Nothing Special   »   [go: up one dir, main page]

WO2009139029A1 - 自発光型センサ装置及びその製造方法 - Google Patents

自発光型センサ装置及びその製造方法 Download PDF

Info

Publication number
WO2009139029A1
WO2009139029A1 PCT/JP2008/058694 JP2008058694W WO2009139029A1 WO 2009139029 A1 WO2009139029 A1 WO 2009139029A1 JP 2008058694 W JP2008058694 W JP 2008058694W WO 2009139029 A1 WO2009139029 A1 WO 2009139029A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
adhesive
sensor device
self
Prior art date
Application number
PCT/JP2008/058694
Other languages
English (en)
French (fr)
Inventor
篤 尾上
義則 木村
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US12/991,964 priority Critical patent/US20110260176A1/en
Priority to PCT/JP2008/058694 priority patent/WO2009139029A1/ja
Priority to JP2010511795A priority patent/JP5031895B2/ja
Publication of WO2009139029A1 publication Critical patent/WO2009139029A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements

Definitions

  • the present invention relates to a technical field of a self-luminous sensor device capable of measuring, for example, a blood flow velocity and a manufacturing method thereof.
  • this type of self-luminous sensor device there is a device that irradiates a living body with light such as laser light and calculates a blood flow velocity of the living body by a change in wavelength due to Doppler shift at the time of reflection or scattering (for example, (See Patent Documents 1 and 2).
  • a light source such as a semiconductor laser for irradiating a living body with light in a housing and a light such as a photodiode for detecting light from the living body are typically used. Miniaturization is achieved by providing the detectors close to each other.
  • a self-luminous sensor device light that should not be detected is detected by the photodetector, such as light that is directed directly to the photodetector without being irradiated on the living body, among light from the light source.
  • it has a light-shielding structure to prevent this.
  • a light shielding structure is realized, for example, in Patent Document 1 by providing a shielding plate between the semiconductor laser and the photodiode in the housing.
  • the light shielding structure is anisotropic with respect to the silicon substrate. This is realized by separately arranging a semiconductor laser and a photodiode in each of the two recesses formed by performing the etching process, and forming a light shielding film on the inner surface of the recess.
  • Patent Document 1 for example, in addition to the semiconductor laser and the photodiode, the above-described shielding plate, a reflecting plate for guiding light from the semiconductor laser to the living body, Since it is necessary to incorporate a relatively large number of parts including a reflector for guiding the light from the photodiode to the photodiode side, the number of processes increases, and a lot of time is required to adjust the position of these parts. It may be necessary. Further, with the technique disclosed in Patent Document 2, for example, a small sensor device having a size of several millimeters ⁇ several millimeters can be realized, but an anisotropic etching process is performed to form a recess in a silicon substrate. There is a risk that the time required for the process will increase, or the yield may decrease due to manufacturing variations caused by the anisotropic etching process.
  • the present invention has been made in view of, for example, the above-described problems, is suitable for mass production, and is a small self-luminous sensor device that can detect a predetermined type of information such as blood flow velocity in a subject with high accuracy. It is another object of the present invention to provide a manufacturing method thereof.
  • a self-luminous sensor device of the present invention is provided with a substrate, an irradiation unit that is disposed on the substrate and irradiates a subject with light, and is disposed on the substrate and the irradiated light.
  • a light receiving unit for detecting light from the subject due to the front surface a front plate disposed on the front side where the subject is disposed with respect to the substrate so as to face the substrate, and on the substrate It is formed so as to surround each of the irradiation unit and the light receiving unit in plan view, and includes a light-shielding adhesive, and includes an adhesive unit that adheres the substrate and the front plate to each other.
  • the self-luminous sensor device of the present invention at the time of detection, light such as laser light is irradiated, for example, onto a subject that is a part of a living body, for example, by an irradiation unit including a semiconductor laser. .
  • the light from the subject resulting from the light irradiated on the subject is detected by a light receiving unit including a light receiving element, for example.
  • light from the subject caused by the light irradiated on the subject means light reflected, scattered, diffracted, refracted, transmitted, Doppler shifted in the subject, and interference light due to those lights, It means light resulting from light irradiated on the subject.
  • it Based on the light detected by the light receiving unit, it is possible to obtain predetermined information related to the subject, such as blood flow velocity.
  • the front plate is made of, for example, a light-shielding plate-like member in which an exit port for passing light emitted from the irradiation unit and an entrance port for allowing light from the subject to pass are formed.
  • the substrate on which the irradiation part and the light receiving part are formed and the front plate are bonded to each other by an adhesive part including a light-shielding adhesive.
  • the adhesive portion is formed so as to surround each of the irradiation portion and the light receiving portion when viewed in plan on the substrate.
  • the substrate and the front plate can be securely bonded by the bonding portion. Furthermore, it is possible to prevent unnecessary light from the surroundings of the self-luminous sensor device from entering the irradiation unit and the light receiving unit by the bonding unit. In addition, of the light emitted from the irradiation unit by the bonding unit, the light that goes directly from the irradiation unit to the light receiving unit (that is, the light that is emitted from the irradiation unit and goes directly to the light receiving unit without being irradiated on the subject) Can be blocked. Therefore, it is possible to prevent the light detected by the light receiving unit from fluctuating due to unnecessary light from the surroundings of the self-luminous sensor device or light directed directly from the irradiation unit to the light receiving unit. As a result, predetermined types of information such as blood flow velocity in the subject can be detected with high accuracy.
  • the adhesive portion can also function as a spacer that defines the distance between the substrate and the front plate.
  • the substrate and the front plate are bonded to each other by the bonding portion.
  • the self-luminous sensor device of the present invention has a laminated structure in which a substrate on which an irradiating part and a light receiving part are formed and a front plate are laminated via an adhesive part. Therefore, when manufacturing the self-luminous sensor device of the present invention, for example, after forming the irradiation portion and the light receiving portion on the flat substrate surface of the substrate, the front plate may be bonded to the substrate by the bonding portion.
  • the self-luminous sensor device of the present invention since the self-luminous sensor device of the present invention has a relatively simple structure called a laminated structure in which a substrate and a front plate are laminated via an adhesive portion, each process in the manufacturing process is simplified or It can be shortened. As a result, the yield can be improved, and the manufacturing cost can be reduced.
  • the self-luminous sensor device of the present invention it is possible to detect a predetermined type of information such as blood flow velocity in a subject with high accuracy. Further, the yield can be improved and the manufacturing cost can be reduced, which is suitable for mass production.
  • the adhesive portion is composed only of the light-shielding adhesive.
  • the configuration of the bonding portion is relatively simple, for example, the process of forming the bonding portion can be simplified. Therefore, the yield can be further improved, and the manufacturing cost can be further reduced.
  • the adhesive portion has a higher strength than the light-shielding adhesive, and each of the irradiation portion and the light receiving portion is viewed in plan on the substrate.
  • An enclosing frame-like member is included.
  • the strength of the bonded portion can be increased. Therefore, for example, the function as a spacer of an adhesion part can be improved. Therefore, it can suppress that the space
  • the light shielding adhesive is an acrylic, epoxy, polyimide or silicon adhesive in which light shielding particles are dispersed.
  • the adhesive part includes an acrylic, epoxy, polyimide, or silicon adhesive in which the light shielding particles are dispersed, as the light shielding adhesive. Therefore, the substrate and the front plate can be reliably bonded by the bonding portion. Furthermore, it is possible to reliably prevent unnecessary light from the surroundings of the self-luminous sensor device from entering the irradiation unit and the light receiving unit by the bonding unit. In addition, the light directly emitted from the irradiation unit to the light receiving unit among the light emitted from the irradiation unit can be reliably blocked by the bonding unit.
  • the light-shielding particles include conductive particles such as carbon black, aluminum, and silver, and black pigment particles.
  • the irradiation unit and the light receiving unit are integrated on the substrate.
  • the irradiating part and the light receiving part are integrated, the arrangement area of each can be reduced and the size can be further reduced.
  • the range of use of the self-luminous sensor device can be expanded, for example, the self-luminous sensor device can be a portable type instead of a stationary type.
  • the apparatus further includes a calculating unit that calculates a blood flow velocity related to the subject based on the detected light.
  • the blood flow velocity of each blood vessel having a different depth from the skin surface can be measured by utilizing the fact that the penetrating power of light into a living body depends on the wavelength. Specifically, by irradiating the surface of the living body with light, the light penetrating inside is reflected or scattered by red blood cells flowing in the blood vessels, and the wavelength is changed by receiving a Doppler shift according to the moving speed of the red blood cells. On the other hand, light scattered or reflected by skin tissue or the like that can be regarded as immobile with respect to red blood cells reaches the light receiving unit without changing the wavelength. When these lights interfere, an optical beat signal corresponding to the Doppler shift amount is detected in the light receiving unit. By performing arithmetic processing such as frequency analysis on the optical beat signal by the calculation unit, it is possible to obtain the blood flow velocity flowing in the blood vessel.
  • the irradiating unit includes a semiconductor laser that generates laser light as the light.
  • the laser beam can be irradiated by applying a voltage so that a current higher than the laser oscillation threshold flows to the semiconductor laser of the irradiation unit.
  • Laser light has the property that, for example, the penetrating power into a living body differs depending on the wavelength. By utilizing this property, measurement at various depths of the subject becomes possible.
  • a first method for manufacturing a self-luminous sensor device includes a substrate, an irradiation unit that is disposed on the substrate and irradiates a subject with light, and is disposed on the substrate.
  • a light receiving unit that detects light from the subject caused by the irradiated light, and a front surface on which the subject is placed with respect to the substrate, so as to face the substrate.
  • a face plate and an adhesive which is formed so as to surround each of the irradiation unit and the light receiving unit when viewed in plan on the substrate and includes a light-shielding adhesive, and bonds the substrate and the front plate to each other.
  • a self-luminous sensor device comprising: a first light-emitting sensor device comprising: a step of forming the irradiation unit and the light-receiving unit on a first large substrate including a plurality of the substrates; 1 The irradiation unit on the large substrate and the The step of applying the light-shielding adhesive so as to surround each of the light portions, and the second large substrate including a plurality of the front plates are opposed to the first large substrate to which the light-shielding adhesive is applied. Arranging the first and second large substrates with the light-shielding adhesive, and cutting the first and second large substrates bonded to each other along the periphery of the substrate Including the step of.
  • the above-described self-luminous sensor device of the present invention can be manufactured.
  • the light-shielding adhesive is applied using, for example, a dispenser (liquid metering discharge device) or the like so as to surround each of the irradiation part and the light-receiving part on the first large substrate, only the light-shielding adhesive is used.
  • the adhesion part which consists of can be formed easily.
  • the first and second large substrates are bonded together, the first and second large substrates are cut along the periphery of the substrate, so that a plurality of self-luminous sensor devices can be manufactured simultaneously.
  • a second self-luminous sensor device manufacturing method is arranged on a substrate, an irradiation unit arranged on the substrate and irradiating a subject with light, and arranged on the substrate.
  • a light receiving unit that detects light from the subject caused by the irradiated light, and a front surface on which the subject is placed with respect to the substrate, so as to face the substrate.
  • a face plate and an adhesive which is formed so as to surround each of the irradiation unit and the light receiving unit when viewed in plan on the substrate and includes a light-shielding adhesive, and bonds the substrate and the front plate to each other.
  • a self-luminous sensor device comprising: a first light-emitting sensor device comprising: a step of forming the irradiation unit and the light-receiving unit on a first large substrate including a plurality of the substrates; 1 The irradiation unit on the large substrate and the A step of disposing an adhesive sheet made of the light-shielding adhesive on the first large substrate, and a second large substrate including a plurality of the front plates; Are disposed so as to face the first large substrate on which the adhesive sheet is disposed, and the first and second large substrates are bonded to each other by the adhesive sheet, and the first and first bonded to each other Cutting two large substrates along the periphery of the substrate.
  • the above-described self-luminous sensor device of the present invention can be manufactured.
  • the first and second large substrates are bonded to each other by an adhesive sheet that is formed so as to be able to surround each of the irradiation unit and the light receiving unit on the first large substrate. Therefore, it is possible to easily form an adhesive portion made only of a light-shielding adhesive.
  • the first and second large substrates are cut along the periphery of the substrate, so that a plurality of self-luminous sensor devices can be manufactured simultaneously.
  • a third method for manufacturing a self-luminous sensor device includes a substrate, an irradiation unit that is disposed on the substrate and irradiates a subject with light, and is disposed on the substrate.
  • a light receiving unit that detects light from the subject caused by the irradiated light, and a front surface on which the subject is placed with respect to the substrate, so as to face the substrate.
  • a face plate and an adhesive which is formed so as to surround each of the irradiation unit and the light receiving unit when viewed in plan on the substrate and includes a light-shielding adhesive, and bonds the substrate and the front plate to each other.
  • a self-luminous sensor device comprising: a light-emitting sensor device, comprising: a step of forming the irradiation unit and the light-receiving unit on a first large substrate including a plurality of the substrates; With higher strength than adhesive The step of applying the light-shielding adhesive by dipping on a large frame-like member formed so as to be able to surround each of the irradiation part and the light receiving part when viewed in plan on the first large substrate And arranging a second large substrate including a plurality of the front plates so as to face the first large substrate through the large frame-like member coated with the light-shielding adhesive, Adhering the first and second large substrates to each other with an adhesive, and cutting the first and second large substrates bonded to each other along the periphery of the substrate.
  • the above-described self-luminous sensor device of the present invention can be manufactured.
  • the light-blocking adhesive is applied to the large frame-shaped member by dipping, an adhesive portion made of the frame-shaped member and the light-blocking adhesive can be easily formed.
  • the first and second large substrates and the large frame-shaped member are cut along the periphery of the substrate, so that a plurality of self-luminous sensor devices are manufactured simultaneously. can do.
  • a fourth method for manufacturing a self-luminous sensor device includes a substrate, an irradiation unit that is disposed on the substrate and irradiates a subject with light, and is disposed on the substrate.
  • a light receiving unit that detects light from the subject caused by the irradiated light, and a front surface on which the subject is placed with respect to the substrate, so as to face the substrate.
  • a face plate and an adhesive which is formed so as to surround each of the irradiation unit and the light receiving unit when viewed in plan on the substrate and includes a light-shielding adhesive, and bonds the substrate and the front plate to each other.
  • a self-luminous sensor device comprising: a light-emitting sensor device, comprising: a step of forming the irradiation unit and the light-receiving unit on a first large substrate including a plurality of the substrates; With higher strength than adhesive In the large frame-shaped member formed so as to be able to surround each of the irradiation unit and the light receiving unit when viewed in plan on the first large substrate, the first large substrate is opposed to the first large substrate.
  • a step of applying the light-shielding adhesive to one surface and a second surface opposite to the first surface; and a second large substrate including a plurality of the front plates, wherein the light-shielding adhesive is applied A step of arranging the large-sized frame member so as to face the first large-sized substrate, and bonding the first and second large-sized substrates to each other via the large-sized frame-shaped member with the light-shielding adhesive. And cutting the first and second large substrates bonded to each other along the periphery of the substrate.
  • the above-described self-luminous sensor device of the present invention can be manufactured.
  • a light-shielding adhesive is applied to the first surface (that is, the lower surface) that faces the first large substrate in the large frame-shaped member and the second surface (that is, the upper surface) opposite to the first surface. Is applied using, for example, a roller or the like, so that an adhesive portion having a configuration in which the upper surface and the lower surface of the frame-like member are covered with a light-shielding adhesive can be easily formed.
  • the first and second large substrates and the large frame-shaped member are cut along the periphery of the substrate, so that a plurality of self-luminous sensor devices are manufactured simultaneously. can do.
  • the substrate, the irradiation unit, the light receiving unit, the front plate, and the bonding unit are provided.
  • a predetermined type of information such as speed can be detected with high accuracy. Further, the yield can be improved and the manufacturing cost can be reduced, which is suitable for mass production. Further, according to the first to fourth self-luminous sensor device manufacturing methods according to the present invention, the above-described self-luminous sensor device of the present invention can be manufactured.
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG. 1. It is a top view which shows the structure of the front plate of the blood flow sensor apparatus which concerns on 1st Embodiment. It is sectional drawing with the same meaning as FIG. 2 in a 1st modification. It is sectional drawing with the same meaning as FIG. 2 in a 2nd modification. It is a block diagram which shows the structure of the blood-flow sensor apparatus which concerns on 1st Embodiment. It is a conceptual diagram which shows an example of the usage method of the blood-flow sensor apparatus which concerns on 1st Embodiment.
  • FIG. 9 is a sectional view taken along the line B-B ′ of FIG. 8. It is sectional drawing with the same meaning as FIG. 2 in 3rd Embodiment.
  • It is a flowchart which shows the flow of the manufacturing method of the self-light-emitting sensor device which concerns on 1st Embodiment.
  • It is a top view which shows the sensor part substrate wafer after a laser diode, a photodiode, etc. were formed.
  • the sensor unit substrate wafer and the front plate array substrate are opposed to each other through a large frame-shaped member after light-shielding adhesive is applied by dipping. It is sectional drawing which shows the state arrange
  • the sensor unit substrate wafer and the front plate array substrate are arranged to face each other with a large frame-shaped member coated with a light-shielding adhesive.
  • FIG. 1 is a plan view showing a configuration of a sensor unit of the blood flow sensor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG.
  • the front plate 190 shown in FIG. 2 is omitted for convenience of explanation.
  • the sensor unit 100 of the blood flow sensor device includes a sensor unit substrate 110, a laser diode 120, an electrode 130, a wire wiring 140, and a laser diode drive circuit 150.
  • the sensor unit substrate 110 is made of a semiconductor substrate such as a silicon substrate. On the sensor unit substrate 110, a laser diode 120, a laser diode drive circuit 150, a photodiode 160, and a photodiode amplifier 170 are integrated and arranged.
  • the laser diode 120 is an example of the “irradiation unit” according to the present invention, and is a semiconductor laser that emits laser light.
  • the laser diode 120 is electrically connected to the electrode 130 through the wire wiring 140.
  • the electrode 130 is electrically connected to an electrode pad (not shown) provided on the bottom of the sensor part substrate 110 by a wiring (not shown) penetrating the sensor part substrate 110.
  • the other electrode (not shown) formed on the bottom surface of the laser diode 120 is connected to the sensor unit by a wiring (not shown) on the sensor unit substrate 110 or a wiring (not shown) penetrating the sensor unit substrate 110.
  • the laser diode 120 is electrically connected to an electrode pad (not shown) provided on the bottom of the substrate 110 and allows the laser diode 120 to be driven by current injection from the outside of the sensor unit 100.
  • the laser diode drive circuit 150 is a circuit that controls driving of the laser diode 120 and controls the amount of current injected into the laser diode 120.
  • the photodiode 160 is an example of the “light receiving unit” according to the present invention, and functions as a photodetector that detects light reflected or scattered from the subject. Specifically, the photodiode 160 can obtain information on the intensity of light by converting the light into an electrical signal.
  • the photodiode 160 is arranged side by side with the laser diode 120 on the sensor unit substrate 110. The light received by the photodiode 160 is converted into an electrical signal and input to the photodiode amplifier 170 via a wire wiring (not shown), an electrode (not shown) formed on the bottom surface of the photodiode 160, or the like.
  • the photodiode 160 is an example of the “light receiving unit” according to the present invention, and functions as a photodetector that detects light reflected or scattered from the subject. Specifically, the photodiode 160 can obtain information on the intensity of light by converting the light into an electrical signal.
  • the photodiode 160 is arranged side by side
  • the photodiode amplifier 170 is an amplification circuit that amplifies the electric signal obtained by the photodiode 160.
  • the photodiode amplifier 170 is electrically connected to an electrode pad (not shown) provided on the bottom of the sensor part substrate 110 by wiring (not shown) penetrating the sensor part substrate 110, and an amplified electric signal. Can be output to the outside.
  • the photodiode amplifier 170 is electrically connected to an A / D (Analog-to-Digital) converter 310 (see FIG. 6 described later) provided outside the sensor unit 100.
  • the adhesive part 180 is made of a light-shielding adhesive and adheres the sensor part substrate 110 and the front plate 190 to each other.
  • the light-shielding adhesive may be, for example, an acrylic, epoxy, polyimide, or silicon adhesive in which conductive particles such as carbon black, aluminum, and silver are dispersed, or a black pigment.
  • An acrylic-based, epoxy-based, polyimide-based, or silicon-based adhesive having a pigment dispersed therein may be used.
  • the bonding portion 180 is formed so as to surround each of the laser diode 120 and the photodiode 160 when viewed in plan on the sensor portion substrate 110.
  • the adhesive part 180 is formed in a wall shape on the sensor part substrate 110, and the first wall part 181 formed along the peripheral edge on the sensor part substrate 110, and the sensor part substrate 110. And a second wall portion 182 formed between the laser diode 120 and the photodiode 160 above.
  • the first wall-shaped portion 181 surrounds the entirety of the laser diode 120, the electrode 130, the wire wiring 140, the laser diode drive circuit 150, the photodiode 160, and the photodiode amplifier 170 when viewed in plan on the sensor unit substrate 110. Is formed.
  • the first wall-shaped portion 181 allows light from the periphery of the sensor unit 100 to enter the inside of the sensor unit 100 (that is, inside the first wall-shaped portion 181 on the sensor unit substrate 110). Can be prevented.
  • the second wall portion 182 includes a portion formed along one side of the sensor portion substrate 110 in the first wall portion 181 between the laser diode 120 and the photodiode 160 on the sensor portion substrate 110, and the first wall. It is formed so that the part formed along the other side which opposes this one side among the shaped parts 181 may be connected.
  • the second wall-shaped portion 182 can shield the laser diode 120 and the photodiode 160 from light.
  • the light emitted from the laser diode 120 can be blocked as it is toward the photodiode 160 without being irradiated on the subject.
  • light that does not need to be detected by the photodiode 160 is prevented from entering the photodiode 160 from the laser diode 120 side to the photodiode 160 side on the sensor unit substrate 110, and the detection accuracy is improved. be able to.
  • the front plate 190 is disposed above the laser diode 120, the photodiode 160, and the like (that is, on the front side of the sensor unit substrate 110 where the laser diode 120 and the like are provided, with a predetermined interval from the sensor unit substrate 110). ing. In other words, the front plate 190 is disposed so as to face the sensor unit substrate 110 via the bonding unit 180.
  • FIG. 3 is a plan view showing the configuration of the front plate of the blood flow sensor device according to the present embodiment.
  • the front plate 190 includes a transparent substrate 190a and a light shielding film 195.
  • the transparent substrate 190a is a transparent substrate that can transmit light from the laser diode 120 and light from the subject.
  • a resin substrate, a glass substrate, or the like can be used as the transparent substrate 190a.
  • the light shielding film 195 is provided on each of two substrate surfaces (that is, a substrate surface facing the sensor unit substrate 110 and a substrate surface opposite to the substrate surface) in the transparent substrate 190a.
  • the light shielding film 195 defines an exit port 191 for emitting light from the laser diode 120 to the outside, and defines an entrance port 192 for entering light reflected or scattered from the subject.
  • the light that enters the photodiode 160 is limited by the light shielding film 195, and only the light from directly above (that is, from the upward direction to the downward direction in FIG. 2) is incident on the photodiode 160. Therefore, light that does not need to be detected can be prevented from entering the photodiode 160, and detection accuracy can be improved.
  • the diameter of the entrance 192 is, for example, about 40 um.
  • FIG. 4 is a sectional view having the same concept as in FIG. 2 in the first modification.
  • the incident port 192 may be formed as a pin hole (through hole) penetrating the transparent substrate 190a.
  • a light shielding film 195 is also formed on the inner wall of the entrance 192 formed as a pinhole, so that a part of the light to be emitted from the exit 191 is inside the front plate 190 (that is, transparent).
  • the path through which light can enter the photodiode 160 from the incident port 192 via the substrate 190a) can be eliminated, and the detection accuracy can be further improved.
  • FIG. 5 is a sectional view having the same concept as in FIG. 2 in the second modification.
  • the sensor unit 100 may include a front plate 190b made of a light shielding material instead of the front plate 190.
  • each of the exit port 191 and the entrance port 192 is formed as a pin hole penetrating the front plate 190b. In this case, it is not necessary to form the light shielding film 195 described above.
  • a protective plate made of a transparent substrate such as a resin substrate or a glass substrate may be provided on the upper surface side of the front plate 190.
  • the durability of the sensor unit 100 can be enhanced by the protective plate.
  • the same effect can be obtained by molding the entire front plate or the portion where the through hole is formed with a resin transparent to the light from the laser diode 120, or filling the through hole with the transparent resin. Can be obtained.
  • the sensor unit substrate 110 is preferably a substrate made of a light shielding material, but is formed of a material that can transmit infrared light, such as Si (silicon), in order to integrally form an electronic circuit and a photodiode. May be.
  • light shielding treatment may be performed separately with a light shielding resist or the like.
  • the sensor unit substrate 110 on which the laser diode 120, the photodiode 160, and the like are formed, and the front plate 190 are bonded to each other by the bonding unit 180.
  • the sensor unit 100 of the blood flow sensor device according to the present embodiment includes the sensor unit substrate 110 on which the laser diode 120, the photodiode 160, and the like are formed, and the front plate 190 stacked via the adhesive unit 180. It has a laminated structure.
  • the sensor unit 100 of the blood flow sensor device has a relatively simple structure of a three-layer structure in which the sensor unit substrate 110, the bonding unit 180, and the front plate 190 are stacked in this order. Yes. Therefore, each process in the manufacturing process can be simplified or shortened. Therefore, the yield can be improved and the manufacturing cost can be reduced.
  • FIG. 6 is a block diagram showing the configuration of the blood flow sensor device according to the present embodiment.
  • the blood flow sensor device includes an A / D converter 310 and a blood flow velocity DSP (Digital Signal Processor) 320 in addition to the sensor unit 100 described above.
  • the laser diode drive circuit 150 and the photodiode amplifier 170 are configured to be formed on the sensor unit substrate 110.
  • the sensor unit substrate 110 may not be formed and may be provided separately from the sensor unit 100, or may be integrated on the sensor unit substrate 110 including the A / D converter 310 and the blood flow velocity DSP 320.
  • other substrates having respective functions may be stacked together with the sensor unit substrate 110 and mounted by a method of electrically connecting each other by wire wiring or through wiring.
  • the A / D converter 310 converts the electrical signal output from the photodiode amplifier 170 from an analog signal to a digital signal. That is, the electrical signal obtained by the photodiode 160 is amplified by the photodiode amplifier 170 and then converted into a digital signal by the A / D converter 310.
  • the A / D converter 310 outputs a digital signal to the blood flow velocity DSP 320.
  • the blood flow velocity DSP 320 is an example of the “calculation unit” according to the present invention, and calculates a blood flow velocity by performing predetermined arithmetic processing on the digital signal input from the A / D converter 310. .
  • FIG. 7 is a conceptual diagram showing an example of a method of using the blood flow sensor device according to the present embodiment.
  • the blood flow sensor device uses a laser diode 120 to apply laser light having a predetermined wavelength (for example, short wave light having a wavelength of 780 nm, or The blood flow velocity is measured by irradiating a long wave light having a wavelength of 830 nm.
  • the laser light irradiation site is a site (for example, a hand, a foot, a face, an ear, etc.) in which capillary blood vessels are densely distributed at a position relatively close to the epidermis.
  • an arrow P ⁇ b> 1 conceptually indicates light emitted from the sensor unit 100.
  • the blood flow sensor device In measuring the blood flow velocity, the blood flow sensor device according to the present embodiment is typically used by bringing the fingertip 500 into contact with the upper surface of the sensor unit 100 (that is, the upper surface of the front plate 190). However, in FIG. 7, for convenience of explanation, a gap is provided between the fingertip 500 and the sensor unit 100. However, according to the blood flow sensor device according to the present embodiment, the blood flow velocity can be measured without bringing the fingertip 500 into contact with the upper surface of the sensor unit 100.
  • the laser light applied to the fingertip 500 penetrates to a depth corresponding to the wavelength, and flows through blood vessels such as capillaries of the fingertip 500 or living tissues such as skin cells constituting the epidermis. Reflected or scattered.
  • an arrow P ⁇ b> 2 conceptually indicates light that is reflected or scattered by the biological tissue of the fingertip 500 and enters the sensor unit 100. Then, Doppler shift occurs in the light reflected or scattered by the red blood cells flowing in the blood vessel, and the wavelength of the light changes depending on the moving speed of the red blood cells, that is, the blood flow speed (that is, the blood flow speed).
  • the wavelength of light scattered or reflected by skin cells that can be regarded as immobile to red blood cells does not change.
  • an optical beat signal corresponding to the Doppler shift amount is detected in the photodiode 160 (see FIG. 6).
  • the optical beat signal detected by the photodiode 160 is frequency-analyzed to calculate the Doppler shift amount, and thereby the blood flow velocity can be calculated.
  • the adhesive portion 180 made of a light-shielding adhesive is provided, for example, the photodiode 160 may not be detected. Light can be prevented from entering the photodiode 160. Therefore, the blood flow velocity in the subject can be detected with high accuracy.
  • the sensor unit 100 has a relatively simple structure of a three-layer structure in which the sensor unit substrate 110, the bonding unit 180, and the front plate 190 are laminated in this order. Therefore, the yield can be improved and the manufacturing cost can be reduced, which is suitable for mass production.
  • FIG. 8 is a plan view showing the configuration of the sensor unit of the blood flow sensor device according to the second embodiment.
  • 9 is a cross-sectional view taken along the line B-B 'of FIG.
  • the illustration of the front plate 190 shown in FIG. 9 is omitted, and the adhesive portion 200 is cut so as to include the frame-shaped member 210 on a plane along the substrate surface of the sensor portion substrate 110.
  • the cross section in the case where it did is shown. 8 and 9, the same reference numerals are given to the same components as the components according to the first embodiment shown in FIGS. 1 to 7, and the description thereof will be omitted as appropriate.
  • the blood flow sensor device according to the second embodiment differs from the blood flow sensor device according to the first embodiment described above in that the blood flow sensor device according to the second embodiment includes a sensor unit 102 instead of the sensor unit 100 according to the first embodiment described above. About the point, it is comprised substantially the same as the blood-flow sensor apparatus which concerns on 1st Embodiment mentioned above.
  • the sensor unit 102 of the blood flow sensor device according to the second embodiment includes the bonding unit 200 in place of the bonding unit 180 in the first embodiment described above, and thus the first embodiment described above.
  • the other parts are configured in substantially the same manner as the sensor unit 100 of the blood flow sensor device according to the first embodiment described above.
  • the bonding portion 200 includes an adhesive portion 210 and a frame-shaped member 220.
  • the bonding portion 200 is formed so as to surround each of the laser diode 120 and the photodiode 160 when viewed in plan on the sensor portion substrate 110.
  • the adhesive portion 210 is made of a light-shielding adhesive and has an upper surface (that is, a surface facing the front plate 190 in the frame-shaped member 220) and a lower surface (that is, the sensor unit substrate 110 in the frame-shaped member 220). And a part of the side surface (more specifically, the side surface facing the laser diode 120 and the side surface facing the photodiode 160 in the frame-shaped member 220).
  • the light-shielding adhesive may be, for example, an acrylic, epoxy, polyimide, or silicon adhesive in which conductive particles such as carbon black, aluminum, and silver are dispersed, or a black pigment.
  • An acrylic-based, epoxy-based, polyimide-based, or silicon-based adhesive having a pigment dispersed therein may be used.
  • the frame-shaped member 220 is made of, for example, resin having higher strength than the adhesive portion 210 and is formed so as to surround each of the laser diode 120 and the photodiode 160 when viewed in plan on the sensor unit substrate 110. .
  • the frame-shaped member 220 may be formed of, for example, silicon, metal, ceramics, or the like having higher strength than the adhesive portion 210.
  • the bonding portion 200 since the bonding portion 200 includes the adhesive portion 210 and the frame-shaped member 220, the bonding portion 200 does not include the frame-shaped member 220 (that is, includes only the adhesive). )
  • the strength of the bonding portion 200 can be increased compared to the case. Therefore, it can suppress that the space
  • a part of the adhesive portion 210 covers the side surface facing the laser diode 120 and the side surface facing the photodiode 160 in the frame-shaped member 220.
  • 220 can be formed from a transparent material.
  • the frame-like member 220 may be formed from a material having a light shielding property.
  • FIG. 10 is a sectional view having the same concept as in FIG. 2 in the third embodiment.
  • the same reference numerals are given to the same components as those according to the first embodiment shown in FIGS. 1 to 7, and description thereof will be omitted as appropriate.
  • the blood flow sensor device according to the third embodiment differs from the blood flow sensor device according to the first embodiment described above in that the blood flow sensor device according to the third embodiment includes a sensor unit 103 instead of the sensor unit 100 in the first embodiment described above. About the point, it is comprised substantially the same as the blood-flow sensor apparatus which concerns on 1st Embodiment mentioned above.
  • the sensor unit 103 of the blood flow sensor device according to the third embodiment is provided with an adhesive part 201 instead of the adhesive part 180 in the first embodiment described above, and the blood according to the first embodiment described above.
  • the other parts are configured in substantially the same manner as the sensor unit 100 of the blood flow sensor device according to the first embodiment described above.
  • the bonding portion 201 includes an adhesive portion 211 and a frame-shaped member 221.
  • the frame-shaped member 221 is configured in substantially the same manner as the frame-shaped member 220 in the second embodiment described above with reference to FIGS. That is, the frame-shaped member 221 is made of, for example, a resin having a higher strength than the adhesive portion 211 and having a light shielding property, and each of the laser diode 120 and the photodiode 160 is viewed on the sensor unit substrate 110 in a plan view. It is formed so as to surround it.
  • the frame-shaped member 221 may be formed from, for example, silicon, metal, ceramics, or the like.
  • the adhesive portion 211 is made of a light-shielding adhesive, and has an upper surface (that is, a surface facing the front plate 190 in the frame-shaped member 221) and a lower surface (that is, the sensor unit substrate 110 in the frame-shaped member 221). And is not formed on the side surface of the frame-shaped member 221.
  • the light-shielding adhesive may be, for example, an acrylic, epoxy, polyimide, or silicon adhesive in which conductive particles such as carbon black, aluminum, and silver are dispersed, or a black pigment.
  • An acrylic-based, epoxy-based, polyimide-based, or silicon-based adhesive having a pigment dispersed therein may be used.
  • the bonding portion 201 since the bonding portion 201 includes the adhesive portion 211 and the frame-shaped member 221, the bonding portion 201 does not have the frame-shaped member 221 (that is, a light-blocking adhesive).
  • the strength of the bonding portion 201 can be increased as compared with the case where the bonding portion 201 is composed only of the above. Therefore, it can suppress that the space
  • the adhesive portion 201 includes the light-shielding frame-shaped member 221 and the adhesive portion 211 made of the light-shielding adhesive. It is possible to prevent the light detected by the light from fluctuating due to unnecessary light from the periphery of the sensor unit 103 or light directed directly from the laser diode 120 to the photodiode 160.
  • the self-luminous sensor device manufacturing method according to the first embodiment is an example of the first self-luminous sensor device manufacturing method according to the present invention, and the blood flow sensor device according to the first embodiment described above. Can be manufactured. Below, the manufacturing method which manufactures the sensor part 100 of the blood-flow sensor apparatus which concerns on 1st Embodiment mentioned above is demonstrated in detail.
  • FIG. 11 is a flowchart showing the flow of the manufacturing method of the self-luminous sensor device according to the first embodiment.
  • FIG. 12 is a plan view showing the sensor unit substrate wafer after the laser diode and the photodiode are formed.
  • FIG. 13 is a conceptual diagram illustrating a process of applying an adhesive in the method for manufacturing the self-luminous sensor device according to the first embodiment.
  • the sensor unit substrate wafer 510 is an example of the “first large substrate” according to the present invention, and is a semiconductor wafer including a plurality of sensor unit substrates 110 (see FIGS. 1 and 2). More specifically, the laser diode drive circuit 150, the photodiode 160, the photodiode amplifier 170, and the electrode 130 are formed on the sensor unit substrate wafer 510 by a semiconductor process technique, and then the laser diode 120 is mounted.
  • a light-shielding adhesive is applied onto the sensor unit substrate wafer 510 using a dispenser (step S11). That is, as shown in FIGS. 12 and 13, a light-shielding adhesive 185 is applied to the adhesive region 180 a on the sensor unit substrate wafer 510 using the dispenser 910.
  • the adhesive region 180 a is defined in a lattice shape surrounding each of the laser diode 120 and the photodiode 160 in the sensor unit substrate wafer 510.
  • the light-shielding adhesive 185 for example, a thermosetting resin in which conductive particles such as carbon black, aluminum, and silver are dispersed is used.
  • the light-shielding adhesive 185 may be a thermosetting resin in which a pigment such as a black pigment is dispersed. After the light shielding adhesive 185 is applied onto the sensor unit substrate wafer 510, the applied light shielding adhesive 185 is temporarily cured by heating for a predetermined time. As the light shielding adhesive, a light sensitive pressure sensitive adhesive may be used.
  • the front plate array substrate (not shown) is an example of a “second large substrate” according to the present invention, and includes a substrate (for example, a plurality of front plates 190 including a plurality of front plates 190 (see FIGS. 2 and 3)). For example, a substrate arranged in a matrix.
  • the step of forming such a front plate array substrate may be performed in advance, for example, in parallel with the step of forming a laser diode or the like on the sensor unit substrate wafer 510 (step S10).
  • a light shielding film 195 (see FIGS. 2 and 3) is formed in a predetermined pattern on a transparent substrate wafer including a plurality of transparent substrates 190a (see FIGS. 2 and 3).
  • the sensor unit substrate wafer 510 coated with the light-shielding adhesive 185 and the front plate array substrate are arranged so as to face each other, and alignment is performed.
  • the light shielding adhesive 185 is pressurized by bringing the sensor unit substrate wafer 510 and the front plate array substrate closer to a predetermined distance.
  • the light-shielding adhesive 185 is cured by heating, whereby the sensor unit substrate wafer 510 and the front plate array substrate are bonded to each other by the light-shielding adhesive 185.
  • the sensor unit substrate wafer 510, the front plate array substrate, and the light-shielding adhesive 185 are cut along the cutting line L1 (step S13).
  • the cutting line L1 is defined along the periphery of each of the plurality of sensor unit substrates 110 in the sensor unit substrate wafer 510.
  • the sensor unit substrate wafer 510, the front plate array substrate, and the light-shielding adhesive 185 are cut along the cutting line L1 by, for example, dicing. Thereby, the several sensor part 100 can be manufactured simultaneously.
  • the sensor unit 100 of the blood flow sensor device according to the first embodiment described above can be manufactured.
  • the light-shielding adhesive 185 is applied using the dispenser 910 so as to surround each of the laser diode 120 and the photodiode 160 on the sensor unit substrate wafer 510, the light-shielding adhesive is performed.
  • An adhesive portion 180 made of only the agent 185 can be easily formed.
  • the sensor unit substrate wafer 510 and the front plate array substrate are bonded to each other by the light-shielding adhesive 185, so that a plurality of sensor units 100 can be manufactured simultaneously.
  • a method for manufacturing the self-luminous sensor device according to the second embodiment will be described with reference to FIGS.
  • the method for manufacturing the self-luminous sensor device according to the second embodiment is an example of the method for producing the second self-luminous sensor device according to the present invention, and the blood flow sensor device according to the first embodiment described above. Can be manufactured. Below, the manufacturing method which manufactures the sensor part 100 of the blood-flow sensor apparatus which concerns on 1st Embodiment mentioned above is demonstrated in detail.
  • FIG. 14 is a flowchart showing a flow of a manufacturing method of the self-luminous sensor device according to the second embodiment.
  • FIG. 15 is a conceptual diagram illustrating a process of installing an adhesive seal in the method for manufacturing the self-luminous sensor device according to the second embodiment. 14 and 15, the same reference numerals are used for the manufacturing steps and components similar to the manufacturing steps and components in the manufacturing method of the self-luminous sensor device according to the first embodiment shown in FIGS. 11 to 13. The description thereof will be omitted as appropriate.
  • step S10 first, the laser diode 120, the photodiode 160, and the like are formed on the sensor unit substrate wafer 510 (step S10).
  • an adhesive sheet 189 made of a light-shielding adhesive is placed on the sensor unit substrate wafer 510 (step S21). That is, as shown in FIG. 15, a lattice-like adhesive sheet 189 that can surround each of the laser diode 120 and the photodiode 160 is disposed so as to overlap the adhesive region 180a.
  • the adhesive sheet 189 is a thermosetting or pressure sensitive adhesive sheet.
  • the adhesive sheet 189 has a light shielding property, for example, a pigment such as a black pigment is dispersed therein.
  • the sensor unit substrate wafer 510 and the front plate array substrate are bonded to each other (step S22). More specifically, the sensor unit substrate wafer 510 on which the adhesive sheet 189 is installed and the front plate array substrate are arranged so as to face each other, and alignment is performed. Subsequently, when the adhesive sheet 189 is a pressure-sensitive adhesive sheet, the sensor unit substrate wafer 510 and the front plate array substrate are brought close to a predetermined distance to pressurize the adhesive sheet 189, The front plate array substrate is bonded to each other by an adhesive sheet 189. Alternatively, when the adhesive sheet 189 is a thermosetting adhesive sheet, the sensor part substrate wafer 510 and the front plate array substrate are adhered to each other by the adhesive sheet 189 by curing the adhesive sheet 189 by heating. .
  • the sensor unit substrate wafer 510, the front plate array substrate, and the adhesive sheet 189 are cut along the cutting line L1 (step S23). That is, the sensor unit substrate wafer 510, the front plate array substrate, and the adhesive sheet 189 are cut along the cutting line L1 by, for example, dicing. Thereby, the several sensor part 100 can be manufactured simultaneously.
  • the sensor unit 100 of the blood flow sensor device according to the first embodiment described above can be manufactured.
  • the sensor is formed by an adhesive sheet 189 formed so as to be able to surround each of the laser diode 120 and the photodiode 160 on the sensor unit substrate wafer 510 and made of a light-shielding adhesive. Since the partial substrate wafer 510 and the front plate array substrate are bonded to each other, it is possible to easily form the bonding portion 180 made of only the light-shielding adhesive.
  • the sensor unit substrate wafer 510 and the front plate array substrate are bonded to each other by the adhesive sheet 189, the sensor unit substrate wafer 510 and the front plate array substrate are cut along the cutting line L1, so that the plurality of sensor units 100 can be simultaneously connected.
  • the manufacturing method of the self-luminous sensor device according to the third embodiment is an example of the manufacturing method of the third self-luminous sensor device according to the present invention, and the blood flow sensor device according to the second embodiment described above. Can be manufactured. Below, the manufacturing method which manufactures the sensor part 102 of the blood-flow sensor apparatus which concerns on 2nd Embodiment mentioned above with reference to FIG.8 and FIG.9 is demonstrated in detail.
  • FIG. 16 is a flowchart showing a flow of a manufacturing method of the self-luminous sensor device according to the third embodiment.
  • FIG. 17 is a perspective view showing a large frame-shaped member in the method for manufacturing the self-luminous sensor device according to the third embodiment.
  • FIG. 18 illustrates a method for manufacturing a self-luminous sensor device according to the third embodiment through a large frame-like member after a sensor unit substrate wafer and a front plate array substrate are coated with a light-shielding adhesive by dipping. It is sectional drawing which shows the state arrange
  • step S10 the laser diode 120, the photodiode 160, and the like are formed on the sensor unit substrate wafer 510 (step S10).
  • a large frame member is formed (step S31). That is, a large frame member 610 as shown in FIG. 16 is formed. More specifically, the large frame-like member 610 is formed in a lattice shape that can surround each of the laser diode 120 and the photodiode 160 in the sensor unit substrate wafer 510.
  • the large frame-shaped member 610 includes a plurality of openings 611 corresponding to each of the plurality of laser diodes 120 formed on the sensor unit substrate wafer 510 and a plurality of units formed on the sensor unit substrate wafer 510.
  • Each of the photodiodes 160 is formed in a plate shape having a plurality of openings 612 corresponding to each one.
  • the large frame member 610 is formed by, for example, a resin molding technique or an etching technique.
  • the step of forming the large frame member 610 (step S31) is performed in advance, for example, in parallel with the step of forming the laser diode 120 or the like (step S10) on the sensor unit substrate wafer 510. It is good to keep.
  • step S32 the large frame member 610 is dipped in a light-shielding adhesive.
  • the light-blocking adhesive is applied to the entire surface of the large-frame member 610 by immersing the large-frame member 610 in the light-blocking adhesive.
  • the entire surface of the large frame-shaped member 610 is covered (that is, coated) with the light-shielding adhesive.
  • the sensor unit substrate wafer 510 and the front plate array substrate are bonded to each other through the large frame member 610 coated with a light-shielding adhesive (step S33). More specifically, as shown in FIG. 18, the sensor unit substrate wafer 510 and the front plate array substrate 710 are opposed to each other via a large frame-shaped member 610 coated with a light-shielding adhesive 620. Place and align. Subsequently, the light-shielding adhesive 620 is cured by heating, so that the sensor unit substrate wafer 510 and the front plate array substrate 710 are bonded to each other by the light-shielding adhesive 620.
  • the sensor unit substrate wafer 510, the front plate array substrate 710, the large frame member 610, and the light blocking adhesive 620 are cut along the cutting line L1 by, for example, dicing (step S34). Thereby, the several sensor part 102 can be manufactured simultaneously.
  • the sensor unit 102 of the blood flow sensor device according to the second embodiment described above with reference to FIGS. can be manufactured.
  • the adhesive portion 200 (see FIG. 9) including the adhesive portion 210 and the frame-shaped member 220 can be easily formed.
  • the sensor unit substrate wafer 510 and the front plate array substrate 710 are bonded to each other with a light-shielding adhesive 620, the sensor unit substrate wafer 510, the front plate array substrate 710, and the large frame member 610 are cut along the cutting line L1.
  • the manufacturing method of the self-luminous sensor device according to the fourth embodiment is an example of the manufacturing method of the fourth self-luminous sensor device according to the present invention, and the blood flow sensor device according to the third embodiment described above. Can be manufactured.
  • the manufacturing method which manufactures the sensor part 103 of the blood-flow sensor apparatus which concerns on 3rd Embodiment mentioned above with reference to FIG. 10 is demonstrated in detail.
  • FIG. 19 is a flowchart showing a flow of a manufacturing method of the self-luminous sensor device according to the fourth embodiment.
  • FIG. 20 illustrates a method of manufacturing a self-luminous sensor device according to the fourth embodiment, in which the sensor unit substrate wafer and the front plate array substrate are opposed to each other with a large frame-shaped member coated with a light-shielding adhesive. It is sectional drawing which shows the state arrange
  • a laser diode 120, a photodiode 160, and the like are formed on the sensor unit substrate wafer 510 (step S10).
  • step S31 a large frame member is formed (step S31). That is, the large frame-shaped member 610 as shown in FIG. 16 is formed in the same manner as the manufacturing method of the self-luminous sensor device according to the third embodiment described above.
  • a light-shielding adhesive is applied to the upper and lower surfaces of the large frame-shaped member 610 (step S42). That is, in FIGS. 16 and 20, the upper surface (that is, the surface that faces the front plate array substrate 710) and the lower surface (that is, the surface that faces the sensor unit substrate wafer 510) of the large frame member 610. Further, for example, a thermosetting light-shielding adhesive is applied using a roller or the like.
  • the sensor unit substrate wafer 510 and the front plate array substrate 710 are bonded to each other through the large frame member 610 coated with the light-shielding adhesive 620 (step S43). More specifically, as shown in FIG. 20, the sensor unit substrate wafer 510 and the front plate array substrate 710 are connected to each other through a large frame-shaped member 610 having a light-shielding adhesive 620 applied to the upper and lower surfaces thereof. It arrange
  • the sensor substrate wafer 510 and the large frame member 610 are bonded to each other by the portion of the light blocking adhesive 620 applied to the lower surface of the large frame member 610 and the light blocking adhesive 620.
  • the front plate array substrate 710 and the large frame member 610 are bonded to each other by the portion applied to the upper surface of the large frame member 610).
  • the sensor unit substrate wafer 510, the front plate array substrate 710, the large frame member 610, and the light blocking adhesive 620 are cut along the cutting line L1 by, for example, dicing (step S34). Thereby, the several sensor part 103 (refer also FIG. 10) can be manufactured simultaneously.
  • the sensor unit 103 of the blood flow sensor device according to the third embodiment described above with reference to FIG. 10 is manufactured. Can do.
  • the light-blocking adhesive 620 is applied to the upper surface and the lower surface of the large frame-shaped member 610 using, for example, a roller or the like, the adhesive portion composed of the adhesive portion 211 and the frame-shaped member 221. 201 (see FIG. 10) can be easily formed.
  • the sensor unit substrate wafer 510 and the front plate array substrate 710 are bonded to each other with a light-shielding adhesive 620, the sensor unit substrate wafer 510, the front plate array substrate 710, and the large frame member 610 are cut along the cutting line L1. Since it cut
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and a self-luminous sensor with such a change.
  • the apparatus and the manufacturing method thereof are also included in the technical scope of the present invention.
  • the self-luminous sensor device and the manufacturing method thereof according to the present invention can be used for, for example, a blood flow sensor device capable of measuring a blood flow velocity and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 自発光型センサ装置は、基板(110)と、基板上に配置され、光を被検体に照射する照射部(120)と、基板上に配置され、照射された光に起因する被検体からの光を検出する受光部(150)と、基板の照射部が配置された前面側に、基板に対向するように配置された前面板(190)と、基板上で平面的に見て照射部及び受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、基板及び前面板を互いに接着する接着部(180)とを備える。これにより、量産に適し、被検体における例えば血流速度等の所定種類の情報を高精度で検出可能となる。

Description

自発光型センサ装置及びその製造方法
 本発明は、例えば血流速度等を測定することが可能な自発光型センサ装置及びその製造方法の技術分野に関する。
 この種の自発光型センサ装置として、レーザ光等の光を生体に照射し、その反射又は散乱の際におけるドップラーシフトによる波長の変化により、生体の血流速度等を算出するものがある(例えば特許文献1及び2参照)。このような自発光型センサ装置では、典型的には、筺体内に、光を生体に照射するための例えば半導体レーザ等の光源と、生体からの光を検出するための例えばフォトダイオード等の光検出器とが互いに近接して設けられることにより小型化が図られる。更に、このような自発光型センサ装置は、例えば光源からの光のうち生体に照射されることなく光検出器に直接向かう光等の、検出されるべきでない光が光検出器によって検出されるのを防ぐための遮光構造を有することが多い。このような遮光構造を、例えば、特許文献1では、筺体内において半導体レーザとフォトダイオードとの間に遮蔽板を設けることにより実現しており、特許文献2では、シリコン基板に対して異方性エッチング処理を施すことにより形成された2つの凹部の各々に半導体レーザとフォトダイオードとを別々に配置し、該凹部の内面に遮光膜を形成することにより実現している。
特開2004-357784号公報 特開2004-229920号公報
 しかしながら、例えば特許文献1及び2に開示された技術によれば、上述した遮光構造を含む当該自発光型センサ装置の構造が複雑であるために、製造プロセスにおいて、多くの時間を要する工程が増えたり、工程数が増加したりしてしまうおそれがあるという技術的問題点がある。このため、製造プロセスにおける歩留まりが低下し、その結果、装置の製造コストが増大してしまうおそれもある。
 例えば、特許文献1に開示された技術では、例えば、筺体内に、半導体レーザ及びフォトダイオードに加えて、上述した遮蔽板や、半導体レーザからの光を生体側に案内するための反射板、生体からの光をフォトダイオード側に案内するための反射板等を含む比較的多くの部品を組み込む必要があるため、工程数が増加してしまったり、これら部品の位置調整のために多くの時間が必要となってしまったりするおそれがある。また、特許文献2に開示された技術では、例えば、大きさが数ミリメートル×数ミリメートル程度の小型のセンサ装置は実現できるが、シリコン基板に凹部を形成するための異方性エッチング処理を施すのに要する時間が多くなってしまったり、異方性エッチング処理に起因する製造ばらつきによって、歩留まりが低下してしまったりするおそれがある。
 本発明は、例えば上述した問題点に鑑みなされたものであり、量産に適しており、被検体における例えば血流速度等の所定種類の情報を高精度で検出可能な小型の自発光型センサ装置及びその製造方法を提供することを課題とする。
 本発明の自発光型センサ装置は上記課題を解決するために、基板と、該基板上に配置され、光を被検体に照射する照射部と、前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、前記基板に対して前記被検体が配置される前面側に、前記基板に対向するように配置された前面板と、前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部とを備える。
 本発明の自発光型センサ装置によれば、その検出時には、例えば半導体レーザを含んでなる照射部によって、例えばレーザ光等の光が、例えば生体の一部である被検体に対して照射される。このように被検体に照射された光に起因する被検体からの光は、例えば受光素子を含んでなる受光部により検出される。ここに「被検体に照射された光に起因する被検体からの光」とは、被検体において反射、散乱、回折、屈折、透過、ドップラーシフトされた光及びそれらの光による干渉光などの、被検体に照射された光に起因する光を意味する。受光部により検出された光に基づいて、被検体に係る例えば血流速度等の所定の情報を得ることができる。
 尚、前面板は、例えば、照射部から出射される光を通過させるための出射口及び被検体からの光を通過させるための入射口が形成された遮光性の板状部材からなる。
 本発明では特に、照射部及び受光部が形成された基板と、前面板とが、遮光性の接着剤を含んでなる接着部によって互いに接着される。更に、接着部は、基板上で平面的に見て、照射部及び受光部の各々を取り囲むように形成される。
 よって、接着部によって、基板と前面板とを確実に接着することができる。更に、接着部によって、当該自発光型センサ装置の周囲からの不要な光が、照射部及び受光部に入射してしまうのを防止できる。加えて、接着部によって、照射部から出射される光のうち照射部から受光部に直接向かう光(即ち、照射部から出射され、被検体に照射されることなく、そのまま受光部へ向かう光)を遮ることができる。従って、受光部によって検出される光が、当該自発光型センサ装置の周囲からの不要な光や照射部から受光部に直接向かう光に起因して変動してしまうのを防止できる。この結果、被検体における例えば血流速度等の所定種類の情報を高精度に検出することができる。尚、接着部は、基板及び前面板間の間隔を規定するスペーサとしても機能することができる。
 更に、本発明では特に、上述したように、基板と前面板とが接着部によって互いに接着されている。言い換えれば、本発明の自発光型センサ装置は、照射部及び受光部が形成された基板と、前面板とが接着部を介して積層された積層構造を有している。よって、本発明の自発光型センサ装置を製造する際には、例えば、基板における平坦な基板面に照射部及び受光部を形成した後、該基板に前面板を接着部によって接着すればよい。
 即ち、本発明の自発光型センサ装置は、基板と前面板とが接着部を介して積層される積層構造という比較的簡単な構造を有しているので、製造プロセスにおける各工程を単純化或いは短縮化することができる。これより、歩留まりを向上させることが可能となり、製造コストを低減することも可能となる。
 以上説明したように、本発明の自発光型センサ装置によれば、被検体における例えば血流速度等の所定種類の情報を高精度で検出することができる。更に、歩留まりの向上や製造コストの低減が可能であり、量産に適している。
 本発明の自発光型センサ装置の一態様では、前記接着部は、前記遮光性の接着剤のみからなる。
 この態様によれば、接着部の構成が比較的簡単であるので、例えば、接着部を形成する工程を単純化することができる。よって、歩留まりをより一層向上させることが可能となり、製造コストをより一層低減することも可能となる。
 本発明の自発光型センサ装置の他の態様では、前記接着部は、前記遮光性の接着剤より高い強度を有すると共に前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲む枠状部材を含んでいる。
 この態様によれば、接着部の強度を高めることができる。よって、例えば、接着部のスペーサとしての機能を高めることができる。従って、基板及び前面板間の間隔が変化してしまうのを抑制できる。
 本発明の自発光型センサ装置の他の態様では、前記遮光性の接着剤は、遮光性粒子が内部に分散された、アクリル系、エポキシ系、ポリイミド系又はシリコン系の接着剤である。
 この態様によれば、接着部は、遮光性の接着剤として、遮光性粒子が内部に分散された、アクリル系、エポキシ系、ポリイミド系又はシリコン系の接着剤を含む。よって、接着部によって、基板と前面板とを確実に接着することができる。更に、接着部によって、当該自発光型センサ装置の周囲からの不要な光が、照射部及び受光部に入射してしまうのを確実に防止できる。加えて、接着部によって、照射部から出射される光のうち照射部から受光部に直接向かう光を確実に遮ることができる。尚、遮光性粒子としては、例えば、カーボンブラック、アルミニウム、銀等の導電性粒子や黒色顔料粒子を挙げることができる。
 本発明の自発光型センサ装置の他の態様では、前記照射部及び前記受光部は、前記基板上に集積されている。
 この態様によれば、照射部及び受光部が集積されているため、各々の配置面積は縮小し、より小型化することが可能となる。小型化により、例えば当該自発光型センサ装置を据え置き型ではなく、携帯型とすることができるなど、当該自発光型センサ装置の利用の幅を広げることができる。
 本発明の自発光型センサ装置の他の態様では、前記検出された光に基づいて、前記被検体に係る血流速度を算出する算出部を更に備える。
 この態様によれば、光の生体への浸透力が波長に依存することを利用して、皮膚表面からの深度の異なる血管の各々の血流速度を計測することができる。具体的には、光を生体の表面に照射することにより、内部に浸透した光が血管中を流れる赤血球によって反射又は散乱され、赤血球の移動速度に応じたドップラーシフトを受けて波長が変化する。一方、赤血球に対して不動と見なせる皮膚組織などによって散乱又は反射された光は、波長が変化することなく受光部に到達する。これらの光が干渉することにより、受光部においてドップラーシフト量に対応した光ビート信号が検出される。この光ビート信号を算出部で周波数解析等の演算処理等を行うことにより、血管中を流れる血流速度を求めることが可能である。
 本発明の自発光型センサ装置の他の態様では、前記照射部は、前記光としてレーザ光を発生させる半導体レーザを有する。
 この態様によれば、照射部の半導体レーザに、レーザ発振閾値より高い電流が流れるように電圧を印可することでレーザ光を照射することができる。レーザ光は波長の違いによって、例えば生体等への浸透力が異なるという性質を持っている。この性質を利用することで、被検体の様々な深度における測定が可能となる。
 本発明に係る第1の自発光型センサ装置の製造方法は上記課題を解決するために、基板と、該基板上に配置され、光を被検体に照射する照射部と、前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、前記基板に対して前記被検体が配置される前面側に、前記基板に対向するように配置された前面板と、前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部とを備える自発光型センサ装置を製造する自発光型センサ装置の製造方法であって、前記基板を複数含む第1大型基板上に前記照射部及び前記受光部を形成する工程と、前記第1大型基板上における前記照射部及び前記受光部の各々を取り囲むように、前記遮光性の接着剤を塗布する工程と、前記前面板を複数含む第2大型基板を、前記遮光性の接着剤が塗布された前記第1大型基板と対向するように配置し、前記遮光性の接着剤によって前記第1及び第2大型基板を互いに接着する工程と、前記互いに接着された第1及び第2大型基板を、前記基板の周縁に沿って切断する工程とを含む。
 本発明に係る第1の自発光型センサ装置の製造方法によれば、上述した本発明の自発光型センサ装置を製造することができる。ここで特に、第1大型基板上における照射部及び受光部の各々を取り囲むように、例えばディスペンサ(液体定量吐出装置)等を用いて遮光性の接着剤を塗布するので、遮光性の接着剤のみからなる接着部を容易に形成することができる。更に、第1及び第2大型基板を互いに接着した後に、該第1及び第2大型基板を、基板の周縁に沿って切断するので、複数の自発光型センサ装置を同時に製造することができる。
 本発明に係る第2の自発光型センサ装置の製造方法は上記課題を解決するために、基板と、該基板上に配置され、光を被検体に照射する照射部と、前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、前記基板に対して前記被検体が配置される前面側に、前記基板に対向するように配置された前面板と、前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部とを備える自発光型センサ装置を製造する自発光型センサ装置の製造方法であって、前記基板を複数含む第1大型基板上に前記照射部及び前記受光部を形成する工程と、前記第1大型基板上における前記照射部及び前記受光部の各々を取り囲むことが可能なように形成されると共に前記遮光性の接着剤からなる接着シートを、前記第1大型基板上に配置する工程と、前記前面板を複数含む第2大型基板を、前記接着シートが配置された前記第1大型基板と対向するように配置し、前記接着シートによって前記第1及び第2大型基板を互いに接着する工程と、前記互いに接着された第1及び第2大型基板を、前記基板の周縁に沿って切断する工程とを含む。
 本発明に係る第2の自発光型センサ装置の製造方法によれば、上述した本発明の自発光型センサ装置を製造することができる。ここで特に、第1大型基板上における照射部及び受光部の各々を取り囲むことが可能なように形成されると共に遮光性の接着剤からなる接着シートによって、第1及び第2大型基板を互いに接着するので、遮光性の接着剤のみからなる接着部を容易に形成することができる。更に、第1及び第2大型基板を互いに接着した後に、該第1及び第2大型基板を、基板の周縁に沿って切断するので、複数の自発光型センサ装置を同時に製造することができる。
 本発明に係る第3の自発光型センサ装置の製造方法は上記課題を解決するために、基板と、該基板上に配置され、光を被検体に照射する照射部と、前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、前記基板に対して前記被検体が配置される前面側に、前記基板に対向するように配置された前面板と、前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部とを備える自発光型センサ装置を製造する自発光型センサ装置の製造方法であって、前記基板を複数含む第1大型基板上に前記照射部及び前記受光部を形成する工程と、前記遮光性の接着剤より高い強度を有すると共に前記第1大型基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むことが可能なように形成された大型枠状部材に、前記遮光性の接着剤をディッピングにより塗布する工程と、前記前面板を複数含む第2大型基板を、前記遮光性の接着剤が塗布された前記大型枠状部材を介して、前記第1大型基板と対向するように配置し、前記遮光性の接着剤によって前記第1及び第2大型基板を互いに接着する工程と、前記互いに接着された第1及び第2大型基板を、前記基板の周縁に沿って切断する工程とを含む。
 本発明に係る第3の自発光型センサ装置の製造方法によれば、上述した本発明の自発光型センサ装置を製造することができる。ここで特に、大型枠状部材に遮光性の接着剤をディッピングにより塗布するので、枠状部材及び遮光性の接着剤からなる接着部を容易に形成することができる。更に、第1及び第2大型基板を互いに接着した後に、該第1及び第2大型基板並びに大型枠状部材を、基板の周縁に沿って切断するので、複数の自発光型センサ装置を同時に製造することができる。
 本発明に係る第4の自発光型センサ装置の製造方法は上記課題を解決するために、基板と、該基板上に配置され、光を被検体に照射する照射部と、前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、前記基板に対して前記被検体が配置される前面側に、前記基板に対向するように配置された前面板と、前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部とを備える自発光型センサ装置を製造する自発光型センサ装置の製造方法であって、前記基板を複数含む第1大型基板上に前記照射部及び前記受光部を形成する工程と、前記遮光性の接着剤より高い強度を有すると共に前記第1大型基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むことが可能なように形成された大型枠状部材における、前記第1大型基板に対向することとなる第1面及び該第1面と反対側の第2面に前記遮光性の接着剤を塗布する工程と、前記前面板を複数含む第2大型基板を、前記遮光性の接着剤が塗布された前記大型枠状部材を介して、前記第1大型基板と対向するように配置し、前記遮光性の接着剤によって前記第1及び第2大型基板を、前記大型枠状部材を介して互いに接着する工程と、前記互いに接着された第1及び第2大型基板を、前記基板の周縁に沿って切断する工程とを含む。
 本発明に係る第4の自発光型センサ装置の製造方法によれば、上述した本発明の自発光型センサ装置を製造することができる。ここで特に、大型枠状部材における第1大型基板に対向することとなる第1面(即ち、下面)及び該第1面と反対側の第2面(即ち、上面)に遮光性の接着剤を、例えばローラ等を用いて塗布するので、枠状部材の上面及び下面が遮光性の接着剤に覆われた構成を有する接着部を容易に形成することができる。更に、第1及び第2大型基板を互いに接着した後に、該第1及び第2大型基板並びに大型枠状部材を、基板の周縁に沿って切断するので、複数の自発光型センサ装置を同時に製造することができる。
 本発明の作用及び他の利得は次に説明する実施形態から明らかにされる。
 以上詳細に説明したように、本発明の自発光型センサ装置によれば、基板と、照射部と、受光部と、前面板と、接着部とを備えているので、被検体における例えば血流速度等の所定種類の情報を高精度で検出することができる。更に、歩留まりの向上や製造コストの低減が可能であり、量産に適している。また、本発明に係る第1から第4の自発光型センサ装置の製造方法によれば、上述した本発明の自発光型センサ装置を製造することができる。
第1実施形態に係る血流センサ装置のセンサ部の構成を示す平面図である。 図1のA-A’断面図である。 第1実施形態に係る血流センサ装置の前面板の構成を示す平面図である。 第1変形例における図2と同趣旨の断面図である。 第2変形例における図2と同趣旨の断面図である。 第1実施形態に係る血流センサ装置の構成を示すブロック図である。 第1実施形態に係る血流センサ装置の使用方法の一例を示す概念図である。 第2実施形態に係る血流センサ装置のセンサ部の構成を示す平面図である。 図8のB-B’断面図である。 第3実施形態における図2と同趣旨の断面図である。 第1実施形態に係る自発光型センサ装置の製造方法の流れを示すフローチャートである。 レーザダイオード及びフォトダイオード等が形成された後のセンサ部基板ウエハを示す平面図である。 第1実施形態に係る自発光型センサ装置の製造方法における接着剤を塗布する工程を示す概念図である。 第2実施形態に係る自発光型センサ装置の製造方法の流れを示すフローチャートである。 第2実施形態に係る自発光型センサ装置の製造方法における接着シールを設置する工程を示す概念図である。 第3実施形態に係る自発光型センサ装置の製造方法の流れを示すフローチャートである。 第3実施形態に係る自発光型センサ装置の製造方法における大型枠状部材を示す斜視図である。 第3実施形態に係る自発光型センサ装置の製造方法における、センサ部基板ウエハ及び前面板アレイ基板が、遮光性の接着剤をディッピングにより塗布された後の大型枠状部材を介して対向して配置された状態を示す断面図である。 第4実施形態に係る自発光型センサ装置の製造方法の流れを示すフローチャートである。 第4実施形態に係る自発光型センサ装置の製造方法における、センサ部基板ウエハ及び前面板アレイ基板が、遮光性の接着剤を塗布された大型枠状部材を介して対向して配置された状態を示す断面図である。
符号の説明
 100、102、103 センサ部
 110 センサ部基板
 120 レーザダイオード
 130 電極
 150 レーザダイオードドライブ回路
 160 フォトダイオード
 170 フォトダイオードアンプ
 180、200、201 接着部
 189 接着シート
 190 前面板
 210 接着剤部分
 220 枠状部材
 310 A/D変換器
 320 血流速度用DSP
 510 センサ部基板ウエハ
 610 大型枠状部材
 710 前面板アレイ基板
 910 ディスペンサ
 以下、本発明の実施形態について図を参照しつつ説明する。尚、以下の実施形態では、本発明の自発光型センサ装置の一例である血流センサ装置を例にとる。
<自発光型センサ装置の第1実施形態>
 第1実施形態に係る血流センサ装置について、図1から図7を参照して説明する。
 先ず、本実施形態に係る血流センサ装置のセンサ部の構成について、図1から図3を参照して説明する。
 図1は、第1実施形態に係る血流センサ装置のセンサ部の構成を示す平面図である。図2は、図1のA-A’断面図である。尚、図1においては、説明の便宜上、図2に示す前面板190の図示を省略してある。
 図1及び図2に示すように、本実施形態に係る血流センサ装置のセンサ部100は、センサ部基板110と、レーザダイオード120と、電極130と、ワイヤ配線140と、レーザダイオードドライブ回路150と、フォトダイオード160と、フォトダイオードアンプ170と、接着部180と、前面板190とを備えている。
 センサ部基板110は、シリコン基板等の半導体基板からなる。センサ部基板110上には、レーザダイオード120と、レーザダイオードドライブ回路150と、フォトダイオード160と、フォトダイオードアンプ170とが集積して配置されている。
 レーザダイオード120は、本発明に係る「照射部」の一例であり、レーザ光を出射する半導体レーザである。レーザダイオード120は、ワイヤ配線140を通じて電極130と電気的に接続されている。電極130は、センサ部基板110を貫通する配線(図示せず)によってセンサ部基板110の底部に設けられた電極パッド(図示せず)に電気的に接続されている。また、レーザダイオード120の底面に形成された他方の電極(図示せず)は、センサ部基板110上の配線(図示せず)又はセンサ部基板110を貫通する配線(図示せず)によってセンサ部基板110の底部に設けられた電極パッド(図示せず)に電気的に接続されており、センサ部100の外部からの電流注入によるレーザダイオード120の駆動を可能にする構成になっている。
 レーザダイオードドライブ回路150は、レーザダイオード120の駆動を制御する回路であり、レーザダイオード120に注入する電流量を制御する。
 フォトダイオード160は、本発明に係る「受光部」の一例であり、被検体から反射又は散乱された光を検出する光検出器として機能する。具体的には、フォトダイオード160は、光を電気信号に変換することにより光の強度に関する情報を得ることができる。フォトダイオード160は、センサ部基板110上にレーザダイオード120と並んで配置されている。フォトダイオード160で受光された光は電気信号に変換され、ワイヤ配線(図示せず)やフォトダイオード160の底面に形成された電極(図示せず)等を介して、フォトダイオードアンプ170に入力される。
 フォトダイオードアンプ170は、フォトダイオード160によって得られた電気信号を増幅する増幅回路である。フォトダイオードアンプ170は、センサ部基板110を貫通する配線(図示せず)によってセンサ部基板110の底部に設けられた電極パッド(図示せず)に電気的に接続されており、増幅した電気信号を外部に出力可能に構成されている。フォトダイオードアンプ170は、センサ部100の外部に設けられたA/D(Analog to Digital)変換器310(後述する図6参照)に電気的に接続される。
 接着部180は、遮光性の接着剤からなり、センサ部基板110及び前面板190を互いに接着する。遮光性の接着剤は、例えば、カーボンブラック、アルミニウム、銀等の導電性粒子が内部に分散された、アクリル系、エポキシ系、ポリイミド系又はシリコン系の接着剤であってもよいし、黒色顔料等の顔料が内部に分散された、アクリル系、エポキシ系、ポリイミド系又はシリコン系の接着剤であってもよい。接着部180は、センサ部基板110上で平面的に見て、レーザダイオード120及びフォトダイオード160の各々を取り囲むように形成されている。より具体的には、接着部180は、センサ部基板110上に壁状に形成されており、センサ部基板110上における周縁に沿って形成された第1壁状部分181と、センサ部基板110上におけるレーザダイオード120及びフォトダイオード160間に形成された第2壁状部分182とを有している。第1壁状部分181は、センサ部基板110上で平面的に見て、レーザダイオード120、電極130、ワイヤ配線140、レーザダイオードドライブ回路150、フォトダイオード160及びフォトダイオードアンプ170の全体を取り囲むように形成されている。よって、第1壁状部分181によって、センサ部100の周囲からの光がセンサ部100の内部(つまり、センサ部基板110上における第1壁状部分181よりも内側)に光が入射することを防止できる。第2壁状部分182は、センサ部基板110上におけるレーザダイオード120及びフォトダイオード160間において、第1壁状部分181のうちセンサ部基板110の一辺に沿って形成された部分と、第1壁状部分181のうち該一辺に対向する他辺に沿って形成された部分とを繋ぐように形成されている。第2壁状部分182によって、レーザダイオード120及びフォトダイオード160間を遮光することができる。よって、例えば、レーザダイオード120から出射される光のうち、被検体に照射されることなく、そのままフォトダイオード160へ向かう光を遮ることができる。言い換えれば、センサ部基板110上におけるレーザダイオード120側からフォトダイオード160側へ、フォトダイオード160が検出しなくてもよい光がフォトダイオード160に入射してしまうのを防止し、検出の精度を高めることができる。
 前面板190は、レーザダイオード120、フォトダイオード160等の上部に(即ち、センサ部基板110のレーザダイオード120等が設けられた前面側に、センサ部基板110と所定の間隔を空けて)配置されている。言い換えれば、前面板190は、接着部180を介してセンサ部基板110に対向するように配置されている。
 図3は、本実施形態に係る血流センサ装置の前面板の構成を示す平面図である。
 図2及び図3に示すように、前面板190は、透明基板190aと、遮光膜195とを備えている。
 透明基板190aは、レーザダイオード120からの光及び被検体からの光を透過させることができる透明基板である。透明基板190aとしては、例えば樹脂基板、ガラス基板等を用いることができる。
 遮光膜195は、透明基板190aにおける2つの基板面(即ち、センサ部基板110に対向する基板面及び該基板面とは反対側の基板面)の各々に設けられている。遮光膜195は、レーザダイオード120からの光を外部に出射させるための出射口191を規定すると共に、被検体から反射又は散乱された光を入射させるための入射口192を規定している。遮光膜195によって、フォトダイオード160に入射する光が制限され、フォトダイオード160には、真上からの(即ち、図2における上方向から下方向への)光のみが入射する。よって、検出しなくてもよい光がフォトダイオード160に入射してしまうのを防止し、検出の精度を高めることができる。尚、入射口192の直径は、例えば40um程度である。
 図4は、第1変形例における図2と同趣旨の断面図である。
 図4に第1変形例として示すように、入射口192は、透明基板190aを貫通するピンホール(貫通孔)として形成されてもよい。この場合には、ピンホールとして形成された入射口192の内壁にも遮光膜195を形成しておくことにより、出射口191から出射すべき光の一部が前面板190の内部(即ち、透明基板190a)を経由して入射口192からフォトダイオード160に入射できる経路を無くすことができ、検出の精度をより高めることができる。
 図5は、第2変形例における図2と同趣旨の断面図である。
 図5に第2変形例として示すように、センサ部100は、前面板190に代えて、遮光性材料からなる前面板190bを備えていてもよい。前面板190bには、出射口191及び入射口192の各々が、前面板190bを貫通するピンホールとして形成されている。この場合には、上述した遮光膜195の形成が不要となる。
 尚、前面板190の上面側には、例えば樹脂基板、ガラス基板等の透明基板からなる保護板が設けられてもよい。この場合には、保護板によって、センサ部100の耐久性を高めることができる。また、前面板全体或いは貫通孔を形成した部分を、レーザダイオード120からの光に対して透明な樹脂などでモールド(成形)、或いは該透明な樹脂などを貫通孔に充填しても同様の効果を得ることができる。
 センサ部基板110は、遮光性材料による基板であることが望ましいが、電子回路やフォトダイオードを一体的に作り込むために、Si(シリコン)のように赤外光が透過可能な材料から形成されてもよい。この場合、遮光性レジストなどで別途遮光処理を施しておけばよい。
 再び図1及び図2に戻り、本実施形態では特に、上述したように、レーザダイオード120、フォトダイオード160等が形成されたセンサ部基板110と、前面板190とが接着部180によって互いに接着されている。言い換えれば、本実施形態に係る血流センサ装置のセンサ部100は、レーザダイオード120、フォトダイオード160等が形成されたセンサ部基板110と、前面板190とが接着部180を介して積層された積層構造を有している。更に言い換えれば、本実施形態に係る血流センサ装置のセンサ部100は、センサ部基板110、接着部180及び前面板190がこの順に積層された三層構造という比較的簡単な構造を有している。よって、製造プロセスにおける各工程を単純化或いは短縮化することができる。従って、歩留まりを向上させることが可能となり、製造コストを低減することも可能となる。
 次に、本実施形態に係る血流センサ装置全体の構成について、図6を参照して説明する。
 図6は、本実施形態に係る血流センサ装置の構成を示すブロック図である。
 図6において、本実施形態に係る血流センサ装置は、上述したセンサ部100に加えて、A/D変換器310と、血流速度用DSP(Digital Signal Processor)320とを備えている。尚、本実施形態では、レーザダイオードドライブ回路150及びフォトダイオードアンプ170がセンサ部基板110上に形成されるように構成したが、後述するA/D変換器310や血流速度用DSP320と同様に、センサ部基板110上に形成されず、センサ部100とは別個に設けられてもよいし、あるいはA/D変換器310や血流速度用DSP320も含めてセンサ部基板110上に一体化、あるいは各々の機能を有するその他基板をセンサ部基板110とともに積層し、相互をワイヤ配線や貫通配線で電気的に接続する方法等で実装してもよい。A/D変換器310や血流速度用DSP320をセンサ部基板110と近接させることで微弱信号処理において十分なSN比(Signal to Noise Ratio)と帯域を確保することができる。
 A/D変換器310は、フォトダイオードアンプ170から出力される電気信号をアナログ信号からデジタル信号に変換する。即ち、フォトダイオード160によって得られた電気信号は、フォトダイオードアンプ170により増幅された後、A/D変換器310によりデジタル信号へと変換される。A/D変換器310は、デジタル信号を血流速度用DSP320に出力する。
 血流速度用DSP320は、本発明に係る「算出部」の一例であり、A/D変換器310から入力されるデジタル信号に対して所定の演算処理を行うことにより、血流速度を算出する。
 次に、本実施形態に係る血流センサ装置による血流速度の測定について、図6に加えて図7を参照して説明する。
 図7は、本実施形態に係る血流センサ装置の使用方法の一例を示す概念図である。
 図7に示すように、本実施形態に係る血流センサ装置は、被検体の一例である指先500に対して、レーザダイオード120により所定波長のレーザ光(例えば波長780nmの短波光、或いは、例えば波長830nmの長波光)を照射することにより血流速度を計測する。この際、レーザ光を照射する部位は、表皮から比較的近い位置に密に毛細血管が部分布しているような部位(例えば手、足、顔、耳など)である方がより望ましい。尚、図7において、矢印P1は、センサ部100から出射される光を概念的に示している。また、血流速度の計測時において、本実施形態に係る血流センサ装置は、典型的には、そのセンサ部100の上面(即ち、前面板190の上面)に指先500を接触させて使用するが、図7では、説明の便宜上、指先500とセンサ部100との間に隙間を設けて示している。但し、本実施形態に係る血流センサ装置によれば、センサ部100の上面に指先500を接触させなくとも、血流速度を計測することは可能である。
 図7において、指先500に照射されたレーザ光は、その波長に応じた深度まで浸透し、指先500の毛細血管等の血管中を流れる血液や例えば表皮等を構成する皮膚細胞などの生体組織により反射又は散乱される。尚、図7において、矢印P2は、指先500の生体組織により反射又は散乱されてセンサ部100に入射する光を概念的に示している。そして、血管中を流れる赤血球によって反射又は散乱された光にはドップラーシフトが起こり、赤血球の移動速度、つまり血液の流れる速度(即ち、血流速度)に依存して光の波長が変化する。一方、赤血球に対して不動とみなせる皮膚細胞などによって散乱又は反射された光は、波長が変化しない。これらの光が互いに干渉することにより、フォトダイオード160(図6参照)においてドップラーシフト量に対応した光ビート信号が検出される。血流速度用DSP320(図6参照)では、フォトダイオード160によって検出された光ビート信号を周波数解析してドップラーシフト量を算出し、それによって血流速度を算出することができる。
 以上詳細に説明したように、第1実施形態に係る血流センサ装置によれば、遮光性の接着剤からなる接着部180を備えているので、例えば、フォトダイオード160が検出しなくてもよい光がフォトダイオード160に入射してしまうのを防止できる。よって、被検体における血流速度を高精度で検出することができる。更に、第1実施形態に係る血流センサ装置によれば、センサ部100が、センサ部基板110、接着部180及び前面板190がこの順に積層された三層構造という比較的簡単な構造を有しているので、歩留まりの向上や製造コストの低減が可能であり、量産に適している。
<自発光型センサ装置の第2実施形態>
 第2実施形態に係る血流センサ装置について、図8及び図9を参照して説明する。
 図8は、第2実施形態に係る血流センサ装置のセンサ部の構成を示す平面図である。図9は、図8のB-B’断面図である。尚、図8において、説明の便宜上、図9に示す前面板190の図示を省略すると共に、接着部200についてはセンサ部基板110の基板面に沿った平面で枠状部材210を含むように切断した場合の断面を示している。尚、図8及び図9において、図1から図7に示した第1実施形態に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
 第2実施形態に係る血流センサ装置は、上述した第1実施形態におけるセンサ部100に代えてセンサ部102を備える点で、上述した第1実施形態に係る血流センサ装置と異なり、その他の点については、上述した第1実施形態に係る血流センサ装置と概ね同様に構成されている。
 図8及び図9において、第2実施形態に係る血流センサ装置のセンサ部102は、上述した第1実施形態における接着部180に代えて接着部200を備える点で、上述した第1実施形態に係る血流センサ装置のセンサ部100と異なり、その他の点については、上述した第1実施形態に係る血流センサ装置のセンサ部100と概ね同様に構成されている。
 図8及び図9に示すように、接着部200は、接着剤部分210と、枠状部材220とからなる。接着部200は、センサ部基板110上で平面的に見て、レーザダイオード120及びフォトダイオード160の各々を取り囲むように形成されている。
 接着剤部分210は、遮光性の接着剤からなり、枠状部材220の上面(即ち、枠状部材220における前面板190に対向する面)と下面(即ち、枠状部材220におけるセンサ部基板110に対向する面)と側面の一部(より具体的には、枠状部材220における、レーザダイオード120に対向する側面及びフォトダイオード160に対向する側面)とを覆うように形成されている。遮光性の接着剤は、例えば、カーボンブラック、アルミニウム、銀等の導電性粒子が内部に分散された、アクリル系、エポキシ系、ポリイミド系又はシリコン系の接着剤であってもよいし、黒色顔料等の顔料が内部に分散された、アクリル系、エポキシ系、ポリイミド系又はシリコン系の接着剤であってもよい。
 枠状部材220は、接着剤部分210より高い強度を有する例えば樹脂等からなり、センサ部基板110上で平面的に見て、レーザダイオード120及びフォトダイオード160の各々を取り囲むように形成されている。枠状部材220は、接着剤部分210より高い強度を有する例えばシリコン、金属、セラミックス等から形成されてもよい。
 このように、第2実施形態では特に、接着部200が接着剤部分210及び枠状部材220からなるので、仮に接着部200が枠状部材220を有していない(即ち、接着剤のみからなる)場合と比較して、接着部200の強度を高めることができる。よって、センサ部基板110及び前面板190間の間隔が変化してしまうのを抑制できる。従って、検出の精度が低下してしまうことを防止できる。
 尚、第2実施形態によれば、接着剤部分210の一部によって、枠状部材220における、レーザダイオード120に対向する側面及びフォトダイオード160に対向する側面が覆われているので、枠状部材220を透明材料から形成することができる。但し、枠状部材220は、遮光性を有する材料から形成してもよい。
<自発光型センサ装置の第3実施形態>
 第3実施形態に係る血流センサ装置について、図10を参照して説明する。
 図10は、第3実施形態における図2と同趣旨の断面図である。尚、図10において、図1から図7に示した第1実施形態に係る構成要素と同様の構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
 第3実施形態に係る血流センサ装置は、上述した第1実施形態におけるセンサ部100に代えてセンサ部103を備える点で、上述した第1実施形態に係る血流センサ装置と異なり、その他の点については、上述した第1実施形態に係る血流センサ装置と概ね同様に構成されている。
 図10において、第3実施形態に係る血流センサ装置のセンサ部103は、上述した第1実施形態における接着部180に代えて接着部201を備える点で、上述した第1実施形態に係る血流センサ装置のセンサ部100と異なり、その他の点については、上述した第1実施形態に係る血流センサ装置のセンサ部100と概ね同様に構成されている。
 図10に示すように、接着部201は、接着剤部分211と、枠状部材221とからなる。
 枠状部材221は、図8及び図9を参照して上述した第2実施形態における枠状部材220と概ね同様に構成されている。即ち、枠状部材221は、接着剤部分211より高い強度を有すると共に遮光性を有する例えば樹脂等からなり、センサ部基板110上で平面的に見て、レーザダイオード120及びフォトダイオード160の各々を取り囲むように形成されている。枠状部材221は、例えばシリコン、金属、セラミックス等から形成されてもよい。
 接着剤部分211は、遮光性の接着剤からなり、枠状部材221の上面(即ち、枠状部材221における前面板190に対向する面)と下面(即ち、枠状部材221におけるセンサ部基板110に対向する面)とを覆うように形成されると共に、枠状部材221の側面には形成されていない。遮光性の接着剤は、例えば、カーボンブラック、アルミニウム、銀等の導電性粒子が内部に分散された、アクリル系、エポキシ系、ポリイミド系又はシリコン系の接着剤であってもよいし、黒色顔料等の顔料が内部に分散された、アクリル系、エポキシ系、ポリイミド系又はシリコン系の接着剤であってもよい。
 このように、第3実施形態では特に、接着部201が接着剤部分211及び枠状部材221からなるので、仮に接着部201が枠状部材221を有していない(即ち、遮光性の接着剤のみからなる)場合と比較して、接着部201の強度を高めることができる。よって、センサ部基板110及び前面板190間の間隔が変化してしまうのを抑制できる。
 尚、第3実施形態に係る血流センサ装置によれば、接着部201は、遮光性を有する枠状部材221と、遮光性の接着剤からなる接着剤部分211とからなるので、フォトダイオード160によって検出される光が、当該センサ部103の周囲からの不要な光やレーザダイオード120からフォトダイオード160に直接向かう光に起因して変動してしまうのを防止できる。
<自発光型センサ装置の製造方法の第1実施形態>
 第1実施形態に係る自発光型センサ装置の製造方法について、図11から図13を参照して説明する。尚、第1実施形態に係る自発光型センサ装置の製造方法は、本発明に係る第1の自発光型センサ装置の製造方法の一例であり、上述した第1実施形態に係る血流センサ装置を製造することができる。以下では、上述した第1実施形態に係る血流センサ装置のセンサ部100を製造する製造方法について詳細に説明する。
 図11は、第1実施形態に係る自発光型センサ装置の製造方法の流れを示すフローチャートである。図12は、レーザダイオード及びフォトダイオード等が形成された後のセンサ部基板ウエハを示す平面図である。図13は、第1実施形態に係る自発光型センサ装置の製造方法における接着剤を塗布する工程を示す概念図である。
 図11及び図12において、先ず、センサ部基板ウエハ510上にレーザダイオード120、フォトダイオード160等を形成する(ステップS10)。センサ部基板ウエハ510は、本発明に係る「第1大型基板」の一例であり、複数のセンサ部基板110(図1及び図2参照)を含む半導体ウエハである。より具体的には、センサ部基板ウエハ510上に、レーザダイオードドライブ回路150、フォトダイオード160、フォトダイオードアンプ170や電極130を半導体プロセス技術により形成した後、レーザーダイオード120を実装する。
 次に、遮光性の接着剤をディスペンサを用いてセンサ部基板ウエハ510上に塗布する(ステップS11)。即ち、図12及び図13に示すように、ディスペンサ910を用いて遮光性の接着剤185をセンサ部基板ウエハ510上の接着剤領域180aに塗布する。接着剤領域180aは、センサ部基板ウエハ510におけるレーザダイオード120及びフォトダイオード160の各々を取り囲む格子状に規定されている。遮光性の接着剤185としては、例えば、カーボンブラック、アルミニウム、銀等の導電性粒子が内部に分散された、熱硬化性樹脂を用いる。遮光性の接着剤185は、黒色顔料等の顔料が内部に分散された、熱硬化性樹脂であってもよい。センサ部基板ウエハ510上に遮光性の接着剤185を塗布した後には、該塗布した遮光性の接着剤185を所定時間だけ加熱することにより仮硬化させる。尚、遮光性の接着剤としては、遮光性を有する感圧性接着剤を用いてもよい。
 次に、センサ部基板ウエハ510と前面板アレイ基板とを互いに接着させる(ステップS12)。前面板アレイ基板(図示省略)は、本発明に係る「第2大型基板」の一例であり、複数の前面板190(図2及び図3参照)を含む基板(例えば、複数の前面板190が例えばマトリクス状に配列されたような基板)である。このような前面板アレイ基板を形成する工程は、例えば、センサ部基板ウエハ510上にレーザダイオード等を形成する工程(ステップS10)と並行して行うなど、予め行っておくとよい。尚、前面板アレイ基板を形成する工程では、複数の透明基板190a(図2及び図3参照)を含む透明基板ウエハに、遮光膜195(図2及び図3参照)を所定パターンで形成する。
 具体的には、遮光性の接着剤185が塗布されたセンサ部基板ウエハ510と、前面板アレイ基板とを互いに対向するように配置し、位置合わせを行う。続いて、センサ部基板ウエハ510及び前面板アレイ基板を所定の距離まで近づけることで、遮光性の接着剤185を加圧する。続いて、遮光性の接着剤185を加熱することにより硬化させることで、センサ部基板ウエハ510と前面板アレイ基板とを遮光性の接着剤185によって互いに接着させる。
 次に、センサ部基板ウエハ510、前面板アレイ基板及び遮光性の接着剤185を切断線L1に沿って切断する(ステップS13)。切断線L1は、センサ部基板ウエハ510における複数のセンサ部基板110の各々の周縁に沿って規定されている。センサ部基板ウエハ510、前面板アレイ基板及び遮光性の接着剤185を、例えばダイシング等によって切断線L1に沿って切断する。これにより、複数のセンサ部100を同時に製造することができる。
 以上説明したように、第1実施形態に係る自発光型センサ装置の製造方法によれば、上述した第1実施形態に係る血流センサ装置のセンサ部100を製造することができる。ここで、本実施形態では特に、センサ部基板ウエハ510上におけるレーザダイオード120及びフォトダイオード160の各々を取り囲むように、ディスペンサ910を用いて遮光性の接着剤185を塗布するので、遮光性の接着剤185のみからなる接着部180(図1及び図2参照)を容易に形成することができる。更に、センサ部基板ウエハ510及び前面板アレイ基板を遮光性の接着剤185によって互いに接着した後に、センサ部基板ウエハ510及び前面板アレイ基板を切断線L1に沿って切断するので、複数のセンサ部100を同時に製造することができる。
<自発光型センサ装置の製造方法の第2実施形態>
 第2実施形態に係る自発光型センサ装置の製造方法について、図14及び図15を参照して説明する。尚、第2実施形態に係る自発光型センサ装置の製造方法は、本発明に係る第2の自発光型センサ装置の製造方法の一例であり、上述した第1実施形態に係る血流センサ装置を製造することができる。以下では、上述した第1実施形態に係る血流センサ装置のセンサ部100を製造する製造方法について詳細に説明する。
 図14は、第2実施形態に係る自発光型センサ装置の製造方法の流れを示すフローチャートである。図15は、第2実施形態に係る自発光型センサ装置の製造方法における接着シールを設置する工程を示す概念図である。尚、図14及び図15において、図11から図13に示した第1実施形態に係る自発光型センサ装置の製造方法における製造工程及び構成要素と同様の製造工程及び構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
 図14及び図15において、先ず、センサ部基板ウエハ510上にレーザダイオード120、フォトダイオード160等を形成する(ステップS10)。
 次に、センサ部基板ウエハ510上に遮光性の接着剤からなる接着シート189を設置する(ステップS21)。即ち、図15に示すように、レーザダイオード120及びフォトダイオード160の各々を取り囲むことが可能な格子状の接着シート189を、接着剤領域180aに重なるように配置する。接着シート189は、熱硬化型或いは感圧型の接着シートである。接着シート189は、例えば黒色顔料等の顔料が内部に分散されており、遮光性を有している。
 次に、センサ部基板ウエハ510と前面板アレイ基板とを互いに接着させる(ステップS22)。より具体的には、接着シート189が設置されたセンサ部基板ウエハ510と、前面板アレイ基板とを互いに対向するように配置し、位置合わせを行う。続いて、接着シート189が感圧型の接着シートである場合には、センサ部基板ウエハ510及び前面板アレイ基板を所定の距離まで近づけて接着シート189を加圧することにより、センサ部基板ウエハ510と前面板アレイ基板とを接着シート189によって互いに接着させる。或いは、接着シート189が熱硬化型の接着シートである場合には、接着シート189を加熱することにより硬化させることにより、センサ部基板ウエハ510と前面板アレイ基板とを接着シート189によって互いに接着させる。
 次に、センサ部基板ウエハ510、前面板アレイ基板及び接着シート189を切断線L1に沿って切断する(ステップS23)。即ち、センサ部基板ウエハ510、前面板アレイ基板及び接着シート189を、例えばダイシング等によって切断線L1に沿って切断する。これにより、複数のセンサ部100を同時に製造することができる。
 以上説明したように、第2実施形態に係る自発光型センサ装置の製造方法によれば、上述した第1実施形態に係る血流センサ装置のセンサ部100を製造することができる。ここで、本実施形態では特に、センサ部基板ウエハ510上におけるレーザダイオード120及びフォトダイオード160の各々を取り囲むことが可能なように形成されると共に遮光性の接着剤からなる接着シート189によって、センサ部基板ウエハ510及び前面板アレイ基板を互いに接着するので、遮光性の接着剤のみからなる接着部180を容易に形成することができる。更に、センサ部基板ウエハ510及び前面板アレイ基板を接着シート189によって互いに接着した後に、センサ部基板ウエハ510及び前面板アレイ基板を切断線L1に沿って切断するので、複数のセンサ部100を同時に製造することができる。
<自発光型センサ装置の製造方法の第3実施形態>
 第3実施形態に係る自発光型センサ装置の製造方法について、図16から図18を参照して説明する。尚、第3実施形態に係る自発光型センサ装置の製造方法は、本発明に係る第3の自発光型センサ装置の製造方法の一例であり、上述した第2実施形態に係る血流センサ装置を製造することができる。以下では、図8及び図9を参照して上述した第2実施形態に係る血流センサ装置のセンサ部102を製造する製造方法について詳細に説明する。
 図16は、第3実施形態に係る自発光型センサ装置の製造方法の流れを示すフローチャートである。図17は、第3実施形態に係る自発光型センサ装置の製造方法における大型枠状部材を示す斜視図である。図18は、第3実施形態に係る自発光型センサ装置の製造方法における、センサ部基板ウエハ及び前面板アレイ基板が、遮光性の接着剤をディッピングにより塗布された後の大型枠状部材を介して対向して配置された状態を示す断面図である。尚、図16から図18において、図11から図13に示した第1実施形態に係る自発光型センサ装置の製造方法における製造工程及び構成要素と同様の製造工程及び構成要素に同一の参照符合を付し、それらの説明は適宜省略する。また、図17では、説明の便宜上、大型枠状部材の一部のみについて示しているが、他の部分についても同様に構成されている、
 図16及び図17において、先ず、センサ部基板ウエハ510上にレーザダイオード120、フォトダイオード160等を形成する(ステップS10)。
 次に、大型枠状部材を形成する(ステップS31)。即ち、図16に示すような大型枠状部材610を形成する。より具体的には、大型枠状部材610を、センサ部基板ウエハ510におけるレーザダイオード120及びフォトダイオード160の各々を取り囲むことが可能な格子状に形成する。言い換えれば、大型枠状部材610を、センサ部基板ウエハ510上に形成された複数のレーザダイオード120の各々に1つずつ対応する複数の開口部611及びセンサ部基板ウエハ510上に形成された複数のフォトダイオード160の各々に1つずつ対応する複数の開口部612を有する板状に形成する。大型枠状部材610は、例えば樹脂成型技術やエッチング技術等によって形成する。尚、このような大型枠状部材610を形成する工程(ステップS31)は、例えば、センサ部基板ウエハ510上にレーザダイオード120等を形成する工程(ステップS10)と並行して行うなど、予め行っておくとよい。
 次に、大型枠状部材610を遮光性の接着剤にディッピングする(ステップS32)。即ち、大型枠状部材610を、遮光性の接着剤に浸漬させることで、大型枠状部材610の表面全体に遮光性の接着剤を塗布する。これにより、大型枠状部材610は、その表面全体が遮光性の接着剤によって覆われる(即ち、コーティングされる)。
 次に、センサ部基板ウエハ510と前面板アレイ基板とを、遮光性の接着剤によってコーティングされた大型枠状部材610を介して互いに接着させる(ステップS33)。より具体的には、図18に示すように、センサ部基板ウエハ510と前面板アレイ基板710とを、遮光性の接着剤620によってコーティングされた大型枠状部材610を介して互いに対向するように配置し、位置合わせを行う。続いて、遮光性の接着剤620を加熱することにより硬化させることで、センサ部基板ウエハ510と前面板アレイ基板710とを遮光性の接着剤620によって互いに接着させる。
 次に、センサ部基板ウエハ510、前面板アレイ基板710、大型枠状部材610及び遮光性の接着剤620を、例えばダイシング等によって切断線L1に沿って切断する(ステップS34)。これにより、複数のセンサ部102を同時に製造することができる。
 以上説明したように、第3実施形態に係る自発光型センサ装置の製造方法によれば、図9及び図10を参照して上述した第2実施形態に係る血流センサ装置のセンサ部102を製造することができる。ここで、本実施形態では特に、大型枠状部材610に遮光性の接着剤620をディッピングにより塗布するので、接着剤部分210及び枠状部材220からなる接着部200(図9参照)を容易に形成することができる。更に、センサ部基板ウエハ510及び前面板アレイ基板710を遮光性の接着剤620によって互いに接着した後に、センサ部基板ウエハ510及び前面板アレイ基板710並びに大型枠状部材610を切断線L1に沿って切断するので、複数のセンサ部102を同時に製造することができる。
<自発光型センサ装置の製造方法の第4実施形態>
 第4実施形態に係る自発光型センサ装置の製造方法について、図19及び図20を参照して説明する。尚、第4実施形態に係る自発光型センサ装置の製造方法は、本発明に係る第4の自発光型センサ装置の製造方法の一例であり、上述した第3実施形態に係る血流センサ装置を製造することができる。以下では、図10を参照して上述した第3実施形態に係る血流センサ装置のセンサ部103を製造する製造方法について詳細に説明する。
 図19は、第4実施形態に係る自発光型センサ装置の製造方法の流れを示すフローチャートである。図20は、第4実施形態に係る自発光型センサ装置の製造方法における、センサ部基板ウエハ及び前面板アレイ基板が、遮光性の接着剤を塗布された大型枠状部材を介して対向して配置された状態を示す断面図である。尚、図19及び図20において、図16から図18に示した第3実施形態に係る自発光型センサ装置の製造方法における製造工程及び構成要素と同様の製造工程及び構成要素に同一の参照符合を付し、それらの説明は適宜省略する。
 図19において、先ず、センサ部基板ウエハ510上にレーザダイオード120、フォトダイオード160等を形成する(ステップS10)。
 次に、大型枠状部材を形成する(ステップS31)。即ち、上述した第3実施形態に係る自発光型センサ装置の製造方法と同様に、図16に示すような大型枠状部材610を形成する。
 次に、大型枠状部材610の上面及び下面に遮光性の接着剤を塗布する(ステップS42)。即ち、図16及び図20において、大型枠状部材610の上面(即ち、前面板アレイ基板710に対向することとなる面)及び下面(即ち、センサ部基板ウエハ510に対向することとなる面)に、例えば熱硬化型である遮光性の接着剤を例えばローラ等を用いて塗布する。
 次に、センサ部基板ウエハ510と前面板アレイ基板710とを、遮光性の接着剤620が塗布された大型枠状部材610を介して互いに接着させる(ステップS43)。より具体的には、図20に示すように、センサ部基板ウエハ510と前面板アレイ基板710とを、遮光性の接着剤620がその上面及び下面に塗布された大型枠状部材610を介して互いに対向するように配置し、位置合わせを行う。続いて、遮光性の接着剤620を加熱することにより硬化させることで、遮光性の接着剤620によってセンサ部基板ウエハ510と前面板アレイ基板710とを大型枠状部材610を介して互いに接着させる(即ち、遮光性の接着剤620のうち大型枠状部材610の下面に塗布された部分によって、センサ部基板ウエハ510と大型枠状部材610とを互いに接着させると共に、遮光性の接着剤620のうち大型枠状部材610の上面に塗布された部分によって、前面板アレイ基板710と大型枠状部材610とを互いに接着させる)。
 次に、センサ部基板ウエハ510、前面板アレイ基板710、大型枠状部材610及び遮光性の接着剤620を、例えばダイシング等によって切断線L1に沿って切断する(ステップS34)。これにより、複数のセンサ部103(図10も参照)を同時に製造することができる。
 以上説明したように、第4実施形態に係る自発光型センサ装置の製造方法によれば、図10を参照して上述した第3実施形態に係る血流センサ装置のセンサ部103を製造することができる。ここで、本実施形態では特に、大型枠状部材610の上面及び下面に遮光性の接着剤620を、例えばローラ等を用いて塗布するので、接着剤部分211及び枠状部材221からなる接着部201(図10参照)を容易に形成することができる。更に、センサ部基板ウエハ510及び前面板アレイ基板710を遮光性の接着剤620によって互いに接着した後に、センサ部基板ウエハ510及び前面板アレイ基板710並びに大型枠状部材610を切断線L1に沿って切断するので、複数のセンサ部103を同時に製造することができる。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う自発光型センサ装置及びその製造方法もまた本発明の技術的範囲に含まれるものである。
 本発明に係る自発光型センサ装置及びその製造方法は、例えば血流速度等を測定することが可能な血流センサ装置等に利用することが可能である。

Claims (11)

  1.  基板と、
     該基板上に配置され、光を被検体に照射する照射部と、
     前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、
     前記基板の前記照射部が配置された前面側に、前記基板に対向するように配置された前面板と、
     前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部と
     を備えることを特徴とする自発光型センサ装置。
  2.  前記接着部は、前記遮光性の接着剤のみからなることを特徴とする請求の範囲第1項に記載の自発光型センサ装置。
  3.  前記接着部は、前記遮光性の接着剤より高い強度を有すると共に前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲む枠状部材を含んでいることを特徴とする請求の範囲第1項に記載の自発光型センサ装置。
  4.  前記遮光性の接着剤は、遮光性粒子が内部に分散された、アクリル系、エポキシ系、ポリイミド系又はシリコン系の接着剤であることを特徴とする請求の範囲第1項に記載の自発光型センサ装置。
  5.  前記照射部及び前記受光部は、前記基板上に集積されていることを特徴とする請求の範囲第1項に記載の自発光型センサ装置。
  6.  前記検出された光に基づいて、前記被検体に係る血流速度を算出する算出部を更に備えることを特徴とする請求の範囲第1項に記載の自発光型センサ装置。
  7.  前記照射部は、前記光としてレーザ光を発生させる半導体レーザを有することを特徴とする請求の範囲第1項に記載の自発光型センサ装置。
  8.  基板と、該基板上に配置され、光を被検体に照射する照射部と、前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、前記基板の前記照射部が配置された前面側に、前記基板に対向するように配置された前面板と、前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部とを備える自発光型センサ装置を製造する自発光型センサ装置の製造方法であって、
     前記基板を複数含む第1大型基板上に前記照射部及び前記受光部を形成する工程と、
     前記第1大型基板上における前記照射部及び前記受光部の各々を取り囲むように、前記遮光性の接着剤を塗布する工程と、
     前記前面板を複数含む第2大型基板を、前記遮光性の接着剤が塗布された前記第1大型基板と対向するように配置し、前記遮光性の接着剤によって前記第1及び第2大型基板を互いに接着する工程と、
     前記互いに接着された第1及び第2大型基板を、前記基板の周縁に沿って切断する工程と
     を含むことを特徴とする自発光型センサ装置の製造方法。
  9.  基板と、該基板上に配置され、光を被検体に照射する照射部と、前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、前記基板の前記照射部が配置された前面側に、前記基板に対向するように配置された前面板と、前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部とを備える自発光型センサ装置を製造する自発光型センサ装置の製造方法であって、
     前記基板を複数含む第1大型基板上に前記照射部及び前記受光部を形成する工程と、
     前記第1大型基板上における前記照射部及び前記受光部の各々を取り囲むことが可能なように形成されると共に前記遮光性の接着剤からなる接着シートを、前記第1大型基板上に配置する工程と、
     前記前面板を複数含む第2大型基板を、前記接着シートが配置された前記第1大型基板と対向するように配置し、前記接着シートによって前記第1及び第2大型基板を互いに接着する工程と、
     前記互いに接着された第1及び第2大型基板を、前記基板の周縁に沿って切断する工程と
     を含むことを特徴とする自発光型センサ装置の製造方法。
  10.  基板と、該基板上に配置され、光を被検体に照射する照射部と、前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、前記基板の前記照射部が配置された前面側に、前記基板に対向するように配置された前面板と、前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部とを備える自発光型センサ装置を製造する自発光型センサ装置の製造方法であって、
     前記基板を複数含む第1大型基板上に前記照射部及び前記受光部を形成する工程と、
     前記遮光性の接着剤より高い強度を有すると共に前記第1大型基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むことが可能なように形成された大型枠状部材に、前記遮光性の接着剤をディッピングにより塗布する工程と、
     前記前面板を複数含む第2大型基板を、前記遮光性の接着剤が塗布された前記大型枠状部材を介して、前記第1大型基板と対向するように配置し、前記遮光性の接着剤によって前記第1及び第2大型基板を互いに接着する工程と、
     前記互いに接着された第1及び第2大型基板を、前記基板の周縁に沿って切断する工程と
     を含むことを特徴とする自発光型センサ装置の製造方法。
  11.  基板と、該基板上に配置され、光を被検体に照射する照射部と、前記基板上に配置され、前記照射された光に起因する前記被検体からの光を検出する受光部と、前記基板の前記照射部が配置された前面側に、前記基板に対向するように配置された前面板と、前記基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むように形成されると共に遮光性の接着剤を含んでなり、前記基板及び前記前面板を互いに接着する接着部とを備える自発光型センサ装置を製造する自発光型センサ装置の製造方法であって、
     前記基板を複数含む第1大型基板上に前記照射部及び前記受光部を形成する工程と、
     前記遮光性の接着剤より高い強度を有すると共に前記第1大型基板上で平面的に見て前記照射部及び前記受光部の各々を取り囲むことが可能なように形成された大型枠状部材における、前記第1大型基板に対向することとなる第1面及び該第1面と反対側の第2面に前記遮光性の接着剤を塗布する工程と、
     前記前面板を複数含む第2大型基板を、前記遮光性の接着剤が塗布された前記大型枠状部材を介して、前記第1大型基板と対向するように配置し、前記遮光性の接着剤によって前記第1及び第2大型基板を、前記大型枠状部材を介して互いに接着する工程と、
     前記互いに接着された第1及び第2大型基板を、前記基板の周縁に沿って切断する工程と
     を含むことを特徴とする自発光型センサ装置の製造方法。
PCT/JP2008/058694 2008-05-12 2008-05-12 自発光型センサ装置及びその製造方法 WO2009139029A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/991,964 US20110260176A1 (en) 2008-05-12 2008-05-12 Light-emitting sensor device and method for manufacturing the same
PCT/JP2008/058694 WO2009139029A1 (ja) 2008-05-12 2008-05-12 自発光型センサ装置及びその製造方法
JP2010511795A JP5031895B2 (ja) 2008-05-12 2008-05-12 自発光型センサ装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058694 WO2009139029A1 (ja) 2008-05-12 2008-05-12 自発光型センサ装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2009139029A1 true WO2009139029A1 (ja) 2009-11-19

Family

ID=41318413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058694 WO2009139029A1 (ja) 2008-05-12 2008-05-12 自発光型センサ装置及びその製造方法

Country Status (3)

Country Link
US (1) US20110260176A1 (ja)
JP (1) JP5031895B2 (ja)
WO (1) WO2009139029A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105823A1 (en) * 2011-10-28 2013-05-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device
JP2013153845A (ja) * 2012-01-27 2013-08-15 Seiko Epson Corp 脈波測定装置及び検出装置
US20140163342A1 (en) * 2011-08-19 2014-06-12 Murata Manufacturing Co., Ltd. Biosensor
JP2014180291A (ja) * 2013-03-18 2014-09-29 Seiko Epson Corp 生体情報検出装置
JP2014180290A (ja) * 2013-03-18 2014-09-29 Seiko Epson Corp 生体情報検出装置
JP2014180292A (ja) * 2013-03-18 2014-09-29 Seiko Epson Corp 生体情報検出装置
EP2745772A4 (en) * 2011-08-19 2015-09-16 Murata Manufacturing Co LIVING ORGANISM SENSOR
JP2016123846A (ja) * 2015-09-18 2016-07-11 セイコーエプソン株式会社 生体情報測定センサ、および生体情報測定機器
JP2017131286A (ja) * 2016-01-25 2017-08-03 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JP2017136239A (ja) * 2016-02-04 2017-08-10 オムロンオートモーティブエレクトロニクス株式会社 生体情報検知装置
WO2017175504A1 (ja) * 2016-04-04 2017-10-12 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JP2017192507A (ja) * 2016-04-19 2017-10-26 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JP2017192500A (ja) * 2016-04-19 2017-10-26 京セラ株式会社 計測センサ用パッケージおよび計測センサ
US9814399B2 (en) 2013-03-18 2017-11-14 Seiko Epson Corporation Biological information detection apparatus
US9820661B2 (en) 2013-03-18 2017-11-21 Seiko Epson Corporation Biological information detection apparatus
JP2017225836A (ja) * 2014-09-02 2017-12-28 アップル インコーポレイテッド 信号及びパーフュージョンインデックス最適化のための複数光路アーキテクチャー及び覆い隠し方法
JP2018029776A (ja) * 2016-08-24 2018-03-01 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JP2018029895A (ja) * 2016-08-26 2018-03-01 京セラ株式会社 計測センサ用パッケージおよび計測センサ
WO2018055771A1 (ja) * 2016-09-26 2018-03-29 愛知時計電機株式会社 計測装置
US9966493B2 (en) 2011-07-19 2018-05-08 Heptagon Micro Optics Pte. Ltd. Opto-electronic modules and methods of manufacturing the same and appliances and devices comprising the same
WO2018173294A1 (ja) * 2017-03-24 2018-09-27 愛知時計電機株式会社 計測装置
JP2019024033A (ja) * 2017-07-24 2019-02-14 京セラ株式会社 光学センサ用パッケージ、および光学センサ装置
JP2019058451A (ja) * 2017-09-27 2019-04-18 京セラ株式会社 光学センサ装置
JP2019141470A (ja) * 2018-02-23 2019-08-29 富士ゼロックス株式会社 生体情報測定装置
WO2019189630A1 (ja) * 2018-03-28 2019-10-03 京セラ株式会社 流量流速算出装置、流量流速センサ装置、流量装置および流量流速算出方法
WO2020138086A1 (ja) * 2018-12-25 2020-07-02 京セラ株式会社 光学センサ装置
US12023153B2 (en) 2017-02-13 2024-07-02 Apple Inc. Light restriction designs in optical sensing applications having shared windows
US12064224B2 (en) 2017-09-26 2024-08-20 Apple Inc. Concentric architecture for optical sensing

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567953B (zh) 2011-12-20 2017-01-21 新加坡恒立私人有限公司 光電模組及包含該模組之裝置
DE102012102301B4 (de) * 2012-03-19 2021-06-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip und Scheinwerfer mit einem solchen Halbleiterchip
TWI473287B (zh) * 2012-06-14 2015-02-11 Lite On Semiconductor Corp Optical sensing device and manufacturing method thereof
CN107369728B (zh) * 2012-08-30 2019-07-26 京瓷株式会社 受光发光元件以及使用该受光发光元件的传感器装置
EP2799964A3 (en) * 2013-04-29 2017-04-26 Dyna Image Corporation Motion sensor and packaging method thereof
CN104123179A (zh) 2013-04-29 2014-10-29 敦南科技股份有限公司 中断控制方法及其电子系统
JP6229338B2 (ja) * 2013-07-12 2017-11-15 セイコーエプソン株式会社 光検出ユニット及び生体情報検出装置
WO2015076750A1 (en) * 2013-11-22 2015-05-28 Heptagon Micro Optics Pte. Ltd. Compact optoelectronic modules
JP5907200B2 (ja) * 2014-03-18 2016-04-26 セイコーエプソン株式会社 光検出ユニット及び生体情報検出装置
US11246498B2 (en) * 2014-12-25 2022-02-15 Kyocera Corporation Sensor, sensor device, and sensor system
US9976894B2 (en) 2015-11-17 2018-05-22 Heptagon Micro Optics Pte. Ltd. Optical device
EP4026493A1 (en) * 2015-12-22 2022-07-13 Kyocera Corporation Measuring sensor package and measurement sensor
US11717178B2 (en) 2016-01-25 2023-08-08 Kyocera Corporation Measurement sensor package and measurement sensor
FR3075467B1 (fr) * 2017-12-15 2020-03-27 Stmicroelectronics (Grenoble 2) Sas Couvercle de boitier de circuit electronique
FR3075466B1 (fr) 2017-12-15 2020-05-29 Stmicroelectronics (Grenoble 2) Sas Couvercle de boitier de circuit electronique
FR3075465B1 (fr) 2017-12-15 2020-03-27 Stmicroelectronics (Grenoble 2) Sas Couvercle de boitier de circuit electronique
TWI757588B (zh) * 2018-03-05 2022-03-11 精材科技股份有限公司 晶片封裝體及其製造方法
JP2020018379A (ja) * 2018-07-30 2020-02-06 ソニー株式会社 生体情報計測装置
DE102019107003A1 (de) * 2019-03-19 2020-09-24 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Abdeckung für ein optoelektronisches Bauteil, optoelektronisches Bauteil, Verwendung eines optoelektronischen Bauteils und Verfahren zur Herstellung einer Abdeckung für ein optoelektronisches Bauteil
BR112022007425A2 (pt) * 2019-10-17 2022-07-12 Boehringer Ingelheim Vetmedica Gmbh Aparelhos de exame para exame médico de um animal
KR20210151591A (ko) * 2020-06-05 2021-12-14 삼성전자주식회사 생체 센서, 생체 센서 어레이 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185864A (ja) * 1989-12-15 1991-08-13 Ricoh Co Ltd 画像読取装置
JP2004229920A (ja) * 2003-01-30 2004-08-19 Nippon Telegr & Teleph Corp <Ntt> 血流計のセンサ部及び血流計

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185864A (ja) * 1989-12-15 1991-08-13 Ricoh Co Ltd 画像読取装置
JP2004229920A (ja) * 2003-01-30 2004-08-19 Nippon Telegr & Teleph Corp <Ntt> 血流計のセンサ部及び血流計

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966493B2 (en) 2011-07-19 2018-05-08 Heptagon Micro Optics Pte. Ltd. Opto-electronic modules and methods of manufacturing the same and appliances and devices comprising the same
US11005001B2 (en) 2011-07-19 2021-05-11 Ams Sensors Singapore Pte. Ltd. Opto-electronic modules and methods of manufacturing the same and appliances and devices comprising the same
US9592000B2 (en) 2011-08-19 2017-03-14 Murata Manufacturing Co., Ltd. Biosensor
EP2745771A4 (en) * 2011-08-19 2015-09-16 Murata Manufacturing Co LIVING ORGANISM SENSOR
US20140163342A1 (en) * 2011-08-19 2014-06-12 Murata Manufacturing Co., Ltd. Biosensor
US10314526B2 (en) 2011-08-19 2019-06-11 Murata Manufacturing Co., Ltd. Biosensor
US9439569B2 (en) 2011-08-19 2016-09-13 Murata Manufacturing Co., Ltd. Biosensor having light emitting and receiving elements to obtain a biological signal
EP2745772A4 (en) * 2011-08-19 2015-09-16 Murata Manufacturing Co LIVING ORGANISM SENSOR
US20130105823A1 (en) * 2011-10-28 2013-05-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US9728589B2 (en) 2011-10-28 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Imaging device comprising light-emitting element and light-receiving element
US8847245B2 (en) * 2011-10-28 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Imaging device including light-emitting element and light receiving element
US20150076527A1 (en) * 2011-10-28 2015-03-19 Semiconductor Energy Laboratory Co., Ltd. Imaging device
JP2013153845A (ja) * 2012-01-27 2013-08-15 Seiko Epson Corp 脈波測定装置及び検出装置
JP2014180292A (ja) * 2013-03-18 2014-09-29 Seiko Epson Corp 生体情報検出装置
JP2014180290A (ja) * 2013-03-18 2014-09-29 Seiko Epson Corp 生体情報検出装置
JP2014180291A (ja) * 2013-03-18 2014-09-29 Seiko Epson Corp 生体情報検出装置
US9820661B2 (en) 2013-03-18 2017-11-21 Seiko Epson Corporation Biological information detection apparatus
US9814399B2 (en) 2013-03-18 2017-11-14 Seiko Epson Corporation Biological information detection apparatus
US11536653B2 (en) 2014-09-02 2022-12-27 Apple Inc. Multiple light paths architecture and obscuration methods for signal and perfusion index optimization
US12072288B2 (en) 2014-09-02 2024-08-27 Apple Inc. Multiple light paths architecture and obscuration methods for signal and perfusion index optimization
JP2017225836A (ja) * 2014-09-02 2017-12-28 アップル インコーポレイテッド 信号及びパーフュージョンインデックス最適化のための複数光路アーキテクチャー及び覆い隠し方法
US10215698B2 (en) 2014-09-02 2019-02-26 Apple Inc. Multiple light paths architecture and obscuration methods for signal and perfusion index optimization
JP2016123846A (ja) * 2015-09-18 2016-07-11 セイコーエプソン株式会社 生体情報測定センサ、および生体情報測定機器
JP2017131286A (ja) * 2016-01-25 2017-08-03 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JP2017136239A (ja) * 2016-02-04 2017-08-10 オムロンオートモーティブエレクトロニクス株式会社 生体情報検知装置
CN109069043A (zh) * 2016-04-04 2018-12-21 京瓷株式会社 测量传感器用封装件以及测量传感器
JP2020058813A (ja) * 2016-04-04 2020-04-16 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JP7061990B2 (ja) 2016-04-04 2022-05-02 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JPWO2017175504A1 (ja) * 2016-04-04 2019-02-21 京セラ株式会社 計測センサ用パッケージおよび計測センサ
WO2017175504A1 (ja) * 2016-04-04 2017-10-12 京セラ株式会社 計測センサ用パッケージおよび計測センサ
CN109069043B (zh) * 2016-04-04 2021-06-18 京瓷株式会社 测量传感器用封装件以及测量传感器
JP2017192507A (ja) * 2016-04-19 2017-10-26 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JP2017192500A (ja) * 2016-04-19 2017-10-26 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JP2018029776A (ja) * 2016-08-24 2018-03-01 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JP2018029895A (ja) * 2016-08-26 2018-03-01 京セラ株式会社 計測センサ用パッケージおよび計測センサ
JPWO2018055771A1 (ja) * 2016-09-26 2019-07-04 愛知時計電機株式会社 計測装置
WO2018055771A1 (ja) * 2016-09-26 2018-03-29 愛知時計電機株式会社 計測装置
US12023153B2 (en) 2017-02-13 2024-07-02 Apple Inc. Light restriction designs in optical sensing applications having shared windows
WO2018173294A1 (ja) * 2017-03-24 2018-09-27 愛知時計電機株式会社 計測装置
JPWO2018173294A1 (ja) * 2017-03-24 2019-11-07 愛知時計電機株式会社 計測装置
JP2019024033A (ja) * 2017-07-24 2019-02-14 京セラ株式会社 光学センサ用パッケージ、および光学センサ装置
US12064224B2 (en) 2017-09-26 2024-08-20 Apple Inc. Concentric architecture for optical sensing
JP2019058451A (ja) * 2017-09-27 2019-04-18 京セラ株式会社 光学センサ装置
JP2019141470A (ja) * 2018-02-23 2019-08-29 富士ゼロックス株式会社 生体情報測定装置
CN111919093A (zh) * 2018-03-28 2020-11-10 京瓷株式会社 流量流速算出装置、流量流速传感器装置、流量装置以及流量流速算出方法
US20210025742A1 (en) * 2018-03-28 2021-01-28 Kyocera Corporation Flow rate-velocity calculator, flow rate-velocity sensor device, flow rate device, and flow rate-velocity calculation method
JPWO2019189630A1 (ja) * 2018-03-28 2021-04-15 京セラ株式会社 流量流速算出装置、流量流速センサ装置、流量装置および流量流速算出方法
WO2019189630A1 (ja) * 2018-03-28 2019-10-03 京セラ株式会社 流量流速算出装置、流量流速センサ装置、流量装置および流量流速算出方法
US11713988B2 (en) 2018-03-28 2023-08-01 Kyocera Corporation Flow rate-velocity calculator, flow rate-velocity sensor device, flow rate device, and flow rate-velocity calculation method
JP7330170B2 (ja) 2018-03-28 2023-08-21 京セラ株式会社 流量流速算出装置および流量流速センサ装置
WO2020138086A1 (ja) * 2018-12-25 2020-07-02 京セラ株式会社 光学センサ装置
JP7267304B2 (ja) 2018-12-25 2023-05-01 京セラ株式会社 光学センサ装置
JPWO2020138086A1 (ja) * 2018-12-25 2021-11-11 京セラ株式会社 光学センサ装置

Also Published As

Publication number Publication date
JPWO2009139029A1 (ja) 2011-09-08
US20110260176A1 (en) 2011-10-27
JP5031895B2 (ja) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5031895B2 (ja) 自発光型センサ装置及びその製造方法
JP4061409B2 (ja) センサ部及び生体センサ
JP5031894B2 (ja) 自発光型センサ装置
JP5031896B2 (ja) 自発光型センサ装置
JP3882756B2 (ja) 血流計のセンサ部及び血流計
US20150190058A1 (en) Biological information detector and biological information measuring device
JP4724559B2 (ja) 光学センサ及びそのセンサ部
TW201522917A (zh) 可撓性光學感測器模組
JP2015082663A (ja) 光センサモジュール
JP4460566B2 (ja) 光学センサ及び生体情報測定装置
JP2008010832A (ja) 光学センサ、センサチップ及び生体情報測定装置
JP5301618B2 (ja) 光学センサ及びセンサチップ
JP4718324B2 (ja) 光学センサ及びそのセンサ部
US8915857B2 (en) Method for manufacturing optical device, optical device, and biological information detector
JP6891441B2 (ja) 検出装置および測定装置
US11419510B2 (en) Biological sensor module and biological information measuring apparatus
WO2019160072A1 (ja) 流路デバイスおよび計測装置
JP7395848B2 (ja) 生体情報測定装置
JP2016189893A (ja) 脈波検出装置
US20110196242A1 (en) Biological information detector and biological information measuring device
JP2018126222A (ja) 生体関連情報計測装置
JP5880536B2 (ja) 生体情報検出器及び生体情報測定装置
JP2011239865A (ja) 生体センサー装置
JP2007085908A (ja) 配向計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752577

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511795

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12991964

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08752577

Country of ref document: EP

Kind code of ref document: A1