Nothing Special   »   [go: up one dir, main page]

WO2009119571A1 - 通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法 - Google Patents

通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法 Download PDF

Info

Publication number
WO2009119571A1
WO2009119571A1 PCT/JP2009/055804 JP2009055804W WO2009119571A1 WO 2009119571 A1 WO2009119571 A1 WO 2009119571A1 JP 2009055804 W JP2009055804 W JP 2009055804W WO 2009119571 A1 WO2009119571 A1 WO 2009119571A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
detour
communication device
failure
working
Prior art date
Application number
PCT/JP2009/055804
Other languages
English (en)
French (fr)
Inventor
到 西岡
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP09724635.9A priority Critical patent/EP2259505B1/en
Priority to CN200980106056.2A priority patent/CN101953125B/zh
Priority to US12/920,240 priority patent/US8483052B2/en
Publication of WO2009119571A1 publication Critical patent/WO2009119571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/028Dynamic adaptation of the update intervals, e.g. event-triggered updates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection

Definitions

  • the present invention relates to a communication network system that switches to a detour when a failure occurs, a communication device that constitutes the communication network system, a route design device, and a failure recovery method when a failure occurs. Especially in a communication network system in which multiple failures occur simultaneously within a certain period of time, high-speed detouring is possible using the minimum network resources in consideration of multiple failure locations, and the original state is restored when the failure is recovered.
  • the present invention relates to a possible communication network system, a communication device, a route design device, and a failure recovery method.
  • Non-Patent Document 1 An example of a conventional failure recovery method in a communication network is described in Non-Patent Document 1 and Patent Document 1.
  • the conventional failure recovery method in this communication network includes 1 + 1 protection (1 + 1 Unidirectional / Bidirectional Protection), 1: 1 protection (1: 1 Protection), and advance reservation type list. (Shared Mesh Restoration) and path rerouting (LSP Re-routing).
  • those other than path rerouting are methods for determining a backup route in advance for the working route. For this reason, in the case of multiple failures in which the working route and the backup route become obstacles at the same time, failure bypassing fails. For this reason, when multiple failures occur, path rerouting has been applied as described in Patent Document 1.
  • Patent Document 1 describes that when protection fails, path rerouting is performed based on the control of the GMPLS control unit.
  • the communication device is configured by a routing protocol unit, a topology DB that holds the availability of a link or a failure that is notified from the routing protocol unit, and a signaling protocol unit that controls a path. .
  • the topology DB is described as a forwarding DB
  • the signaling protocol is described as a GMPLS control unit.
  • the conventional path rerouting when the communication apparatus having such a configuration is used operates as follows. After receiving the failure notification, the communication device deletes the working path. Next, the communication device refers to the topology DB collected by the routing protocol, and calculates a detour that does not include the failure location. And a communication apparatus recovers a communication failure by setting a new path along a detour by a signaling protocol.
  • the first problem is that it takes time until a failure occurs and the location of the failure is notified by the routing protocol. Therefore, it is necessary to wait for a certain time to calculate the detour, and it takes time to recover from the failure. That is.
  • the second problem is that, since the detouring operation is performed in a distributed manner, there is a possibility that network resource contention may occur in the intermediate communication node when a plurality of working paths simultaneously fail.
  • the communication device 1000 is arranged at a point indicated by A in ⁇ .
  • the communication apparatus 1000 is similarly arranged at points indicated by B, C, D, E, F, and G in the circles.
  • the transmission link between the communication device A and the communication device C is represented as a transmission link 90-AC.
  • the detour of the working path 1100 is calculated by the communication device A
  • the detour of the working path 1200 is calculated by the communication device D.
  • the communication devices A and D do not consider each other detour. Therefore, even if the link between the communication devices DE or the link between the communication devices EB is a bandwidth shortage link in which only a single detour path can be set, the shortest route Calculate as a calculation. For this reason, the setting of one bypass path fails.
  • the communication device A sets a bypass path 1101 and the communication device D sets a bypass path 1201. Therefore, a competitive link is formed between the communication device B and the communication device E.
  • the third problem is that after the failure is recovered, it is not possible to switch back to the original route used by the working path. This is because it is necessary to delete the working path for setting a detour path in order to reuse network resources other than the failed section used by the working path that has failed.
  • the working path is often set to an optimum route within a range where the network operates normally. For this reason, the failure to switch back to the original working path route after all faults have been recovered means that it cannot be restored to the optimum operating state.
  • GPLS Generalized Multi-Protocol Label Switching
  • a first object of the present invention is to provide a communication network system, a communication device, a route design device, and a failure recovery method.
  • a second object of the present invention is to provide a communication network system, a communication device, a route design device, and a failure recovery method that can restore a detour route to the original working route after failure recovery.
  • a communication network system includes a plurality of communication devices including a switch unit that switches a traffic route, and transmission that connects the plurality of communication devices.
  • a communication network system having a link, wherein a start point communication device among the plurality of communication devices has a plurality of paths different from the operation path corresponding to the operation path transferring traffic to and from the end point communication device.
  • a holding unit that preliminarily holds information on the detour path, and a notification of the occurrence of a failure when a failure occurs in the working path, and switching between a plurality of detour paths held by the detour path information holding unit and After selecting the detour path with the highest priority, recover the failure by setting the corresponding communication device among the plurality of communication devices along the detour path route. And a setting unit.
  • the plurality of bypass paths held by the holding unit of the start point communication device is a band securing and switching unit on the communication device along the route of the bypass path
  • the communication device that has detected the failure or the communication device that has received the notification of the failure is located in the start-point communication device. To be notified.
  • the required bandwidth of the path is 0 in the signaling for setting the bypass path.
  • the holding unit of the start point communication device includes an operation path database that stores an operation path, and a detour path database that stores detour path information
  • the setting unit of the start point communication device stores the information of the working path used as the working path in the detour path database as the working detour path when switching to the detour path, and uses the detour path as the working path.
  • Is stored in the working path database is set as the working path by performing signaling with reference to the information on the detour path, and information on the working path held in the detour path database after failure recovery Is stored in the working path database, and the current path is switched back to the working path by referring to the information of the working path.
  • a route design apparatus for calculating detour path routes so as not to compete with each other when a failure occurs.
  • the route design device calculates routes of a plurality of detour paths set in advance in the start point communication device.
  • a communication device includes a plurality of transmission interfaces that convert a main signal into a predetermined transmission format and transmit / receive, and a combination of main signals transmitted from the transmission interface or a received signal
  • a communication network system communication device having a plurality of communication devices each including a multiplexing / demultiplexing unit that performs demultiplexing and a switch unit that switches a route of a main signal, and a transmission link that connects the plurality of communication devices.
  • a detour path selection unit that selects a detour path that is switchable and has the highest priority among a plurality of detour path candidates when a failure occurs in a working path that forwards traffic, and the detour path selection And a signaling unit that sets the communication device along the path of the detour path selected by the unit.
  • a path management unit that manages the path of the active path and the bypass path, and a notification destination are determined when a failure of the active path or the bypass path is detected. And a failure notification destination management unit.
  • a route setting device includes a communication network including a plurality of communication devices including a switch unit that switches a traffic route, and a transmission link that connects the plurality of communication devices.
  • a route design apparatus for a system which refers to topology information of the communication network and calculates a route from a start point communication device to an end point communication device, and a plurality of detour paths, and mutually conflicting routes And a detour arbitration unit that performs arbitration so as not to occur.
  • the failure recovery method includes a communication network including a plurality of communication devices including a switch unit that switches a traffic route, and a transmission link that connects the plurality of communication devices.
  • a failure recovery method for a system wherein a start point communication device among the plurality of communication devices has a plurality of detours of a route different from the operation path corresponding to the operation path transferring traffic to and from the end point communication device. After setting a path and selecting a detour path that can be switched and has the highest priority from a plurality of detour paths when a failure occurs in the working path, a communication device is set along the path of the detour path To recover the failure.
  • the start point communication device retains information on the working path that has been used as an active path as a detour path in failure when switching to the detour path. Then, switch back to the working path after failure recovery.
  • the present invention it is possible to set a path that does not secure a band on a detour route candidate and to notify a communication device that performs switching in consideration of only an affected failure. Therefore, not only a single failure but also a plurality of failures can be detected quickly without using a routing protocol and a detour path can be set.
  • a plurality of bypass paths can be designed by the bypass arbitration function. Therefore, when multiple failures occur, all detours can be set without causing network resource contention among the multiple detour paths. Furthermore, according to the present invention, the working path and the detour path are managed as different information, and the working path in which the failure has occurred is retained in the detour path DB, so that it is possible to switch back after the failure recovery. . For this reason, after the failure is recovered, it is possible to switch back to the original route.
  • FIG. 6 is a diagram showing path information T430 of an operation path DB 131 and a detour path DB 132 when a failure occurs in the communication apparatus A.
  • FIG. 6 is a diagram showing path information T440 of an operation path DB 131 and a detour path DB 132 when a failure occurs in the communication device D.
  • FIG. It is a block diagram which shows the competition of the network resource in the conventional path rerouting.
  • out-band control Line 129: In-band control line, 131: Operation path DB, 132: Detour path DB, 133: Notification destination DB, 140: Detour arbitration device, 141: Path calculation Part 142 ... detour arbitration unit, 143 ... request receiving unit, 145 ... working path information, 146 ... all detour path information, 147 ... topology information, 10, 50 ... working path, 20, 30, 40, 60 ... detour path, T400 to T440 ... table information
  • FIG. 1 is a diagram showing a configuration of a communication network system according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of the communication apparatus 100 according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of the detour arbitration device 140 (route design device) according to the first exemplary embodiment of the present invention.
  • the network 50 shown in FIG. 1 includes a communication device 100-i (where i indicates an identifier of the communication device) and a transmission link 90-ij (where i and j are the transmission link) connecting the communication devices. (Indicates communication device identifiers at both ends).
  • i indicates an identifier of the communication device
  • 90-ij where i and j are the transmission link
  • i and j are any one of A, B, C, D, E, F, and G, respectively.
  • the communication device 100-A is indicated by indicating A in a circle.
  • the other communication devices 100-B to 100-G are similarly shown.
  • the detour arbitration device 140 is arranged to arbitrate a detour route on the network 50.
  • a communication apparatus 100-A in FIG. 1 has the configuration of the communication apparatus 100 shown in FIG.
  • the other communication devices 100-B to 100-G have the configuration of the communication device 100 shown in FIG.
  • the communication device control software unit 120 operates on a control board having a processor and a volatile / nonvolatile memory.
  • the configuration of the control board is not particularly shown.
  • the communication device control hardware unit 110 includes a switch unit 111, transmission interface units (also referred to as transmission I / F units) 112a to 112h, client interface units (also referred to as client I / F units) 113a and 113b, and a multiplexing / demultiplexing unit 114a. To 114d.
  • the switch unit 111 switches the route of the main signal.
  • Each of the transmission I / F units 112a to 112h converts the main signal switched by the switch unit 111 into a predetermined transmission format, and transmits / receives it to / from other communication devices.
  • Each of the client I / F units 113a and 113b is connected to the client device, converts the data into a predetermined transmission format, and transmits / receives a signal.
  • the multiplexing / demultiplexing units 114a to 114d perform multiplexing of the main signal output from the transmission I / F units 112a to 112h or demultiplexing of the reception signal.
  • transmission formats of the transmission I / F units 112a to 112h and the client I / F units 113a and 113b for example, different optical wavelengths, OTN (Optical Transport Network), SONET / SDH (Optical Network / Synchronous Digital Hierarchy) Ethernet (registered trademark), ATM (Asynchronous Transfer Mode), FR (Frame Relay), and the like are used.
  • the communication device 100 includes an in-band control line 129 for exchanging control signals between adjacent communication devices using a part of the channels of the transmission link.
  • the communication device control software unit 120 includes a path management unit 121, a failure notification destination management unit 122, an XC control monitoring unit 123, a detour path selection unit 124, a failure link analysis unit 125, a signaling unit 126, a control interface unit (control I / F 127). Further, the communication device control software unit 120 stores an operation path DB 131, a detour path DB 132, and a notification destination DB 133.
  • the path management unit 121 may be referred to as a setting unit. Further, the operation path DB 131, the detour path DB 132, and the notification destination DB 133 may be referred to as a holding unit.
  • the signaling unit 126 executes a signaling protocol for performing path setting and path failure notification between communication apparatuses.
  • the control I / F unit 127 converts the signaling protocol into control information.
  • examples of the signaling protocol include RSVP-TE and CR-LDP.
  • the control I / F unit 127 is either an out-band control line 128 that is a line different from the transmission link 90 through which the main signal is transmitted or an in-band control line 129 that is multiplexed on the same transmission link as the main signal. Alternatively, control information is transmitted and received through both control lines.
  • the path management unit 121 manages the set operation path and detour path.
  • the XC control monitoring unit 123 controls the switch unit 111, the transmission I / F units 112a to 112h, and the client I / F units 113a and 113b, and detects these faults.
  • the failure notification destination management unit 122 manages a failure notification destination when a failure detected by the XC control monitoring unit 123 affects the operation path or the detour path.
  • the failure link analysis unit 125 analyzes a path failure.
  • the notification destination (starting point communication device) at the time of failure is stored in the notification destination database (also referred to as notification destination DB) 133.
  • the operation path and the detour path are stored in the operation path database (also referred to as operation path DB) 131 and the detour path database (also referred to as detour path DB) 132, respectively.
  • the detour arbitration device 140 includes a route calculation unit 141, a detour arbitration unit 142, and a request reception unit 143.
  • the detour arbitration device 140 stores all working path information 145, all detour path information 146, and topology information 147.
  • the request reception unit 143 receives a route design request for the active path and the detour path.
  • the route calculation unit 141 calculates the route of the requested section.
  • the detour arbitration unit 142 arbitrates the calculated detour path between the active paths.
  • the topology information 147 is information necessary when the route calculation unit 141 calculates a route.
  • the working path information 145 is information on all working paths already set in the network.
  • the detour path information 146 is information regarding all detour paths. These pieces of information are acquired by receiving information managed by the detour arbitration device 140 or held by an external server such as an NMS (Network Management System).
  • the paths set in the embodiment of the present invention include a working path and a detour path.
  • the operation path is a path for actually securing network resources.
  • the detour path is a path that is set for the purpose of notifying a failure without securing network resources. When no failure has occurred, the working path is used as the working path. When a working path becomes a failure, path candidates that may be used for path rerouting are handled as bypass paths by the communication device at the switching endpoint.
  • the working path used in the present embodiment is a path that is initially set as a working path in a state where no failure has occurred.
  • FIG. 4 is a flowchart showing the path setting procedure for the working path and the detour path. Operational path that actually flows traffic between the start and end point communication devices of the path in response to a request to set up a path between the start and end point communication devices due to traffic demand information and communication service opening requests, etc. Further, the detour arbitration device 140 calculates a detour path route when the working path becomes a failure (step S301).
  • the bypass arbitration device 140 is used for optimization of a bypass route. Note that the function of the detour arbitration device 140 need not be provided when an administrator can consider and set a route in a relatively small communication network.
  • the start point communication device that has received the path setting request determines the path operation / detour attribute (step S302).
  • the detour arbitration device 140 stores the working path route information in the working path DB 131.
  • the signaling unit 126 reciprocates the signaling message along the calculated route.
  • the path management unit 121 When the signaling unit 126 of each communication apparatus receives the signaling message in the round-trip process of the signaling message, the path management unit 121 refers to the requested path bandwidth information and link availability information, and calls a network called a label. Allocate resources. As a result, the requested bandwidth is secured by signaling along the designated route (step S303). Furthermore, the path management unit 121 performs cross-connect setting of the switch unit 111 via the XC control monitoring unit 123 based on the assigned label information (step S304).
  • the failure notification destination management unit 122 stores, in the notification destination DB 133, information of the start communication device (identifier of the start communication device) that is notified as a path failure when a failure is detected (Ste S306).
  • the start point communication device stores route information in the detour path DB 132.
  • the signaling unit 126 reciprocates the signaling message of the requested bandwidth “0” along the calculated route. Thus, signaling is performed along the designated route with the requested bandwidth set to 0 (step S305).
  • the signaling unit 126 of the communication device located in the middle of the path receives the signaling message, information on the start point communication device (identifier of the start point communication device) to be notified as a path failure when the failure is detected is sent to the notification destination DB 133. Save (step S306).
  • the reason for issuing a signaling message with a request bandwidth of 0 is to indicate that it is a detour path, and to clearly indicate that resource reception and cross-connect setting are not executed in each received communication device.
  • the resource reservation and the cross-connect setting are not executed by setting the bandwidth to 0, but the present invention is not limited to this.
  • it may be substituted by setting a flag at a specific part of the signaling message.
  • the path setting is completed.
  • monitoring of a path failure is started (step S307).
  • the communication device searches the notification destination DB 133 for the starting point communication device of the failed path, and obtains information on the failed path and information on the failed location via the signaling unit 126. Transmit (step S309).
  • the path start point communication device receives a path failure from the communication device in which the working path or the detour path is set (step S401)
  • the path starting point communication device checks whether it is a working path failure (step S402). If the failure notification is a bypass path, the location where the failure has occurred is analyzed, and the status of the bypass path is updated from Up (up) to Down (down) (step S403), and the processing of the flowchart of FIG. finish.
  • the path with the lowest priority is selected from the detour paths whose status is Up among the detour paths (step S404). Then, after signaling in band 0 along the working path route to release resources, signaling is executed along the detour path route to secure the bandwidth and cross-connect to set the working path (Ste S405).
  • step S404 when a plurality of points simultaneously fail, there is a possibility that the detour path status update has not been completed. Therefore, a waiting time of about several tens of milliseconds may be provided until selection of a bypass path is started in order to reliably update the state.
  • step S405 the information on the failed working path is output from the active path DB 131 to the bypass path DB 132, and the set bypass path is output from the bypass path DB 132 to the active path DB 131.
  • the network resource (label) reserved in the working path is replaced with the detour path during detour path signaling.
  • the information on the working path is output to the bypass path DB 132, and the information of the bypass path selected in the bypass path DB 132 is output to the working path DB 131.
  • the operation path 10 via the multiplexing / demultiplexing unit 114a, the transmission I / F unit 112b, the switch unit 111, the transmission I / F unit 112h, and the multiplexing / demultiplexing unit 114d.
  • a detour arbitration device also referred to as a route design device 140 that arbitrates a detour route between a plurality of working paths
  • a working path of a path for which a route design is newly requested is referred to as a new working path.
  • a detour path of a path for which a route design is newly requested is referred to as a new detour path.
  • an already set working path is referred to as an already set working path.
  • a bypass path that has already been set is referred to as a preset bypass path.
  • the route calculation unit 141 calculates the route of the new working path and the route of the new detour path based on the path calculation request including the start point communication device, the end point communication device, the bandwidth information, and the like (step S501). ). Next, when the already-set detour path and the new detour path are selected as working paths due to a failure, it is checked whether or not contention due to insufficient bandwidth occurs in the links used in these detour paths (step S502). .
  • a detour path that can preferentially use the competing link is determined from the new detour path and the already set detour path.
  • the route of the new working path is responded as an arbitration link to the already set detour path using the competing link.
  • the link with the preconfigured detour path that is the current setting of the preconfigured detour path that has acquired the preferential use right is responded as the arbitration link of the newly set detour path To do.
  • the detour arbitration apparatus 140 will perform the following processes. That is, the detour arbitration device 140 determines whether or not a bandwidth shortage link has occurred (step S503). If it is determined in step S503 that a bandwidth shortage link has occurred, the detour arbitrator 140 sets a priority usage right for a specific working path (step S504), and performs the process of step S505. On the other hand, if it is determined in step S503 that no bandwidth shortage link has occurred, the detour arbitration device 140 ends the process of the flowchart of FIG.
  • step S505 the detour arbitration device 140 determines whether or not the priority use right has been acquired on the link having insufficient bandwidth (step S505). If it is determined in step S505 that the preferential usage right has been acquired, the mediation link information of the bypass path DB that has already been set is updated (step S506), and the process of the flowchart in FIG. 7 ends. On the other hand, if it is determined in step S505 that the preferential use right has not been acquired, the newly calculated arbitration link information of the detour path DB is set (step S507), and the processing of the flowchart of FIG. .
  • FIG. 8 shows a detour path 20 that is a detour path of the active path 10 selected when a single failure occurs.
  • a failure has occurred between the communication device B and the communication device C. Therefore, the operation path 10 that passes through the communication device A, the communication device C, and the communication device B is switched to the detour path 20 that passes through the communication device A, the communication device C, the communication device E, and the communication device B.
  • FIG. 9 shows path information T400 of the active path DB 131 and the detour path DB 132 when a failure occurs.
  • information with a priority of 0 is stored in the operational path DB 131.
  • Information with priorities 1 to 4 is stored in the detour path DB 132.
  • a route is calculated before a failure occurs, and is set as a working path and a detour path by the above-described signaling procedure.
  • the value of the cost of the link is 10.
  • the redundancy indicates the redundancy of the route with the currently used operation path, and a value obtained by subtracting the cost of the overlapping link is set as the cost of the path.
  • the communication device A that has received the failure notification analyzes the failure location included in the failure notification and updates the status of the path information in the working path DB 131 and the detour path DB 132.
  • the detour path (path AC ⁇ CE ⁇ EB) having the lowest priority among the states Up is selected (path AC ⁇ CE ⁇ EB), and the detour path 20 is set by signaling along the path. To do. In this way, it is possible to quickly set a bypass path and bypass a single failure.
  • FIG. 10 shows a detour path 30 that is a detour path of the active path 10 selected when a double failure occurs.
  • the communication device A and the communication device D, the communication device B and the communication device C, the communication device B and the communication device E, the communication device B and the communication device F Between the communication device E and the communication device G, respectively. Therefore, the operation path 10 passing through the communication device A, the communication device C, and the communication device B passes through the communication device A, the communication device C, the communication device E, the communication device D, the communication device F, the communication device G, and the communication device B.
  • the detour path 30 is switched to.
  • FIG. 11 shows the path information T420 of the working path DB 131 and detour path DB 132 when a failure occurs.
  • information with a priority of 0 is stored in the operational path DB 131.
  • Information with priorities 1 to 4 is stored in the detour path DB 132.
  • the path information T420 a route is calculated before a failure occurs, and is set as the working path and the detour path by the above-described signaling procedure.
  • the value of the cost of the link is 10.
  • the degree of duplication indicates the degree of duplication of the route with the currently used operation path. Further, a value obtained by subtracting the cost of the overlapping link is set as the path cost.
  • the XC control monitoring unit 123 of the communication device B or the communication device C detects the failure. Then, the failure notification is transmitted to the communication apparatus A that is the starting point of the operation path 10.
  • a communication link BE (link between the communication device B and the communication device E), a communication link BF (link between the communication device B and the communication device F), a communication link EG (communication) in which a bypass path is set.
  • the XC control monitoring unit 123 of the communication device adjacent to each link A failure is detected, and a failure notification is transmitted to the communication device A that is the starting point of the operation path 10.
  • the communication device A that has received the failure notification analyzes the failure location included in the failure notification and updates the status of the path information in the working path DB 131 and the detour path DB 132.
  • the detour path (path AC ⁇ CE ⁇ ED ⁇ DF ⁇ FG ⁇ GB) having the lowest priority among the states Up is selected, and signaling is performed along the path.
  • the detour path 30 is set by Thus, even when three or more failures occur simultaneously, it is possible to quickly set a detour path and bypass the failure.
  • FIG. 12 shows a detour path 40 that is a detour path of the active path 10 and a detour path 60 that is a detour path of the active path 50 that are selected when a double failure occurs.
  • the operation path 10 that passes through the communication device A, the communication device C, and the communication device B is switched to the detour path 40 that passes through the communication device A, the communication device C, the communication device E, and the communication device B.
  • the operation path 50 that passes through the communication device B, the communication device F, and the communication device D is switched to the detour path 60 that passes through the communication device B, the communication device G, the communication device F, and the communication device D.
  • competing links are established between the communication device B and the communication device E and between the communication device F and the communication device G, respectively.
  • FIG. 13A is a diagram showing path information T430 of the operation path DB 131 and the bypass path DB 132 when a failure occurs in the communication apparatus A.
  • information whose priority is 0 is stored in the operation path DB 131.
  • Information with priorities 1 to 4 is stored in the detour path DB 132.
  • FIG. 13B is a diagram showing the path information T440 of the operation path DB 131 and the detour path DB 132 when a failure occurs in the communication device D.
  • information whose priority is 0 and whose state is Down is stored in the operation path DB 131.
  • information whose priority is 0 and whose status is Up and information whose priority is 1 to 4 are stored in the detour path DB 132.
  • a route is calculated before a failure occurs, and arbitration link information is added so that they do not interfere with each other.
  • These paths are set as a working path and a detour path by the above-described signaling procedure.
  • the value of the cost of the link is 10.
  • the arbitration link is information that is set so as not to interfere with a detour on another operational path.
  • the degree of redundancy indicates the degree of redundancy of the route with the currently used operation path. Further, a value obtained by subtracting the cost of the overlapping link is set as the path cost.
  • a communication link BC (link between the communication device B and the communication device C) in which the operation path 10 is set, and a communication link FB (between the communication device F and the communication device B) in which the operation path 50 is set.
  • the XC control monitoring unit 123 of the communication device adjacent to each link detects the failure, and the communication device A that is the starting point of the active path 10 and the communication device that is the starting point of the active path 50 A failure notification is sent to D.
  • both the communication device A and the communication device D can receive a failure notification other than on the path of the operation path.
  • the communication device A that has received the failure notification analyzes the failure location included in the failure notification and updates the status of the path information in the working path DB 131 and the detour path DB 132. At this time, not only the route information but also the information of the arbitration link is updated. In the updated path information of the detour path DB 132, the detour path (path AC ⁇ CE ⁇ EB) having the lowest priority among the paths whose state is Up and in which the failure has not occurred in the arbitration link. Select and set the detour path 40 by signaling along the route.
  • the communication device D that has received the failure notification analyzes the failure location included in the failure notification and updates the status of the path information in the working path DB 131 and the bypass path DB 132. At this time, not only the route information but also the information of the arbitration link is updated. In the updated path information of the detour path DB 132, among paths whose status is Up and no failure has occurred in the arbitration link, the detour path having the lowest priority 1 (path EF ⁇ FG ⁇ GB) And the detour path 60 is set by signaling along the route.
  • a detour path can be set with the minimum network resources.
  • the present invention is not limited to this.
  • the present invention can also be applied to a segment detour method in which an intermediate communication apparatus for which a working path is set starts setting a detour path.
  • the present invention can be applied as a failure recovery function for relieving multiple failures in a communication carrier composed of a plurality of nodes or a communication network system in a company. Further, the failure recovery function of the present invention can be applied to applications such as communication between chips in a computer without being limited to a network that is geographically spread over a wide area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Telephonic Communication Services (AREA)

Abstract

 通信ネットワークシステムは、トラヒックの方路を切替えるスイッチ部を具備する複数の通信装置と、これらの複数の通信装置間を接続する伝送リンクとを有する通信ネットワークシステムであって、複数の通信装置の中の始点通信装置は、終点通信装置との間でトラヒックを転送している運用パスに対応する運用パスと異なる経路の複数の迂回パスの情報を予め保持する保持部と、運用パスに障害が発生したときに障害発生の通知を受け、迂回パス情報保持部が保持する複数の迂回パスの中から、切り替え可能かつ最も優先度の高い迂回パスを選択した後、迂回パスの経路に沿って複数の通信装置のうち該当する通信装置を設定することにより障害を回復する設定部とを備える。

Description

通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法
 本発明は、障害が発生した際に迂回路に切り替える通信ネットワークシステム、通信ネットワークシステムを構成する通信装置、経路設計装置及び障害発生時の障害回復方法に関する。特に複数の障害が一定時間内に同時に発生した通信ネットワークシステムにおいて、複数の障害箇所を考慮して最低限のネットワークリソースを使って高速迂回が可能であり、かつ障害の復旧時に元の状態に復帰可能な通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法に関する。
 本願は、2008年3月25日に、日本に出願された特願2008-079219号に基づき優先権を主張し、その内容をここに援用する。
 通信ネットワークでの従来の障害回復方式の一例が、非特許文献1、および特許文献1に記載されている。この通信ネットワークでの従来の障害回復方式には、非特許文献1に記載されているように、1+1プロテクション(1+1 Unidirectional/Bidirectional Protection)、1:1プロテクション(1:1 Protection)、事前予約型リストレーション(Shared Mesh Restoration)、パス再ルーティング(LSP Re-routing)がある。
 これらの障害回復方式のうち,パス再ルーティング以外は、現用経路に対して、事前に予備経路を決定する方式である。そのため、現用経路と予備経路が同時に障害となる多重障害の場合には、障害の迂回に失敗する。このため、多重障害が発生した場合は、特許文献1に記載されているように、パス再ルーティングが適用されていた。
 特許文献1では、プロテクションに失敗した場合に、GMPLS制御部の制御に基づいて、パス再ルーティングすることが記載されている。このような従来技術では、通信装置は、ルーティングプロトコル部、ルーティングプロトコル部から通知される各リンクの空き帯域や障害の有無を保持するトポロジDB、およびパスを制御するシグナリングプロトコル部から構成されている。
 なお、特許文献1では、トポロジDBはフォワーディングDBとして記載されており、シグナリングプロトコルはGMPLS制御部として記載されている。このような構成を有する通信装置を使ったときの従来のパス再ルーティングは、次のように動作する。
 障害通知を受信した後、通信装置は、現用パスを削除する。次に、通信装置は、ルーティングプロトコルが収集したトポロジDBを参照して、障害箇所を含まない迂回路を計算する。そして、通信装置は、シグナリングプロトコルにより迂回路に沿って新規パスを設定することにより通信障害を回復する。
 しかしながら,このようなパス再ルーティングでは,以下のような問題があった。
 第1の問題点は、障害が発生しルーティングプロトコルにより障害箇所が通知されるまでに時間がかかるため、迂回路を計算するために一定時間待機する必要があり、障害の回復に時間がかかるということである。
 さらに、ルーティングプロトコルが収束したかどうかを検知することは不可能であるため、始点通信装置のトポロジDBを参照して計算した迂回路に障害が発生しているかどうかはわからない。このため、多重障害が発生した場合は、現用パス上にはない障害箇所を含む経路を計算する可能性があり、計算された経路の信頼性にかけるという問題があった。
 さらに、第2の問題点は、迂回動作が分散的に行われるために、複数の現用パスが同時に障害になった場合、中間通信ノードでネットワークリソースの競合が発生する可能性があることである。例えば、図14に示すネットワークにおいて、通信装置B-C間のリンク、および通信装置B-F間のリンクが同時に障害になった場合を示す。なお、図14では、○の中にAと記載した地点に、通信装置1000が配置されている。同様に、○の中に、B、C、D、E、F、Gと記載した地点にも、同様に、通信装置1000が配置されている。
 図14では、通信装置Aと通信装置Cとの間の伝送リンクを、伝送リンク90-ACと表している。
 ここで、現用パス1100の迂回路は通信装置Aで、現用パス1200の迂回路は通信装置Dで計算される。この迂回路計算において、通信装置AおよびDでは、互いの迂回路を考慮しない。そのため、通信装置D-E間のリンク、又は通信装置E-B間のリンクが1本分の迂回パスのみしか設定できない帯域しか残っていない帯域不足リンクの場合でも、互いに競合する経路を最短経路計算として計算する。このため、片方の迂回パスの設定に失敗する。なお、図14では、通信装置Aが迂回パス1101を設定し、通信装置Dが迂回パス1201を設定している。そのため、通信装置Bと通信装置Eとの間などが、競合リンクとなっている。
 さらに、第3の問題点は、障害が復旧した後に、現用パスが使用していた元の経路に切り戻すことができないということである。これは、障害となった現用パスが使用している障害区間以外のネットワークリソースを再利用するために迂回パス設定のために現用パスを削除する必要があるためである。
 一般的に、現用パスは、ネットワークが正常に動作している範囲では、最適な経路に設定されていることが多い。そのため、全ての障害が復旧した後に、元の現用パスの経路に切り戻すことができないということは、最適な運用状態に復元することができないということを意味する。
J.Lang、Y.Rekhter、D.Papadimitriou,"RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery、" IETF RFC4872. 5章-11章. 特開2002-125711号公報
 本発明は、このような事情に鑑みてなされたものであり、ルーティングプロトコルの収束時間に無関係であり、かつ多重障害の場合においても、迂回パスの設定においてリソース競合なく複数のパスを迅速に迂回できる通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法を提供することを第1の目的とする。
 また、本発明は、障害復旧後に迂回経路を元の現用経路に復元できる通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法を提供することを第2の目的とする。
(1) 上記問題を解決するために、本発明の一態様による通信ネットワークシステムは、トラヒックの方路を切替えるスイッチ部を具備する複数の通信装置と、これらの複数の通信装置間を接続する伝送リンクとを有する通信ネットワークシステムであって、前記複数の通信装置の中の始点通信装置は、終点通信装置との間でトラヒックを転送している運用パスに対応する前記運用パスと異なる経路の複数の迂回パスの情報を予め保持する保持部と、前記運用パスに障害が発生したときに障害発生の通知を受け、前記迂回パス情報保持部が保持する複数の迂回パスの中から、切り替え可能かつ最も優先度の高い迂回パスを選択した後、迂回パスの経路に沿って前記複数の通信装置のうち該当する通信装置を設定することにより障害を回復する設定部とを備える。
(2) また、本発明の一態様による通信ネットワークシステムでは、前記始点通信装置の保持部が保持する前記複数の迂回パスは、迂回パスの経路に沿った通信装置上で帯域の確保およびスイッチ部の設定を行わないパスとして登録され、前記迂回パスに影響を与える障害が発生した際に、当該障害を検出した通信装置または、当該障害の通知を受けた通信装置が前記始点通信装置に障害位置を通知する。
(3) また、本発明の一態様による通信ネットワークシステムでは、前記迂回パスを設定するシグナリングにおいて,パスの要求帯域が0である。
(4) また、本発明の一態様による通信ネットワークシステムでは、前記始点通信装置の保持部は、運用パスを保存する運用パスデータベースと、迂回パスの情報を保存する迂回パスデータベースとを有し、前記始点通信装置の設定部は、迂回パスへの切替において、運用パスとして利用されていた現用パスの情報を障害中の迂回パスとして前記迂回パスデータベースに保持させ、かつ運用パスとして利用する迂回パスの情報を前記運用パスデータベースに保持させ、当該迂回パスの情報を参照して、シグナリングを行うことにより運用パスとして設定するとともに、障害復旧後に前記迂回パスデータベースに保持していた前記現用パスの情報を運用パスデータベースに保持させ、当該現用パスの情報を参照して前記現用パスに切り戻す。
(5) また、本発明の一態様による通信ネットワークシステムでは、更に、異なる現用パスに対応する複数の迂回パスの計算において、障害発生時に互いに競合しないように迂回パスの経路を計算する経路設計装置を備え、前記経路設計装置は、始点通信装置に事前に設定される複数の迂回パスの経路を計算する。
(6) また、本発明の一態様による通信装置は、主信号を所定の伝送フォーマットに変換して送受信する複数の伝送インターフェースと、当該伝送インターフェースから送信された主信号の合波または受信信号の分波を行う合分波部および主信号の方路を切替えるスイッチ部とを具備する複数の通信装置と、これらの複数の通信装置間を接続する伝送リンクとを有する通信ネットワークシステムの通信装置であって、トラヒックを転送している運用パスに障害が発生したときに複数の迂回パスの候補の中から切替可能かつ最も優先度の高い迂回パスを選択する迂回パス選択部と、前記迂回パス選択部により選択された迂回パスの経路に沿って通信装置を設定するシグナリング部とを有する。
(7) また、本発明の一態様による通信装置では、更に、運用パスと迂回パスの経路を管理するパス管理部と、前記運用パスまたは前記迂回パスの障害を検出したときに通知先を決定する障害通知先管理部とを有する。
(8) また、本発明の一態様による経路設定装置は、トラヒックの方路を切替えるスイッチ部を具備する複数の通信装置と、これらの複数の通信装置間を接続する伝送リンクとを有する通信ネットワークシステムの経路設計装置であって、前記通信ネットワークのトポロジ情報を参照して、始点通信装置から終点通信装置までの経路を計算する経路計算部と、複数の迂回パスの計算において、互いに経路の競合が発生しないように調停する迂回路調停部とを有する。
(9) また、本発明の一態様による障害回復方法は、トラヒックの方路を切替えるスイッチ部を具備する複数の通信装置と、これらの複数の通信装置間を接続する伝送リンクとを有する通信ネットワークシステムの障害回復方法であって、前記複数の通信装置の中の始点通信装置は、終点通信装置との間でトラヒックを転送している運用パスに対応する前記運用パスと異なる経路の複数の迂回パスを設定し、前記運用パスに障害が発生したときに複数の迂回パスの中から、切り替え可能かつ最も優先度の高い迂回パスを選択した後、迂回パスの経路に沿って通信装置を設定することにより障害を回復する。
(10) また、本発明の一態様による障害回復方法では、前記始点通信装置は、前記迂回パスへの切替において、運用パスとして利用されていた現用パスの情報を障害中の迂回パスとして保持し、障害復旧後に前記現用パスに切り戻す。
 以上説明したように、本発明によれば、迂回する経路候補上に帯域を確保しないパスを設定し、影響のある障害のみを考慮して切替を実行する通信装置に通知できるようにした。そのため、単一の障害のみならず、複数の障害が発生した場合にでも、ルーティングプロトコルを使わずに迅速に障害箇所を把握して、迂回パスを設定できる。
 また、本発明によれば、迂回調停機能により複数の迂回パスを設計可能にした。そのため、複数の障害が発生した場合に、複数の迂回パスの間でネットワークリソースの競合を発生させることなくすべての迂回路を設定できる。
 さらに、本発明によれば、現用パスと迂回パスを別の情報として管理し、障害発生中の現用パスを迂回パスDBに保持しておくことにより、障害復旧後に切り戻すことができるようにした。このため、障害が復旧した後、元の経路に切り戻すことができる。
本発明の第1の実施の形態のネットワーク構成を示すブロック図である。 本発明の第1の実施の形態の通信装置の構成を示すブロック図である。 本発明の第1の実施の形態の迂回路調停装置の構成を示すブロック図である。 本発明の第1の実施の形態のパス設定の手順を示すフローチャートである。 本発明の第1の実施の形態における障害の迂回手順を示すフローチャートである。 本発明の第1の実施の形態における現用パスと迂回パスの情報入れ替えを示すブロック図である。 本発明の第1の実施の形態における迂回経路調停の手順を示すフローチャートである。 本発明の第1の実施の形態における単一障害の迂回例を示すブロック図である。 本発明の第1の実施の形態における単一障害時の迂回パスの状態を示すテーブルの内容を示す図である。 本発明の第1の実施の形態における多重障害の迂回例を示すブロック図である。 本発明の第1の実施の形態における多重障害時の迂回パスの状態を示すテーブルの内容を示す図である。 本発明の第1の実施の形態における複数パス調停での多重障害の迂回例を示すブロック図である。 通信装置Aでの障害発生時の運用パスDB131と迂回パスDB132のパス情報T430を示す図である。 通信装置Dでの障害発生時の運用パスDB131と迂回パスDB132のパス情報T440を示す図である。 従来のパス再ルーティングにおけるネットワークリソースの競合を示すブロック図である。
符号の説明
50・・・ネットワーク、90・・・伝送リンク、100・・・通信装置、110・・・通信装置ハードウェア部、111・・・スイッチ部、112a~112h・・・伝送I/F部、113a、113b・・・クライアントI/F部、114a~114d・・・合分波部、120・・・通信装置ソフトウェア部、121・・・パス管理部、122・・・障害通知先管理部、123・・・XC制御監視部、124・・・迂回パス選択手順、125・・・障害リンク解析部、126・・・シグナリング部、127・・・制御I/F部、128・・・アウトバンド制御線、129・・・インバンド制御線、131・・・運用パスDB、132・・・迂回パスDB、133・・・通知先DB、140・・・迂回路調停装置、141・・・経路計算部、142・・・迂回路調停部、143・・・要求受信部、145・・・現用パス情報、146・・・全迂回パス情報、147・・・トポロジ情報、10、50・・・運用パス、20、30、40、60・・・迂回パス、T400~T440・・・テーブル情報
 以下、本発明の実施形態を、図面を参照して説明する。
 図1は、本発明の第1の実施形態に係る通信ネットワークシステムの構成を示す図である。また、図2は、本発明の第1の実施形態に係る通信装置100の構成を示す図である。また、図3は、本発明の第1の実施形態に係る迂回路調停装置140(経路設計装置)の構成を示す図である。
 図1に示すネットワーク50は、通信装置100-i(ここで、iは通信装置の識別子を示す)、および通信装置間を接続する伝送リンク90-ij(ここで、iおよびjは伝送リンクの両端点の通信装置識別子を示す)から構成される。
 図1において、iとjは、それぞれ、A、B、C、D、E、F、Gのいずれかである。図1では、通信装置100-Aを、○の中にAと記載することで示している。他の通信装置100-B~100-Gについても同様に示している。
 迂回路調停装置140は、ネットワーク50上で迂回経路を調停するために配備されている。
 図1の通信装置100-Aは、図2に示す通信装置100の構成を備えている。他の通信装置100-B~100-Gについても同様に、図2に示す通信装置100の構成を備えている。
 図2に示す通信装置100は、通信装置制御ハードウェア部110と通信装置制御ソフトウェア部120から構成される。通信装置制御ソフトウェア部120は、プロセッサ、および揮発/不揮発メモリを有する制御基盤上で動作する。ここでは、制御基盤の構成は特に図示しない。
 通信装置制御ハードウェア部110は、スイッチ部111、伝送インターフェース部(伝送I/F部とも称する)112a~112h、クライアントインターフェース部(クライアントI/F部とも称する)113a及び113b、合分波部114a~114dを備えている。
 スイッチ部111は、主信号の方路を切り替える。伝送I/F部112a~112hはそれぞれ、スイッチ部111により切り替えられた主信号を、所定の伝送フォーマットに変換して、他の通信装置との間で送受信する。
 クライアントI/F部113a及び113bはそれぞれ、クライアント装置と接続され、所定の伝送フォーマットに変換して信号を送受信する。合分波部114a~114dは、伝送I/F部112a~112hから出力された主信号の合波または受信信号の分波を行う。
 ここで、伝送I/F部112a~112hおよびクライアントI/F部113a及び113bの伝送フォーマットとしては、例えば、異なる光波長、OTN(Optical Transport Network)、SONET/SDH(Optical Network/Synchronous Digital Hierarchy)、Ethernet(登録商標)や、ATM(Asynchronous Transfer Mode)、FR(Frame Relay)などが用いられる。
 通信装置100は、伝送リンクの一部のチャネルを使って隣接する通信装置間で制御信号をやり取りするためのインバンド制御線129を備える。
 通信装置制御ソフトウェア部120は、パス管理部121、障害通知先管理部122、XC制御監視部123、迂回パス選択部124、障害リンク解析部125、シグナリング部126、制御インターフェース部(制御I/F部とも称する)127を備えている。
 また、通信装置制御ソフトウェア部120は、運用パスDB131、迂回パスDB132、通知先DB133を記憶している。
 なお、パス管理部121を、設定部と称することもある。また、運用パスDB131、迂回パスDB132、通知先DB133を、保持部と称することもある。
 シグナリング部126は、通信装置間でパスの設定やパス障害の通知を行うシグナリングプロトコルを実行する。制御I/F部127は、シグナリングプロトコルを制御情報に変換する。
 ここで、シグナリングプロトコルの例として、RSVP-TEやCR-LDPなどがある。
 また、制御I/F部127は、主信号が伝送される伝送リンク90とは別の線であるアウトバンド制御線128、または主信号と同じ伝送リンクに多重されるインバンド制御線129のいずれか、もしくは双方の制御線により制御情報を送受信する。
 パス管理部121は、設定されている運用パスや迂回パスを管理する。XC制御監視部123は、スイッチ部111と伝送I/F部112a~112hおよびクライアントI/F部113a及び113bを制御したり、これらの障害を検出したりする。
 障害通知先管理部122は、XC制御監視部123で検出された障害が、運用パスや迂回パスに影響を及ぼす場合に、障害の通知先を管理する。障害リンク解析部125は、パス障害を解析する。
 また、運用パス/迂回パスが通過するすべての通信装置において、障害時の通知先(始点通信装置)は、通知先データベース(通知先DBとも称する)133に保存される。また、パスの切替を実行する通信装置では、運用パスおよび迂回パスは、運用パスデータベース(運用パスDBとも称する)131と迂回パスデータベース(迂回パスDBとも称する)132にそれぞれ保存される。
 次に、迂回路調停装置140(図1)の構成について、図3を参照して説明する。迂回路調停装置140は、経路計算部141、迂回路調停部142、要求受信部143を備えている。また、迂回路調停装置140は、全現用パス情報145、全迂回パス情報146、トポロジ情報147を記憶している。
 要求受信部143は、運用パスと迂回パスの経路設計の要求を受け付ける。経路計算部141は、要求された区間の経路を計算する。迂回路調停部142は、現用パス間での計算された迂回パスの経路を調停する。
 トポロジ情報147は、経路計算部141で経路を計算するときに必要な情報である。また、現用パス情報145は、すでにネットワークに設定済みの全ての現用パスに関する情報である。また、迂回パス情報146は、全ての迂回パスに関する情報である。
 これらの情報は、迂回路調停装置140で管理されるか、もしくはNMS(Network Management System)などの外部のサーバで保持されている情報を受信することにより取得する。
 次に、図2の通信装置100の構成を参照しながら、図4、図5のフローチャートを参照して、本発明の実施形態に係る通信ネットワークシステムの全体の動作について説明する。
 本発明の実施形態で設定されるパスには、運用パスと迂回パスとがある。運用パスは、実際にネットワークリソースを確保するパスである。迂回パスは、ネットワークリソースを確保せず、障害の通知の目的で設定されるパスである。
 障害が発生していない状態では、現用パスが運用パスとして利用される。運用パスが障害になった際に、パス再ルーティングに使用される可能性のあるパスの候補は、切替端点の通信装置で迂回パスとして扱われる。
 また、本実施形態で使われる現用パスは、障害が発生していない状態で最初に運用パスとして設定されるパスである。
 図4は、運用パスおよび迂回パスのパス設定の手順を示すフローチャートである。
 トラヒックのデマンド情報や通信サービスの開通要求などにより、始点通信装置と終点通信装置間にパスを設定する要求に応じて、パスの始点通信装置と終点通信装置の間に実際にトラヒックを流す運用パスおよび、運用パスが障害になった場合の迂回パスの経路を、迂回路調停装置140にて計算する(ステップS301)。
 ここで、迂回路調停装置140は、迂回経路の最適化のために利用される。なお、迂回路調停装置140の機能は、比較的小さな通信ネットワークにおいて管理者が経路を考え設定できるような場合は、設けなくても良い。
 次に、パスの設定要求を受けた始点通信装置では、パスの運用/迂回の属性を判定する(ステップS302)。運用パスである場合は、迂回路調停装置140は、運用パスの経路情報を運用パスDB131に保存する。その後、計算された経路に沿ってシグナリング部126が、シグナリングメッセージを往復させる。
 シグナリングメッセージの往復の過程において、各通信装置のシグナリング部126が、シグナリングメッセージを受信すると、パス管理部121は、要求されたパス帯域情報とリンクの空き情報とを参照しながら、ラベルと呼ばれるネットワークリソースを割り当てる。これにより、指定された経路に沿って、シグナリングにより要求帯域が確保される(ステップS303)。
 さらに、パス管理部121は、割り当てたラベル情報を元に、XC制御監視部123を介して、スイッチ部111のクロスコネクト設定を行う(ステップS304)。
 また、クロスコネクト設定を行うと同時に、障害通知先管理部122は、障害を検出した場合にパス障害として通知する始点通信装置の情報(始点通信装置の識別子)を、通知先DB133に保存する(ステップS306)。
 ステップS302において,迂回パスであった場合、始点通信装置では、迂回パスDB132に経路情報を保存する。その後、計算された経路に沿ってシグナリング部126が、要求帯域“0”のシグナリングメッセージを往復させる。これにより、要求帯域を0にして指定された経路に沿ってシグナリングが行われる(ステップS305)。
 経路上の中間に位置する通信装置のシグナリング部126が、シグナリングメッセージを受信すると、障害を検出した場合にパス障害として通知する始点通信装置の情報(始点通信装置の識別子)を、通知先DB133に保存する(ステップS306)。
 ここで,要求帯域が0のシグナリングメッセージを発行する理由は、迂回パスであることを表し、受信した各通信装置においてリソースの確保、および、クロスコネクト設定を実行しないことを明示するためである。
 本実施形態では,帯域を0にすることにより、リソースの確保およびクロスコネクト設定を実行しないことを明示したが、これに限定されるものではない。例えば、シグナリングメッセージの特定の箇所にフラグを立てるなどにより代用しても良い。
 ステップS306までの処理で、パスの設定は終了する。その後、パスの障害の監視を開始する(ステップS307)。そして、監視しているパスについて、障害を検出したか否かについて判定する(ステップS308)。
 パスの監視において、障害を検出した場合には、障害となったパスの始点通信装置を通知先DB133から検索し、シグナリング部126を介して,障害となったパスの情報と障害箇所の情報を送信する(ステップS309)。
 次に、このように設定された運用パス、迂回パス上に障害を受信した場合の迂回動作について、図5を参照して説明する。パスの始点通信装置が、運用パスまたは迂回パスが設定された通信装置からパス障害を受信した場合(ステップS401)、運用パスの障害であるかどうかを検査する(ステップS402)。
 障害通知が迂回パスであった場合は、障害が発生した箇所を解析して迂回パスの状態をUp(アップ)からDown(ダウン)に更新して(ステップS403)、図5のフローチャートの処理を終了する。
 一方、ステップS402で、障害通知が運用パスであった場合は、迂回パスの中で状態がUpの迂回パスのうち、優先度の最も小さなパスを選択する(ステップS404)。そして、運用パスの経路に沿って帯域0でシグナリングしてリソースを開放した後、迂回パスの経路に沿ってシグナリングを実行することにより、帯域の確保およびクロスコネクトを行い、運用パスを設定する(ステップS405)。
 ステップS404において、複数地点が同時に障害になった場合は、迂回パスの状態更新が完了していない可能性がある。そのため、状態を確実に更新するために迂回パスの選択を開始するまでに数10msec程度の待ち時間を設けても良い。
 また、ステップS405において、障害になった現用パスの情報を、運用パスDB131から迂回パスDB132に出力し、設定された迂回パスを迂回パスDB132から運用パスDB131に出力する。
 さらに、障害となった迂回パスが設定されているネットワークリソースを使って迂回パスが設定される場合、迂回パスのシグナリング時に、現用パスが確保していたネットワークリソース(ラベル)を迂回パスに置き換える。
 このとき、図6に示すように、現用パスの情報は、迂回パスDB132に出力し、迂回パスDB132の中で選択された迂回パスの情報を運用パスDB131に出力する。このように、現用パスの情報を、迂回パスDB132に保存しておくことにより、障害が復旧したときに、元の現用パスの経路に切り戻し(Reversion)をすることが可能となる。
 図6では、図6の下の図に示すように、合分波部114a、伝送I/F部112b、スイッチ部111、伝送I/F部112h、合分波部114dを経由する運用パス10を、合分波部114a、伝送I/F部112b、スイッチ部111、伝送I/F部112f、合分波部114cを経由する迂回パス20に切り替える場合を示している。
 次に、複数の現用パス間で迂回経路を調停する迂回路調停装置(経路設計装置とも称する)140の動作について、図3と図7を用いて説明する。ここでは、新たに経路設計を要求されたパスの現用パスを新規現用パスと称する。また、新たに経路設計を要求されたパスの迂回パスを新規迂回パスと称する。
 また、既に設定されている現用パスを、既設定現用パスと称する。また、既に設定されている迂回パスを既設定迂回パスと称する。
 迂回路調停装置140では、始点通信装置、終点通信装置、帯域情報などが含まれるパス計算要求に基づき、経路計算部141で新規現用パスの経路、および新規迂回パスの経路を計算する(ステップS501)。
 次に、既設定迂回パスと新規迂回パスが、障害により運用パスとして選択された場合に、これらの迂回パスで利用されるリンクに帯域不足による競合が発生するかどうかを検査する(ステップS502)。
 新規迂回パス上で競合リンクがあった場合は、競合リンクを優先的に利用できる迂回パスを新規迂回パスと既設定迂回パスの中から決定する。新規迂回パスが優先利用権を取得した場合、競合リンクを利用している既設定迂回パスに対して、新規現用パスの経路を調停リンクとして応答する。
 既設定迂回パスが優先利用権を取得した場合は、優先利用権を取得した既設定迂回パスの現用である既設定現用パスが設定されているリンクを、新規設定の迂回パスの調停リンクとして応答する。
 図7のフローチャートに沿って説明すると、迂回路調停装置140は、以下の処理を行う。つまり、迂回路調停装置140は、帯域不足のリンクが発生したか否かについて判定する(ステップS503)。
 ステップS503で、帯域不足のリンクが発生したと判定した場合には、迂回路調停装置140は、特定の現用パスに優先利用権を設定し(ステップS504)、ステップS505の処理を行う。
 一方、ステップS503で、帯域不足のリンクが発生していないと判定した場合には、迂回路調停装置140は、図7のフローチャートの処理を終了する。
 ステップS505では、迂回路調停装置140は、帯域不足のリンク上で、優先利用権を取得したか否かについて判定する(ステップS505)。
 ステップS505で、優先利用権を取得したと判定した場合には、既に設定されている迂回パスDBの調停リンク情報を更新し(ステップS506)、図7のフローチャートの処理を終了する。
 一方、ステップS505で、優先利用権を取得していないと判定した場合には、新たに計算された迂回パスDBの調停リンク情報を設定し(ステップS507)、図7のフローチャートの処理を終了する。
 このように、本実施形態では、迂回路調停装置140において、迂回パスが迂回されたときに、競合するリンクを検査し、調停する。これにより、多重障害が発生した場合においても、迂回パス間で競合することなく、全ての現用パスの障害を回復する経路を取得することが可能である。
 上述した迂回動作の具体的な例を、図8から図11を参照して説明する。また、単一障害の場合、多重障害の場合、他のパスとの競合防止を必要とする多重障害の場合の各々について説明する。
 まず、図8、図9を参照して、単一障害が発生した場合の切替例について説明する。図8は、単一障害が発生したときに選択される運用パス10の迂回経路である迂回パス20を示している。
 具体的には、図8では、通信装置Bと通信装置Cとの間で、障害が発生している。そのため、通信装置A、通信装置C、通信装置Bを経由する運用パス10を、通信装置A、通信装置C、通信装置E、通信装置Bを経由する迂回パス20に切り替えている。
 また、図9は、障害発生時の運用パスDB131と迂回パスDB132のパス情報T400を示している。図9において、優先度が0の情報は、運用パスDB131に記憶されている。また、優先度が1~4の情報は、迂回パスDB132に記憶されている。
 パス情報T400は、障害が発生する前に経路が計算され、現用パスおよび、迂回パスとして、前述のシグナリング手順により設定される。
 ここで、リンクのコストの値は、10である。また重複度は、現在使用されている運用パスとの経路の重複度を示し、重複しているリンクのコストを減算した値が、パスのコストとして設定されている。
 運用パス10が設定されている通信リンクBC(通信装置Bと通信装置Cとの間のリンク)に障害が発生すると、通信装置Bまたは通信装置CのXC制御監視部123が障害を検出して、運用パス10の始点である通信装置Aに障害通知を送信する。
 障害通知を受け取った通信装置Aは、障害通知に含まれる障害箇所の分析を行い、運用パスDB131と迂回パスDB132のパス情報の状態を更新する。更新された迂回パスDB132のパス情報において、状態がUpのうち優先度が最も小さな優先度1の迂回パス(経路AC→CE→EB)を選択し、経路に沿ってシグナリングにより迂回パス20を設定する。
 このようにすることにより、迅速に迂回パスを設定し単一障害の迂回をすることが可能である。
 次に、図10、図11を参照して多重障害が発生した場合の切替例について説明する。
 図10は、二重障害が発生したときに選択される運用パス10の迂回経路である迂回パス30を示す。
 具体的には、図10では、通信装置Aと通信装置Dとの間、通信装置Bと通信装置Cとの間、通信装置Bと通信装置Eとの間、通信装置Bと通信装置Fとの間、通信装置Eと通信装置Gとの間で、それぞれ障害が発生している。
 そのため、通信装置A、通信装置C、通信装置Bを経由する運用パス10を、通信装置A、通信装置C、通信装置E、通信装置D、通信装置F、通信装置G、通信装置Bを経由する迂回パス30に切り替えている。
 図11は、障害発生時の運用パスDB131と迂回パスDB132のパス情報T420を示す。図11において、優先度が0の情報は、運用パスDB131に記憶されている。また、優先度が1~4の情報は、迂回パスDB132に記憶されている。
 パス情報T420は、障害が発生する前に経路が計算され、現用パスおよび、迂回パスとして、前述のシグナリング手順により設定される。
 ここで、リンクのコストの値は10である。また重複度は、現在使用されている運用パスとの経路の重複度を示している。また、重複しているリンクのコストを減算した値が、パスのコストとして設定されている。
 運用パス10が設定されている通信リンクBC(通信装置Bと通信装置Cとの間のリンク)に障害が発生すると、通信装置Bまたは通信装置CのXC制御監視部123が障害を検出して、運用パス10の始点である通信装置Aに障害通知を送信する。
 同時に、迂回パスが設定されている通信リンクBE(通信装置Bと通信装置Eとの間のリンク)、通信リンクBF(通信装置Bと通信装置Fとの間のリンク)、通信リンクEG(通信装置Eと通信装置Gとの間のリンク)、通信リンクAD(通信装置Aと通信装置Dとの間のリンク)に障害が発生すると、各リンクに隣接する通信装置のXC制御監視部123が障害を検出して、運用パス10の始点である通信装置Aに障害通知を送信する。
 障害通知を受け取った通信装置Aは、障害通知に含まれる障害箇所の分析を行い、運用パスDB131と迂回パスDB132のパス情報の状態を更新する。更新された迂回パスDB132のパス情報において、状態がUpのうち優先度が最も小さな優先度4の迂回パス(経路AC→CE→ED→DF→FG→GB)を選択し、経路に沿ってシグナリングにより迂回パス30を設定する。
 このように3つ以上の障害が同時に発生した場合おいても、迅速に迂回パスを設定し障害の迂回をすることが可能である。
 次に、図12、図13A、図13Bを参照して複数のパスが設定されているネットワークにおいて、多重障害が発生した場合の切替例について説明する。
 図12は、二重障害が発生したときに選択される運用パス10の迂回経路である迂回パス40、および運用パス50の迂回経路である迂回パス60を示している。
 具体的には、図12では、通信装置Bと通信装置Cとの間、通信装置Bと通信装置Fとの間で、それぞれ障害が発生している。
 そのため、通信装置A、通信装置C、通信装置Bを経由する運用パス10を、通信装置A、通信装置C、通信装置E、通信装置Bを経由する迂回パス40に切り替えている。
 また、通信装置B、通信装置F、通信装置Dを経由する運用パス50を、通信装置B、通信装置G、通信装置F、通信装置Dを経由する迂回パス60に切り替えている。
 図12において、通信装置Bと通信装置Eとの間、通信装置Fと通信装置Gとの間が、それぞれ競合リンクとなっている。
 また、図13Aは、通信装置Aでの障害発生時の運用パスDB131と迂回パスDB132のパス情報T430を示す図である。図13Aにおいて、優先度が0の情報は、運用パスDB131に記憶されている。また、優先度が1~4の情報は、迂回パスDB132に記憶されている。
 図13Bは、通信装置Dでの障害発生時の運用パスDB131と迂回パスDB132のパス情報T440を示す図である。図13Bにおいて、優先度が0であって、状態がDownの情報は、運用パスDB131に記憶されている。また、優先度が0であって、状態がUpの情報と、優先度が1~4の情報は、迂回パスDB132に記憶されている。
 パス情報T430、T440は、障害が発生する前に経路が計算され、互いが干渉しないように調停リンク情報が付加されている。これらのパスは、運用パスおよび、迂回パスとして、前述のシグナリング手順により設定される。
 ここで、リンクのコストの値は10である。また調停リンクは、他の運用パスの迂回路と干渉しないように設定される情報である。また、重複度は、現在使用されている運用パスとの経路の重複度を示している。また、重複しているリンクのコストを減算した値が、パスのコストとして設定されている。
 運用パス10が設定されている通信リンクBC(通信装置Bと通信装置Cとの間のリンク)、および運用パス50が設定されている通信リンクFB(通信装置Fと通信装置Bとの間のリンク)に障害が発生すると、それぞれのリンクに隣接する通信装置のXC制御監視部123が障害を検出して、運用パス10の始点である通信装置A、および運用パス50の始点である通信装置Dに障害通知を送信する。
 これと同時に、障害となった通信リンクに迂回パスが設定されているため、通信装置Aおよび通信装置Dともに、運用パスの経路上以外の障害通知を受け取ることができる。
 障害通知を受け取った通信装置Aは、障害通知に含まれる障害箇所の分析を行い、運用パスDB131と迂回パスDB132のパス情報の状態を更新する。このとき、経路情報だけでなく、調停リンクの情報も更新する。
 更新された迂回パスDB132のパス情報において、状態がUpでありかつ調停リンクに障害が発生していない経路のうち、優先度が最も小さな優先度1の迂回パス(経路AC→CE→EB)を選択し、経路に沿ってシグナリングにより迂回パス40を設定する。
 同様に、障害通知を受け取った通信装置Dは、障害通知に含まれる障害箇所の分析を行い、運用パスDB131と迂回パスDB132のパス情報の状態を更新する。このとき、経路情報だけでなく、調停リンクの情報も更新する。
 更新された迂回パスDB132のパス情報において、状態がUpであり、かつ調停リンクに障害が発生していない経路のうち、優先度が最も小さな優先度1の迂回パス(経路EF→FG→GB)を選択し、経路に沿ってシグナリングにより迂回パス60を設定する。
 このように2つ以上の障害が同時に発生した場合おいても、他のパスと競合することなく迅速に迂回パスを設定し障害の迂回をすることが可能である。
 本実施形態では、上述したように、多様な障害に備え、帯域を確保しない複数の迂回パスを予め設定しておく。これにより、多重障害が発生した場合でも、迂回パスに関する障害箇所を高速に検出でき、迅速な迂回パスの設定が可能である。
 さらに、現在使われている運用パスとの重複度を考慮して、迂回パスのコストを決定することにより、最小限のネットワークリソースで、迂回パスの設定が可能となる。
 本発明の実施形態では、現用パスの始点通信装置が、迂回パスの設定を開始する構成および動作について説明したが、これに限定されるものではない。例えば、現用パスが設定された中間通信装置が迂回パスの設定を開始するセグメント迂回方式にも適用可能である。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
 本発明によれば、複数のノードからなる通信キャリアや企業内の通信ネットワークシステムにおいて、多重障害を救済する障害回復機能として適用できる。また、本発明の障害回復機能は、地理的に広域展開されているネットワークにとどまることなく、コンピュータ内のチップ間の通信といった用途にも適用可能である。

Claims (10)

  1.  トラヒックの方路を切替えるスイッチ部を具備する複数の通信装置と、これらの複数の通信装置間を接続する伝送リンクとを有する通信ネットワークシステムであって、
     前記複数の通信装置の中の始点通信装置は、
     終点通信装置との間でトラヒックを転送している運用パスに対応する前記運用パスと異なる経路の複数の迂回パスの情報を予め保持する保持部と、
     前記運用パスに障害が発生したときに障害発生の通知を受け、前記迂回パス情報保持部が保持する複数の迂回パスの中から、切り替え可能かつ最も優先度の高い迂回パスを選択した後、迂回パスの経路に沿って前記複数の通信装置のうち該当する通信装置を設定することにより障害を回復する設定部と、
     を備える通信ネットワークシステム。
  2.  前記始点通信装置の保持部が保持する前記複数の迂回パスは、迂回パスの経路に沿った通信装置上で帯域の確保およびスイッチ部の設定を行わないパスとして登録され、前記迂回パスに影響を与える障害が発生した際に、当該障害を検出した通信装置または、当該障害の通知を受けた通信装置が前記始点通信装置に障害位置を通知する請求項1に記載の通信ネットワークシステム。
  3.  前記迂回パスを設定するシグナリングにおいて,パスの要求帯域が0である請求項1に記載の通信ネットワークシステム。
  4.  前記始点通信装置の保持部は、運用パスを保存する運用パスデータベースと、迂回パスの情報を保存する迂回パスデータベースとを有し、
     前記始点通信装置の設定部は、迂回パスへの切替において、運用パスとして利用されていた現用パスの情報を障害中の迂回パスとして前記迂回パスデータベースに保持させ、かつ運用パスとして利用する迂回パスの情報を前記運用パスデータベースに保持させ、当該迂回パスの情報を参照して、シグナリングを行うことにより運用パスとして設定するとともに、
     障害復旧後に前記迂回パスデータベースに保持していた前記現用パスの情報を運用パスデータベースに保持させ、当該現用パスの情報を参照して前記現用パスに切り戻す請求項1に記載の通信ネットワークシステム。
  5.  更に、異なる現用パスに対応する複数の迂回パスの計算において、障害発生時に互いに競合しないように迂回パスの経路を計算する経路設計装置を備え、
     前記経路設計装置は、始点通信装置に事前に設定される複数の迂回パスの経路を計算する請求項1に記載の通信ネットワークシステム。
  6.  主信号を所定の伝送フォーマットに変換して送受信する複数の伝送インターフェースと、当該伝送インターフェースから送信された主信号の合波または受信信号の分波を行う合分波部および主信号の方路を切替えるスイッチ部とを具備する複数の通信装置と、これらの複数の通信装置間を接続する伝送リンクとを有する通信ネットワークシステムの通信装置であって、
     トラヒックを転送している運用パスに障害が発生したときに複数の迂回パスの候補の中から切替可能かつ最も優先度の高い迂回パスを選択する迂回パス選択部と、
     前記迂回パス選択部により選択された迂回パスの経路に沿って通信装置を設定するシグナリング部と、
     を有する通信装置。
  7.  更に、運用パスと迂回パスの経路を管理するパス管理部と、
     前記運用パスまたは前記迂回パスの障害を検出したときに通知先を決定する障害通知先管理部と、
     を有する請求項6に記載の通信装置。
  8.  トラヒックの方路を切替えるスイッチ部を具備する複数の通信装置と、これらの複数の通信装置間を接続する伝送リンクとを有する通信ネットワークシステムの経路設計装置であって、
     前記通信ネットワークのトポロジ情報を参照して、始点通信装置から終点通信装置までの経路を計算する経路計算部と、
     複数の迂回パスの計算において、互いに経路の競合が発生しないように調停する迂回路調停部と、
     を有する経路設計装置。
  9.  トラヒックの方路を切替えるスイッチ部を具備する複数の通信装置と、これらの複数の通信装置間を接続する伝送リンクとを有する通信ネットワークシステムの障害回復方法であって、
     前記複数の通信装置の中の始点通信装置は、
     終点通信装置との間でトラヒックを転送している運用パスに対応する前記運用パスと異なる経路の複数の迂回パスを設定し、
     前記運用パスに障害が発生したときに複数の迂回パスの中から、切り替え可能かつ最も優先度の高い迂回パスを選択した後、迂回パスの経路に沿って通信装置を設定することにより障害を回復する通信ネットワークシステムの障害回復方法。
  10.  前記始点通信装置は、
     前記迂回パスへの切替において、運用パスとして利用されていた現用パスの情報を障害中の迂回パスとして保持し、
     障害復旧後に前記現用パスに切り戻す請求項9に記載の通信ネットワークシステムの障害回復方法。
PCT/JP2009/055804 2008-03-25 2009-03-24 通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法 WO2009119571A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09724635.9A EP2259505B1 (en) 2008-03-25 2009-03-24 Communication network system, communication device, route design device, and failure recovery method
CN200980106056.2A CN101953125B (zh) 2008-03-25 2009-03-24 通信网络系统、通信装置、路径设计装置以及从障碍恢复方法
US12/920,240 US8483052B2 (en) 2008-03-25 2009-03-24 Communication network system, communication device, route design device, and failure recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008079219A JP4661892B2 (ja) 2008-03-25 2008-03-25 通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法
JP2008-079219 2008-03-25

Publications (1)

Publication Number Publication Date
WO2009119571A1 true WO2009119571A1 (ja) 2009-10-01

Family

ID=41113763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055804 WO2009119571A1 (ja) 2008-03-25 2009-03-24 通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法

Country Status (5)

Country Link
US (1) US8483052B2 (ja)
EP (1) EP2259505B1 (ja)
JP (1) JP4661892B2 (ja)
CN (1) CN101953125B (ja)
WO (1) WO2009119571A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8548460B2 (en) 2010-05-25 2013-10-01 Qualcomm Incorporated Codec deployment using in-band signals
US9237172B2 (en) 2010-05-25 2016-01-12 Qualcomm Incorporated Application notification and service selection using in-band signals
US8625586B2 (en) * 2010-12-31 2014-01-07 Stmicroelectronics International N.V. Generic bus de-multiplexer/port expander with inherent bus signals as selectors
JP5736942B2 (ja) * 2011-05-11 2015-06-17 富士通株式会社 伝送装置および経路切替え方法
JP5754504B2 (ja) * 2011-05-23 2015-07-29 富士通株式会社 管理装置、情報処理装置、情報処理システム及びデータ転送方法
KR20130006989A (ko) * 2011-06-28 2013-01-18 삼성전자주식회사 멀티 포인트들 간의 간섭을 활용한 협력 스케줄링 방법 및 장치
JP5768550B2 (ja) * 2011-07-12 2015-08-26 サクサ株式会社 通信端末および通信制御方法
JP5743809B2 (ja) * 2011-08-26 2015-07-01 株式会社日立製作所 網管理システムおよび網管理方法
JP5747281B2 (ja) * 2011-10-07 2015-07-15 株式会社日立製作所 通信システム、通信方法、及び、網管理装置
JP5748147B2 (ja) * 2012-02-17 2015-07-15 日本電信電話株式会社 故障復旧システムおよびノード
US9088486B2 (en) * 2012-03-19 2015-07-21 Ciena Corporation Retention of a sub-network connection home path
US9912527B2 (en) 2012-07-26 2018-03-06 Nec Corporation Communication device, communication system, method for determining path, and program
US9197542B2 (en) * 2013-01-31 2015-11-24 Fujitsu Limited Systems and methods of network reconfiguration
KR101534923B1 (ko) 2013-09-23 2015-07-07 현대자동차주식회사 차량용 이더넷 백본 네트워크 시스템 및 이의 페일 세이프 제어 방법
TWI540860B (zh) * 2013-09-26 2016-07-01 緯創資通股份有限公司 網路管理系統、網路路徑控制模組及其網路管理之方法
JP6269250B2 (ja) * 2014-03-28 2018-01-31 富士通株式会社 データ転送制御装置、データ転送制御方法、及び、プログラム
US20160142286A1 (en) * 2014-11-19 2016-05-19 Electronics And Telecommunications Research Institute Dual node interconnection protection switching method and apparatus
CN107409070A (zh) * 2015-03-13 2017-11-28 日本电气株式会社 管理设备、网络管理方法和存储程序的存储介质
US10511381B2 (en) * 2015-11-26 2019-12-17 Nippon Telegraph And Telephone Corporation Communication system and fault location specifying method
US11089517B2 (en) * 2016-03-09 2021-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Traffic availability in a cellular communication network
JP2019075032A (ja) * 2017-10-19 2019-05-16 富士通株式会社 ストレージシステム、ストレージ制御装置およびプログラム
CN113099321B (zh) * 2019-12-23 2022-09-30 中国电信股份有限公司 通信路径的确定方法、装置和计算机可读存储介质
CN114040273B (zh) * 2021-10-25 2023-06-23 烽火通信科技股份有限公司 一种基于故障点自动调整路由倒换的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125711A (ja) 2000-10-24 2002-05-08 Akio Yokobayashi 草取り、土起こし作業を通じて健康を増進する健康履き物
JP2002271372A (ja) * 2001-03-14 2002-09-20 Nec Corp 通信ネットワーク及びパス設定方法並びにパス設定用プログラム
JP2003078554A (ja) * 2001-09-05 2003-03-14 Fujitsu Ltd 通信ネットワーク
JP2007053793A (ja) * 2003-02-21 2007-03-01 Nippon Telegr & Teleph Corp <Ntt> 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
JP2008060755A (ja) * 2006-08-30 2008-03-13 Fujitsu Ltd 予備系ルートの制御方式

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324162B1 (en) * 1998-06-03 2001-11-27 At&T Corp. Path-based restoration mesh networks
US20020004843A1 (en) * 2000-07-05 2002-01-10 Loa Andersson System, device, and method for bypassing network changes in a routed communication network
JP3967954B2 (ja) 2002-04-26 2007-08-29 株式会社日立製作所 光クロスコネクト網の障害回復方法
CA2744878A1 (en) 2003-02-21 2004-09-02 Nippon Telegraph And Telephone Corporation Device and method for correcting a path trouble in a communcation network
TWI244286B (en) * 2004-01-13 2005-11-21 Ind Tech Res Inst Method for MPLS link protection
JP4621086B2 (ja) * 2005-07-25 2011-01-26 株式会社日立製作所 光通信網、ノード装置および経路故障救済方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125711A (ja) 2000-10-24 2002-05-08 Akio Yokobayashi 草取り、土起こし作業を通じて健康を増進する健康履き物
JP2002271372A (ja) * 2001-03-14 2002-09-20 Nec Corp 通信ネットワーク及びパス設定方法並びにパス設定用プログラム
JP2003078554A (ja) * 2001-09-05 2003-03-14 Fujitsu Ltd 通信ネットワーク
JP2007053793A (ja) * 2003-02-21 2007-03-01 Nippon Telegr & Teleph Corp <Ntt> 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
JP2008060755A (ja) * 2006-08-30 2008-03-13 Fujitsu Ltd 予備系ルートの制御方式

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"7th International Conference on, IEEE, 2008.10.14", article NISHIOKA I. ET AL.: "GMPLS Challenges for Future Optical Networks, Optical Internet, 2008. COIN 2008.", pages: 1, 2, XP031417953 *
J. LANG AND Y. REKHTER AND D. PAPADIMITRIOU: "IETF RFC4872", article "RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"
See also references of EP2259505A4

Also Published As

Publication number Publication date
JP4661892B2 (ja) 2011-03-30
JP2009239359A (ja) 2009-10-15
CN101953125A (zh) 2011-01-19
EP2259505B1 (en) 2017-12-27
EP2259505A4 (en) 2011-04-06
US20110044163A1 (en) 2011-02-24
CN101953125B (zh) 2015-05-13
US8483052B2 (en) 2013-07-09
EP2259505A1 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4661892B2 (ja) 通信ネットワークシステム、通信装置、経路設計装置及び障害回復方法
EP2464036B1 (en) Route selection apparatus and route selection method for multi-service recovery
US7468944B2 (en) Path fault recovery method, switching-back method after recovery from fault, and node using the same
US7990946B2 (en) Node apparatus and path setup method
US7961644B2 (en) Communication node apparatus, communication system, and path resource assignment method
US20030189920A1 (en) Transmission device with data channel failure notification function during control channel failure
JP4920308B2 (ja) パス設定方法、ノード装置および監視制御装置
JPWO2004075494A1 (ja) 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
JP2006253927A (ja) データ中継装置およびデータ中継方法
JP6269088B2 (ja) 冗長パス提供方法および伝送装置
WO2006025296A1 (ja) 障害回復方法およびネットワーク装置ならびにプログラム
US20100128611A1 (en) Transmitting apparatus, alarm control method, and computer product
WO2011157130A2 (zh) 路径建立方法和装置
US20100054262A1 (en) Method and apparatus for setting communication paths in a network
JP5298955B2 (ja) ノード装置、運用監視装置、処理方法、およびプログラム
US7626924B2 (en) Transmission device and label allocation method
US20140040476A1 (en) Method and system for network restructuring in multilayer network
JP4392386B2 (ja) リカバリ方法、ならびに、そのリカバリ方法を実行する発信者ノード装置、中継ノード装置、および、着信者ノード装置
WO2016149897A1 (zh) Ason的路由计算方法和装置
JP4704311B2 (ja) 通信システムおよび故障復旧方法
WO2008040254A1 (fr) Procédé de traitement destiné aux informations de liaison d&#39;ingénierie de trafic
JP2007129782A (ja) 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
JPWO2007066442A1 (ja) 故障救済方法およびパケット通信装置
EP1705831B1 (en) Deadlock detection in a telecommunication network
JP4377822B2 (ja) 故障箇所発見方法および故障箇所発見装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106056.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009724635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12920240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE