Nothing Special   »   [go: up one dir, main page]

WO2010044126A1 - 試料注入ポート及びそれを備えたオートサンプラ - Google Patents

試料注入ポート及びそれを備えたオートサンプラ Download PDF

Info

Publication number
WO2010044126A1
WO2010044126A1 PCT/JP2008/002933 JP2008002933W WO2010044126A1 WO 2010044126 A1 WO2010044126 A1 WO 2010044126A1 JP 2008002933 W JP2008002933 W JP 2008002933W WO 2010044126 A1 WO2010044126 A1 WO 2010044126A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample injection
injection port
hole
sample
seal member
Prior art date
Application number
PCT/JP2008/002933
Other languages
English (en)
French (fr)
Inventor
保永研壱
冨田眞巳
前田愛明
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2008/002933 priority Critical patent/WO2010044126A1/ja
Priority to JP2010533727A priority patent/JP5413370B2/ja
Priority to US13/124,367 priority patent/US8739610B2/en
Priority to CN200880131590.4A priority patent/CN102187197B/zh
Publication of WO2010044126A1 publication Critical patent/WO2010044126A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/18Injection using a septum or microsyringe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • G01N35/1097Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers characterised by the valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/18Injection using a septum or microsyringe
    • G01N2030/185Injection using a septum or microsyringe specially adapted to seal the inlet

Definitions

  • the present invention relates to a sample injection port and an autosampler (automatic sample injection device) including the sample injection port.
  • an autosampler In analysis using a liquid chromatograph, an autosampler is used to introduce a plurality of samples into a column automatically in a predetermined order.
  • an auto sampler one using a so-called whole amount injection method in which a predetermined amount of sample is collected from a sample bottle and the whole amount is injected into a mobile phase flow path is widely used (for example, patent documents See 1).
  • a predetermined amount of sample is aspirated from the sample bottle by a needle and filled in a sample loop (metering loop) connected to the base of the needle.
  • the sample loop is inserted into the mobile phase flow path from the mobile phase container to the column by inserting the needle into the sample injection port and switching the flow path by the flow path switching valve.
  • the sample filled in the sample loop is swept away by the mobile phase, and the entire amount is introduced into the column.
  • FIG. 8 shows an example of the configuration of the sample injection port and the flow path switching valve in the above-described conventional autosampler.
  • the flow path switching valve 4 is, for example, a rotary 6-port 2-position valve, and six ports including the sample injection port 100 are arranged at equal intervals on the stator 42 at the top of the housing 41.
  • the sample injection port 100 is provided perpendicularly to the stator 42, and the stator 42 is provided with a flow passage leading from each port to the rotor 43.
  • a rotor 43 fixed to the shaft 44 is accommodated in the housing 41, and the rotor 43 is configured to slide and rotate in a state of being pressed against the lower surface of the stator 42 by the spring 45.
  • a path communicating between adjacent ports is incised as three circular arc shaped grooves on the sliding surface of the rotor 43, and by rotating the shaft 44, the communication state of each port is changed to switch the flow path .
  • the sample injection port 100 has a guide hole 100a penetrating the center thereof, and the upper end of the guide hole 100a opens at the bottom of the female tapered needle seal surface 100b.
  • the sample injection port 100 is made of polyetheretherketone resin represented by PEEK (registered trademark) and the like.
  • Patent Document 3 proposes that the internal volume of the flow path in the vicinity of the sample injection port be reduced by setting the diameter of the guide hole of the sample injection port to about 0.3 mm to suppress the extra-column diffusion of the sample. . Also, in order to achieve further low diffusion, it is necessary to make the inner diameter of the guide hole smaller. However, since the stator of the flow path switching valve needs to have a certain thickness in order to dispose each port, it is difficult to make the length of the guide hole shorter than about 10 mm. On the other hand, in machining it is difficult to drill a hole of this length with a diameter smaller than 0.3 mm.
  • sample injection port is molded as an integral part of a material such as PEEK resin and the volume of the resin is large, deformation of the resin is likely to occur on the needle seal surface and the stator seal surface at high pressure liquid transfer of about 100 MPa. Therefore, there was a possibility that liquid leakage might occur depending on use conditions.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a sample injection port which can realize high pressure resistance while having a small internal volume and being easy to manufacture. Providing an autosampler.
  • the sample injection port according to the present invention made to solve the above problems is a) a body of inelastic material, b) a first seal member made of an elastic material and attached to one end of the body; c) a second seal member made of an elastic material and attached to the other end of the body; And the first through hole provided in the first seal member, the second through hole provided in the second seal member, and the third through hole provided in the main body are coaxial. Connected to form a guide hole for sample injection.
  • the sample injection port according to the present invention is composed of a combination of a plurality of parts, and the through holes respectively provided in the seal member and the main body are connected by attaching the respective seal members to both ends of the main body, A guiding hole for sample injection is to be formed.
  • the sample injection port is molded as an integral part of resin as in the prior art, and it is one part as compared with the case where the guide hole is drilled by machining over the entire length of the port. Since the length of the through hole to be provided may be short, the formation of the guide hole is facilitated. As a result, it becomes possible to make the diameter of the guide hole smaller than before. In addition, it is possible to manufacture the sample injection port having the same diameter as the conventional one at lower cost. Furthermore, according to the sample injection port according to the present invention, the volume of the portion made of an elastic material such as resin can be made smaller than in the prior art, so deformation during liquid transfer can be reduced and high pressure resistance can be realized. .
  • the main body includes a conduit and a housing for holding the conduit, and the inner hole of the conduit corresponds to the third through hole.
  • the manufacture of the main body becomes easier.
  • a pipe with a small inner diameter it is possible to easily create a sample injection port with a small internal volume.
  • an autosampler according to the present invention made to solve the above problems has a needle, a flow path switching valve, and a sample injection port disposed on the flow path switching valve, and the needle
  • An autosampler for introducing a sample liquid into a channel connected to the other end of the channel via the channel switching valve by injecting the sample liquid from one end of the channel provided at the sample injection port The sample injection port according to the present invention is used as the sample injection port.
  • the present invention by dividing the sample injection port into a plurality of parts, it becomes possible to facilitate the formation of the guide hole and to realize high pressure resistance by reducing the volume of the elastic material. It becomes.
  • FIG. 4 is an exploded sectional view of the sample injection port of FIG. Sectional drawing which shows another structural example of the sample injection port in the Example. Sectional drawing which shows another example of a structure of the sample injection port in the Example. Sectional drawing which shows another example of a structure of the sample injection port in the Example. Sectional drawing which shows the structure of the flow-path switching valve and sample injection
  • the enlarged view which shows the fitted state of the needle and sample injection port in FIG.
  • FIG. 1 is a schematic view showing an example of the flow path configuration of the auto sampler 3 according to the present embodiment.
  • the auto sampler 3 of this embodiment is for introducing a sample into the column 2 of the liquid chromatograph, and performs injection of the sample by the whole amount injection method.
  • the high-pressure valve 4 is a rotary 6-port 2-position flow path switching valve having six ports 4a to 4f, and two adjacent ports are selectively connected by switching operation. That is, the combination of two connections of solid line or dotted line in FIG. 1 can be switched.
  • the low pressure valve 5 is a rotary 7-port 6-position valve having seven ports 5a to 5g, and the common port 5g to which the metering pump 6 is connected is one of the other six ports 5a to 5f.
  • the two predetermined adjacent ports in the ports 5a to 5f are connected in conjunction with each other. For example, as shown by a solid line in FIG. 1, when the common port 5g and the port 5b are connected, the ports 5a and 5f are connected.
  • the high pressure valve 4 corresponds to the flow passage switching valve in the present invention.
  • a column flow path leading to the column 2 is connected to the port 4 b of the high pressure valve 4, and a mobile phase flow path to which the mobile phase (solvent) is supplied by the liquid transfer unit 1 is connected to the port 4 c.
  • the needle 9 is connected to the port 4 d via the sample loop 7.
  • the port 4 a is a sample injection port 10.
  • the port 4 e and the port 4 f are connected to the port 5 b and the port 5 c of the low pressure valve 5, respectively.
  • the cleaning port 8 is connected to the port 5a of the low pressure valve 5, the port 5e is connected to the measuring pump 6, and the cleaning liquid is supplied to the port 5d.
  • the small vial 21 in which the sample liquid is stored is accommodated in the sample rack 22.
  • the needle 9 is movable in the horizontal direction and the vertical direction, respectively, by the movement mechanism 23, and moves on the vial 21 and the washing port 8 and can be inserted into the respective liquids.
  • the high pressure valve 4 and the low pressure valve 5 are switched to the connected state shown by the solid line in FIG. 1, and the needle 9 is moved onto the vial 21 and inserted into its sample solution (position 9 '). .
  • the sample liquid is aspirated from the vial 21 via the mobile phase (or the washing liquid which is the same component) filled in the flow path from the metering pump 6 to the needle 9
  • the sample solution is held in the sample loop 7.
  • the collection amount of the sample liquid is equal to the suction amount of the measuring pump 6.
  • the needle 9 After sampling, the needle 9 is returned to a position above the sample injection port 10 and inserted into the sample injection port 10. Also, the high pressure valve 4 is switched to the connected state shown by the dotted line in FIG. Then, the mobile phase supplied from the liquid feeding unit 1 is sent to the column 2 through the sample loop 7, the needle 9, and the sample injection port 10. At this time, the sample liquid previously held in the sample loop 7 is sent to the column 2 together with the mobile phase, and when passing through the column 2, the components are separated and sequentially detected by a detector not shown. .
  • the washing of the needle 9 to which the sample liquid is attached by the sample aspiration is performed as follows. That is, the high pressure valve 4 and the low pressure valve 5 are switched to the connected state shown by the solid line in FIG. Then, the plunger of the metering pump 6 is pulled to suck the cleaning solution into the syringe. Thereafter, when the high pressure valve 4 and the low pressure valve 5 are both switched to the connection state shown by the dotted line in FIG. 1 and the plunger is pushed to discharge the washing liquid from the measuring pump 6, the washing liquid is introduced into the washing port 8 and filled. The excess cleaning fluid is drained from the drain port of the cleaning port 8. Next, the needle 9 is moved onto the washing port 8 as shown in FIG. 2 to be immersed in the washing solution stored in the washing port 8, and after the needle 9 has been washed for a certain time, it is returned to the sample injection port 10.
  • FIG. 3 is a cross-sectional view showing the structure of the sample injection port 10 in the autosampler 3 of the present embodiment
  • FIG. 4 is an exploded cross-sectional view of the sample injection port 10.
  • the vertical direction is defined based on the vertical direction in the drawing.
  • the sample injection port 10 in the present embodiment is mainly configured by the main body 13, the first seal member 14, and the second seal member 15.
  • the main body 13 is composed of a housing 11 and a pipe 12, which are made of stainless steel.
  • Each seal member 14 and 15 is made of PEEK resin.
  • a pipe insertion hole 11 a penetrating in the vertical direction is formed inside the housing 11, and the pipe 12 is fixed inside thereof.
  • the pipe may be fixed by press-fitting into the pipe insertion hole 11a, or may be fixed to the housing 11 by welding.
  • a flange-like projecting portion 12b extending in the radial direction is provided in the vicinity of the upper end of the outer periphery of the pipe 12, and this projecting portion 12b is engaged with the peripheral edge of the upper end side opening of the pipe insertion hole 11a.
  • the pipe 12 may be fixed in the pipe insertion hole 11 a by making Furthermore, as shown in FIG.
  • a step is provided on the inner periphery of the pipe insertion hole 11a and the outer periphery of the pipe 12, and the pipe 12 is fixed in the pipe insertion hole 11a by engaging these steps.
  • the outer diameter of the pipe 12 is smaller at the lower end than at the upper end, and the inner diameter of the lower end of the pipe insertion hole 11a is such that the lower end of the pipe 12 can pass but the upper end can not pass. It has become a size. Therefore, when the pipe 12 is inserted from the upper end side opening of the pipe insertion hole 11a, the pipe 12 is fixed at a predetermined position in the pipe insertion hole 11a.
  • the upper end and / or the lower end of the pipe 12 is slightly protruded in the axial direction from the opening of the pipe insertion hole 11a, and only the end face of the pipe 12 is the lower surface of the first seal member 14.
  • the area of the seal surface can be reduced to achieve higher pressure resistance.
  • a first recess 11 b for accommodating the first seal member 14 is provided in the upper part of the housing 11, and a second recess 11 c for accommodating the second seal member 15 is provided in the lower part of the housing 11. It is done.
  • the first seal member 14 accommodated in the first recess 11 b is fixed by fastening a stainless steel cap 16 to the top of the housing 11.
  • the cap 16 is provided with an opening 16 a for passing the needle 9.
  • first seal member 14 and the second seal member 15 a first through hole 14a and a second through hole 15a extending in the vertical direction are formed, respectively. Furthermore, a female tapered needle seal surface 14b is formed on the upper side of the first seal member 14, and the upper end of the first through hole 14a is opened at the bottom of the needle seal surface 14b.
  • the first through hole 14a, the inner hole 12a of the pipe 12, and the second through hole 15a are coaxial by inserting the seal members 14 and 15 into the recesses 11b and 11c provided on the upper and lower sides of the housing 11, respectively.
  • a continuous guiding hole is formed from the open end of the upper surface of the first seal member 14 to the open end of the lower surface of the second seal member 15. That is, in the present embodiment, the pipe 12 corresponds to the conduit in the present invention, and the first through hole 14a, the second through hole 15a, and the inner hole 12a of the pipe 12 are the first through hole, the second It corresponds to the through hole and the third through hole.
  • the second seal member 15 ensures sealing with the stator 42, so the flow path 42 a provided in the stator 42 and the sample injection port 10. Can be connected in a fluid tight manner. Further, when the sample liquid is injected into the sample injection port 10 by the needle 9, the sealing property with the needle 9 is secured by the first seal member 14, so that the sample injection without liquid leakage can be performed.
  • sample injection port by dividing the sample injection port, which has been conventionally molded as an integral part of resin, into a plurality of parts, deep hole processing with small internal diameter is performed for each part. It does not need to be applied and can be easily manufactured. Therefore, it is possible to manufacture a sample injection port having the same level of performance as conventional one at lower cost, and create a high performance sample injection port having a smaller inner diameter than before, ie, less diffusion of sample. It also becomes possible.
  • the volume of the portion made of the elastic material can be made smaller than that of the conventional sample injection port of resin integral molding, and the deformation of the part can be reduced, so that high pressure resistance can be realized.
  • the sample injection port in the auto sampler 3 of this embodiment has a configuration in which the pipe 12 is inserted into the housing 11 as described above, and a through hole 11 d for passing the sample is formed in the housing 11 itself. It is also good.
  • An example of such a sample injection port is shown in FIG.
  • the first seal member 14 and the second seal member 15 are accommodated in the recesses 11 b and 11 c provided on the upper and lower sides of the housing 11 so that the through holes 14 a and 15 a and the housing 11 are provided in each seal member 14 and 15.
  • the through holes 11 d provided in the same are coaxially connected to each other, and function as guide holes for sample injection.
  • the through hole 11d corresponds to a third through hole in the present invention.
  • the peripheral edge of the opening at the upper end and / or the lower end of the through hole 11d of the housing 11 is axially protruded, and the tips of the projections 11e and 11f are seal members 14, It is desirable that the area of the sealing surface be reduced by bringing it into contact with 15.
  • the sample injection port according to the present invention is particularly effective for a full-injection autosampler, but may be applied to a partial injection autosampler.
  • the autosampler according to the present invention is not limited to one for liquid chromatograph, and may be one for injecting a sample into another analyzer.
  • the housing and the piping are formed of stainless steel in the above embodiment, the present invention is not limited to this as long as it is a non-elastic material having corrosion resistance, and it may be formed of, for example, titanium.
  • the first seal member and the second seal member are made of PEEK resin in the above embodiment, the present invention is not limited to this as long as it is a corrosion-resistant elastic material, for example, formed of Vespel (registered trademark) You can also.
  • the guide hole formed in the sample injection port has a constant diameter from the open end of the upper surface of the first seal member to the open end of the lower surface of the second seal member.
  • the diameter of the through hole may be changed, or the inner diameter of the through hole may be changed in the component.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

液体クロマトグラフ等に試料を注入するための試料注入ポート10を、非弾性材料から成る本体13と、弾性材料から成り本体13の一端に取り付けられた第1シール部材14と、弾性材料から成り本体13の他端に取り付けられた第2シール部材15とで構成し、第1シール部材14に設けられた第1の貫通孔と、第2シール部材15に設けられた第2の貫通孔と、本体13に設けられた第3の貫通孔とを同軸上に接続して試料注入用の導孔を形成させる。これにより、内容積が小さく且つ製造が容易であると共に、高い耐圧性を実現可能な試料注入ポートを提供することができる。

Description

試料注入ポート及びそれを備えたオートサンプラ
 本発明は、試料注入ポート及びそれを備えたオートサンプラ(自動試料注入装置)に関する。
 液体クロマトグラフを用いた分析では、複数の試料を所定の順序で自動的にカラムに導入するためにオートサンプラが使用される。このようなオートサンプラとしては、所定量の試料を試料瓶から採取し、その全量を移動相流路中に注入する、いわゆる全量注入方式を採用したものが広く用いられている(例えば、特許文献1を参照)。
 全量注入方式による試料の注入においては、まず、所定量の試料をニードルによって試料瓶から吸引して該ニードルの基部に接続されたサンプルループ(計量ループ)内に充填する。続いて、前記ニードルを試料注入ポートに挿入すると共に流路切換えバルブによる流路の切換えを行うことにより、前記サンプルループを移動相容器からカラムへと至る移動相流路中に介挿する。これにより、該サンプルループ中に充填されていた試料が移動相によって押し流され、その全量がカラムに導入される。
 こうした全量注入方式のオートサンプラでは、分離性能の向上のために流路の内容積を極力小さくすることが要求される。そのため、試料注入ポートを配管等を介さずに流路切換えバルブ上に直接取り付けた構成が従来採用されている(特許文献2を参照)。
 図8は、上記従来のオートサンプラにおける試料注入ポート及び流路切換えバルブの構成の一例を示したものである。流路切換えバルブ4は、例えば、回転式の6ポート2ポジションバルブであり、筐体41上部のステータ42には試料注入ポート100を含む6つのポートが等間隔に配設されている。試料注入ポート100はステータ42に垂直に設けられており、ステータ42には各ポートからロータ43に通じる流路が穿設されている。筐体41の内部にはシャフト44に固定されたロータ43が収容されており、ロータ43はスプリング45によってステータ42の下面に押し付けられた状態で摺動回転する構成となっている。ロータ43の摺動面には隣接するポート間を連通するパスが円弧状の3本の溝として刻まれており、シャフト44を回すことによって各ポートの連通状態が変化して流路が切り換えられる。
 試料注入ポート100は、図9に示すように、その中心を貫通する導孔100aを有しており、導孔100aの上端は雌テーパ状のニードルシール面100bの底に開口している。試料注入ポート100はPEEK(登録商標)を代表とするポリエーテルエーテルケトン樹脂などで構成されており、試料注入ポート100にニードル9が挿入されると、その先端のテーパ部がニードルシール面100bの雌テーパに嵌合し、両者が液密に接続される。
特開平6-148157号公報 特開2003-215118号公報 登録実用新案第3129670号公報
 上述のように、全量注入方式の試料導入装置では流路の内容積を極力小さくすることが要求される。そこで、特許文献3には、試料注入ポートの導孔の直径を0.3mm程度とすることで試料注入ポート周辺の流路の内容積を減らして試料のカラム外拡散を抑えることが提案されている。また、更なる低拡散を実現するためには、導孔の内径をより小さくする必要がある。しかしながら、流路切換えバルブのステータには各ポートを配設するために一定の厚さが必要であるため、前記導孔の長さを10mm程度よりも短くすることは難しい。一方で、機械加工では0.3mmよりも細い径でこの長さの穴を穿設することは困難である。更に、試料注入ポートはPEEK樹脂等の材料で一体部品として成型されており樹脂の体積が大きいため、100MPa程度の高圧送液時にはニードルシール面及びステータシール面において樹脂の変形が起こりやすくなる。そのため、使用条件によっては液漏れが発生するおそれがあった。
 本発明はこれらの点に鑑みてなされたものであり、その目的とするところは、内容積が小さく且つ製造が容易であると共に、高い耐圧性を実現することのできる試料注入ポート及びそれを備えたオートサンプラを提供することである。
 上記課題を解決するために成された本発明に係る試料注入ポートは、
 a)非弾性材料から成る本体と、
 b)弾性材料から成り、前記本体の一端に取り付けられた第1シール部材と、
 c)弾性材料から成り、前記本体の他端に取り付けられた第2シール部材と、
 を備え、前記第1シール部材に設けられた第1の貫通孔と、前記第2シール部材に設けられた第2の貫通孔と、前記本体に設けられた第3の貫通孔とが同軸上に接続されて試料注入用の導孔を形成していることを特徴としている。
 上記本発明に係る試料注入ポートは、複数の部品の組み合わせで構成されており、前記各シール部材を前記本体の両端に取り付けることによって該シール部材及び本体にそれぞれ設けられた貫通孔が連結され、試料注入用の導孔が形成されるものとなっている。このような構成とすることにより、従来のように、試料注入ポートを樹脂の一体部品として成型し、該ポートの全長に亘って機械加工で導孔を穿孔する場合に比べて、一つの部品に設ける貫通孔の長さが短くて済むため、導孔の形成が容易となる。その結果、導孔の径を従来よりも小さくすることが可能になる。また、従来と同程度の径の導孔を備えた試料注入ポートをより低コストで製造することも可能となる。更に、上記本発明に係る試料注入ポートによれば、樹脂等の弾性材料から成る部分の体積を従来よりも小さくできるため、送液時の変形が低減され、高い耐圧性を実現することができる。
 なお、前記本発明に係る試料注入ポートは、前記本体が、導管と該導管を保持するハウジングを有し、該導管の内孔が前記第3の貫通孔に相当するものとすることが望ましい。
 このような構成によれば、前記第3の貫通孔を機械加工によって穿孔する必要がないため、前記本体の製造がより容易になる。また、前記配管として内径の小さいものを使用することで、内容積の小さい試料注入ポートを容易に作成できる。
 また、上記課題を解決するためになされた本発明に係るオートサンプラは、ニードルと、流路切換えバルブと、該流路切換えバルブ上に配設された試料注入ポートとを有し、前記ニードルによって前記試料注入ポートに設けられた導孔の一端から試料液体を注入することにより、前記流路切換えバルブを介して該導孔の他端に接続された流路に試料液体を導入するオートサンプラであって、前記試料注入ポートとして前記本発明に係る試料注入ポートを用いることを特徴とするものである。
 以上で説明したように、本発明では試料注入ポートを複数の部品に分割したことにより、導孔の形成が容易になると共に、弾性材料の体積を小さくして高い耐圧性を実現することが可能となる。
本発明の一実施例に係るオートサンプラの流路構成図。 同実施例に係るオートサンプラの動作を説明するための流路構成図。 同実施例のオートサンプラにおける試料注入ポートを示す縦断面図。 図3の試料注入ポートの分解断面図。 同実施例における試料注入ポートの別の構成例を示す断面図。 同実施例における試料注入ポートの更に別の構成例を示す断面図。 同実施例における試料注入ポートの更に別の構成例を示す断面図。 従来のオートサンプラにおける流路切換えバルブ及び試料注入ポートの構成を示す断面図。 図8におけるニードルと試料注入ポートの嵌合状態を示す拡大図。
符号の説明
10…試料注入ポート
11…ハウジング
11a…配管挿通孔
11d…貫通孔
12…配管
13…本体
14…第1シール部材
14a…第1貫通孔
15…第2シール部材
15a…第2貫通孔
3…オートサンプラ
4…高圧バルブ(流路切換えバルブ)
41…筐体
42…ステータ
43…ロータ
 以下、本発明の一実施例によるオートサンプラ及び試料注入ポートについて図面を参照しつつ説明する。
 図1は、本実施例に係るオートサンプラ3の流路構成の一例を示す概略図である。本実施例のオートサンプラ3は液体クロマトグラフのカラム2に試料を導入するためのものであり、全量注入方式による試料の注入を行うものである。
 オートサンプラ3において、高圧バルブ4は6つのポート4a~4fを有する回転式の6ポート2ポジション流路切換バルブであって、切換え操作により、隣接する2つのポートが選択的に接続される。即ち、図1中の実線又は点線の2つの接続の組み合わせが切換え可能とされる。一方、低圧バルブ5は7つのポート5a~5gを有する回転式の7ポート6ポジションバルブであり、計量ポンプ6が接続された共通ポート5gは他の6つのポート5a~5fのいずれか1つに連結され、それに連動してポート5a~5fの中の隣接する所定の2つのポートが連結される。例えば図1中に実線で示すように共通ポート5gとポート5bとが連結されるときにはポート5aと5fとが連結される。なお、本実施例では高圧バルブ4が本発明における流路切換えバルブに相当する。
 高圧バルブ4のポート4bにはカラム2へ至るカラム流路が、ポート4cには送液ユニット1により移動相(溶媒)が供給される移動相流路が接続される。また、ポート4dにはサンプルループ7を介してニードル9が接続される。ポート4aは試料注入ポート10である。ポート4e及びポート4fは、それぞれ低圧バルブ5のポート5b及びポート5cに接続される。その低圧バルブ5のポート5aには洗浄ポート8が接続され、ポート5eは計量ポンプ6に接続され、さらにポート5dには洗浄液が供給される。試料液が貯留された小型のバイアル21は試料ラック22に収容されている。ニードル9は、移動機構23により水平方向及び垂直方向にそれぞれ移動可能となっており、バイアル21上及び洗浄ポート8上に移動すると共にそれぞれの液中に挿入可能である。
 上記装置における試料導入時の基本的な動作シーケンスを説明する。試料採取時には、高圧バルブ4及び低圧バルブ5は図1中の実線で示す接続状態に切り替えられ、ニードル9はバイアル21上に移動されてその試料液中に挿入される(符号9’の位置)。その状態で、計量ポンプ6のプランジャが引かれると、計量ポンプ6からニードル9に至る流路中に満たされている移動相(又は同じ成分である洗浄液)を介してバイアル21から試料液が吸引され、その試料液はサンプルループ7中に保持される。試料液の採取量は計量ポンプ6の吸引量に等しい。
 試料採取後、ニードル9は試料注入ポート10上の位置に戻されて試料注入ポート10に挿入される。また、高圧バルブ4は図1中の点線で示す接続状態に切り換えられる。すると、送液ユニット1から供給された移動相が、サンプルループ7、ニードル9、試料注入ポート10を通ってカラム2へ送られる。この際、移動相と共に、先にサンプルループ7中に保持された試料液がカラム2へと送り込まれ、カラム2を通過する際に成分分離されて図示しない検出器で順次検出されることになる。
 試料吸引によって試料液が付着したニードル9の洗浄は次のようにして行われる。即ち、高圧バルブ4及び低圧バルブ5は図2中の実線で示す接続状態に切り換えられる。そして、計量ポンプ6のプランジャが引かれてシリンジ内に洗浄液が吸引される。その後に高圧バルブ4及び低圧バルブ5が共に図1中の点線で示す接続状態に切り換えられ、プランジャが押されて計量ポンプ6から洗浄液が吐出されると、洗浄液は洗浄ポート8に導入されて満たされ、余分の洗浄液は洗浄ポート8の排液口から排出される。次に、ニードル9を図2中に示すように洗浄ポート8上に移動させて洗浄ポート8に貯留された洗浄液中に浸漬させ、一定時間、ニードル9を洗浄した後に試料注入ポート10まで戻す。
 続いて、本実施例に係るオートサンプラ3の特徴である試料注入ポート10の構成について説明する。図3は本実施例のオートサンプラ3における試料注入ポート10の構造を示す断面図であり、図4は試料注入ポート10の分解断面図である。なお、流路切換えバルブの構造は図8と同様であるため、ここでは詳細を省略する。以下の説明では、図中における上下を基準として上下方向を定義する。
 本実施例における試料注入ポート10は、主に本体13と、第1シール部材14と、第2シール部材15とで構成される。本体13はハウジング11と配管12で構成されており、これらはステンレスから成る。また、各シール部材14、15はPEEK樹脂から成る。
 ハウジング11の内部には上下方向に貫通する配管挿通孔11aが形成され、その内部に配管12が固定される。このとき、配管は配管挿通孔11aに圧入することによって固定してもよく、あるいは溶接によってハウジング11に固定してもよい。また、図5に示すように、半径方向に延出するフランジ状の突出部12bを配管12外周の上端付近に設け、この突出部12bを配管挿通孔11aの上端側開口の周縁部に係止させることによって配管12を配管挿通孔11a内に固定するようにしてもよい。また更に、図6に示すように、配管挿通孔11aの内周と配管12の外周にそれぞれ段差を設け、これらの段差を係合させることで配管12を配管挿通孔11a内に固定するようにしてもよい。図6の例では、配管12の外径は上端側より下端側で小さくなっており、配管挿通孔11aの下端側の内径は、配管12の下端側は通過できるが上端側は通過できない程度の大きさとなっている。このため、配管12を配管挿通孔11aの上端側開口から挿入すると配管挿通孔11a内の所定の位置で配管12が固定される。
 なお、図3~図6に示すように、配管12の上端及び/又は下端は配管挿通孔11aの開口部から軸方向に僅かに突出させ、配管12の端面のみで第1シール部材14の下面又は第2シール部材15の上面と接触するようにすることが望ましい。これにより、シール面の面積を小さくしてより高い耐圧性を達成することができる。また、上記の配管12は予め内面鏡面研磨されたものを用いることが望ましい。これにより、配管12を通過した試料成分が配管12の内壁に残留しにくくなるため、キャリーオーバーを低減することができる。
 更に、ハウジング11の上部には第1シール部材14を収容するための第1凹部11bが設けられており、ハウジング11の下部には第2シール部材15を収容するための第2凹部11cが設けられている。第1凹部11bに収容された第1シール部材14は、ハウジング11の上部にステンレス製のキャップ16を締結することによって固定される。なお、キャップ16にはニードル9を通過させるための開口16aが設けられている。
 第1シール部材14及び第2シール部材15には、それぞれ上下方向に伸びる第1貫通孔14a及び第2貫通孔15aが形成されている。更に、第1シール部材14の上側には雌テーパ状のニードルシール面14bが形成されており、ニードルシール面14bの底に第1貫通孔14aの上端が開口している。
 上記の各シール部材14、15をハウジング11の上下に設けられた各凹部11b、11cに嵌挿することにより、第1貫通孔14a、配管12の内孔12a、及び第2貫通孔15aが同軸的に接続され、その結果、第1シール部材14上面の開口端から第2シール部材15下面の開口端に至る連続した導孔が形成される。すなわち、本実施例では配管12が本発明における導管に相当し、第1貫通孔14a、第2貫通孔15a、及び配管12の内孔12aがそれぞれ本発明における第1の貫通孔、第2の貫通孔、及び第3の貫通孔に相当する。
 このような試料注入ポート10を高圧バルブ4のステータ42に取り付けると、第2シール部材15によってステータ42とのシール性が確保されるため、ステータ42に設けられた流路42aと試料注入ポート10の導孔とを液密に接続することができる。また、ニードル9によって試料注入ポート10に試料液体を注入する際には、第1シール部材14によってニードル9とのシール性が確保されるため、液漏れのない試料注入を行うことができる。
 以上のような本実施例に係る試料注入ポートによれば、従来、樹脂の一体部品として成型されていた試料注入ポートを複数の部品に分割したことにより、各部品に内径の小さい深穴加工を施す必要がなく、容易に製造できるようになる。そのため、従来と同程度の性能を有する試料注入ポートをより低コストで製造することが可能となると共に、従来よりも内径が小さく高性能な(すなわち試料の拡散が少ない)試料注入ポートを作成することも可能となる。また、従来の樹脂一体成型の試料注入ポートに比べて弾性材料から成る部分の体積を小さくすることができ、部品の変形を低減できるため、高い耐圧性を実現することが可能となる。
 本実施例のオートサンプラ3における試料注入ポートは、上記のようにハウジング11の内部に配管12を挿入した構成とするほか、ハウジング11自体に試料を通過させるための貫通孔11dを形成した構成としてもよい。このような試料注入ポートの一例を図7に示す。この場合もハウジング11の上下に設けられた凹部11b、11cに第1シール部材14と第2シール部材15を収容することで各シール部材14、15に設けられた貫通孔14a、15aとハウジング11に設けられた貫通孔11dとが同軸的に接続され、試料注入用の導孔として機能する。この場合、貫通孔11dが本発明における第3の貫通孔に相当する。なお、この場合も図7に示すようにハウジング11の貫通孔11dの上端及び/又は下端側の開口部の周縁を軸方向に突出させ、その突出部11e、11fの先端を各シール部材14、15と当接させることでシール面の面積が小さくなるようにすることが望ましい。
 以上、実施例を用いて本発明を説明したが、本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。例えば、本発明に係る試料注入ポートは特に全量注入方式のオートサンプラで有効なものであるが、部分注入方式のオートサンプラに適用してもよい。また、本発明に係るオートサンプラは液体クロマトグラフ用のものに限らず、他の分析装置に試料を注入するためのものとしてもよい。
 更に、上記実施例ではハウジング及び配管をステンレスで形成するものとしたが、耐食性の非弾性材料であればこれに限らず、例えばチタンなどによって形成することもできる。同様に、上記実施例では第1シール部材及び第2シール部材をPEEK樹脂から成るものとしたが、耐食性の弾性材料であればこれに限らず、例えばVespel(登録商標)樹脂などによって形成することもできる。
 また更に、図3~7では試料注入ポートに形成される導孔を第1シール部材上面の開口端から第2シール部材下面の開口端まで一定の径としたが、例えば、部品毎に貫通孔の径を変えたり、部品内で貫通孔の内径に変化を持たせたりしてもよい。これにより、例えば、導孔の上端付近はニードルの先端が進入できる程度の内径を確保し、それより下端側では内径をより小さくして内容積の低減を図るといったことが可能である。

Claims (4)

  1.  a)非弾性材料から成る本体と、
     b)弾性材料から成り、前記本体の一端に取り付けられた第1シール部材と、
     c)弾性材料から成り、前記本体の他端に取り付けられた第2シール部材と、
     を備え、前記第1シール部材に設けられた第1の貫通孔と、前記第2シール部材に設けられた第2の貫通孔と、前記本体に設けられた第3の貫通孔とが同軸上に接続されて試料注入用の導孔を形成していることを特徴とする試料注入ポート。
  2.  前記第3の貫通孔の少なくともいずれか一方の開口部の周縁を該貫通孔の軸方向に突出させ、該突出部の先端が第1シール部材又は第2シール部材と当接するように構成されていることを特徴とする請求項1に記載の試料注入ポート。
  3.  前記本体が、導管と該導管を保持するハウジングを有し、該導管の内孔が前記第3の貫通孔に相当することを特徴とする請求項1又は2に記載の試料注入ポート。
  4.  ニードルと、流路切換えバルブと、該流路切換えバルブ上に配設された試料注入ポートとを有し、前記ニードルによって前記試料注入ポートに設けられた導孔の一端から試料液体を注入することにより、前記流路切換えバルブを介して該導孔の他端に接続された流路に試料液体を導入するオートサンプラであって、前記試料注入ポートとして請求項1~3のいずれかに記載のものを用いることを特徴とするオートサンプラ。
PCT/JP2008/002933 2008-10-16 2008-10-16 試料注入ポート及びそれを備えたオートサンプラ WO2010044126A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2008/002933 WO2010044126A1 (ja) 2008-10-16 2008-10-16 試料注入ポート及びそれを備えたオートサンプラ
JP2010533727A JP5413370B2 (ja) 2008-10-16 2008-10-16 試料注入ポート及びそれを備えたオートサンプラ
US13/124,367 US8739610B2 (en) 2008-10-16 2008-10-16 Sample injection port and auto-sampler having the same
CN200880131590.4A CN102187197B (zh) 2008-10-16 2008-10-16 试样注入口及具有该试样注入口的自动进样器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/002933 WO2010044126A1 (ja) 2008-10-16 2008-10-16 試料注入ポート及びそれを備えたオートサンプラ

Publications (1)

Publication Number Publication Date
WO2010044126A1 true WO2010044126A1 (ja) 2010-04-22

Family

ID=42106304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/002933 WO2010044126A1 (ja) 2008-10-16 2008-10-16 試料注入ポート及びそれを備えたオートサンプラ

Country Status (4)

Country Link
US (1) US8739610B2 (ja)
JP (1) JP5413370B2 (ja)
CN (1) CN102187197B (ja)
WO (1) WO2010044126A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879505A (zh) * 2011-07-11 2013-01-16 株式会社岛津制作所 针头连接器以及使用该针头连接器的自动取样器
JP2013238468A (ja) * 2012-05-15 2013-11-28 Shimadzu Corp ニードルポート
WO2020121430A1 (ja) * 2018-12-12 2020-06-18 株式会社島津製作所 クロマトグラフ用オートサンプラ

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862947B2 (ja) * 2007-09-28 2012-01-25 株式会社島津製作所 試料導入装置
WO2010119801A1 (ja) * 2009-04-16 2010-10-21 株式会社島津製作所 液体クロマトグラフ
JP5860408B2 (ja) * 2010-01-11 2016-02-16 ウオーターズ・テクノロジーズ・コーポレイシヨン 固定シールと動的シール
CN102565436B (zh) * 2012-01-19 2013-09-18 湖州凯立特医疗器械有限公司 便携式检测仪器的自校准多次测量模块及其使用方法
FR2991055B1 (fr) * 2012-05-22 2014-06-13 C2 Diagnostics Dispositif de connexion fluidique pour appareils d'analyse biologique, composant fluidique adapte et appareil d'analyse biologique ainsi equipe;
CN102734496A (zh) * 2012-06-14 2012-10-17 肖巍 一种多通道流体分配器外接导管簇的整体接口设计
EP2741080A1 (de) * 2012-12-05 2014-06-11 CTC Analytics AG Vorrichtung sowie Verfahren zum Einspritzen eines Fluids in ein Analysegerät
DE102013110072B4 (de) * 2013-09-12 2020-07-09 Dionex Softron Gmbh Dichtmechanismus und Dichtverfahren
FR3014445B1 (fr) * 2013-12-06 2017-03-17 Univ Technologie De Compiegne Utc Installation de couplage d'un bioreacteur avec un appareil d'analyse physico-chimique ou de collecte d'echantillons.
CN104034910A (zh) * 2014-05-27 2014-09-10 武汉矽感科技有限公司 检测设备进样系统密封方法及进样系统、装置和检测设备
CN106461622B (zh) * 2014-06-11 2018-09-21 株式会社岛津制作所 液体试样导入装置
DE102014109538B4 (de) 2014-07-08 2018-08-16 Dionex Softron Gmbh Probeninjektionsport
CN106770848B (zh) * 2017-01-19 2018-10-12 浙江福立分析仪器股份有限公司 一种液相色谱自动进样器及其进样口自动校正方法
CN109126204B (zh) * 2018-10-15 2023-11-03 兰州东立龙信息技术有限公司 一种色谱柱进样针导引装置
CN113167773B (zh) * 2018-12-10 2024-09-03 株式会社岛津制作所 色谱仪及色谱仪用自动进样器
CN115698704A (zh) * 2020-06-09 2023-02-03 株式会社岛津制作所 树脂管连接装置
US11774327B2 (en) 2020-12-29 2023-10-03 Dionex Corporation Bioinert sampling needle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641637Y2 (ja) * 1983-05-02 1989-01-13
JPH09274027A (ja) * 1996-04-03 1997-10-21 Hitachi Ltd ガスクロマトグラフ用試料注入口
JP2003098049A (ja) * 2001-09-26 2003-04-03 Oji Paper Co Ltd 液体試料測定用の通液装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604956U (ja) * 1983-06-22 1985-01-14 東京理化器械株式会社 試料注入チユ−ブ
DE3480562D1 (en) * 1983-09-14 1989-12-28 Erba Strumentazione Automatic sample apparatus and sampling method
JPS60183859U (ja) * 1984-05-17 1985-12-06 サヌキ工業株式会社 液体クロマトグラフイ用のサンプルインジエクタ
JPS641637A (en) 1987-06-24 1989-01-06 Bridgestone Corp Children's seat
JPH03129670A (ja) 1989-10-13 1991-06-03 Kanebo Ltd リチウム有機電解質電池
JPH0413653A (ja) 1990-05-07 1992-01-17 Nippon Synthetic Chem Ind Co Ltd:The α―アミノ―β―ヒドロキシ吉草酸の製造法
JP2629539B2 (ja) 1992-11-04 1997-07-09 株式会社島津製作所 試料液供給装置
US5531810A (en) * 1994-09-21 1996-07-02 Merlin Instrument Company Injection septum with dust wiper
JPH08304370A (ja) * 1995-04-28 1996-11-22 Shimadzu Corp 配管接続構造
US6475388B1 (en) * 1996-11-13 2002-11-05 Transgenomic, Inc. Method and system for RNA analysis by matched ion polynucleotide chromatography
JP3129670B2 (ja) 1997-02-28 2001-01-31 三菱電機株式会社 燃料改質装置
JPH11271292A (ja) * 1998-03-23 1999-10-05 Yamazen Corp インジェクター
US6526812B2 (en) * 2001-07-14 2003-03-04 Leap Technologies, Inc. Self-washing injection apparatus
JP3877572B2 (ja) * 2001-08-09 2007-02-07 オリンパス株式会社 微細流路装置およびその使用方法
JP2003215118A (ja) 2002-01-29 2003-07-30 Shimadzu Corp 液体クロマトグラフ用オートサンプラ
DE20216216U1 (de) * 2002-10-21 2003-02-27 SLS MICRO TECHNOLOGY GmbH, 21079 Hamburg Mikrofluides System
US7105043B2 (en) * 2003-10-03 2006-09-12 O'neil Gregory Gerard Sealing mechanism for gas chromatograph machines
CN2826428Y (zh) * 2005-02-04 2006-10-11 安捷伦科技有限公司 具有改进密封装置的气相色谱仪进样口
JP4993445B2 (ja) * 2006-08-30 2012-08-08 株式会社日立ハイテクノロジーズ 試料導入装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641637Y2 (ja) * 1983-05-02 1989-01-13
JPH09274027A (ja) * 1996-04-03 1997-10-21 Hitachi Ltd ガスクロマトグラフ用試料注入口
JP2003098049A (ja) * 2001-09-26 2003-04-03 Oji Paper Co Ltd 液体試料測定用の通液装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879505A (zh) * 2011-07-11 2013-01-16 株式会社岛津制作所 针头连接器以及使用该针头连接器的自动取样器
US9194846B2 (en) 2011-07-11 2015-11-24 Shimadzu Corporation Needle adaptor and automatic sampler using the same
JP2013238468A (ja) * 2012-05-15 2013-11-28 Shimadzu Corp ニードルポート
WO2020121430A1 (ja) * 2018-12-12 2020-06-18 株式会社島津製作所 クロマトグラフ用オートサンプラ
JPWO2020121430A1 (ja) * 2018-12-12 2021-09-27 株式会社島津製作所 クロマトグラフ用オートサンプラ
JP7156395B2 (ja) 2018-12-12 2022-10-19 株式会社島津製作所 クロマトグラフ用オートサンプラ
US12105063B2 (en) 2018-12-12 2024-10-01 Shimadzu Corporation Auto-sampler for chromatographs

Also Published As

Publication number Publication date
JPWO2010044126A1 (ja) 2012-03-08
JP5413370B2 (ja) 2014-02-12
CN102187197A (zh) 2011-09-14
CN102187197B (zh) 2013-04-24
US8739610B2 (en) 2014-06-03
US20110247405A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
WO2010044126A1 (ja) 試料注入ポート及びそれを備えたオートサンプラ
JP4862947B2 (ja) 試料導入装置
US9075035B2 (en) Injection port needle support and washing
JP4862946B2 (ja) 試料導入方法
US20110290042A1 (en) Liquid Sample Injection Device and Liquid Sample Injection Method
JP2009080012A (ja) 液体クロマトグラフ分析装置及び試料導入装置
KR101686455B1 (ko) 시료주입장치, 시료주입방법, 및 액체크로마토그래피장치
US20160061788A1 (en) Switching valve for flow type analysis apparatus
WO2014157505A1 (ja) フロー式分析装置用の試料注入装置、フロー式分析装置、及び、ヘモグロビン成分の計測方法
JP4492245B2 (ja) オートサンプラ
JP6260719B2 (ja) 液体クロマトグラフ
JP2014106213A (ja) 液体クロマトグラフ用オートサンプラ
RU2730922C2 (ru) Устройство и способ для высокоточного отбора проб жидкостей в автоматическом анализаторе проб
JPWO2019111438A1 (ja) 液体クロマトグラフ
US11123738B2 (en) High pressure seal connector
WO2013069769A1 (ja) 生化学分析用の試料注入装置、フロー式生化学分析装置、及び、ヘモグロビン成分の計測方法
JP3129670U (ja) オートサンプラ
US9182327B2 (en) Sample preparation by solid phase extraction
JP2013170925A (ja) 注射器、マイクロシリンジ、及び分析装置への注入方法
CN214374549U (zh) 一种用于清洗进样设备的流路结构
JP4807447B2 (ja) オートサンプラ
JP4211651B2 (ja) 液体分画装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131590.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533727

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13124367

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08877386

Country of ref document: EP

Kind code of ref document: A1