Nothing Special   »   [go: up one dir, main page]

WO2010050069A1 - 駆動力制御装置および駆動力制御装置の制御方法 - Google Patents

駆動力制御装置および駆動力制御装置の制御方法 Download PDF

Info

Publication number
WO2010050069A1
WO2010050069A1 PCT/JP2008/069965 JP2008069965W WO2010050069A1 WO 2010050069 A1 WO2010050069 A1 WO 2010050069A1 JP 2008069965 W JP2008069965 W JP 2008069965W WO 2010050069 A1 WO2010050069 A1 WO 2010050069A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
driving force
vehicle
control unit
vibration
Prior art date
Application number
PCT/JP2008/069965
Other languages
English (en)
French (fr)
Inventor
界児 板橋
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2008801308506A priority Critical patent/CN102132022A/zh
Priority to JP2010535609A priority patent/JPWO2010050069A1/ja
Priority to US13/058,042 priority patent/US20110137514A1/en
Priority to DE112009002066T priority patent/DE112009002066T5/de
Priority to GB1102753.9A priority patent/GB2481877A/en
Priority to PCT/JP2008/069965 priority patent/WO2010050069A1/ja
Publication of WO2010050069A1 publication Critical patent/WO2010050069A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness

Definitions

  • the present invention relates to a driving force control device and a control method for the driving force control device, and more particularly to a driving force control device that performs sprung mass damping using a driving force generated by a driving source and a control method for the driving force control device. It is.
  • the sprung vibration of the vehicle is a frequency component of 1 to 4 Hz among vibrations generated in the vehicle body via the suspension by an input from the road surface to the vehicle wheel when the excitation source is the road surface.
  • the frequency components that appear prominently differ depending on the configuration, and many vehicles refer to vibrations with a frequency component in the vicinity of 1.5 Hz.
  • the sprung vibrations of this vehicle include components in the vehicle pitch direction or bounce direction (vertical direction). include.
  • the sprung mass damping referred to here is to suppress the sprung mass vibration of the vehicle.
  • Patent Literature 1 has been proposed as such a conventional vehicle vibration control device.
  • a front wheel axle speed is calculated based on a detection signal detected by a wheel speed sensor corresponding to a front wheel, a running resistance disturbance estimated based on the calculated front wheel axle speed, and an engine speed sensor.
  • a vehicle stabilization control system is disclosed in which a correction value for suppressing pitching vibration is obtained from the drive shaft torque estimated based on the detected signal, and the basic required engine torque is corrected by the obtained correction value.
  • This vehicle stabilization control system can suppress pitching vibration, stabilize each state quantity inside the vehicle, and stabilize the running state of the vehicle.
  • the control amount of the driving force is changed in the sprung mass damping control by the vehicle vibration damping control device described in Patent Documents 1 and 2 as described above.
  • the control amount of the driving force is controlled by changing the behavior of the vehicle, changing to suppress the vibration generated in the vehicle by an input from an excitation source different from the excitation source of the sprung vibration. Changes and the like are performed, and the driving force control is performed based on the control amount in which these changes are performed.
  • the relationship between the change in the control amount by the sprung mass damping control and the change in the other control amount has not been proposed in the past, and each vibration suppression control for suppressing the vibration of the vehicle is effective. It was requested to be done.
  • an object of the present invention is to provide a driving force control device and a control method for the driving force control device that can effectively suppress the vibration of the vehicle.
  • a driving force control device that controls a driving force generated by a driving source based on a control amount
  • the driving force is controlled based on at least one of a driver's accelerator operation or a vehicle running state.
  • a sprung mass damping control unit that changes the control amount calculated in accordance with the requested value to a value that can be generated by the drive source to suppress the sprung mass vibration of the vehicle, and the sprung mass damping control.
  • the control amount changed by the control unit is changed to a value that allows the drive source to generate the driving force that suppresses vibration of a higher frequency component than the vehicle sprung vibration suppressed by the sprung mass damping control unit.
  • a high-frequency vibration damping control unit that performs the change before the high-frequency vibration damping control unit changes the control amount.
  • the high frequency vibration suppression control unit includes a first high frequency vibration suppression control unit that suppresses vibrations generated in a power transmission path from the drive source to the drive wheels.
  • the high-frequency vibration suppression control unit includes a second high-frequency vibration suppression control unit that suppresses vibration generated in the drive source.
  • the driving force control device may further include a vehicle behavior control unit that changes the driving force that is controlled by changing the behavior of the vehicle to a value that can be generated by the driving source. It is preferable that the vibration control unit changes after the vehicle behavior control unit changes.
  • the vehicle behavior control unit includes annealing control that regulates a change gradient of the driving force.
  • the wheel torque that reduces the fluctuation of the wheel speed that causes the vehicle to generate vibration of 1 to 4 Hz is generated with respect to the driving force.
  • the sprung mass damping control unit changes the high frequency damping control unit before making the change.
  • the calculation is performed according to the required value based on the driver's accelerator operation or the running state of the vehicle.
  • changing the driving force for suppressing the vibration to a value that can be generated by the driving source.
  • the vibration of the vehicle can be effectively suppressed.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a vehicle equipped with a driving force control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an internal configuration example of an electronic control device including a driving force control device according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the state variables of the vehicle body vibration that are suppressed in the sprung mass damping control unit.
  • FIG. 4 is a schematic diagram showing a functional configuration example of the sprung mass damping control unit in the form of a control block.
  • FIG. 5 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the sprung mass damping control unit.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a vehicle equipped with a driving force control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an internal configuration example of an electronic control device including a driving force control device according to an embodiment of the present invention.
  • FIG. 3 is a
  • FIG. 6 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the sprung mass damping control unit.
  • FIG. 7 is a diagram showing the relationship between the average wheel speed and time.
  • FIG. 8 is a diagram showing the relationship between the average wheel speed and time.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a vehicle equipped with a driving force control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an internal configuration example of an electronic control device including a driving force control device according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the state variables of the vehicle body vibration that are suppressed in the sprung mass damping control unit.
  • FIG. 4 is a schematic diagram showing a functional configuration example of the sprung mass damping control unit in the form of a control block.
  • FIG. 5 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the sprung mass damping control unit.
  • FIG. 6 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the sprung mass damping control unit.
  • the vehicle driving force control device 1 is applied to a vehicle 10 equipped with a diesel engine 21 as a driving source, as shown in FIG.
  • the diesel engine 21 is mounted on the front side portion in the forward traveling direction of the vehicle 10, and the driving wheels are the left and right rear wheels 30RL and 30RR.
  • the rear wheel drive in addition, the mounting position of the diesel engine 21 of the vehicle 10 is not limited to only the front portion, and may be mounted on either the rear portion or the central portion.
  • the drive format of the vehicle 10 is not limited to only the rear wheel drive, and may be any format of front wheel drive and four wheel drive.
  • the vehicle 10 to which the driving force control device 1 is applied has wheels 30FL and 30FR which are left and right front wheels and wheels 30RL and 30RR which are left and right rear wheels, as shown in FIG. Further, the vehicle 10 detects an accelerator pedal 60 operated by the driver and a request value by the driver's accelerator operation, that is, an accelerator pedal depression amount ⁇ a that is a depression amount of the accelerator pedal 60, and corresponds to the accelerator pedal depression amount ⁇ a.
  • the vehicle 10 is mounted with a driving device 20 that generates driving force on the wheels 30RL and 30RR in accordance with a driver's accelerator operation in various known modes.
  • the driving device 20 is configured such that the driving force (output torque) generated by the diesel engine 21 is transmitted to the wheels 30RL and 30RR via the MT 22, the differential gear device 23, and the like.
  • the vehicle 10 is provided with a braking device for generating a braking force on each wheel and a steering device for controlling the steering angle of the front wheels or the front and rear wheels, as in various known vehicles. It is done.
  • the operation of the driving device 20 is controlled by an electronic control device 50 that is also used as the driving force control device 1.
  • the electronic control unit 50 may include various known types of microcomputers and drive circuits having CPU, ROM, RAM and input / output port devices interconnected by a bi-directional common bus.
  • An engine rotation speed (output rotation speed of the diesel engine 21) Er from the sensors provided in each part of the vehicle 10, and a signal of an accelerator pedal depression amount ⁇ a are input.
  • the electronic control device 50 corresponds to various detection signals for obtaining various parameters necessary for various controls to be executed in the vehicle 10 of the present embodiment, for example, the operating environment of the diesel engine 21. Signals such as parameters (cooling water temperature, intake air temperature, intake air pressure, atmospheric pressure, oil temperature, etc.) are input.
  • the electronic control unit (ECU) 40 controls, for example, the operation of the diesel engine 21, particularly the driving force generated by the diesel engine 21 based on the control amount, in this embodiment, the target fuel injection amount Q.
  • the driving force control device 1 is configured to include a braking control device 2 that controls the operation of a braking device (not shown), and an automatic traveling control device 3 that automatically controls the traveling state of the vehicle.
  • the driving force control device 1 is configured by being incorporated in the electronic control device 50. That is, in the present embodiment, the driving force control device 1 is described as being configured to be shared by the electronic control device 50. However, the present invention is not limited to this, and the driving force control device 1 and the electronic control device 50 are combined.
  • the driving force control device 1 may be configured separately and connected to the electronic control device 50. Also, other control devices (braking control device 2 and automatic travel control device 3) other than the driving force control device 1 may be configured individually and connected to the electronic control device 50 in the same manner. good.
  • the braking control device 2 is sequentially generated every time the wheel rotates by a predetermined amount from the wheel speed sensors 40FL, 40FR, 40RL, 40RR of the wheels 30FL, 30FR, 30RL, 30RR.
  • a pulse-type electrical signal is input, and the rotational speed of the wheel is calculated by measuring the time interval at which this sequentially input pulse signal arrives, and the wheel speed is calculated by multiplying this by the wheel radius. Is done.
  • the braking control device 2 determines the average value r ⁇ ⁇ of the wheel speeds VwFL, VwFR, VwRL, and VwRR corresponding to the wheels 30FL, 30FR, 30RL, and 30RR, respectively, in the driving force control device 1 (in this embodiment).
  • the calculation from the wheel rotation speed to the wheel speed may be performed by the driving force control device 1 (the basic injection amount calculation unit 4a and the sprung mass damping control unit 5) of the driving force control device 1. In that case, the wheel rotation speed is output from the braking control device 2 to the driving force control device 1).
  • the braking control device 2 performs various known ABS control, automatic braking control such as VSC, TRC, that is, frictional force between the wheels 30FL, 30FR, 30RL, 30RR and the road surface (wheels 30FL, 30FR, 30RL, 30RR).
  • VSC automatic braking control
  • TRC automatic braking control
  • the vector sum of the longitudinal force and lateral force of the vehicle 10) becomes excessive and exceeds the limit, or the behavior of the vehicle 10 caused by the frictional force of the wheels 30FL, 30FR, 30RL, and 30RR exceeding the limit.
  • the slip ratio control of the wheels 30FL, 30FR, 30RL, 30RR of the VSC, TRC etc.
  • VDIM that stabilizes the behavior of the vehicle 10
  • the braking control apparatus 2 when VDIM is mounted, the braking control apparatus 2 will comprise a part of VDIM.
  • the braking control device 2 performs stable control by changing the behavior of the vehicle 10 in the automatic braking control (ABS control, VSC, TRC, VDIM), that is, changing the behavior of the vehicle 10.
  • the driving force generated by the diesel engine 21 may be controlled.
  • the braking control device 2 changes the target fuel injection amount Q when performing driving force control to change and control the behavior of the vehicle 10 based on automatic braking control. That is, the braking control device 2 also has a function as a vehicle behavior control unit.
  • the braking control device 2 can change the driving force so that the behavior of the vehicle 10 becomes a stable behavior as shown in FIG.
  • the control compensation amount qa is output to the driving force control device 1 (in the present embodiment, the injection amount calculation unit 4).
  • the braking control compensation amount qa output from the braking control device 2 to the injection amount calculating unit 4 is input to the injection amount changing unit 4c, and the target fuel injection amount Q (basic injection) input to the injection amount changing unit 4c.
  • the target fuel injection amount Q) calculated by the amount calculation unit 4a is added to or subtracted from.
  • the target fuel injection amount Q is changed so as to be controlled by changing the behavior of the vehicle 10 based on the braking control compensation amount qa, and is changed based on the changed target fuel injection amount Q (based on the braking control compensation amount qa).
  • the control command corresponding to the target fuel injection amount Q) finally calculated by the injection amount calculation unit 4 is output to the drive device 20.
  • the braking control device 2 may calculate the accelerator pedal depression amount when the driving force is controlled to change and control the behavior of the vehicle 10 based on the automatic braking control. In this case, the calculated accelerator pedal depression amount is output to the driving force control device 1 (in the present embodiment, the arbitrating unit 4b).
  • the automatic travel control device 3 is a driving force generated by the diesel engine 21 so that the automatic traveling control such as a known CC (cruise control), that is, the vehicle 10 is traveling, for example, the vehicle speed (the wheel speed) is constant. Is to control.
  • the automatic travel control device 3 calculates the accelerator pedal depression amount ⁇ A when performing the driving force control in the automatic travel control.
  • the automatic travel control device 3 uses the calculated accelerator pedal depression amount ⁇ A as the driving force control device 1 (in this embodiment, Output to the arbitration unit 4b).
  • the driving force control device 1 controls the driving force generated by the diesel engine 21 that is a driving source based on the target fuel injection amount Q that is a control amount.
  • the driving force control device 1 basically calculates the target fuel injection amount Q according to the required accelerator pedal depression amount ⁇ , and outputs a control command according to the target fuel injection amount Q to the diesel engine 21. .
  • the diesel engine 21 is supplied with the fuel of the target fuel injection amount Q based on the control command, and a driving force corresponding to the supplied fuel is generated.
  • the driving force control device 1 includes at least an injection amount calculation unit 4, a sprung mass damping control unit 5, a jerk damping control unit 6, an inter-cylinder correction control unit 7, an annealing control unit 8, and an assist control unit. 9.
  • the injection amount calculation unit 4 is a control amount calculation unit, and is a target fuel that is a control amount in accordance with an accelerator pedal depression amount ⁇ that is a required value based on at least one of the driver's accelerator operation or the running state of the vehicle.
  • the injection amount Q is calculated. That is, the injection amount calculation unit 4 calculates the target fuel injection amount Q according to the driving force required for the diesel engine 21. Further, the injection amount calculation unit 4 changes the target fuel injection amount Q calculated according to the accelerator pedal depression amount ⁇ based on a compensation amount from each control unit described later, and sets the final target fuel injection amount Q. It is also what is calculated.
  • the injection amount calculation unit 4 includes a basic injection amount calculation unit 4a, an arbitration unit 4b, injection amount change units 4c to 4h, and input points 4i and 4k.
  • the basic injection amount calculation unit 4a calculates a target fuel injection amount Q in accordance with the required accelerator pedal depression amount ⁇ .
  • the basic injection amount calculation unit 4a calculates a basic target fuel injection amount Q (control amount corresponding to the required value) to be changed based on the compensation amount from each control unit.
  • the basic injection amount calculation unit 4a sets the target based on the accelerator pedal depression amount ⁇ output from the arbitration unit 4b and the vehicle speed V of the vehicle 10, that is, the average value r ⁇ ⁇ of the wheel speed output from the braking control device 2.
  • a fuel injection amount Q is calculated.
  • the generated driving force changes when the fuel injection amount changes. Therefore, the calculated target fuel injection amount Q is converted into the required driving force to be generated by the diesel engine 21 according to the required value. be able to.
  • the arbitrating unit 4b mediates a plurality of required values when there are a plurality of required values, and outputs the accelerator pedal depression amount ⁇ that is the required value to the basic injection amount calculating unit 4a.
  • an accelerator pedal depression amount ⁇ a which is a requested value by the driver's accelerator operation, is input to the arbitration unit 4b from the pedal sensor 70.
  • an accelerator pedal depression amount ⁇ A that is a required value based on the traveling state of the vehicle 10 is input from the automatic traveling control device 3.
  • the arbitrating unit 4b when only a requested value by an accelerator operation is input, the arbitrating unit 4b outputs an accelerator pedal depression amount ⁇ a to the basic injection amount calculating unit 4a, and only a requested value based on the traveling state of the vehicle 10 is input. If so, the accelerator pedal depression amount ⁇ A is output to the basic injection amount calculation unit 4a.
  • the arbitration unit 4b may output the maximum value among the input request values to the basic injection amount calculation unit 4a, or based on the traveling state of the vehicle 10 Regardless of the input of the required value, the required value by the accelerator operation may be output to the basic injection amount calculation unit 4a. That is, the arbitrating unit 4b outputs a required value based on at least one of the driver's accelerator operation or the running state of the vehicle to the basic injection amount calculating unit 4a.
  • the injection amount changing units 4c to 4h change the target fuel injection amount Q based on the compensation amount from each control unit.
  • the injection amount changing units 4c to 4h add or subtract the compensation amount from each control unit to the target fuel injection amount Q input to the injection amount changing units 4c to 4h, thereby reducing the target fuel injection amount Q. To change.
  • the injection amount change unit 4c corresponds to the braking control device 2, and is between the basic injection amount calculation unit 4a and the injection amount change unit 4f corresponding to the sprung mass damping control unit 5, that is, the most basic injection amount calculation. It is provided on the part 4a side (upstream side in changing the target fuel injection amount Q).
  • the injection amount changing unit 4 c changes the target fuel injection amount Q calculated by the basic injection amount calculating unit 4 a based on the braking control compensation amount qa from the braking control device 2. That is, the change of the target fuel injection amount Q by the braking control device 2 is performed before the change of the target fuel injection amount Q by the sprung mass damping control unit 5.
  • the injection amount changing unit 4d corresponds to the assist control unit 9, and is between the injection amount changing unit 4c corresponding to the braking control device 2 and the injection amount changing unit 4f corresponding to the sprung mass damping control unit 5. Is provided.
  • the injection amount changing unit 4d changes the target fuel injection amount Q changed by the braking control device 2 based on an assist control compensation amount qb described later from the assist control unit 9. That is, the target fuel injection amount Q is changed by the assist control unit 9 before the target fuel injection amount Q is changed by the sprung mass damping control unit 5.
  • the injection amount changing unit 4e corresponds to the annealing control unit 8, and is between the injection amount changing unit 4d corresponding to the assist control unit 9 and the injection amount changing unit 4f corresponding to the sprung mass damping control unit 5. Is provided.
  • the injection amount changing unit 4e changes the target fuel injection amount Q changed by the assist control unit 9 based on the later-described smoothing control compensation amount qc from the smoothing control unit 8. That is, the change of the target fuel injection amount Q by the annealing control unit 8 is performed before the change of the target fuel injection amount Q by the sprung mass damping control unit 5.
  • the injection amount changing unit 4 f corresponds to the sprung mass damping control unit 5, and includes an injection amount changing unit 4 e corresponding to the smoothing control unit 8 and an injection amount changing unit 4 g corresponding to the jerk damping control unit 6. It is provided between.
  • the injection amount changing unit 4 f changes the target fuel injection amount Q changed by the smoothing control unit 8 based on a sprung mass damping control compensation amount qd described later from the sprung mass damping control unit 5. That is, the change of the target fuel injection amount Q by the sprung mass damping control unit 5 is made by changing the target fuel injection amount Q by the braking control device 2, changing the target fuel injection amount Q by the assist control unit 9, and the smoothing control unit 9. Is performed after the change of the target fuel injection amount Q by the jerk vibration suppression control unit 6 and before the change of the target fuel injection amount Q by the inter-cylinder correction control unit 7 described later. Is called.
  • the injection amount changing unit 4g corresponds to the jerk vibration control unit 6, and includes an injection amount changing unit 4f corresponding to the sprung mass damping control unit 5 and an injection amount changing unit 4h corresponding to the inter-cylinder correction control unit 7. Between.
  • the injection amount changing unit 4g changes the target fuel injection amount Q changed by the sprung mass damping control unit 5 based on a jerk damping control compensation amount qe described later from the jerk damping control unit 6. That is, the change of the target fuel injection amount Q by the jerk vibration suppression control unit 6 is performed after the change of the target fuel injection amount Q by the sprung mass damping control unit 5.
  • the injection amount changing unit 4h corresponds to the inter-cylinder correction control unit 7, and is behind the injection amount changing unit 4g corresponding to the jerk vibration suppression control unit 6, that is, closest to the diesel engine 21 side (of the target fuel injection amount Q). In the change, it is provided downstream).
  • the injection amount changing unit 4h changes the target fuel injection amount Q changed by the jerk vibration control control unit 6 based on a later-described inter-cylinder correction control compensation amount qf from the inter-cylinder correction control unit 7. That is, the change of the target fuel injection amount Q by the inter-cylinder correction control unit 7 is performed after the change of the target fuel injection amount Q by the sprung mass damping control unit 5.
  • the injection amount calculation unit 4 sequentially changes the target fuel injection amount Q calculated by the basic injection amount calculation unit 4a by each control unit, thereby obtaining the final target fuel injection amount. Q is calculated. That is, the injection amount calculation unit 4 calculates a final target fuel injection amount Q based on the target fuel injection amount Q changed based on each compensation amount.
  • the input point 4 i is a position where the target fuel injection amount Q used in the annealing control unit 8 is input to the annealing control unit 8.
  • the input point 4 i is provided between the injection amount changing unit 4 e corresponding to the smoothing control unit 8 and the injection amount changing unit 4 f corresponding to the sprung mass damping control unit 5. Therefore, the target fuel injection amount Q changed by the annealing control unit 8 is input to the annealing control unit 8.
  • the input point 4k is a position where the target fuel injection amount Q used in the sprung mass damping control unit 5 is input to the sprung mass damping control unit 5.
  • the input point 4k is provided between the injection amount changing unit 4e corresponding to the smoothing control unit 8 and the injection amount changing unit 4f corresponding to the sprung mass damping control unit 5.
  • the sprung mass damping control unit 5 includes a control unit that changes the target fuel injection amount Q before the sprung mass damping control unit 5 and before the sprung mass damping control unit 5.
  • the target fuel injection amount Q changed by the above is input. That is, the sprung mass damping control unit 5 receives the target fuel injection amount Qib immediately before the sprung mass damping control unit 5 changes the target fuel injection amount Q.
  • the sprung mass damping control unit 5 performs so-called sprung mass damping control that suppresses the sprung mass vibration of the vehicle 10.
  • the sprung vibration of the vehicle 10 refers to an input from the road surface to the wheels 30FL and 30FR that are the left and right front wheels of the vehicle 10 and the wheels 30RL and 30RR that are the left and right rear wheels according to the unevenness of the road surface via the suspension.
  • the vibration generated in the vehicle body of the vehicle 10 is a vibration having a frequency component of 1 to 4 Hz, more specifically 1.5 Hz, and the sprung vibration of the vehicle 10 includes the pitch direction or the bounce direction (vertical direction) of the vehicle 10. ) Ingredients are included.
  • the sprung mass damping referred to here is to suppress the sprung mass vibration of the vehicle 10.
  • the sprung mass damping control unit 5 receives frequency components of 1 to 4 Hz (depending on the type of vehicle and the configuration of the vehicle) by inputting from the road surface to the wheels 30FL and 30FR that are the left and right front wheels of the vehicle 10 and the wheels 30RL and 30RR that are the left and right rear wheels.
  • the “wheel torque” torque acting between the wheel and the grounded road surface acting on the road surface by the wheel (drive wheel during driving) is adjusted to suppress the vibration.
  • the sprung mass damping control unit 12 of the vehicle 10 improves the driving stability of the driver, the ride comfort of the occupant, and the like.
  • vibration suppression control by driving force control rather than suppressing by absorbing vibration energy generated as in the vibration suppression control by suspension, the source of the force that generates vibration is adjusted. Since the generation of vibration energy is suppressed, the vibration damping action is relatively quick and the energy efficiency is good. Further, in the vibration damping control by the driving force control, the control target is concentrated on the driving force (driving torque) of the driving source, so that the control adjustment is relatively easy.
  • the sprung mass damping control unit 5 changes the target fuel injection amount Q based on the sprung mass damping control compensation amount qd in order to execute sprung mass damping control by controlling the driving force.
  • a control command is driven according to the amount Q (the target fuel injection amount Q finally calculated by the injection amount calculation unit 4 based on the target fuel injection amount Q changed based on the sprung mass damping control compensation amount qd). It is output to the device 20.
  • the sprung mass damping control unit 5 (1) acquisition of wheel torque of a wheel by a force acting between a wheel and a road surface, (2) acquisition of a pitch / bounce vibration state quantity, and (3) pitch / bounce vibration.
  • the wheel torque (1) is calculated based on the wheel speed (or the wheel rotation speed of the wheel) of the wheel received from the braking control device 2, but the present invention is not limited to this.
  • a wheel torque estimated value may be calculated based on the engine rotation speed, or a sensor that can directly detect the value of the wheel torque while the vehicle 10 is traveling, for example, a wheel torque sensor or a wheel halve. It may be a detected value of wheel torque actually generated in the wheel by a force meter or the like.
  • the pitch / bounce vibration state quantity of (2) is described as being calculated by a motion model of vehicle body vibration of the vehicle 10, but is not limited thereto.
  • the pitch / bounce vibration state quantity may be a value detected by various sensors such as a G sensor.
  • the sprung mass damping control unit 5 is realized in the processing operations (1) to (3).
  • the vehicle 10 illustrated in FIG. 3 is illustrated.
  • the sprung mass damping control unit 5 constructs a motion model of the pitch / bounce vibration of the vehicle body of the vehicle 10 and converts the target fuel injection amount Q (which is a control amount corresponding to the required value in the model into wheel torque).
  • the displacements z and ⁇ of the vehicle body and the rate of change dz / dt and d ⁇ / dt, that is, the state variables of the vehicle body vibration are calculated.
  • the driving force of the diesel engine 21 is adjusted so that the state variable obtained from (1) converges to 0, that is, the pitch / bounce vibration can be suppressed (that is, the control amount is changed according to the required value). ).
  • FIG. 4 schematically shows the configuration of the sprung mass damping control unit 5 in the form of a control block (note that the operation of each control block is basically the driving force control of the electronic control unit 50). Executed by device 1).
  • the sprung mass damping control unit 5 basically supplies the fuel corresponding to the control command corresponding to the target fuel injection amount Q changed based on the sprung mass damping control compensation amount qd.
  • the driving force of the diesel engine 21 of the vehicle 10 is controlled so that the amplitude of pitch / bounce vibration can be suppressed.
  • the sprung mass damping control unit 5 includes a feedforward control unit 5a, a feedback control unit 5b, an adder 5h, and an injection amount conversion unit 5i.
  • the feedforward control unit 5a has a so-called optimal regulator configuration, and here includes a wheel torque conversion unit 5c, a motion model unit 5d, and an FF secondary regulator unit 5e.
  • the feedforward control unit 5a is a target fuel injection amount Qib (before being changed by the sprung mass damping control unit 5 and before the sprung mass damping control unit 5) by the wheel torque converting unit 5c.
  • a value (driver required wheel torque Two) obtained by converting the target fuel injection amount Q) changed by each control unit that changes Q into wheel torque is input to the motion model unit 5d of the pitch / bounce vibration of the vehicle body of the vehicle 10.
  • the In the motion model unit 5d the response of the state variable of the vehicle 10 to the input torque is calculated, and the driver request wheel that converges the state variable to the minimum based on a predetermined gain K described later in the FF secondary regulator unit 5e.
  • an FF vibration damping torque compensation amount U ⁇ FF is calculated.
  • This FF system damping torque compensation amount U ⁇ FF is the FF control amount of the driving force in the feedforward control system 3 a based on the target fuel injection amount Q for the diesel engine 21.
  • the feedback control unit 5b has a so-called optimum regulator configuration, and includes a wheel torque estimation unit 5f, a motion model unit 5d also used as a feedforward control unit 5a, and an FB secondary regulator unit 5g. It is comprised including these.
  • the feedback control unit 5b calculates a wheel torque estimated value Tw based on the average value r ⁇ ⁇ of the wheel speed as will be described later in the wheel torque estimating unit 5f.
  • the wheel torque estimated value Tw Input to the model unit 5d.
  • the motion model unit of the feedforward control unit 5a and the motion model unit of the feedback control unit 5b are the same, they are also used by the motion model unit 5d, but may be provided separately.
  • the response of the state variable of the vehicle 10 to the input torque is calculated, and the driver request wheel that converges the state variable to the minimum based on a predetermined gain K described later in the FB secondary regulator unit 5g.
  • an FB system damping torque compensation amount U ⁇ FB is calculated.
  • This FB system damping torque compensation amount U ⁇ FB is a feedback control unit corresponding to the fluctuation of the wheel speed based on the external force or torque (disturbance) by the input to the wheels 30FL, 30FR, 30RL, 30RR of the vehicle 10 from the road surface. This is the FB control amount of the driving force in 5b.
  • the FF system damping torque compensation amount U ⁇ FF that is the FF control amount of the feedforward control unit 5a and the FB system damping torque compensation amount U ⁇ that is the FB control amount of the feedback control unit 5b.
  • FB is output to the adder 5h, and the adder 5h adds the FF vibration damping torque compensation amount U ⁇ FF and the FB vibration damping torque compensation amount U ⁇ FB to calculate the vibration damping control compensation wheel torque.
  • the sprung mass damping control compensation amount qd which is a value obtained by converting the vibration damping control compensation wheel torque into the unit of the target fuel injection amount Q by the injection amount conversion unit 5i, is converted. qd is output to the injection amount calculation unit 4.
  • the sprung mass damping control compensation amount qd output from the sprung mass damping control unit 5 to the injection amount calculating unit 4 is input to the injection amount changing unit 4f and the target fuel input to the injection amount changing unit 4f.
  • the injection amount Qib (changed by adding / subtracting the braking control compensation amount qa in the injection amount changing unit 4c, changed by adding / subtracting the assist control compensation amount qb in the injection amount changing unit 4d, and changed in the injection amount changing unit 4e
  • the smoothing control compensation amount qc is added / subtracted to / from the target fuel injection amount Q) changed by adding / subtracting.
  • the target fuel injection amount Q is changed based on the sprung mass damping control compensation amount qd so as not to generate pitch / bounce vibration, and a control command corresponding to the changed target fuel injection amount Q is sent to the drive device 20. Will be output. That is, the sprung mass damping control unit 5 changes the target fuel injection amount Q, which is a controlled variable, to a value that allows the diesel engine 21 to generate a driving force that suppresses the sprung vibration of the vehicle 10.
  • the sprung mass damping control unit 5 generates a wheel torque that reduces the fluctuation of the wheel speed that causes the vehicle 10 to generate a vibration of 1 to 4 Hz with respect to the driving force generated by the diesel engine 21 by the fluctuation of the driving force. Changes can be made.
  • the driver request wheel torque Two
  • a state equation of a state variable in a pitch direction or a bounce direction is configured with each wheel torque estimated value Tw (disturbance) as an input.
  • an input (torque value) for converging the state variables in the pitch direction and the bounce direction to zero is determined from the state equation using the theory of the optimal regulator, and the target fuel that is the control amount is based on the obtained torque value.
  • the injection amount Q is changed.
  • the vehicle body is regarded as a rigid body S having a mass M and an inertia moment I, and this rigid body S has an elastic modulus kf and damping. It is assumed that the vehicle is supported by a front wheel suspension of a rate cf, a rear wheel suspension of an elastic modulus kr, and a damping rate cr (a vehicle body sprung vibration model).
  • the motion equation in the bounce direction and the motion equation in the pitch direction of the center of gravity of the vehicle body can be expressed as the following mathematical formula 1.
  • Equation (1a) the first and second terms are components of the force from the front wheel shaft, and the third and fourth terms are components of the force from the rear wheel shaft.
  • Equation (1b) The term is from the front wheel shaft, and the second term is the moment component of the force from the rear wheel shaft.
  • the third term in the formula (1b) is a moment component of the force that the wheel torque T (Two, Tw) generated in the drive wheel gives around the center of gravity of the vehicle body.
  • X (t), A, and B are respectively
  • the elements a1 to a4 and b1 to b4 of the matrix A are given by putting together the coefficients of z, ⁇ , dz / dt, d ⁇ / dt in the above equations (1a) and (1b), respectively.
  • a1 ⁇ (kf + kr) / M
  • a2 ⁇ (cf + cr) / M
  • a3 ⁇ (kf ⁇ Lf ⁇ kr ⁇ Lr) / M
  • a4 ⁇ (cf ⁇ Lf ⁇ cr ⁇ Lr) / M
  • b1 ⁇ (Lf ⁇ kf ⁇ Lr ⁇ kr) / I
  • b2 ⁇ (Lf ⁇ cf ⁇ Lr ⁇ cr) / I
  • b3 ⁇ (Lf 2 ⁇ kf + Lr 2 ⁇ kr)
  • b4 ⁇ (Lf 2 ⁇ cf + Lr 2 ⁇ cr) / I It is.
  • the gain K can be determined using a so-called optimal regulator theory.
  • the Riccati equation can be solved by any method known in the field of linear systems, which determines the gain K.
  • Q and R in the evaluation function J and Riccati equation are respectively a semi-positive definite symmetric matrix and a positive definite symmetric matrix, which are weight matrices of the evaluation function J determined by the system designer.
  • Q and R are In Equation (3a)
  • the norm (magnitude) of a particular one of the state vector components for example, dz / dt, d ⁇ / dt
  • the other component for example, the norm of z, ⁇ .
  • the gain K corresponding to the feedforward control unit 5a may be different from the gain K corresponding to the feedback control unit 5b.
  • the gain K corresponding to the feedforward control unit 5a may be a gain corresponding to the driver's feeling of acceleration
  • the gain K corresponding to the feedback control unit 5b may be a gain corresponding to the driver's response and responsiveness.
  • the differential equation of the formula (2a) is obtained using the torque input value.
  • the state variable vector X (t) is calculated.
  • the gain K determined to converge the state variable vector X (t) to 0 or the minimum value as described above by the FF secondary regulator unit 5e and the FB secondary regulator unit 5g is output from the motion model unit 5d.
  • the system represented by the equations (1a) and (1b) is a resonance system, and the value of the state variable vector for an arbitrary input is substantially only the natural frequency component of the system. Therefore, by configuring so that u (t) (converted value) is subtracted from the target fuel injection amount Q, the component of the natural frequency of the system, that is, the pitch in the vehicle body of the vehicle 10, of the target fuel injection amount Q.
  • the component causing the bounce vibration is corrected, and the pitch / bounce vibration in the vehicle body of the vehicle 10 is suppressed.
  • the control amount corresponding to the required value the target fuel injection amount Q in this embodiment
  • a dynamic motion model in the bounce direction or pitch direction of the vehicle body of the vehicle 10 for example, as shown in FIG. 6, in addition to the configuration of FIG. 5, a model that takes into account the spring elasticity of the tires of the front wheels and the rear wheels (A sprung / lower vibration model of the vehicle body of the vehicle 10) may be employed. Assuming that the tires of the front wheels and the rear wheels have elastic moduli ktf and ktr, respectively, as understood from FIG. 6, the motion equation in the bounce direction and the motion equation in the pitch direction of the center of gravity of the vehicle body are It can be expressed as the following mathematical formula 4.
  • Equations (4a)-(4d) constitute a state equation as in Equation (2a) as in FIG. 5, using z, ⁇ , xf, xr and their time differential values as state variable vectors (wherein The matrix A has 8 rows and 8 columns, and the matrix B has 8 rows and 1 column.) According to the theory of the optimal regulator, the gain matrix K that converges the size of the state variable vector to 0 can be determined.
  • the actual damping control in the sprung mass damping control unit 12 is the same as in the case of FIG.
  • the wheel torque input as a disturbance is actually detected by providing a torque sensor for each wheel 30FL, 30FR, 30RL, 30RR.
  • the wheel torque estimated value estimated by the wheel torque estimating unit 5f from other detectable values in the traveling vehicle 10 is used.
  • the estimated wheel torque value Tw is estimated by the following equation (5) using, for example, the average value ⁇ of the wheel rotation speed obtained from the wheel speed sensor corresponding to each wheel or the time derivative of the average value r ⁇ ⁇ of the wheel speed. Can be calculated.
  • Tw M ⁇ r 2 ⁇ d ⁇ / dt (5)
  • M is the mass of the vehicle
  • r is the wheel radius. That is, assuming that the sum of the driving forces generated at the contact points of the driving wheels on the road surface is equal to the overall driving force M ⁇ G (G is acceleration) of the vehicle 10, the wheel torque Tw is expressed by the following equation (5a ).
  • the sprung mass damping control unit 5 of the present embodiment is an FF system damping system that is an FF control amount of the driving torque in the feedforward control unit 5a based on a control amount (target fuel injection amount Q) corresponding to the required value.
  • the sprung control that sets the damping control compensation torque based on the torque compensation amount and the FB system damping torque compensation amount that is the FB control amount of the driving torque in the feedback control unit 5b based on the wheel speed of the vehicle 10 wheel.
  • the vibration control unit 5 corrects the FF system damping torque compensation amount or the FB system damping torque compensation amount based on the driving state of the vehicle 10, thereby realizing appropriate damping control according to the driving state of the vehicle 10. I am trying.
  • the sprung mass damping control unit 5 is basically a separate independent control system, although the feedforward control unit 5a and the feedback control unit 5b also serve as the motion model unit 5d.
  • the damping control is performed by adding the FF damping torque compensation amount and the FB damping torque compensation amount. Compensation torque is set.
  • the sprung mass damping control unit 5 sets the FF system damping torque compensation amount of the feedforward control unit 5a and the FB system damping torque compensation of the feedback control unit 5b before the actual damping control compensation torque is set.
  • Each quantity can be individually guarded for upper and lower limits or corrected. In addition, this makes it easy to block either one of the controls depending on the situation of the vehicle 10.
  • the sprung mass damping control unit 5 of this embodiment includes an FF control correction unit 5k and an FF control gain setting unit 5l in the feedforward control unit 5a, and an FB control correction unit 5m and FB control in the feedback control unit 5b. And a gain setting unit 5n.
  • the sprung mass damping control unit 5 corrects the FF system damping torque compensation amount by the FF control correction unit 5k and the FF control gain setting unit 5l, while the FB control correction unit 5m and the FB control gain setting unit 5n The system damping torque compensation amount is corrected.
  • the sprung mass damping control unit 5 sets the FF control gain according to the state of the vehicle 10 for the FF system damping torque compensation amount, and multiplies the FF system damping torque compensation amount by the FF control gain.
  • the FF system damping torque compensation amount setting an FB control gain according to the state of the vehicle 10 with respect to the FB system damping torque compensation amount, and multiplying the FB system damping torque compensation amount by this FB control gain.
  • FB system damping torque compensation amount is corrected.
  • the FF control correction unit 5k is positioned after the FF secondary regulator unit 5e and before the adder 5h.
  • the FF control damping torque compensation amount U / FF is input from the FF secondary regulator unit 5e, and the corrected FF control unit 5k is corrected.
  • the vibration torque compensation amount U ⁇ FF is output to the adder 5h.
  • the FF control correction unit 5k multiplies the FF system damping torque compensation amount U ⁇ FF by the FF control gain K ⁇ FF set by the FF control gain setting unit 5l, thereby FF system damping torque compensation amount U ⁇ FF. -Correct FF based on FF control gain K-FF.
  • the FF control gain setting unit 5l sets the FF control gain K ⁇ FF according to the state of the vehicle 10.
  • the FF system damping torque compensation amount U / FF input from the FF secondary regulator unit 5e to the FF control correction unit 5k is changed according to the state of the vehicle 10 by the FF control gain setting unit 5l. Therefore, the FF control correction unit 5k performs correction according to the state of the vehicle 10.
  • the FF control correction unit 5k may perform upper and lower limit guards so that the FF system damping torque compensation amount U ⁇ FF is within a preset upper and lower limit guard value range.
  • the FF control correction unit 5k is, for example, an allowable engine torque as an allowable driving force fluctuation value of the diesel engine 21 set in advance with respect to the FF system damping torque compensation amount U ⁇ FF input from the FF secondary regulator unit 5e.
  • the upper / lower limit guard value is set with the value corresponding to the fluctuation value as the upper / lower limit guard value (for example, in the range of tens of Nm to 0Nm in terms of the required torque of the drive device 20), and the FF system damping torque compensation amount U ⁇ FF may be corrected.
  • the FF control correction unit 5k can set an appropriate FF system damping torque compensation amount U / FF taking into account other control than the sprung mass damping control by the sprung mass damping control unit 5. That is, interference between the sprung mass damping control by the sprung mass damping control unit 5 and other controls can be suppressed.
  • the FF control correction unit 5k sets, for example, a value corresponding to the allowable acceleration / deceleration of the vehicle 10 set in advance to the FF system damping torque compensation amount U ⁇ FF before being output to the adder 5h as an upper limit guard.
  • Upper limit guarding may be performed as a value (for example, a range that is less than +0.00 G when acceleration / deceleration is converted), and the FF vibration damping torque compensation amount U / FF may be corrected.
  • the FF control correction unit 5k changes the motion of the vehicle 10 by the sprung mass damping control by the sprung mass damping control unit 5 for improving the driving stability of the driver, the ride comfort of the occupant, and the like. It is possible to set an appropriate FF system damping torque compensation amount U ⁇ FF that can prevent the driver from unexpectedly increasing and prevent the driver from feeling uncomfortable.
  • the FB control correction unit 5m is positioned after the FB secondary regulator unit 5g and before the adder 5h, and receives the FB system damping torque compensation amounts U and FB from the FB secondary regulator unit 5g.
  • the vibration torque compensation amount U ⁇ FB is output to the adder 5h.
  • the FB control correction unit 5m multiplies the FB system damping torque compensation amount U ⁇ FB by the FB control gain K ⁇ FB set by the FB control gain setting unit 5n, thereby obtaining the FB system damping torque compensation amount U.
  • -Correct FB based on FB control gain K / FB.
  • the FB control gain setting unit 5 n sets the FB control gain K ⁇ FB according to the driving state of the vehicle 10.
  • the FB system damping torque compensation amount U ⁇ FB input from the FB secondary regulator 5g to the FB control correction unit 5m is set to the driving state of the vehicle 10 by the FB control gain setting unit 5n.
  • it will correct
  • the FB control correction unit 5m may perform upper and lower limit guards so that the FB system damping torque compensation amount U ⁇ FB is within a preset upper and lower limit guard value range.
  • the FB control correction unit 5m is, for example, an allowable engine torque as an allowable driving force fluctuation value of the diesel engine 21 set in advance for the FB system damping torque compensation amount U ⁇ FB input from the FB secondary regulator unit 5g.
  • the upper / lower limit guard is performed with the value corresponding to the fluctuation value as the upper / lower limit guard value (for example, a range of ⁇ several tens of Nm in terms of the required torque of the drive device 20), and the FB system damping torque compensation amount U ⁇ FB may be corrected.
  • the FB control correction unit 5m can set an appropriate FB system damping torque compensation amount U ⁇ FB considering, for example, control other than the sprung mass damping control by the sprung mass damping control unit 5. That is, interference between the sprung mass damping control by the sprung mass damping control unit 5 and other controls can be suppressed. Further, the FB control correction unit 5m, for example, sets a value corresponding to the allowable acceleration / deceleration of the vehicle 10 that is set in advance to the FB system damping torque compensation amount U ⁇ FB before being output to the adder 5h.
  • Upper and lower limit guards may be performed as a guard value (for example, a range within ⁇ a / 100 G when converted to acceleration / deceleration) to correct the FB system damping torque compensation amount U ⁇ FB.
  • the FB control correction unit 5m may change the movement of the vehicle 10 by the sprung mass damping control by the sprung mass damping control unit 12 for improving the driving stability of the driver, the ride comfort of the occupant, and the like. It is possible to set an appropriate FB system damping torque compensation amount U ⁇ FB that can prevent the driver from unexpectedly increasing and prevent the driver from feeling uncomfortable.
  • the sprung mass damping control unit 5 of the present embodiment uses the vehicle speed of the vehicle 10 as a parameter representing the state of the vehicle 10, and the gear stage if the MT 22 mounted on the vehicle 10 has a plurality of gear stages. Based on the engine rotation speed as the output rotation speed of the engine 21 and the required torque, the FF control vibration compensation amount and the FB vibration suppression torque compensation amount may be corrected by the FF control correction unit 5k and the FB control correction unit 5m. Further, the sprung mass damping control unit 5 may correct the FB system damping torque compensation amount based on the driving state of the MT 22 mounted on the vehicle 10 by the FB control correction unit 5m.
  • the sprung mass damping control unit 5 may correct the FB system damping torque compensation amount based on the allowable target fuel injection amount of the diesel engine 21 by the FB control correction unit 5m. That is, the FF control gain setting unit 5l and the FB control gain setting unit 5n may set the FF control gain K ⁇ FF and the FB control gain K ⁇ FB based on them.
  • the jerk damping control unit 6 changes the target fuel injection amount Q based on the jerk damping control compensation amount qe to execute the jerk damping by controlling the driving force, and the changed target fuel injection amount Q (jerk damping control).
  • a control command corresponding to the target fuel injection amount Q) finally calculated by the injection amount calculation unit 4 based on the target fuel injection amount Q changed based on the vibration control compensation amount qe is output to the drive device 20.
  • jerk is a driving force transmission mechanism (MT22, differential gear unit 23, etc.) including a driving force transmission mechanism from a diesel engine 21 as a driving source to a driving wheel (rear wheel in this embodiment).
  • Vibration generated in the transmission path for example, vibration generated by twisting of the transmission mechanism when transmitting the driving force generated by the diesel engine 21 to the driving wheel, and having a frequency component higher than 4 Hz and lower than 12 Hz. This refers to vibration.
  • the jerk vibration suppression is to suppress the jerk of the vehicle 10.
  • the jerk vibration suppression control unit 6 calculates a jerk vibration suppression control compensation amount qe that changes the driving force for suppressing the jerk of the vehicle 10 to a value that can be generated by the diesel engine 21.
  • the vibration suppression control compensation amount qe is output to the injection amount calculation unit 4.
  • the jerk vibration suppression control compensation amount qe output from the jerk vibration suppression control unit 6 to the injection amount calculation unit 4 is input to the injection amount change unit 4g and the target fuel injection amount input to the injection amount change unit 4g.
  • the control compensation amount qc is changed by adding / subtracting, and the sprung mass damping control unit 5 adds / subtracts to / from the target fuel injection amount Q) changed by adding / subtracting the sprung mass damping control compensation amount qd.
  • the target fuel injection amount Q is changed based on the jerk vibration suppression control compensation amount qe so as not to generate jerk, and is changed based on the changed target fuel injection amount Q (the jerk vibration suppression control compensation amount qe).
  • a control command corresponding to the target fuel injection amount Q) finally calculated by the injection amount calculation unit 4 based on the target fuel injection amount Q is output to the drive device 20. That is, the jerk vibration suppression control unit 6 changes the target fuel injection amount Q, which is a control amount, to a value that allows the diesel engine 21 to generate a driving force that suppresses the jerk of the vehicle 10. Therefore, the jerk vibration suppression control unit 6 changes the driving force for suppressing the vibration of the frequency component higher than the sprung vibration of the vehicle 10 suppressed by the sprung mass vibration suppression control unit 5 to a value that can be generated by the diesel engine 21.
  • the jerk vibration suppression control unit 6 changes the driving force generated by the diesel engine 21 to reduce the fluctuation of the wheel speed that generates the vibration of the frequency component higher than 1 to 4 Hz generated in the vehicle 10.
  • the wheel torque is generated by the fluctuation of the driving force.
  • the jerk vibration suppression control is already known, and a known method can be used as the calculation method of the jerk vibration suppression control compensation amount qe. Therefore, details of the calculation method are omitted.
  • the inter-cylinder correction control unit 7 performs inter-cylinder correction control that suppresses variations among the cylinders of the diesel engine 21.
  • the variation of each cylinder is, for example, the variation of injectors provided in each cylinder of the diesel engine 21. If there is a variation in each injector, the fuel supplied to each cylinder will vary, and the explosion force in each cylinder will vary due to the variation in the supplied fuel, causing the vehicle 10 to vibrate. That is, the inter-cylinder correction control unit 7 suppresses vibrations generated in the diesel engine 21 that is a drive source.
  • the inter-cylinder correction control unit 7 changes the target fuel injection amount Q based on the inter-cylinder correction control compensation amount qf so as to execute vibration damping due to variations in each cylinder, and the changed target fuel injection amount Q (inter-cylinder inter-cylinder) A control command corresponding to the target fuel injection amount Q) finally calculated by the injection amount calculation unit 4 based on the target fuel injection amount Q changed based on the corrected control compensation amount qf is output to the drive device 20.
  • the inter-cylinder correction control unit 7 is a value that allows the diesel engine 21 to generate a driving force that suppresses vibrations due to variations in each cylinder of the vehicle 10 (to make the explosive force uniform in each cylinder).
  • the inter-cylinder correction control compensation amount qf to be changed to a possible value) is calculated, and the calculated inter-cylinder correction control compensation amount qf is output to the injection amount calculation unit 4.
  • the inter-cylinder correction control compensation amount qf output from the inter-cylinder correction control unit 7 to the injection amount calculation unit 4 is input to the injection amount change unit 4h and the target fuel injection amount input to the injection amount change unit 4h.
  • the control compensation amount qc is changed by adding / subtracting
  • the sprung mass damping control unit 5 is changed by adding / subtracting the sprung mass damping control compensation amount qd
  • the jerk damping control unit 6 is jerk damping control compensation.
  • the target fuel injection amount Q) changed by adding / subtracting the amount qe is added / subtracted.
  • the target fuel injection amount Q is changed on the basis of the inter-cylinder correction control compensation amount qf so as not to generate vibration due to variations in each cylinder, and the changed target fuel injection amount Q (to the inter-cylinder correction control compensation amount qf).
  • a control command corresponding to the target fuel injection amount Q finally calculated by the injection amount calculation unit 4 based on the target fuel injection amount Q changed based on the target fuel injection amount Q is output to the drive device 20. That is, the inter-cylinder correction control unit 7 changes the target fuel injection amount Q, which is a control amount, to a value that allows the diesel engine 21 to generate a driving force that suppresses vibration due to variations in each cylinder of the vehicle 10.
  • the inter-cylinder correction control unit 7 changes the driving force for suppressing the vibration of the frequency component higher than the sprung vibration of the vehicle 10 suppressed by the sprung mass damping control unit 5 to a value that can be generated by the diesel engine 21. It is a high frequency vibration suppression control unit, and is a second high frequency vibration suppression control unit that suppresses vibration generated in the drive source. Therefore, the inter-cylinder correction control unit 7 reduces the wheel torque that reduces the fluctuation of the wheel speed that generates the vibration of the frequency component higher than 1 to 4 Hz generated in the vehicle 10 with respect to the driving force generated by the diesel engine 21. The change generated by the fluctuation of the driving force can be made.
  • the inter-cylinder correction control is already known, and a known method can be used as the calculation method of the inter-cylinder correction control compensation amount qf. Therefore, details of the calculation method are omitted.
  • the annealing control unit 8 is a vehicle behavior control unit, and performs annealing control that regulates the change gradient of the driving force. For example, when the accelerator pedal depression amount ⁇ a suddenly changes (changes in a pulse shape) due to the accelerator operation by the driver, the target fuel injection amount Q, which is the control amount, suddenly changes, and the driving force generated by the diesel engine 21 suddenly increases. Therefore, the vehicle 10 greatly changes at least in the pitch direction. Therefore, the smoothing control unit 8 is driven in order to control by changing the behavior of the vehicle 10, that is, to actively control the vehicle 10 so that the vehicle 10 does not change largely in the pitch direction by changing the behavior of the vehicle 10. It regulates the gradient of force change.
  • the smoothing control unit 8 changes the driving force for controlling the target fuel injection amount Q by changing the behavior of the vehicle 10 to a value generated by the diesel engine 21.
  • the annealing control unit 8 performs feedback control of the target fuel injection amount Q based on the target fuel injection amount Q input at the input point 4i.
  • the annealing control unit 8 calculates an annealing control compensation amount qc that allows the driving force to change the behavior of the vehicle 10 so that the vehicle 10 does not significantly change at least in the pitch direction.
  • the smoothed control compensation amount qc is output to the injection amount calculation unit 4.
  • the smoothing control compensation amount qc output from the smoothing control unit 8 to the injection amount calculation unit 4 is input to the injection amount change unit 4e, and the target fuel injection amount Q (( It is changed by adding / subtracting the braking control compensation amount qa in the injection amount changing unit 4c, and is added / subtracted to the target fuel injection amount Q) changed by adding / subtracting the assist control compensation amount qb in the injection amount changing unit 4d.
  • the target fuel injection amount Q is changed to be controlled by changing the behavior of the vehicle 10 based on the smoothing control compensation amount qc, and the changed target fuel injection amount Q (based on the smoothing control compensation amount qc). Based on the changed target fuel injection amount Q, a control command corresponding to the target fuel injection amount Q) finally calculated by the injection amount calculation unit 4 is output to the drive device 20.
  • the annealing control is already known, and a known method can be used as a method for calculating the annealing control compensation amount qc. Therefore, details of the calculation method are omitted.
  • the assist control unit 9 is a vehicle behavior control unit that increases the driving force generated by the diesel engine 21 and performs assist control to assist the driver when the vehicle 10 starts.
  • the driver since the MT 22 is mounted, for example, when starting, the driver steps on the accelerator pedal and engages a clutch (not shown) to connect the diesel engine 21 and the MT 22.
  • the driving force generated by the diesel engine 21 is not sufficient based on the target fuel injection amount Q that is a control amount corresponding to the accelerator pedal depression amount ⁇ a by the accelerator operation by the person.
  • the vehicle 10 greatly changes at least in the pitch direction.
  • the assist control unit 9 performs control by changing the behavior of the vehicle 10, that is, by actively controlling the vehicle 10 at the time of starting so as not to greatly change in the pitch direction by changing the behavior of the vehicle 10.
  • the driving force generated by the diesel engine 21 is increased. That is, the assist control unit 9 changes the driving force for controlling the target fuel injection amount Q by changing the behavior of the vehicle 10 to a value generated by the diesel engine 21.
  • the assist control unit 9 calculates an assist control compensation amount qb that allows the driving force to change the behavior of the vehicle 10 so that the vehicle 10 does not greatly change at least in the pitch direction when starting.
  • the calculated assist control compensation amount qb is output to the injection amount calculation unit 4.
  • the assist control compensation amount qb output from the assist control unit 9 to the injection amount calculation unit 4 is input to the injection amount change unit 4d and the target fuel injection amount Q (injection amount) input to the injection amount change unit 4d.
  • the change part 4c it adds / subtracts to the target fuel injection amount Q) changed by adding / subtracting the braking control compensation amount qa.
  • the target fuel injection amount Q is changed so as to be controlled by changing the behavior of the vehicle 10 based on the assist control compensation amount qb, and the changed target fuel injection amount Q (based on the assist control compensation amount qb is changed).
  • the control command corresponding to the target fuel injection amount Q) finally calculated by the injection amount calculation unit 4 is output to the drive device 20.
  • the change of the target fuel injection amount Q by the sprung mass damping control unit 5 is the change of the target fuel injection amount Q by the jerk vibration suppression control unit 6.
  • the vibration suppression control that suppresses the vibration of the higher frequency component than the sprung vibration suppressed by the sprung mass damping control unit 5 by the high frequency vibration suppression control unit is after the vibration suppression control by the sprung mass damping control unit 5. Done. Therefore, the vibration suppression control for the vibration of the higher frequency component than the sprung vibration is performed after the vibration suppression control for the vibration of the higher frequency component than the sprung vibration.
  • the sprung mass damping control is compared with the case where the sprung mass damping control is performed after the vibration damping control that suppresses the vibration of the frequency component higher than the sprung mass vibration suppressed by the sprung mass damping control unit 5. It is possible to effectively perform vibration suppression control that suppresses vibrations having higher frequency components than the sprung vibrations that are suppressed in the portion 5.
  • the change of the target fuel injection amount Q by the sprung mass damping control unit 5 includes the change of the target fuel injection amount Q by the smoothing control unit 8, the change of the target fuel injection amount Q by the assist control unit 9, and the braking control device 2.
  • the vehicle driving force control device 1 is not limited to the above-described embodiment, and various modifications can be made within the scope described in the claims.
  • the sprung mass damping control is described as being performed using the optimal regulator theory assuming a sprung or sprung / unsprung motion model as a motion model.
  • a motion model other than the one described above may be used, or a control method other than the optimal regulator may be used.
  • the average value r ⁇ of the wheel speeds from the wheel speed sensors 40FL, 40FR, 40RL, 40RR corresponding to all four wheels as input values of the feedback control unit 5b of the sprung mass damping control unit 5 is used.
  • the average value r ⁇ ⁇ of only the wheel speeds from the wheel speed sensors 40FL, 40FR corresponding to the front wheels is preferably used as the input value.
  • FIG. 7 is a diagram showing the relationship between the average wheel speed and time.
  • FIG. 8 is a diagram showing the relationship between the average wheel speed and time.
  • the wheel speed average corresponding to the front wheel that is, the average value of only the wheel speed from the wheel speed sensors 40FL and 40FR corresponding to the front wheel is indicated by the solid line
  • the wheel speed sensor corresponding to the rear wheel that is, the rear wheel.
  • Wheel speed average which is an average value of only wheel speeds from 40RL and 40RR, is indicated by a one-dot chain line.
  • FIG.7 and FIG.8 it is the result of having drive
  • FIG. 7 shows a result of traveling on a road surface in which a height difference of about 20 cm is periodically repeated, that is, a road surface in which the sprung vibration is significantly generated in the vehicle
  • the wheel base time difference which is the time delay of the wheel speed average in the rear wheel with respect to the wheel speed average in the front wheel due to the vehicle wheel base
  • T1 the wheel base time difference
  • T2 the wheel base time difference that is a time delay of the average wheel speed
  • the drive source is a diesel engine, but the present invention is not limited to this.
  • a gasoline engine or a motor may be used.
  • the required driving force is calculated as a controlled variable, and the target throttle opening and target ignition timing based on the required driving force are output to the gasoline engine as a control command. Output torque) is controlled.
  • a motor is mounted, a target current amount is calculated as a control amount, a control command corresponding to the target current amount is output to the motor, and a driving force (motor torque) generated by the motor is controlled.
  • the vehicle may be a vehicle using only a gasoline engine as a drive source, a vehicle using only a motor as a drive source, or a hybrid vehicle using an engine and a motor as drive sources. Also good.
  • the automatic traveling control device 3 may calculate the required driving force when performing the driving force control in the automatic traveling control.
  • the required driving force is calculated as a control amount based on the accelerator pedal depression amount ⁇ a, which is a required value corresponding to the accelerator operation by the driver, and arbitrated with the required driving force corresponding to the automatic travel control, The required driving force (control amount corresponding to the required value) may be calculated.
  • the MT 22 is mounted as a transmission, but the present invention is not limited to this.
  • a transmission for example, an automatic stepped transmission AT may be mounted.
  • a creep assist control unit may be provided as the vehicle behavior control unit.
  • the creep assist control is a control for changing the behavior of the vehicle 10 when stopped or at a low vehicle speed by changing the driving force generated by the driving source according to, for example, the road surface gradient.
  • the change of the control amount by the creep assist control unit is performed before the change of the control amount by the sprung mass damping control unit.
  • automatic traveling control device 3 may perform the traveling control.
  • an ECT control unit may be included as a vehicle behavior control unit.
  • the ECT control is a control for changing the driving force generated by the drive source at the time of shifting the AT and changing the behavior of the vehicle 10 at the time of shifting.
  • the control amount change by the ECT control unit is performed before the control amount change by the sprung mass damping control unit.
  • control amount is also changed based on parameters (cooling water temperature, intake air temperature, intake air pressure, atmospheric pressure, oil temperature, etc.) corresponding to the operating environment of the drive source. .
  • the change in the control amount due to the operating environment of the drive source is behind the change in the control amount by the control unit that performs vibration suppression control such as the sprung mass damping control unit, and the control amount immediately before the control command is output. Done.
  • an idle assist control unit may be provided as the vehicle behavior control unit.
  • the idle assist control is a control for changing the driving force so that the rotational speed of the drive source can maintain the idle rotational speed and changing the behavior of the vehicle 10 when the drive source is idling.
  • the change of the control amount by the idle assist control unit is performed before the change of the control amount by the sprung mass damping control unit.
  • the driving force control device and the control method of the driving force control device according to the present invention can execute appropriate vibration suppression control according to the driving state of the vehicle.
  • the present invention is suitably applied to various driving force control devices that control and suppress vibration of the vehicle body and control methods of the driving force control devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 路面から車両(10)の車輪(30FL、30FR、30RL、30RR)への入力により車両(10)に発生するピッチ方向またはバウンス方向の成分を含む振動を車両(10)の駆動力を制御することにより抑制するバネ上制振制御部(5)を備える。バネ上制振制御部(5)による燃料噴射量Qの変更は、高周波制振制御部(ジャーク制振制御部(6)、気筒間補正制御部(7))よる燃料噴射量Qの変更よりも前に行う。また、バネ上制振制御部(5)による燃料噴射量Qの変更は、車両挙動制御部(なまし制御部(8)、アシスト制御部(9)、制動制御装置(2))による燃料噴射量Qの変更よりも後に行う。従って、車両の振動を効果的に抑制することができる。

Description

駆動力制御装置および駆動力制御装置の制御方法
 本発明は、駆動力制御装置および駆動力制御装置の制御方法に関し、更に詳しくは、駆動源が発生する駆動力によりバネ上制振を行う駆動力制御装置および駆動力制御装置の制御方法に関するものである。
 従来、車両の振動を抑制する車両の制振制御装置として、車両のバネ上振動を抑制するいわゆるバネ上制振制御を実行する制振制御装置が知られている。ここで、車両のバネ上振動とは、加振源を路面とし、路面から車両の車輪への入力により、サスペンションを介して車体に発生する振動のうち、1~4Hzの周波数成分車種や車両の構成によって顕著にあらわれる周波数成分が異なり、多くの車両は1.5Hz近傍の周波数成分)の振動をいい、この車両のバネ上振動には、車両のピッチ方向またはバウンス方向(上下方向)の成分が含まれている。ここでいうバネ上制振とは、上記車両のバネ上振動を抑制するものである。
 このような従来の車両の制振制御装置として、例えば、特許文献1が提案されている。特許文献1には、前輪に対応する車輪速センサにより検出された検出信号に基づいて前輪車軸速度を算出し、算出された前輪車軸速度に基づいて推定された走行抵抗外乱と、エンジン回転数センサの検出信号に基づいて推定された駆動軸トルクとからピッチング振動を抑制するための補正値を求め、求められた補正値により基本要求エンジントルクを補正する車両安定化制御システムが開示されている。この車両安定化制御システムは、ピッチング振動を抑え、車両内部の各状態量を安定化させることができ、車両の走行状態を安定化させることが可能である。
特開2006-69472号公報
 ところで、駆動力制御装置においては、上述のような特許文献1,2に記載されている車両の制振制御装置によるバネ上制振制御において駆動力の制御量が変更されることとなる。ここで、駆動力の制御量は、バネ上振動の加振源とは異なる加振源からの入力により車両に発生する振動を抑制するための変更、車両の挙動を変化させて制御するための変更などが行われ、これらの変更が行われた制御量に基づいて駆動力制御が行われることとなる。しかしながら、バネ上制振制御による制御量の変更と、他の制御量の変更との関係については、従来において提案されておらず、車両の振動を抑制するための各制振制御が効果的に行われることが要望されていた。
 そこで、本発明は、車両の振動を効果的に抑制することができる駆動力制御装置および駆動力制御装置の制御方法を提供することを目的とする。
 上記目的を達成するために、本発明では、制御量に基づいて駆動源が発生する駆動力を制御する駆動力制御装置において、運転者のアクセル操作あるいは車両の走行状態の少なくともいずれか一方に基づいた要求値に応じて算出される前記制御量を、前記車両のバネ上振動を抑制する前記駆動力を前記駆動源が発生できる値に変更するバネ上制振制御部と、前記バネ上制振制御部により変更された制御量を、前記バネ上制振制御部により抑制される前記車両のバネ上振動よりも高い周波数成分の振動を抑制する前記駆動力を前記駆動源が発生できる値に変更する高周波制振制御部と、を備え、前記バネ上制振制御部は、前記高周波制振制御部が前記制御量の変更を行う前に変更を行うことを特徴とする。
 また、上記駆動力制御装置において、前記高周波制振制御部は、前記駆動源から駆動輪までの動力伝達経路で発生する振動を抑制する第1高周波制振制御部を含むことが好ましい。
 また、上記駆動力制御装置において、前記高周波制振制御部は、前記駆動源で発生する振動を抑制する第2高周波制振制御部を含むことが好ましい。
 また、上記駆動力制御装置において、前記制御量を、前記車両の挙動を変化させて制御する前記駆動力を前記駆動源が発生できる値に変更する車両挙動制御部をさらに備え、前記バネ上制振制御部は、前記車両挙動制御部が変更を行った後に変更を行うことが好ましい。
 また、上記駆動力制御装置において、前記車両挙動制御部は、前記駆動力の変化勾配を規制するなまし制御を含むことが好ましい。
 また、本発明では、駆動源が発生する駆動力を制御する駆動力制御装置において、前記駆動力に対して、車両に1~4Hzの振動を発生させる車輪速度の変動を低減する車輪トルクを前記駆動力の変動で発生させる変更を行うバネ上制振制御部と、前記駆動力に対して、前記車両に発生する1~4Hzよりも高い周波数成分の振動を抑制する変更を行う高周波制振制御部と、を備え、前記バネ上制振制御部は、前記高周波制振制御部が変更を行う前に変更を行うことを特徴とする。
 また、本発明では、制御量に基づいて駆動源が発生する駆動力を制御する駆動力制御装置の制御方法において、運転者のアクセル操作あるいは車両の走行状態に基づいた要求値に応じて算出される制御量を、前記車両のバネ上振動を抑制する前記駆動力を前記駆動源が発生できる値に変更する手順と、前記変更された制御量を、前記車両のバネ上振動よりも高い周波数成分の振動を抑制する前記駆動力を前記駆動源が発生できる値に変更する手順と、を含むことを特徴とする。
 本発明に係る駆動力制御装置および駆動力制御装置の制御方法によれば、車両の振動を効果的に抑制することができる。
図1は、本発明の実施形態に係る駆動力制御装置が搭載された車両の概略構成例を示す図である。 図2は、本発明の実施形態に係る駆動力制御装置を含む電子制御装置の内部構成例の模式図である。 図3は、バネ上制振制御部において抑制される車体振動の状態変数を説明する図である。 図4は、バネ上制振制御部の機能構成例を制御ブロックの形式で示した模式図である。 図5は、バネ上制振制御部において仮定される車体振動の力学的運動モデルの一例を説明する図である。 図6は、バネ上制振制御部において仮定される車体振動の力学的運動モデルの一例を説明する図である。 図7は、車輪速平均と時間との関係を示した図である。 図8は、車輪速平均と時間との関係を示した図である。
符号の説明
1  駆動力制御装置
2  制動制御装置
3  自動走行制御装置
4  噴射量算出部(制御量算出部)
4a  基本噴射量算出部
4b 調停部
4c~4h  噴射量変更部
4i、4k  入力点
5  バネ上制振制御部
5a  フィードフォワード制御部
5b  フィードバック制御部
5c  車輪トルク変換部
5d  運動モデル部
5e  FF二次レギュレータ部
5g  FB二次レギュレータ部
5f  車輪トルク推定部
5h  加算器
5i  噴射量変換部
5k  FF制御補正部
5l  FF制御ゲイン設定部
5m  FB制御補正部
5n  FB制御ゲイン設定部
6  ジャーク制振制御部
7  気筒間補正制御部
8  なまし制御部
9  アシスト制御部
10  車両
20  駆動装置
21  ディーゼルエンジン(駆動源)
22 MT
23  差動歯車装置
30FL、30FR、30RL、30RR  車輪
40FL、40FR、40RL、40RR  車輪速センサ
50  電子制御装置
60  アクセルペダル
70  ペダルセンサ
K・FF  FF制御ゲイン
K・FB  FB制御ゲイン
U・FF  FF系制振トルク補償量(FF制御量)
U・FB  FB系制振トルク補償量(FB制御量)
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の実施形態により本発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。また、下記の実施形態では、車両に駆動力を作用させる駆動源としてディーゼルエンジンのみが搭載され、変速機として手動有段変速機であるMTが搭載されている車両について説明する。
(実施形態)
 図1は、本発明の実施形態に係る駆動力制御装置が搭載された車両の概略構成例を示す図である。図2は、本発明の実施形態に係る駆動力制御装置を含む電子制御装置の内部構成例の模式図である。図3は、バネ上制振制御部において抑制される車体振動の状態変数を説明する図である。図4は、バネ上制振制御部の機能構成例を制御ブロックの形式で示した模式図である。図5は、バネ上制振制御部において仮定される車体振動の力学的運動モデルの一例を説明する図である。図6は、バネ上制振制御部において仮定される車体振動の力学的運動モデルの一例を説明する図である。
 本実施形態に係る車両の駆動力制御装置1は、図1に示すように、駆動源であるディーゼルエンジン21を搭載した車両10に適用されている。なお、本実施形態に係る駆動力制御装置1が適用された車両10は、ディーゼルエンジン21が車両10の前進行方向における前側部分に搭載され、駆動輪を左右の後輪である車輪30RL、30RRとする後輪駆動となっている。なお、車両10のディーゼルエンジン21の搭載位置は、前側部分のみに限定されるものではなく、後側部分、中央部分のいずれに搭載されても良い。また、車両10の駆動形式は、後輪駆動のみに限定されるものではなく、前輪駆動、4輪駆動のいずれの形式であっても良い。
 駆動力制御装置1が適用される車両10は、図1に示すように、左右前輪である車輪30FL、30FRと、左右後輪である車輪30RL、30RRとを有する。また、車両10は、運転者が操作するアクセルペダル60と、運転者のアクセル操作による要求値、すなわちアクセルペダル60の踏込量であるアクセルペダル踏込量θaを検出し、アクセルペダル踏込量θaに対応した電気信号を電子制御装置50に出力するペダルセンサ70を有する。車両10は、種々の公知の態様にて、運転者のアクセル操作に応じて車輪30RL、30RRに駆動力を発生する駆動装置20が搭載される。駆動装置20は、図示の例では、ディーゼルエンジン21が発生する駆動力(出力トルク)が、MT22、差動歯車装置23等を介して、車輪30RL、30RRへ伝達されるよう構成されている。なお、ここでは図示していないが、車両10には、種々の公知の車両と同様に各輪に制動力を発生する制動装置と前輪又は前後輪の舵角を制御するためのステアリング装置が設けられる。
 駆動装置20の作動は、駆動力制御装置1として兼用される電子制御装置50により制御される。電子制御装置50は、種々の公知の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAM及び入出力ポート装置を有するマイクロコンピュータ及び駆動回路を含んでいてよい。電子制御装置50には、車輪30FL、30FR、30RL、30RRに搭載された車輪速センサ40i(i=FL、FR、RL、RR)からの車輪速度Vwi(i=FL、FR、RL、RR)を表す信号と、車両10の各部に設けられたセンサからのエンジン回転速度(ディーゼルエンジン21の出力回転速度)Er、アクセルペダル踏込量θaの信号が入力される。また、電子制御装置50は、上記以外に、本実施形態の車両10において実行されるべき各種制御に必要な種々のパラメータを得るための各種検出信号、例えば、ディーゼルエンジン21の運転環境に対応するパラメータ(冷却水温度、吸入空気温度、吸入空気圧、大気圧、油温など)等の信号が入力される。
 電子制御装置(ECU)40は、図2に示すように、例えば、ディーゼルエンジン21の作動、特にディーゼルエンジン21が発生する駆動力を制御量、本実施形態では目標燃料噴射量Qに基づいて制御する駆動力制御装置1と、図示しない制動装置の作動を制御する制動制御装置2と、車両の走行状態を自動で制御する自動走行制御装置3とを含んで構成される。なお、駆動力制御装置1は、電子制御装置50に組み込んで構成されている。つまり、本実施形態では、駆動力制御装置1を電子制御装置50により兼用して構成するものとして説明するが、これに限定されるものではなく、駆動力制御装置1と電子制御装置50とを別個に構成し、駆動力制御装置1を電子制御装置50に接続するようにして構成してもよい。また、駆動力制御装置1を除く他の制御装置(制動制御装置2、自動走行制御装置3)も同様に個別に構成し、各制御装置を電子制御装置50に接続するように構成しても良い。
 制動制御装置2は、図1に示すように、各車輪30FL、30FR、30RL、30RRの車輪速センサ40FL、40FR、40RL、40RRからの、車輪が所定量回転する毎に逐次的に生成されるパルス形式の電気信号が入力され、この逐次的に入力されるパルス信号の到来する時間間隔を計測することにより車輪の回転速度が算出され、これに車輪半径が乗ぜられることにより、車輪速度が算出される。制動制御装置2は、本実施形態では、各車輪30FL、30FR、30RL、30RRにそれぞれ対応する車輪速度VwFL、VwFR、VwRL、VwRRの平均値r・ωを駆動力制御装置1(本実施形態では、駆動力制御装置1の基本噴射量算出部4aおよびバネ上制振制御部5)に出力する(車輪回転速度から車輪速度への演算は、駆動力制御装置1にて行われてもよい。その場合、車輪回転速度は制動制御装置2から駆動力制御装置1に出力される)。
 また、制動制御装置2は、種々の公知のABS制御、VSC、TRCといった自動制動制御、すなわち、車輪30FL、30FR、30RL、30RRと路面との間の摩擦力(車輪30FL、30FR、30RL、30RRの前後力と横力とのベクトル和)が過大になり限界を越えることを抑制し、あるいは、かかる車輪30FL、30FR、30RL、30RRの摩擦力がその限界を越えることに起因する車両10の挙動の悪化を抑制するべく車輪上の前後力又はスリップ率を制御するものであってよく、あるいは、ABS制御、VSC、TRCの車輪30FL、30FR、30RL、30RRのスリップ率制御に加えてステアリング制御等を含めて車両10の挙動の安定化を図るVDIMであってよい。なお、VDIMが搭載される場合には、制動制御装置2は、VDIMの一部を構成することとなる。ここで、制動制御装置2は、上記自動制動制御(ABS制御、VSC、TRC、VDIM)において、車両10の挙動を変化させて制御、すなわち車両10の挙動を変化させることで安定した挙動となるように積極的に制御するために、ディーゼルエンジン21が発生する駆動力を制御する場合がある。制動制御装置2は、本実施形態では、自動制動制御に基づいて車両10の挙動を変化させて制御するために駆動力制御を行う場合、目標燃料噴射量Qを変更する。つまり、制動制御装置2は、車両挙動制御部としての機能も有する。制動制御装置2は、自動制動制御に基づいて目標燃料噴射量Qを変更する場合、図2に示すように、駆動力が車両10の挙動を安定した挙動となるように変化させることができる制動制御補償量qaを駆動力制御装置1(本実施形態では、噴射量算出部4)に出力する。ここで、制動制御装置2から噴射量算出部4に出力された制動制御補償量qaは、噴射量変更部4cに入力され、噴射量変更部4cに入力された目標燃料噴射量Q(基本噴射量算出部4aにおいて算出された目標燃料噴射量Q)に加減算される。この結果、目標燃料噴射量Qが制動制御補償量qaに基づいて車両10の挙動を変化させて制御するように変更され、変更された目標燃料噴射量Q(制動制御補償量qaに基づいて変更された目標燃料噴射量Qに基づいて噴射量算出部4により最終的に算出された目標燃料噴射量Q)に応じた制御指令が駆動装置20に出力されることとなる。なお、制動制御装置2は、自動制動制御に基づいて車両10の挙動を変化させて制御するために駆動力を制御する場合、アクセルペダル踏込量を算出しても良い。この場合は、算出されたアクセルペダル踏込量が駆動力制御装置1(本実施形態では、調停部4b)へ出力される。
 また、自動走行制御装置3は、公知のCC(クルーズコントロール)といった自動走行制御、すなわち車両10を走行状態、例えば車速(上記車輪速度)が一定となるように、ディーゼルエンジン21が発生する駆動力を制御するものである。自動走行制御装置3は、自動走行制御において、駆動力制御行う場合、アクセルペダル踏込量θAを算出する。自動走行制御装置3は、自動制動制御に基づいてアクセルペダル踏込量θAを算出した場合、図2に示すように、算出されたアクセルペダル踏込量θAを駆動力制御装置1(本実施形態では、調停部4b)に出力する。
 駆動力制御装置1は、制御量である目標燃料噴射量Qに基づいて駆動源であるディーゼルエンジン21が発生する駆動力を制御するものである。駆動力制御装置1は、基本的には、要求値であるアクセルペダル踏込量θαに応じて目標燃料噴射量Qを算出し、目標燃料噴射量Qに応じた制御指令をディーゼルエンジン21に出力する。ディーゼルエンジン21には、制御指令に基づいて目標燃料噴射量Qの燃料が供給され、供給された燃料に対応した駆動力が発生する。駆動力制御装置1は、少なくとも噴射量算出部4と、バネ上制振制御部5と、ジャーク制振制御部6と、気筒間補正制御部7と、なまし制御部8と、アシスト制御部9とを含んで構成されている。
 噴射量算出部4は、制御量算出部であり、運転者のアクセル操作あるいは車両の走行状態の少なくともいずれか一方に基づいた要求値であるアクセルペダル踏込量θαに応じて制御量である目標燃料噴射量Qを算出するものである。つまり、噴射量算出部4は、ディーゼルエンジン21に要求される駆動力に応じて目標燃料噴射量Qを算出するものである。また、噴射量算出部4は、アクセルペダル踏込量θαに応じて算出された目標燃料噴射量Qを後述する各制御部からの補償量に基づいて変更し、最終的な目標燃料噴射量Qを算出するものでもある。噴射量算出部4は、基本噴射量算出部4aと、調停部4bと、噴射量変更部4c~4hと、入力点4i、4kとを含んで構成されている。
 基本噴射量算出部4aは、要求値であるアクセルペダル踏込量θαに応じて目標燃料噴射量Qを算出するものである。基本噴射量算出部4aは、各制御部からの補償量に基づいて変更する基本となる目標燃料噴射量Q(要求値に応じた制御量)を算出するものである。基本噴射量算出部4aは、調停部4bから出力されたアクセルペダル踏込量θαと、車両10の車速V、すなわち制動制御装置2から出力された車輪速度の平均値r・ωとに基づいて目標燃料噴射量Qを算出する。ここで、ディーゼルエンジン21では、燃料噴射量が変化すると発生する駆動力が変化するので、算出された目標燃料噴射量Qは、要求値に応じてディーゼルエンジン21に発生させる要求駆動力に変換することができる。
 調停部4bは、要求値が複数ある場合に、複数の要求値を調停し、基本噴射量算出部4aに要求値であるアクセルペダル踏込量θαを出力するものである。調停部4bには、本実施形態では、ペダルセンサ70から運転者のアクセル操作による要求値であるアクセルペダル踏込量θaが入力される。また、車両10の自動走行制御が行われている場合は、自動走行制御装置3から車両10の走行状態に基づいた要求値であるアクセルペダル踏込量θAが入力される。調停部4bは、例えば、アクセル操作による要求値のみが入力されている場合、基本噴射量算出部4aにアクセルペダル踏込量θaを出力し、車両10の走行状態に基づいた要求値のみが入力されている場合、基本噴射量算出部4aにアクセルペダル踏込量θAを出力する。また、調停部4bは、複数の要求値が入力されている場合、入力された要求値のうち最大値を基本噴射量算出部4aに出力しても良いし、車両10の走行状態に基づいた要求値の入力に拘わらず、アクセル操作による要求値を基本噴射量算出部4aに出力しても良い。つまり、調停部4bは、運転者のアクセル操作あるいは車両の走行状態の少なくともいずれか一方に基づいた要求値を基本噴射量算出部4aに出力する。
 噴射量変更部4c~4hは、各制御部からの補償量に基づいて目標燃料噴射量Qを変更するものである。本実施形態では、噴射量変更部4c~4hは、各制御部からの補償量を噴射量変更部4c~4hに入力された目標燃料噴射量Qに加減算することで、目標燃料噴射量Qを変更するものである。
 噴射量変更部4cは、制動制御装置2に対応するものであり、基本噴射量算出部4aとバネ上制振制御部5に対応する噴射量変更部4fとの間、すなわち最も基本噴射量算出部4a側(目標燃料噴射量Qの変更において上流側)に設けられている。噴射量変更部4cは、制動制御装置2からの制動制御補償量qaに基づいて、基本噴射量算出部4aにより算出された目標燃料噴射量Qを変更する。つまり、制動制御装置2による目標燃料噴射量Qの変更は、バネ上制振制御部5による目標燃料噴射量Qの変更よりも前に行われる。
 噴射量変更部4dは、アシスト制御部9に対応するものであり、制動制御装置2に対応する噴射量変更部4cとバネ上制振制御部5に対応する噴射量変更部4fとの間に設けられている。噴射量変更部4dは、アシスト制御部9からの後述するアシスト制御補償量qbに基づいて、制動制御装置2により変更された目標燃料噴射量Qを変更する。つまり、アシスト制御部9による目標燃料噴射量Qの変更は、バネ上制振制御部5による目標燃料噴射量Qの変更よりも前に行われる。
 噴射量変更部4eは、なまし制御部8に対応するものであり、アシスト制御部9に対応する噴射量変更部4dとバネ上制振制御部5に対応する噴射量変更部4fとの間に設けられている。噴射量変更部4eは、なまし制御部8からの後述するなまし制御補償量qcに基づいて、アシスト制御部9により変更された目標燃料噴射量Qを変更する。つまり、なまし制御部8による目標燃料噴射量Qの変更は、バネ上制振制御部5による目標燃料噴射量Qの変更よりも前に行われる。
 噴射量変更部4fは、バネ上制振制御部5に対応するものであり、なまし制御部8に対応する噴射量変更部4eとジャーク制振制御部6に対応する噴射量変更部4gとの間に設けられている。噴射量変更部4fは、バネ上制振制御部5からの後述するバネ上制振制御補償量qdに基づいて、なまし制御部8により変更された目標燃料噴射量Qを変更する。つまり、バネ上制振制御部5による目標燃料噴射量Qの変更は、制動制御装置2による目標燃料噴射量Qの変更、アシスト制御部9による目標燃料噴射量Qの変更、なまし制御部9による目標燃料噴射量Qの変更よりも後に行われ、ジャーク制振制御部6による目標燃料噴射量Qの変更、後述する気筒間補正制御部7による目標燃料噴射量Qの変更よりも前に行われる。
 噴射量変更部4gは、ジャーク制振制御部6に対応するものであり、バネ上制振制御部5に対応する噴射量変更部4fと気筒間補正制御部7に対応する噴射量変更部4hとの間に設けられている。噴射量変更部4gは、ジャーク制振制御部6からの後述するジャーク制振制御補償量qeに基づいて、バネ上制振制御部5により変更された目標燃料噴射量Qを変更する。つまり、ジャーク制振制御部6による目標燃料噴射量Qの変更は、バネ上制振制御部5による目標燃料噴射量Qの変更よりも後に行われる。
 噴射量変更部4hは、気筒間補正制御部7に対応するものであり、ジャーク制振制御部6に対応する噴射量変更部4gの後ろ、すなわち最もディーゼルエンジン21側(目標燃料噴射量Qの変更において下流側)に設けられている。噴射量変更部4hは、気筒間補正制御部7からの後述する気筒間補正制御補償量qfに基づいて、ジャーク制振制御部6により変更された目標燃料噴射量Qを変更する。つまり、気筒間補正制御部7による目標燃料噴射量Qの変更は、バネ上制振制御部5による目標燃料噴射量Qの変更よりも後に行われる。
 以上のように、噴射量算出部4は、本実施形態では、基本噴射量算出部4aにより算出された目標燃料噴射量Qを各制御部により順次変更することで、最終的な目標燃料噴射量Qを算出する。つまり、噴射量算出部4は、各補償量に基づいて変更された目標燃料噴射量Qに基づいて最終的な目標燃料噴射量Qを算出する。
 入力点4iは、なまし制御部8において用いられる目標燃料噴射量Qがなまし制御部8に入力される位置である。入力点4iは、なまし制御部8に対応する噴射量変更部4eとバネ上制振制御部5に対応する噴射量変更部4fとの間に設けられている。従って、なまし制御部8には、なまし制御部8により変更された目標燃料噴射量Qが入力される。
 入力点4kは、バネ上制振制御部5において用いられる目標燃料噴射量Qがバネ上制振制御部5に入力される位置である。入力点4kは、なまし制御部8に対応する噴射量変更部4eとバネ上制振制御部5に対応する噴射量変更部4fとの間に設けられている。従って、バネ上制振制御部5には、バネ上制振制御部5により変更される前であり、バネ上制振制御部5よりも前で目標燃料噴射量Qの変更を行う各制御部により変更された目標燃料噴射量Qが入力される。つまり、バネ上制振制御部5には、バネ上制振制御部5による目標燃料噴射量Qの変更を行う直前の目標燃料噴射量Qibが入力される。
 バネ上制振制御部5は、車両10のバネ上振動を抑制するいわゆるバネ上制振制御を実行するものである。ここで、車両10のバネ上振動とは、路面の凹凸に応じて路面から車両10の左右前輪である車輪30FL、30FR、左右後輪である車輪30RL、30RRへの入力により、サスペンションを介して車両10の車体に発生する振動のうち、1~4Hz、さらに言えば1.5Hz近傍の周波数成分の振動をいい、車両10のバネ上振動には、車両10のピッチ方向またはバウンス方向(上下方向)の成分が含まれている。ここでいうバネ上制振とは、上記車両10のバネ上振動を抑制するものである。バネ上制振制御部5は、路面から車両10の左右前輪である車輪30FL、30FR、左右後輪である車輪30RL、30RRへの入力により、1~4Hzの周波数成分(車種や車両の構成によって顕著にあらわれる周波数成分が異なり、多くの車両は1.5Hz近傍の周波数成分)の車両10のピッチ方向またはバウンス方向(上下方向)の振動が生じた場合にディーゼルエンジン21に逆位相の駆動力を発生させることで車輪(駆動時には、駆動輪)が路面に対して作用している「車輪トルク」(車輪と接地路面上との間に作用するトルク)を調節し上記振動を抑制する。このようなこれにより、車両10のバネ上制振制御部12は、運転者の操縦安定性、乗員の乗り心地等を改善している。また、このような駆動力制御による制振制御によれば、サスペンションによる制振制御のように発生した振動エネルギーを吸収することにより抑制するというよりは、振動を発生する力の源を調節して振動エネルギーの発生を抑えることになるので、制振作用が比較的速やかであり、また、エネルギー効率が良いなどの利点を有する。また、駆動力制御による制振制御においては、制御対象が駆動源の駆動力(駆動トルク)に集約されるので、制御の調節が比較的に容易である。
 バネ上制振制御部5は、駆動力の制御によるバネ上制振制御を実行するべく、目標燃料噴射量Qがバネ上制振制御補償量qdに基づいて変更され、変更された目標燃料噴射量Q(バネ上制振制御補償量qdに基づいて変更された目標燃料噴射量Qに基づいて噴射量算出部4により最終的に算出された目標燃料噴射量Q)に応じた制御指令が駆動装置20に出力される。バネ上制振制御部5においては、(1)車輪において路面との間に作用する力による車輪の車輪トルクの取得、(2)ピッチ/バウンス振動状態量の取得、(3)ピッチ/バウンス振動状態量を抑制する車輪トルクの補償量の算出とこれに基づく目標燃料噴射量Qの変更が実行される。本実施形態では、(1)の車輪トルクは、制動制御装置2から受信した車輪の車輪速度(または、車輪の車輪回転速度)に基づいて車輪トルク推定値を算出するが、これに限らない。車輪トルクは、エンジン回転速度に基づいて車輪トルク推定値を算出してもよいし、車両10の走行中の車輪トルクの値が直接的に検出可能なセンサ、例えば、ホイールトルクセンサやホイール六分力計などにより、車輪において実際に発生している車輪トルクの検出値であってもよい。(2)のピッチ/バウンス振動状態量は、車両10の車体振動の運動モデルにより算出するものとして説明するが、これに限らない。ピッチ/バウンス振動状態量は、Gセンサなどの種々のセンサによる検出値であってもよい。なお、バネ上制振制御部5は、(1)-(3)の処理作動において実現される。
 車両10において、例えば、運転者のアクセル操作、すなわち運転者の駆動要求に対応する要求値に基づいて駆動装置20が作動して車輪トルクの変動が生ずると、図3に例示されている車両10の車体において、車体の重心Cgの鉛直方向(z方向)のバウンス振動(バウンス方向の振動)と、車体の重心周りのピッチ方向(θ方向)のピッチ振動(ピッチ方向の振動)が発生しうる。また、車両10の走行中に路面の凹凸に応じて路面から車両10の車輪30FL、30FR、30RL、30RRへの入力により外力またはトルク(外乱)が作用すると、その外乱が車両10に伝達され、やはり車体にピッチ/バウンス振動が発生しうる。そこで、バネ上制振制御部5は、車両10の車体のピッチ/バウンス振動の運動モデルを構築し、そのモデルにおいて要求値に応じた制御量である目標燃料噴射量Q(を車輪トルクに換算した値)と、現在の車輪トルク(の推定値)とを入力した際の車体の変位z、θとその変化率dz/dt、dθ/dt、すなわち、車体振動の状態変数を算出し、モデルから得られた状態変数が0に収束するように、すなわち、ピッチ/バウンス振動を抑制できるようディーゼルエンジン21の駆動力が調節される(つまり、要求値に応じた制御量の変更がされることとなる。)。
 図4は、バネ上制振制御部5の構成を制御ブロックの形式で模式的に示したものである(なお、各制御ブロックの作動は、基本的には、電子制御装置50の駆動力制御装置1により実行される。)。バネ上制振制御部5は、図4に示すように、基本的には、バネ上制振制御補償量qdに基づいて変更された目標燃料噴射量Qに応じた制御指令に対応する燃料を車両10のディーゼルエンジン21に供給することで、ピッチ/バウンス振動の振幅を抑制できるよう車両10のディーゼルエンジン21の駆動力を制御する。
 バネ上制振制御部5は、フィードフォワード制御部5aと、フィードバック制御部5bと、加算器5hと、噴射量変換部5iとを有し、これらを含んで構成される。
 フィードフォワード制御部5aは、いわゆる、最適レギュレータの構成を有し、ここでは、車輪トルク変換部5cと、運動モデル部5dと、FF二次レギュレータ部5eとを備えこれらを含んで構成される。フィードフォワード制御部5aは、車輪トルク変換部5cにて目標燃料噴射量Qib(バネ上制振制御部5により変更される前であり、バネ上制振制御部5よりも前で目標燃料噴射量Qの変更を行う各制御部により変更された目標燃料噴射量Q)を車輪トルクに換算した値(ドライバ要求車輪トルクTwo)が車両10の車体のピッチ/バウンス振動の運動モデル部5dに入力される。運動モデル部5dでは、入力されたトルクに対する車両10の状態変数の応答が算出され、FF二次レギュレータ部5eにて後述する所定のゲインKに基づいてその状態変数を最小に収束するドライバ要求車輪トルクの修正量として、FF系制振トルク補償量U・FFが算出される。このFF系制振トルク補償量U・FFは、ディーゼルエンジン21に対する目標燃料噴射量Qに基づいたフィードフォワード制御系3aにおける駆動力のFF制御量である。
 フィードバック制御部5bは、いわゆる、最適レギュレータの構成を有し、ここでは、車輪トルク推定部5fと、フィードフォワード制御部5aと兼用される運動モデル部5dと、FB二次レギュレータ部5gとを備えこれらを含んで構成される。フィードバック制御部5bは、車輪トルク推定部5fにて後述するように車輪速度の平均値r・ωに基づいて車輪トルク推定値Twが算出され、この車輪トルク推定値Twは、外乱入力として、運動モデル部5dへ入力される。なお、ここでは、フィードフォワード制御部5aの運動モデル部とフィードバック制御部5bの運動モデル部とは同じものであるので運動モデル部5dにより兼用するが、それぞれ別個に設けられていてもよい。運動モデル部5dでは、入力されたトルクに対する車両10の状態変数の応答が算出され、FB二次レギュレータ部5gにて後述する所定のゲインKに基づいてその状態変数を最小に収束するドライバ要求車輪トルクの修正量として、FB系制振トルク補償量U・FBが算出される。このFB系制振トルク補償量U・FBは、路面から車両10の車輪30FL、30FR、30RL、30RRへの入力による外力又はトルク(外乱)に基づいた車輪速度の変動分に応じたフィードバック制御部5bにおける駆動力のFB制御量である。
 バネ上制振制御部5では、フィードフォワード制御部5aのFF制御量であるFF系制振トルク補償量U・FFとフィードバック制御部5bのFB制御量であるFB系制振トルク補償量U・FBとが加算器5hに出力され、加算器5hにてFF系制振トルク補償量U・FFとFB系制振トルク補償量U・FBとが加算されて制振制御補償車輪トルクが算出され、噴射量変換部5iにて制振制御補償車輪トルクを目標燃料噴射量Qの単位に換算した値であるバネ上制振制御補償量qdに変換され、変換されたバネ上制振制御補償量qdが噴射量算出部4に出力される。ここで、バネ上制振制御部5から噴射量算出部4に出力されたバネ上制振制御補償量qdは、噴射量変更部4fに入力され、噴射量変更部4fに入力された目標燃料噴射量Qib(噴射量変更部4cにおいて制動制御補償量qaが加減算されたことで変更され、噴射量変更部4dにおいてアシスト制御補償量qbが加減算されたことで変更され、噴射量変更部4eにおいてなまし制御補償量qcが加減算されたことで変更された目標燃料噴射量Q)に加減算される。この結果、目標燃料噴射量Qがバネ上制振制御補償量qdに基づいてピッチ/バウンス振動が発生しないように変更され、変更された目標燃料噴射量Qに応じた制御指令が駆動装置20に出力されることとなる。つまり、バネ上制振制御部5は、制御量である目標燃料噴射量Qを車両10のバネ上振動を抑制する駆動力をディーゼルエンジン21が発生できる値に変更する。
 従って、バネ上制振制御部5は、ディーゼルエンジン21が発生する駆動力に対して、車両10に1~4Hzの振動を発生させる車輪速度の変動を低減する車輪トルクを駆動力の変動で発生させる変更を行うことができることとなる。
 ここで、バネ上制振制御部5におけるバネ上制振制御においては、上述したように、車両10の車体のピッチ方向およびバウンス方向の力学的運動モデルを仮定して、ドライバ要求車輪トルクTwo、車輪トルク推定値Tw(外乱)をそれぞれ入力としたピッチ方向またはバウンス方向の状態変数の状態方程式を構成する。そして、かかる状態方程式から、最適レギュレータの理論を用いてピッチ方向およびバウンス方向の状態変数を0に収束させる入力(トルク値)を決定し、得られたトルク値に基づいて制御量である目標燃料噴射量Qが変更される。
 車両10の車体のバウンス方向またはピッチ方向の力学的運動モデルとして、例えば、図5に示すように、車体を質量M及び慣性モーメントIの剛体Sとみなし、この剛体Sが、弾性率kfと減衰率cfの前輪サスペンションと弾性率krと減衰率crの後輪サスペンションにより支持されているとする(車両10の車体のバネ上振動モデル)。この場合、車体の重心のバウンス方向の運動方程式とピッチ方向の運動方程式は、下記の数1に示す数式のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
 上記の数1において、Lf、Lrは、それぞれ、重心から前車輪軸及び後車輪軸までの距離であり、rは、車輪半径であり、hは、重心の路面からの高さである。なお、式(1a)において、第1項、第2項は、前車輪軸から、第3項、第4項は、後車輪軸からの力の成分であり、式(1b)において、第1項は、前車輪軸から、第2項は、後車輪軸からの力のモーメント成分である。式(1b)における第3項は、駆動輪において発生している車輪トルクT(Two、Tw)が車体の重心周りに与える力のモーメント成分である。
 上記の式(1a)及び(1b)は、車両10の車体の変位z、θとその変化率dz/dt、dθ/dtを状態変数ベクトルX(t)として、下記の式(2a)に示すように、(線形システムの)状態方程式の形式に書き換えることができる。

 dX(t)/dt=A・X(t)+B・u(t) ・・・ (2a)
 上記の式(2a)において、X(t)、A、Bは、それぞれ、
Figure JPOXMLDOC01-appb-M000002
 であり、行列Aの各要素a1からa4及びb1からb4は、それぞれ、上記の式(1a)、(1b)にz、θ、dz/dt、dθ/dtの係数をまとめることにより与えられ、
 a1=-(kf+kr)/M、
 a2=-(cf+cr)/M、
 a3=-(kf・Lf-kr・Lr)/M、
 a4=-(cf・Lf-cr・Lr)/M、
 b1=-(Lf・kf-Lr・kr)/I、
 b2=-(Lf・cf-Lr・cr)/I、
 b3=-(Lf・kf+Lr・kr)/I、
 b4=-(Lf・cf+Lr・cr)/I
である。また、u(t)は、
 u(t)=T
であり、上記の状態方程式(2a)にて表されるシステムの入力である。したがって、上記の式(1b)より、行列Bの要素p1は、
 p1=h/(I・r)
である。
 上記の状態方程式(2a)において、

 u(t)=-K・X(t) ・・・(2b)

とおくと、状態方程式(2a)は、

 dX(t)/dt=(A-BK)・X(t) ・・・(2c)

となる。したがって、X(t)の初期値X(t)をX(t)=(0,0,0,0)と設定して(トルク入力がされる前には振動はないものとする。)、状態変数ベクトルX(t)の微分方程式(2c)を解いたときに、X(t)、すなわち、バウンス方向およびピッチ方向の変位及びその時間変化率、の大きさを0に収束させるゲインKが決定されれば、バウンス・ピッチ振動を抑制するトルク値u(t)が決定されることとなる。
 ゲインKは、いわゆる、最適レギュレータの理論を用いて決定することができる。この理論によれば、2次形式の評価関数(積分範囲は、0から∞)

 J=∫(XQX+uRu)dt ・・・(3a)

の値が最小になるとき、状態方程式(2a)においてX(t)が安定的に収束し、評価関数Jを最小にする行列Kは、
 K=R-1・B・P
により与えられることが知られている。ここで、Pは、リカッティ方程式
 -dP/dt=AP+PA+Q-PBR-1
の解である。リカッティ方程式は、線形システムの分野において知られている任意の方法により解くことができ、これにより、ゲインKが決定される。
 なお、評価関数J及びリカッティ方程式中のQ、Rは、それぞれ、任意に設定される半正定対称行列、正定対称行列であり、システムの設計者により決定される評価関数Jの重み行列である。例えば、ここでの運動モデルの場合、Q、Rは、
Figure JPOXMLDOC01-appb-M000003
などと置いて、式(3a)において、状態ベクトルの成分うち、特定のもの、例えば、dz/dt、dθ/dt、のノルム(大きさ)をその他の成分、例えば、z、θ、のノルムより大きく設定すると、ノルムを大きく設定された成分が相対的に、より安定的に収束されることとなる。また、Qの成分の値を大きくすると、過渡特性重視、すなわち、状態ベクトルの値が速やかに安定値に収束し、Rの値を大きくすると、消費エネルギーが低減される。ここで、フィードフォワード制御部5aに対応するゲインKと、フィードバック制御部5bに対応するゲインKを異ならせても良い。例えば、フィードフォワード制御部5aに対応するゲインKは、運転者の加速感に対応するゲイン、フィードバック制御部5bに対応するゲインKは、運転者の手応えや応答性に対応するゲインとしても良い。
 バネ上制振制御部5における実際のバネ上制振制御においては、図4のブロック図に示されているように、運動モデル部5dにおいて、トルク入力値を用いて式(2a)の微分方程式を解くことにより、状態変数ベクトルX(t)が算出される。次いで、FF二次レギュレータ部5e、FB二次レギュレータ部5gにて、上記のように状態変数ベクトルX(t)を0又は最小値に収束させるべく決定されたゲインKを運動モデル部5dの出力である状態ベクトルX(t)に乗じた値u(t)、ここでは、FF系制振トルク補償量U・FF、FB系制振トルク補償量U・FBが、ディーゼルエンジン21の燃料噴射量の単位に変換されて、噴射量変更部4fにおいて、目標燃料噴射量Qから差し引かれる。式(1a)及び(1b)で表されるシステムは、共振システムであり、任意の入力に対して状態変数ベクトルの値は、実質的にシステムの固有振動数の成分のみとなる。したがって、u(t)(の換算値)が目標燃料噴射量Qから差し引かれるよう構成することにより、目標燃料噴射量Qのうち、システムの固有振動数の成分、すなわち、車両10の車体においてピッチ/バウンス振動を引き起こす成分が修正され、車両10の車体におけるピッチ/バウンス振動を抑制することとなる。要求値に応じた制御量(本実施形態では、目標燃料噴射量Q)において、システムの固有振動数の成分がなくなると、ディーゼルエンジン21に出力される目標燃料噴射量Qに応じた制御指令のうち、システムの固有振動数の成分は、-u(t)のみとなり、Tw(外乱)による振動が収束することとなる。
 なお、車両10の車体のバウンス方向またはピッチ方向の力学的運動モデルとして、例えば、図6に示すように、図5の構成に加えて、前車輪及び後車輪のタイヤのバネ弾性を考慮したモデル(車両10の車体のバネ上・下振動モデル)が採用されてもよい。前車輪及び後車輪のタイヤが、それぞれ、弾性率ktf、ktrを有しているとすると、図6から理解されるように、車体の重心のバウンス方向の運動方程式とピッチ方向の運動方程式は、下記の数4に示す数式のように表すことができる。
Figure JPOXMLDOC01-appb-M000004
 
 上記の数4において、xf、xrは、前車輪、後車輪のばね下変位量であり、mf、mrは、前車輪、後車輪のばね下の質量である。式(4a)-(4d)は、z、θ、xf、xrとその時間微分値を状態変数ベクトルとして、図5の場合と同様に、式(2a)のような状態方程式を構成し(ただし、行列Aは、8行8列、行列Bは、8行1列となる。)最適レギュレータの理論にしたがって、状態変数ベクトルの大きさを0に収束させるゲイン行列Kを決定することができる。バネ上制振制御部12における実際の制振制御は、図5の場合と同様である。
 ここで、図4のバネ上制振制御部5のフィードバック制御部5bにおいて、外乱として入力される車輪トルクは、例えば、各車輪30FL、30FR、30RL、30RRにトルクセンサを設け実際に検出するように構成してもよいが、ここでは走行中の車両10におけるその他の検出可能な値から車輪トルク推定部5fにて推定された車輪トルク推定値が用いられる。
 車輪トルク推定値Twは、例えば、各車輪に対応する車輪速センサから得られる車輪回転速度の平均値ω又は車輪速度の平均値r・ωの時間微分を用いて、次式(5)により推定、算出することができる。

 Tw=M・r・dω/dt ・・・(5)

 上記の式(5)において、Mは、車両の質量であり、rは、車輪半径である。すなわち、駆動輪が路面の接地個所において発生している駆動力の総和が、車両10の全体の駆動力M・G(Gは、加速度)に等しいとすると、車輪トルクTwは、次式(5a)にて与えられる。

 Tw=M・G・r ・・・(5a)

車両の加速度Gは、車輪速度r・ωの微分値より、次式(5b)によって与えられる。

 G=r・dω/dt ・・・(5b)

 したがって、車輪トルクは、上記の式(5)のようにして推定される。
 ところで、本実施形態のバネ上制振制御部5は、要求値に応じた制御量(目標燃料噴射量Q)に基づいたフィードフォワード制御部5aにおける駆動トルクのFF制御量であるFF系制振トルク補償量と、車両10の車輪の車輪速度に基づいたフィードバック制御部5bにおける駆動トルクのFB制御量であるFB系制振トルク補償量とに基づいて制振制御補償トルクを設定するバネ上制振制御部5が車両10の運転状態に基づいてFF系制振トルク補償量又はFB系制振トルク補償量を補正することで、車両10の運転状態に応じた適正な制振制御の実現を図っている。
 ここで、上述したように、バネ上制振制御部5は、フィードフォワード制御部5aとフィードバック制御部5bとが運動モデル部5dを兼用しているものの、基本的には独立した別個の制御系として構成され、FF系制振トルク補償量とFB系制振トルク補償量とをそれぞれ算出した後に、FF系制振トルク補償量とFB系制振トルク補償量とを加算することで制振制御補償トルクを設定している。このため、バネ上制振制御部5は、実際に制振制御補償トルクを設定する前段で、フィードフォワード制御部5aのFF系制振トルク補償量、フィードバック制御部5bのFB系制振トルク補償量に対して、それぞれ個別に上下限ガードを行ったり、補正を行ったりすることができる。また、これにより、車両10の状況に応じてどちらか一方の制御を遮断することも容易となる。
 そして、本実施形態のバネ上制振制御部5は、フィードフォワード制御部5aにFF制御補正部5kとFF制御ゲイン設定部5lとを備え、フィードバック制御部5bにFB制御補正部5mとFB制御ゲイン設定部5nとを備え、これらを含んで構成される。バネ上制振制御部5は、FF制御補正部5kとFF制御ゲイン設定部5lとによってFF系制振トルク補償量を補正する一方、FB制御補正部5mとFB制御ゲイン設定部5nとによってFB系制振トルク補償量を補正している。つまり、バネ上制振制御部5は、FF系制振トルク補償量に対して車両10の状態に応じてFF制御ゲインを設定しFF系制振トルク補償量にこのFF制御ゲインを掛けることでFF系制振トルク補償量を補正し、FB系制振トルク補償量に対して車両10の状態に応じてFB制御ゲインを設定しFB系制振トルク補償量にこのFB制御ゲインを掛けることでFB系制振トルク補償量を補正する。
 FF制御補正部5kは、FF二次レギュレータ部5eの後段、加算器5hの前段に位置しFF二次レギュレータ部5eからFF系制振トルク補償量U・FFが入力され、補正したFF系制振トルク補償量U・FFを加算器5hに出力する。FF制御補正部5kは、このFF系制振トルク補償量U・FFに対してFF制御ゲイン設定部5lが設定するFF制御ゲインK・FFを乗算することで、FF系制振トルク補償量U・FFをFF制御ゲインK・FFに基づいて補正する。そして、FF制御ゲイン設定部5lは、このFF制御ゲインK・FFを車両10の状態に応じて設定する。つまり、FF二次レギュレータ部5eからFF制御補正部5kに入力されたFF系制振トルク補償量U・FFは、FF制御ゲイン設定部5lによりFF制御ゲインK・FFが車両10の状態に応じて設定されることで、FF制御補正部5kにて車両10の状態に応じて補正されることとなる。
 なお、FF制御補正部5kは、FF系制振トルク補償量U・FFが予め設定される上下限ガード値の範囲内となるように上下限ガードを行ってもよい。FF制御補正部5kは、例えば、FF二次レギュレータ部5eから入力されたFF系制振トルク補償量U・FFに対して予め設定されるディーゼルエンジン21の許容駆動力変動値としての許容エンジントルク変動値に応じた値を上下限ガード値(例えば、駆動装置20の要求トルクの単位に換算した値で-数十Nmから0Nmの範囲)として上下限ガードを行い、FF系制振トルク補償量U・FFを補正してもよい。これにより、FF制御補正部5kは、例えば、バネ上制振制御部5によるバネ上制振制御以外の他の制御を勘案した適正なFF系制振トルク補償量U・FFを設定することができ、つまり、バネ上制振制御部5によるバネ上制振制御と他の制御との干渉を抑制することができる。また、FF制御補正部5kは、例えば、加算器5hに出力される前のFF系制振トルク補償量U・FFに対して予め設定される車両10の許容加減速度に応じた値を上限ガード値(例えば、加減速度換算した場合に+0.00G相当未満となるような範囲)として上限ガードを行い、FF系制振トルク補償量U・FFを補正してもよい。これにより、FF制御補正部5kは、例えば、運転者の操縦安定性、乗員の乗り心地等を改善するためのバネ上制振制御部5によるバネ上制振制御によって車両10の運動の変化が運転者の予期しないほど大きくなることを防止し、運転者に違和感を覚えさせることを防止することができる適正なFF系制振トルク補償量U・FFを設定することができる。
 FB制御補正部5mは、FB二次レギュレータ部5gの後段、加算器5hの前段に位置しFB二次レギュレータ部5gからFB系制振トルク補償量U・FBが入力され、補正したFB系制振トルク補償量U・FBを加算器5hに出力する。FB制御補正部5mは、このFB系制振トルク補償量U・FBに対してFB制御ゲイン設定部5nが設定するFB制御ゲインK・FBを乗算することで、FB系制振トルク補償量U・FBをFB制御ゲインK・FBに基づいて補正する。そして、FB制御ゲイン設定部5nは、このFB制御ゲインK・FBを車両10の運転状態に応じて設定する。つまり、FB二次レギュレータ部5gからFB制御補正部5mに入力されたFB系制振トルク補償量U・FBは、FB制御ゲイン設定部5nによりFB制御ゲインK・FBが車両10の運転状態に応じて設定されることで、FB制御補正部5mにて車両10の運転状態に応じて補正されることとなる。
 なお、FB制御補正部5mは、FB系制振トルク補償量U・FBが予め設定される上下限ガード値の範囲内となるように上下限ガードを行ってもよい。FB制御補正部5mは、例えば、FB二次レギュレータ部5gから入力されたFB系制振トルク補償量U・FBに対して予め設定されるディーゼルエンジン21の許容駆動力変動値としての許容エンジントルク変動値に応じた値を上下限ガード値(例えば、駆動装置20の要求トルクの単位に換算した値で±数十Nmの範囲)として上下限ガードを行い、FB系制振トルク補償量U・FBを補正してもよい。これにより、FB制御補正部5mは、例えば、バネ上制振制御部5によるバネ上制振制御以外の他の制御を勘案した適正なFB系制振トルク補償量U・FBを設定することができ、つまり、バネ上制振制御部5によるバネ上制振制御と他の制御との干渉を抑制することができる。また、FB制御補正部5mは、例えば、加算器5hに出力される前のFB系制振トルク補償量U・FBに対して予め設定される車両10の許容加減速度に応じた値を上下限ガード値(例えば、加減速度換算した場合に±a/100G相当以内となるような範囲)として上下限ガードを行い、FB系制振トルク補償量U・FBを補正してもよい。これにより、FB制御補正部5mは、例えば、運転者の操縦安定性、乗員の乗り心地等を改善するためのバネ上制振制御部12によるバネ上制振制御によって車両10の運動の変化が運転者の予期しないほど大きくなることを防止し、運転者に違和感を覚えさせることを防止することができる適正なFB系制振トルク補償量U・FBを設定することができる。
 そして、本実施形態のバネ上制振制御部5は、車両10の状態を表すパラメータとして、車両10の車速、車両10が搭載するMT22が複数のギア段を有するものであればギア段、ディーゼルエンジン21の出力回転速度としてのエンジン回転速度と要求トルクに基づいて、FF制御補正部5k、FB制御補正部5mによってFF系制振トルク補償量、FB系制振トルク補償量を補正するとよい。また、バネ上制振制御部5は、FB制御補正部5mによって車両10が搭載するMT22の駆動状態に基づいてFB系制振トルク補償量を補正するとよい。さらに、バネ上制振制御部5は、FB制御補正部5mによってディーゼルエンジン21の許容目標燃料噴射量に基づいてFB系制振トルク補償量を補正するとよい。つまり、FF制御ゲイン設定部5l、FB制御ゲイン設定部5nは、これらのものに基づいてFF制御ゲインK・FF、FB制御ゲインK・FBを設定するとよい。
 ジャーク制振制御部6は、駆動力の制御によるジャーク制振を実行すべく目標燃料噴射量Qがジャーク制振制御補償量qeに基づいて変更され、変更された目標燃料噴射量Q(ジャーク制振制御補償量qeに基づいて変更された目標燃料噴射量Qに基づいて噴射量算出部4により最終的に算出された目標燃料噴射量Q)に応じた制御指令を駆動装置20に出力する。ここで、ジャークとは、駆動源であるディーゼルエンジン21から駆動輪(本実施形態では後輪)までの動力伝達経路(MT22、差動歯車装置23などを含む駆動力の伝達機構による駆動力の伝達経路)で発生する振動、例えばディーゼルエンジン21が発生した駆動力を駆動輪までに伝達する際に伝達機構が捩れることにより発生する振動であり、4Hzよりも高く12Hzよりも低い周波数成分の振動をいう。ジャーク制振とは、上記車両10のジャークを抑制するものである。
 ジャーク制振制御部6では、図2に示すように、車両10のジャークを抑制する駆動力をディーゼルエンジン21が発生できる値に変更するジャーク制振制御補償量qeが算出され、算出されたジャーク制振制御補償量qeが噴射量算出部4に出力される。ここで、ジャーク制振制御部6から噴射量算出部4に出力されたジャーク制振制御補償量qeは、噴射量変更部4gに入力され、噴射量変更部4gに入力された目標燃料噴射量Q(噴射量変更部4cにおいて制動制御補償量qaが加減算されたことで変更され、噴射量変更部4dにおいてアシスト制御補償量qbが加減算されたことで変更され、噴射量変更部4eにおいてなまし制御補償量qcが加減算されたことで変更され、バネ上制振制御部5においてバネ上制振制御補償量qdが加減算されたことで変更された目標燃料噴射量Q)に加減算される。この結果、目標燃料噴射量Qがジャーク制振制御補償量qeに基づいてジャークが発生しないように変更され、変更された目標燃料噴射量Q(ジャーク制振制御補償量qeに基づいて変更された目標燃料噴射量Qに基づいて噴射量算出部4により最終的に算出された目標燃料噴射量Q)に応じた制御指令が駆動装置20に出力されることとなる。つまり、ジャーク制振制御部6は、制御量である目標燃料噴射量Qを車両10のジャークを抑制する駆動力をディーゼルエンジン21が発生できる値に変更する。従って、ジャーク制振制御部6は、バネ上制振制御部5により抑制される車両10のバネ上振動よりも高い周波数成分の振動を抑制する駆動力をディーゼルエンジン21が発生できる値に変更する高周波制振制御部であり、駆動源から駆動輪までの動力伝達経路で発生する振動を抑制する第1高周波制振制御部である。従って、ジャーク制振制御部6は、ディーゼルエンジン21が発生する駆動力の変更を行うことで、車両10に発生する1~4Hzよりも高い周波数成分の振動を発生させる車輪速度の変動を低減する車輪トルクを駆動力の変動で発生させることとなる。なお、ジャーク制振制御は、既に公知であり、ジャーク制振制御補償量qeの算出方法も公知の方法を用いることができるため、算出方法についての詳細は省略する。
 気筒間補正制御部7は、ディーゼルエンジン21の各気筒のばらつきを抑制する気筒間補正制御を行うものである。各気筒のばらつきとは、例えばディーゼルエンジン21の各気筒にそれぞれ設けられているインジェクターのばらつきなどである。各インジェクターにばらつきがあると、各気筒に供給される燃料にばらつきが発生し、供給される燃料のばらつきにより各気筒における爆発力がばらつくこととなり、車両10に振動が発生することとなる。つまり、気筒間補正制御部7は、駆動源であるディーゼルエンジン21に発生する振動を抑制するものである。気筒間補正制御部7は、各気筒のばらつきによる振動制振を実行すべく目標燃料噴射量Qが気筒間補正制御補償量qfに基づいて変更され、変更された目標燃料噴射量Q(気筒間補正制御補償量qfに基づいて変更された目標燃料噴射量Qに基づいて噴射量算出部4により最終的に算出された目標燃料噴射量Q)に応じた制御指令を駆動装置20に出力する。
 気筒間補正制御部7では、図2に示すように、車両10の各気筒のばらつきによる振動を抑制する駆動力をディーゼルエンジン21が発生できる値(各気筒における爆発力の均一化を図ることができる値)に変更する気筒間補正制御補償量qfが算出され、算出された気筒間補正制御補償量qfが噴射量算出部4に出力される。ここで、気筒間補正制御部7から噴射量算出部4に出力された気筒間補正制御補償量qfは、噴射量変更部4hに入力され、噴射量変更部4hに入力された目標燃料噴射量Q(噴射量変更部4cにおいて制動制御補償量qaが加減算されたことで変更され、噴射量変更部4dにおいてアシスト制御補償量qbが加減算されたことで変更され、噴射量変更部4eにおいてなまし制御補償量qcが加減算されたことで変更され、バネ上制振制御部5においてバネ上制振制御補償量qdが加減算されたことで変更され、ジャーク制振制御部6においてジャーク制振制御補償量qeが加減算されたことで変更された目標燃料噴射量Q)に加減算される。この結果、目標燃料噴射量Qが気筒間補正制御補償量qfに基づいて各気筒のばらつきによる振動が発生しないように変更され、変更された目標燃料噴射量Q(気筒間補正制御補償量qfに基づいて変更された目標燃料噴射量Qに基づいて噴射量算出部4により最終的に算出された目標燃料噴射量Q)に応じた制御指令が駆動装置20に出力されることとなる。つまり、気筒間補正制御部7は、制御量である目標燃料噴射量Qを車両10の各気筒のばらつきによる振動を抑制する駆動力をディーゼルエンジン21が発生できる値に変更する。従って、気筒間補正制御部7は、バネ上制振制御部5により抑制される車両10のバネ上振動よりも高い周波数成分の振動を抑制する駆動力をディーゼルエンジン21が発生できる値に変更する高周波制振制御部であり、駆動源で発生する振動を抑制する第2高周波制振制御部である。従って、気筒間補正制御部7は、ディーゼルエンジン21が発生する駆動力に対して、車両10に発生する1~4Hzよりも高い周波数成分の振動を発生させる車輪速度の変動を低減する車輪トルクを駆動力の変動で発生させる変更を行うことができることとなる。なお、気筒間補正制御は、既に公知であり、気筒間補正制御補償量qfの算出方法も公知の方法を用いることができるため、算出方法についての詳細は省略する。
 なまし制御部8は、車両挙動制御部であり、駆動力の変化勾配を規制するなまし制御を行うものある。例えば、運転者によるアクセル操作によりアクセルペダル踏込量θaが急激に変化(パルス状に変化)すると、制御量である目標燃料噴射量Qが急激に変化し、ディーゼルエンジン21が発生する駆動力が急激に変化するため、車両10が少なくともピッチ方向に大きく変化する。従って、なまし制御部8は、車両10の挙動を変化させて制御、すなわち車両10の挙動を変化させることで車両10が少なくともピッチ方向に大きく変化しないように積極的に制御するために、駆動力の変化勾配を規制するものである。つまり、なまし制御部8は、目標燃料噴射量Qを、車両10の挙動を変化させて制御する駆動力をディーゼルエンジン21が発生する値に変更する。なまし制御部8は、入力点4iにおいて入力された目標燃料噴射量Qに基づいて目標燃料噴射量Qのフィードバック制御を行う。
 なまし制御部8は、図2に示すように、車両10が少なくともピッチ方向に大きく変化しないように駆動力が車両10の挙動を変化させることができるなまし制御補償量qcが算出され、算出されたなまし制御補償量qcが噴射量算出部4に出力される。ここで、なまし制御部8から噴射量算出部4に出力されたなまし制御補償量qcは、噴射量変更部4eに入力され、噴射量変更部4eに入力された目標燃料噴射量Q(噴射量変更部4cにおいて制動制御補償量qaが加減算されたことで変更され、噴射量変更部4dにおいてアシスト制御補償量qbが加減算されたことで変更された目標燃料噴射量Q)に加減算される。この結果、目標燃料噴射量Qがなまし制御補償量qcに基づいて車両10の挙動を変化させて制御するように変更され、変更された目標燃料噴射量Q(なまし制御補償量qcに基づいて変更された目標燃料噴射量Qに基づいて噴射量算出部4により最終的に算出された目標燃料噴射量Q)に応じた制御指令が駆動装置20に出力されることとなる。なお、なまし制御は、既に公知であり、なまし制御補償量qcの算出方法も公知の方法を用いることができるため、算出方法についての詳細は省略する。
 アシスト制御部9は、車両挙動制御部であり、ディーゼルエンジン21が発生する駆動力を大きくし、車両10の発進時における運転者のアシストをするアシスト制御を行うものである。本実施形態における車両10では、MT22を搭載しているため、例えば、発進時において、運転者がアクセルペダルを踏込み、図示しないクラッチを係合させてディーゼルエンジン21とMT22とを連結するが、運転者によるアクセル操作によりアクセルペダル踏込量θaに応じた制御量である目標燃料噴射量Qに基づいてディーゼルエンジン21が発生する駆動力が十分でない場合がある。発進時にディーゼルエンジン21が発生する駆動力が十分でない場合は、車両10が少なくともピッチ方向に大きく変化する。従って、アシスト制御部9は、車両10の挙動を変化させて制御、すなわち車両10の挙動を変化させることで発進時における車両10が少なくともピッチ方向に大きく変化しないように積極的に制御するために、ディーゼルエンジン21が発生する駆動力を大きくするものである。つまり、アシスト制御部9は、目標燃料噴射量Qを、車両10の挙動を変化させて制御する駆動力をディーゼルエンジン21が発生する値に変更する。
 アシスト制御部9は、図2に示すように、発進時において、車両10が少なくともピッチ方向に大きく変化しないように駆動力が車両10の挙動を変化させることができるアシスト制御補償量qbが算出され、算出されたアシスト制御補償量qbが噴射量算出部4に出力される。ここで、アシスト制御部9から噴射量算出部4に出力されたアシスト制御補償量qbは、噴射量変更部4dに入力され、噴射量変更部4dに入力された目標燃料噴射量Q(噴射量変更部4cにおいて制動制御補償量qaが加減算されたことで変更された目標燃料噴射量Q)に加減算される。この結果、目標燃料噴射量Qがアシスト制御補償量qbに基づいて車両10の挙動を変化させて制御するように変更され、変更された目標燃料噴射量Q(アシスト制御補償量qbに基づいて変更された目標燃料噴射量Qに基づいて噴射量算出部4により最終的に算出された目標燃料噴射量Q)に応じた制御指令が駆動装置20に出力されることとなる。
 以上のように、本実施形態にかかる駆動力制御装置1によれば、バネ上制振制御部5による目標燃料噴射量Qの変更は、ジャーク制振制御部6による目標燃料噴射量Qの変更および気筒間補正制御部7による目標燃料噴射量Qの変更よりも前に行われる。つまり、高周波制振制御部によるバネ上制振制御部5において抑制するバネ上振動よりも高い周波数成分の振動を抑制する制振制御は、バネ上制振制御部5による制振制御よりも後に行われる。従って、バネ上振動よりも高い周波数成分の振動に対する制振制御をバネ上振動に対する制振制御よりも後に行うことで、バネ上振動よりも高い周波数成分の振動に対する制振制御に基づいて変更された目標燃料噴射量Qに基づいてバネ上振動に対する制振制御が行われることを防止できる。これにより、バネ上制振制御部5において抑制するバネ上振動よりも高い周波数成分の振動を抑制する制振制御の後にバネ上制振制御が行われる場合と比較して、バネ上制振制御部5において抑制するバネ上振動よりも高い周波数成分の振動を抑制する制振制御を効果的に行うことができる。また、バネ上制振制御部5による目標燃料噴射量Qの変更は、なまし制御部8による目標燃料噴射量Qの変更、アシスト制御部9による目標燃料噴射量Qの変更および制動制御装置2による目標燃料噴射量Qの変更よりも後に行われる。つまり、車両挙動制御部による車両10の挙動を変化させる制御は、バネ上制振制御部5による制振制御よりも前に行われる。従って、車両10の挙動を変化させる制御をバネ上制振制御部5による制振制御よりも前に行うことで、バネ上振動に対する制振制御に基づいて変更された目標燃料噴射量Qに基づいて車両10の挙動を変更する制御が行われることを防止できる。これにより、バネ上制振制御が行われた後に、車両10の挙動を変化させる制御が行われる場合と比較して、バネ上制振制御を効果的に行うことができる。これらにより、車両10の振動を効果的に抑制することができる。
 なお、上述した実施形態に係る車両の駆動力制御装置1は、上述した実施形態に限定されず、特許請求の範囲に記載された範囲で種々の変更が可能である。
 また、上述した実施形態では、バネ上制振制御は、運動モデルとしてバネ上又はバネ上・バネ下運動モデルを仮定し最適レギュレータの理論を利用して行うものとして説明したが、これに限らず、上記で説明したもの以外の運動モデルを採用したものあるいは最適レギュレータ以外の制御手法により行うものであってもよい。
 また、上述した実施形態では、バネ上制振制御部5のフィードバック制御部5bの入力値として4輪、すべてに対応する車輪速センサ40FL,40FR,40RL,40RRからの車輪速度の平均値r・ωとしたが本発明はこれに限定されるものではない。前輪に対応する車輪速センサ40FL,40FRからの車輪速度のみの平均値r・ωを入力値とすることが好ましい。図7は、車輪速平均と時間との関係を示した図である。図8は、車輪速平均と時間との関係を示した図である。図7および図8においては、前輪、すなわちフロント輪に対応する車輪速センサ40FL,40FRからの車輪速度のみの平均値である車輪速平均を実線、後輪、すなわちリア輪に対応する車輪速センサ40RL,40RRからの車輪速度のみの平均値である車輪速平均を一点鎖線で示す。また、図7および図8においては、ホイルベースが同一の車両を走行させた結果である。また、図7は20cm程度の高低差が周期的に繰り返される路面、すなわち上記バネ上振動が車両に顕著に発生する路面を走行した結果であり、図8は2つの段差が設定された路面を走行した結果である。また、図7においては車両ホイルベースによりフロント輪における車輪速平均に対するリア輪における車輪速平均の時間遅れであるホイルベース時間差をT1とし、図8においては車両ホイルベースによりフロント輪における車輪速平均に対するリア輪における車輪速平均の時間遅れであるホイルベース時間差をT2とする。
 図8に示すように、車両が段差を通過すると、フロント輪における車輪速平均およびリア輪における車輪速平均が大きく変化する。段差をフロント輪が通過してからリア輪が通過するまでは、フロント輪における車輪速平均が大きく変化してからリア輪における車輪速平均が大きく変化するまでの時間差が発生する。1つ目の段差をフロント輪が通過してからリア輪が通過するまでの時間差をT21、2つ目の段差をフロント輪が通過してからリア輪が通過するまでの時間差をT22とすると、同図に示すように、T21、T22は、ほぼ同一であり、ホイルベース時間差T2とほぼ一致する(T2≒T21≒T22)。つまり、車両が通常走行する路面を走行する場合では、フロント輪に対応する車輪速センサ40FL,40FR、リア輪に対応する車輪速センサ40RL,40RRからの信号の電子制御装置50への入力が遅れることはない。
 一方、図7に示すように、バネ上振動が車両に顕著に発生する路面を車両が走行した場合、任意の点をフロント輪が通過してからリア輪が通過するまでの時間差をT11、他の任意の点をフロント輪が通過してからリア輪が通過するまでの時間差をT12とすると、同図に示すように、T11、T12は、異なり、ホイルベース時間差T1よりも大きくなる(T1<T12<T11)。つまり、車両がバネ上振動、すなわち1~4Hz、さらに言えば1.5Hz近傍の周波数成分の振動を顕著に発生する路面を走行する場合では、フロント輪に対応する車輪速センサ40FL,40FRに対して、リア輪に対応する車輪速センサ40RL,40RRからの信号の電子制御装置50への入力が遅れていることとなる。
 以上のことから、バネ上制振制御部5のフィードバック制御部5bの入力値として前輪に対応する車輪速センサ40FL,40FRからの車輪速度のみの平均値r・ωを入力値とすることで、後輪に対応する車輪速センサ40RL,40RRからの車輪速度のみの平均値r・ωを入力値とする場合と比較してバネ上制振制御の応答性を向上することができる。
 また、上述した実施形態では、駆動源をディーゼルエンジンとしたが本発明はこれに限定されるものではない。ガソリンエンジンやモータであっても良い。ガソリンエンジンを搭載する場合は、制御量として要求駆動力を算出し、要求駆動力に基づいた目標スロットル開度や目標点火時期を制御指令としてガソリンエンジンに出力し、ガソリンエンジンが発生する駆動力(出力トルク)が制御される。また、モータを搭載する場合は、制御量として目標電流量を算出し、目標電流量に応じた制御指令をモータに出力し、モータが発生する駆動力(モータトルク)が制御される。なお、車両は、ガソリンエンジンのみを駆動源とした車両であっても良いし、モータのみを駆動源とした車両であっても良いし、エンジンとモータとを駆動源とするハイブリッド車両であっても良い。
 なお、制御量として要求駆動力を用いる場合は、自動走行制御装置3は、自動走行制御において、駆動力制御を行う場合、要求駆動力を算出しても良い。この場合は、運転者によるアクセル操作に対応する要求値であるアクセルペダル踏込量θaに基づいて制御量として要求駆動力を算出し、上記自動走行制御に対応した要求駆動力と調停して、基本となる要求駆動力(要求値に応じた制御量)を算出しても良い。
 また、上述した実施形態では、変速機としてMT22を搭載したが本発明はこれに限定されるものではない。変速機として、例えば自動有段変速機であるATを搭載しても良い。この場合は、車両挙動制御部としてクリープアシスト制御部を有していても良い。クリープアシスト制御は、駆動源が発生する駆動力を例えば路面勾配に応じて変化させ、停止時あるいは低車速時における車両10の挙動を変化させる制御である。クリープアシスト制御部による制御量の変更は、上記バネ上制振制御部による制御量の変更よりも前に行うこととなる。
 なお、変速機としてATを搭載する場合は、車速(上記車輪速度)や先行車両との車間距離が一定となるように、駆動源が発生する駆動力を制御するACC(アダプティブクルーズコントロール)といった自動走行制御を自動走行制御装置3が行っても良い。
 また、変速機として変速が電子制御で行われる電子制御AT(ECT)が搭載されている場合は、車両挙動制御部としてECT制御部を有していても良い。ECT制御は、ATの変速時に駆動源が発生する駆動力を変化させ、変速時における車両10の挙動を変化させる制御である。ECT制御部による制御量の変更は、上記バネ上制振制御部による制御量の変更よりも前に行うこととなる。
 また、上述した実施形態において省略したが、制御量は、駆動源の運転環境に対応するパラメータ(冷却水温度、吸入空気温度、吸入空気圧、大気圧、油温など)に基づいた変更も行われる。駆動源の運転環境による制御量の変更は、バネ上制振制御部などの制振制御を行う制御部による制御量の変更よりも後ろであり、制御指令が出力される直前の制御量に対して行われる。
 また、上述した実施形態において省略したが、車両挙動制御部としてアイドルアシスト制御部を有していても良い。アイドルアシスト制御は、駆動力を駆動源の回転数がアイドル回転数を維持できるように変化させ、駆動源のアイドル時における車両10の挙動を変化させる制御である。アイドルアシスト制御部による制御量の変更は、上記バネ上制振制御部による制御量の変更よりも前に行うこととなる。
 以上のように、本発明に係る駆動力制御装置および駆動力制御装置の制御方法は、車両の運転状態に応じた適正な制振制御を実行することができるものであり、車両の駆動力を制御して車体の振動を抑制する種々の駆動力制御装置および駆動力制御装置の制御方法に適用して好適である。

Claims (7)

  1.  制御量に基づいて駆動源が発生する駆動力を制御する駆動力制御装置において、
     運転者のアクセル操作あるいは車両の走行状態の少なくともいずれか一方に基づいた要求値に応じて算出される制御量を、前記車両のバネ上振動を抑制する前記駆動力を前記駆動源が発生できる値に変更するバネ上制振制御部と、
     前記バネ上制振制御部により変更された制御量を、前記バネ上制振制御部により抑制される前記車両のバネ上振動よりも高い周波数成分の振動を抑制する前記駆動力を前記駆動源が発生できる値に変更する高周波制振制御部と、
     を備え、
     前記バネ上制振制御部は、前記高周波制振制御部が前記制御量の変更を行う前に変更を行うことを特徴とする駆動力制御装置。
  2.  前記請求項1に記載の駆動力制御装置において、
     前記高周波制振制御部は、前記駆動源から駆動輪までの動力伝達経路で発生する振動を抑制する第1高周波制振制御部を含む駆動力制御装置。
  3.  前記請求項1に記載の駆動力制御装置において、
     前記高周波制振制御部は、前記駆動源で発生する振動を抑制する第2高周波制振制御部を含む駆動力制御装置。
  4.  前記請求項1に記載の駆動力制御装置において、
     前記制御量を、前記車両の挙動を変化させて制御する前記駆動力を前記駆動源が発生できる値に変更する車両挙動制御部をさらに備え、
     前記バネ上制振制御部は、前記車両挙動制御部が変更を行った後に変更を行う駆動力制御装置。
  5.  前記請求項4に記載の駆動力制御装置において、
     前記車両挙動制御部は、前記駆動力の変化勾配を規制するなまし制御を含む駆動力制御装置。
  6.  駆動源が発生する駆動力を制御する駆動力制御装置において、
     前記駆動力に対して、車両に1~4Hzの振動を発生させる車輪速度の変動を低減する車輪トルクを前記駆動力の変動で発生させる変更を行うバネ上制振制御部と、
     前記駆動力に対して、前記車両に発生する1~4Hzよりも高い周波数成分の振動を抑制する変更を行う高周波制振制御部と、
     を備え、
     前記バネ上制振制御部は、前記高周波制振制御部が変更を行う前に変更を行うことを特徴とする駆動力制御装置。
  7.  制御量に基づいて駆動源が発生する駆動力を制御する駆動力制御装置の制御方法において、
     運転者のアクセル操作あるいは車両の走行状態に基づいた要求値に応じて算出される制御量を、前記車両のバネ上振動を抑制する前記駆動力を前記駆動源が発生できる値に変更する手順と、
     前記変更された制御量を、前記車両のバネ上振動よりも高い周波数成分の振動を抑制する前記駆動力を前記駆動源が発生できる値に変更する手順と、
     を含むことを特徴とする駆動力制御装置の制御方法。
PCT/JP2008/069965 2008-10-31 2008-10-31 駆動力制御装置および駆動力制御装置の制御方法 WO2010050069A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2008801308506A CN102132022A (zh) 2008-10-31 2008-10-31 驱动力控制装置及驱动力控制装置的控制方法
JP2010535609A JPWO2010050069A1 (ja) 2008-10-31 2008-10-31 駆動力制御装置および駆動力制御装置の制御方法
US13/058,042 US20110137514A1 (en) 2008-10-31 2008-10-31 Driving force controlling apparatus and control method of driving force controlling apparatus
DE112009002066T DE112009002066T5 (de) 2008-10-31 2008-10-31 Antriebskraftsteuervorrichtung und Steuerverfahren einer Antriebskraftsteuervorrichtung
GB1102753.9A GB2481877A (en) 2008-10-31 2008-10-31 Driving force controller and controlling method of driving force controller
PCT/JP2008/069965 WO2010050069A1 (ja) 2008-10-31 2008-10-31 駆動力制御装置および駆動力制御装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/069965 WO2010050069A1 (ja) 2008-10-31 2008-10-31 駆動力制御装置および駆動力制御装置の制御方法

Publications (1)

Publication Number Publication Date
WO2010050069A1 true WO2010050069A1 (ja) 2010-05-06

Family

ID=42128447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069965 WO2010050069A1 (ja) 2008-10-31 2008-10-31 駆動力制御装置および駆動力制御装置の制御方法

Country Status (6)

Country Link
US (1) US20110137514A1 (ja)
JP (1) JPWO2010050069A1 (ja)
CN (1) CN102132022A (ja)
DE (1) DE112009002066T5 (ja)
GB (1) GB2481877A (ja)
WO (1) WO2010050069A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095988A1 (ja) * 2011-01-14 2012-07-19 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190998A1 (en) * 2008-09-26 2011-08-04 Toyota Jidosha Kabushiki Kaisha Automatic vehicle braking system and method
JP5262811B2 (ja) * 2008-10-31 2013-08-14 トヨタ自動車株式会社 車両のバネ上制振制御装置
JP5273121B2 (ja) * 2010-10-19 2013-08-28 株式会社デンソー 発進支援装置
JP5731933B2 (ja) * 2011-08-30 2015-06-10 川崎重工業株式会社 適応制御装置および適応制御方法ならびに射出成形機の制御装置および制御方法
JP5556779B2 (ja) * 2011-09-28 2014-07-23 株式会社デンソー 車両制御装置
CN104080671B (zh) * 2012-01-25 2016-08-24 日产自动车株式会社 车辆的控制装置和车辆的控制方法
MX338749B (es) * 2012-05-14 2016-04-29 Nissan Motor Dispositivo de control de vehiculo y metodo de control de vehiculo.
DE102012216275A1 (de) * 2012-09-13 2014-03-13 Zf Friedrichshafen Ag Steuergerät für ein Kraftfahrzeug, Kraftfahrzeug, Verfahren zum Dämpfen einer Nickbewegung eines Kraftfahrzeugs und Programm
KR101448746B1 (ko) * 2012-10-17 2014-10-10 현대자동차 주식회사 전기자동차의 안티 저크 제어 방법 및 시스템
JP5780257B2 (ja) * 2013-03-22 2015-09-16 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP6531946B2 (ja) * 2015-10-09 2019-06-19 日立オートモティブシステムズ株式会社 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法
US10124731B2 (en) * 2016-09-09 2018-11-13 Ford Global Technologies, Llc Controlling side-view mirrors in autonomous vehicles
JP6627829B2 (ja) * 2017-07-20 2020-01-08 トヨタ自動車株式会社 車両の制振制御装置
WO2019180949A1 (ja) * 2018-03-23 2019-09-26 本田技研工業株式会社 制御装置および車両
CN111595504B (zh) * 2020-06-08 2021-08-20 奇石乐精密机械设备(上海)有限公司 一种车轮矢量传感器和车轮六分力传感器的动态连接装置
KR20230123072A (ko) * 2022-02-15 2023-08-23 현대자동차주식회사 차량의 안티 저크 제어 방법 및 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349243A (ja) * 2000-06-07 2001-12-21 Isuzu Motors Ltd エンジンの燃料噴射制御装置
JP2002089326A (ja) * 2000-09-14 2002-03-27 Isuzu Motors Ltd 燃料噴射量設定装置
JP2006069472A (ja) * 2004-09-06 2006-03-16 Denso Corp 車両安定化制御システム
JP2006281925A (ja) * 2005-03-31 2006-10-19 Toyota Motor Corp 車両統合制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871039A (en) * 1987-04-03 1989-10-03 Koyo Seiko Co., Ltd. Power steering system incorporating electric motor
US5183127A (en) * 1989-09-13 1993-02-02 Mazda Motor Corporation Suspension-traction total control system
US5137105A (en) * 1990-01-19 1992-08-11 Honda Giken Kogyo Kabushiki Kaisha System and method for controlling torque of driving wheel
US5275474A (en) * 1991-10-04 1994-01-04 General Motors Corporation Vehicle wheel slip control on split coefficient surface
JPH06122332A (ja) * 1992-10-09 1994-05-06 Nippondenso Co Ltd 車両のスリップ制御装置
JP2981965B2 (ja) * 1993-11-29 1999-11-22 本田技研工業株式会社 車両の駆動力制御装置
JP3304575B2 (ja) * 1993-12-17 2002-07-22 トヨタ自動車株式会社 アンチロック制御装置
JPH07324641A (ja) * 1994-04-07 1995-12-12 Mitsubishi Motors Corp 車両の駆動力制御装置
US5711024A (en) * 1994-11-25 1998-01-20 Itt Automotive Europe Gmbh System for controlling yaw moment based on an estimated coefficient of friction
JP3098425B2 (ja) * 1996-05-22 2000-10-16 株式会社豊田中央研究所 車両のばね上ばね下相対速度算出装置
US5852787A (en) * 1996-09-03 1998-12-22 Ford Global Technologies, Inc. Vehicle suspension control
DE10009924B4 (de) * 2000-03-01 2005-11-17 Sauer-Danfoss Holding Aps Einrichtung zur Dämpfung von Nickschwingungen eines motorgetriebenen Fahrzeugs
US6498975B1 (en) * 2000-07-18 2002-12-24 Ford Global Technologies, Inc. Method for controlling a transfer case which reacts to steering wheel angle position
JP4356305B2 (ja) * 2002-11-19 2009-11-04 株式会社デンソー 車両制御装置
EP3235699B1 (en) * 2006-10-19 2020-12-09 Toyota Jidosha Kabushiki Kaisha Vibration damping control device for vehicle
JP4872884B2 (ja) * 2007-11-01 2012-02-08 トヨタ自動車株式会社 ディーゼルエンジン車両の制振制御装置
WO2010050070A1 (ja) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 車両の制振制御装置
JP4938809B2 (ja) * 2009-01-27 2012-05-23 本田技研工業株式会社 車両の駆動力制御装置
JP5444111B2 (ja) * 2009-05-13 2014-03-19 トヨタ自動車株式会社 車両のバネ上制振制御装置
CN102421633B (zh) * 2009-05-13 2015-08-12 丰田自动车株式会社 减振控制装置
JP5347702B2 (ja) * 2009-05-13 2013-11-20 トヨタ自動車株式会社 車両のバネ上制振制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349243A (ja) * 2000-06-07 2001-12-21 Isuzu Motors Ltd エンジンの燃料噴射制御装置
JP2002089326A (ja) * 2000-09-14 2002-03-27 Isuzu Motors Ltd 燃料噴射量設定装置
JP2006069472A (ja) * 2004-09-06 2006-03-16 Denso Corp 車両安定化制御システム
JP2006281925A (ja) * 2005-03-31 2006-10-19 Toyota Motor Corp 車両統合制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095988A1 (ja) * 2011-01-14 2012-07-19 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
JP5263455B2 (ja) * 2011-01-14 2013-08-14 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
CN103299044A (zh) * 2011-01-14 2013-09-11 丰田自动车株式会社 带增压器的内燃机的控制装置
US8666636B2 (en) 2011-01-14 2014-03-04 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine with supercharger
CN103299044B (zh) * 2011-01-14 2015-11-25 丰田自动车株式会社 带增压器的内燃机的控制装置
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith

Also Published As

Publication number Publication date
CN102132022A (zh) 2011-07-20
GB2481877A (en) 2012-01-11
JPWO2010050069A1 (ja) 2012-03-29
US20110137514A1 (en) 2011-06-09
DE112009002066T5 (de) 2011-07-21
GB201102753D0 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
WO2010050069A1 (ja) 駆動力制御装置および駆動力制御装置の制御方法
WO2010050070A1 (ja) 車両の制振制御装置
JP5146546B2 (ja) 車両制御装置
EP2429873B1 (en) Sprung mass damping control system of vehicle, and vehicle provided with said system
KR101853822B1 (ko) 제진 제어 장치 및 제진 제어 시스템
CN102292248A (zh) 车辆的簧载质量阻尼控制系统
WO2011152269A1 (ja) 車両の制振制御装置
JP2008100605A (ja) 車両の車輪トルク推定装置及び制振制御装置
JP4692499B2 (ja) 車両の制振制御装置
JP2008105471A (ja) 車両の制振制御装置
JP4983549B2 (ja) ディーゼルエンジン車両の制振制御を行う駆動制御装置
US9126593B2 (en) Vibration damping control device
JP2010208633A (ja) 車両の制振制御装置
JP4793304B2 (ja) 車両の制振制御を行う駆動制御装置
JP2009121427A (ja) ディーゼルエンジン車両の制振制御装置
JP6252456B2 (ja) 車両制御装置
JP4992883B2 (ja) 制振制御装置
JP5088393B2 (ja) 車両の制振制御装置
JP4910794B2 (ja) 車両の制振制御を行う駆動制御装置
JP2010137724A (ja) 制振制御装置および制振制御方法
JP2009121426A (ja) ディーゼルエンジン車両の制振制御装置
JP4867735B2 (ja) 車両の制振制御を行う駆動制御装置
WO2010143238A1 (ja) 車両制振制御装置および車両制振制御装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130850.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877779

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010535609

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13058042

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1102753

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20081031

WWE Wipo information: entry into national phase

Ref document number: 1102753.9

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 08877779

Country of ref document: EP

Kind code of ref document: A1

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: GB