are arranged at the boundary positions, the properties of the first pupil intensity distribution 61 are hardly changed by the action of the light shielding members 68 to 71.
  • the light intensity of some point light sources 78A among the point light sources 78 constituting the first surface light source 62a and the second surface light source 62b is as follows.
  • the light is greatly reduced by the light shielding members 68 to 71, respectively.
  • the first surface light source 62a and the second surface light source 62b are greatly dimmed by the light shielding action of the light shielding members 68 to 71, respectively.
  • the light intensity thereof is not dimmed by the light shielding members 68 to 71.
  • the properties of the second pupil intensity distribution 62 are greatly changed by the action of the light shielding members 68 to 71.
  • the point light sources 78 and 78A are indicated by black circles ( ⁇ ). The size of these black circles indicates the intensity of light intensity for each of the point light sources 78 and 78A, and the light intensity of the point light source 78A having a large black circle size is stronger than the light intensity of the small point light source 78A.
  • each of the light shielding members 68 to 71 when each of the light shielding members 68 to 71 is disposed at a position corresponding to the central portion of the effective lens surface in the Z-axis direction (hereinafter referred to as “central position”), the light shielding members 68 to 71 shield the exposure light EL to be incident on the central portion of the effective lens surface 77 in the Z-axis direction.
  • each of the light shielding members 68 to 71 allows the exposure light EL to enter the both ends of the effective lens surface 77 in the Z-axis direction.
  • the dimming degree of each incident light incident on each point in the still exposure region ER2 is the center in the Y-axis direction (that is, the center point P1b). Is the largest, and gradually decreases with increasing distance from the center along the Y-axis direction.
  • the light intensity of a part of the point light sources 78A of the point light sources 78 constituting the first surface light source 61a and the second surface light source 61b is as follows. The light is greatly reduced by the light shielding members 68 to 71, respectively.
  • the first surface light source 61a and the second surface light source 61b are greatly dimmed by the light shielding action of the light shielding members 68 to 71, respectively.
  • the light intensity thereof is not dimmed by the light shielding members 68 to 71.
  • the properties of the first pupil intensity distribution 61 are greatly changed by the action of the light shielding members 68 to 71.
  • the light intensities of the point light sources 78 constituting the first surface light source 62a and the second surface light source 62b are caused by the light shielding members 68 to 71, respectively. Each is hardly dimmed.
  • their light intensity is not dimmed by the light shielding members 68 to 71. That is, when the light shielding members 68 to 71 are arranged at the central positions, the properties of the second pupil intensity distribution 62 hardly change due to the action of the light shielding members 68 to 71.
  • each of the light shielding members 68 to 71 is assumed to be disposed outside the optical path of the exposure light EL.
  • the diffractive optical element 19 emits the exposure light EL having a quadrilateral cross-sectional shape. Then, the exposure light EL passes through the correction filter 24 arranged at a position optically conjugate with the illumination pupil plane 27 or in the vicinity thereof. As a result, the illumination pupil plane 27 formed on the exit side of the optical integrator 26 is almost corrected by the correction filter 24 and the first and second surface light sources 60a and 60b corrected (dimmed) by the correction filter 24. A secondary light source 60 having a third surface light source 60c and a fourth surface light source 60d that are not formed is formed. At this time, the pupil intensity distribution of the pupil conjugate plane optically conjugate with the illumination pupil plane 27 is also corrected by the correction filter 24.
  • the correction filter 24 of the present embodiment reduces the light intensity of the third surface light source 60c and the fourth surface light source 60d along the Z-axis direction of the secondary light source 60 formed on the illumination pupil plane 27. It is a filter. As described above, in the first pupil intensity distribution 61 corresponding to the center points P1a and P1b in the illumination area ER1 of the reticle R and in the static exposure area ER2 on the wafer W, the correction filter is included in the optical path of the exposure light EL. 24, the light intensity of the first surface light source 61a and the second surface light source 61b along the X-axis direction is greater than the light intensity of the third surface light source 61c and the fourth surface light source 61d along the Z-axis direction.
  • the light intensity of the third surface light source 61c and the fourth surface light source 61d is approximately equal to the light intensity of each of the first surface light source 61a and the second surface light source 61b by the correction filter 24. It becomes.
  • the second pupil intensity distribution 62 corresponding to the peripheral points P2a, P2b, P3a, and P3b in the illumination area ER1 and the still exposure area ER2, the X axis is used when the correction filter 24 is not in the optical path of the exposure light EL.
  • Each light intensity of the first surface light source 62a and the second surface light source 62b along the direction is stronger than each light intensity of the third surface light source 62c and the fourth surface light source 62d along the Z-axis direction. Therefore, in the second pupil intensity distribution 62, the difference between the light intensity of the first surface light source 61a and the second surface light source 62b and the light intensity of each of the third surface light source 62c and the fourth surface light source 62d is caused by the correction filter 24. On the contrary, it will become bigger.
  • the pupil intensity distribution measuring device 36 measures the light intensity of the quadrupole pupil intensity distribution for each point in the still exposure region ER2 in the secondary light source 60 formed on the illumination pupil plane 27. Is done.
  • the second pupil intensity distribution 62 is measured.
  • the first pupil intensity distribution 61 and the second pupil intensity distribution 62 have different properties. Therefore, the light shielding members 68 to 71 are arranged in the optical path of the exposure light EL incident on the optical integrator 26 by driving the advance / retreat mechanism. At this time, the light shielding members 68 to 71 are arranged at the central positions.
  • the light intensities of the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 are greatly reduced by the light shielding members 68 to 71, respectively.
  • the light intensities of the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 are hardly dimmed by the light shielding members 68 to 71, respectively (see FIGS. 13A and 13B). ). Therefore, the difference between the property of the first pupil intensity distribution 61 and the property of the second pupil intensity distribution 62 is conversely larger than before the light shielding members 68 to 71 are arranged in the optical path of the exposure light EL. turn into.
  • the light shielding members 68 to 71 are moved in the Z-axis direction. Move each one. Then, of the first incident light to be incident on the first surface light source 67a and the second surface light source 67b, the amount of light shielded by the light shielding members 68 to 71 is arranged at the central position. Less than if On the other hand, of the second incident light and the third incident light to be incident on the first surface light source 67a and the second surface light source 67b, the light amounts shielded by the light shielding members 68 to 71 are respectively arranged at the central positions. It will be much larger than the case.
  • each of the light shielding members 68 to 71 attempts to pass through the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 with respect to the center point P1b of the still exposure region ER2.
  • the amount of the first incident light is only slightly attenuated by the light shielding members 68-71. That is, in the first pupil intensity distribution 61, each light intensity of the first surface light source 61a and the second surface light source 61b is compared with the case where the light shielding members 68 to 71 are not arranged in the optical path of the exposure light EL.
  • the light intensity of the third surface light source 61c and the fourth surface light source 61d does not change.
  • each of the light shielding members 68 to 71 when each of the light shielding members 68 to 71 is disposed at the boundary position, it tries to pass through the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 with respect to the peripheral point P2b of the still exposure region ER2.
  • the amount of the second incident light to be reduced is greatly reduced by the light shielding members 68-71.
  • the light amounts of the third incident lights to be incident on the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 with respect to the peripheral point P3b of the still exposure region ER2 are the light shielding members 68 to 71, respectively.
  • the light shielding members 68 to 71 are not arranged in the optical path of the exposure light EL.
  • the light intensities of the third surface light source 62c and the fourth surface light source 62d do not change.
  • the properties of the first pupil intensity distribution 61 and the properties of the second pupil intensity distribution 62 are substantially identical to each other. That is, the light intensity of each first incident light incident on the center point P1b of the stationary exposure region ER2 from each surface light source 61a to 61d and the light incident on each peripheral point P2b and P3b of the stationary exposure region ER2 from each surface light source 62a to 62d.
  • the light intensity of each of the second incident light and each of the third incident light is substantially the same light intensity.
  • the pupil intensity distributions 61 and 62 corresponding to the points P1b, P2b, and P3b along the Y-axis direction in the static exposure region ER2 on the wafer W are substantially identical. Therefore, the occurrence of variations in the line width of the pattern formed on the surface Wa of the wafer W is suppressed.
  • a part of the exposure light EL that is to be incident on a part of the cylindrical lens surfaces 52 of each cylindrical lens surface 52 of the first micro fly's eye lens 50 is shielded by the light shielding unit 66. Due to the light shielding action by the light shielding unit 66, the pupil intensity distributions 61 and 62 corresponding to the respective points on the surface Wa on the wafer W are independently adjusted. Therefore, the light intensity distribution at each point on the wafer W can be adjusted to distributions having substantially the same properties.
  • each point P1b ⁇ in the static exposure region ER2 on the wafer W is located at a position optically conjugate with the surface Wa of the wafer W on the light source device 12 side of the optical integrator 26.
  • a correction filter 24 is provided for uniformly adjusting the pupil intensity distributions 61 and 62 corresponding to P3b.
  • the pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b in the still exposure region ER2 are adjusted to be substantially uniform by the cooperation of the correction filter 24 and the light shielding unit 66.
  • the pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b in the still exposure region ER2 can be adjusted with higher precision than when the correction filter 24 is not arranged in the optical path of the exposure light EL. Therefore, it is possible to perform exposure processing on the wafer W under an appropriate illumination condition according to the circuit pattern of the reticle R. As a result, the wafer W is faithfully provided with a pattern having a desired line width over the entire wafer W. Can be formed.
  • the light shielding part 66 of the present embodiment includes a plurality of light shielding members 68 to 71 extending along the X-axis direction. Then, by disposing the light shielding members 68 to 71 in the optical path of the exposure light EL, the pupil intensity distribution 61 corresponding to the points P1b to P3b along the Y-axis direction among the points in the still exposure region ER2. , 62 can be adjusted respectively.
  • each of the light shielding members 68 to 71 has a configuration that does not satisfy the conditional expression (Equation 1), each light shielding member 68 to 71 is placed in each effective lens surface 77 in the optical path of the exposure light EL. There is a possibility that there is an effective lens surface where the exposure light EL is not incident at all. In such a case, the pupil intensity distributions 61 and 62 corresponding to all the points P1b to P3b in the still exposure region ER2 are uniformly changed. In other words, the pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b in the still exposure region ER2 cannot be adjusted independently.
  • each of the light shielding members 68 to 71 is configured to satisfy the conditional expression (Expression 1). Therefore, the exposure light EL always enters the effective lens surface 77 even if the light shielding members 68 to 71 are arranged in the optical path of the exposure light EL. Therefore, the pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b along the Y-axis direction in the still exposure region ER2 can be adjusted independently.
  • each of the light shielding members 68 to 71 is movable along the Y-axis direction and the Z-axis direction. Therefore, by moving the respective light shielding members 68 to 71 along the Y-axis direction and the Z-axis direction in the optical path of the exposure light EL, each point along the Y-axis direction among the points within the still exposure region ER2 is obtained.
  • the pupil intensity distributions 61 and 62 corresponding to P1b to P3b can be adjusted in high detail.
  • the light shielding members 68 to 71 correspond to the measurement results calculated based on the detection signal from the pupil intensity distribution measuring device 36, that is, the points P1a to P3a in the illumination region ER1 of the reticle R. And move along the Z-axis direction based on the pupil intensity distributions 61 and 62 respectively. For this reason, when the pupil intensity distributions 61 and 62 change due to deterioration of at least one of the various optical elements constituting the illumination optical system 13, the light shielding is performed according to the measurement result by the pupil intensity distribution measuring device 36. By moving the members 68 to 71 in the Y-axis direction and the Z-axis direction, the pupil intensity distributions 61 and 62 can be quickly adjusted so that their property distributions become the desired property distributions. .
  • each cylindrical lens surface 52 On the incident side of each cylindrical lens surface 52, a plurality of light shielding members 68 to 71 extending along the X-axis direction corresponding to the scanning direction of the wafer W and the reticle R at the time of exposure are arranged. Each of the light shielding members 68 to 71 adjusts the amount of exposure light EL incident on the effective lens surface 77 of each cylindrical lens surface 54 to thereby adjust the Y axis direction among the points in the still exposure region ER2.
  • the pupil intensity distributions 61 and 62 corresponding to the along points P1b to P3b can be adjusted.
  • the distribution correction unit 31 ⁇ / b> A is configured so that the exposure light EL incident on the effective lens surface 77 among the cylindrical lens surfaces 54 formed on the exit surface 50 b of the first micro fly's eye lens 50.
  • a light blocking part 66A is provided as a light reducing part for reducing the light intensity.
  • an accommodation groove 86 extending along the X-axis direction is formed at a boundary portion between the effective lens surfaces 77 adjacent to each other in the Z-axis direction.
  • the boundary portion between the effective lens surfaces 77 adjacent to each other in the Z-axis direction is formed with a receiving groove 86.
  • Each of the receiving grooves 86 is formed so as to extend from the end on the + X direction side of the first micro fly's eye lens 50 to the end on the ⁇ X direction side.
  • the light shielding portion 66A includes a plurality of (two in FIG. 13) square columnar light shielding members 87 as light reducing members extending along the X-axis direction.
  • Each of these light shielding members 87 is formed such that the width D, which is the length in the Z-axis direction, and the length L in the Y-axis direction satisfy the conditional expression (Formula 1). Further, the length of each light shielding member 87 in the X-axis direction is equal to or longer than the width of the first micro fly's eye lens 50 in the X-axis direction.
  • each light shielding member 87 is provided in the light shielding portion 66A between each housing groove 86 individually corresponding to each light shielding member 87 and outside the optical path of the exposure light EL (that is, outside the first micro fly's eye lens 50).
  • An advancing / retreating device (not shown) is provided for advancing and retracting between them.
  • most of the exposure light EL shielded by each light shielding member 87 is emitted from the illumination pupil plane 27 in a state having a predetermined angle with respect to the optical axis AX of the illumination optical system 13 when not shielded.
  • the light that is That is, when most of the exposure light EL is not shielded, the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 corresponding to the peripheral points P2b and P3b of the still exposure region ER2.
  • most of the exposure light EL that is not shielded by each light shielding member 87 is light emitted from the illumination pupil plane 27 along the optical axis AX of the illumination optical system 13. That is, the exposure light EL is first incident light that forms the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 corresponding to the center point P1b of the still exposure region ER2.
  • each light intensity of the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 with respect to the center point P1b of the still exposure region ER2 is slightly decreased by each light shielding member 87. It is only dimmed. That is, in the first pupil intensity distribution 61, each light intensity of the first surface light source 61a and the second surface light source 61b is different from that in the case where each light shielding member 87 is not disposed in the optical path of the exposure light EL. The light intensity of each of the third surface light source 61c and the fourth surface light source 61d does not change as it becomes slightly weaker.
  • each second incident light that attempts to pass through the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 with respect to the peripheral point P2b of the still exposure region ER2 is greatly increased by each light shielding member 87. Dimmed.
  • the amount of each third incident light that is to enter the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 with respect to the peripheral point P3b of the still exposure region ER2 is greatly increased by each light shielding member 87. It will be fading.
  • each light intensity of the first surface light source 62a and the second surface light source 62b is higher than when each light shielding member 87 is not disposed in the optical path of the exposure light EL.
  • Each of the light sources of the third surface light source 62c and the fourth surface light source 62d does not change.
  • the properties of the first pupil intensity distribution 61 and the properties of the second pupil intensity distribution 62 are substantially the same.
  • each cylindrical lens surface 54 On the incident side of each cylindrical lens surface 54, a plurality of light shielding members 87 extending along the X-axis direction are arranged. These light shielding members 87 are arranged along the Y-axis direction among the respective points in the still exposure region ER2 by adjusting the amount of exposure light EL incident on the effective lens surface 77 of each cylindrical lens surface 54. The pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b can be adjusted.
  • the light blocking member 87 of the present embodiment can be arranged in both the optical path of the exposure light EL that forms the first surface light source 67a and the optical path of the exposure light EL that forms the second surface light source 67b. Therefore, when the light intensity of the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 is weakened, it is not necessary to provide a light shielding member for each surface light source. That is, the light shielding member for the first surface light source can be used for the second surface light source. Therefore, compared to the case of the first embodiment, it is possible to contribute to a reduction in the number of parts of the distribution correction unit 31A.
  • the diffractive optical element 19 may be a diffractive optical element for multipole illumination (for example, for quadrupole illumination) or a diffractive optical element for annular illumination.
  • the optical element can change the shape of the exposure light EL
  • another arbitrary optical element such as an axicon lens pair is arranged instead of or in addition to the diffractive optical element 19. May be.
  • An illumination optical system including an axicon lens pair is disclosed in, for example, International Publication No. 2005 / 076045A1 and corresponding US Patent Application Publication No. 2006 / 0170901A.
  • an axicon lens pair can be disposed in the vicinity of the correction filter 24.
  • the diffractive optical element 19 is composed of a large number of minute element mirrors arranged in an array and whose inclination angle and inclination direction are individually controlled to divide the incident light beam into minute units for each reflecting surface.
  • a spatial light modulation element that converts the cross section of the light beam into a desired shape or a desired size by deflecting the light beam may be used.
  • An illumination optical system using such a spatial light modulator is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-353105.
  • the pupil intensity distribution measuring device 36 can measure the pupil intensity distributions 61 and 62 corresponding to the points P1a, P2a, and P3a in the illumination area ER1 on the reticle R, It may not be near. However, the pupil intensity distribution measuring device 36 may be installed at an arbitrary position as long as it is in the vicinity of a position optically conjugate with the irradiated surface Ra of the reticle R (that is, the surface Wa of the wafer W).
  • the moving mechanism 72 may not be configured to be driven in conjunction with the measurement result by the pupil intensity distribution measuring device 36. That is, the measurement result of the pupil intensity distribution measuring device 36 is displayed on a display screen such as a monitor (not shown), and the operator moves the light shielding members 68 to 71 on the Y axis direction or the X axis based on the measurement result displayed on the display screen. You may make it move individually along a direction. In this case, the moving mechanism 72 does not have to be provided with the drive sources 73 to 76. That is, each of the light shielding members 68 to 71 is moved manually by the operator.
  • the light shielding members 68 and 69 may be moved along the X-axis direction.
  • the respective light shielding members 68 and 69 are arranged at the boundary positions, when the light intensity of the first surface light source 62a of the second pupil intensity distribution 62 is to be slightly increased, as shown in FIG.
  • At least one of the members 68 is moved to the + X direction side.
  • the respective amounts of the second incident light and the second incident light (exposure light EL) passing through the first surface light source 62a of the second pupil intensity distribution 62 are determined by the respective first light shielding members 68 in the optical path of the exposure light EL. This is less than before at least one displacement is performed.
  • the distribution correction unit 31 may be provided with an arbitrary number (for example, four) of first light shielding members other than two. Further, the distribution correction unit 31 may have a configuration in which an arbitrary number (for example, three) of second light shielding members other than two is provided.
  • the distribution correction unit 31A may have a configuration in which an arbitrary number (for example, one) of light shielding members 87 other than two is provided.
  • the installation positions of the light shielding members 68 to 71 and 87 may be fixed in the optical path of the exposure light EL. In this case, the light shielding members 68 to 71 and 87 are immovable.
  • a light shield extending along the Z-axis direction is formed on the incident side of the first micro fly's eye lens 50.
  • a member may be provided. If comprised in this way, the pupil intensity distribution corresponding to each point in the X-axis direction substantially orthogonal to the scanning direction in the still exposure region ER2 can be adjusted.
  • the Z-axis is formed at the boundary portion of each incident surface 50a on the incident side of the first micro fly's eye lens 50.
  • You may provide the light-shielding member extended along a direction.
  • the light shielding member may be provided over the entire effective area (area through which the light beam can pass) of the first micro fly's eye lens 50.
  • the optical integrator 26 may be configured by a single micro fly's eye lens in which unit wavefront dividing surfaces having refractive power are arranged along the Z direction and the X direction.
  • a fly-eye lens in which a plurality of lens elements are arranged may be used as the optical integrator.
  • a pair of fly-eye mirrors in which a plurality of mirror surfaces are arranged may be used as the optical integrator.
  • the exposure apparatus 11 may be embodied as a maskless exposure apparatus using a variable pattern generator (for example, DMD (Digital Mirror Device or Digital Mirror Micro-mirror Device)).
  • a variable pattern generator for example, DMD (Digital Mirror Device or Digital Mirror Micro-mirror Device)
  • DMD Digital Mirror Device or Digital Mirror Micro-mirror Device
  • Such a maskless exposure apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-304135, International Patent Publication No. 2006/080285, and US Patent Publication No. 2007/0296936 corresponding thereto.
  • a method of filling the liquid in the optical path between the projection optical system and the photosensitive substrate a method of locally filling the liquid as disclosed in International Publication No. WO99 / 49504, A method of moving a stage holding a substrate to be exposed as disclosed in Japanese Patent Laid-Open No. 6-124873 in a liquid bath, or a stage having a predetermined depth on a stage as disclosed in Japanese Patent Laid-Open No. 10-303114.
  • a technique of forming a liquid tank and holding the substrate in the liquid tank can be employed.
  • the exposure apparatus 11 manufactures a reticle or mask used in not only a microdevice such as a semiconductor element but also a light exposure apparatus, an EUV exposure apparatus, an X-ray exposure apparatus, and an electron beam exposure apparatus. Therefore, an exposure apparatus that transfers a circuit pattern from a mother reticle to a glass substrate or a silicon wafer may be used.
  • the exposure apparatus 11 is used for manufacturing a display including a liquid crystal display element (LCD) and the like, and is used for manufacturing an exposure apparatus that transfers a device pattern onto a glass plate, a thin film magnetic head, and the like. It may be an exposure apparatus that transfers to a wafer or the like, and an exposure apparatus that is used to manufacture an image sensor such as a CCD.
  • LCD liquid crystal display element
  • the exposure apparatus 11 may be embodied as a scanning stepper that transfers the pattern of the reticle R to the wafer W with the reticle R and the wafer W relatively moved, and sequentially moves the wafer W stepwise. .
  • the light source device 12 includes, for example, g-line (436 nm), i-line (365 nm), KrF excimer laser (248 nm), F 2 laser (157 nm), Kr 2 laser (146 nm), Ar 2 laser (126 nm) Or the like.
  • the light source device 12 amplifies the infrared or visible single wavelength laser light oscillated from the DFB semiconductor laser or fiber laser, for example, with a fiber amplifier doped with erbium (or both erbium and ytterbium).
  • a light source capable of supplying harmonics converted into ultraviolet light using a nonlinear optical crystal may be used.
  • the exposure apparatus 11 may be embodied as an EUV exposure apparatus that uses extreme ultraviolet light that is a soft X-ray region having a wavelength of about 100 nm or less, that is, EUV (Extreme Ultraviolet light) as the exposure light EL.
  • the exposure apparatus 11 includes a chamber whose interior is set to a vacuum atmosphere, and an illumination optical system 13, a reticle stage 14, a projection optical system 15, and a wafer stage 16 are disposed in the chamber.
  • the illumination optical system 13 and the projection optical system 15 are each composed of a reflective optical element, and the reticle R is a reflective reticle.
  • the light shielding member is arranged on the light source side of the fly eye mirror located on the light source side of the pair of fly eye mirrors of the illumination optical system 13.
  • FIG. 16 is a flowchart illustrating a manufacturing example of a micro device (a semiconductor chip such as an IC or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, a micro machine, or the like).
  • a micro device a semiconductor chip such as an IC or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, a micro machine, or the like.
  • step S101 design step
  • function / performance design of a micro device for example, circuit design of a semiconductor device
  • a pattern design for realizing the function is performed.
  • step S102 mask manufacturing step
  • a mask reticle R or the like
  • step S103 substrate manufacturing step
  • a substrate a wafer W when a silicon material is used
  • a material such as silicon, glass, or ceramics.
  • step S104 substrate processing step
  • step S105 device assembly step
  • step S105 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary.
  • step S106 inspection step
  • inspections such as an operation confirmation test and a durability test of the microdevice manufactured in step S105 are performed. After these steps, the microdevice is completed and shipped.
  • FIG. 17 is a diagram illustrating an example of a detailed process of step S104 in the case of a semiconductor device.
  • step S111 oxidation step
  • step S112 CVD step
  • step S113 electrode formation step
  • step S114 ion implantation step
  • ions are implanted into the substrate.
  • step S115 resist formation step
  • step S116 exposure step
  • step S116 exposure step
  • step S117 development step
  • step S118 etching step
  • step S119 resist removal step
  • the photosensitive material that has become unnecessary after the etching is removed. That is, in step S118 and step S119, the surface of the substrate is processed through the mask layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An illumination optical system, an exposure apparatus, and a device manufacturing method which can adjust the light intensity distribution on the plane to be illuminated.  The illumination optical system includes: an optical integrator (26) which has a plurality of cylindrical lens surfaces (54) arranged in an incident plane intersecting the optical axis of the illumination optical system and a plurality of cylindrical lens surfaces (55) arranged in an emission plane intersecting the optical axis further to the emission side than the cylindrical lens surfaces (54), and which forms a predetermined light intensity distribution on an illumination pupil plane (27) in the illumination optical path of the illumination optical system when the exposure light (EL) is incident; and a light shielding unit (66) which is arranged at the incident side of each of the cylindrical lens surfaces (54) and shields a part of the exposure light (EL) incident on some of the cylindrical lens surfaces (54).  The light shielding unit (66) has light shielding members (68, 69) having a length in the Y-axis direction greater than the width in the Z-axis direction intersecting the Y-axis direction in the plane intersecting the optical axis.

Description

照明光学系、露光装置及びデバイスの製造方法Illumination optical system, exposure apparatus, and device manufacturing method
 本発明は、光源から射出される光に基づいて被照射面を照明する照明光学系、該照明光学系を備える露光装置、及び該露光装置を用いたデバイスの製造方法に関する。 The present invention relates to an illumination optical system that illuminates a surface to be irradiated based on light emitted from a light source, an exposure apparatus including the illumination optical system, and a device manufacturing method using the exposure apparatus.
 一般に、半導体集積回路などのマイクロデバイスを製造するための露光装置は、光源から出力される露光光を所定のパターンが形成されるレチクルなどのマスクに導くための照明光学系を備えている。こうした照明光学系には、オプティカルインテグレータとしてのフライアイレンズが設けられている。このフライアイレンズに露光光が入射した場合、該フライアイレンズの射出面側においてマスクの被照射面に対して光学的にフーリエ変換の関係にある位置の照明瞳には、多数の光源からなる実質的な面光源としての二次光源が形成される。なお、この二次光源とは、照明瞳での光強度分布(以下、「瞳強度分布」という。)を示している。 Generally, an exposure apparatus for manufacturing a micro device such as a semiconductor integrated circuit includes an illumination optical system for guiding exposure light output from a light source to a mask such as a reticle on which a predetermined pattern is formed. Such an illumination optical system is provided with a fly-eye lens as an optical integrator. When exposure light is incident on the fly-eye lens, the illumination pupil at a position optically Fourier-transformed with respect to the irradiated surface of the mask on the exit surface side of the fly-eye lens is composed of a number of light sources. A secondary light source is formed as a substantial surface light source. The secondary light source indicates a light intensity distribution at the illumination pupil (hereinafter referred to as “pupil intensity distribution”).
 こうした二次光源からの露光光は、コンデンサレンズにより集光された後、マスクを重畳的に照明するようになっている。そして、マスクを透過した露光光は、投影光学系を介して感光材料の塗布されるウエハなどの基板上を照射するようになっている。その結果、基板上には、マスクのパターンが投影露光(転写)される。 The exposure light from such a secondary light source is condensed by a condenser lens and then illuminates the mask in a superimposed manner. The exposure light transmitted through the mask is irradiated onto a substrate such as a wafer to which a photosensitive material is applied via a projection optical system. As a result, the mask pattern is projected and transferred (transferred) onto the substrate.
 ところで、近年では、マスクに形成されるパターンの高集積化(微細化)が進んでいる。そのため、マスクの微細パターンを基板上に正確に転写するためには、基板上に均一な照度分布を有する照射領域を形成させることが不可欠である。そこで、従来から、マスクの微細パターンを基板上に正確に転写するために、例えば輪帯状や複数極状(2極状、4極状など)の瞳強度分布を形成し、投影光学系の焦点深度や解像力を向上させる技術が提案されている(特許文献1参照)。 Incidentally, in recent years, higher integration (miniaturization) of patterns formed on a mask has been advanced. Therefore, in order to accurately transfer the fine pattern of the mask onto the substrate, it is indispensable to form an irradiation region having a uniform illuminance distribution on the substrate. Therefore, conventionally, in order to accurately transfer the fine pattern of the mask onto the substrate, for example, an annular or multipolar (bipolar, quadrupolar, etc.) pupil intensity distribution is formed, and the focus of the projection optical system A technique for improving depth and resolving power has been proposed (see Patent Document 1).
米国特許公開第2006/0055834号公報US Patent Publication No. 2006/0055834
 ところで、マスクの微細パターンを基板上に正確に転写する際には、瞳強度分布を所望の形状に調整するだけでなく、最終的な被照射面である基板上の各点の光強度をほぼ均一に調整する必要がある。基板上の各点での光強度にばらつきがあると、基板上の位置毎にパターンの線幅がばらついて、マスクの微細パターンを露光領域の全体に亘って所望の線幅で基板上に正確に転写することができないおそれがあった。 By the way, when the fine pattern of the mask is accurately transferred onto the substrate, not only the pupil intensity distribution is adjusted to a desired shape, but also the light intensity at each point on the substrate, which is the final irradiated surface, is approximately It is necessary to adjust uniformly. If there is variation in the light intensity at each point on the substrate, the line width of the pattern varies from position to position on the substrate, and the fine pattern of the mask is accurately applied to the substrate with the desired line width over the entire exposure area. There was a possibility that it could not be transferred.
 本発明は、このような事情に鑑みてなされたものであり、その目的は、被照射面での光強度分布を調整することができる照明光学系、露光装置、及びデバイスの製造方法を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide an illumination optical system, an exposure apparatus, and a device manufacturing method capable of adjusting a light intensity distribution on an irradiated surface. There is.
 上記の課題を解決するため、本発明は、実施形態に示す図1~図17に対応付けした以下の構成を採用している。
 本発明の照明光学系は、光源(12)からの光(EL)で被照射面(Ra,Wa)を照明する照明光学系(13)であって、前記照明光学系(13)の光軸(AX)と交差する面(50a,50b)内に配列される複数の入射側光学面(52,54)、及び該複数の入射側光学面(52,54)よりも前記被照射面(Ra,Wa)側において前記光軸(AX)と交差する面(51a,51b)内に配列され且つ前記複数の入射側光学面(52,54)に個別対応する複数の射出側光学面(53,55)を有し、前記光源(12)からの光(EL)が入射した場合に前記照明光学系(13)の照明光路内の照明瞳面(27)に所定の光強度分布を形成するオプティカルインテグレータ(26)と、前記複数の入射側光学面(52,54)の前記光源(12)側に配置され、前記複数の入射側光学面(52,54)のうち少なくとも一部の入射側光学面に入射する光(EL)の一部を減光する減光部(66,66A)と、を備え、該減光部(66,66A)は、前記光軸(AX)と交差する面内において前記照明光学系の光軸方向と交差する第1の方向に沿った幅よりも前記光軸方向に沿った長さの方が長いことを要旨とする。
In order to solve the above-described problems, the present invention employs the following configuration corresponding to FIGS. 1 to 17 shown in the embodiment.
The illumination optical system of the present invention is an illumination optical system (13) that illuminates the irradiated surface (Ra, Wa) with light (EL) from a light source (12), and the optical axis of the illumination optical system (13). A plurality of incident side optical surfaces (52, 54) arranged in planes (50a, 50b) intersecting with (AX), and the irradiated surface (Ra) from the plurality of incident side optical surfaces (52, 54). , Wa) side, a plurality of exit side optical surfaces (53, 53) arranged in planes (51a, 51b) intersecting the optical axis (AX) and individually corresponding to the plurality of entrance side optical surfaces (52, 54). 55), and forms a predetermined light intensity distribution on the illumination pupil plane (27) in the illumination optical path of the illumination optical system (13) when light (EL) from the light source (12) enters. The integrator (26) and the plurality of incident-side optical surfaces (52, 54); A dimming unit (66) disposed on the source (12) side for dimming a part of light (EL) incident on at least some of the incident side optical surfaces (52, 54). , 66A), and the dimming portion (66, 66A) has a width along a first direction intersecting the optical axis direction of the illumination optical system in a plane intersecting the optical axis (AX). The gist is that the length along the optical axis direction is longer than that.
 上記構成によれば、オプティカルインテグレータ(26)の各入射側光学面(52,54)のうち少なくとも一部の入射側光学面に入射しようとする光の一部は、オプティカルインテグレータ(26)の光源(12)側に配置される減光部(66,66A)によって減光される。こうした減光部(66,66A)による減光作用によって、被照射面(Ra、Wa)上の各点における光強度分布(「瞳強度分布」ともいう。)が独立的に調整される。そのため、被照射面(Ra、Wa)上の各点における光強度分布を互いに略同一性状の分布に調整することが可能となる。 According to the above configuration, part of the light that is about to enter at least some of the incident-side optical surfaces (52, 54) of the optical integrator (26) is a light source of the optical integrator (26). It is dimmed by the dimming part (66, 66A) arranged on the (12) side. The light intensity distribution (also referred to as “pupil intensity distribution”) at each point on the irradiated surface (Ra, Wa) is independently adjusted by the light reducing action by the light reducing section (66, 66A). Therefore, it is possible to adjust the light intensity distribution at each point on the irradiated surface (Ra, Wa) to a distribution having substantially the same property.
 なお、本発明をわかりやすく説明するために実施形態を示す図面の符号に対応づけて説明したが、本発明が実施形態に限定されるものではないことは言うまでもない。 In addition, in order to explain the present invention in an easy-to-understand manner, the description has been made in association with the reference numerals of the drawings showing the embodiments, but it goes without saying that the present invention is not limited to the embodiments.
 本発明によれば、被照射面での光強度分布を調整することができる。 According to the present invention, the light intensity distribution on the irradiated surface can be adjusted.
第1の実施形態における露光装置を示す概略構成図。1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment. 一対のマイクロフライアイレンズを模式的に示す斜視図。The perspective view which shows a pair of micro fly's eye lens typically. 照明瞳面に形成される4極状の二次光源を示す模式図。The schematic diagram which shows the quadrupole secondary light source formed in an illumination pupil plane. (a)はレチクル上に形成される照明領域を示す模式図、(b)はウエハ上に形成される静止露光領域を示す模式図。(A) is a schematic diagram which shows the illumination area | region formed on a reticle, (b) is a schematic diagram which shows the static exposure area | region formed on a wafer. 静止露光領域内の中心点に入射する入射光によって形成される第1瞳強度分布を示す模式図。The schematic diagram which shows the 1st pupil intensity distribution formed with the incident light which injects into the center point in a still exposure area | region. 静止露光領域内の周辺点に入射する入射光によって形成される第2瞳強度分布を示す模式図。The schematic diagram which shows the 2nd pupil intensity distribution formed with the incident light which injects into the peripheral point in a still exposure area | region. (a)は静止露光領域内の中心点に対応する第1瞳強度分布のZ軸方向に沿った光強度を示すグラフ、(b)は静止露光領域内の周辺点に対応する第2瞳強度分布のZ軸方向に沿った光強度を示すグラフ。(A) is a graph showing the light intensity along the Z-axis direction of the first pupil intensity distribution corresponding to the center point in the still exposure area, and (b) is the second pupil intensity corresponding to the peripheral points in the still exposure area. The graph which shows the light intensity along the Z-axis direction of distribution. 第1の実施形態における分布補正ユニットを模式的に示す正面図。The front view which shows typically the distribution correction unit in 1st Embodiment. 境界位置に配置される各遮光部材による露光光の遮光態様を模式的に示す作用図。The action figure which shows typically the light-shielding aspect of the exposure light by each light-shielding member arrange | positioned in a boundary position. 露光光の第1マイクロフライアイレンズに対する入射角と遮光部材のY軸方向に沿った長さとの関係を模式的に示す作用図。FIG. 5 is an operation diagram schematically showing a relationship between an incident angle of exposure light with respect to a first micro fly's eye lens and a length along a Y-axis direction of a light shielding member. (a)は各遮光部材が境界位置に配置される場合における第1瞳強度分布を示す模式図、(b)は第2瞳強度分布を示す模式図。(A) is a schematic diagram which shows 1st pupil intensity distribution in case each light shielding member is arrange | positioned in a boundary position, (b) is a schematic diagram which shows 2nd pupil intensity distribution. 中央位置に配置される各遮光部材による露光光の遮光態様を模式的に示す作用図。The action figure which shows typically the light-shielding aspect of the exposure light by each light-shielding member arrange | positioned in a center position. (a)は各遮光部材が中央位置に配置される場合における第1瞳強度分布を示す模式図、(b)は第2瞳強度分布を示す模式図。(A) is a schematic diagram which shows the 1st pupil intensity distribution in case each light shielding member is arrange | positioned in a center position, (b) is a schematic diagram which shows a 2nd pupil intensity distribution. 第2の実施形態における分布補正ユニットを示す概略構成図。The schematic block diagram which shows the distribution correction unit in 2nd Embodiment. 別の実施形態における分布補正ユニットの一部を模式的に示す正面図。The front view which shows typically a part of distribution correction unit in another embodiment. デバイスの製造例のフローチャート。The flowchart of the manufacture example of a device. 半導体デバイスの場合の基板処理に関する詳細なフローチャート。The detailed flowchart regarding the board | substrate process in the case of a semiconductor device.
 11…露光装置、12…光源装置、13…照明光学系、15…投影光学系、26…オプティカルインテグレータ、27…照明瞳面、36…瞳強度分布計測装置、40…制御装置、42…開口絞り、50…第1光学部材としての第1マイクロフライアイレンズ、51…第2光学部材としての第2マイクロフライアイレンズ、50a,51a…入射面、50b,51b…射出面、52…第1入射側光学面としてのシリンドリカルレンズ面、53…第1射出側光学面としてのシリンドリカルレンズ面、54…第2入射側光学面としてのシリンドリカルレンズ面、55…第2射出側光学面としてのシリンドリカルレンズ面、66,66A…減光部としての遮光部、68~71,87…減光部材としての遮光部材、72…移動機構、77…一部の入射側光学面としての有効レンズ面、AX…光軸、EL…露光光、P1a~P3a,P1b~P3b…所定の点としての点、Ra…被照射面、W…基板としてのウエハ、Wa…被照射面としての表面。 DESCRIPTION OF SYMBOLS 11 ... Exposure apparatus, 12 ... Light source device, 13 ... Illumination optical system, 15 ... Projection optical system, 26 ... Optical integrator, 27 ... Illumination pupil plane, 36 ... Pupil intensity distribution measuring device, 40 ... Control apparatus, 42 ... Aperture stop , 50... First micro fly's eye lens as the first optical member, 51. Second micro fly's eye lens as the second optical member, 50 a, 51 a... Entrance surface, 50 b and 51 b. Cylindrical lens surface as a side optical surface, 53... Cylindrical lens surface as a first emission side optical surface, 54... Cylindrical lens surface as a second incidence side optical surface, 55 ... Cylindrical lens surface as a second emission side optical surface , 66, 66A: a light shielding part as a light reducing part, 68 to 71, 87: a light shielding member as a light reducing member, 72: a moving mechanism, 77: partial incidence Effective lens surface as optical surface, AX ... optical axis, EL ... exposure light, P1a to P3a, P1b to P3b ... point as predetermined point, Ra ... irradiated surface, W ... wafer as substrate, Wa ... irradiated Surface as a face.
 (第1の実施形態)
 以下に、本発明を具体化した第1の実施形態について図1~図13に基づき説明する。なお、本実施形態では、後述する投影光学系15の光軸(図1における上下方向)をZ軸方向というと共に、図1における左右方向をY軸方向といい、さらに、図1において紙面と直交する方向をX軸方向というものとする。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the optical axis (vertical direction in FIG. 1) of the projection optical system 15 to be described later is referred to as the Z-axis direction, the horizontal direction in FIG. 1 is referred to as the Y-axis direction, and in FIG. The direction to do is referred to as the X-axis direction.
 図1に示すように、本実施形態の露光装置11は、所定の回路パターンが形成された透過型のレチクルRに露光光ELを照明することにより、表面Wa(+Z方向側の面であって、図1では上面)にレジストなどの感光材料が塗布されたウエハWに回路パターンの像を投影するための装置である。こうした露光装置11は、光源装置12から射出された露光光ELをレチクルRの被照射面Ra(+Z方向側の面)に導く照明光学系13と、レチクルRを保持するレチクルステージ14と、レチクルRを通過した露光光ELをウエハWの表面Waに導く投影光学系15と、ウエハWを保持するウエハステージ16とを備えている。なお、本実施形態の光源装置12は、193nmの波長の光を出力するArFエキシマレーザ光源を有し、該ArFエキシマレーザ光源から出力される光が露光光ELとして露光装置11内に導かれる。 As shown in FIG. 1, the exposure apparatus 11 of the present embodiment illuminates exposure light EL onto a transmissive reticle R on which a predetermined circuit pattern is formed, thereby providing a surface Wa (+ Z direction side surface). 1 is an apparatus for projecting an image of a circuit pattern onto a wafer W coated with a photosensitive material such as a resist on the upper surface in FIG. Such an exposure apparatus 11 includes an illumination optical system 13 that guides the exposure light EL emitted from the light source device 12 to an irradiated surface Ra (surface on the + Z direction side) of the reticle R, a reticle stage 14 that holds the reticle R, and a reticle. A projection optical system 15 that guides the exposure light EL that has passed through R to the surface Wa of the wafer W, and a wafer stage 16 that holds the wafer W are provided. Note that the light source device 12 of this embodiment has an ArF excimer laser light source that outputs light having a wavelength of 193 nm, and light output from the ArF excimer laser light source is guided into the exposure device 11 as exposure light EL.
 照明光学系13は、光源装置12から射出される露光光ELを所定の断面形状(例えば、断面略矩形状)をなす平行な光束に変換するための整形光学系17と、該整形光学系17から射出された露光光ELをレチクルR側(ここでは、+Y方向側であって図1における右側)に反射する第1反射ミラー18とを備えている。この第1反射ミラー18の射出側(レチクルR側)には、回折光学素子19が設けられている。この回折光学素子19は、ガラス基板に露光光ELの波長と同程度のピッチを有する複数の段差を形成することにより構成されており、入射側(光源装置12側)から入射した露光光ELを所定の角度に回折する作用を有している。例えば、輪帯照明用の回折光学素子19を用いる場合、回折光学素子19に入射側から断面略矩形状をなす平行な光束の露光光ELが入射すると、回折光学素子19からは、断面形状が輪帯状(略円環状)をなす光束がレチクルR側に射出される。また、複数極(2極、4極、8極など)照明用の回折光学素子19を用いる場合、回折光学素子19に入射側から断面略矩形状をなす平行な光束の露光光ELが入射すると、回折光学素子19からは、極の数に応じた複数(例えば4つ)の光束がレチクルR側に射出される。 The illumination optical system 13 includes a shaping optical system 17 for converting the exposure light EL emitted from the light source device 12 into a parallel light beam having a predetermined cross-sectional shape (for example, a substantially rectangular cross section), and the shaping optical system 17. And a first reflection mirror 18 that reflects the exposure light EL emitted from the light to the reticle R side (here, the + Y direction side and the right side in FIG. 1). A diffractive optical element 19 is provided on the exit side (reticle R side) of the first reflecting mirror 18. The diffractive optical element 19 is formed by forming a plurality of steps having a pitch approximately equal to the wavelength of the exposure light EL on the glass substrate. The diffractive optical element 19 receives the exposure light EL incident from the incident side (light source device 12 side). It has the effect of diffracting to a predetermined angle. For example, when the diffractive optical element 19 for annular illumination is used, when the exposure light EL of a parallel light beam having a substantially rectangular cross section is incident on the diffractive optical element 19 from the incident side, the cross-sectional shape is changed from the diffractive optical element 19. A luminous flux having an annular shape (substantially annular shape) is emitted to the reticle R side. Further, when the diffractive optical element 19 for illuminating a plurality of poles (two poles, four poles, eight poles, etc.) is used, exposure light EL of a parallel light beam having a substantially rectangular cross section enters the diffractive optical element 19 from the incident side. From the diffractive optical element 19, a plurality of (for example, four) light beams corresponding to the number of poles are emitted to the reticle R side.
 また、照明光学系13には、回折光学素子19から射出される露光光ELが入射するアフォーカル光学系20(「無焦点光学系」ともいう。)が設けられている。このアフォーカル光学系20は、第1レンズ群21(図1では一枚のレンズのみを図示)と、該第1レンズ群21よりも射出側に配置される第2レンズ群22(図1では一枚のレンズのみを図示)とを有している。そして、アフォーカル光学系20の入射側の焦点位置は、回折光学素子19の設置位置と略同一であると共に、アフォーカル光学系20の射出側の焦点位置は、図1において破線で示す所定面23の位置と略同一となるように形成されている。 In addition, the illumination optical system 13 is provided with an afocal optical system 20 (also referred to as “non-focal optical system”) on which the exposure light EL emitted from the diffractive optical element 19 is incident. The afocal optical system 20 includes a first lens group 21 (only one lens is shown in FIG. 1) and a second lens group 22 (shown in FIG. 1) arranged on the exit side from the first lens group 21. Only one lens is shown). The focal position on the incident side of the afocal optical system 20 is substantially the same as the installation position of the diffractive optical element 19, and the focal position on the exit side of the afocal optical system 20 is a predetermined surface indicated by a broken line in FIG. It is formed so as to be substantially the same as the position 23.
 また、第1レンズ群21と第2レンズ群22との間の光路内において、後述するオプティカルインテグレータ26の照明瞳面27と光学的に共役な位置又はその近傍には、露光光ELの入射位置に応じて透過率の異なる透過率分布を有する補正フィルタ24が設けられている。この補正フィルタ24は、入射側面及び射出側面が平行なガラス基板に対してクロムや酸化クロムなどから構成される遮光性ドットのパターンが形成されたフィルタである。 Further, in the optical path between the first lens group 21 and the second lens group 22, the incident position of the exposure light EL is at a position optically conjugate with or near the illumination pupil plane 27 of the optical integrator 26 described later. A correction filter 24 having a transmittance distribution with different transmittances is provided. The correction filter 24 is a filter in which a light-shielding dot pattern made of chromium, chromium oxide, or the like is formed on a glass substrate whose incident side surface and emission side surface are parallel.
 また、アフォーカル光学系20のレチクルR側には、σ値(σ値=照明光学系13のレチクルR側の開口数/投影光学系15のレチクルR側の開口数)を可変させるためのズーム光学系25が設けられており、該ズーム光学系25は、所定面23よりも射出側に配置されている。また、ズーム光学系25の射出側には、オプティカルインテグレータ26と、該オプティカルインテグレータ26に入射する露光光ELの光量を調整する分布補正ユニット31とが設けられている。この分布補正ユニット31は、レチクルR上に形成される照明領域ER1(図4(a)参照)や該照明領域ER1と光学的に共役な関係になるウエハW上に形成される静止露光領域ER2(図4(b)参照)内の各点における光強度分布を補正するためのユニットである。なお、分布補正ユニット31の具体的な構成については、後述するものとする。 Further, on the reticle R side of the afocal optical system 20, a zoom for varying the σ value (σ value = the numerical aperture on the reticle R side of the illumination optical system 13 / the numerical aperture on the reticle R side of the projection optical system 15). An optical system 25 is provided, and the zoom optical system 25 is disposed on the exit side with respect to the predetermined surface 23. Further, on the exit side of the zoom optical system 25, an optical integrator 26 and a distribution correction unit 31 for adjusting the amount of exposure light EL incident on the optical integrator 26 are provided. The distribution correction unit 31 includes an illumination region ER1 (see FIG. 4A) formed on the reticle R and a static exposure region ER2 formed on the wafer W that is optically conjugate with the illumination region ER1. This is a unit for correcting the light intensity distribution at each point in (see FIG. 4B). The specific configuration of the distribution correction unit 31 will be described later.
 オプティカルインテグレータ26は、その入射面(-Y方向側の面であって、図1では左面)がズーム光学系25の射出側の焦点位置(瞳面ともいう。)又は該焦点位置近傍に位置するように配置されている。すなわち、オプティカルインテグレータ26の入射面は、所定面23と実質的にフーリエ変換の関係になると共に、オプティカルインテグレータ26の入射面は、アフォーカル光学系20の瞳面(即ち、補正フィルタ24の設置位置)と光学的にほぼ共役な位置関係となっている。こうしたオプティカルインテグレータ26には、ズーム光学系25側から平行な光束に変換された状態で露光光ELが入射するようになっている。そして、オプティカルインテグレータ26は、入射した露光光ELを複数の光束に波面分割し、その射出側(+Y方向側)に位置する照明瞳面27に所定の光強度分布(「瞳強度分布」ともいう。)を形成するようになっている。なお、瞳強度分布が形成される照明瞳面27のことを、多数の面光源からなる二次光源60(図3参照)ともいう。 The optical integrator 26 has an incident surface (a surface on the −Y direction side, which is the left surface in FIG. 1) located at a focal position (also referred to as a pupil plane) on the exit side of the zoom optical system 25 or in the vicinity of the focal position. Are arranged as follows. That is, the incident surface of the optical integrator 26 has a substantially Fourier transform relationship with the predetermined surface 23, and the incident surface of the optical integrator 26 is the pupil plane of the afocal optical system 20 (that is, the installation position of the correction filter 24). ) And an optically conjugate positional relationship. The exposure light EL is incident on such an optical integrator 26 in a state of being converted into a parallel light beam from the zoom optical system 25 side. Then, the optical integrator 26 wave-divides the incident exposure light EL into a plurality of light beams, and a predetermined light intensity distribution (also referred to as “pupil intensity distribution”) on the illumination pupil plane 27 located on the exit side (+ Y direction side). .). The illumination pupil plane 27 on which the pupil intensity distribution is formed is also referred to as a secondary light source 60 (see FIG. 3) composed of a number of surface light sources.
 オプティカルインテグレータ26の射出側には、投影光学系15の入射瞳面と光学的にほぼ共役な位置に配置され、且つ二次光源60の照明に寄与する範囲を規定するための図示しない照明開口絞りが設けられている。この照明開口絞りは、大きさ及び形状の異なる複数の開口部を有している。そして、照明開口絞りでは、二次光源60から射出される露光光ELの断面形状に対応した開口部が露光光ELの光路内に配置される。すなわち、二次光源60から射出される露光光ELの断面形状が輪帯状である場合、照明開口絞りは、輪帯状に対応した形状の開口部が露光光ELの光路内に位置するように駆動するようになっている。また、二次光源60から射出される露光光ELの断面形状が4極状である場合、照明開口絞りは、4極状に対応した形状の開口部が露光光ELの光路内に位置するように駆動するようになっている。 On the exit side of the optical integrator 26, an illumination aperture stop (not shown) is provided at a position optically conjugate with the entrance pupil plane of the projection optical system 15 and defines a range contributing to illumination of the secondary light source 60. Is provided. This illumination aperture stop has a plurality of openings having different sizes and shapes. In the illumination aperture stop, an opening corresponding to the cross-sectional shape of the exposure light EL emitted from the secondary light source 60 is disposed in the optical path of the exposure light EL. That is, when the cross-sectional shape of the exposure light EL emitted from the secondary light source 60 is an annular shape, the illumination aperture stop is driven so that the opening corresponding to the annular shape is located in the optical path of the exposure light EL. It is supposed to be. In addition, when the cross-sectional shape of the exposure light EL emitted from the secondary light source 60 is quadrupole, the illumination aperture stop has an opening having a shape corresponding to the quadrupole shape in the optical path of the exposure light EL. To drive.
 オプティカルインテグレータ26及び上記照明開口絞りの射出側には、少なくとも一枚のレンズ(図1では一枚のみ図示)から構成される第1コンデンサ光学系28と、該第1コンデンサ光学系28の射出側であって且つレチクルRの被照射面Raと光学的に共役な位置に配置されるレチクルブラインド29(「マスクブラインド」ともいう。)とが設けられている。第1コンデンサ光学系28は、パワー(焦点距離の逆数)を有する光学素子(レンズ)から構成されている。また、レチクルブラインド29には、長手方向がZ軸方向であって且つ短手方向がX軸方向となる矩形状の開口部29aが形成されている。そして、第1コンデンサ光学系28から射出された露光光ELは、レチクルブラインド29を重畳的に照明するようになっている。なお、パワーを有する光学素子とは、露光光ELが光学素子に入射することにより、該露光光ELの特性が変化するような光学素子のことである。 On the exit side of the optical integrator 26 and the illumination aperture stop, there is a first condenser optical system 28 composed of at least one lens (only one is shown in FIG. 1), and the exit side of the first condenser optical system 28. In addition, a reticle blind 29 (also referred to as a “mask blind”) disposed at a position optically conjugate with the irradiated surface Ra of the reticle R is provided. The first condenser optical system 28 includes an optical element (lens) having power (reciprocal of focal length). The reticle blind 29 is formed with a rectangular opening 29a whose longitudinal direction is the Z-axis direction and whose lateral direction is the X-axis direction. The exposure light EL emitted from the first condenser optical system 28 illuminates the reticle blind 29 in a superimposed manner. The optical element having power is an optical element in which the characteristics of the exposure light EL change when the exposure light EL enters the optical element.
 また、レチクルブラインド29の射出側には、パワーを有するレンズから構成される第2コンデンサ光学系30が設けられており、該第2コンデンサ光学系30は、レチクルブラインド29側から入射した光を略平行な光束に変換するようになっている。また、第2コンデンサ光学系30の射出側には、結像光学系32が設けられている。この結像光学系32は、入射側レンズ群33と、該入射側レンズ群33から射出される露光光ELを-Z方向側(図1では下側)に反射する第2反射ミラー34と、該第2反射ミラー34の射出側に配置される射出側レンズ群35とを備えている。入射側レンズ群33は、少なくとも一枚(図1では一枚のみ図示)のパワーを有する光学素子(レンズ)から構成されると共に、射出側レンズ群35は、少なくとも一枚(図1では一枚のみ図示)のパワーを有する光学素子(レンズ)から構成されている。そして、結像光学系32から射出される露光光ELは、レチクルRの被照射面Raを重畳的に照明するようになっている。なお、本実施形態では、レチクルブラインド29の開口部29aの形状は、上述したように、矩形状をなしている。そのため、レチクルR上の照明領域ER1及びウエハW上の静止露光領域ER2は、図4(a)(b)に示すように、長手方向が第1の方向としてのY軸方向となり、且つ短手方向が第2の方向としてのX軸方向となる矩形状にそれぞれ形成される。 Further, a second condenser optical system 30 composed of a lens having power is provided on the exit side of the reticle blind 29, and the second condenser optical system 30 substantially receives light incident from the reticle blind 29 side. The light is converted into a parallel light beam. An imaging optical system 32 is provided on the exit side of the second condenser optical system 30. The imaging optical system 32 includes an incident side lens group 33, a second reflecting mirror 34 that reflects the exposure light EL emitted from the incident side lens group 33 to the −Z direction side (lower side in FIG. 1), And an exit side lens group 35 disposed on the exit side of the second reflecting mirror 34. The incident side lens group 33 is composed of at least one optical element (lens) having power (only one is shown in FIG. 1), and the emission side lens group 35 is at least one (one in FIG. 1). It is comprised from the optical element (lens) which has the power of only illustration. The exposure light EL emitted from the imaging optical system 32 illuminates the irradiated surface Ra of the reticle R in a superimposed manner. In the present embodiment, the shape of the opening 29a of the reticle blind 29 is rectangular as described above. Therefore, as shown in FIGS. 4A and 4B, the illumination area ER1 on the reticle R and the static exposure area ER2 on the wafer W are in the Y-axis direction as the first direction and short. Each is formed in a rectangular shape whose direction is the X-axis direction as the second direction.
 レチクルステージ14は、図1に示すように、投影光学系15の物体面側において、そのレチクルRの載置面が投影光学系15の光軸方向(Z軸方向)とほぼ直交するように配置されている。また、レチクルステージ14には、保持するレチクルRをX軸方向に所定ストロークで移動させる図示しないレチクルステージ駆動部が設けられている。 As shown in FIG. 1, the reticle stage 14 is arranged on the object plane side of the projection optical system 15 so that the mounting surface of the reticle R is substantially orthogonal to the optical axis direction (Z-axis direction) of the projection optical system 15. Has been. The reticle stage 14 is provided with a reticle stage drive unit (not shown) that moves the held reticle R with a predetermined stroke in the X-axis direction.
 また、レチクルステージ14の近傍には、瞳強度分布計測装置36が設けられている。この瞳強度分布計測装置36は、二次光源60においてレチクルR上の照明領域ER1内の一点に入射する各入射光によって形成される瞳強度分布を点毎(位置毎)に計測する装置である。こうした瞳強度分布計測装置36は、射出側レンズ群35からレチクルRに向けて射出される露光光ELの一部(「反射光」ともいう。)を反射させるビームスプリッタ37と、該ビームスプリッタ37に反射された反射光が入射する計測用レンズ38と、該計測用レンズ38から射出された反射光が入射する検出部39とを備えている。この検出部39は、CCD撮像素子やフォトダイオードなどを有しており、検出部39からは、入射した反射光に応じた検出信号が制御装置40に出力される。そして、制御装置40は、検出部39からの検出信号に基づき、照明領域ER1の点毎の瞳強度分布を導出するようになっている。なお、瞳強度分布計測装置36については、例えば特開2006-54328号公報や特開2003-22967号公報及びこれに対応する米国特許公開第2003/0038225号公報に開示されている。 Further, a pupil intensity distribution measuring device 36 is provided in the vicinity of the reticle stage 14. The pupil intensity distribution measuring device 36 is a device that measures the pupil intensity distribution formed by each incident light incident on one point in the illumination area ER1 on the reticle R in the secondary light source 60 for each point (for each position). . The pupil intensity distribution measuring device 36 includes a beam splitter 37 that reflects part of the exposure light EL (also referred to as “reflected light”) emitted from the exit side lens group 35 toward the reticle R, and the beam splitter 37. A measurement lens 38 on which the reflected light reflected by the laser beam enters, and a detection unit 39 on which the reflected light emitted from the measurement lens 38 enters. The detection unit 39 includes a CCD imaging device, a photodiode, and the like, and a detection signal corresponding to the incident reflected light is output from the detection unit 39 to the control device 40. And the control apparatus 40 derives | leads-out the pupil intensity distribution for every point of the illumination area ER1 based on the detection signal from the detection part 39. FIG. The pupil intensity distribution measuring device 36 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-54328, Japanese Patent Application Laid-Open No. 2003-22967, and US Patent Publication No. 2003/0038225 corresponding thereto.
 投影光学系15は、内部が窒素などの不活性ガスで充填される鏡筒41を備え、この鏡筒41内には、図示しない複数のレンズが露光光ELの光路(Z軸方向)に沿って設けられている。また、鏡筒41内において、ウエハWの表面Waの設置位置及びレチクルRの被照射面Raの設置位置と光学的にフーリエ変換の関係となる位置には、開口絞り42が配置されている。そして、露光光ELにて照明されたレチクルR上の回路パターンの像は、投影光学系15を介して所定の縮小倍率に縮小された状態で、ウエハステージ16上のウエハWに投影転写される。ここで、光路とは、使用状態において、露光光ELが通ることが意図されている経路のことを示している。 The projection optical system 15 includes a lens barrel 41 filled with an inert gas such as nitrogen, and a plurality of lenses (not shown) are provided in the lens barrel 41 along the optical path (Z-axis direction) of the exposure light EL. Is provided. In addition, an aperture stop 42 is disposed in the lens barrel 41 at a position that is optically Fourier-transformed with the installation position of the surface Wa of the wafer W and the installation position of the irradiated surface Ra of the reticle R. Then, the image of the circuit pattern on the reticle R illuminated with the exposure light EL is projected and transferred onto the wafer W on the wafer stage 16 in a state reduced to a predetermined reduction magnification via the projection optical system 15. . Here, the optical path indicates a path through which the exposure light EL is intended to pass in the use state.
 ウエハステージ16は、投影光学系15の光軸とほぼ直交する平面状の載置面43を備え、該載置面43上には、ウエハWが載置される。また、ウエハステージ16には、保持するウエハWをX軸方向に所定ストロークで移動させる図示しないウエハステージ駆動部が設けられている。さらに、ウエハステージ16には、ウエハWの表面Waが投影光学系15の光軸と直交状態となるように、ウエハWの位置を微調整させる機能が設けられている。 The wafer stage 16 includes a planar mounting surface 43 that is substantially orthogonal to the optical axis of the projection optical system 15, and the wafer W is mounted on the mounting surface 43. The wafer stage 16 is provided with a wafer stage driving unit (not shown) that moves the wafer W to be held in the X-axis direction with a predetermined stroke. Further, the wafer stage 16 is provided with a function of finely adjusting the position of the wafer W so that the surface Wa of the wafer W is perpendicular to the optical axis of the projection optical system 15.
 そして、本実施形態の露光装置11を用いてウエハWにパターンの像を投影する場合、レチクルRは、上記レチクルステージ駆動部の駆動によって、+X方向側から-X方向側(図1では紙面手前側から紙面奥手側)に所定ストローク毎に移動する。すると、レチクルRにおける照明領域ER1は、該レチクルRの被照射面Raの-X方向側から+X方向側(図1では紙面奥手側から紙面手前側)に沿って移動する。すなわち、レチクルRのパターンが-X方向側から+X方向側に順にスキャンされる。また、ウエハWは、上記ウエハステージ駆動部の駆動によって、レチクルRのX軸方向に沿った移動に対して投影光学系15の縮小倍率に応じた速度比で-X方向側から+X方向側に同期して移動する。その結果、ウエハWの一つのショット領域には、レチクルR及びウエハWの同期移動に伴って、レチクルR上の回路パターンを所定の縮小倍率に縮小した形状のパターンが形成される。そして、一つのショット領域へのパターンの形成が終了した場合、ウエハWの他のショット領域に対するパターンの形成が連続して行われる。 When a pattern image is projected onto the wafer W using the exposure apparatus 11 of the present embodiment, the reticle R is driven from the + X direction side to the −X direction side (near the paper surface in FIG. 1) by driving the reticle stage driving unit. From the side to the back side of the drawing) at every predetermined stroke. Then, the illumination area ER1 on the reticle R moves from the −X direction side of the irradiated surface Ra of the reticle R along the + X direction side (in FIG. 1, from the back side to the front side of the paper). That is, the pattern of the reticle R is sequentially scanned from the −X direction side to the + X direction side. The wafer W is driven from the −X direction side to the + X direction side at a speed ratio corresponding to the reduction magnification of the projection optical system 15 with respect to the movement of the reticle R along the X-axis direction by driving the wafer stage driving unit. Move synchronously. As a result, a pattern having a shape obtained by reducing the circuit pattern on the reticle R to a predetermined reduction ratio is formed in one shot region of the wafer W in accordance with the synchronous movement of the reticle R and the wafer W. When the pattern formation on one shot area is completed, the pattern formation on the other shot areas of the wafer W is continuously performed.
 次に、本実施形態のオプティカルインテグレータ26について図2に基づき説明する。なお、図2では、明細書の説明理解の便宜上、後述する各シリンドリカルレンズ面52,53,54,55の大きさが誇張して描かれているものとする。 Next, the optical integrator 26 of this embodiment will be described with reference to FIG. In FIG. 2, it is assumed that the sizes of the cylindrical lens surfaces 52, 53, 54, and 55, which will be described later, are exaggerated for convenience of understanding the description.
 図2に示すように、オプティカルインテグレータ26は、照明光学系13の光軸AX(図1及び図2では一点鎖線で示す。)に沿って配置される一対のマイクロフライアイレンズ50,51を備えている。これら両マイクロフライアイレンズ50,51は、オプティカルインテグレータ26の射出側に位置する照明瞳面27が投影光学系15の開口絞り42と光学的に共役な位置に形成されるようにそれぞれ配置されている。 As shown in FIG. 2, the optical integrator 26 includes a pair of micro fly's eye lenses 50 and 51 arranged along the optical axis AX of the illumination optical system 13 (indicated by a one-dot chain line in FIGS. 1 and 2). ing. These micro fly's eye lenses 50 and 51 are respectively arranged so that the illumination pupil plane 27 located on the exit side of the optical integrator 26 is formed at a position optically conjugate with the aperture stop 42 of the projection optical system 15. Yes.
 入射側に位置する第1マイクロフライアイレンズ50の入射側、及び射出側に位置する第2マイクロフライアイレンズ51の入射側には、照明光学系13の光軸AXとほぼ直交する入射面50a,51aがそれぞれ形成されている。また、第1マイクロフライアイレンズ50の射出側、及び第2マイクロフライアイレンズ51の射出側には、照明光学系13の光軸AXとほぼ直交する射出面50b,51bがそれぞれ形成されている。そして、両マイクロフライアイレンズ50,51の入射面50a,51a側には、第3の方向としてのZ軸方向に延びる複数(図2では10個)のシリンドリカルレンズ面52,53が第4の方向としてのX軸方向に沿ってそれぞれ配列されている。これら各シリンドリカルレンズ面52,53は、円柱の一部を切り取った形状をなすようにそれぞれ形成されており、各シリンドリカルレンズ面52,53のX軸方向における長さ(即ち、幅)は、第1幅H1である。 On the incident side of the first micro fly's eye lens 50 positioned on the incident side and on the incident side of the second micro fly's eye lens 51 positioned on the exit side, an incident surface 50a that is substantially orthogonal to the optical axis AX of the illumination optical system 13. , 51a are formed. Further, on the exit side of the first micro fly's eye lens 50 and the exit side of the second micro fly's eye lens 51, exit surfaces 50b and 51b that are substantially orthogonal to the optical axis AX of the illumination optical system 13 are formed, respectively. . A plurality of (10 in FIG. 2) cylindrical lens surfaces 52 and 53 extending in the Z-axis direction as the third direction are on the incident surfaces 50a and 51a side of both the micro fly's eye lenses 50 and 51. They are arranged along the X-axis direction as a direction. Each of the cylindrical lens surfaces 52 and 53 is formed so as to have a shape obtained by cutting a part of a cylinder, and the length (that is, the width) of each cylindrical lens surface 52 and 53 in the X-axis direction is the first. One width H1.
 また、両マイクロフライアイレンズ50,51の射出面50b,51b側には、X軸方向に延びる複数(図2では10個)のシリンドリカルレンズ面54,55がZ軸方向に沿ってそれぞれ配列されている。これら各シリンドリカルレンズ面54,55は、円柱の一部を切り取った形状をなすようにそれぞれ形成されており、各シリンドリカルレンズ面54,55のZ軸方向における長さ(即ち、幅)は、第1幅H1よりも広い第2幅H2である。なお、第1幅H1及び第2幅H2は、レチクルブラインド29の開口部29aのX軸方向における長さ及びZ軸方向における長さ、即ち照明領域ER1及び静止露光領域ER2のX軸方向における長さ及びY軸方向における長さとそれぞれ対応関係にある。 In addition, a plurality (10 in FIG. 2) of cylindrical lens surfaces 54 and 55 extending in the X-axis direction are arranged along the Z-axis direction on the exit surfaces 50b and 51b side of both the micro fly's eye lenses 50 and 51, respectively. ing. Each of the cylindrical lens surfaces 54 and 55 is formed to have a shape obtained by cutting a part of a cylinder, and the length (that is, the width) of each cylindrical lens surface 54 and 55 in the Z-axis direction is the first. The second width H2 is wider than the first width H1. The first width H1 and the second width H2 are the length in the X-axis direction and the length in the Z-axis direction of the opening 29a of the reticle blind 29, that is, the length in the X-axis direction of the illumination area ER1 and the still exposure area ER2. And the length in the Y-axis direction correspond to each other.
 オプティカルインテグレータ26のX軸方向に関する屈折作用に着目した場合、照明光学系13の光軸AXに沿って入射した露光光EL(即ち、平行光束)は、第1マイクロフライアイレンズ50の入射面50aに形成される各シリンドリカルレンズ面52によってX軸方向に沿って第1幅H1の間隔で波面分割される。そして、各シリンドリカルレンズ面52によって波面分割された各光束は、第2マイクロフライアイレンズ51の入射面51aに形成される各シリンドリカルレンズ面53のうち個別対応するシリンドリカルレンズ面でそれぞれ集光作用を受け、その後、オプティカルインテグレータ26の射出側に位置する照明瞳面27上でそれぞれ集光するようになっている。また、オプティカルインテグレータ26のZ軸方向に関する屈折作用に着目した場合、照明光学系13の光軸AXに沿って入射した露光光EL(即ち、平行光束)は、第1マイクロフライアイレンズ50の射出面50bに形成される各シリンドリカルレンズ面54によってZ軸方向に沿って第2幅H2の間隔で波面分割される。そして、各シリンドリカルレンズ面54によって波面分割された各光束は、第2マイクロフライアイレンズ51の射出面51bに形成される各シリンドリカルレンズ面55のうち個別対応するシリンドリカルレンズ面でそれぞれ集光作用を受け、その後、オプティカルインテグレータ26の射出側に位置する照明瞳面27上でそれぞれ集光するようになっている。その結果、照明瞳面27には、多数の点光源78(図9参照)が形成される。 When attention is paid to the refraction action in the X-axis direction of the optical integrator 26, the exposure light EL (that is, the parallel light beam) incident along the optical axis AX of the illumination optical system 13 is incident on the incident surface 50a of the first micro fly's eye lens 50. Each of the cylindrical lens surfaces 52 is divided into wavefronts at intervals of the first width H1 along the X-axis direction. The light beams divided by the respective cylindrical lens surfaces 52 are focused on the corresponding cylindrical lens surfaces among the respective cylindrical lens surfaces 53 formed on the incident surface 51a of the second micro fly's eye lens 51. After that, the light is condensed on the illumination pupil plane 27 located on the exit side of the optical integrator 26. Further, when attention is paid to the refractive action of the optical integrator 26 in the Z-axis direction, the exposure light EL (that is, the parallel light beam) incident along the optical axis AX of the illumination optical system 13 is emitted from the first micro fly's eye lens 50. Wavefront division is performed at intervals of the second width H2 along the Z-axis direction by the cylindrical lens surfaces 54 formed on the surface 50b. The light beams divided by the respective cylindrical lens surfaces 54 are condensed on the corresponding cylindrical lens surfaces among the respective cylindrical lens surfaces 55 formed on the exit surface 51b of the second micro fly's eye lens 51. After that, the light is condensed on the illumination pupil plane 27 located on the exit side of the optical integrator 26. As a result, a large number of point light sources 78 (see FIG. 9) are formed on the illumination pupil plane 27.
 なお、各マイクロフライアイレンズ50,51の各シリンドリカルレンズ面52~55の第1幅H1及び第2幅H2は、本来、非常に狭い。そのため、本実施形態のオプティカルインテグレータ26での波面分割数は、複数のレンズ要素から構成されるフライアイレンズを用いる場合に比して多い。その結果、オプティカルインテグレータ26の入射側に形成される大局的な光強度分布と、射出側である照明瞳面27に形成される二次光源全体の大局的な光強度分布とは、互いに高い相関関係を示す。したがって、オプティカルインテグレータ26の入射側及び該入射側と光学的に共役な面における光強度分布についても、瞳強度分布と称すことができる。 In addition, the first width H1 and the second width H2 of the cylindrical lens surfaces 52 to 55 of the micro fly's eye lenses 50 and 51 are originally very narrow. Therefore, the number of wavefront divisions in the optical integrator 26 of the present embodiment is larger than when a fly-eye lens composed of a plurality of lens elements is used. As a result, the global light intensity distribution formed on the incident side of the optical integrator 26 and the global light intensity distribution of the entire secondary light source formed on the illumination pupil plane 27 on the exit side are highly correlated with each other. Show the relationship. Therefore, the light intensity distribution on the incident side of the optical integrator 26 and on a surface optically conjugate with the incident side can also be referred to as a pupil intensity distribution.
 ここで、回折光学素子19として輪帯照明用の回折光学素子が用いられる場合、オプティカルインテグレータ26の入射側には、照明光学系13の光軸AXを中心とした輪帯状の照野が形成される。その結果、オプティカルインテグレータ26の射出側に位置する照明瞳面27には、入射側に形成される輪帯状の照野と同じ、輪帯状の二次光源60が形成される。また、回折光学素子19として複数極照明用の回折光学素子が用いられる場合、オプティカルインテグレータ26の入射側には、照明光学系13の光軸AXを中心とした複数の所定形状(円弧状、円形状など)の照野からなる複数極状の照野が形成される。その結果、オプティカルインテグレータ26の射出側に位置する照明瞳面27には、入射側に形成される複数極状の照野と同じ、複数極状の二次光源60が形成される。なお、本実施形態では、4極照明用の回折光学素子19が用いられるものとする。 Here, when a diffractive optical element for annular illumination is used as the diffractive optical element 19, an annular illumination field around the optical axis AX of the illumination optical system 13 is formed on the incident side of the optical integrator 26. The As a result, an annular secondary light source 60 is formed on the illumination pupil plane 27 located on the exit side of the optical integrator 26, the same as the annular illumination field formed on the incident side. When a diffractive optical element for multipole illumination is used as the diffractive optical element 19, a plurality of predetermined shapes (arc shape, circular shape) around the optical axis AX of the illumination optical system 13 are provided on the incident side of the optical integrator 26. A multipolar illuminating field is formed. As a result, a multipolar secondary light source 60 is formed on the illumination pupil plane 27 located on the exit side of the optical integrator 26, the same as the multipolar illumination field formed on the incident side. In the present embodiment, a diffractive optical element 19 for quadrupole illumination is used.
 すなわち、オプティカルインテグレータ26の射出側に位置する照明瞳面27には、図3に示すように、4つの円弧状の実質的な面光源(以下、単に「面光源」という。)60a,60b,60c,60dからなる4極状の二次光源60(瞳強度分布)が形成される。具体的には、二次光源60は、照明光学系13の光軸AXの+X方向側に位置する円弧状の第1面光源60aと、照明光学系13の光軸AXの-X方向側に位置する円弧状の第2面光源60bとを有しており、第1面光源60aと光軸AXとの間隔は、第2面光源60bと光軸AXとの間隔とほぼ等間隔となっている。また、二次光源60は、照明光学系13の光軸AXの+Z方向側に位置する円弧状の第3面光源60cと、照明光学系13の光軸AXの-Z方向側に位置する円弧状の第4面光源60dとを有しており、第3面光源60cと光軸AXとの間隔は、第4面光源60dと光軸AXとの間隔とほぼ等間隔となっている。なお、これら各面光源60a~60dは、オプティカルインテグレータ26によって照明瞳面27に形成される多数の点光源78(図9参照)からそれぞれ構成される。 That is, on the illumination pupil plane 27 located on the exit side of the optical integrator 26, as shown in FIG. 3, four arc-shaped substantial surface light sources (hereinafter simply referred to as “surface light sources”) 60a, 60b, A quadrupolar secondary light source 60 (pupil intensity distribution) composed of 60c and 60d is formed. Specifically, the secondary light source 60 includes an arcuate first surface light source 60a positioned on the + X direction side of the optical axis AX of the illumination optical system 13, and a −X direction side of the optical axis AX of the illumination optical system 13. A second arc surface-shaped second surface light source 60b is provided, and the distance between the first surface light source 60a and the optical axis AX is substantially equal to the distance between the second surface light source 60b and the optical axis AX. Yes. The secondary light source 60 includes an arcuate third surface light source 60c positioned on the + Z direction side of the optical axis AX of the illumination optical system 13, and a circle positioned on the −Z direction side of the optical axis AX of the illumination optical system 13. An arcuate fourth surface light source 60d is provided, and the distance between the third surface light source 60c and the optical axis AX is substantially equal to the distance between the fourth surface light source 60d and the optical axis AX. Each of the surface light sources 60a to 60d is composed of a number of point light sources 78 (see FIG. 9) formed on the illumination pupil plane 27 by the optical integrator 26.
 こうした各面光源60a~60dから射出される各露光光ELがレチクルR上に導かれると、レチクルRの被照射面Ra上には、図4(a)に示すように、長手方向がY軸方向であり且つ短手方向がX軸方向となる矩形状の照明領域ER1が形成される。また、ウエハWの表面Wa上には、図4(b)に示すように、レチクルR上の照明領域ER1と対応した矩形状の静止露光領域ER2が形成される。この際、静止露光領域ER2(及び照明領域ER1)内の各点に入射する入射光が形成する4極状の瞳強度分布の各々は、露光光ELが入射する位置に依存することなく、互いにほぼ同一形状をなしている。ところが、静止露光領域ER2(及び照明領域ER1)内の点毎の4極状の瞳強度分布の光強度は、静止露光領域ER2内に入射する露光光ELの位置に依存して異なってしまう傾向がある。 When each exposure light EL emitted from each of the surface light sources 60a to 60d is guided onto the reticle R, as shown in FIG. 4A, the longitudinal direction is on the Y-axis on the irradiated surface Ra of the reticle R. A rectangular illumination region ER1 that is a direction and whose short direction is the X-axis direction is formed. Further, as shown in FIG. 4B, a rectangular still exposure region ER2 corresponding to the illumination region ER1 on the reticle R is formed on the surface Wa of the wafer W. At this time, each of the quadrupole pupil intensity distributions formed by the incident light incident on each point in the still exposure region ER2 (and the illumination region ER1) does not depend on the position where the exposure light EL is incident on each other. It has almost the same shape. However, the light intensity of the quadrupole pupil intensity distribution for each point in the still exposure region ER2 (and the illumination region ER1) tends to vary depending on the position of the exposure light EL incident on the still exposure region ER2. There is.
 具体的には、図5に示すように、照明領域ER1内及び静止露光領域ER2内のY軸方向における中心点P1a,P1bに入射する露光光EL(「第1入射光」ともいう。)によって形成される第1瞳強度分布61では、Z軸方向に沿って配置される第3面光源61c及び第4面光源61dの光強度の方が、X軸方向に沿って配置される第1面光源61a及び第2面光源61bの光強度よりも強くなる傾向がある。一方、図4(a)(b)及び図6に示すように、照明領域ER1内及び静止露光領域ER2内において中心点P1a,P1bからY軸方向において離間した各周辺点P2a,P3a,P2b,P3bに入射する各露光光EL(以下、周辺点P2bに入射する光を「第2入射光」ともいい、周辺点P3bに入射する光を「第3入射光」ともいう。)によって形成される第2瞳強度分布62では、Z軸方向に沿って配置される第3面光源62c及び第4面光源62dの光強度の方が、X軸方向に沿って配置される第1面光源62a及び第2面光源62bの光強度よりも弱くなる傾向がある。なお、ここでいう各瞳強度分布61,62は、照明光学系13内における露光光ELの光路内に補正フィルタ24及び後述する遮光部材68,69,70,71が配置されていない場合に、照明瞳面27及び該照明瞳面27と光学的に共役な瞳共役面に形成される、静止露光領域ER2内の各点P1b,P2b,P3bに対応する光強度分布のことを示している。 Specifically, as shown in FIG. 5, exposure light EL (also referred to as “first incident light”) incident on center points P1a and P1b in the Y-axis direction in the illumination region ER1 and the static exposure region ER2. In the formed first pupil intensity distribution 61, the light intensity of the third surface light source 61c and the fourth surface light source 61d arranged along the Z-axis direction is the first surface arranged along the X-axis direction. There is a tendency to be stronger than the light intensity of the light source 61a and the second surface light source 61b. On the other hand, as shown in FIGS. 4A and 4B and FIG. 6, the peripheral points P2a, P3a, P2b, which are separated from the center points P1a, P1b in the Y-axis direction in the illumination region ER1 and the still exposure region ER2. Each exposure light EL incident on P3b (hereinafter, light incident on the peripheral point P2b is also referred to as “second incident light” and light incident on the peripheral point P3b is also referred to as “third incident light”). In the second pupil intensity distribution 62, the light intensity of the third surface light source 62c and the fourth surface light source 62d arranged along the Z-axis direction is the first surface light source 62a arranged along the X-axis direction and It tends to be weaker than the light intensity of the second surface light source 62b. The pupil intensity distributions 61 and 62 referred to here are obtained when the correction filter 24 and light shielding members 68, 69, 70, and 71 to be described later are not arranged in the optical path of the exposure light EL in the illumination optical system 13. It shows the light intensity distribution corresponding to each point P1b, P2b, P3b in the still exposure region ER2 formed on the illumination pupil plane 27 and a pupil conjugate plane optically conjugate with the illumination pupil plane 27.
 一般に、中心点P1a,P1bに対応する第1瞳強度分布61のZ軸方向に沿った光強
度分布は、図7(a)に示すように、Z軸方向における中央が最も弱くなると共に、中央からZ軸方向に沿って離間するに連れて次第に強くなる凹曲線状の分布である。また、各周辺点P2a,P2b,P3a,P3bに対応する各第2瞳強度分布62のZ軸方向に沿った光強度分布は、図7(b)に示すように、Z軸方向における中央が最も強くなると共に、中央からZ軸方向に沿って離間するに連れて次第に弱くなる凸曲面状の分布である。
In general, the light intensity distribution along the Z-axis direction of the first pupil intensity distribution 61 corresponding to the center points P1a and P1b has the weakest center in the Z-axis direction as shown in FIG. The distribution is a concave curve that gradually becomes stronger as the distance from the first Z-axis increases along the Z-axis direction. Further, the light intensity distribution along the Z-axis direction of each second pupil intensity distribution 62 corresponding to each peripheral point P2a, P2b, P3a, P3b has a center in the Z-axis direction as shown in FIG. The distribution is a convex curved surface that becomes the strongest and gradually weakens as the distance from the center along the Z-axis direction increases.
 こうした瞳強度分布61,62のZ軸方向に沿った光強度分布は、照明領域ER1及び静止露光領域ER2内のX軸方向に沿った各点の位置にはほとんど依存しないものの、照明領域ER1及び静止露光領域ER2内のY軸方向に沿った各点の位置に依存して変化する傾向がある。そのため、静止露光領域ER2内におけるY軸方向に沿った各点P1b,P2b,P3bに個別に対応する瞳強度分布61,62がそれぞれ均一ではない場合、ウエハWにおいて形成されるパターンの線幅にばらつきが発生するおそれがある。このような課題を解決するために、本実施形態の照明光学系13内には、補正フィルタ24及び分布補正ユニット31が設けられている。 The light intensity distribution along the Z-axis direction of the pupil intensity distributions 61 and 62 hardly depends on the position of each point along the X-axis direction in the illumination region ER1 and the still exposure region ER2, but the illumination region ER1 and There is a tendency to change depending on the position of each point along the Y-axis direction in the still exposure region ER2. Therefore, when the pupil intensity distributions 61 and 62 individually corresponding to the points P1b, P2b, and P3b along the Y-axis direction in the still exposure region ER2 are not uniform, the line width of the pattern formed on the wafer W is set. Variations may occur. In order to solve such a problem, a correction filter 24 and a distribution correction unit 31 are provided in the illumination optical system 13 of the present embodiment.
 なお、本実施形態の補正フィルタ24は、照明瞳面27に形成される二次光源60のうちZ軸方向に沿った第3面光源60c及び第4面光源60dを構成する光束を減光させる一方、X軸方向に沿った第1面光源60a及び第2面光源60bを構成する光束をほとんど減光させない透過率分布を有している。 In addition, the correction filter 24 of this embodiment dimmes the light flux that constitutes the third surface light source 60c and the fourth surface light source 60d along the Z-axis direction among the secondary light sources 60 formed on the illumination pupil plane 27. On the other hand, it has a transmittance distribution that hardly diminishes the light beams constituting the first surface light source 60a and the second surface light source 60b along the X-axis direction.
 次に、本実施形態の分布補正ユニット31について図8~図13に基づき説明する。
 図8に示すように、分布補正ユニット31は、四角環状をなす支持部材65と、該支持部材65に支持され、且つ第1マイクロフライアイレンズ50の射出側の各シリンドリカルレンズ面54のうち一部のレンズ面に入射しようとする露光光ELの一部を遮光するための減光部としての遮光部66とを備えている。支持部材65には、各マイクロフライアイレンズ50,51に入射し得る露光光ELの光路を包囲する形状の開口部65aが形成されている。こうした開口部65aを通過した露光光ELによって、第1マイクロフライアイレンズ50の入射面50aには、照明瞳面27に形成される各面光源60a~60dに個別に対応する面光源67a,67b,67c,67dが形成される。
Next, the distribution correction unit 31 of this embodiment will be described with reference to FIGS.
As shown in FIG. 8, the distribution correction unit 31 includes a support member 65 having a square ring shape, and one of the cylindrical lens surfaces 54 supported by the support member 65 and on the exit side of the first micro fly's eye lens 50. And a light shielding part 66 as a light reducing part for shielding part of the exposure light EL that is to be incident on the lens surface of the part. The support member 65 is formed with an opening 65 a having a shape surrounding the optical path of the exposure light EL that can enter the micro fly's eye lenses 50 and 51. Surface light sources 67a and 67b individually corresponding to the surface light sources 60a to 60d formed on the illumination pupil plane 27 on the incident surface 50a of the first micro fly's eye lens 50 by the exposure light EL that has passed through the opening 65a. , 67c, 67d are formed.
 遮光部66は、シリンドリカルレンズ面54,55の延びる方向であるX軸方向に沿って延びる各々減光部材としての複数(本実施形態では4つ)の遮光部材68,69,70,71と、各遮光部材68~71を個別に移動させるための移動機構72と、各遮光部材68~71を露光光ELの光路内と光路外との間で進退移動させるための図示しない進退機構とを備えている。移動機構72には、各遮光部材68~71に個別対応する複数の駆動源73,74,75,76が設けられており、該各駆動源73~76は、制御装置40からの制御指令に基づきそれぞれ駆動するようになっている。こうした各駆動源73~76は、各遮光部材68~71をシリンドリカルレンズ面54,55の幅方向であるZ軸方向に移動させるための第1駆動力と、各遮光部材68~71を光軸方向であるY軸方向に移動させるための第2駆動力とを各遮光部材68~71にそれぞれ付与可能である。 The light shielding portion 66 includes a plurality of (four in the present embodiment) light shielding members 68, 69, 70, 71 as light-reducing members that extend along the X-axis direction that is the direction in which the cylindrical lens surfaces 54, 55 extend. A moving mechanism 72 for individually moving the light shielding members 68 to 71 and an advance / retreat mechanism (not shown) for moving the light shielding members 68 to 71 forward and backward between the optical path of the exposure light EL and the outside of the optical path are provided. ing. The moving mechanism 72 is provided with a plurality of drive sources 73, 74, 75, and 76 that individually correspond to the light shielding members 68 to 71, and each of the drive sources 73 to 76 responds to a control command from the control device 40. Each is driven based on this. Each of the drive sources 73 to 76 has a first driving force for moving the light shielding members 68 to 71 in the Z-axis direction that is the width direction of the cylindrical lens surfaces 54 and 55, and the light shielding members 68 to 71 to the optical axis. The second driving force for moving in the Y-axis direction, which is the direction, can be applied to each light shielding member 68-71.
 各遮光部材68~71は、照明光学系13の光軸AXよりも+X方向側(図8では右側)に位置する複数(本実施形態では2つ)の第1遮光部材68,69と、照明光学系13の光軸AXよりも-X方向側(図8では左側)に位置する複数(本実施形態では2つ)の第2遮光部材70,71とに分類される。各第1遮光部材68,69は、第1マイクロフライアイレンズ50の入射面50aにおいて第1面光源67aを形成する露光光ELの光路内にそれぞれ配置される遮光部材である。また、各第2遮光部材70,71は、第1マイクロフライアイレンズ50の入射面50aにおいて第2面光源67bを形成する露光光ELの光路内にそれぞれ配置される遮光部材である。そして、各遮光部材68~71は、露光光ELの光路内にそれぞれ配置される場合、第1マイクロフライアイレンズ50に入射しようとする露光光ELの一部を遮光することにより、露光光ELの光路内に配置されない場合に比して第1面光源67a及び第2面光源67bの光強度をそれぞれ弱くさせる。 Each of the light shielding members 68 to 71 includes a plurality (two in the present embodiment) of first light shielding members 68 and 69 positioned on the + X direction side (right side in FIG. 8) of the optical axis AX of the illumination optical system 13, and illumination. The optical system 13 is classified into a plurality (two in the present embodiment) of second light shielding members 70 and 71 located on the −X direction side (left side in FIG. 8) of the optical axis AX. The first light shielding members 68 and 69 are light shielding members respectively disposed in the optical path of the exposure light EL that forms the first surface light source 67a on the incident surface 50a of the first micro fly's eye lens 50. Each of the second light shielding members 70 and 71 is a light shielding member disposed in the optical path of the exposure light EL that forms the second surface light source 67b on the incident surface 50a of the first micro fly's eye lens 50. When each of the light shielding members 68 to 71 is disposed in the optical path of the exposure light EL, the light shielding member 68 to 71 shields part of the exposure light EL that is about to enter the first micro fly's eye lens 50, thereby exposing the exposure light EL. The light intensity of each of the first surface light source 67a and the second surface light source 67b is weakened as compared with the case where the light source is not arranged in the optical path.
 また、各遮光部材68~71は、図9に示すように、露光時におけるウエハW及びレチクルRの走査方向(X軸方向)に対応する方向(本実施形態ではX軸方向)に沿って延びる四角柱状にそれぞれ形成されている。これら各遮光部材68~71は、それらの光軸方向であるY軸方向と直交するZ軸方向における長さ(以下、「幅」という。)Dが各シリンドリカルレンズ面54,55の第2幅H2よりも狭くなるようにそれぞれ形成されている。また、各遮光部材68~71は、それらのY軸方向における長さ(以下、単に「長さ」という。)Lの方が、それらの幅Dよりも長くなるようにそれぞれ形成されている。しかも、各遮光部材68~71の長さL及び幅Dは、以下に示す条件式(式1)をそれぞれ満たしている。 Further, as shown in FIG. 9, each of the light shielding members 68 to 71 extends along a direction (X-axis direction in this embodiment) corresponding to the scanning direction (X-axis direction) of the wafer W and the reticle R at the time of exposure. Each is formed in a quadrangular prism shape. Each of the light shielding members 68 to 71 has a length (hereinafter referred to as “width”) D in the Z-axis direction orthogonal to the Y-axis direction, which is the optical axis direction, of the second width of the cylindrical lens surfaces 54 and 55. Each is formed so as to be narrower than H2. The light shielding members 68 to 71 are formed such that their length in the Y-axis direction (hereinafter simply referred to as “length”) L is longer than their width D. Moreover, the length L and the width D of each of the light shielding members 68 to 71 satisfy the following conditional expression (Expression 1).
Figure JPOXMLDOC01-appb-M000001
ただし、L…遮光部材68~71の長さ、D…遮光部材68~71の幅、θ…第1マイクロフライアイレンズ50の射出面50bに対する露光光の入射角
 そのため、各シリンドリカルレンズ面52のうち有効レンズ面77には、各遮光部材68~71の配置位置と関係なく、必ず露光光ELがそれぞれ入射するようになっている。なお、「有効レンズ面77」とは、各シリンドリカルレンズ面54のうち露光光ELが入射するシリンドリカルレンズ面のことを示している。
Figure JPOXMLDOC01-appb-M000001
Where L is the length of the light shielding members 68 to 71, D is the width of the light shielding members 68 to 71, θ is the incident angle of the exposure light with respect to the exit surface 50b of the first micro fly's eye lens 50. Of these, the exposure light EL is always incident on the effective lens surface 77 regardless of the arrangement positions of the light shielding members 68 to 71. Note that the “effective lens surface 77” indicates a cylindrical lens surface on which the exposure light EL is incident among the cylindrical lens surfaces 54.
 ここで、本実施形態では、第1マイクロフライアイレンズ50には、平行光束が入射するようになっている。しかしながら、こうした平行光束を構成する各入射光(「光線」ともいう。)は、第1マイクロフライアイレンズ50の射出面50bに対して種々の大きさの入射角θでもってそれぞれ有効レンズ面77に入射しようとする。そのため、各遮光部材68~71の幅Dや長さLが上記条件式(式1)を満たさない場合、有効レンズ面77には、該有効レンズ面77に入射しようとする露光光ELが各遮光部材68~71によってほとんど遮光されるため、露光光ELがほとんど入射しなくなってしまうおそれがある。そのため、各遮光部材68~71は、条件式(式1)を満たすようにそれぞれ設計されてもよい。 Here, in the present embodiment, a parallel light beam is incident on the first micro fly's eye lens 50. However, each incident light (also referred to as a “light beam”) constituting such a parallel light flux has an effective lens surface 77 with various incident angles θ with respect to the exit surface 50 b of the first micro fly's eye lens 50. Trying to enter. Therefore, when the width D and the length L of each of the light shielding members 68 to 71 do not satisfy the conditional expression (Formula 1), the exposure light EL that is about to enter the effective lens surface 77 is reflected on the effective lens surface 77. Since the light shielding members 68 to 71 are almost shielded from light, the exposure light EL may hardly enter. Therefore, each of the light shielding members 68 to 71 may be designed so as to satisfy the conditional expression (Expression 1).
 各遮光部材68~71がZ軸方向において隣接する有効レンズ面77同士の境界部分に対応する位置(以下、「境界位置」という。)にそれぞれ配置される場合、図9に示すように、各遮光部材68~71は、有効レンズ面77においてZ軸方向における中央部分に入射しようとする露光光ELの入射をそれぞれ許容する。一方、各遮光部材68~71は、有効レンズ面77においてZ軸方向における両端部分に入射しようとする露光光ELをそれぞれ遮光する。このとき、各遮光部材68~71によって遮光されない露光光ELの大部分は、照明光学系13の光軸AXの延びる方向に沿って照明瞳面27から射出される光である。すなわち、この露光光ELは、静止露光領域ER2の中心点P1bに対応する第1瞳強度分布61の第1面光源61a及び第2面光源61bを形成する第1入射光である。また、各遮光部材68~71によって遮光される露光光ELの大部分は、遮光されなかった場合には照明光学系13の光軸AXに対して所定の角度を有する状態で照明瞳面27から射出される光である。すなわち、この露光光ELの大部分は、遮光されなかった場合には静止露光領域ER2の各周辺点P2b,P3bに対応する各第2瞳強度分布62の第1面光源62a及び第2面光源62bを形成する第2入射光や第3入射光である。 When each of the light shielding members 68 to 71 is disposed at a position corresponding to the boundary portion between the effective lens surfaces 77 adjacent in the Z-axis direction (hereinafter referred to as “boundary position”), as shown in FIG. The light shielding members 68 to 71 allow the exposure light EL to enter the central portion of the effective lens surface 77 in the Z-axis direction, respectively. On the other hand, each of the light shielding members 68 to 71 shields the exposure light EL that is about to enter both ends of the effective lens surface 77 in the Z-axis direction. At this time, most of the exposure light EL that is not shielded by the light shielding members 68 to 71 is light emitted from the illumination pupil plane 27 along the direction in which the optical axis AX of the illumination optical system 13 extends. That is, the exposure light EL is first incident light that forms the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 corresponding to the center point P1b of the still exposure region ER2. Further, most of the exposure light EL shielded by each of the light shielding members 68 to 71 from the illumination pupil plane 27 in a state having a predetermined angle with respect to the optical axis AX of the illumination optical system 13 when not shielded. Light that is emitted. That is, most of the exposure light EL is not shielded from light, the first surface light source 62a and the second surface light source of the second pupil intensity distribution 62 corresponding to the peripheral points P2b and P3b of the still exposure region ER2. Second incident light and third incident light forming 62b.
 そのため、各遮光部材68~71が境界位置にそれぞれ配置される場合、静止露光領域ER2内の各点に入射する各入射光の減光度合いは、Y軸方向における中央(即ち、中心点P1b)が最も少なく、Y軸方向に沿って中央から離間するに連れて次第に多くなる。その結果、図11(a)に示すように、第1瞳強度分布61では、第1面光源61a及び第2面光源61bを構成する各点光源78の光強度は、各遮光部材68~71によってそれぞれほとんど減光されない。もちろん、第3面光源61c及び第4面光源61dを構成する各点光源78では、それらの光強度が各遮光部材68~71によって減光されることはない。すなわち、各遮光部材68~71が上記境界位置にそれぞれ配置される場合、第1瞳強度分布61の性状は、各遮光部材68~71の作用によってほとんど変化しない。 Therefore, when the respective light shielding members 68 to 71 are arranged at the boundary positions, the dimming degree of each incident light incident on each point in the still exposure region ER2 is the center in the Y-axis direction (that is, the center point P1b). Is the smallest, and gradually increases with increasing distance from the center along the Y-axis direction. As a result, as shown in FIG. 11A, in the first pupil intensity distribution 61, the light intensities of the point light sources 78 constituting the first surface light source 61a and the second surface light source 61b are the light shielding members 68 to 71, respectively. Are hardly dimmed by each. Of course, in each point light source 78 constituting the third surface light source 61c and the fourth surface light source 61d, their light intensity is not dimmed by the light shielding members 68 to 71. That is, when the light shielding members 68 to 71 are arranged at the boundary positions, the properties of the first pupil intensity distribution 61 are hardly changed by the action of the light shielding members 68 to 71.
 一方、図11(b)に示すように、第2瞳強度分布62では、第1面光源62a及び第2面光源62bを構成する各点光源78のうち一部の点光源78Aの光強度は、各遮光部材68~71によってそれぞれ大幅に減光される。換言すると、第1面光源62a及び第2面光源62bは、各遮光部材68~71の遮光作用によってそれぞれ大幅に減光される。この際、第3面光源62c及び第4面光源62dを構成する各点光源78では、それらの光強度が各遮光部材68~71によって減光されることはない。すなわち、各遮光部材68~71が上記境界位置にそれぞれ配置される場合、第2瞳強度分布62の性状は、各遮光部材68~71の作用によって大幅に変化する。なお、図11(a)(b)では、各点光源78,78Aが黒丸(●)でそれぞれ示されている。これら黒丸の大きさは、点光源78,78A毎の光強度の強さをそれぞれ示しており、黒丸の大きさが大きい点光源78Aの光強度は、小さい点光源78Aの光強度よりも強い。 On the other hand, as shown in FIG. 11B, in the second pupil intensity distribution 62, the light intensity of some point light sources 78A among the point light sources 78 constituting the first surface light source 62a and the second surface light source 62b is as follows. The light is greatly reduced by the light shielding members 68 to 71, respectively. In other words, the first surface light source 62a and the second surface light source 62b are greatly dimmed by the light shielding action of the light shielding members 68 to 71, respectively. At this time, in each point light source 78 constituting the third surface light source 62c and the fourth surface light source 62d, the light intensity thereof is not dimmed by the light shielding members 68 to 71. In other words, when the light shielding members 68 to 71 are arranged at the boundary positions, the properties of the second pupil intensity distribution 62 are greatly changed by the action of the light shielding members 68 to 71. In FIGS. 11A and 11B, the point light sources 78 and 78A are indicated by black circles (●). The size of these black circles indicates the intensity of light intensity for each of the point light sources 78 and 78A, and the light intensity of the point light source 78A having a large black circle size is stronger than the light intensity of the small point light source 78A.
 その一方で、図12に示すように、各遮光部材68~71が有効レンズ面のZ軸方向における中央部分に対応する位置(以下、「中央位置」という。)にそれぞれ配置される場合、各遮光部材68~71は、有効レンズ面77においてZ軸方向における中央部分に入射しようとする露光光ELをそれぞれ遮光する。一方、各遮光部材68~71は、有効レンズ面77においてZ軸方向における両端部分に入射しようとする露光光ELの入射をそれぞれ許容する。このとき、各遮光部材68~71によって遮光される露光光ELの大部分は、遮光されなかった場合には静止露光領域ER2の中心点P1bに対応する第1瞳強度分布61の第1面光源61a及び第2面光源61bを形成する第1入射光である。また、各遮光部材68~71によって遮光されない露光光ELの大部分は、静止露光領域ER2の各周辺点P2b,P3bに対応する第2瞳強度分布62の第1面光源62a及び第2面光源62bを形成する第2入射光や第3入射光である。 On the other hand, as shown in FIG. 12, when each of the light shielding members 68 to 71 is disposed at a position corresponding to the central portion of the effective lens surface in the Z-axis direction (hereinafter referred to as “central position”), The light shielding members 68 to 71 shield the exposure light EL to be incident on the central portion of the effective lens surface 77 in the Z-axis direction. On the other hand, each of the light shielding members 68 to 71 allows the exposure light EL to enter the both ends of the effective lens surface 77 in the Z-axis direction. At this time, the first surface light source of the first pupil intensity distribution 61 corresponding to the center point P1b of the still exposure region ER2 when most of the exposure light EL shielded by the light shielding members 68 to 71 is not shielded. It is the 1st incident light which forms 61a and the 2nd surface light source 61b. In addition, most of the exposure light EL that is not shielded by the light shielding members 68 to 71, the first surface light source 62a and the second surface light source of the second pupil intensity distribution 62 corresponding to the peripheral points P2b and P3b of the still exposure region ER2. Second incident light and third incident light forming 62b.
 そのため、各遮光部材68~71が中央位置にそれぞれ配置される場合、静止露光領域ER2内の各点に入射する各入射光の減光度合いは、Y軸方向における中央(即ち、中心点P1b)が最も多く、Y軸方向に沿って中央から離間するに連れて次第に少なくなる。その結果、図13(a)に示すように、第1瞳強度分布61では、第1面光源61a及び第2面光源61bを構成する各点光源78の一部の点光源78Aの光強度は、各遮光部材68~71によってそれぞれ大幅に減光される。換言すると、第1面光源61a及び第2面光源61bは、各遮光部材68~71の遮光作用によってそれぞれ大幅に減光される。この際、第3面光源61c及び第4面光源61dを構成する各点光源78では、それらの光強度が各遮光部材68~71によって減光されることはない。すなわち、各遮光部材68~71が上記中央位置にそれぞれ配置される場合、第1瞳強度分布61の性状は、各遮光部材68~71の作用によって大幅に変化する。 Therefore, when each of the light shielding members 68 to 71 is disposed at the center position, the dimming degree of each incident light incident on each point in the still exposure region ER2 is the center in the Y-axis direction (that is, the center point P1b). Is the largest, and gradually decreases with increasing distance from the center along the Y-axis direction. As a result, as shown in FIG. 13A, in the first pupil intensity distribution 61, the light intensity of a part of the point light sources 78A of the point light sources 78 constituting the first surface light source 61a and the second surface light source 61b is as follows. The light is greatly reduced by the light shielding members 68 to 71, respectively. In other words, the first surface light source 61a and the second surface light source 61b are greatly dimmed by the light shielding action of the light shielding members 68 to 71, respectively. At this time, in each point light source 78 constituting the third surface light source 61c and the fourth surface light source 61d, the light intensity thereof is not dimmed by the light shielding members 68 to 71. In other words, when the light shielding members 68 to 71 are arranged at the central positions, the properties of the first pupil intensity distribution 61 are greatly changed by the action of the light shielding members 68 to 71.
 一方、図13(b)に示すように、第2瞳強度分布62では、第1面光源62a及び第2面光源62bを構成する各点光源78の光強度は、各遮光部材68~71によってそれぞれほとんど減光されない。もちろん、第3面光源62c及び第4面光源62dを構成する各点光源78では、それらの光強度が各遮光部材68~71によって減光されることはない。すなわち、各遮光部材68~71が上記中央位置にそれぞれ配置される場合、第2瞳強度分布62の性状は、各遮光部材68~71の作用によってほとんど変化しない。 On the other hand, as shown in FIG. 13B, in the second pupil intensity distribution 62, the light intensities of the point light sources 78 constituting the first surface light source 62a and the second surface light source 62b are caused by the light shielding members 68 to 71, respectively. Each is hardly dimmed. Of course, in each point light source 78 constituting the third surface light source 62c and the fourth surface light source 62d, their light intensity is not dimmed by the light shielding members 68 to 71. That is, when the light shielding members 68 to 71 are arranged at the central positions, the properties of the second pupil intensity distribution 62 hardly change due to the action of the light shielding members 68 to 71.
 次に、静止露光領域ER2内のY軸方向に沿った各点P1b,P2b,P3bに対応する各瞳強度分布61,62を調整する際の作用の一例について説明する。なお、初期状態では、各遮光部材68~71は、露光光ELの光路外にそれぞれ配置されているものとする。 Next, an example of an action when adjusting the pupil intensity distributions 61 and 62 corresponding to the points P1b, P2b, and P3b along the Y-axis direction in the still exposure region ER2 will be described. In the initial state, each of the light shielding members 68 to 71 is assumed to be disposed outside the optical path of the exposure light EL.
 さて、光源装置12から射出される露光光ELが回折光学素子19に入射すると、該回折光学素子19からは、断面形状が4極状をなす露光光ELが射出される。すると、この露光光ELが照明瞳面27と光学的に共役な位置又はその近傍に配置される補正フィルタ24を通過する。その結果、オプティカルインテグレータ26の射出側に形成される照明瞳面27には、補正フィルタ24によって補正(減光)された第1面光源60a及び第2面光源60bと、補正フィルタ24によってほとんど補正されない第3面光源60c及び第4面光源60dとを有する二次光源60が形成される。この際、照明瞳面27と光学的に共役な瞳共役面の瞳強度分布もまた、補正フィルタ24によって補正される。 Now, when the exposure light EL emitted from the light source device 12 is incident on the diffractive optical element 19, the diffractive optical element 19 emits the exposure light EL having a quadrilateral cross-sectional shape. Then, the exposure light EL passes through the correction filter 24 arranged at a position optically conjugate with the illumination pupil plane 27 or in the vicinity thereof. As a result, the illumination pupil plane 27 formed on the exit side of the optical integrator 26 is almost corrected by the correction filter 24 and the first and second surface light sources 60a and 60b corrected (dimmed) by the correction filter 24. A secondary light source 60 having a third surface light source 60c and a fourth surface light source 60d that are not formed is formed. At this time, the pupil intensity distribution of the pupil conjugate plane optically conjugate with the illumination pupil plane 27 is also corrected by the correction filter 24.
 なお、本実施形態の補正フィルタ24は、照明瞳面27に形成される二次光源60のZ軸方向に沿った第3面光源60c及び第4面光源60dの光強度を減光させるためのフィルタである。また、上述したように、レチクルRの照明領域ER1内及びウエハW上の静止露光領域ER2内の中心点P1a,P1bに対応する第1瞳強度分布61では、露光光ELの光路内に補正フィルタ24がない場合、X軸方向に沿った第1面光源61a及び第2面光源61bの各光強度が、Z軸方向に沿った第3面光源61c及び第4面光源61dの各光強度よりもそれぞれ弱い。そのため、第1瞳強度分布61では、補正フィルタ24によって、第3面光源61c及び第4面光源61dの各光強度が、第1面光源61a及び第2面光源61bの各光強度とほぼ同等となる。一方、照明領域ER1内及び静止露光領域ER2内の各周辺点P2a,P2b,P3a,P3bに対応する第2瞳強度分布62では、露光光ELの光路内に補正フィルタ24がない場合、X軸方向に沿った第1面光源62a及び第2面光源62bの各光強度が、Z軸方向に沿った第3面光源62c及び第4面光源62dの各光強度よりもそれぞれ強い。そのため、第2瞳強度分布62では、補正フィルタ24によって、第1面光源61a及び第2面光源62bの各光強度と第3面光源62c及び第4面光源62dの各光強度との差が逆に大きくなってしまう。 Note that the correction filter 24 of the present embodiment reduces the light intensity of the third surface light source 60c and the fourth surface light source 60d along the Z-axis direction of the secondary light source 60 formed on the illumination pupil plane 27. It is a filter. As described above, in the first pupil intensity distribution 61 corresponding to the center points P1a and P1b in the illumination area ER1 of the reticle R and in the static exposure area ER2 on the wafer W, the correction filter is included in the optical path of the exposure light EL. 24, the light intensity of the first surface light source 61a and the second surface light source 61b along the X-axis direction is greater than the light intensity of the third surface light source 61c and the fourth surface light source 61d along the Z-axis direction. Are also weak. Therefore, in the first pupil intensity distribution 61, the light intensity of the third surface light source 61c and the fourth surface light source 61d is approximately equal to the light intensity of each of the first surface light source 61a and the second surface light source 61b by the correction filter 24. It becomes. On the other hand, in the second pupil intensity distribution 62 corresponding to the peripheral points P2a, P2b, P3a, and P3b in the illumination area ER1 and the still exposure area ER2, the X axis is used when the correction filter 24 is not in the optical path of the exposure light EL. Each light intensity of the first surface light source 62a and the second surface light source 62b along the direction is stronger than each light intensity of the third surface light source 62c and the fourth surface light source 62d along the Z-axis direction. Therefore, in the second pupil intensity distribution 62, the difference between the light intensity of the first surface light source 61a and the second surface light source 62b and the light intensity of each of the third surface light source 62c and the fourth surface light source 62d is caused by the correction filter 24. On the contrary, it will become bigger.
 このような第1瞳強度分布61と第2瞳強度分布62とをほぼ同一性状の分布にするためには、第1瞳強度分布61の第1面光源61a及び第2面光源61bの光強度を少しだけ減光させると共に、第2瞳強度分布62の第1面光源62a及び第2面光源62bの光強度を大幅に減光させる必要がある。そこで、本実施形態では、瞳強度分布計測装置36によって、照明瞳面27に形成される二次光源60において静止露光領域ER2内の点毎の4極状の瞳強度分布の光強度がそれぞれ計測される。ここでは、静止露光領域ER2内の中心点P1b、周辺点P2b,P3bに入射する第1入射光、第2入射光及び第3入射光によって照明瞳面27に形成される第1瞳強度分布61及び第2瞳強度分布62がそれぞれ計測される。この場合、第1瞳強度分布61と第2瞳強度分布62とは、互いに性状が異なっている。そのため、上記進退機構の駆動によって、各遮光部材68~71が、オプティカルインテグレータ26に入射する露光光ELの光路内にそれぞれ配置される。この際、各遮光部材68~71は、上記中央位置にそれぞれ配置される。 In order to make the first pupil intensity distribution 61 and the second pupil intensity distribution 62 have substantially the same distribution, the light intensity of the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 is obtained. Is slightly dimmed, and the light intensity of the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 needs to be greatly dimmed. Therefore, in this embodiment, the pupil intensity distribution measuring device 36 measures the light intensity of the quadrupole pupil intensity distribution for each point in the still exposure region ER2 in the secondary light source 60 formed on the illumination pupil plane 27. Is done. Here, the first pupil intensity distribution 61 formed on the illumination pupil plane 27 by the first incident light, the second incident light, and the third incident light incident on the center point P1b and the peripheral points P2b, P3b in the still exposure region ER2. The second pupil intensity distribution 62 is measured. In this case, the first pupil intensity distribution 61 and the second pupil intensity distribution 62 have different properties. Therefore, the light shielding members 68 to 71 are arranged in the optical path of the exposure light EL incident on the optical integrator 26 by driving the advance / retreat mechanism. At this time, the light shielding members 68 to 71 are arranged at the central positions.
 すると、第1瞳強度分布61の第1面光源61a及び第2面光源61bの各光強度は、各遮光部材68~71によってそれぞれ大幅に減光される。その一方で、第2瞳強度分布62の第1面光源62a及び第2面光源62bの各光強度は、各遮光部材68~71によってそれぞれほとんど減光されない(図13(a)(b)参照)。そのため、第1瞳強度分布61の性状と第2瞳強度分布62の性状との相違は、各遮光部材68~71が露光光ELの光路内に配置される前に比して、逆に大きくなってしまう。 Then, the light intensities of the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 are greatly reduced by the light shielding members 68 to 71, respectively. On the other hand, the light intensities of the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 are hardly dimmed by the light shielding members 68 to 71, respectively (see FIGS. 13A and 13B). ). Therefore, the difference between the property of the first pupil intensity distribution 61 and the property of the second pupil intensity distribution 62 is conversely larger than before the light shielding members 68 to 71 are arranged in the optical path of the exposure light EL. turn into.
 そこで、本実施形態では、各駆動源73~76の駆動によって移動機構72から第1駆動力が各遮光部材68~71にそれぞれ付与されると、各遮光部材68~71は、Z軸方向にそれぞれ移動する。すると、第1面光源67a及び第2面光源67bに入射しようとする第1入射光のうち各遮光部材68~71によって遮光される光量は、各遮光部材68~71が上記中央位置にそれぞれ配置される場合に比して少なくなる。一方、第1面光源67a及び第2面光源67bに入射しようとする第2入射光及び第3入射光のうち各遮光部材68~71によって遮光される光量は、上記中央位置にそれぞれ配置される場合に比して大幅に多くなる。 Therefore, in the present embodiment, when the first driving force is applied to the light shielding members 68 to 71 from the moving mechanism 72 by the driving of the driving sources 73 to 76, the light shielding members 68 to 71 are moved in the Z-axis direction. Move each one. Then, of the first incident light to be incident on the first surface light source 67a and the second surface light source 67b, the amount of light shielded by the light shielding members 68 to 71 is arranged at the central position. Less than if On the other hand, of the second incident light and the third incident light to be incident on the first surface light source 67a and the second surface light source 67b, the light amounts shielded by the light shielding members 68 to 71 are respectively arranged at the central positions. It will be much larger than the case.
 そして、各遮光部材68~71が上記境界位置にそれぞれ到達すると、静止露光領域ER2の中心点P1bに対する第1瞳強度分布61の第1面光源61a及び第2面光源61bを通過しようとする各第1入射光の光量は、各遮光部材68~71によって僅かに減光されるだけである。すなわち、第1瞳強度分布61では、各遮光部材68~71が露光光ELの光路内に配置されていない場合に比して、その第1面光源61a及び第2面光源61bの各光強度がそれぞれ僅かに弱くなると共に、その第3面光源61c及び第4面光源61dの各光強度がそれぞれ変化しない。また、各遮光部材68~71が上記境界位置にそれぞれ配置されると、静止露光領域ER2の周辺点P2bに対する第2瞳強度分布62の第1面光源62a及び第2面光源62bを通過しようとする各第2入射光の光量は、各遮光部材68~71によって大幅に減光される。同様に、静止露光領域ER2の周辺点P3bに対する第2瞳強度分布62の第1面光源62a及び第2面光源62bに入射しようとする各第3入射光の光量は、各遮光部材68~71によって大幅に減光される。すなわち、各第2瞳強度分布62では、各遮光部材68~71が露光光ELの光路内に配置されていない場合に比して、それらの第1面光源62a及び第2面光源62bの各光強度がそれぞれ大幅に弱くなると共に、それらの第3面光源62c及び第4面光源62dの各光強度がそれぞれ変化しない。 When each of the light shielding members 68 to 71 reaches the boundary position, each of the light shielding members 68 to 71 attempts to pass through the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 with respect to the center point P1b of the still exposure region ER2. The amount of the first incident light is only slightly attenuated by the light shielding members 68-71. That is, in the first pupil intensity distribution 61, each light intensity of the first surface light source 61a and the second surface light source 61b is compared with the case where the light shielding members 68 to 71 are not arranged in the optical path of the exposure light EL. Are slightly weakened, and the light intensity of the third surface light source 61c and the fourth surface light source 61d does not change. Further, when each of the light shielding members 68 to 71 is disposed at the boundary position, it tries to pass through the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 with respect to the peripheral point P2b of the still exposure region ER2. The amount of the second incident light to be reduced is greatly reduced by the light shielding members 68-71. Similarly, the light amounts of the third incident lights to be incident on the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 with respect to the peripheral point P3b of the still exposure region ER2 are the light shielding members 68 to 71, respectively. Greatly dimmed. That is, in each second pupil intensity distribution 62, each of the first surface light source 62a and the second surface light source 62b is compared with the case where the light shielding members 68 to 71 are not arranged in the optical path of the exposure light EL. As the light intensities become significantly weaker, the light intensities of the third surface light source 62c and the fourth surface light source 62d do not change.
 その結果、第1瞳強度分布61の性状と第2瞳強度分布62の性状とは、互いにほぼ同一の性状となる。すなわち、各面光源61a~61dから静止露光領域ER2の中心点P1bに入射する各第1入射光の光強度と、各面光源62a~62dから静止露光領域ER2の各周辺点P2b,P3bに入射する各第2入射光及び各第3入射光の光強度とは、互いにほぼ同一の光強度となる。そのため、この状態で露光処理が実行されると、ウエハW上の静止露光領域ER2内のY軸方向に沿った各点P1b,P2b,P3bに対応する各瞳強度分布61,62がほぼ同一性状であるため、ウエハWの表面Waにおいて形成されるパターンの線幅にばらつきが発生することが抑制される。 As a result, the properties of the first pupil intensity distribution 61 and the properties of the second pupil intensity distribution 62 are substantially identical to each other. That is, the light intensity of each first incident light incident on the center point P1b of the stationary exposure region ER2 from each surface light source 61a to 61d and the light incident on each peripheral point P2b and P3b of the stationary exposure region ER2 from each surface light source 62a to 62d. The light intensity of each of the second incident light and each of the third incident light is substantially the same light intensity. Therefore, when the exposure process is executed in this state, the pupil intensity distributions 61 and 62 corresponding to the points P1b, P2b, and P3b along the Y-axis direction in the static exposure region ER2 on the wafer W are substantially identical. Therefore, the occurrence of variations in the line width of the pattern formed on the surface Wa of the wafer W is suppressed.
 したがって、本実施形態では、以下に示す効果を得ることができる。
 (1)第1マイクロフライアイレンズ50の各シリンドリカルレンズ面52のうち一部のシリンドリカルレンズ面52に入射しようとする露光光ELの一部は、遮光部66によって遮光される。こうした遮光部66による遮光作用によって、ウエハW上の表面Wa上の各点に対応する瞳強度分布61,62が独立的に調整される。そのため、ウエハW上の各点における光強度分布を互いに略同一性状の分布に調整することができる。
Therefore, in this embodiment, the following effects can be obtained.
(1) A part of the exposure light EL that is to be incident on a part of the cylindrical lens surfaces 52 of each cylindrical lens surface 52 of the first micro fly's eye lens 50 is shielded by the light shielding unit 66. Due to the light shielding action by the light shielding unit 66, the pupil intensity distributions 61 and 62 corresponding to the respective points on the surface Wa on the wafer W are independently adjusted. Therefore, the light intensity distribution at each point on the wafer W can be adjusted to distributions having substantially the same properties.
 (2)また、本実施形態では、オプティカルインテグレータ26よりも光源装置12側において、ウエハWの表面Waと光学的に共役な位置には、ウエハW上の静止露光領域ER2内の各点P1b~P3bに対応する各瞳強度分布61,62を一律に調整するための補正フィルタ24が設けられる。そして、静止露光領域ER2内の各点P1b~P3bに対応する各瞳強度分布61,62は、補正フィルタ24と遮光部66との協動作用によって、それぞれほぼ均一となるように調整される。そのため、補正フィルタ24を露光光ELの光路内に配置しない場合に比して、静止露光領域ER2内の各点P1b~P3bに対応する各瞳強度分布61,62を高精密に調整できる。したがって、レチクルRの回路パターンに応じた適切な照明条件の基でウエハWに対する露光処理を行うことができ、結果として、ウエハWには、その全体に亘って所望する線幅のパターンを忠実に形成することができる。 (2) In the present embodiment, each point P1b˜ in the static exposure region ER2 on the wafer W is located at a position optically conjugate with the surface Wa of the wafer W on the light source device 12 side of the optical integrator 26. A correction filter 24 is provided for uniformly adjusting the pupil intensity distributions 61 and 62 corresponding to P3b. The pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b in the still exposure region ER2 are adjusted to be substantially uniform by the cooperation of the correction filter 24 and the light shielding unit 66. Therefore, the pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b in the still exposure region ER2 can be adjusted with higher precision than when the correction filter 24 is not arranged in the optical path of the exposure light EL. Therefore, it is possible to perform exposure processing on the wafer W under an appropriate illumination condition according to the circuit pattern of the reticle R. As a result, the wafer W is faithfully provided with a pattern having a desired line width over the entire wafer W. Can be formed.
 (3)本実施形態の遮光部66は、X軸方向に沿って延びる複数の遮光部材68~71を備えている。そして、露光光ELの光路内に各遮光部材68~71をそれぞれ配置することにより、静止露光領域ER2内の各点のうちY軸方向に沿った点P1b~P3bに対応する各瞳強度分布61,62をそれぞれ調整することができる。 (3) The light shielding part 66 of the present embodiment includes a plurality of light shielding members 68 to 71 extending along the X-axis direction. Then, by disposing the light shielding members 68 to 71 in the optical path of the exposure light EL, the pupil intensity distribution 61 corresponding to the points P1b to P3b along the Y-axis direction among the points in the still exposure region ER2. , 62 can be adjusted respectively.
 (4)もし仮に各遮光部材68~71が上記条件式(式1)を満たさない構成であったとすると、各有効レンズ面77の中には、各遮光部材68~71を露光光ELの光路内に配置することにより、露光光ELが全く入射しなくなる有効レンズ面が存在してしまう可能性がある。こうした場合、静止露光領域ER2内の全ての点P1b~P3bに対応する各瞳強度分布61,62が一律的に変化してしまうことになる。換言すると、静止露光領域ER2内の各点P1b~P3bに対応する各瞳強度分布61,62を独立的に調整できない。その点、本実施形態では、各遮光部材68~71は、上記条件式(式1)を満たすようにそれぞれ構成されている。そのため、有効レンズ面77には、各遮光部材68~71が露光光ELの光路内に配置されても、必ず露光光ELが入射することになる。そのため、静止露光領域ER2内のY軸方向に沿った各点P1b~P3bに対応する各瞳強度分布61,62を独立的に調整することができる。 (4) If each of the light shielding members 68 to 71 has a configuration that does not satisfy the conditional expression (Equation 1), each light shielding member 68 to 71 is placed in each effective lens surface 77 in the optical path of the exposure light EL. There is a possibility that there is an effective lens surface where the exposure light EL is not incident at all. In such a case, the pupil intensity distributions 61 and 62 corresponding to all the points P1b to P3b in the still exposure region ER2 are uniformly changed. In other words, the pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b in the still exposure region ER2 cannot be adjusted independently. In this regard, in the present embodiment, each of the light shielding members 68 to 71 is configured to satisfy the conditional expression (Expression 1). Therefore, the exposure light EL always enters the effective lens surface 77 even if the light shielding members 68 to 71 are arranged in the optical path of the exposure light EL. Therefore, the pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b along the Y-axis direction in the still exposure region ER2 can be adjusted independently.
 (5)また、各遮光部材68~71は、Y軸方向及びZ軸方向に沿ってそれぞれ移動可能である。そのため、露光光ELの光路内で各遮光部材68~71をY軸方向及びZ軸方向に沿ってそれぞれ移動させることにより、静止露光領域ER2内の各点のうちY軸方向に沿った各点P1b~P3bに対応する各瞳強度分布61,62を高詳細に調整することができる。 (5) Further, each of the light shielding members 68 to 71 is movable along the Y-axis direction and the Z-axis direction. Therefore, by moving the respective light shielding members 68 to 71 along the Y-axis direction and the Z-axis direction in the optical path of the exposure light EL, each point along the Y-axis direction among the points within the still exposure region ER2 is obtained. The pupil intensity distributions 61 and 62 corresponding to P1b to P3b can be adjusted in high detail.
 (6)本実施形態では、各遮光部材68~71は、瞳強度分布計測装置36からの検出信号に基づき算出された計測結果、即ちレチクルRの照明領域ER1内の各点P1a~P3aに対応する各瞳強度分布61,62に基づきZ軸方向に沿ってそれぞれ移動する。そのため、照明光学系13を構成する各種光学素子のうち少なくとも一つの光学素子の劣化などに起因して各瞳強度分布61,62が変化した場合、瞳強度分布計測装置36による計測結果によって各遮光部材68~71がY軸方向やZ軸方向にそれぞれ移動することにより、各瞳強度分布61,62を、それらの性状の分布が所望する性状の分布となるように速やかに調整することができる。 (6) In the present embodiment, the light shielding members 68 to 71 correspond to the measurement results calculated based on the detection signal from the pupil intensity distribution measuring device 36, that is, the points P1a to P3a in the illumination region ER1 of the reticle R. And move along the Z-axis direction based on the pupil intensity distributions 61 and 62 respectively. For this reason, when the pupil intensity distributions 61 and 62 change due to deterioration of at least one of the various optical elements constituting the illumination optical system 13, the light shielding is performed according to the measurement result by the pupil intensity distribution measuring device 36. By moving the members 68 to 71 in the Y-axis direction and the Z-axis direction, the pupil intensity distributions 61 and 62 can be quickly adjusted so that their property distributions become the desired property distributions. .
 (7)また、各シリンドリカルレンズ面52の入射側には、露光時におけるウエハWやレチクルRの走査方向に対応するX軸方向に沿って延びる複数の遮光部材68~71が配置されている。そして、これら各遮光部材68~71は、各シリンドリカルレンズ面54のうち有効レンズ面77に入射する露光光ELの光量を調整することにより、静止露光領域ER2内の各点のうちY軸方向に沿った点P1b~P3bに対応する各瞳強度分布61,62をそれぞれ調整することができる。 (7) On the incident side of each cylindrical lens surface 52, a plurality of light shielding members 68 to 71 extending along the X-axis direction corresponding to the scanning direction of the wafer W and the reticle R at the time of exposure are arranged. Each of the light shielding members 68 to 71 adjusts the amount of exposure light EL incident on the effective lens surface 77 of each cylindrical lens surface 54 to thereby adjust the Y axis direction among the points in the still exposure region ER2. The pupil intensity distributions 61 and 62 corresponding to the along points P1b to P3b can be adjusted.
 (第2の実施形態)
 次に、本発明の第2の実施形態を図14に従って説明する。なお、第2の実施形態は、分布補正ユニットの構成及び配置位置が第1の実施形態と異なっている。したがって、以下の説明においては、第1の実施形態と相違する部分について主に説明するものとし、第1の実施形態と同一又は相当する部材構成には同一符号を付して重複説明を省略するものとする。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment differs from the first embodiment in the configuration and arrangement position of the distribution correction unit. Therefore, in the following description, parts different from those of the first embodiment will be mainly described, and the same or corresponding member configurations as those of the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. Shall.
 図14に示すように、本実施形態の分布補正ユニット31Aは、第1マイクロフライアイレンズ50の射出面50bに形成される各シリンドリカルレンズ面54のうち有効レンズ面77に入射する露光光ELの光強度を減光させるための減光部としての遮光部66Aを備えている。 As shown in FIG. 14, the distribution correction unit 31 </ b> A according to the present embodiment is configured so that the exposure light EL incident on the effective lens surface 77 among the cylindrical lens surfaces 54 formed on the exit surface 50 b of the first micro fly's eye lens 50. A light blocking part 66A is provided as a light reducing part for reducing the light intensity.
 第1マイクロフライアイレンズ50の射出面50b側において、Z軸方向において互いに隣り合う有効レンズ面77同士の境界部分には、X軸方向に沿って延びる収容溝86がそれぞれ形成されている。なお、本実施形態では、照明瞳面27に第1面光源60a及び第2面光源60bを形成するための各有効レンズ面77のうちZ軸方向において互いに隣り合う有効レンズ面77同士の境界部分には、収容溝86がそれぞれ形成されている。これら各収容溝86は、第1マイクロフライアイレンズ50の+X方向側の端部から-X方向側の端部まで延びるようにそれぞれ形成されている。 On the exit surface 50b side of the first micro fly's eye lens 50, an accommodation groove 86 extending along the X-axis direction is formed at a boundary portion between the effective lens surfaces 77 adjacent to each other in the Z-axis direction. In the present embodiment, of the effective lens surfaces 77 for forming the first surface light source 60a and the second surface light source 60b on the illumination pupil surface 27, the boundary portion between the effective lens surfaces 77 adjacent to each other in the Z-axis direction. Each is formed with a receiving groove 86. Each of the receiving grooves 86 is formed so as to extend from the end on the + X direction side of the first micro fly's eye lens 50 to the end on the −X direction side.
 遮光部66Aは、X軸方向に沿って延びる減光部材としての四角柱状の遮光部材87を複数(図13では2つ)備えている。これら各遮光部材87は、それらのZ軸方向における長さである幅Dと、それらのY軸方向における長さLとが上記条件式(式1)を満たすようにそれぞれ形成されている。また、各遮光部材87のX軸方向における長さは、第1マイクロフライアイレンズ50のX軸方向における幅以上の長さである。 The light shielding portion 66A includes a plurality of (two in FIG. 13) square columnar light shielding members 87 as light reducing members extending along the X-axis direction. Each of these light shielding members 87 is formed such that the width D, which is the length in the Z-axis direction, and the length L in the Y-axis direction satisfy the conditional expression (Formula 1). Further, the length of each light shielding member 87 in the X-axis direction is equal to or longer than the width of the first micro fly's eye lens 50 in the X-axis direction.
 また、遮光部66Aには、各遮光部材87を、該各遮光部材87に個別対応する各収容溝86内と、露光光ELの光路外(即ち、第1マイクロフライアイレンズ50外)との間で進退移動させるための図示しない進退装置が設けられている。この進退装置からの駆動力によって各収容溝86内に遮光部材87がそれぞれ挿入された場合、該各遮光部材87は、有効レンズ面77に入射しようとする露光光ELのうち、有効レンズ面77のZ軸方向における両端部分に入射しようとする露光光ELをそれぞれ遮光するようになっている。この場合、各遮光部材87によって遮光される露光光ELの大部分は、遮光されなかった場合には照明光学系13の光軸AXに対して所定の角度を有する状態で照明瞳面27から射出される光である。すなわち、この露光光ELの大部分は、遮光されなかった場合には静止露光領域ER2の各周辺点P2b,P3bに対応する第2瞳強度分布62の第1面光源62a及び第2面光源62bを形成する第2入射光や第3入射光である。また、各遮光部材87によって遮光されない露光光ELの大部分は、照明光学系13の光軸AXに沿って照明瞳面27から射出される光である。すなわち、この露光光ELは、静止露光領域ER2の中心点P1bに対応する第1瞳強度分布61の第1面光源61a及び第2面光源61bを形成する第1入射光である。 Further, each light shielding member 87 is provided in the light shielding portion 66A between each housing groove 86 individually corresponding to each light shielding member 87 and outside the optical path of the exposure light EL (that is, outside the first micro fly's eye lens 50). An advancing / retreating device (not shown) is provided for advancing and retracting between them. When the light shielding member 87 is inserted into each housing groove 86 by the driving force from the advance / retreat apparatus, each light shielding member 87 is included in the effective lens surface 77 of the exposure light EL to be incident on the effective lens surface 77. The exposure light EL to be incident on both end portions in the Z-axis direction is shielded. In this case, most of the exposure light EL shielded by each light shielding member 87 is emitted from the illumination pupil plane 27 in a state having a predetermined angle with respect to the optical axis AX of the illumination optical system 13 when not shielded. The light that is That is, when most of the exposure light EL is not shielded, the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 corresponding to the peripheral points P2b and P3b of the still exposure region ER2. Are the second incident light and the third incident light. Further, most of the exposure light EL that is not shielded by each light shielding member 87 is light emitted from the illumination pupil plane 27 along the optical axis AX of the illumination optical system 13. That is, the exposure light EL is first incident light that forms the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 corresponding to the center point P1b of the still exposure region ER2.
 そのため、静止露光領域ER2の中心点P1bに対する第1瞳強度分布61の第1面光源61a及び第2面光源61bを通過しようとする各第1入射光の光量は、各遮光部材87によって僅かに減光されるだけである。すなわち、第1瞳強度分布61では、各遮光部材87が露光光ELの光路内に配置されていない場合に比して、その第1面光源61a及び第2面光源61bの各光強度がそれぞれ僅かに弱くなると共に、その第3面光源61c及び第4面光源61dの各光強度がそれぞれ変化しない。一方、静止露光領域ER2の周辺点P2bに対する第2瞳強度分布62の第1面光源62a及び第2面光源62bを通過しようとする各第2入射光の光量は、各遮光部材87によって大幅に減光される。同様に、静止露光領域ER2の周辺点P3bに対する第2瞳強度分布62の第1面光源62a及び第2面光源62bに入射しようとする各第3入射光の光量は、各遮光部材87によって大幅に減光される。すなわち、各第2瞳強度分布62では、各遮光部材87が露光光ELの光路内に配置されていない場合に比して、その第1面光源62a及び第2面光源62bの各光強度がそれぞれ大幅に弱くなると共に、その第3面光源62c及び第4面光源62dの各光強度がそれぞれ変化しない。その結果、第1瞳強度分布61の性状と第2瞳強度分布62の性状とは、互いにほぼ同一の性状となる。 Therefore, the light quantity of each first incident light that attempts to pass through the first surface light source 61a and the second surface light source 61b of the first pupil intensity distribution 61 with respect to the center point P1b of the still exposure region ER2 is slightly decreased by each light shielding member 87. It is only dimmed. That is, in the first pupil intensity distribution 61, each light intensity of the first surface light source 61a and the second surface light source 61b is different from that in the case where each light shielding member 87 is not disposed in the optical path of the exposure light EL. The light intensity of each of the third surface light source 61c and the fourth surface light source 61d does not change as it becomes slightly weaker. On the other hand, the amount of each second incident light that attempts to pass through the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 with respect to the peripheral point P2b of the still exposure region ER2 is greatly increased by each light shielding member 87. Dimmed. Similarly, the amount of each third incident light that is to enter the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 with respect to the peripheral point P3b of the still exposure region ER2 is greatly increased by each light shielding member 87. It will be fading. That is, in each second pupil intensity distribution 62, each light intensity of the first surface light source 62a and the second surface light source 62b is higher than when each light shielding member 87 is not disposed in the optical path of the exposure light EL. Each of the light sources of the third surface light source 62c and the fourth surface light source 62d does not change. As a result, the properties of the first pupil intensity distribution 61 and the properties of the second pupil intensity distribution 62 are substantially the same.
 したがって、本実施形態では、上記第1の実施形態における効果(1)~(3),(7)と同等の効果に加え、さらに以下に示す効果を得ることができる。
 (8)各シリンドリカルレンズ面54の入射側には、X軸方向に沿って延びる複数の遮光部材87が配置されている。そして、これら各遮光部材87は、各シリンドリカルレンズ面54のうち有効レンズ面77に入射する露光光ELの光量を調整することにより、静止露光領域ER2内の各点のうちY軸方向に沿った点P1b~P3bに対応する各瞳強度分布61,62をそれぞれ調整することができる。
Therefore, in this embodiment, in addition to the effects (1) to (3) and (7) in the first embodiment, the following effects can be obtained.
(8) On the incident side of each cylindrical lens surface 54, a plurality of light shielding members 87 extending along the X-axis direction are arranged. These light shielding members 87 are arranged along the Y-axis direction among the respective points in the still exposure region ER2 by adjusting the amount of exposure light EL incident on the effective lens surface 77 of each cylindrical lens surface 54. The pupil intensity distributions 61 and 62 corresponding to the points P1b to P3b can be adjusted.
 (9)本実施形態の遮光部材87は、第1面光源67aを形成する露光光ELの光路内及び第2面光源67bを形成する露光光ELの光路内に共に配置可能な構成である。そのため、第2瞳強度分布62の第1面光源62a及び第2面光源62bの光強度を弱くする際に、面光源毎に遮光部材を個別に設けなくてもよい。すなわち、第1面光源用の遮光部材を、第2面光源用にも用いることができる。したがって、第1の実施形態の場合に比して、分布補正ユニット31Aの部品点数の減少に貢献できる。 (9) The light blocking member 87 of the present embodiment can be arranged in both the optical path of the exposure light EL that forms the first surface light source 67a and the optical path of the exposure light EL that forms the second surface light source 67b. Therefore, when the light intensity of the first surface light source 62a and the second surface light source 62b of the second pupil intensity distribution 62 is weakened, it is not necessary to provide a light shielding member for each surface light source. That is, the light shielding member for the first surface light source can be used for the second surface light source. Therefore, compared to the case of the first embodiment, it is possible to contribute to a reduction in the number of parts of the distribution correction unit 31A.
 なお、上記各実施形態は以下のような別の実施形態に変更してもよい。
 ・各実施形態において、回折光学素子19は、複数極照明用(例えば4極照明用)の回折光学素子であってもよいし、輪帯照明用の回折光学素子であってもよい。また、露光光ELの形状を変形させることが可能な光学素子であれば、回折光学素子19の代わりに、或いは回折光学素子に加えてアキシコンレンズ対などの他の任意の光学素子を配置してもよい。アキシコンレンズ対を備えた照明光学系は、例えば国際公開第2005/076045A1号パンフレット、及びそれに対応する米国特許出願公開第2006/0170901A号に開示されている。図1に示した実施形態では、補正フィルタ24の近傍にアキシコンレンズ対を配置することができる。
In addition, you may change each said embodiment into another embodiment as follows.
In each embodiment, the diffractive optical element 19 may be a diffractive optical element for multipole illumination (for example, for quadrupole illumination) or a diffractive optical element for annular illumination. In addition, if the optical element can change the shape of the exposure light EL, another arbitrary optical element such as an axicon lens pair is arranged instead of or in addition to the diffractive optical element 19. May be. An illumination optical system including an axicon lens pair is disclosed in, for example, International Publication No. 2005 / 076045A1 and corresponding US Patent Application Publication No. 2006 / 0170901A. In the embodiment shown in FIG. 1, an axicon lens pair can be disposed in the vicinity of the correction filter 24.
 また、回折光学素子19に代えて、例えばアレイ状に配列され且つ傾斜角および傾斜方向が個別に駆動制御される多数の微小な要素ミラーにより構成されて入射光束を反射面毎の微小単位に分割して偏向させることにより、光束の断面を所望の形状または所望の大きさに変換する空間光変調素子を用いてもよい。このような空間光変調素子を用いた照明光学系は、例えば特開2002-353105号公報に開示されている。 Further, instead of the diffractive optical element 19, for example, it is composed of a large number of minute element mirrors arranged in an array and whose inclination angle and inclination direction are individually controlled to divide the incident light beam into minute units for each reflecting surface. Thus, a spatial light modulation element that converts the cross section of the light beam into a desired shape or a desired size by deflecting the light beam may be used. An illumination optical system using such a spatial light modulator is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-353105.
 ・各実施形態において、瞳強度分布計測装置36は、レチクルR上の照明領域ER1内の各点P1a,P2a,P3aに対応する各瞳強度分布61,62を計測可能であれば、レチクルRの近傍ではなくてもよい。ただし、瞳強度分布計測装置36は、レチクルRの被照射面Ra(即ち、ウエハWの表面Wa)と光学的に共役な位置近傍であれば、任意の位置に設置してもよい。 In each embodiment, if the pupil intensity distribution measuring device 36 can measure the pupil intensity distributions 61 and 62 corresponding to the points P1a, P2a, and P3a in the illumination area ER1 on the reticle R, It may not be near. However, the pupil intensity distribution measuring device 36 may be installed at an arbitrary position as long as it is in the vicinity of a position optically conjugate with the irradiated surface Ra of the reticle R (that is, the surface Wa of the wafer W).
 ・第1の実施形態において、移動機構72は、瞳強度分布計測装置36による計測結果に連動して駆動する構成でなくてもよい。すなわち、瞳強度分布計測装置36による計測結果を図示しないモニタ等の表示画面に表示させ、該表示画面に表示させた計測結果に基づき作業者が各遮光部材68~71をY軸方向やX軸方向に沿って個別に移動させるようにしてもよい。この場合、移動機構72には、駆動源73~76を設けなくてもよい。すなわち、各遮光部材68~71は、作業者による手動でそれぞれ移動することになる。 In the first embodiment, the moving mechanism 72 may not be configured to be driven in conjunction with the measurement result by the pupil intensity distribution measuring device 36. That is, the measurement result of the pupil intensity distribution measuring device 36 is displayed on a display screen such as a monitor (not shown), and the operator moves the light shielding members 68 to 71 on the Y axis direction or the X axis based on the measurement result displayed on the display screen. You may make it move individually along a direction. In this case, the moving mechanism 72 does not have to be provided with the drive sources 73 to 76. That is, each of the light shielding members 68 to 71 is moved manually by the operator.
 ・第1の実施形態において、各遮光部材68,69をX軸方向に沿ってそれぞれ移動させてもよい。例えば各遮光部材68,69が境界位置にそれぞれ配置される場合において、第2瞳強度分布62の第1面光源62aの光強度を少し強くしたいときには、図15に示すように、各第1遮光部材68のうち少なくとも一方を+X方向側に移動させる。すると、第2瞳強度分布62の第1面光源62aを通過する第2入射光及び第2入射光(露光光EL)の各光量は、露光光ELの光路内における各第1遮光部材68のうち少なくとも一方の変位が行なわれる前に比して、少なくなる。 In the first embodiment, the light shielding members 68 and 69 may be moved along the X-axis direction. For example, when the respective light shielding members 68 and 69 are arranged at the boundary positions, when the light intensity of the first surface light source 62a of the second pupil intensity distribution 62 is to be slightly increased, as shown in FIG. At least one of the members 68 is moved to the + X direction side. Then, the respective amounts of the second incident light and the second incident light (exposure light EL) passing through the first surface light source 62a of the second pupil intensity distribution 62 are determined by the respective first light shielding members 68 in the optical path of the exposure light EL. This is less than before at least one displacement is performed.
 ・第1の実施形態において、分布補正ユニット31は、2つ以外の任意数(例えば4つ)の第1遮光部材を設けた構成であってもよい。また、分布補正ユニット31は、2つ以外の任意数(例えば3つ)の第2遮光部材を設けた構成であってもよい。 In the first embodiment, the distribution correction unit 31 may be provided with an arbitrary number (for example, four) of first light shielding members other than two. Further, the distribution correction unit 31 may have a configuration in which an arbitrary number (for example, three) of second light shielding members other than two is provided.
 同様に、第2の実施形態において、分布補正ユニット31Aは、2つ以外の任意数(例えば1つ)の遮光部材87を設けた構成であってもよい。
 ・各実施形態において、遮光部材68~71,87の設置位置を、露光光ELの光路内で固定してもよい。この場合、遮光部材68~71,87は、それぞれ移動不能となる。
Similarly, in the second embodiment, the distribution correction unit 31A may have a configuration in which an arbitrary number (for example, one) of light shielding members 87 other than two is provided.
In each embodiment, the installation positions of the light shielding members 68 to 71 and 87 may be fixed in the optical path of the exposure light EL. In this case, the light shielding members 68 to 71 and 87 are immovable.
 ・各実施形態において、ウエハW及びレチクルRをY軸方向に沿ってそれぞれ走査移動させつつ露光処理を行なう場合、第1マイクロフライアイレンズ50の入射側には、Z軸方向に沿って延びる遮光部材を設けてもよい。このように構成すると、静止露光領域ER2内において走査方向と略直交するX軸方向における各点に対応する瞳強度分布を調整することができる。 In each embodiment, when exposure processing is performed while the wafer W and the reticle R are respectively scanned and moved along the Y-axis direction, a light shield extending along the Z-axis direction is formed on the incident side of the first micro fly's eye lens 50. A member may be provided. If comprised in this way, the pupil intensity distribution corresponding to each point in the X-axis direction substantially orthogonal to the scanning direction in the still exposure region ER2 can be adjusted.
 ・各実施形態において、ウエハW及びレチクルRをX軸方向に沿ってそれぞれ走査移動させつつ露光処理を行なう場合、第1マイクロフライアイレンズ50の入射側における各入射面50aの境界部分にZ軸方向に沿って延びる遮光部材を設けてもよい。この場合、第1マイクロフライアイレンズ50の有効領域(光束が通過し得る領域)の全てに渡って上記遮光部材が設けられもよい。この構成により、レチクルRにおける照明領域ER1の走査方向(X軸方向)に沿った照度分布を台形状照度分布にすることができる。 In each embodiment, when the exposure process is performed while the wafer W and the reticle R are scanned and moved along the X-axis direction, the Z-axis is formed at the boundary portion of each incident surface 50a on the incident side of the first micro fly's eye lens 50. You may provide the light-shielding member extended along a direction. In this case, the light shielding member may be provided over the entire effective area (area through which the light beam can pass) of the first micro fly's eye lens 50. With this configuration, the illuminance distribution along the scanning direction (X-axis direction) of the illumination region ER1 in the reticle R can be changed to a trapezoidal illuminance distribution.
 ・各実施形態において、オプティカルインテグレータ26は、屈折力を有する単位波面分割面がZ方向及びX方向に沿って配列される1枚のマイクロフライアイレンズから構成されるものであってもよい。また、オプティカルインテグレータとして、複数のレンズ要素が配列されてなるフライアイレンズを用いてもよい。また、オプティカルインテグレータとして、複数のミラー面が配列されてなる一対のフライアイミラーを用いてもよい。 In each embodiment, the optical integrator 26 may be configured by a single micro fly's eye lens in which unit wavefront dividing surfaces having refractive power are arranged along the Z direction and the X direction. A fly-eye lens in which a plurality of lens elements are arranged may be used as the optical integrator. A pair of fly-eye mirrors in which a plurality of mirror surfaces are arranged may be used as the optical integrator.
 ・各実施形態において、露光装置11を、可変パターン生成器(例えば、DMD(Digital Mirror Device又はDigital Micro-mirror Device))を用いたマスクレス露光装置に具体化してもよい。このようなマスクレス露光装置は、例えば特開2004-304135号公報、国際特許公開第2006/080285号パンフレット及びこれに対応する米国特許公開第2007/0296936号公報に開示されている。 In each embodiment, the exposure apparatus 11 may be embodied as a maskless exposure apparatus using a variable pattern generator (for example, DMD (Digital Mirror Device or Digital Mirror Micro-mirror Device)). Such a maskless exposure apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-304135, International Patent Publication No. 2006/080285, and US Patent Publication No. 2007/0296936 corresponding thereto.
 ・各実施形態において、投影光学系と感光性基板との間の光路中を「1.1」よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用してもよい。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開番号WO99/49504号公報に開示されているような局所的に液体を満たす手法や、特開平6-124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10-303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。 In each embodiment, a method of filling the optical path between the projection optical system and the photosensitive substrate with a medium (typically liquid) having a refractive index larger than “1.1”, a so-called immersion method is applied. May be. In this case, as a method of filling the liquid in the optical path between the projection optical system and the photosensitive substrate, a method of locally filling the liquid as disclosed in International Publication No. WO99 / 49504, A method of moving a stage holding a substrate to be exposed as disclosed in Japanese Patent Laid-Open No. 6-124873 in a liquid bath, or a stage having a predetermined depth on a stage as disclosed in Japanese Patent Laid-Open No. 10-303114. A technique of forming a liquid tank and holding the substrate in the liquid tank can be employed.
 ・各実施形態において、米国特許公開第2006/0203214号公報、米国特許公開第2006/0170901号公報、及び米国特許公開第2007/0146676号公報に開示される偏光照明方法を適用してもよい。 In each embodiment, the polarization illumination method disclosed in US Patent Publication No. 2006/0203214, US Patent Publication No. 2006/0170901, and US Patent Publication No. 2007/0146676 may be applied.
 ・各実施形態において、露光装置11は、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクルまたはマスクを製造するために、マザーレチクルからガラス基板やシリコンウエハなどへ回路パターンを転写する露光装置であってもよい。また、露光装置11は、液晶表示素子(LCD)などを含むディスプレイの製造に用いられてデバイスパターンをガラスプレート上へ転写する露光装置、薄膜磁気ヘッド等の製造に用いられて、デバイスパターンをセラミックウエハ等へ転写する露光装置、及びCCD等の撮像素子の製造に用いられる露光装置などであってもよい。 In each embodiment, the exposure apparatus 11 manufactures a reticle or mask used in not only a microdevice such as a semiconductor element but also a light exposure apparatus, an EUV exposure apparatus, an X-ray exposure apparatus, and an electron beam exposure apparatus. Therefore, an exposure apparatus that transfers a circuit pattern from a mother reticle to a glass substrate or a silicon wafer may be used. The exposure apparatus 11 is used for manufacturing a display including a liquid crystal display element (LCD) and the like, and is used for manufacturing an exposure apparatus that transfers a device pattern onto a glass plate, a thin film magnetic head, and the like. It may be an exposure apparatus that transfers to a wafer or the like, and an exposure apparatus that is used to manufacture an image sensor such as a CCD.
 ・各実施形態において、露光装置11を、レチクルRとウエハWとが相対移動した状態でレチクルRのパターンをウエハWへ転写し、ウエハWを順次ステップ移動させるスキャニング・ステッパに具体化してもよい。 In each embodiment, the exposure apparatus 11 may be embodied as a scanning stepper that transfers the pattern of the reticle R to the wafer W with the reticle R and the wafer W relatively moved, and sequentially moves the wafer W stepwise. .
 ・各実施形態において、光源装置12は、例えばg線(436nm)、i線(365nm)、KrFエキシマレーザ(248nm)、Fレーザ(157nm)、Krレーザ(146nm)、Arレーザ(126nm)等を供給可能な光源であってもよい。また、光源装置12は、DFB半導体レーザまたはファイバレーザから発振される赤外域、または可視域の単一波長レーザ光を、例えばエルビウム(またはエルビウムとイッテルビウムの双方)がドープされたファイバアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を供給可能な光源であってもよい。 In each embodiment, the light source device 12 includes, for example, g-line (436 nm), i-line (365 nm), KrF excimer laser (248 nm), F 2 laser (157 nm), Kr 2 laser (146 nm), Ar 2 laser (126 nm) Or the like. The light source device 12 amplifies the infrared or visible single wavelength laser light oscillated from the DFB semiconductor laser or fiber laser, for example, with a fiber amplifier doped with erbium (or both erbium and ytterbium). Alternatively, a light source capable of supplying harmonics converted into ultraviolet light using a nonlinear optical crystal may be used.
 ・各実施形態において、露光装置11を、波長が100nm程度以下の軟X線領域である極端紫外光、即ちEUV(Extreme Ultraviolet )光を露光光ELとして用いるEUV露光装置に具体化してもよい。この場合、露光装置11は、内部が真空雰囲気に設定されるチャンバを備え、該チャンバ内には、照明光学系13、レチクルステージ14、投影光学系15及びウエハステージ16が配置されることになる。また、照明光学系13及び投影光学系15は、反射型の光学素子にてそれぞれ構成されると共に、レチクルRは、反射型のレチクルが用いられることになる。そして、遮光部材は、照明光学系13の一対のフライアイミラーのうち光源側に位置するフライアイミラーの光源側に配置されることになる。 In each embodiment, the exposure apparatus 11 may be embodied as an EUV exposure apparatus that uses extreme ultraviolet light that is a soft X-ray region having a wavelength of about 100 nm or less, that is, EUV (Extreme Ultraviolet light) as the exposure light EL. In this case, the exposure apparatus 11 includes a chamber whose interior is set to a vacuum atmosphere, and an illumination optical system 13, a reticle stage 14, a projection optical system 15, and a wafer stage 16 are disposed in the chamber. . In addition, the illumination optical system 13 and the projection optical system 15 are each composed of a reflective optical element, and the reticle R is a reflective reticle. The light shielding member is arranged on the light source side of the fly eye mirror located on the light source side of the pair of fly eye mirrors of the illumination optical system 13.
 ・遮光部材68~71、移動機構72、及び進退機構を一体化したユニットは、減光ユニットと呼ばれることもある。
 次に、本発明の実施形態の露光装置11によるデバイスの製造方法をリソグラフィ工程で使用したマイクロデバイスの製造方法の実施形態について説明する。図16は、マイクロデバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートを示す図である。
A unit in which the light shielding members 68 to 71, the moving mechanism 72, and the advance / retreat mechanism are integrated may be referred to as a dimming unit.
Next, an embodiment of a microdevice manufacturing method using the device manufacturing method by the exposure apparatus 11 of the embodiment of the present invention in the lithography process will be described. FIG. 16 is a flowchart illustrating a manufacturing example of a micro device (a semiconductor chip such as an IC or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, a micro machine, or the like).
 まず、ステップS101(設計ステップ)において、マイクロデバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップS102(マスク製作ステップ)において、設計した回路パターンを形成したマスク(レチクルRなど)を製作する。一方、ステップS103(基板製造ステップ)において、シリコン、ガラス、セラミックス等の材料を用いて基板(シリコン材料を用いた場合にはウエハWとなる。)を製造する。 First, in step S101 (design step), function / performance design of a micro device (for example, circuit design of a semiconductor device) is performed, and a pattern design for realizing the function is performed. Subsequently, in step S102 (mask manufacturing step), a mask (reticle R or the like) on which the designed circuit pattern is formed is manufactured. On the other hand, in step S103 (substrate manufacturing step), a substrate (a wafer W when a silicon material is used) is manufactured using a material such as silicon, glass, or ceramics.
 次に、ステップS104(基板処理ステップ)において、ステップS101~ステップS104で用意したマスクと基板を使用して、後述するように、リソグラフィ技術等によって基板上に実際の回路等を形成する。次いで、ステップS105(デバイス組立ステップ)において、ステップS104で処理された基板を用いてデバイス組立を行う。このステップS105には、ダイシング工程、ボンティング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。最後に、ステップS106(検査ステップ)において、ステップS105で作製されたマイクロデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にマイクロデバイスが完成し、これが出荷される。 Next, in step S104 (substrate processing step), using the mask and substrate prepared in steps S101 to S104, an actual circuit or the like is formed on the substrate by a lithography technique or the like as will be described later. Next, in step S105 (device assembly step), device assembly is performed using the substrate processed in step S104. Step S105 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary. Finally, in step S106 (inspection step), inspections such as an operation confirmation test and a durability test of the microdevice manufactured in step S105 are performed. After these steps, the microdevice is completed and shipped.
 図17は、半導体デバイスの場合におけるステップS104の詳細工程の一例を示す図である。
 ステップS111(酸化ステップ)おいては、基板の表面を酸化させる。ステップS112(CVDステップ)においては、基板表面に絶縁膜を形成する。ステップS113(電極形成ステップ)においては、基板上に電極を蒸着によって形成する。ステップS114(イオン打込みステップ)においては、基板にイオンを打ち込む。以上のステップS111~ステップS114のそれぞれは、基板処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
FIG. 17 is a diagram illustrating an example of a detailed process of step S104 in the case of a semiconductor device.
In step S111 (oxidation step), the surface of the substrate is oxidized. In step S112 (CVD step), an insulating film is formed on the substrate surface. In step S113 (electrode formation step), an electrode is formed on the substrate by vapor deposition. In step S114 (ion implantation step), ions are implanted into the substrate. Each of the above steps S111 to S114 constitutes a pretreatment process at each stage of the substrate processing, and is selected and executed according to a necessary process at each stage.
 基板プロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップS115(レジスト形成ステップ)において、基板に感光性材料を塗布する。引き続き、ステップS116(露光ステップ)において、上で説明したリソグラフィシステム(露光装置11)によってマスクの回路パターンを基板に転写する。次に、ステップS117(現像ステップ)において、ステップS116にて露光された基板を現像して、基板の表面に回路パターンからなるマスク層を形成する。さらに続いて、ステップS118(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップS119(レジスト除去ステップ)において、エッチングが済んで不要となった感光性材料を取り除く。すなわち、ステップS118及びステップS119において、マスク層を介して基板の表面を加工する。これらの前処理工程と後処理工程とを繰り返し行うことによって、基板上に多重に回路パターンが形成される。 At each stage of the substrate process, when the above-described pretreatment process is completed, the posttreatment process is executed as follows. In this post-processing process, first, in step S115 (resist formation step), a photosensitive material is applied to the substrate. Subsequently, in step S116 (exposure step), the circuit pattern of the mask is transferred to the substrate by the lithography system (exposure apparatus 11) described above. Next, in step S117 (development step), the substrate exposed in step S116 is developed to form a mask layer made of a circuit pattern on the surface of the substrate. Subsequently, in step S118 (etching step), the exposed member other than the portion where the resist remains is removed by etching. In step S119 (resist removal step), the photosensitive material that has become unnecessary after the etching is removed. That is, in step S118 and step S119, the surface of the substrate is processed through the mask layer. By repeatedly performing these pre-processing steps and post-processing steps, multiple circuit patterns are formed on the substrate.

Claims (29)

  1.  光源からの光で被照射面を照明する照明光学系であって、
     前記照明光学系の光軸と交差する面内に配列される複数の入射側光学面、及び該複数の入射側光学面よりも前記被照射面側において前記光軸と交差する面内に配列され且つ前記複数の入射側光学面に個別対応する複数の射出側光学面を有し、前記光源からの光が入射した場合に前記照明光学系の照明光路内の照明瞳面に所定の光強度分布を形成するオプティカルインテグレータと、
     前記複数の入射側光学面の前記光源側に配置され、前記複数の入射側光学面のうち少なくとも一部の入射側光学面に入射する光の一部を減光する減光部と、を備え、
     該減光部は、前記光軸と交差する面内において前記照明光学系の光軸方向と交差する第1の方向に沿った幅よりも前記光軸方向に沿った長さの方が長いことを特徴とする照明光学系。
    An illumination optical system that illuminates the illuminated surface with light from a light source,
    A plurality of incident side optical surfaces arranged in a plane intersecting with the optical axis of the illumination optical system, and arranged in a plane intersecting the optical axis on the irradiated surface side with respect to the plurality of incident side optical surfaces. And a plurality of exit-side optical surfaces individually corresponding to the plurality of entrance-side optical surfaces, and a predetermined light intensity distribution on an illumination pupil plane in the illumination optical path of the illumination optical system when light from the light source is incident An optical integrator that forms
    A dimming unit disposed on the light source side of the plurality of incident side optical surfaces, and dimming part of light incident on at least some of the incident side optical surfaces of the plurality of incident side optical surfaces. ,
    The dimming section has a longer length along the optical axis direction than a width along a first direction intersecting the optical axis direction of the illumination optical system in a plane intersecting the optical axis. An illumination optical system.
  2.  前記減光部は、前記複数の入射側光学面のうち一部の入射側光学面に入射する光の一部を減光することを特徴とする請求項1に記載の照明光学系。 2. The illumination optical system according to claim 1, wherein the dimming unit diminishes a part of light incident on a part of the plurality of incident-side optical surfaces among the plurality of incident-side optical surfaces.
  3.  前記減光部は、前記照明光学系の光軸方向と交差する面において前記第1の方向に交差する第2の方向に沿って延びる減光部材を有することを特徴とする請求項1又は請求項2に記載の照明光学系。 The said light reduction part has a light reduction member extended along the 2nd direction which cross | intersects the said 1st direction in the surface which cross | intersects the optical axis direction of the said illumination optical system. Item 3. The illumination optical system according to Item 2.
  4.  前記減光部材は、該減光部材の前記光軸方向に沿った長さをLとし、前記一部の入射側光学面における前記第1方向に沿った幅をDとし、前記一部の入射側光学面に入射する光の入射角をθとする場合、
     L<D/tanθ
     の条件を満たすことを特徴とする請求項3に記載の照明光学系。
    The light-reducing member has a length along the optical axis direction of the light-reducing member as L, a width along the first direction of the partial incident-side optical surface as D, and the partial incident. When the incident angle of light incident on the side optical surface is θ,
    L <D / tan θ
    The illumination optical system according to claim 3, wherein the following condition is satisfied.
  5.  前記減光部材を、前記光軸と交差する面において前記第1方向に沿って移動させる移動機構をさらに備えることを特徴とする請求項3又は請求項4に記載の照明光学系。 The illumination optical system according to claim 3 or 4, further comprising a moving mechanism that moves the dimming member along the first direction on a plane intersecting the optical axis.
  6.  前記減光部材を前記光軸方向に沿って移動させる移動機構をさらに備えることを特徴とする請求項3~請求項5のうち何れか一項に記載の照明光学系。 The illumination optical system according to any one of claims 3 to 5, further comprising a moving mechanism that moves the dimming member along the optical axis direction.
  7.  前記被照射面上の所定の点に到達する光束の角度方向の光強度分布を計測する計測装置と、
     該計測装置による計測結果に応じて前記移動機構を駆動させる制御装置と、をさらに備えることを特徴とする請求項5又は請求項6に記載の照明光学系。
    A measuring device for measuring a light intensity distribution in an angular direction of a light beam reaching a predetermined point on the irradiated surface;
    The illumination optical system according to claim 5, further comprising a control device that drives the moving mechanism according to a measurement result by the measurement device.
  8.  前記オプティカルインテグレータは、
     前記光軸と交差する面内において前記照明光学系の光軸方向と交差する第3の方向に沿って延びるように形成され、前記光軸と交差する面において前記第3の方向に交差する第4の方向に沿って配列される複数の第1入射側光学面と、
     前記照明光学系の光軸方向において前記複数の第1入射側光学面と異なる位置に配置され、前記第4の方向に沿って延びるように形成され、前記光軸と交差する面において前記第3の方向に沿って配列される複数の第2入射側光学面と、
     前記光軸方向において前記複数の第1入射側光学面よりも前記被照射面側に配置され、前記複数の第1入射側光学面に個別対応して前記第3の方向に沿って延びるように形成され、前記光軸と交差する面において前記第4の方向に沿って配列される複数の第1射出側光学面と、
     前記光軸方向において前記複数の第2入射側光学面よりも前記被照射面側に配置され、前記複数の第2入射側光学面に個別対応して前記第4の方向に沿って延びるように形成され、前記光軸と交差する面において前記第3の方向に沿って配列される複数の第2射出側光学面と、を有することを特徴とする請求項1~請求項7のうち何れか一項に記載の照明光学系。
    The optical integrator is
    A second surface is formed so as to extend along a third direction intersecting the optical axis direction of the illumination optical system in a plane intersecting the optical axis, and intersecting the third direction in a plane intersecting the optical axis. A plurality of first incident-side optical surfaces arranged along the direction of 4,
    In the optical axis direction of the illumination optical system, the third optical surface is disposed at a position different from the plurality of first incident side optical surfaces, is formed to extend along the fourth direction, and is formed on the surface intersecting the optical axis. A plurality of second incident-side optical surfaces arranged along the direction of
    In the optical axis direction, it is disposed closer to the irradiated surface than the plurality of first incident side optical surfaces, and extends along the third direction individually corresponding to the plurality of first incident side optical surfaces. A plurality of first emission-side optical surfaces that are formed and arranged along the fourth direction in a plane that intersects the optical axis;
    In the optical axis direction, it is disposed closer to the irradiated surface than the plurality of second incident side optical surfaces, and extends along the fourth direction individually corresponding to the plurality of second incident side optical surfaces. 8. A plurality of second exit-side optical surfaces that are formed and arranged along the third direction in a plane that intersects the optical axis. The illumination optical system according to one item.
  9.  前記オプティカルインテグレータは、前記光軸方向において前記光源側に配置される第1光学部材と、前記被照射面側に配置される第2光学部材とを備え、
     前記第1光学部材の入射側には、前記複数の第1入射側光学面が形成され、前記第1光学部材の射出側には、前記複数の第2入射側光学面が形成されており、
     前記第2光学部材の入射側には、前記複数の第1射出側光学面が形成され、前記第2光学部材の射出側には、前記複数の第2射出側光学面が形成されていることを特徴とする請求項8に記載の照明光学系。
    The optical integrator includes a first optical member disposed on the light source side in the optical axis direction, and a second optical member disposed on the irradiated surface side,
    The plurality of first incident side optical surfaces are formed on the incident side of the first optical member, and the plurality of second incident side optical surfaces are formed on the emission side of the first optical member,
    The plurality of first emission-side optical surfaces are formed on the incident side of the second optical member, and the plurality of second emission-side optical surfaces are formed on the emission side of the second optical member. The illumination optical system according to claim 8.
  10.  前記減光部は、前記複数の第1入射側光学面の前記光源側に配置され、前記複数の第2入射側光学面のうち一部の第2入射側光学面に入射する光の一部を減光することを特徴とする請求項8又は請求項9に記載の照明光学系。 The dimming unit is disposed on the light source side of the plurality of first incident-side optical surfaces, and a part of light incident on some second incident-side optical surfaces of the plurality of second incident-side optical surfaces. The illumination optical system according to claim 8 or 9, wherein the illumination optical system is dimmed.
  11.  前記減光部は、前記複数の第1入射側光学面よりも前記被照射面側であって、且つ前記複数の第2入射側光学面よりも前記光源側の位置に配置され、前記複数の第2入射側光学面のうち一部の第2入射側光学面に入射する光の一部を減光することを特徴とする請求項8~請求項10のうち何れか一項に記載の照明光学系。 The dimming unit is disposed on the irradiated surface side with respect to the plurality of first incident side optical surfaces and at a position closer to the light source than the plurality of second incident side optical surfaces, and The illumination according to any one of claims 8 to 10, wherein a part of light incident on a part of the second incident-side optical surfaces of the second incident-side optical surfaces is dimmed. Optical system.
  12.  前記減光部は、前記複数の入射側光学面のうち全ての入射側光学面に入射する光の一部を減光し、且つ前記第1の方向に沿って延びる減光部材を有することを特徴とする請求項1~請求項11のうち何れか一項に記載の照明光学系。 The dimming unit includes a dimming member that dims a part of light incident on all the incident side optical surfaces among the plurality of incident side optical surfaces and extends along the first direction. The illumination optical system according to any one of claims 1 to 11, wherein the illumination optical system is characterized in that:
  13.  前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、
     前記照明瞳は、前記投影光学系の開口絞りと光学的に共役な位置に形成されることを特徴とする請求項1~請求項12のうち何れか一項に記載の照明光学系。
    Used in combination with a projection optical system that forms a surface optically conjugate with the irradiated surface,
    The illumination optical system according to any one of claims 1 to 12, wherein the illumination pupil is formed at a position optically conjugate with an aperture stop of the projection optical system.
  14.  前記減光部は、前記複数の入射側光学面のうち少なくとも一部の入射側光学面に入射する光の一部を遮光する遮光部であることを特徴とする請求項1~請求項13のうち何れか一項に記載の照明光学系。 14. The light-attenuating unit is a light-shielding unit that shields a part of light incident on at least some of the incident-side optical surfaces among the plurality of incident-side optical surfaces. The illumination optical system as described in any one of them.
  15.  光源から出力される光を前記被照射面上の所定のパターンへ導く請求項1~請求項14のうち何れか一項に記載の照明光学系を備え、
     該照明光学系から射出される光で前記所定のパターンを照明することにより形成されたパターンの像を、感光材料が塗布された基板上に投影することを特徴とする露光装置。
    The illumination optical system according to any one of claims 1 to 14, wherein light output from a light source is guided to a predetermined pattern on the irradiated surface,
    An exposure apparatus that projects an image of a pattern formed by illuminating the predetermined pattern with light emitted from the illumination optical system onto a substrate coated with a photosensitive material.
  16.  前記パターンの像を前記基板上に投影するための投影光学系をさらに備え、
     該投影光学系に対して前記パターン及び前記基板を走査方向に沿って相対移動させることにより、前記基板上に前記パターンの像を投影することを特徴とする請求項15に記載の露光装置。
    A projection optical system for projecting an image of the pattern onto the substrate;
    16. The exposure apparatus according to claim 15, wherein an image of the pattern is projected onto the substrate by moving the pattern and the substrate relative to the projection optical system along a scanning direction.
  17.  請求項15又は請求項16に記載の露光装置を用いて、前記パターンの像を前記基板の表面に露光する露光ステップと、
     該露光ステップ後において、前記基板を現像して前記パターンの像に対応する形状のマスク層を前記基板の表面に形成する現像ステップと、
     該現像ステップ後において、前記マスク層を介して前記基板の表面を加工する加工ステップと、を含むことを特徴とするデバイスの製造方法。
    An exposure step of exposing an image of the pattern onto the surface of the substrate using the exposure apparatus according to claim 15 or 16,
    After the exposure step, the development step of developing the substrate to form a mask layer having a shape corresponding to the image of the pattern on the surface of the substrate;
    And a processing step of processing the surface of the substrate through the mask layer after the developing step.
  18.  光源からの光で被照射面を照明する照明光学系であって、前記照明光学系の光軸と交差する面内に配列される複数の入射側光学面、及び該複数の入射側光学面よりも前記被照射面側において前記光軸と交差する面内に配列され且つ前記複数の入射側光学面に個別対応する複数の射出側光学面を有し、前記光源からの光が入射した場合に前記照明光学系の照明光路内の照明瞳面に所定の光強度分布を形成するオプティカルインテグレータを備える照明光学系と組み合わされる減光ユニットであって、
     前記オプティカルインテグレータの前記複数の入射側光学面の前記光源側に配置され、前記複数の入射側光学面のうち少なくとも一部の入射側光学面に入射する光の一部を減光する減光部を備え、
     該減光部は、前記光軸と交差する面内において前記照明光学系の光軸方向と交差する第1の方向に沿った幅よりも前記光軸方向に沿った長さの方が長いことを特徴とする減光ユニット。
    An illumination optical system that illuminates a surface to be irradiated with light from a light source, the plurality of incident-side optical surfaces arranged in a plane that intersects the optical axis of the illumination optical system, and the plurality of incident-side optical surfaces And a plurality of exit-side optical surfaces arranged in a plane intersecting the optical axis on the irradiated surface side and individually corresponding to the plurality of incident-side optical surfaces, and when light from the light source is incident A dimming unit combined with an illumination optical system including an optical integrator that forms a predetermined light intensity distribution on an illumination pupil plane in an illumination optical path of the illumination optical system,
    A dimming unit disposed on the light source side of the plurality of incident-side optical surfaces of the optical integrator and dimming a part of light incident on at least some of the plurality of incident-side optical surfaces. With
    The dimming section has a longer length along the optical axis direction than a width along a first direction intersecting the optical axis direction of the illumination optical system in a plane intersecting the optical axis. A dimming unit characterized by
  19.  前記減光部は、前記複数の入射側光学面のうち一部の入射側光学面に入射する光の一部を減光することを特徴とする請求項18に記載の減光ユニット。 The dimming unit according to claim 18, wherein the dimming unit dimmes a part of light incident on some of the incident side optical surfaces among the plurality of incident side optical surfaces.
  20.  前記減光部は、前記照明光学系の光軸方向と交差する面において前記第1の方向に交差する第2の方向に沿って延びる減光部材を有することを特徴とする請求項18又は請求項19に記載の減光ユニット。 The said light reduction part has a light reduction member extended along the 2nd direction which cross | intersects the said 1st direction in the surface which cross | intersects the optical axis direction of the said illumination optical system. Item 20. The dimming unit according to Item 19.
  21.  前記減光部材は、該減光部材の前記光軸方向に沿った長さをLとし、前記一部の入射側光学面における前記第1方向に沿った幅をDとし、前記一部の入射側光学面に入射する光の入射角をθとする場合、
     L<D/tanθ
     の条件を満たすことを特徴とする請求項20に記載の減光ユニット。
    The light-reducing member has a length along the optical axis direction of the light-reducing member as L, a width along the first direction of the partial incident-side optical surface as D, and the partial incident. When the incident angle of light incident on the side optical surface is θ,
    L <D / tan θ
    The dimming unit according to claim 20, wherein the following condition is satisfied.
  22.  前記減光部材を、前記光軸と交差する面において前記第1方向に沿って移動させる移動機構をさらに備えることを特徴とする請求項20又は請求項21に記載の減光ユニット。 The dimming unit according to claim 20 or 21, further comprising a moving mechanism for moving the dimming member along the first direction on a plane intersecting the optical axis.
  23.  前記減光部材を前記光軸方向に沿って移動させる移動機構をさらに備えることを特徴とする請求項20~請求項22のうち何れか一項に記載の減光ユニット。 The dimming unit according to any one of claims 20 to 22, further comprising a moving mechanism that moves the dimming member along the optical axis direction.
  24.  前記オプティカルインテグレータは、
     前記光軸と交差する面内において前記照明光学系の光軸方向と交差する第3の方向に沿って延びるように形成され、前記光軸と交差する面において前記第3の方向に交差する第4の方向に沿って配列される複数の第1入射側光学面と、
     前記照明光学系の光軸方向において前記複数の第1入射側光学面と異なる位置に配置され、前記第4の方向に沿って延びるように形成され、前記光軸と交差する面において前記第3の方向に沿って配列される複数の第2入射側光学面と、
     前記光軸方向において前記複数の第1入射側光学面よりも前記被照射面側に配置され、前記複数の第1入射側光学面に個別対応して前記第3の方向に沿って延びるように形成され、前記光軸と交差する面において前記第4の方向に沿って配列される複数の第1射出側光学面と、
     前記光軸方向において前記複数の第2入射側光学面よりも前記被照射面側に配置され、前記複数の第2入射側光学面に個別対応して前記第4の方向に沿って延びるように形成され、前記光軸と交差する面において前記第3の方向に沿って配列される複数の第2射出側光学面と、を有し、
     前記減光部は、前記複数の第1入射側光学面の前記光源側に配置され、前記複数の第2入射側光学面のうち一部の第2入射側光学面に入射する光の一部を減光することを特徴とする請求項18~請求項23のうち何れか一項に記載の減光ユニット。
    The optical integrator is
    A second surface is formed so as to extend along a third direction intersecting the optical axis direction of the illumination optical system in a plane intersecting the optical axis, and intersecting the third direction in a plane intersecting the optical axis. A plurality of first incident-side optical surfaces arranged along the direction of 4,
    In the optical axis direction of the illumination optical system, the third optical surface is disposed at a position different from the plurality of first incident side optical surfaces, is formed to extend along the fourth direction, and is formed on the surface intersecting the optical axis. A plurality of second incident-side optical surfaces arranged along the direction of
    In the optical axis direction, it is disposed closer to the irradiated surface than the plurality of first incident side optical surfaces, and extends along the third direction individually corresponding to the plurality of first incident side optical surfaces. A plurality of first emission-side optical surfaces that are formed and arranged along the fourth direction in a plane that intersects the optical axis;
    In the optical axis direction, it is disposed closer to the irradiated surface than the plurality of second incident side optical surfaces, and extends along the fourth direction individually corresponding to the plurality of second incident side optical surfaces. A plurality of second exit-side optical surfaces that are formed and arranged along the third direction in a plane that intersects the optical axis,
    The dimming unit is disposed on the light source side of the plurality of first incident-side optical surfaces, and a part of light incident on some second incident-side optical surfaces of the plurality of second incident-side optical surfaces. The dimming unit according to any one of claims 18 to 23, wherein the dimming unit is dimmed.
  25.  前記オプティカルインテグレータは、前記光軸方向において前記光源側に配置される第1光学部材と、前記被照射面側に配置される第2光学部材とを備え、
     前記第1光学部材の入射側には、前記複数の第1入射側光学面が形成され、前記第1光学部材の射出側には、前記複数の第2入射側光学面が形成されており、
     前記第2光学部材の入射側には、前記複数の第1射出側光学面が形成され、前記第2光学部材の射出側には、前記複数の第2射出側光学面が形成されていることを特徴とする請求項24に記載の減光ユニット。
    The optical integrator includes a first optical member disposed on the light source side in the optical axis direction, and a second optical member disposed on the irradiated surface side,
    The plurality of first incident side optical surfaces are formed on the incident side of the first optical member, and the plurality of second incident side optical surfaces are formed on the emission side of the first optical member,
    The plurality of first emission-side optical surfaces are formed on the incident side of the second optical member, and the plurality of second emission-side optical surfaces are formed on the emission side of the second optical member. The dimming unit according to claim 24.
  26.  前記減光部は、前記複数の第1入射側光学面よりも前記被照射面側であって、且つ前記複数の第2入射側光学面よりも前記光源側の位置に配置され、前記複数の第2入射側光学面のうち一部の第2入射側光学面に入射する光の一部を減光することを特徴とする請求項24又は請求項25に記載の減光ユニット。 The dimming unit is disposed on the irradiated surface side with respect to the plurality of first incident side optical surfaces and at a position closer to the light source than the plurality of second incident side optical surfaces, and The dimming unit according to claim 24 or 25, wherein a part of light incident on a part of the second incident side optical surfaces of the second incident side optical surfaces is dimmed.
  27.  前記減光部は、前記複数の入射側光学面のうち全ての入射側光学面に入射する光の一部を減光し、且つ前記第1の方向に沿って延びる減光部材を有することを特徴とする請求項18~請求項26のうち何れか一項に記載の減光ユニット。 The dimming unit includes a dimming member that dims a part of light incident on all the incident-side optical surfaces of the plurality of incident-side optical surfaces and extends along the first direction. The dimming unit according to any one of claims 18 to 26, characterized in that:
  28.  前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、
     前記照明瞳は、前記投影光学系の開口絞りと光学的に共役な位置に形成されることを特徴とする請求項18~請求項27のうち何れか一項に記載の減光ユニット。
    Used in combination with a projection optical system that forms a surface optically conjugate with the irradiated surface,
    The dimming unit according to any one of claims 18 to 27, wherein the illumination pupil is formed at a position optically conjugate with an aperture stop of the projection optical system.
  29.  前記減光部は、前記複数の入射側光学面のうち少なくとも一部の入射側光学面に入射する光の一部を遮光する遮光部であることを特徴とする請求項18~請求項28のうち何れか一項に記載の減光ユニット。 29. The light-attenuating unit is a light-shielding unit that shields part of light incident on at least some of the incident-side optical surfaces among the plurality of incident-side optical surfaces. The light reduction unit as described in any one of them.
PCT/JP2009/067925 2008-12-25 2009-10-16 Illumination optical system, exposure apparatus, and device manufacturing method WO2010073801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-331511 2008-12-25
JP2008331511 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010073801A1 true WO2010073801A1 (en) 2010-07-01

Family

ID=42287428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067925 WO2010073801A1 (en) 2008-12-25 2009-10-16 Illumination optical system, exposure apparatus, and device manufacturing method

Country Status (1)

Country Link
WO (1) WO2010073801A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352429A (en) * 2000-04-05 2001-12-21 Rohm Co Ltd Lens array unit and optical device provided with the same
JP2002237442A (en) * 2001-02-09 2002-08-23 Ushio Inc Light-irradiating apparatus having illuminance- distribution uniforming filter
JP2004055856A (en) * 2002-07-19 2004-02-19 Canon Inc Lighting device, manufacturing method for exposure device and for device utilizing the same
JP2004056103A (en) * 2002-05-27 2004-02-19 Nikon Corp Illumination optical apparatus, aligner, and exposure method
JP2008235361A (en) * 2007-03-16 2008-10-02 Nikon Corp Optical integrator, illumination optical system, exposure device, and method of manufacturing device
JP2009260337A (en) * 2008-04-14 2009-11-05 Nikon Corp Illumination optical system, exposure apparatus, and device method for manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352429A (en) * 2000-04-05 2001-12-21 Rohm Co Ltd Lens array unit and optical device provided with the same
JP2002237442A (en) * 2001-02-09 2002-08-23 Ushio Inc Light-irradiating apparatus having illuminance- distribution uniforming filter
JP2004056103A (en) * 2002-05-27 2004-02-19 Nikon Corp Illumination optical apparatus, aligner, and exposure method
JP2004055856A (en) * 2002-07-19 2004-02-19 Canon Inc Lighting device, manufacturing method for exposure device and for device utilizing the same
JP2008235361A (en) * 2007-03-16 2008-10-02 Nikon Corp Optical integrator, illumination optical system, exposure device, and method of manufacturing device
JP2009260337A (en) * 2008-04-14 2009-11-05 Nikon Corp Illumination optical system, exposure apparatus, and device method for manufacturing

Similar Documents

Publication Publication Date Title
JP5867576B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5365641B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
US20080143987A1 (en) Exposure apparatus and device fabrication method
JP5541164B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
KR101501303B1 (en) Lighting optical apparatus, photolithography equipment and device manufacturing method
JP5453804B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2010123755A (en) Exposure apparatus, and device manufacturing method
JP5239829B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5239830B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
WO2010073801A1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP5396885B2 (en) Shielding unit, illumination optical system, exposure apparatus, and device manufacturing method
JP5532620B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
CN114365045B (en) Exposure apparatus and method for manufacturing article
CN114286966B (en) Exposure apparatus and article manufacturing method
JP5187631B2 (en) Correction unit, illumination optical system, exposure apparatus, and device manufacturing method
JP2011040618A (en) Diffraction optical element, illumination optical system, exposure apparatus, method of manufacturing device, and method of designing diffraction optical element
CN114303101A (en) Exposure apparatus and method for manufacturing article
JP2011171776A (en) Illumination optical system and exposure apparatus
JP2010177304A (en) Correction unit, lighting optical system, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09834607

Country of ref document: EP

Kind code of ref document: A1