WO2009135387A1 - 陶瓷颗粒增强复合钎料 - Google Patents
陶瓷颗粒增强复合钎料 Download PDFInfo
- Publication number
- WO2009135387A1 WO2009135387A1 PCT/CN2009/000499 CN2009000499W WO2009135387A1 WO 2009135387 A1 WO2009135387 A1 WO 2009135387A1 CN 2009000499 W CN2009000499 W CN 2009000499W WO 2009135387 A1 WO2009135387 A1 WO 2009135387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- powder
- reinforced composite
- composite solder
- ceramic particle
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
- B23K35/286—Al as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0466—Alloys based on noble metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
Definitions
- the invention belongs to the technical field of welding and relates to a ceramic particle reinforced composite brazing material which is used for ceramic/ceramic or ceramic/metal brazing in air, and is particularly suitable for packaging of solid oxide fuel cells. Background technique
- an active alloy is generally used as a joining material in a high vacuum process.
- the active method is characterized by excellent wetting properties and good airtight properties of the solder.
- this method also has some shortcomings: (1) high vacuum connection efficiency, high cost and limited size of the test piece; (2) the working temperature of the ceramic/metal joint brazed by the Ag-based active brazing filler metal does not exceed 400 'C; (3) There is a large difference in thermal expansion coefficient between the ceramic material and the brazing filler metal, resulting in high residual stress inside the brazed ceramic joint.
- the composite brazing method has a thermal expansion coefficient of the brazing filler metal and a ceramic material which are more closely matched due to the addition of the reinforcing phase to the brazing filler metal. It is beneficial to reduce the residual stress of the joint after brazing.
- the ceramic powder additive is used in the solder of Ag-CuO to improve the process of thermal diffusion and heat balance during the soldering process, and the microstructure is more uniform and reasonable, thus completing the present invention.
- the object of the present invention is to provide a ceramic particle reinforced composite solder for ceramic/ceramic or ceramic/metal brazing, which can reduce the generation of pores in the weld, and can be used at a working temperature of about 800'C. High temperature, and enhance the life of the weld at high temperatures in an oxidizing atmosphere and a reducing atmosphere, thereby obtaining high airtightness Energy, high temperature performance, high strength welding.
- the ceramic particle reinforced composite solder of the present invention is composed of 90 to 99.8% by mass of the metal powder A and 0.2 to 10% by mass of the ceramic particles B, and the metal powder A is a mixture of Ag powder and Cu powder, and relative to the metal powder A, The molar ratio of Ag powder accounts for 80-9.5%, and the molar ratio of Cu powder accounts for 0.5-20%.
- the ceramic particles B are selected from the group consisting of yttrium-stabilized zirconia (YSZ), Zr0 2 and A1 2 0 3 .
- the Ag powder molar ratio preferably accounts for 90 to 96%, and more preferably accounts for 92 to 94%; the Cu powder molar ratio preferably accounts for 4 to 10%, and more It preferably accounts for 6 to 8%.
- the ceramic particles B have a diameter of from 1 nm to 50 ⁇ m, preferably from 0.1 to 5 ⁇ m.
- the content of the metal powder cerium in the ceramic particle-reinforced composite solder according to the present invention is preferably 95 to 99% by mass, more preferably 98% by mass; and the content of the ceramic particles is preferably 1 to 5% by mass, more preferably 2% by mass.
- the ceramic particle reinforced composite solder according to the present invention is in the form of a powder, an alloy ribbon or an alloy wire, or a paste.
- the ceramic particle reinforced composite solder of the present invention may be formed into a powder form by a mixed method; it may be added by adding 75 to 90% by mass of a binder such as a terpineol solution of ethyl cellulose, or triethanolamine and n-nonanol. And simply mixing, the ceramic particle reinforced composite solder of the present invention is formed into a paste form; the ceramic particle reinforced composite solder of the present invention can also be formed into an alloy ribbon (or alloy wire) by a powder metallurgy method.
- the composite solder of the present invention can be used for ceramic/ceramic or ceramic/metal brazing, and is particularly suitable for packaging of solid oxide fuel cells.
- the composite brazing filler of the present invention utilizes Cu to form CuO and an intermetallic compound during air welding to enhance the properties of the welded interface. 10 Wettability.
- Cu is too high, Cu is hardly completely oxidized, resulting in the formation of an Ag-Cu phase, which causes a decrease in the dissolution temperature and cannot be used at a high temperature.
- the addition of ceramic powder can inhibit the generation of voids, but the addition of excessive ceramic powder can affect the mechanical properties of the weld, especially strength.
- the thickness of the coating is 0. 3mn!
- the ceramic or metal is superimposed on the coated solder, and the assembly is assembled with a higher viscosity of the solder paste, and a certain pressure is applied, and then the assembly is heated to a temperature higher than the liquidus of the solder but low. At the temperature of the solid phase of the base metal, the material is connected for a certain period of time.
- the composite solder of the present invention has a solidus temperature of 900 C or more and a liquidus of 1000 C or less. Since the composite brazing filler metal of the invention does not need to be nickel-plated for the workpiece (stainless steel, ceramics, etc.) before welding, and does not require any flux treatment, the process is simplified, and the working efficiency is improved.
- the composite brazing filler of the invention has good thermal expansion coefficient matching, and the pre-positioning functional viscosity is high, and can be directly used for welding in the atmosphere, and the pair is reduced. The requirements of brazing equipment make the brazing process easier to achieve.
- the composite solder of the present invention can be used at a high temperature of about 800 ° C, reduces the generation of pores in the weld and is suitable for the welding of members with high air tightness, and enhances the oxidation atmosphere and reduction of the weld at high temperatures.
- the life in the atmosphere gives a weld with high joint properties including high air tightness, high heat resistance, high temperature use performance and high strength.
- Fig. 1 is a SEM image of a braze joint structure obtained by joining a NiO-YSZ ceramic and a FeCrAl alloy using a preferred embodiment of the ceramic reinforced composite solder of the present invention.
- Fig. 2 is a SEM image of a braze joint structure obtained by joining a NiO-YSZ ceramic and a FeCrAl alloy using a composite solder of the prior art (Comparative Example 1).
- Fig. 3 (a) shows the internal structure of the brazed joint structure obtained by using the ceramic reinforced composite solder of the present invention (magnification magnification: 3000).
- Fig. 3 (b) shows the internal structure of the brazed joint structure obtained by using the ceramic reinforced composite brazing filler of the present invention (magnification magnification: 10000).
- Figure 4 shows the open circuit voltage of a single cell obtained after sealing with a ceramic reinforced composite solder (Ag-8Cu/2YSZ).
- Ceramic granule reinforced composite brazing filler metal for ceramic/ceramic or ceramic/metal brazing is composed of Ag powder and Cu powder mixed with metal powder A and ceramic granule B by mass ratio; Ag powder has an average particle size of lMm 5 ⁇ The average particle size of the granules of the YSZ ceramic powder is 0.5. It is brazed in the air by solder, Cu is used to form CuO and intermetallic compounds in the brazing process to enhance the welding strength, and ceramic particles are added to keep the pores.
- the preparation is as follows: First, Ag powder and Cu powder are mixed in molar ratio (Ag: 92 mol%; Cu : 8 mol%) to form Ag-8Cu metal powder.
- Example 2 YSZ particles of 2% by mass based on the total mass were added. Mix evenly with a mixer. Then, the mixed solder was poured into a mortar, and a binder (ethylcellulose terpineol solution) was added in a ratio of 85% by mass (solid mass ratio), and the mixture was uniformly stirred to prepare a paste form.
- a binder ethylcellulose terpineol solution
- a ceramic particle-reinforced composite solder was prepared in the same manner as in Example 1, except that the ceramic particles were Zr0 2 and had an average particle size of 1 Pra.
- Example 3
- a ceramic particle-reinforced composite solder was prepared in the same manner as in Example 1, except that the ceramic particles were A1 2 0 3 and had an average particle size of 5 ⁇ m.
- a ceramic particle reinforced composite brazing filler metal was prepared in the same manner as in Example 1, except that the molar ratio of Ag powder was 96%, and the molar ratio of Cu powder was 4%.
- Example 5 A ceramic particle reinforced composite brazing filler metal was prepared in the same manner as in Example 1, except that the molar ratio of Ag powder was 96%, and the molar ratio of Cu powder was 4%.
- a ceramic particle reinforced composite solder was prepared in the same manner as in Example 1, except that the molar ratio of Ag powder was 98%, and the molar ratio of Cu powder was 2%.
- a ceramic particle reinforced composite solder was prepared in the same manner as in Example 1, except that the content of the metal powder A was 96%, and the content of the ceramic particles B was 4%.
- Example 7
- a ceramic particle reinforced composite solder was prepared in the same manner as in Example 1, except that the diameter of the ceramic particles B was 3011 ⁇ 2.
- a ceramic particle reinforced composite solder was prepared in the same manner as in Example 1, except that the diameter of the ceramic particles l was l m .
- the average particle size of the Ag powder is 0. 5 m.
- the preparation was as follows: First, Ag powder, Cu powder molar ratio (Ag: 92 mol%; Cu: 8 mol%) were mixed to form Ag-8Cu metal powder. Mix evenly with a mixer. Then, the mixed solder was poured into a mortar, and a binder (ethylcellulose terpineol solution) was added in a ratio of 85% by mass (solid mass ratio), and the mixture was uniformly stirred to prepare a paste form.
- a binder ethylcellulose terpineol solution
- the thickness of the coating is 0. 5ram.
- the paste-like composite solder is adhered together at room temperature, and then pressure is applied, and placed in a high-temperature furnace at a constant temperature of 15 CTC and 500 ° C for 5 h to completely remove the organic solvent, followed by heating to 980 ° C, and holding the heat for 15 m. n , then the furnace is naturally cooled.
- Fig. 1 is a view showing a brazing joint structure obtained by joining a ceramic particle reinforced composite brazing filler alloy of Example 1 to a NiO-YSZ ceramic and a FeCrAl alloy, and forming a brazing filler metal and a stainless steel as compared with the brazing filler metal of the comparative example 1 (Fig. 2).
- the reaction layer is continuous, dense and uniform, effectively suppressing the formation of large-sized pores, and is advantageous for improving the airtight performance and strength of the joint.
- Fig. 3 (a) that the structure of the brazing seam has been significantly different.
- the brazing seam is mainly composed of two parts, one part is Ag-CuO (generated by oxidation of Cu in air), and the other part is YSZ particles distributed in the Ag-CuO matrix. Since the brazing temperature is much lower than the point of the YSZ particles, the YSZ particles do not melt during the brazing process, that is, the state in which the solid YSZ particles and the liquid Ag-CuO coexist, and under certain pressure, the YSZ particles are formed in the brazing seam. Redistribution in . It can be seen that the distribution of black fine YSZ particles in the brazing seam is relatively uniform, and there is no obvious segregation, which is undoubtedly advantageous for improving the gas and strength of the brazing seam.
- the brazed joint structure is relatively dense, and defects such as looseness and voids are rarely found, and the YSZ ceramic particles are closely combined with the Ag-8Cu0 matrix.
- the brazed joint structure is actually a local metal matrix composite with YSZ as the reinforcing phase and Ag-CuO microstructure as the matrix, rather than a simple mixture of pure Ag-CuO and ceramic particles.
- the addition of ceramic particles reduces the fluidity of the liquid solder component
- a strong capillary action can be formed between the particles and between the particles and the liquid solder component, and the solder is improved.
- the caulking ability also improves the diffusion of the active element CuO to the solder and the mother interface, thereby forming a local concentration difference of CuO, so that CuO is continuously diffused to the vicinity of the interface layer to form an anti-deposit, and a dense reaction layer is formed.
- the solder penetrates into the microporous region of the surface layer of the porous anode, and mechanical and chemical bonding is produced, which is advantageous for improving the strength of the joint.
- Sealing SOFC with composite solder has great advantages, can improve the strength and airtightness of the joint, and in particular, can significantly improve the high temperature performance of the joint.
- Fig. 4 is a single cell prepared by using NIO-YSZ as an anode, YSZ as an electrolyte, and LSM as a cathode.
- the single cell was sealed by using the Ag-8CuO/2YSZ sealing material of the present invention, and the open circuit voltage under multiple cycles was measured.
- the experimental results show that the metal connector and the single cell PEN structure form a tight connection with each other, and the airtight performance is good.
- the single cell has stable performance at 750 ° C for a long time, and can withstand repeated cycles of room temperature to 750 ° C for 15 times.
- the open circuit voltage does not change. As shown in Figure 4.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Description
陶瓷颗粒增强复合钎料 技术领域
本发明属于焊接技术领域, 涉及一种陶瓷颗粒增强复合钎料, 所述复合钎料用于 在空气中的陶瓷 /陶瓷或陶瓷 /金属钎焊, 特别适用于固体氧化物燃料电池的封装。 背景技术
在陶瓷钎焊过程中, 为获得良好的陶瓷 /陶瓷、 陶瓷 /金属接头, 一般采用活性合 金作连接材料在高真空中连接的工艺。 活性法的特点是钎料具有优良的润湿性能、 好 的气密性能。 但是该方法也存在一些不足: (1 ) 高真空连接效率低、 成本高和试件尺 寸受限制; (2)—般的 Ag基活性钎料所钎悍的陶瓷 /金属接头工作温度不超过 400'C ; ( 3) 陶瓷材料与钎料金属之间存在较大的热膨胀系数差, 导致钎焊后的陶瓷接头内 部存在很高的残余应力。 复合钎料钎焊方法与普通的活性钎料钎焊相比, 由于钎料中 加入了增强相, 使得钎料整体的热膨胀系数降低, 从而使得钎料与陶瓷材料的热膨胀 系数之间更加匹配, 有利于降低钎焊后接头的残余应力。
美国太平洋西北国家实验室的 K. Scott Weil等人采用 Ag-CuO焊料对耐高温空 气钎焊进行了大量的研究, 实现了氧化锆基陶瓷与不锈钢间的焊接, 焊缝有很好的机 械强度和耐高温的性能。 但 K. Sccot Weil课题组也同时指出了 Ag-CuO的缺点, 可 以发现悍缝中有断续的气孔产生, 这会对焊接的质量和寿命产生重大的影响。 研究表 明, 随着掺杂 CuO量的增加, 这些气孔逐渐减少, 当掺杂 CuO摩尔比例到达 20- 30% 以上的时候, 气孔将基本消失, 但是从 Ag-CuO 的两相图中可以看出, 这时候的焊接 温度已经降到 800Ό以下, 不符合我们要求的 800'C以上的工作温度要求。 发明内容
我们针对 Ag-CuO焊料的这个致命的问题, 通过在 Ag-CuO的焊料中采用陶瓷粉体 添加剂来改善焊接过程中热扩散和热平衡的过程, 促使微结构更均匀更合理, 从而 完成了本发明。
本发明的目的在于提供一种用于陶瓷 /陶瓷或陶瓷 /金属钎焊的陶瓷颗粒增强复合 钎料, 所述复合钎料可以减少焊缝中气孔的产生, 可以胜任工作温度在 800'C左右的 高温, 并且增强焊缝在高温下氧化气氛和还原气氛中的寿命, 从而得到具有高气密性
能、 高温性能、 高强度的焊接。
本发明的陶瓷颗粒增强复合钎料由 90~99.8质量%的金属粉末 A与 0.2〜10质量 %的陶瓷颗粒 B组成, 金属粉末 A由 Ag粉和 Cu粉混合而成, 相对于金属粉末 A, Ag粉摩尔比占 80~99.5%, Cu粉摩尔比占 0.5~20%。
根据本发明的陶瓷颗粒增强复合钎料, 陶瓷颗粒 B选自钇稳定的氧化锆 (YSZ)、 Zr02以及 A1203。
根据本发明的陶瓷颗粒增强复合钎料, 在金属粉末 A 中, Ag粉摩尔比优选占 90-96%, 并且更优选占 92~94%; Cu粉摩尔比优选占 4〜10%, 并且更优选占 6~8%。
根据本发明的陶瓷颗粒增强复合钎料, 陶瓷颗粒 B的直径为 1ηιη〜50μπι, 优选 为 0.1~5μιη。
根据本发明的陶瓷颗粒增强复合钎料, 金属粉末 Α的含量优选为 95~99质量%, 更优选为 98质量%; 陶瓷颗粒的含量优选为 1〜5质量%, 更优选为质量 2%。
根据本发明的陶瓷颗粒增强复合钎料, 它处于粉末、 合金带或合金丝、 或膏的形 式。 可以利用混合的方法将本发明的陶瓷颗粒增强复合钎料制成粉末形式; 可以通过 加入 75-90质量%的粘结剂, 例如乙基纤维素的松油醇溶液, 或三乙醇胺和正癸醇并 且简单地混合, 将本发明的陶瓷颗粒增强复合钎料制成膏状形式; 还可以利用粉末冶 金的方法, 把本发明的陶瓷颗粒增强复合钎料制成合金带 (或合金丝)。 因而, 本发明 的复合钎料可以用于陶瓷 /陶瓷或陶瓷 /金属钎焊, 特别适用于固体氧化物燃料电池的 封装。本发明的复合钎料是在空气焊接过程中利用 Cu形成 CuO以及金属间化合物来 增强焊接界面的性能 10润湿性。 当 Cu的比例过高的时候, Cu很难完全氧化, 从而导 致形成 Ag-Cu相, 会导致溶解温度下降, 不能在高温下使用。 同时, 增加陶瓷粉末可 以抑制空隙的产生,但是过多的陶瓷粉末的加入会影响焊缝的机械性能,尤其是强度。
使用本发明的复合钎料进行钎焊的方法为用毛笔沾着焊膏均勾涂敷到陶瓷悍接 面上直至涂层厚度在 0. 3mn!〜 lmm的范围内, 再叠加陶瓷或金属到涂敷的钎焊料上, 依靠焊膏较高的粘度定位装配, 并施加一定压力, 再将装配件加热到高于钎料液相线 但低于母材固相线的温度, 保温一定时间完成材料连接。
本发明的复合钎料的固相线温度在 900'C以上、 液相线在 1000'C以下。 由于本发 明的复合钎料, 焊接前, 不需要对被焊接物 (不锈钢、 陶瓷等) 进行镀镍处理, 且无 需任何钎剂处理, 工艺过程得到简化, 提高了工作效率。 本发明的复合钎料具有良好 热膨胀系数匹配, 预定位功能粘度较高, 可以直接在大气中进行用于焊接, 降低了对
钎焊设备的要求, 使钎焊过程更容易实现。
特别是, 本发明的复合钎料可以胜任工作温度在 800°C左右的高温, 减少焊缝中 气孔的产生并且适合气密性高的构件的焊接, 并且增强焊缝在高温下氧化气氛和还原 气氛中的寿命, 从而得到具有高接头性能, 包括高气密性、 高耐热性、 高温使用性能 和高强度的焊接。 附图说明
图 1是采用本发明的陶瓷增强复合钎料的一个优选实施方案连接 NiO-YSZ陶瓷与 FeCrAl合金所获得的钎缝结构的 SEM图。
图 2是采用现有技术(比较例 1)的复合钎料连接 NiO- YSZ陶瓷与 FeCrAl合金所 获得的钎缝结构的 SEM图。
图 3 (a)显示了采用本发明的陶瓷增强复合钎料获得的钎缝结构的内部组织 (放 大倍率:3000)。
图 3 (b)显示了采用本发明的陶瓷增强复合钎料获得的钎缝结构的内部组织 (放 大倍率:10000)。
图 4显示了在采用陶瓷增强复合钎料 (Ag-8Cu/2YSZ)封接后获得的单电池的开路 电压。 具体实施方式
为进一步说明本发明的目的提供下述实施例, 但是实施例不限制本发明的范围- 实施例 1 :
用于陶瓷 /陶瓷或陶瓷 /金属钎焊的陶瓷赖粒增强复合钎料由 Ag粉、 Cu粉混合而 成的金属粉末 A与陶瓷颗粒 B按质量比混合而成; Ag粉平均颗粒尺寸为 lMm, Cu粉平 均颗粒尺寸为 0. 5ΜΠ1, 增强体 YSZ陶瓷粉平均颗粒尺寸为 0. 5 。 是通过焊料在空气 中钎焊, 利用 Cu在钎焊过程中形成 CuO以及金属间化合物来增强焊接强度, 同时添 加陶瓷颗粒来一直孔隙的产生。制备如下:肯先将 Ag粉、 Cu粉按摩尔比 (Ag :92mol%; Cu: 8mol%)混合成 Ag-8Cu金属粉末。 然后加入相对于总质量计为 2% (质量比)的 YSZ颗 粒。 利用混料机均匀混合。 然后将混合好的钎料倒入研钵中, 按固含量 85% (质量比) 的比例加入粘结剂 (乙基纤维素的松油醇溶液), 搅拌均匀, 配制成膏状形式。
实施例 2:
以与实施例 1相同的方法制备陶瓷颗粒增强复合钎料, 不同之处在于陶瓷颗粒为 Zr02, 其平均颗粒尺寸为 lPra。 实施例 3:
以与实施例 1相同的方法制备陶瓷颗粒增强复合钎料, 不同之处在于陶瓷颗粒为 A1203, 其平均颗粒尺寸为 5μπι。
实施例 4:
以与实施例 1相同的方法制备陶瓷颗粒增强复合钎料, 不同之处在于 Ag粉摩尔 比占 96%, Cu粉摩尔比占 4%。 实施例 5
以与实施例 1相同的方法制备陶瓷颗粒增强复合钎料, 不同之处在于 Ag粉摩尔 比占 98%, Cu粉摩尔比占 2%。 实施例 6
以与实施例 1相同的方法制备陶瓷颗粒增强复合钎料, 不同之处在于金属粉末 A 的含量为 96%, 陶瓷颗粒 B的含量为 4%。 实施例 7:
以与实施例 1相同的方法制备陶瓷颗粒增强复合钎料, 不同之处在于陶瓷颗粒 B 的直径为 301½。 实施例 8:
以与实施例 1 相同的方法制备陶瓷颗粒增强复合钎料, 不同之处在于陶瓷颗粒 Β 的直径为 l m。 实施例 9:
将实施例 1-8的膏状复合钎料均匀涂敷在陶瓷和金属的表面, 涂层厚度为 0. 5mm。 利用膏状复合钎料在常温下的粘结性粘在一起, 然后施加压力, 放入高温炉中分别在
150°C和 500°C恒温 5h以充分去除有机溶剂, 接着加热到 980'C, 保温 15min, 随后炉 中自然冷却。 比较例 1
用于比较的钎料是由 Ag粉、 Cu粉混合而成的金属粉末; Ag粉平均颗粒尺寸为 lWii , Cu 粉平均颗粒尺寸为 0. 5 m。 制备如下: 首先将 Ag 粉、 Cu 粉按摩尔比 (Ag: 92mol%; Cu: 8mol%) 混合成 Ag- 8Cu金属粉末。 利用混料机均匀混合。 然后将 混合好的钎料倒入研钵中, 按固含量 85% (质量比) 的比例加入粘结剂 (乙基纤维素 的松油醇溶液), 搅拌均匀, 配制成膏状形式。
将上述膏状钎料均匀涂敷在陶瓷和金属的表面, 涂层厚度为 0. 5ram。 利用膏状复 合钎料在常温下的粘结性粘在一起,然后施加压力,放入高温炉中分别在 15CTC和 500 °C恒温 5h以充分去除有机溶剂,接着加热到 980°C,保温 15min, 随后炉中自然冷却。
图 1是采用实施例 1的陶瓷颗粒增强复合钎料连接 NiO-YSZ陶瓷与 FeCrAl合金所 获得的钎缝结构, 与单纯采用比较例 1的钎料 (图 2)相比, 钎料与不锈钢形成的反应 层连续, 致密而均匀, 有效抑制了大尺寸孔洞的生成, 有利于提高接头的气密性能和 强度。 而且从图 3 (a) 可以看出钎缝的结构已经明显不同。 钎缝主要由两部分组成, 一部分是 Ag- CuO (由 Cu在空气中的氧化生成), 另一部分是分布在 Ag-CuO基体中的 YSZ颗粒。 由于钎焊温度远低于 YSZ颗粒的 点, 因此在钎焊过程中, YSZ颗粒并不 融化, 即形成固态 YSZ颗粒与液态 Ag- CuO共存的状态, 在一定压力下, 形成 YSZ颗 粒在钎缝中的再分布。 可以看出黑色细小的 YSZ颗粒在钎缝中分布是比较均匀的, 没. 有明显的偏聚, 这对提高钎缝的气 ^性和强度无疑是有利的。
从图 3 (b) 的钎缝组织照片可以看出, 钎缝组织比较致密, 很少发现疏松、 孔洞 等缺陷, 同时 YSZ陶瓷颗粒与 Ag- 8Cu0基体结合比较紧密。 这样, 钎缝组织实际上成 为以 YSZ 为增强相, 以 Ag-CuO 组织为基体的局部金属基复合材料, 而不是单纯的 Ag-CuO和陶瓷颗粒的简单混合物。
分析认为, 尽管陶瓷颗粒的加入降低了液体钎料组分的流动性, 但另一方面在颗 粒之间及颗粒与液态钎料组分之间能够形成较强的毛细作用, 提高了钎料的填缝能 力, 也改善了活性元素 CuO到钎料与母 界面上的扩散, 从而形成 CuO局部的浓度 差, 使得 CuO不断扩散到界面层附近进行反库, 生成致密的反应层。 并且由于毛细作 用钎料渗入多孔阳极表层微孔区, 产生机械和化学结合, 有利于提高接头的强度。
利用复合钎料封接 SOFC具有很大的优越性, 可以提高接头的强度和气密性能, 特 别是能够显著提高接头的高温性能。
图 4是以 NIO-YSZ为阳极, YSZ为电解质, LSM为阴极制备的单电池, 采用本 发明的 Ag-8CuO/2YSZ封接材料对单电池实施封接, 测量多次循环下的开路电压。 实 验结果表明金属连接体与单电池 PEN结构彼此形成紧密连接,气密性能好,单电池在 750°C工作性能长期稳定, 并能经受室温到 750'C反复循环 15次, 开路电压不变结果 如图 4所示。
Claims
1. 一种陶瓷颗粒增强复合钎料, 其特征在于: 陶瓷颗粒增强复合钎料由 90〜99.8 质量%的金属粉末 A与 0.2〜10质量%的陶瓷颗粒 B组成,金属粉末 A由 Ag粉和 Cu 粉混合而成,相对于金属粉末 A, Ag粉摩尔比占 80~99.5%, Cu粉摩尔比占 0.5〜20%。
2. 根据权利要求 1所述的陶瓷颗粒增强复合钎料,其中陶瓷颗粒 B选自钇稳定的 氧化锆、 Zr02以及 A1203。
3. 根据权利要求 1所述的陶瓷颗粒增强复合钎料, 其中在金属粉末 A中, Ag粉 摩尔比占 90~96%, Cu粉摩尔比占 4〜 10%。
4. 根据权利要求 3所述的陶瓷颗粒增强复合钎料, 其中在金属粉末 A中, Ag粉 摩尔比占 92~94%, Cu粉摩尔比占 6~8%。
5. 根据权利要求 1或 2所述的陶瓷颗粒增强复合钎料,其中陶瓷颗粒 B的直径为 Inn!〜 50μπι。
6. 根据权利要求 5 所述的陶瓷颗粒增强复合钎料, 其中陶瓷颗粒 Β 的直径为 0.1〜5μπι。
7. 根据权利要求 1所述的陶瓷颗粒增强复合钎料,其中金属粉末 Α的含量为 95~ 99质量%, 陶瓷颗粒的含量为 1〜5质量%。
8. 根据权利要求 1所述的陶瓷颗粒增强复合钎料, 其中金属粉末的含量为 98质 量%, 陶瓷颗粒的含量为 2质量%。
9. 根据权利要求 1所述的陶瓷颗粒增强复合钎料,其中陶瓷颗粒增强复合钎料为 粉末、 合金带或合金丝、 或膏的形式。
10.根据权利要求 1 所述的陶瓷颗粒增强复合钎料在固体氧化物燃料电池的封装 中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810106217.5 | 2008-05-09 | ||
CN2008101062175A CN101288928B (zh) | 2008-05-09 | 2008-05-09 | 陶瓷颗粒增强复合钎料及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009135387A1 true WO2009135387A1 (zh) | 2009-11-12 |
Family
ID=40033467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/000499 WO2009135387A1 (zh) | 2008-05-09 | 2009-05-07 | 陶瓷颗粒增强复合钎料 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101288928B (zh) |
WO (1) | WO2009135387A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111747769A (zh) * | 2020-06-30 | 2020-10-09 | 哈尔滨工业大学(威海) | 一种AlMgB14-TiB2复合陶瓷与TiAl基合金的真空钎焊方法 |
CN113579546A (zh) * | 2021-08-23 | 2021-11-02 | 天津大学 | 一种增强相的临界上浮时间的预测方法及系统 |
CN115229384A (zh) * | 2022-06-28 | 2022-10-25 | 成都凯天电子股份有限公司 | 一种银基复合钎料及其制备方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101288928B (zh) * | 2008-05-09 | 2012-02-15 | 中国科学技术大学 | 陶瓷颗粒增强复合钎料及其应用 |
CN102554385B (zh) * | 2011-12-13 | 2013-09-04 | 河南科技大学 | 一种金属陶瓷复合衬板的钎焊铸接工艺 |
CN103273156B (zh) * | 2013-06-14 | 2015-09-16 | 沈阳飞机工业(集团)有限公司 | 一种提高钎焊焊接强度的方法 |
CN105637165B (zh) * | 2013-10-17 | 2018-12-07 | 哈利伯顿能源服务公司 | 用于钻头的颗粒强化的钎焊合金 |
CN103819213B (zh) * | 2013-12-31 | 2015-11-25 | 吉世尔(合肥)能源科技有限公司 | 一种金属与陶瓷的多层钎焊结构和钎焊方法 |
CN104668808A (zh) * | 2015-01-29 | 2015-06-03 | 山东浪潮华光光电子股份有限公司 | 一种高纯铟纤维复合增强焊料及其制备方法 |
CN104708224A (zh) * | 2015-01-29 | 2015-06-17 | 山东浪潮华光光电子股份有限公司 | 短纤维丝增强高纯铟复合焊料及其制备方法 |
CN107009050A (zh) * | 2017-06-01 | 2017-08-04 | 合肥邦诺科技有限公司 | 一种陶瓷颗粒增强复合钎料 |
EP3427889B1 (en) * | 2017-07-14 | 2021-02-24 | Ansaldo Energia IP UK Limited | Air braze filler material for ceramic metallization and bonding, and method for metallization and bonding of ceramic surfaces |
CN108115308B (zh) * | 2018-01-03 | 2020-06-19 | 重庆大学 | 一种Al18B4O33晶须增强的银铜复合钎料及其制备方法 |
CN113245653B (zh) * | 2021-06-04 | 2022-03-25 | 哈尔滨工业大学 | 一种使用固态银在空气中连接陶瓷与金属的方法 |
CN115870660A (zh) * | 2021-09-29 | 2023-03-31 | 比亚迪股份有限公司 | 活性金属焊膏组合物、焊膏及焊接陶瓷与金属的方法 |
CN114147388A (zh) * | 2021-11-15 | 2022-03-08 | 西北工业大学 | 一种基于氧化钇稳定氧化锆固态相变复合钎料及其制备方法 |
CN114751751A (zh) * | 2022-04-18 | 2022-07-15 | 南通三责精密陶瓷有限公司 | 半导体高温用水冷高精度陶瓷吸盘的制造方法及陶瓷吸盘 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09122967A (ja) * | 1995-10-25 | 1997-05-13 | Tanaka Denshi Kogyo Kk | 複合半田材料 |
CN1544196A (zh) * | 2003-11-17 | 2004-11-10 | 哈尔滨工业大学 | 陶瓷颗粒增强复合钎料的机械合金化制备方法 |
US20060120911A1 (en) * | 2004-12-08 | 2006-06-08 | Manoj Gupta | Method of forming composite solder by cold compaction and composite solder |
US20060243776A1 (en) * | 2003-07-22 | 2006-11-02 | Kaoru Tada | Part for active silver brazing and active silver brazing product using the part |
CN101288928A (zh) * | 2008-05-09 | 2008-10-22 | 中国科学技术大学 | 陶瓷颗粒增强复合钎料 |
-
2008
- 2008-05-09 CN CN2008101062175A patent/CN101288928B/zh not_active Expired - Fee Related
-
2009
- 2009-05-07 WO PCT/CN2009/000499 patent/WO2009135387A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09122967A (ja) * | 1995-10-25 | 1997-05-13 | Tanaka Denshi Kogyo Kk | 複合半田材料 |
US20060243776A1 (en) * | 2003-07-22 | 2006-11-02 | Kaoru Tada | Part for active silver brazing and active silver brazing product using the part |
CN1544196A (zh) * | 2003-11-17 | 2004-11-10 | 哈尔滨工业大学 | 陶瓷颗粒增强复合钎料的机械合金化制备方法 |
US20060120911A1 (en) * | 2004-12-08 | 2006-06-08 | Manoj Gupta | Method of forming composite solder by cold compaction and composite solder |
CN101288928A (zh) * | 2008-05-09 | 2008-10-22 | 中国科学技术大学 | 陶瓷颗粒增强复合钎料 |
Non-Patent Citations (1)
Title |
---|
GURDIAL BLUGAN ET AL.: "Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy.", CERAMICS INTERNATIONAL., vol. 33, no. 6, 27 June 2006 (2006-06-27), pages 1033 - 1039 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111747769A (zh) * | 2020-06-30 | 2020-10-09 | 哈尔滨工业大学(威海) | 一种AlMgB14-TiB2复合陶瓷与TiAl基合金的真空钎焊方法 |
CN113579546A (zh) * | 2021-08-23 | 2021-11-02 | 天津大学 | 一种增强相的临界上浮时间的预测方法及系统 |
CN113579546B (zh) * | 2021-08-23 | 2022-06-14 | 天津大学 | 一种增强相的临界上浮时间的预测方法及系统 |
CN115229384A (zh) * | 2022-06-28 | 2022-10-25 | 成都凯天电子股份有限公司 | 一种银基复合钎料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101288928B (zh) | 2012-02-15 |
CN101288928A (zh) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009135387A1 (zh) | 陶瓷颗粒增强复合钎料 | |
RU2403136C2 (ru) | Паяная система с согласованными коэффициентами термического расширения | |
JP5623783B2 (ja) | 大気接合用ろう材、接合体、および、集電材料 | |
CA2472378C (en) | Method of joining ceramic and metal parts | |
JP5645307B2 (ja) | 大気接合用ろう材、接合体、および、集電材料 | |
JP6266232B2 (ja) | 蝋付け組成物及び関連装置 | |
Tucker et al. | A braze system for sealing metal-supported solid oxide fuel cells | |
CA2679846C (en) | Metal-ceramic composite air braze with ceramic particulate | |
US8511535B1 (en) | Innovative braze and brazing process for hermetic sealing between ceramic and metal components in a high-temperature oxidizing or reducing atmosphere | |
Wang et al. | Brazing YSZ ceramics by a novel SiO2 nanoparticles modified Ag filler | |
Raju et al. | Joining of metal-ceramic using reactive air brazing for oxygen transport membrane applications | |
CN103894694A (zh) | 一种复合型绿色低熔玻璃钎料连接碳化硅增强铝基复合材料的方法 | |
US9112193B2 (en) | Sealing arrangement for high-temperature fuel cell stack | |
JP5268717B2 (ja) | 大気接合用ろう材及び接合体 | |
Si et al. | Evolution behavior of Al2O3 nanoparticles reinforcements during reactive air brazing and its role in improving the joint strength | |
CA2630526A1 (en) | Joining of dissimilar materials | |
Wang et al. | Interfacial characterization and mechanical properties of reactive air brazed ZrO2 ceramic joints with Ag–CuO–Al2TiO5 composite filler metal | |
CN109384474A (zh) | 陶瓷低温活性金属化用膏体、陶瓷金属化方法及依据该方法制备的真空电子器件 | |
JP5069989B2 (ja) | 燃料電池に用いる密封材料 | |
CN114178738A (zh) | 一种陶瓷与不锈钢钎焊用活性钎料和钎料焊膏 | |
CN110480112A (zh) | Cf/SiC复合材料与Ni基高温合金的反应复合扩散钎焊连接方法 | |
CN113149687A (zh) | 一种陶瓷和金属的连接方法 | |
JP2004142971A (ja) | セラミック材料とステンレス鋼の接合方法 | |
CN111843288B (zh) | 一种高熔点Ti-Zr-Cu-Ni合金钎焊料 | |
Weil et al. | Development of an oxidation resistant ceramic‐to‐metal braze for use in YSZ‐based electrochemical devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09741662 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09741662 Country of ref document: EP Kind code of ref document: A1 |