WO2010063166A1 - 用户上行数据调度方法及用户设备 - Google Patents
用户上行数据调度方法及用户设备 Download PDFInfo
- Publication number
- WO2010063166A1 WO2010063166A1 PCT/CN2009/001377 CN2009001377W WO2010063166A1 WO 2010063166 A1 WO2010063166 A1 WO 2010063166A1 CN 2009001377 W CN2009001377 W CN 2009001377W WO 2010063166 A1 WO2010063166 A1 WO 2010063166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- persistent scheduling
- semi
- cycle mode
- frame number
- module
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
Definitions
- the present invention relates to the field of mobile communications, and in particular, to a user uplink data scheduling method and user equipment for supporting TTI bundling in 3GPP LTE TDD DL/UL subframe configuration 1.
- Semi-persistent scheduling is a new scheduling method proposed in 3G LTE (Long Term Evolution) to save the downlink physical control channel (PDCCH). It is mainly for VoIP (voice over IP, voice over IP). The business came up.
- SPS semi-persistent scheduling
- the basic idea of semi-persistent scheduling (SPS) is that the new packet of VoIP service has a period of 20 ms. Therefore, it can indicate the period of reserved resources through Radio Resource Control (RRC) signaling.
- RRC Radio Resource Control
- the reserved time-frequency domain resource is activated by a PDCCH, and the fixed-location resource is automatically used to transmit data every 20 ms, without using the PDCCH to indicate the allocated resource for each new packet; and the retransmission packet is Its unpredictability, so the resources occupied by the retransmission packet can not be reserved, and dynamic scheduling is required.
- it is called semi-persistent scheduling, as shown in Figure 1.
- Time Division Duplex In the LTE Time Division Duplex (TDD) system, there are 7 kinds of uplink and downlink time slot ratios, which are configuration 0 ⁇ 6, respectively, in which the five types of time slots are proportionally proportioned, corresponding to the uplink transmission.
- the Round Trip Time (RTT) of the hybrid automatic repeat request (Hybrid ARQ) is 10ms. Since TD-LTE (TDD LTE) uplink is based on synchronous HARQ, the retransmission packet occurs 10 ms after the new transmission packet (that is, the initially transmitted packet), so the retransmission packet of the second retransmission may be allocated with the current semi-persistent scheduling. The time of occurrence of the new packet is in conflict. As shown in FIG.
- the semi-persistent scheduling period (that is, the resource allocation interval) for the VoIP service is 20 ms
- T1 and ⁇ 2 can be expressed as:
- Tl SPS periodicity + delta ( 1 )
- T2 SPS periodicity - delta ( 2 )
- SPS periodicity represents a semi-persistent scheduling period, which is 20ms for VoIP service, and delta is a semi-persistent scheduling period offset.
- the existing scheme proposes that the uplink subframe configuration of the TD-LTE and the uplink subframe of the semi-persistent scheduling starting point are specified in a TDD period. That is, when the semi-persistent scheduling starts from a specific uplink subframe, the delta value is uniquely determined, and RRC signaling is not required to notify the user equipment (User Equipment, UE for short) to use the delta value, but only one The RRC signaling of the bits indicates whether multi-cycle semi-persistent scheduling is used. For example, in the case of TDD configuration 2, there are two uplink subframes in the 10 ms TDD period. According to this scheme, the delta value is calculated as follows:
- Figure 3 shows the schematic of the semi-persistent scheduling of the multi-cycle mode.
- the 1, 2, 3, and 4 in Figure 3 respectively indicate the process ID of the uplink synchronization HARQ of the same UE. It can be seen that the second retransmission packet of process 1 There is no resource conflict with the new packet of process 2, and the second retransmission packet and the new packet of other processes.
- TTI (Transmission Time Intrerval) Bundling is a method for improving cell coverage of an uplink system.
- the principle is to transmit multiple redundancy versions formed by encoding the same information bits in consecutive uplink TTIs (Redundancy Version) ).
- each 5 ms LTE field includes 5 lms subframes, two of which are In the uplink subframe, each of the four uplink subframes constitutes a TTI bundle, and the HARQ process number corresponding to each TTI bundle is 1 or 2.
- TTI bundle A there are 4 TTI bundles in 40ms, which are TTI bundle A, B, ⁇ PD.
- TTI bundling and semi-persistent scheduling are used simultaneously, two adjacent new resources allocated for semi-persistent scheduling (20 ms apart), such as TTI bundle A and TTI bundle C, if new packet transmission on TTI bundle A is incorrect, Then, the time of occurrence of the corresponding retransmission packet in the synchronous HARQ is the same as the time of the TTI bundle C, and the TTI bundle C is the resource of the next new packet that is pre-allocated, so that the retransmission packet and the new packet of the same user occur. conflict.
- a first object of the present invention is to provide a user uplink data scheduling method for the problem of conflict between retransmission packets and new transmission packets when TDD DL/UL subframe configuration 1 and TTI bundles are used simultaneously in the prior art. To solve the problem of semi-persistent scheduling of retransmission packets and new packet collisions of the same user in the prior art.
- a second object of the present invention is to provide a user uplink data scheduling system for the problem of conflict between retransmission packets and new transmission packets when TDD DL/UL subframe configuration 1 is used in the prior art and TTI bundles are used simultaneously. To solve the problem of semi-persistent scheduling of retransmission packets and new packet collisions of the same user in the prior art.
- the present invention provides a method for scheduling user uplink data, including: obtaining an indication message sent by a base station for indicating uplink data of a user based on a multi-period mode semi-persistent scheduling; and setting a multi-period mode semi-persistent scheduling period offset
- the shift amount is determined according to the set offset, and the multi-cycle mode semi-persistent scheduling period of each adjacent two TTI bundles is determined; according to the determined multi-cycle mode semi-persistent scheduling period, the user is scheduled to uplink new packet data.
- N is greater than 0, and does not exceed the natural number of the number of ⁇ in a TTI bundle.
- the system frame number is an odd number, setting the multi-cycle mode semi-persistent scheduling period offset to 10 ms; when the system frame number is an even number, setting the multi-cycle mode semi-persistent scheduling period offset to -10ms.
- the present invention provides a user equipment, including: an obtaining module, configured to obtain an indication message sent by a base station to indicate that the user uplink data is semi-persistently scheduled based on a multi-cycle mode; a period offset setting module, After the obtaining module obtains the indication message, setting a multi-cycle mode semi-persistent scheduling period offset; a period setting module, configured to determine, according to the period offset setting module, the offset, determining each adjacent two The multi-cycle mode semi-persistent scheduling period of the TTI bundle; the scheduling module is configured to schedule the user to uplink new packet data according to the multi-cycle mode semi-persistent scheduling period determined by the period setting module.
- the period offset setting module includes: a frame number extraction submodule, configured to extract a system frame number where the first TTI bundle allocated by the semi-persistent scheduling is located, or extract a Nth of the first TTI bundle allocated by the semi-persistent scheduling
- the system frame number where the uplink subframe is located, N is greater than 0, and does not exceed the natural number of the number of ⁇ s contained in one TTI bundle
- the setting sub-module is used to extract the system frame number extracted by the sub-module according to the frame number, and set the number Periodic mode semi-persistent scheduling period offset.
- the setting sub-module sets the multi-cycle mode semi-persistent scheduling period offset to 10 ms; when the frame number extraction sub-module extracts the system frame When the number is an even number, the setting sub-module sets the multi-cycle mode semi-persistent scheduling period offset to be -10 ms; or when the frame number extracted by the frame number extraction sub-module is an odd number, the setting sub-module is set The multi-cycle mode semi-persistent scheduling period offset is -10 ms; when the frame number extracted by the frame number extraction sub-module is even, the setting sub-module sets the multi-period mode semi-continuous tuning The degree period offset is 10ms.
- the user uplink data scheduling method and the user equipment of the present invention solve the semi-persistent scheduling of retransmission packets of the same user by setting and making the multi-cycle mode semi-persistent scheduling periods T1 and T2 of each adjacent two TTI bundles different.
- the problem of new packet collision conflicts reduces the signaling overhead of TTI bundling supporting services such as VoIP.
- FIG. 2 is a schematic diagram of resource conflicts between a retransmission packet and a new transmission packet in a TD-LTE semi-persistent scheduling in the prior art
- FIG. 3 is a schematic diagram of semi-persistent scheduling of a multi-cycle mode in the prior art
- FIG. 4 is a schematic diagram of semi-persistent scheduling supporting TTI bundling in TDD DL/UL subframe configuration 1 in the prior art
- FIG. 5 is a flowchart of a method for scheduling uplink data of a user according to an embodiment of the present invention
- FIG. 6 is a specific flowchart of a step 204 of a user uplink data scheduling method according to an embodiment of the present invention
- FIG. 7 is a schematic diagram of a multi-cycle mode semi-persistent scheduling supporting TTI bundling in TDD DL/UL subframe configuration 1 according to the present invention
- FIG. 8 is another schematic diagram of a multi-period mode semi-persistent scheduling supporting TTI bundling in TDD DLAJL subframe configuration 1 according to the present invention
- FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
- FIG. 10 is a schematic structural diagram of a period offset setting module in a user equipment according to an embodiment of the present invention. detailed description
- the user uplink data scheduling method in the embodiment of the present invention is applied to the second uplink and downlink time slot proportional ratio mode in the 3GPP long-term evolution time division duplex system.
- TDI DL/UL subframe configuration 1 supports TTI bundling.
- the multi-period mode semi-persistent scheduling includes the following steps: Step 202: Start with a first uplink subframe allocated by semi-persistent scheduling, and set each adjacent uplink subframe to a TTI bundle, where M is a natural number greater than 1.
- Step 204 Obtain an indication message that is sent by the base station to indicate that the user uplink data is semi-persistently scheduled based on the multi-cycle mode.
- Step 206 after receiving the indication message sent by the base station, setting a multi-cycle mode semi-persistent scheduling period offset delta;
- Step 208 Determine, according to the set delta, a period T1 and T2 of the multi-period mode semi-persistent scheduling of each adjacent two bundles;
- Step 210 Schedule the user to uplink new packet data according to the determined multi-cycle mode semi-persistent scheduling period.
- the base station determines that the user equipment periodically schedules the user uplink data based on the multi-cycle mode, and the base station sends an indication message for the user equipment to periodically schedule the user uplink data based on the multi-cycle mode.
- the base station sends an indication message for the user equipment to periodically schedule the user uplink data based on the multi-cycle mode.
- the setting method of step 204 delta specifically includes:
- Step a extracting the system frame number SFN where the first TTI bundle allocated by the semi-persistent scheduling is located; Step a2, determining that the SFN is an odd or an even number;
- Step a3 when the SFN is an odd number, set delta to 10 ms;
- Step a4 when the system frame number SFN is even, set delta to -10ms.
- step a3' when the SFN is odd, set delta to -10ms;
- Step a4' When the SFN is even, set delta to 10ms.
- the SFN where the first TTI bundle allocated by the semi-persistent scheduling of the UE1 is located is an odd number
- ie Delta 10ms.
- the SFN of the first TTI bundle allocated by the semi-persistent scheduling of UE2 is an even number.
- the SFN of each uplink subframe of the first TTI bundle allocated by the semi-persistent scheduling of UE1 may be different, and the first TTI bundle of the semi-persistent scheduling allocation may be extracted.
- the system frame number SFN where N uplink subframes are located, N is greater than 0, and does not exceed the natural number of the number of ticks contained in one TTI bundle, and then sets the multi-cycle mode semi-persistent scheduling period offset delta according to the extracted SFN, for example
- the first TTI bundle contains four uplink subframes.
- the first two uplink subframes have an SFN of 1, and the last two uplink subframes have an SFN of 2.
- the multi-cycle mode semi-persistent scheduling period offset delta is set according to whether the SFN in which the first uplink subframe of the first TTI bundle is odd or even. It is also possible to set the delta according to whether the SFN of the 2nd, 3rd or 4th uplink subframe of the TTI bundle is odd or even, and the other users also need to allocate the uplink subframe of the same location of the first TTI bundle according to the semi-persistent scheduling. Whether the SFN is odd or even to set the delta.
- the embodiment of the present invention further provides a user equipment, which is applied to a multi-period mode semi-persistent scheduling supporting TTI bundling under the 3GPP long-term evolution TDD DL/UL subframe configuration 1, and includes:
- the obtaining module 402 is configured to obtain an indication message that is sent by the base station to indicate that the user uplink data is semi-persistently scheduled based on the multi-cycle mode;
- the period offset setting module 404 is configured to: after the obtaining module 402 obtains the indication message, set a multi-cycle mode semi-persistent scheduling period offset delta;
- a period setting module 406 configured to determine a multi-cycle mode semi-persistent scheduling period T1 and T2 for each adjacent two TTI bundles according to a delta set by the period offset setting module 404;
- the scheduling module 408 is configured to schedule the user to uplink new packet data according to the multi-cycle mode semi-persistent scheduling periods T1 and T2 determined by the period setting module 406.
- the period offset setting module 404 includes:
- the frame number extraction sub-module 4042 extracts the system frame number SFN where the first TTI bundle allocated by the semi-persistent scheduling is located, or extracts the first of the semi-persistent scheduling allocation when the SFNs of the four uplink subframes of the TTI bundle are different.
- the SFN where the Nth subframe of the TTI bundle is located, N is greater than 0, and does not exceed the natural number of TTIs included in one TTI bundle;
- the setting sub-module 4044 is configured to set the multi-cycle mode semi-persistent scheduling period offset according to the SFN extracted by the frame number extraction sub-module 4042.
- the SFN extracted by the frame number extraction sub-module 4042 is an odd number, set the delta to 10 ms.
- the delta is -10ms.
- the delta is set to -10 ms; when the SFN extracted by the frame number extraction sub-module 4042 is an even number, the delta is set to 10 ms.
- the user uplink data scheduling method and the user equipment of the present invention solve the multi-cycle semi-persistent scheduling by setting and making the multi-period mode semi-persistent scheduling periods T1 and T2 of the TTI bundles allocated by the adjacent two semi-persistent schedulings differently.
- the present invention is not limited to the VoIP service.
- the uplink new transmission packet of the user may also be scheduled by referring to the foregoing solution.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
用户上行数据调度方法及用户设备 技术领域
本发明涉及移动通信领域, 尤其是涉及应用于 3GPP LTE TDD DL/UL subframe configuration 1下支持 TTI bundling的用户上行数据调度方法及用户 设备。 背景技术
半持续调度是 3G LTE ( Long Term Evolution, 长期演进) 中为了节省下 行物理控制信道( PDCCH )而提出的一种新的调度方法,最初主要是针对 VoIP ( Voice over IP , 基于 IP的语音传输) 业务提出来的。 半持续调度 ( semi-persistent scheduling, SPS ) 的基本思想是 VoIP业务的新传包由于其到 达间隔是 20ms, 所以可以通过无线资源控制 (Radio Resource Control, 简称 RRC )信令指示预留资源的周期,再通过一条 PDCCH激活预留的时频域资源, 以后每隔 20ms就自动使用固定位置的资源传输数据, 而不需再用 PDCCH为每 个新传包指示分配的资源; 而重传包由于其不可预测性, 所以重传包所占用 的资源无法预留, 需要动态调度。 综上因而称作半持续调度, 如图 1所示。
在 LTE时分双工 ( Time Division Duplex, 简称 TDD ) 系统中, 共有 7种上 下行时隙比例配比,分别为 configuration 0 ~ 6,在其中的五种时隙比例配比下, 上行传输所对应的混合自动重传请求( Hybrid ARQ, 筒称 HARQ ) 的往返时 间( Round Trip Time, 以下简称 RTT )均是 10ms。 由于 TD-LTE (即 TDD LTE ) 上行基于同步 HARQ, 重传包发生在新传包(即初始传输的包)之后 10ms, 所以第二次重传的重传包可能与当前的半持续调度分配的新传包的发生时间 相沖突。 如图 2所示, 图中的 1、 2、 3分别表示上行同步 HARQ的进程号(一个 新传包及其重传包对应相同的 HARQ进程号), 可以看出, 如果上行 HARQ进 程 1和 2都用于传输同一个 UE的数据, 则上行 HARQ进程 1的新传包发送 20ms 后, 该进程的重传包和上行 HARQ进程 2的新传包发生时间相冲突。
为了解决 TD-LTE半持续调度下重传包与新传包发生时间冲突的问题, 一 种被称作多周期模式的半持续调度方案被提出。 通常适用于 VoIP业务的半持 续调度周期 (即资源分配间隔) 为 20ms, 而该方案中的多周期模式的半持续 调度有两个周期: T1和 T2, Tl+T2=40ms, 且 Tl、 Τ2是交替出现的。 T1和 Τ2 的关系可以表示为:
Tl = SPS periodicity + delta ( 1 )
T2 = SPS periodicity - delta ( 2 )
其中, SPS periodicity代表半持续调度的周期,对于 VoIP业务是 20ms, delta 为半持续调度周期偏移量。
对于式( 1 )和式(2 ) 中的 delta值, 已有方案提出可以根据 TD-LTE上下 行时隙配置情况和半持续调度起始点的上行子帧在一个 TDD周期里的位置来 指定, 即半持续调度从某个特定的上行子帧开始时, 其 delta值是唯一确定的, 不需要 RRC信令来通知用户设备( User Equipment, 简称 UE )具体使用的 delta 值,而只需要 1个比特的 RRC信令来指示是否使用多周期的半持续调度。例如, 在 TDD configuration 2的情况下, 10ms的 TDD周期里有两个上行子帧 , 按照该 方案, delta值的计算公式如下:
对于从 10ms帧中第一个上行子帧起始的半持续调度,
Delta = 5ms ( 3 )
对于从 10ms帧中第二个上行子帧起始的半持续调度,
Delta = -5ms ( 4 )
或者反之。
图 3给出了多周期模式的半持续调度的示意, 图 3中的 1、 2、 3、 4分别表 示同一 UE的上行同步 HARQ的进程号,可以看出进程 1的第二次重传包与进程 2的新传包, 以及其他进程的第二次重传包和新传包都没有发生资源冲突。
TTI (Transmission Time Intrerval,传输时间间隔) bundling是一种提高上行 系统小区覆盖的方法, 其原理是在连续的多个上行 TTI里发送对相同信息比特 编码后形成的多个冗余版本 (Redundancy Version)。 如图 4所示, 在 3GPP长期
演进时分双工系统中的第二种上下行时隙比例配比模式 1 ( TDD DL/UL subframe configuration 1 ) 下, 每个 5ms的 LTE半帧包括 5个 lms的子帧, 其中 有两个是上行子帧, 每 4个上行子帧组成一个 TTI bundle, 每个 TTI bundle对 应的 HARQ进程号为 1或者 2。 这样一来, 40ms内一共有 4个 TTI bundles, 分别 是 TTI bundle A, B, ^P D。 如果 TTI bundling和半持续调度同时使用的话, 对 于半持续调度分配的两个相邻的新传资源(相隔 20ms ), 例如 TTI bundle A和 TTI bundle C, 如果 TTI bundle A上的新传包错误, 那么同步 HARQ下对应的重 传包的发生时间和 TTI bundle C的时间相同,而 TTI bundle C是预分配的下一个 新传包的资源, 这样会发生同一用户的重传包和新传包的沖突。
目前, 如何避免 TDD DL/UL subframe configuration 1下半持续调度和 TTI bundle同时使用时重传包和新传包的冲突成为现有技术中急需解决的技术问 题。 发明内容
本发明的第一目的在于, 针对现有技术中 TDD DL/UL subframe configuration 1下半持续调度和 TTI bundle同时使用时重传包和新传包的冲突 的问题, 提供一种用户上行数据调度方法, 以解决现有技术中半持续调度同 一用户的重传包和新传包冲突的问题。
本发明的第二目的在于, 针对现有技术中 TDD DL/UL subframe configuration 1下半持续调度和 TTI bundle同时使用时重传包和新传包的冲突 的问题, 提供一种用户上行数据调度系统, 以解决现有技术中半持续调度同 一用户的重传包和新传包冲突的问题。
针对第一目的, 本发明提供了一种用户上行数据调度方法, 包括: 获得 基站发送的用于指示基于多周期模式半持续调度用户上行数据的指示消息; 以及设置多周期模式半持续调度周期偏移量; 根据设置的所述偏移量, 确定 每相邻两个 TTI bundle的多周期模式半持续调度的周期; 根据确定出的多周期 模式半持续调度周期, 调度用户上行新传包数据。
根据半持续调度分配的第一个 TTI bundle所在的系统帧号, 设置多周期模 式半持续调度周期偏移量; 或根据半持续调度分配的第一个 TTI bundle的第 N 个上行子帧所在的系统帧号,设置多周期模式半持续调度周期偏移量, N为大 于 0, 且不超过一个 TTI bundle包含的 ΤΉ个数的自然数。 当所述系统帧号为奇 数时, 设置所述多周期模式半持续调度周期偏移量为 10ms; 当所述系统帧号 为偶数时, 设置所述多周期模式半持续调度周期偏移量为 -10ms。 也可以, 当 所述系统帧号为奇数时, 设置所述多周期模式半持续调度周期偏移量为 -10ms; 当所述系统帧号为偶数时, 设置所述多周期模式半持续调度周期偏移 量为 10ms。
针对第二目的, 本发明提供了一种用户设备, 包括: 获得模块, 用于获 得基站发送的用于指示基于多周期模式半持续调度用户上行数据的指示消 息; 周期偏移量设置模块, 用于在获得模块获得所述指示消息后, 设置多周 期模式半持续调度周期偏移量; 周期设置模块, 用于根据周期偏移量设置模 块设置的所述偏移量, 确定每相邻两个 TTI bundle的多周期模式半持续调度的 周期; 调度模块, 用于根据周期设置模块确定出的多周期模式半持续调度周 期, 调度用户上行新传包数据。
其中, 周期偏移量设置模块包括: 帧号提取子模块, 用于提取半持续调 度分配的第一个 TTI bundle所在的系统帧号, 或提取半持续调度分配的第一个 TTI bundle的第 N个上行子帧所在的系统帧号, N为大于 0, 且不超过一个 TTI bundle包含的 ΤΉ个数的自然数; 设置子模块, 用于根据帧号提取子模块提取 到的系统帧号, 设置多周期模式半持续调度周期偏移量。
当帧号提取子模块提取到的所述系统帧号为奇数时, 所述设置子模块设 置多周期模式半持续调度周期偏移量为 10ms; 当帧号提取子模块提取到的所 述系统帧号为偶数时, 所述设置子模块设置多周期模式半持续调度周期偏移 量为 -10ms; 或者当帧号提取子模块提取到的所述系统帧号为奇数时, 所述设 置子模块设置多周期模式半持续调度周期偏移量为 -10ms; 当帧号提取子模块 提取到的所述系统帧号为偶数时, 所述设置子模块设置多周期模式半持续调
度周期偏移量为 10ms。
本发明的用户上行数据调度方法及用户设备, 通过设置每相邻两个 TTI bundle的多周期模式半持续调度周期 T1和 T2并使其不相同, 解决了半持续调 度同一用户的重传包和新传包冲突的问题, 同时, 减少了 TTI bundling支持 VoIP等业务的信令开销。 附图说明
图 1为现有技术中半持续调度示意图;
图 2为现有技术中 TD-LTE半持续调度下的重传包与新传包的资源冲突示 意图;
图 3为现有技术中多周期模式的半持续调度的示意图;
图 4为现有技术中 TDD DL/UL subframe configuration 1下支持 TTI bundling的半持续调度的示意图;
图 5为本发明实施例用户上行数据调度方法的流程图;
图 6为本发明实施例用户上行数据调度方法步骤 204的具体流程图; 图 7为本发明 TDD DL/UL subframe configuration 1下支持 TTI bundling的 多周期模式半持续调度的示意图;
图 8为本发明 TDD DLAJL subframe configuration 1下支持 TTI bundling的 多周期模式半持续调度的另一种情况示意图;
图 9为本发明实施例中用户设备结构示意图;
图 10为本发明实施例用户设备中周期偏移量设置模块的结构示意图。 具体实施方式
以下结合附图对本发明进行详细说明。
如图 5所示,本发明实施例的用户上行数据调度方法,应用于 3GPP长期演 进时分双工系统中的第二种上下行时隙比例配比模式 TDD DL/UL subframe configuration 1下支持 TTI bundling的多周期模式半持续调度, 包括如下步骤:
步骤 202, 以半持续调度分配的第一个上行子帧开始, 依次将相邻的每 M 个上行子帧设置为一个 TTI bundle, M为大于 1的自然数;
步骤 204, 获得基站发送的用于指示基于多周期模式半持续调度用户上行 数据的指示消息;
步骤 206, 在接收到基站发送的上述指示消息后, 设置多周期模式半持续 调度周期偏移量 delta;
步骤 208, 根据设置的 delta, 确定每相邻两个 ΤΉ bundle的多周期模式半 持续调度的周期 T1和 T2;
步骤 210, 根据确定出的多周期模式半持续调度周期, 调度用户上行新传 包数据。
其中, 当半持续调度和 TTI bundling同时使用时, 基站确定用户设备基于 多周期模式半持续调度用户上行数据, 基站将用于指示用户设备基于多周期 模式半持续调度用户上行数据的指示消息发送给用户设备。
其中, 如图 6所示, 步骤 204 delta的设置方法具体包括:
步骤 al, 提取半持续调度分配的第一个 TTI bundle所在的系统帧号 SFN; 步骤 a2, 判断 SFN为奇数或偶数;
步骤 a3, 当 SFN为奇数时, 设置 delta为 10ms;
步骤 a4, 当系统帧号 SFN为偶数时, 设置 delta为 -10ms。
或者步骤 a3' , 当 SFN为奇数时, 设置 delta为 -10ms;
步骤 a4' 当 SFN为偶数时, 设置 delta为 10ms。
如图 7所示, UE1的半持续调度分配的第一个 TTI bundle所在的 SFN是奇 数, 那么 UE 1的多周期调度的 40ms内前两个相邻的资源的位置间隔就是 20ms+10ms=30ms, 即 Delta=10ms。 UE2的半持续调度分配的第一个 TTI bundle 所在的 SFN是偶数,那么 UE2的多周期调度的 40ms内前两个相邻的资源的位置 间隔就是 20ms- 10ms= 10ms, 即 Delta= - 10ms。
如图 8所示, UE1的半持续调度分配的第一个 TTI bundle的各个上行子帧所 在的 SFN可能不相同, 此时可以提取半持续调度分配的第一个 TTI bundle的第
N个上行子帧所在的系统帧号 SFN, N为大于 0, 且不超过一个 TTI bundle包含 的 ΤΉ个数的自然数, 然后根据提取的 SFN设置多周期模式半持续调度周期偏 移量 delta, 例如, 第一个 TTI bundle包含 4个上行子帧, 前 2个上行子帧所在的 SFN为 1 , 后两个上行子帧所在的 SFN为 2。 因此, 根据第一个 TTI bundle第 1 个上行子帧所在的 SFN是奇数还是偶数来设置多周期模式半持续调度周期偏 移量 delta。 当然也可以根据该 TTI bundle的第 2、 3或 4个上行子帧所在的 SFN 是奇数还是偶数来设置 delta, 其他用户也需要按照半持续调度分配的第一个 TTI bundle相同位置的上行子帧所在的 SFN是奇数还是偶数来来设置 delta。
如图 9所示,本发明实施例还提供了一种用户设备,应用于 3GPP长期演进 TDD DL/UL subframe configuration 1下支持 TTI bundling的多周期模式半持续 调度, 包括:
获得模块 402, 用于获得基站发送的用于指示基于多周期模式半持续调度 用户上行数据的指示消息;
周期偏移量设置模块 404, 用于在获得模块 402获得所述指示消息后, 设 置多周期模式半持续调度周期偏移量 delta;
周期设置模块 406, 用于根据周期偏移量设置模块 404设置的 delta, 确定 每相邻两个 TTI bundle的多周期模式半持续调度周期 T1和 T2;
调度模块 408, 用于根据周期设置模块 406确定出的多周期模式半持续调 度周期 T1和 T2, 调度用户上行新传包数据。
其中, 如图 10所示, 周期偏移量设置模块 404包括:
帧号提取子模块 4042,提取半持续调度分配的第一个 TTI bundle所在的系 统帧号 SFN, 或当该 TTI bundle的四个上行子帧所在的 SFN不同时, 提取半持 续调度分配的第一个 TTI bundle的第 N个子帧所在的 SFN, N为大于 0, 且不超 过一个 TTI bundle包含的 TTI个数的自然数;
设置子模块 4044,用于根据帧号提取子模块 4042提取到的 SFN,设置多周 期模式半持续调度周期偏移量, 当帧号提取子模块 4042提取到的 SFN为奇数 时, 设置 delta为 10ms; 当帧号提取子模块 4042提取到的 SFN为偶数时, 设置
delta为 -10ms。 或者当帧号提取子模块 4042提取到的 SFN为奇数时, 设置 delta 为 -10ms; 当帧号提取子模块 4042提取到的 SFN为偶数时, 设置 delta为 10ms。
周期设置模块 406设置多周期模式半持续调度的前 40ms内的两个周期分 别 是 Tl=20+10=30ms, T2=20- 10=10ms ; 或 者 T 1=20- 10= 10ms, T2=20+10=30ms, 且 Tl+T2=40ms。 之后每 40ms的半持续调度分配的资源在 40ms内的相对时间偏移与第一个 40ms的偏移相同。 用户基于此来传输 VoIP新 传包。
本发明的用户上行数据调度方法及用户设备, 通过设置相邻每两个半持 续调度分配的 TTI bundle的多周期模式半持续调度周期 T1和 T2并使其不相同, 解决了多周期半持续调度同一用户的重传包和新传包冲突的问题, 同时, 减 少了 TTI bundling支持 VoIP等业务的信令开销。
以上仅以 VoIP业务为例进行描述, 但本发明并不限于 VoIP业务, 对于其 他业务类型也可参照上述方案对用户的上行新传包进行调度。 发明的精神和范围。 这样, 倘若对本发明的这些修改和变型属于本发明权利 要求及其等同技术的范围之内 , 则本发明也意图包含这些改动和变型在内。
Claims
1、 一种用户上行数据调度方法,应用于 3GPP长期演进时分双工系统中的 第二种上下行时隙比例配比模式 TDD DL UL subframe configuration 1下支持 ΤΉ bundling的多周期模式半持续调度, 其特征在于, 包括:
获得基站发送的用于指示基于多周期模式半持续调度用户上行数据的指 示消息; 以及
设置多周期模式半持续调度周期偏移量;
根据设置的所述偏移量, 确定每相邻两个 ΤΉ bundle的多周期模式半持续 调度的周期;
根据确定出的多周期模式半持续调度周期, 调度用户上行新传包数据。
2、 如权利要求 1所述的用户上行数据调度方法, 其特征在于, 所述设置 多周期模式半持续调度周期偏移量的具体操作包括:
根据半持续调度分配的第一个 ΤΉ bundle所在的系统帧号, 设置多周期模 式半持续调度周期偏移量。
3、 如权利要求 1所述的用户上行数据调度方法, 其特征在于, 所述设置 多周期模式半持续调度周期偏移量的具体操作包括:
根据半持续调度分配的第一个 TTI bundle的第 N个上行子帧所在的系统帧 号, 设置多周期模式半持续调度周期偏移量, N为大于 0, 且不超过一个 TTI bundle包含的 TTI个数的自然数。
4、 如权利要求 2或 3所述的用户上行数据调度方法, 其特征在于, 当所述系统帧号为奇数时, 设置所述多周期模式半持续调度周期偏移量 为 10ms;
当所述系统帧号为偶数时, 设置所述多周期模式半持续调度周期偏移量 为 -10ms。
5、 如权利要求 2或 3所述的用户上行数据调度方法, 其特征在于, 当所述系统帧号为奇数时, 设置所述多周期模式半持续调度周期偏移量
当所述系统帧号为偶数时, 设置所述多周期模式半持续调度周期偏移量 为 10ms。
6、 如权利要求 2或 3所述的用户上行数据调度方法, 其特征在于, 所述系 统帧为 10ms无线帧。
7、 一种用户设备, 应用于 3GPP长期演进 TDD DL UL subframe configuration 1下支持 ΤΉ bundling的多周期模式半持续调度, 其特征在于, 包 括:
获得模块, 用于获得基站发送的用于指示基于多周期模式半持续调度用 户上行数据的指示消息;
周期偏移量设置模块, 用于在获得模块获得所述指示消息后, 设置多周 期模式半持续调度周期偏移量;
周期设置模块, 用于根据周期偏移量设置模块设置的所述偏移量, 确定 每相邻两个 TTI bundle的多周期模式半持续调度的周期;
调度模块, 用于根据周期设置模块确定出的多周期模式半持续调度周期, 调度用户上行新传包数据。
8、 如权利要求 7所述的用户设备, 其特征在于, 所述周期偏移量设置模 块包括:
帧号提取子模块, 用于提取半持续调度分配的第一个 TTI bundle所在的系 统帧号, 或提取半持续调度分配的第一个 TTI bundle的第 N个上行子帧所在的 系统帧号, N为大于 0, 且不超过一个 TTI bundle包含的 TTI个数的自然数; 设置子模块, 用于根据帧号提取子模块提取到的系统帧号, 设置多周期 模式半持续调度周期偏移量。
9、 如权利要求 8所述的用户设备, 其特征在于, 当帧号提取子模块提取 到的所述系统帧号为奇数时, 所述设置子模块设置多周期模式半持续调度周 期偏移量为 10ms; 当帧号提取子模块提取到的所述系统帧号为偶数时, 所述 设置子模块设置多周期模式半持续调度周期偏移量为 -10ms。
10、 如权利要求 8所述的用户设备, 其特征在于, 当帧号提取子模块提取 到的所述系统帧号为奇数时 , 所述设置子模块设置多周期模式半持续调度周 期偏移量为 -10ms; 当帧号提取子模块提取到的所述系统帧号为偶数时, 所述 设置子模块设置多周期模式半持续调度周期偏移量为 10ms。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/132,676 US8553591B2 (en) | 2008-12-04 | 2009-12-04 | Method and equipment for user'S uplink data scheduling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810239018.1A CN101754268B (zh) | 2008-12-04 | 2008-12-04 | 用户上行数据调度方法及用户设备 |
CN200810239018.1 | 2008-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010063166A1 true WO2010063166A1 (zh) | 2010-06-10 |
Family
ID=42232868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/001377 WO2010063166A1 (zh) | 2008-12-04 | 2009-12-04 | 用户上行数据调度方法及用户设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8553591B2 (zh) |
CN (1) | CN101754268B (zh) |
WO (1) | WO2010063166A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9337962B2 (en) | 2010-02-17 | 2016-05-10 | Qualcomm Incorporated | Continuous mode operation for wireless communications systems |
EP2574086A4 (en) * | 2010-06-24 | 2016-08-31 | Zte Corp | FAST POSITIONING METHOD AND MULTICYCLE AND MULTIUSER DEVICE |
US10009918B2 (en) | 2013-09-27 | 2018-06-26 | Huawei Technologies Co., Ltd. | Method for transmitting uplink data, user equipment, and base station |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3313017B1 (en) * | 2011-03-24 | 2019-02-20 | LG Electronics Inc. -1- | Method for transmitting/receiving signal and device therefor |
EP2810410A4 (en) * | 2012-01-30 | 2015-11-25 | Zte Usa Inc | PROCESS AND COVER EXTENSION SYSTEM FOR UPLINK VOIP |
CN103378924B (zh) * | 2012-04-18 | 2018-09-11 | 中兴通讯股份有限公司 | 传输块大小的确定方法及装置、同步方法、装置及系统 |
CN103391175B (zh) * | 2012-05-09 | 2017-07-28 | 华为技术有限公司 | 传输或接收上行sps业务数据的方法和用户设备和基站 |
CN103975624B (zh) * | 2012-05-17 | 2017-11-28 | 华为技术有限公司 | 传输或接收上行sps业务数据的方法及用户设备、基站 |
EP3618556A1 (en) * | 2012-07-05 | 2020-03-04 | Sony Corporation | Communication control device, communication control method, program, terminal device, and communication control system |
CN103731927B (zh) * | 2012-10-15 | 2017-07-21 | 上海贝尔股份有限公司 | Tdd通信系统中避免tti捆绑和半持续调度冲突的方法 |
US9426783B2 (en) | 2012-11-02 | 2016-08-23 | Industrial Technology Research Institute | Methods, apparatuses, and systems for resource allocation for terminals |
WO2014110725A1 (en) * | 2013-01-16 | 2014-07-24 | Nec(China) Co., Ltd. | Method and apparatus for performing tti bundling in a tdd system |
WO2014110691A1 (en) * | 2013-01-17 | 2014-07-24 | Qualcomm Incorporated | Intra-cluster coordination for cell clustering interference mitigation |
CN104080186B (zh) * | 2013-03-29 | 2018-06-08 | 上海诺基亚贝尔股份有限公司 | Tdd通信系统中避免tti捆绑和半持续调度冲突的方法 |
US20150043434A1 (en) * | 2013-08-08 | 2015-02-12 | Sharp Laboratories Of America, Inc. | Systems and methods for subframe bundling |
US20150109997A1 (en) * | 2013-10-21 | 2015-04-23 | Alexander Sirotkin | Apparatus, system and method of interfacing between a cellular manager and a wlan access device |
US9986556B1 (en) * | 2014-04-29 | 2018-05-29 | Sprint Spectrum L.P. | Enhanced TTI bundling in TDD mode |
US9596071B1 (en) * | 2014-05-05 | 2017-03-14 | Sprint Spectrum L.P. | Enhanced TTI bundling in FDD mode |
US10064164B2 (en) | 2014-08-18 | 2018-08-28 | Apple Inc. | Radio access technology with non-continuous and periodic PUSCH transmission |
WO2016029971A1 (en) * | 2014-08-29 | 2016-03-03 | Nokia Solutions And Networks Oy | Carrier modulation in communications |
US9860781B2 (en) | 2014-10-21 | 2018-01-02 | At&T Intellectual Property I, L.P. | Dynamic bundling of uplink data sessions based upon network signaling conditions and application interactivity states |
US9462571B2 (en) | 2014-10-21 | 2016-10-04 | At&T Intellectual Property I, L.P. | Adaptive and selective bundling of downlink paging messages |
US10342012B2 (en) | 2015-03-15 | 2019-07-02 | Qualcomm Incorporated | Self-contained time division duplex (TDD) subframe structure |
US10075970B2 (en) | 2015-03-15 | 2018-09-11 | Qualcomm Incorporated | Mission critical data support in self-contained time division duplex (TDD) subframe structure |
US9936519B2 (en) | 2015-03-15 | 2018-04-03 | Qualcomm Incorporated | Self-contained time division duplex (TDD) subframe structure for wireless communications |
EP3944552A1 (en) | 2015-04-02 | 2022-01-26 | Samsung Electronics Co., Ltd. | Transmission and reception method and apparatus for reducing transmission time interval in wireless cellular communication system |
KR102316775B1 (ko) | 2015-04-02 | 2021-10-26 | 삼성전자 주식회사 | 무선 셀룰라 통신 시스템에서 전송시간구간 감소를 위한 송수신 방법 및 장치 |
WO2016171765A1 (en) * | 2015-04-22 | 2016-10-27 | Intel IP Corporation | Transmission designs for radio access technologies |
WO2016183726A1 (zh) * | 2015-05-15 | 2016-11-24 | 华为技术有限公司 | 一种在使用TTI Bundling技术的TDD网络中传输数据的方法和在TDD网络中支持TTI Bundling技术的用户设备 |
US9992790B2 (en) | 2015-07-20 | 2018-06-05 | Qualcomm Incorporated | Time division duplex (TDD) subframe structure supporting single and multiple interlace modes |
US9942893B1 (en) | 2015-09-09 | 2018-04-10 | Sprint Spectrum Lp. | Systems and methods for allocating physical resources in a communication system |
WO2017131389A1 (ko) * | 2016-01-27 | 2017-08-03 | 엘지전자(주) | 무선 통신 시스템에서 무선 자원을 할당하는 방법 및 이를 위한 장치 |
WO2017132995A1 (zh) | 2016-02-05 | 2017-08-10 | 广东欧珀移动通信有限公司 | 业务传输的方法和装置 |
CN107197523B (zh) * | 2016-03-15 | 2020-01-07 | 电信科学技术研究院 | 一种配置和确定半持续调度的方法及设备 |
CN107295655A (zh) * | 2016-03-31 | 2017-10-24 | 电信科学技术研究院 | 一种传输资源指示方法、基站、ue和系统 |
EP4412369A3 (en) | 2016-04-12 | 2024-09-04 | Motorola Mobility LLC | Scheduling of transmission time intervals |
US10812247B2 (en) * | 2016-07-06 | 2020-10-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and network nodes for scheduling a plurality of TTI-bundle transmissions |
US10819475B2 (en) * | 2016-08-12 | 2020-10-27 | Qualcomm Incorporated | Uplink semi-persistent scheduling for low latency communications |
DE102017206258A1 (de) | 2017-04-11 | 2018-10-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Sender und empfänger und entsprechende verfahren |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101193444A (zh) * | 2006-11-30 | 2008-06-04 | 华为技术有限公司 | 资源指配方法及其系统和设备 |
CN101272177A (zh) * | 2007-03-21 | 2008-09-24 | 大唐移动通信设备有限公司 | 调度用户设备的方法和装置 |
WO2008127015A1 (en) * | 2007-04-11 | 2008-10-23 | Lg Electronics Inc. | Method of transmitting scheduling information in tdd system |
CN101299821A (zh) * | 2007-04-30 | 2008-11-05 | 中兴通讯股份有限公司 | 一种时分双工通信系统上行业务的调度方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8848618B2 (en) * | 2006-08-22 | 2014-09-30 | Qualcomm Incorporated | Semi-persistent scheduling for traffic spurts in wireless communication |
US7734264B2 (en) * | 2006-08-29 | 2010-06-08 | Qualcomm Incorporated | System frame number (SFN) evaluator |
US8160014B2 (en) * | 2008-09-19 | 2012-04-17 | Nokia Corporation | Configuration of multi-periodicity semi-persistent scheduling for time division duplex operation in a packet-based wireless communication system |
-
2008
- 2008-12-04 CN CN200810239018.1A patent/CN101754268B/zh active Active
-
2009
- 2009-12-04 WO PCT/CN2009/001377 patent/WO2010063166A1/zh active Application Filing
- 2009-12-04 US US13/132,676 patent/US8553591B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101193444A (zh) * | 2006-11-30 | 2008-06-04 | 华为技术有限公司 | 资源指配方法及其系统和设备 |
CN101272177A (zh) * | 2007-03-21 | 2008-09-24 | 大唐移动通信设备有限公司 | 调度用户设备的方法和装置 |
WO2008127015A1 (en) * | 2007-04-11 | 2008-10-23 | Lg Electronics Inc. | Method of transmitting scheduling information in tdd system |
CN101299821A (zh) * | 2007-04-30 | 2008-11-05 | 中兴通讯股份有限公司 | 一种时分双工通信系统上行业务的调度方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9337962B2 (en) | 2010-02-17 | 2016-05-10 | Qualcomm Incorporated | Continuous mode operation for wireless communications systems |
EP2574086A4 (en) * | 2010-06-24 | 2016-08-31 | Zte Corp | FAST POSITIONING METHOD AND MULTICYCLE AND MULTIUSER DEVICE |
US10009918B2 (en) | 2013-09-27 | 2018-06-26 | Huawei Technologies Co., Ltd. | Method for transmitting uplink data, user equipment, and base station |
US10721759B2 (en) | 2013-09-27 | 2020-07-21 | Huawei Technologies Co., Ltd. | Method for transmitting uplink data, user equipment, and base station |
Also Published As
Publication number | Publication date |
---|---|
US20110310777A1 (en) | 2011-12-22 |
CN101754268A (zh) | 2010-06-23 |
US8553591B2 (en) | 2013-10-08 |
CN101754268B (zh) | 2012-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010063166A1 (zh) | 用户上行数据调度方法及用户设备 | |
JP5421377B2 (ja) | ユーザ・アップリンク・データのスケジューリング方法及びユーザ設備 | |
EP2538734B1 (en) | Method and device for scheduling multiple sub-frames | |
CN110199551B (zh) | 用于异步免授权接入的系统和方法 | |
KR101032621B1 (ko) | 향상된 업링크 비동기 하이브리드 자동 재송 요구의 재송 제어방법 | |
JP6224642B2 (ja) | 中継ノードを有する無線通信ネットワークにおける情報送信制御 | |
US8396070B2 (en) | Method for transmitting VoIP packet | |
WO2018103702A1 (zh) | 一种上行信息处理的方法及装置 | |
WO2010015167A1 (zh) | 一种半持久调度的方法 | |
WO2018000398A1 (zh) | 上行控制信道发送与接收方法及装置 | |
WO2013167090A2 (zh) | 一种子帧调度方法、系统及网络设备、终端 | |
WO2015172363A1 (zh) | 数据传输装置和方法 | |
JP2009272827A (ja) | 移動通信システムにおける基地局装置、ユーザ装置及び方法 | |
JP7053781B2 (ja) | メッセージ伝送方法、ユーザー装置、基地局及びコンピュータ記憶媒体 | |
WO2013037299A1 (zh) | 传输数据的方法、物联网设备和网络侧设备 | |
CN101932111B (zh) | 一种在增强型基站之间进行资源调度的方法及系统 | |
WO2013123751A1 (zh) | 一种动态帧结构的混合自动重传方法和装置 | |
WO2012175019A1 (zh) | 一种时分双工tdd通信方法、基站和用户设备 | |
WO2013120318A1 (zh) | 一种子帧捆绑时实现上行子帧调度的方法和系统 | |
WO2019021929A1 (ja) | 端末装置、基地局装置、および、通信方法 | |
WO2010015186A1 (zh) | 半持续调度的业务数据处理方法及基站 | |
KR101203107B1 (ko) | 사용자 업링크 데이터 스케줄링 방법 및 사용자 장치 | |
CN104144267A (zh) | 一种VoIP语音包的调度方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09829950 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13132676 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09829950 Country of ref document: EP Kind code of ref document: A1 |