Nothing Special   »   [go: up one dir, main page]

WO2010052055A1 - Brennkraftmaschine mit turbolader und oxidationskatalysator - Google Patents

Brennkraftmaschine mit turbolader und oxidationskatalysator Download PDF

Info

Publication number
WO2010052055A1
WO2010052055A1 PCT/EP2009/061842 EP2009061842W WO2010052055A1 WO 2010052055 A1 WO2010052055 A1 WO 2010052055A1 EP 2009061842 W EP2009061842 W EP 2009061842W WO 2010052055 A1 WO2010052055 A1 WO 2010052055A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
turbine
oxidation catalyst
denitrification device
Prior art date
Application number
PCT/EP2009/061842
Other languages
English (en)
French (fr)
Inventor
Thorsten Raatz
Roderich Otte
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2010052055A1 publication Critical patent/WO2010052055A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/06Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of the exhaust apparatus relative to the turbine of a turbocharger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine of a motor vehicle with a
  • Exhaust system having at least one first turbine of at least one turbocharger for charging the internal combustion engine and at least one, first oxidation catalyst.
  • a nitrogen oxide storage catalyst stores nitrogen oxides during lean operation, that is, for ⁇ > 1, and is regularly regenerated in the presence of fuel surplus to always ensure a sufficient storage capacity. During regeneration, nitrogen oxides are released, which react with unburned fuel or carbon monoxide to form nitrogen, carbon dioxide and / or water. If the storage capacity is exceeded, the nitrogen oxides pass the nitrogen oxide storage catalyst and are expelled from the vehicle as pollutants.
  • the nitrogen oxide storage catalytic converters operate in a temperature range of the exhaust gases from approximately 250 to 500 0 C. The fact that motor efficiency continued to improve and temperatures ren of the exhaust gas to be reduced further and further, a low-temperature activity of the nitrogen oxide storage catalytic converters is very relevant.
  • Denitration of exhaust gas by means of a system based on selective catalytic reduction requires the addition of ammonia (NH 3 ) or precursors for the formation of ammonia, which are introduced into the exhaust gas.
  • the ammonia reacts via different reaction paths with the nitrogen oxides. It can come to the standard reaction with nitrogen monoxide and oxygen, a slow reaction with nitrogen dioxide or for rapid reaction with nitrogen monoxide and nitrogen dioxide.
  • SCR catalysts generally operate in a temperature range of about 230 to 450 ° C. Especially nitrogen dioxide can be reacted even at temperatures below 230 0 C. If the SCR catalyst is preceded by an oxidation catalyst, a proportion of nitrogen dioxide in the inlet of the SCR catalyst increases, which increases the low-temperature activity of the SCR catalyst.
  • the effectiveness of the mentioned denitrification processes are influenced by the temperature of the exhaust gas.
  • a denitrification device (DeNO x system) as well as the oxidation catalyst, must be brought quickly to an operating temperature so that in a short driving cycle, such as a short certification driving cycle (new European driving cycle NEDC) sufficient Automatkonvert istsphasen Denitrification can be achieved.
  • the temperature of the exhaust gas at the denitrification device depends mainly on the type of internal combustion engine and on a structural design of the exhaust system. Charging systems, such as two-stage turbochargers, allow high engine specific engine performance, but elude the engine
  • Exhaust usually has more heat than, for example, a single-stage turbocharger.
  • the heat flow required for heating the exhaust aftertreatment system in the warm-up phase is reduced, and on the other hand, the inlet temperatures for the exhaust gas aftertreatment are reduced.
  • What is needed is a device which achieves an increase in exhaust gas temperatures in the exhaust aftertreatment and thus an improvement of pollutant conversion rates.
  • the first oxidation catalytic converter to be arranged upstream of the turbine and for the exhaust gas system to have at least one denitrification device, which is arranged in terms of flow after the first oxidation catalytic converter.
  • Oxidation catalyst is achieved that this is located near the combustion chambers - cylinder - the internal combustion engine is placed and is supplied with exhaust gas, which has a high exhaust gas temperature, whereby the oxidation catalyst is heated very quickly to its operating temperature.
  • exhaust gas which has a high exhaust gas temperature
  • an exhaust gas aftertreatment by the oxidation catalyst is carried out very quickly effectively and is very effective even at low load and / or speed of the internal combustion engine and / or despite high engine efficiencies.
  • the use of the denitrification device (DeNOx system) in the exhaust system means that nitrogen oxides in the exhaust gas are reduced by denitrification.
  • the application of the first oxidation catalyst before the denitrification device further leads to the advantage that a nitrogen dioxide concentration within the exhaust gas is increased towards the denitrification device, which improves denitrification during a part-load operation of the internal combustion engine.
  • the denitrification device is arranged in terms of flow before or after the turbine. Due to its mass, the turbine acts as a heat sink, which reduces the exhaust gas temperature. This is the case in particular in the instationary mode of the internal combustion engine.
  • the denitrification device By arranging the denitrification device in front of the turbine, it is achieved that the denitrification device is exposed to a high exhaust gas temperature in the same way as the first oxidation catalyst and thereby reaches its operating temperature very rapidly, whereby emissions of the internal combustion engine can be effectively reduced rapidly. Further, urea evaporation for ammonia generation in the denitrification apparatus is enhanced by higher exhaust gas temperatures (eg, Ad Blue evaporation). Particularly advantageous is the arrangement of the denitrification between the first oxidation catalyst and the turbine, since the Denitrtechnischsvoriques earlier reaches its operating temperature at a cold start of the engine and also in an operation of the internal combustion engine at low loads a very good exhaust aftertreatment takes place. An arrangement of the denitrification device downstream of the turbine results in the denitrification device being heated more slowly, thus counteracting aging of the denitrification device.
  • a second oxidation catalyst is provided.
  • the second oxidation catalyst is preferably arranged after the first oxidation catalyst and leads to a particularly good exhaust aftertreatment, which is characterized by low emissions when the exhaust gas is discharged.
  • the second oxidation catalyst is required to achieve as complete as possible a hydrocarbon hydrocarbon monoxide oxidation.
  • the second oxidation catalytic converter provision is made for the second oxidation catalytic converter to be arranged downstream of the turbine. Due to this arrangement, the second oxidation catalyst is protected from rapid aging. According to a development of the invention, it is provided that the second oxidation catalyst is arranged in terms of flow before or after the denitrification device. In particular, the arrangement according to the denitrification device is advantageous, since a possible ammonia slip, that is to say ammonia, which emerges from the denitrification device can be reacted at the second oxidation catalyst.
  • the first and / or second oxidation catalyst is a three-way catalyst.
  • This is advantageous in particular when the otherwise lean-running internal combustion engine is operated with a higher fuel content, stoichiometric.
  • the use of the three-way catalyst leads to an exhaust aftertreatment, which can implement both nitrogen oxides and hydrocarbons and carbon monoxide.
  • the exhaust system has a particle filter which, in terms of flow technology, is arranged as the last member within the exhaust system.
  • components are understood to mean particulate filters, denitrification devices, oxidation catalysts and turbines. Structural elements do not refer to exhaust-gas-conducting systems such as exhaust pipes and exhaust gas heads.
  • the use of the particulate filter is preferably provided in diesel internal combustion engines.
  • a bypass is provided.
  • the bypass allows exhaust gas to bypass at least one of the members.
  • the corresponding members are loaded less and thus aging of the members is prevented.
  • a pressure within the exhaust system can be reduced.
  • the bypass is fluidically connected in parallel to the first oxidation catalyst.
  • the bypass is fluidically connected in parallel to the series connection of oxidation catalyst and denitrification device.
  • the bypass has a controllable valve.
  • the controllable valve is preferably designed so that it can be at least partially opened and partially closed depending on the need.
  • controlling the valve preferably by controlling the exhaust gas flow controlled by the valve, by means of the valve is made possible to keep pressure losses in the exhaust system at a rated power and / or a temperature load of the members low. This is especially the case when the particulate filter is present and this is to be regenerated. In this way it is achieved that the aging of the members is further reduced and thus there is a component protection for the members.
  • it is provided to completely open the bypass during a full-load operation of the internal combustion engine in order to prevent aging of the structural members and to effect component protection.
  • the turbocharger is a two-stage turbocharger with the first turbine and a second turbine.
  • the two-stage turbocharger By using the two-stage turbocharger, additional heat is extracted from the exhaust gas in the second turbine, which further reduces the exhaust gas temperature. Therefore, an arrangement of the oxidation catalyst and preferably also the denitrification device before the turbine is particularly useful. In this way, they can still be brought very quickly to an operating temperature, resulting in the advantages described above.
  • the second turbine of the first turbine is downstream of flow.
  • the first turbine is a high-pressure turbine and the second turbine is a low-pressure turbine.
  • the bypass is fluidically connected in parallel to the series connection of oxidation catalyst, denitrification device and the first turbine. In this way it is achieved that exhaust gas with a high exhaust gas temperature can be forwarded to the turbine downstream components, if necessary, while maintaining at least part of the power of the turbocharger. This procedure is particularly advantageous for regeneration of the particulate filter. If it is provided that the Denitrtechnischsvoriques is arranged fluidically after the high-pressure turbine and behind the bypass line can through
  • the invention relates to a method for operating an internal combustion engine of a motor vehicle, in particular according to the preceding description, with an exhaust system for guiding exhaust gas having at least a first turbine at least one turbocharger for charging the internal combustion engine and at least one first oxidation catalyst, wherein the exhaust first flows through the oxidation catalyst and then the first turbine and a denitrification device.
  • an exhaust system for guiding exhaust gas having at least a first turbine at least one turbocharger for charging the internal combustion engine and at least one first oxidation catalyst, wherein the exhaust first flows through the oxidation catalyst and then the first turbine and a denitrification device.
  • the method according to the invention it is provided that at high load, in particular full load of the internal combustion engine, at least a portion of the exhaust gas of the internal combustion engine at least on Oxidationskataly- or on the oxidation catalyst and the denitrification or oxidation catalyst, a denitrification and at the first Turbine is bypassed.
  • a denitrification and at the first Turbine is bypassed.
  • a nitrogen oxide conversion in the de-nitrification device a nitrogen dioxide to nitrogen monoxide ratio in the exhaust gas, is achieved by at least partial bypassing of the exhaust gas
  • Denitrification a temperature of Denitrtechnischsvortechnisch and / or a temperature of the oxidation catalyst is / are regulated.
  • the possibility of which of the variables mentioned is regulated depends on which components of the exhaust system the exhaust gas is conducted past. Furthermore, a corresponding sensing is necessary for a control and the control can be advantageously carried out by a control unit, in particular engine control unit.
  • FIG. 1 shows an internal combustion engine with an exhaust system in a first embodiment
  • FIG 3 shows an internal combustion engine with an exhaust system in a third embodiment.
  • the internal combustion engine 1 shows an internal combustion engine 1 of a motor vehicle, not shown, with an exhaust system 2 in a first embodiment 3, which has a turbocharger 4 with a turbine 5. Furthermore, the internal combustion engine 1 has an air intake system 6.
  • the air intake system 6 has an air intake 7, which via a pipe 8 air to a first compressor 9 of the
  • Turbocharger 4 leads, the compressor 9 via a shaft 9 'with the turbine fifth connected is.
  • the air is further brought via a pipe 10 in air ducts 1 1.
  • the air ducts 1 1 lead to cylinders 12 of the internal combustion engine 1, from which exhaust gas is passed into the exhaust manifold 13 and thus into the exhaust system 2.
  • an exhaust gas recirculation 14 which leads exhaust gas from the exhaust manifolds 13 via a pipeline 15 to a cooling element 16 and further via a pipeline 17 to a recirculation valve 18.
  • After the return valve 18 recirculated exhaust gas is brought via a pipe 19 into the pipe 10.
  • the exhaust gas recirculation 14 serves to introduce exhaust gas into the air of the pipeline 10 in order to influence the combustion process and thus to reduce the nitrogen oxide emissions.
  • Exhaust manifolds 13 extends a pipeline 20 to a first Oxidationskata- ysator 21st From the first oxidation catalytic converter 21, a pipeline 22 extends to a denitrification device 23, which is fluidically connected to the turbine 5 via a pipeline 24. Via a pipe 25, the exhaust gas from the turbine 5 is passed to a second oxidation catalyst 26, which is connected via a further pipe 27 with a particulate filter 28. The particulate filter 28 discharges the exhaust gas via a pipe 29 and an exhaust gas outlet 30.
  • a bypass 31 begins, which opens into the pipe 24.
  • the bypass 31 has a controllable valve 32, which can change an exhaust gas quantity passed through the bypass 31.
  • the first oxidation catalytic converter 21, the denitrification device 23, the first turbine 5, the second oxidation catalytic converter 26 and the particle filter 28 are considered here.
  • the illustrated in Figure 1 first embodiment 3 of the exhaust system 2 makes it possible, at least partially pass the exhaust gas to the first oxidation catalyst 21 and the denitrification device 23 via the bypass 31.
  • This allows the particulate filter 28 to be exposed to very high exhaust gas temperatures without unnecessarily heating the first oxidation catalyst 21 and the denitrification device 23.
  • aging of the first oxidation catalyst 21 and the denitrification device 23 is prevented.
  • the valve 32 is fully opened so that as much exhaust gas as possible is conducted past the first oxidation catalyst 21 and the denitrification device 23 in order to obtain component protection by avoiding unnecessary aging of the relevant members 33 becomes.
  • FIG. 2 shows the internal combustion engine 1 of FIG. 1 with all its features.
  • FIG. 2 differs from FIG. 1 in that the exhaust system 2 is present in a second embodiment 34.
  • the denitrification device 23 is arranged downstream of the turbine 5.
  • the first oxidation catalyst 21 is connected directly to the pipeline 24, whereas the pipeline 25 leads into the denitrification device 23, which is connected to the second oxidation catalyst 26 via an additional pipeline 35.
  • the pipe 22 is completely eliminated with respect to FIG.
  • the bypass 31 also extends from the pipe 20 to the pipe 24, whereby the exhaust gas at the first
  • Oxidation catalyst 21 is bypassed.
  • the amount of bypassed exhaust gas is controlled or regulated via the valve 32.
  • a nitrogen dioxide to nitrogen monoxide ratio in the exhaust gas can be controlled by, as continuously as possible, exhaust gas is bypassed via the bypass 31 to the oxidation catalyst 21. In this way, it is possible to optimize a nitrogen oxide (NO x ) conversion in the denitrification device 23.
  • FIG. 3 shows the internal combustion engine 1 with the exhaust system 2 in a third embodiment 35.
  • the internal combustion engine 1 in FIG. 3 has all the features of FIG. In contrast to Figure 1, the turbocharger 4, the first
  • Turbine 5 and a second turbine 36 The first turbine 5 is used as a high- pressure turbine 37 formed, whereas the second turbine 36 is formed as a low-pressure turbine 38. Further differences arise as follows.
  • the pipeline 8 extends to a compressor 39 of the second turbine 36, which leads compressed air via a pipeline 40 to the compressor 9 of the turbocharger 4.
  • the turbocharger 4 is formed as a two-stage turbocharger 40.
  • Compressor 9 is operatively connected to the turbine 5 via the shaft 9 ', and the compressor 39 is connected to the turbine 36 via a shaft 43.
  • the third embodiment 35 of the exhaust system 2 starts with the exhaust manifolds 13 and passes via the pipe 20 to the first oxidation catalyst 21 and on via the pipe 22 to the denitrification device 23. From the denitrification device 23 extends a pipe 44, which leads to the first turbine 5.
  • the first turbine 5 is connected via a pipe 45 to the second turbine 36, which is followed by the pipe 25.
  • the further course of the third embodiment 35 of the exhaust system 2 to the exhaust outlet 30 corresponds to that of Figure 1.
  • the bypass 31 begins in the pipe 20 and opens into the pipe 45, so that the exhaust gas to the oxidation catalyst 21, the denitrification 43 and the first turbine 5 can be passed around. Via the valve 32 it is possible to set the amount of exhaust gas which is to be bypassed.
  • the third embodiment 35 of the exhaust system 2 shown makes it possible to bypass the first turbine 5, the high-pressure turbine 37, in addition to the already mentioned advantages with respect to rapid achievement of the operating temperatures and component protection against aging. This is advantageous when high loads are present on the internal combustion engine 1, so that the high-pressure turbine 5 of the turbocharger
  • Embodiment 35 allows the particulate filter 28 to be subjected to high exhaust gas temperatures for regeneration without exposing the denitrification device 23 to thermal stresses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft eine Brennkraftmaschine (1) eines Kraftfahrzeugs, mit einer Abgasanlage (2), die mindestens eine, erste Turbine (5) mindestens eines Turboladers (4) zum Aufladen der Brennkraftmaschine (1) und mindestens einen, ersten Oxidationskatalysator (21) aufweist. Es ist vorgesehen, dass der erste Oxidationskatalysator (21) strömungstechnisch vor der Turbine (5) angeordnet ist und dass die Abgasanlage (2) mindestens eine Denitrifikationsvorrichtung (23) aufweist, die strömungstechnisch nach dem ersten Oxidationskatalysator (21) angeordnet ist. Ferner betrifft die Erfindung ein entsprechendes Verfahren.

Description

Beschreibung
Titel
Brennkraftmaschine mit Turbolader und Oxidationskatalysator
Die Erfindung betrifft eine Brennkraftmaschine eines Kraftfahrzeugs mit einer
Abgasanlage, die mindestens eine, erste Turbine mindestens eines Turboladers zum Aufladen der Brennkraftmaschine und mindestens einen, ersten Oxidationskatalysator aufweist.
Stand der Technik
Verbrennungskraftmaschinen erreichen ihren maximalen Wirkungsgrad in einem Betrieb mit einem Luftüberschuss in einem Kraftstoff-Luft-Gemisch bei einem Luftverhältnis λ > 1 . Dabei ist zur Verringerung eines Stickoxidgehalts mit Abgas der Brennkraftmaschine ein spezielles Abgasnachbehandlungssystem erforderlich. Eine Stickoxidreduktion (NOx-Reduktion) kann nur bei Kraftstoffüberschuss, das heißt für λ < 1 oder auf katalytische Weise mit stöchiometrischen Gemisch, das heißt für λ = 1 , durchgeführt werden. Sowohl bei einer Dieselbrennkraftmaschine als auch bei einer Ottobrennkraftmaschine kommen aus diesem Grund Stickoxidspeicherkatalysatoren zum Einsatz. Bei diesen Brennkraftmaschinen wird auch eine selektive, katalytische Reduktion (SCR) verwendet. Ferner ist für eine Nachverbrennung teiloxidierter oder unverbrannter Kohlenwasserstoffe zusätzlich meist ein Oxidationskatalysator und zur Partikelreduktion gegebenenfalls ein Partikelfilter erforderlich.
Ein Stickoxidspeicherkatalysator speichert Stickoxide während eines mageren Betriebs, das heißt für λ > 1 , ein und wird regelmäßig bei Vorhandensein eines Kraftstoffüberschusses regeneriert, um stets eine ausreichende Speicherkapazität zu gewährleisten. Bei dem Regenerieren werden Stickoxide freigesetzt, wel- che mit unverbranntem Kraftstoff oder Kohlenmonoxid zu Stickstoff, Kohlendioxid und/oder Wasser reagiert. Bei einem Überschreiten der Speicherkapazität wür- den Stickoxide den Stickoxidspeicherkatalysator passieren und vom Fahrzeug als Schadstoffe ausgestoßen werden. Die Stickoxidspeicherkatalysatoren arbeiten in einem Temperaturbereich der Abgase von cirka 250 bis 5000C. Dadurch, dass motorische Wirkungsgrade immer weiter verbessert und damit Temperatu- ren des Abgases immer weiter gesenkt werden, ist eine Niedertemperaturaktivität der Stickoxidspeicherkatalysatoren sehr relevant.
Wird ein Kraftfahrzeug mit schwefelhaltigem Kraftstoff betrieben, so können sich im Stickoxidspeicherkatalysator Sulfate bilden und einlagern, was zu einem Ver- lust von Speicherfähigkeit im Stickoxidkatalysator führt. Zur Sicherstellung der
Speicherfähigkeit muss der Stickoxidspeicherkatalysator gelegentlich desulfatiert werden. Zu diesem Zweck müssen Temperaturen des Abgases von mindestens 6500C im Stickoxidspeicherkatalysator vorliegen.
Eine Entstickung von Abgas mittels eines Systems auf Basis selektiver katalyti- scher Reduktion erfordert die Zugabe von Ammoniak (NH3) oder Vorläufersubstanzen zur Bildung von Ammoniak, welche in das Abgas eingebracht werden. Im katalytischen Reduktionskatalysator (SCR-Katalysator) reagiert das Ammoniak über unterschiedliche Reaktionswege mit den Stickoxiden. Dabei kann es zur Standardreaktion mit Stickstoffmonoxid und Sauerstoff, einer langsamen Reaktion mit Stickstoffdioxid oder zur schnellen Reaktion mit Stickstoffmonoxid und Stickstoffdioxid kommen. Derartige SCR-Katalysatoren arbeiten allgemein in einem Temperaturbereich von cirka 230 bis 450°C. Speziell Stickstoffdioxid kann auch bei Temperaturen unterhalb von 2300C umgesetzt werden. Wird dem SCR- Katalysator ein Oxidationskatalysator vorgeschaltet, erhöhen sich ein Stickstoffdioxidanteil an einem Eintritt des SCR-Katalysators, wodurch eine Niedertemperaturaktivität des SCR-Katalysators erhöht wird.
Grundlegend werden die Effektivitäten der genannten Entstickungsverfahren von der Temperatur des Abgases beeinflusst. Insbesondere während einer Warmlaufphase der Brennkraftmaschine nach einem Kaltstart muss eine Denitrifikationsvorrichtung (DeNOx - System) ebenso wie der Oxidationskatalysator, schnell auf eine Betriebstemperatur gebracht werden, damit in einem kurzen Fahrzyklus, wie beispielsweise einem kurzen Zertifizierungsfahrzyklus (neuer europäischer Fahrzyklus NEFZ) hinreichende Gesamtkonvertierungsphasen zur Entstickung erreicht werden. Die Temperatur des Abgases an der Denitrifikationsvorrichtung hängt hauptsächlich vom Typ der Brennkraftmaschine und von einer konstruktiven Ausführung der Abgasanlage ab. Aufladesysteme, wie zweistufige Turbolader, ermöglichen hohe spezifische Motorleistungen von Brennkraftmaschinen, entziehen aber dem
Abgas in der Regel mehr Wärme als beispielsweise ein einstufiger Turbolader. Dadurch reduziert sich einerseits der für eine Aufheizung des Abgasnachbehandlungssystems erforderliche Wärmestrom in der Warmlaufphase, andererseits sinken die Eingangstemperaturen für die Abgasnachbehandlung.
Es wird eine Vorrichtung benötigt, welche eine Erhöhung von Abgastemperaturen bei der Abgasnachbehandlung und damit eine Verbesserung von Schadstoffkonvertierungsraten erreicht.
Offenbarung der Erfindung
Erfindungsgemäß ist vorgesehen, dass der erste Oxidationskatalysator strömungstechnisch vor der Turbine angeordnet ist und dass die Abgasanlage mindestens eine Denitrifikationsvorrichtung aufweist, die strömungstechnisch nach dem ersten Oxidationskatalysator angeordnet ist. Durch diese Anordnung des
Oxidationskatalysators wird erreicht, dass dieser nahe der Brennräume - Zylinder - der Brennkraftmaschine angeordnet wird und mit Abgas beaufschlagt wird, welches eine hohe Abgastemperatur aufweist, wodurch der Oxidationskatalysator sehr schnell auf seine Betriebstemperatur erwärmt wird. Somit wird erreicht, dass eine Abgasnachbehandlung durch den Oxidationskatalysator sehr schnell effektiv durchgeführt wird und auch bei niedriger Last- und/oder Drehzahl der Brennkraftmaschine und/oder trotz hoher Motorwirkungsgrade sehr schnell wirksam wird. Die Anwendung der Denitrifikationsvorrichtung (DeNOx-System) in der Abgasanlage führt dazu, dass Stickstoffoxide im Abgas durch Entstickung verrin- gert werden. Die Anwendung des ersten Oxidationskatalysators vor der Denitrifikationsvorrichtung führt weiter zu dem Vorteil, dass eine Stickstoffdioxid konzent- ration innerhalb des Abgases zu der Denitrifikationsvorrichtung hin erhöht wird, was eine Denitrifikation während eines Teillastbetriebs der Brennkraftmaschine verbessert. Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die Denitrifikationsvorrichtung strömungstechnisch vor oder nach der Turbine angeordnet ist. Die Turbine wirkt aufgrund ihrer Masse als Wärmesenke, welche die Abgastemperatur verringert. Dies ist insbesondere im Instationärbetrieb der Brennkraftmaschine der Fall. Durch eine Anordnung der Denitrifikationsvorrichtung vor der Turbine wird erreicht, dass die Denitrifikationsvorrichtung in gleicher Weise wie der erste Oxidationskatalysator mit einer hohen Abgastemperatur beaufschlagt wird und dadurch sehr schnell seine Betriebstemperatur erreicht, wodurch Emissionen der Brennkraftmaschine schnell effektiv verringert werden können. Weiter wird eine Harnstoffverdampfung zur Ammoniakgenerierung in der Denitrifikationsvorrichtung durch höhere Abgastemperaturen verbessert (beispielsweise eine Ad Blue- Verdampfung). Besonders vorteilhaft ist die Anordnung der Denitrifikationsvorrichtung zwischen dem ersten Oxidationskatalysator und der Turbine, da die Denitrifikationsvorrichtung bei einem Kaltstart der Brennkraftmaschine früher seine Betriebstemperatur erreicht und auch in einem Betrieb der Brennkraftmaschine bei geringen Lasten eine sehr gute Abgasnachbehandlung erfolgt. Eine Anordnung der Denitrifikationsvorrichtung nach der Turbine führt dazu, dass die Denitrifikationsvorrichtung langsamer erwärmt wird und somit eine Alterung der Denitrifikationsvorrichtung entgegengewirkt wird.
Nach einer Weiterbildung der Erfindung ist ein zweiter Oxidationskatalysator vorgesehen. Der zweite Oxidationskatalysator ist vorzugsweise nach dem ersten Oxidationskatalysator angeordnet und führt zu einer besonders guten Abgasnachbehandlung, welche sich durch geringe Emissionen bei Abgabe des Abga- ses auszeichnet. In Abhängigkeit der Ausführung des ersten Oxidationskatalysa- tors, das heißt in Abhängigkeit dessen Abmessungen, Zelldichte und/oder Art der Edelmetallbeschichtung, ist der zweite Oxidationskatalysator erforderlich, um möglichst eine vollständige Kohlenwasserstoff-Kohlenmonoxidoxidation zu erreichen.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass der zweite Oxidationskatalysator strömungstechnisch nach der Turbine angeordnet ist. Aufgrund dieser Anordnung wird der zweite Oxidationskatalysator vor schneller Alterung geschützt. Nach einer Weiterbildung der Erfindung ist vorgesehen, dass der zweite Oxidati- onskatalysator strömungstechnisch vor oder nach der Denitrifikationsvorrichtung angeordnet ist. Vorteilhaft ist insbesondere die Anordnung nach der Denitrifikationsvorrichtung, da ein möglicher Ammoniakschlupf, das heißt Ammoniak, wel- ches aus der Denitrifikationsvorrichtung austritt, am zweiten Oxidationskatalysa- tor umgesetzt werden kann.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass der erste und/oder zweite Oxidationskatalysator ein Drei-Wege-Katalysator ist. Dies ist insbesonde- re dann vorteilhaft, wenn die sonst mager betriebene Brennkraftmaschine mit einem höheren Kraftstoffgehalt, stöchiometrisch, betrieben wird. Dieser stöchio- metrische Betrieb zeichnet sich durch ein Luftverhältnis λ = 1 aus. In diesem Fall führt die Verwendung des Drei-Wege-Katalysators zu einer Abgasnachbehandlung, die sowohl Stickoxide als auch Kohlenwasserstoffe und Kohlenmonoxid umsetzen kann.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die Abgasanlage einen Partikelfilter aufweist, der - strömungstechnisch gesehen - als letztes Bauglied innerhalb der Abgasanlage angeordnet ist. Unter Baugliedern werden im Zuge dieser Anmeldung Partikelfilter, Denitrifikationsvorrichtungen, Oxidati- onskatalysatoren und Turbinen verstanden. Bauglieder bezeichnen nicht abgasleitende Systeme wie Abgasrohre und Abgastöpfe. Die Verwendung des Partikelfilters ist vorzugsweise bei Dieselbrennkraftmaschinen vorgesehen.
Nach einer Weiterbildung der Erfindung ist ein Bypass vorgesehen. Der Bypass ermöglicht, Abgas an mindestens einem der Bauglieder vorbeizuleiten. Dies führt dazu, dass die entsprechenden Bauglieder weniger belastet werden und somit eine Alterung der Bauglieder verhindert wird. Ferner kann durch den Bypass an den umgangenen Baugliedern ein Druck innerhalb der Abgasanlage vermindert werden.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass der Bypass strömungstechnisch parallel zu dem ersten Oxidationskatalysator geschaltet wird. Somit wird erreicht, dass der erste Oxidationskatalysator mit einer geringeren Menge an Abgas beaufschlagt wird, wodurch sich die vorstehend beschriebenen
Vorteile ergeben. Nach einer Weiterbildung der Erfindung ist vorgesehen, dass der Bypass strömungstechnisch parallel zur Reihenschaltung von Oxidationskatalysator und Denitrifikationsvorrichtung geschaltet ist. Somit wird erreicht, dass der Oxidationska- talysator, und die Denitrifikationsvorrichtung mit weniger Abgas beaufschlagt werden, wodurch sich die vorstehend beschriebenen Vorteile ergeben.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass der Bypass ein steuerbares Ventil aufweist. Hierdurch wird erreicht, dass die Menge des vorbei- geleiteten Abgases gesteuert werden kann. Das steuerbare Ventil ist vorzugweise derart gestaltet, dass es in Abhängigkeit des Bedarfs zumindest teilweise geöffnet und auch wieder teilweise geschlossen werden kann. Durch die Steuerung des Ventils, vorzugsweise durch eine Regelung des von dem Ventil gesteuerten Abgasstroms, mittels des Ventils wird ermöglicht, Druckverluste im Abgassystem bei einer Nennleistung und/oder eine Temperaturbelastung der Bauglieder gering zu halten. Dies ist insbesondere dann der Fall, wenn der Partikelfilter vorliegt und dieser regeneriert werden soll. Auf diese Weise wird erreicht, dass die Alterung der Bauglieder weiter verringert wird und damit ein Bauteilschutz für die Bauglieder vorliegt. Es ist insbesondere vorgesehen, den Bypass bei einem Volllastbe- trieb der Brennkraftmaschine vollständig zu öffnen, um die Alterung der Bauglieder zu verhindern und den Bauteilschutz zu bewirken.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass der Turbolader ein zweistufiger Turbolader mit der ersten Turbine und einer zweiten Turbine ist. Durch die Verwendung des zweistufigen Turboladers wird dem Abgas in der zweiten Turbine zusätzlich Wärme entzogen, wodurch die Abgastemperatur weiter sinkt. Daher ist eine Anordnung des Oxidationskatalysators und vorzugsweise auch der Denitrifikationsvorrichtung vor der Turbine besonders sinnvoll. Auf diese Weise können sie weiterhin sehr schnell auf eine Betriebstemperatur gebracht werden,wodurch sich die vorstehend beschriebenen Vorteile ergeben.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die zweite Turbine der ersten Turbine strömungstechnisch nachgeschaltet ist.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die erste Turbine eine Hochdruckturbine und die zweite Turbine eine Niederdruckturbine ist. Nach einer Weiterbildung der Erfindung ist vorgesehen, dass der Bypass strömungstechnisch parallel zur Reihenschaltung von Oxidationskatalysator, Denitrifikationsvorrichtung und der ersten Turbine geschaltet ist. Auf diese Weise wird erreicht, dass bei Bedarf Abgas mit hoher Abgastemperatur an die der Turbine nachgeschalteten Bauglieder weitergeleitet werden kann und gleichzeitig zumindest ein Teil der Leistung des Turboladers aufrechterhalten wird. Dieses Vorgehen ist insbesondere für eine Regeneration des Partikelfilters von Vorteil. Wenn es vorgesehen ist, dass die Denitrifikationsvorrichtung strömungstechnisch nach der Hochdruckturbine und hinter der Bypassleitung angeordnet ist, kann durch
Veränderung der Abgasströmung innerhalb des Bypasses ein Stickstoffdioxid zu Stickstoffmonoxid-Verhältnis gesteuert und/oder geregelt werden. Wird die Denitrifikationsvorrichtung strömungstechnisch parallel zum Bypass angeordnet, kann zum Beispiel die Regeneration des Partikelfilters ohne unerwünschten Temperaturabfall an der Denitrifikationsvorrichtung erfolgen.
Ferner betrifft die Erfindung ein Verfahren zum Betreiben einer Brennkraftmaschine eines Kraftfahrzeugs, insbesondere gemäß der vorhergehenden Beschreibung, mit einer Abgasanlage zum Führen von Abgas, die mindestens eine erste Turbine mindestens eines Turboladers zum Aufladen der Brennkraftmaschine und mindestens einen ersten Oxidationskatalysator aufweist, wobei das Abgas erst den Oxidationskatalysator und dann die erste Turbine und eine Denitrifikationsvorrichtung durchströmt. Durch das Durchströmen des Oxidationska- talysators vor der Turbine und der Denitrifikationsvorrichtung wird erreicht, dass der Oxidationskatalysator sehr schnell auf eine Betriebstemperatur gebracht wird, da die Abgastemperatur vor der Turbine und der Denitrifikationsvorrichtung höher ist als nach der Turbine und der Denitrifikationsvorrichtung. Dies führt zu einer sehr guten Abgasnachbehandlung, dadurch, dass der Oxidationskatalysator sehr schnell nach Inbetriebnahme, wie beispielsweise Starten der Brenn- kraftmaschine, Emissionen wirksam nachbehandeln kann.
Nach einer Weiterbildung des erfindungsgemäßen Verfahrens ist vorgesehen, dass bei hoher Last, insbesondere Volllast der Brennkraftmaschine, zumindest ein Anteil des Abgases der Brennkraftmaschine zumindest am Oxidationskataly- sator oder am Oxidationskatalysator und an der Denitrifikationsvorrichtung oder am Oxidationskatalysator, einer Denitrifikationsvorrichtung und an der ersten Turbine vorbeigeleitet wird. Durch das Vorbeileiten des Abgases an den Baugliedern wird erreicht, dass die Bauglieder vor der Alterung und zu hoher Beanspruchung geschützt werden. In Abhängigkeit davon, an welchen Baugliedern das Abgas vorbeigeleitet wird, können nachgeschaltete Bauglieder mit hohen Abgas- temperaturen beaufschlagt werden, um beispielsweise Regenerationen durchzuführen, ohne die Bauglieder zu belasten.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass durch mindestens teilweises Vorbeileiten des Abgases eine Stickstoffoxid kon vertierung in der De- nitrifikationsvorrichtung, ein Stickstoffdioxid- zu Stickstoffmonoxidverhältnis in der
Denitrifikationsvorrichtung, eine Temperatur der Denitrifikationsvorrichtung und/oder eine Temperatur des Oxidationskatalysators geregelt wird/werden. Die Möglichkeit, welche der genannten Größen geregelt wird, ist abhängig davon, an welchen Baugliedern der Abgasanlage das Abgas vorbeigeleitet wird. Ferner ist für eine Regelung eine entsprechende Sensierung notwendig und die Regelung kann in vorteilhafter weise von einem Steuergerät, insbesondere Motorsteuergerät, durchgeführt werden.
Die Zeichnungen veranschaulichen die Erfindung anhand von Ausführungsbei- spielen, und zwar zeigt:
Figur 1 eine Brennkraftmaschine mit einer Abgasanlage in einer ersten Ausführungsform,
Figur 2 eine Brennkraftmaschine mit einer Abgasanlage in einer zweiten Ausführungsform, und
Figur 3 eine Brennkraftmaschine mit einer Abgasanlage in einer dritten Ausführungsform.
Die Figur 1 zeigt eine Brennkraftmaschine 1 eines nicht dargestellten Kraftfahrzeugs mit einer Abgasanlage 2 in einer ersten Ausführungsform 3, die einen Turbolader 4 mit einer Turbine 5 aufweist. Ferner besitzt die Brennkraftmaschine 1 eine Luftansauganlage 6. Die Luftansauganlage 6 weist einen Luftansaugstutzen 7 auf, welcher über eine Rohrleitung 8 Luft zu einem ersten Verdichter 9 des
Turboladers 4 führt, wobei der Verdichter 9 über eine Welle 9' mit der Turbine 5 verbunden ist. Die Luft wird weiter über eine Rohrleitung 10 in Luftkanäle 1 1 gebracht. Die Luftkanäle 1 1 führen zu Zylindern 12 der Brennkraftmaschine 1 , aus denen Abgas in die Abgaskrümmer 13 und damit in die Abgasanlage 2 geleitet wird. Ausgehend von den Krümmern 13 verläuft zusätzlich eine Abgasrückfüh- rung 14, welche Abgas aus den Abgaskrümmern 13 über eine Rohrleitung 15 zu einem Kühlelement 16 und weiter über eine Rohrleitung 17 an ein Rückführventil 18 führt. Nach dem Rückführventil 18 wird rückgeführtes Abgas über eine Rohrleitung 19 in die Rohrleitung 10 gebracht. Die Abgasrückführung 14 dient dazu, Abgas in die Luft der Rohrleitung 10 einzuleiten, um den Verbrennungsablauf zu beeinflussen und damit die Stickoxidemissionen zu senken. Ausgehend von den
Abgaskrümmern 13 verläuft eine Rohrleitung 20 zu einem ersten Oxidationskata- Iysator 21 . Von dem ersten Oxidationskatalysator 21 verläuft eine Rohrleitung 22 zu einer Denitrifikationseinrichtung 23, welche über eine Rohrleitung 24 mit der Turbine 5 strömungstechnisch verbunden ist. Über eine Rohrleitung 25 wird das Abgas aus der Turbine 5 zu einem zweiten Oxidationskatalysator 26 geleitet, welcher über eine weitere Rohrleitung 27 mit einem Partikelfilter 28 verbunden ist. Der Partikelfilter 28 führt das Abgas über eine Rohrleitung 29 und einen Ab- gasauslass 30 ab. An der Rohrleitung 20 beginnt ein Bypass 31 , welcher in der Rohrleitung 24 mündet. Der Bypass 31 weist ein steuerbares Ventil 32 auf, wel- ches eine durch den Bypass 31 geführte Abgasmenge ändern kann. Als Bauglieder 33 werden hier der erste Oxidationskatalysator 21 , die Denitrifikationseinrichtung 23, die erste Turbine 5, der zweite Oxidationskatalysator 26 sowie der Partikelfilter 28 betrachtet.
Die in der Figur 1 dargestellte erste Ausführungsform 3 der Abgasanlage 2 ermöglicht es, zumindest teilweise das Abgas an dem ersten Oxidationskatalysator 21 und der Denitrifikationseinrichtung 23 über den Bypass 31 vorbeizuleiten. Dies ermöglicht, dass der Partikelfilter 28 mit sehr hohen Abgastemperaturen beaufschlagt werden kann, ohne dass der erste Oxidationskatalysator 21 sowie die Denitrifikationseinrichtung 23 unnötig erhitzt werden. Somit wird eine Alterung des ersten Oxidationskatalysators 21 sowie der Denitrifikationseinrichtung 23 verhindert. Es ist vorgesehen, dass in einem Volllastbetrieb der Brennkraftmaschine 1 das Ventil 32 vollständig geöffnet wird, sodass möglichst viel Abgas an dem ersten Oxidationskatalysator 21 und an der Denitrifikationsvorrichtung 23 vorbeigeleitet wird, um einen Bauteilschutz zu erwirken, indem eine unnötige Alterung der betreffenden Bauglieder 33 vermieden wird. In der dargestellten An- ordnung ergibt es sich, dass das Abgas motornah, das heißt in der Nähe der Zylinder 12 mit einer hohen Abgastemperatur in den ersten Oxidationskatalysator 21 eintritt und diesen sehr schnell auf seine Betriebstemperatur erwärmt. Mit der verbleibenden, nach dem ersten Oxidationskatalysator 21 vorliegenden Abgas- temperatur wird anschließend die Denitrifikationsvorrichtung 23 schnell auf ihre
Betriebstemperatur erwärmt. Somit wird erreicht, dass die beiden betreffenden Bauglieder 33 sehr schnell nach einem Start der Brennkraftmaschine 1 in Betrieb genommen werden und eine optimale Abgasnachbehandlung durchführen.
Die Figur 2 zeigt die Brennkraftmaschine 1 der Figur 1 mit all ihren Merkmalen.
Die Figur 2 unterscheidet sich von der Figur 1 dadurch, dass die Abgasanlage 2 in einer zweiten Ausführungsform 34 vorliegt. In der zweiten Ausführungsform 34 der Abgasanlage 2 ist die Denitrifikationsvorrichtung 23 strömungstechnisch nach der Turbine 5 angeordnet. Somit ergibt sich, dass der erste Oxidationskata- lysator 21 direkt mit der Rohrleitung 24 verbunden ist, wohingegen die Rohrleitung 25 in die Denitrifikationsvorrichtung 23 führt, welche über eine zusätzliche Rohrleitung 35 mit dem zweiten Oxidationskatalysator 26 verbunden ist. Die Rohrleitung 22 entfällt gegenüber der Figur 1 vollständig. In der dargestellten zweiten Ausführungsform 34 der Abgasanlage 2 verläuft der Bypass 31 ebenfalls von der Rohrleitung 20 zu der Rohrleitung 24, wodurch das Abgas an dem ersten
Oxidationskatalysator 21 vorbeigeleitet wird. Die Menge des vorbeigeleiteten Abgases wird über das Ventil 32 gesteuert oder geregelt.
Aufgrund der zweiten Ausführungsform 34 der Abgasanlage 2 ergeben sich die bereits genannten Vorteile bezüglich schneller Erwärmung sowie der Bauteilschutz vor Alterung für den Oxidationskatalysator 21 . Zusätzlich kann ein Stickstoffdioxid zu Stickstoffmonoxidverhältnis im Abgas geregelt werden kann, indem, möglichst stufenlos, Abgas über den Bypass 31 an dem Oxidationskatalysator 21 vorbeigeleitet wird. Auf diese Weise ist es möglich, eine Stickstoffoxid- Konvertierung (NOx-Konvertierung) in der Denitrifikationsvorrichtung 23 zu optimieren.
Die Figur 3 zeigt die Brennkraftmaschine 1 mit der Abgasanlage 2 in einer dritten Ausführungsform 35. Die Brennkraftmaschine 1 in Figur 3 weist sämtliche Merk- male der Figur 1 auf. Im Unterschied zu Figur 1 weist der Turbolader 4 die erste
Turbine 5 sowie eine zweite Turbine 36 auf. Die erste Turbine 5 ist als Hoch- druckturbine 37 ausgebildet, wohingegen die zweite Turbine 36 als Niederdruckturbine 38 ausgebildet ist. Weitere Unterschiede ergeben sich wie folgt. Die Rohrleitung 8 verläuft zu einem Verdichter 39 der zweiten Turbine 36, welche verdichtete Luft über eine Rohrleitung 40 zum Verdichter 9 des Turboladers 4 führt. Somit ist der Turbolader 4 als zweistufiger Turbolader 40 ausgebildet. Der
Verdichter 9 ist über die Welle 9' mit der Turbine 5 wirkverbunden und der Verdichter 39 ist über eine Welle 43 mit der Turbine 36 verbunden. Die dritte Ausführungsform 35 der Abgasanlage 2 beginnt mit den Abgaskrümmern 13 und verläuft über die Rohrleitung 20 zu dem ersten Oxidationskatalysator 21 und weiter über die Rohrleitung 22 zu der Denitrifikationsvorrichtung 23. Von der Denitrifikationsvorrichtung 23 verläuft eine Rohrleitung 44, welche zur ersten Turbine 5 führt. Die erste Turbine 5 ist über eine Rohrleitung 45 mit der zweiten Turbine 36 verbunden, woran sich die Rohrleitung 25 anschließt. Der weitere Verlauf der dritten Ausführungsform 35 der Abgasanlage 2 bis zum Abgasauslass 30 ent- spricht dem der Figur 1. Der Bypass 31 beginnt in der Rohrleitung 20 und mündet in die Rohrleitung 45, sodass das Abgas um den Oxidationskatalysator 21 , die Denitrifikationseinrichtung 43 und die erste Turbine 5 herumgeleitet werden kann. Über das Ventil 32 besteht die Möglichkeit, die Abgasmenge, welche vorbeigeleitet werden soll, zu stellen.
Die dargestellte dritte Ausführungsform 35 der Abgasanalge 2 ermöglicht es, zu den bereits genannten Vorteilen bezüglich schnellem Erreichen der Betriebstemperaturen und dem Bauteilschutz vor Alterung zusätzlich die erste Turbine 5, die Hochdruckturbine 37, zu umgehen. Dies ist vorteilhaft, wenn hohe Lasten an der Brennkraftmaschine 1 vorliegen, sodass die Hochdruckturbine 5 des Turboladers
4 nach Möglichkeit geschont werden kann. Die Ausführungsform 35 erlaubt es, den Partikelfilter 28 mit hohen Abgastemperaturen für eine Regeneration zu beaufschlagen, ohne dass die Denitrifikationsvorrichtung 23 thermischen Belastungen ausgesetzt werden.
In einer weiteren, nicht dargestellten Ausführungsform der Abgasanlage 2 ist es denkbar, ausgehend von der Ausführungsform 35 die Denitrifikationsvorrichtung 23 nach der ersten Turbine 5 und nach dem Bypass 31 anzuordnen. Diese Ausführungsform ermöglicht es, das Stickstoffdioxid zu Stickstoffmonoxidverhältnis über das Ventil 32 zu steuern oder zu regeln. Ferner ist in allen Ausführungsformen 3, 24 und 35 denkbar, dass die Oxidati- onskatalysatoren 21 und/oder 26 als Drei-Wege-Katalysatoren ausgebildet sind. Dies ist dann vorteilhaft, wenn die Brennkraftmaschine 1 zumindest zeitweilig in einem stöchiometrischen Betrieb mit einem Luftverhältnis λ = 1 betrieben wird.

Claims

Ansprüche
1. Brennkraftmaschine (1 ) eines Kraftfahrzeugs, mit einer Abgasanlage (2), die mindestens eine, erste Turbine (5) mindestens eines Turboladers (4) zum Aufladen der Brennkraftmaschine (1 ) und mindestens einen, ersten Oxidationskatalysator (21 ) aufweist, dadurch gekennzeichnet, dass der erste Oxidationskatalysator
(21 ) strömungstechnisch vor der Turbine (5) angeordnet ist und dass die Abgasanlage (2) mindestens eine Denitrifikationsvorrichtung (23) aufweist, die strömungstechnisch nach dem ersten Oxidationskatalysator (21 ) angeordnet ist.
2. Brennkraftmaschine (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die
Denitrifikationsvorrichtung (23) strömungstechnisch vor oder nach der Turbine (5) angeordnet ist.
3. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, gekenn- zeichnet durch einen zweiten Oxidationskatalysator (26).
4. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Oxidationskatalysator (26) strömungstechnisch nach der Turbine (5) angeordnet ist.
5. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Oxidationskatalysator (26) strömungstechnisch vor oder nach der Denitrifikationsvorrichtung (23) angeordnet ist.
6. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste und/oder zweite Oxidationskatalysator (21 ,26) ein Drei-Wege-Katalysator ist.
7. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Abgasanlage (2) einen Partikelfilter (28) aufweist, der - strömungstechnisch gesehen - als letztes Bauglied (33) innerhalb der Abgasanlage (2) angeordnet ist.
8. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, gekenn- zeichnet durch einen Bypass (31 ).
9. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bypass (31 ) strömungstechnisch parallel zu dem ersten Oxidationskatalysator (21 ) geschaltet wird.
10. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bypass (31 ) strömungstechnisch parallel zur Reihenschaltung von Oxidationskatalysator (21 ) und Denitrifikationsvorrichtung (23) geschaltet ist.
1 1 . Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bypass (31 ) ein steuerbares Ventil (32) aufweist.
12. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass der Turbolader (4) ein zweistufiger Turbolader (40) mit der ersten Turbine (5) und einer zweiten Turbine (36) ist.
13. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Turbine (36) der ersten Turbine (5) strömungs- technisch nachgeschaltet ist.
14. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Turbine (5) ein Hochdruckturbine (37) und die zweite Turbine (36) eine Niederdruckturbine (38) ist.
15. Brennkraftmaschine (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bypass (31 ) strömungstechnisch parallel zur Reihenschaltung von Oxidationskatalysator (21 ), Denitrifikationsvorrichtung (23) und der ersten Turbine (5) geschaltet ist.
16. Verfahren zum Betreiben einer Brennkraftmaschine (1 ) eines Kraftfahrzeugs, insbesondere gemäß einem oder mehreren der vorhergehenden Ansprüche, mit einer Abgasanlage (2) zum Führen von Abgas, die mindestens eine erste Turbine (5) mindestens eines Turboladers (4) zum Aufladen der Brennkraftmaschine (1 ) und mindestens einen ersten Oxidationskatalysator (21 ) aufweist, dadurch gekennzeichnet, dass das Abgas erst den Oxidationskatalysator (21 ) und dann die erste Turbine (5) und eine Denitrifikationsvorrichtung (23) durchströmt.
17. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass bei hoher Last, ins- besondere Volllast der Brennkraftmaschine (1 ), zumindest ein Anteil des Abgases der Brennkraftmaschine (1 ) zumindest am Oxidationskatalysator (21 ) oder am Oxidationskatalysator (21 ) und an der Denitrifikationsvorrichtung (23) oder am Oxidationskatalysator (21 ), an der Denitrifikationsvorrichtung (23) und an der ersten Turbine (5) vorbeigeleitet wird.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch mindestens teilweises Vorbeileiten des Abgases eine Stickstoffoxidkonvertierung in der Denitrifikationsvorrichtung (23), ein Stickstoffdioxid- zu Stickstoffmonoxidverhältnis in der Denitrifikationsvorrichtung (23), eine Temperatur der Denitrifikationsvorrichtung (23) und/oder eine Temperatur des Oxidationskata- lysators (21 ,26) geregelt wird/werden.
PCT/EP2009/061842 2008-11-05 2009-09-14 Brennkraftmaschine mit turbolader und oxidationskatalysator WO2010052055A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008043487A DE102008043487A1 (de) 2008-11-05 2008-11-05 Brennkraftmaschine mit Turbolader und Oxidationskatalysator
DE102008043487.6 2008-11-05

Publications (1)

Publication Number Publication Date
WO2010052055A1 true WO2010052055A1 (de) 2010-05-14

Family

ID=41346103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/061842 WO2010052055A1 (de) 2008-11-05 2009-09-14 Brennkraftmaschine mit turbolader und oxidationskatalysator

Country Status (2)

Country Link
DE (1) DE102008043487A1 (de)
WO (1) WO2010052055A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100154411A1 (en) * 2007-07-13 2010-06-24 Emitec Gesellschaft For Emissionstechnologie Mbh Exhaust-Gas Aftertreatment System Upstream of a Turbocharger, Method for Purifying Exhaust Gas and Vehicle Having the System
US20120260627A1 (en) * 2011-04-15 2012-10-18 GM Global Technology Operations LLC Internal combustion engine with emission treatment interposed between two expansion phases
WO2013160530A1 (en) 2012-04-27 2013-10-31 Wärtsilä Finland Oy An internal combustion engine and a method of controlling the operation thereof
WO2014090517A1 (de) * 2012-12-11 2014-06-19 Fev Gmbh Hybridantrieb für ein fahrzeug
WO2015071540A1 (en) * 2013-11-18 2015-05-21 Wärtsilä Finland Oy Arrangement for treating exhaust gas in a turbocharged internal combustion engine and method of operating a turbocharged internal combustion engine
EP3639909A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639920A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639921A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639908A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639922A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639919A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639907A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012222107A1 (de) 2012-12-03 2014-06-05 Robert Bosch Gmbh Verfahren zum Steuern einer Abgasrückführung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309726A (ja) * 1987-06-10 1988-12-16 Yanmar Diesel Engine Co Ltd 排気タ−ボ過給機付内燃機関の排気ガス処理装置
WO1996016255A1 (fr) * 1994-11-18 1996-05-30 Komatsu Ltd. Dispositif de denitration d'echappement pour moteur diesel
US6651432B1 (en) * 2002-08-08 2003-11-25 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Controlled temperature combustion engine
EP1604099A1 (de) * 2003-03-14 2005-12-14 Westport Research Inc. Wärmeschwankungsmanagement in mager-nox-adsorbernachbehandlungssystemen
EP1640598A1 (de) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Aufgeladene Brennkraftmaschine und Verfahren zur Verbesserung des Emissionsverhaltens einer aufgeladenen Brennkraftmaschine
WO2008108141A1 (ja) * 2007-03-02 2008-09-12 Honda Motor Co., Ltd. 内燃機関及び内燃機関の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309726A (ja) * 1987-06-10 1988-12-16 Yanmar Diesel Engine Co Ltd 排気タ−ボ過給機付内燃機関の排気ガス処理装置
WO1996016255A1 (fr) * 1994-11-18 1996-05-30 Komatsu Ltd. Dispositif de denitration d'echappement pour moteur diesel
US6651432B1 (en) * 2002-08-08 2003-11-25 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Controlled temperature combustion engine
EP1604099A1 (de) * 2003-03-14 2005-12-14 Westport Research Inc. Wärmeschwankungsmanagement in mager-nox-adsorbernachbehandlungssystemen
EP1640598A1 (de) * 2004-09-22 2006-03-29 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Aufgeladene Brennkraftmaschine und Verfahren zur Verbesserung des Emissionsverhaltens einer aufgeladenen Brennkraftmaschine
WO2008108141A1 (ja) * 2007-03-02 2008-09-12 Honda Motor Co., Ltd. 内燃機関及び内燃機関の制御装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100154411A1 (en) * 2007-07-13 2010-06-24 Emitec Gesellschaft For Emissionstechnologie Mbh Exhaust-Gas Aftertreatment System Upstream of a Turbocharger, Method for Purifying Exhaust Gas and Vehicle Having the System
US8544266B2 (en) * 2007-07-13 2013-10-01 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Exhaust-gas aftertreatment system upstream of a turbocharger, method for purifying exhaust gas and vehicle having the system
US20120260627A1 (en) * 2011-04-15 2012-10-18 GM Global Technology Operations LLC Internal combustion engine with emission treatment interposed between two expansion phases
US8607566B2 (en) * 2011-04-15 2013-12-17 GM Global Technology Operations LLC Internal combustion engine with emission treatment interposed between two expansion phases
WO2013160530A1 (en) 2012-04-27 2013-10-31 Wärtsilä Finland Oy An internal combustion engine and a method of controlling the operation thereof
WO2014090517A1 (de) * 2012-12-11 2014-06-19 Fev Gmbh Hybridantrieb für ein fahrzeug
CN105452079A (zh) * 2012-12-11 2016-03-30 德国Fev有限公司 用于车辆的混合驱动器
US9718342B2 (en) 2012-12-11 2017-08-01 FEV Europe GmbH Hybrid drive for a vehicle
WO2015071540A1 (en) * 2013-11-18 2015-05-21 Wärtsilä Finland Oy Arrangement for treating exhaust gas in a turbocharged internal combustion engine and method of operating a turbocharged internal combustion engine
EP3639919A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
WO2020079137A1 (en) 2018-10-18 2020-04-23 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
EP3639921A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639908A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639922A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639909A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
EP3639907A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
WO2020079143A1 (en) 2018-10-18 2020-04-23 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
WO2020079140A1 (en) 2018-10-18 2020-04-23 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
EP3639920A1 (de) 2018-10-18 2020-04-22 Umicore Ag & Co. Kg Abgasreinigungssystem für einen benzinmotor
WO2020079131A1 (en) 2018-10-18 2020-04-23 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
WO2020079141A1 (en) 2018-10-18 2020-04-23 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
WO2020079134A1 (en) 2018-10-18 2020-04-23 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
WO2020079136A1 (en) 2018-10-18 2020-04-23 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
US11377993B2 (en) 2018-10-18 2022-07-05 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
US11547969B2 (en) 2018-10-18 2023-01-10 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
US11614015B2 (en) 2018-10-18 2023-03-28 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
US11649753B2 (en) 2018-10-18 2023-05-16 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
US11859526B2 (en) 2018-10-18 2024-01-02 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine
US12104514B2 (en) 2018-10-18 2024-10-01 Umicore Ag & Co. Kg Exhaust gas purification system for a gasoline engine

Also Published As

Publication number Publication date
DE102008043487A1 (de) 2010-05-20

Similar Documents

Publication Publication Date Title
WO2010052055A1 (de) Brennkraftmaschine mit turbolader und oxidationskatalysator
EP3660287B1 (de) Abgasnachbehandlungssystem sowie verfahren zur abgasnachbehandlung eines verbrennungsmotors
EP3115566B1 (de) Verfahren zur abgasnachbehandlung einer brennkraftmaschine
EP2635790B1 (de) Kraftfahrzeug-brennkraftmaschine mit abgasrückführung
EP2206898B1 (de) Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
EP2206899B1 (de) Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
DE102014201579A1 (de) Brennkraftmaschine mit selektivem Katalysator zur Reduzierung der Stickoxide und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102016211274A1 (de) Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
EP2134943A1 (de) Turboaufgeladene brennkraftmaschine und verfahren
EP2055909B1 (de) Verfahren zum schadstoffemissionsarmen Betreiben eines Verbrennungsmotors und entsprechender Verbrennungsmotor
WO2008155268A1 (de) Brennkraftmaschine mit zweistufiger turboaufladung und oxidationskatalysator
EP3770386A1 (de) Abgasnachbehandlungssystem und verfahren zur abgasnachbehandlung eines verbrennungsmotors
EP4036386B1 (de) Verbrennungskraftmaschine für ein kraftfahrzeug, insbesondere für einen kraftwagen, sowie kraftfahrzeug, insbesondere kraftwagen
EP2262985B1 (de) Abgasvorrichtung einer brennkraftmaschine
DE102018104275A1 (de) Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102019123453A1 (de) Abgasnachbehandlungssystem und Verfahren zum Temperaturmanagement eines SCR-Katalysators in der Abgasanlage eines Verbrennungsmotors
DE102019006494B4 (de) Abgasanlage für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, Antriebseinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
EP4074946B1 (de) Verfahren zur abgasnachbehandlung eines dieselmotors und dieselmotor
EP4102036B1 (de) Verfahren zur aufheizung eines elektrisch beheizbaren katalysators im leerlauf
DE102018117124B4 (de) Verbrennungsmotor und Verfahren zur Abgasnachbehandlung eines solchen Verbrennungsmotors
EP2573347B1 (de) Vorrichtung und Verfahren zur Aufbereitung von Abgas einer Brennkraftmaschine
DE102017010267A1 (de) Verbrennungsmotor, insbesondere Dieselmotor, mit Abgasnachbehandlung
DE102022129407A1 (de) Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Dieselmotors
DE102021115663A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102020207891A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782946

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09782946

Country of ref document: EP

Kind code of ref document: A1