Nothing Special   »   [go: up one dir, main page]

WO2009118816A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2009118816A1
WO2009118816A1 PCT/JP2008/055464 JP2008055464W WO2009118816A1 WO 2009118816 A1 WO2009118816 A1 WO 2009118816A1 JP 2008055464 W JP2008055464 W JP 2008055464W WO 2009118816 A1 WO2009118816 A1 WO 2009118816A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
honeycomb
catalyst
inorganic
pore
Prior art date
Application number
PCT/JP2008/055464
Other languages
English (en)
French (fr)
Inventor
大野一茂
尾久和丈
近藤祐介
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2008/055464 priority Critical patent/WO2009118816A1/ja
Priority to AT08016772T priority patent/ATE504411T1/de
Priority to EP08016772A priority patent/EP2105271B1/en
Priority to DE602008006017T priority patent/DE602008006017D1/de
Priority to US12/346,575 priority patent/US8021621B2/en
Priority to KR1020090015208A priority patent/KR101195799B1/ko
Priority to CN2009101180886A priority patent/CN101543791B/zh
Publication of WO2009118816A1 publication Critical patent/WO2009118816A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres

Definitions

  • the present invention relates to a honeycomb structure.
  • a honeycomb structure having a function as a catalyst carrier for purifying CO (carbon monoxide), HC (hydrocarbon), NOx (nitrogen oxide), etc. in exhaust gas by supporting the catalyst on the honeycomb structure are known.
  • a catalyzed DPF Diesel Particulate Filter in which a catalyst is supported on a honeycomb filter is also known.
  • an exhaust gas purification system that combines DOC, DPF, and NSC, LSC, or SCR has been proposed.
  • systems such as an SCR system (front DOC + SCR catalyst + DPF + back DOC), an LNC system (DOC + DPF + LNC), and an NSC system (DOC + NSC + DPF) have been proposed.
  • honeycomb structure having a high NOx purification capacity
  • the body is sought.
  • a honeycomb structure capable of supporting the catalyst on the honeycomb structure at 100 g / L or more, desirably 250 g / L or more.
  • Patent Document 1 discloses an example of a honeycomb structure having a high porosity.
  • Patent Document 1 describes a high-porosity honeycomb structure in which a material mainly composed of inorganic fibers is integrally formed by extrusion or the like. Since a honeycomb structure made of inorganic fibers is not a sintered body of ceramic particles, it is suitable for achieving a high porosity. Patent Document 1 discloses that any one end of the through holes of the honeycomb structure is provided. A honeycomb filter sealed with an end laminated member made of a metal plate or the like is described. Further, it is described that the catalyst can be supported on a part of the inorganic fibers constituting the honeycomb structure.
  • the honeycomb structure made of porous ceramic has a high porosity (for example, 60% or more), the strength of the porous ceramic decreases as the porosity increases, so the honeycomb structure easily breaks down. May occur.
  • the pressure loss may increase in the honeycomb structure in which the catalyst is supported at 100 g / L or more. That is, it has been difficult to obtain a honeycomb filter that can be used by supporting 100 g / L or more of a catalyst on a honeycomb structure made of porous ceramic.
  • the honeycomb structure mainly composed of inorganic fibers described in Patent Document 1 is suitable for a high porosity, and is not easily broken even when the porosity is 60% or more. Further, when a honeycomb structure made of inorganic fibers is used as a honeycomb filter, the honeycomb structure and a laminated member for an end are laminated in a metal casing (metal tubular body) to be mounted on an exhaust pipe, A honeycomb filter is obtained by fixing with a metal fitting. And in the case of this fixation, the through-hole of a honeycomb structure is sealed.
  • a method of preparing a slurry containing a catalyst made of a noble metal or the like and an oxide, immersing the honeycomb structure in this slurry, and firing is preferably used.
  • a catalyst is supported on a honeycomb structure mainly composed of inorganic fibers described in Patent Document 1
  • An object of the present invention is to provide a honeycomb structure on which a large amount of catalyst is supported, which has excellent purification performance of CO, HC, NOx and the like and has low pressure loss.
  • inorganic fibers are mainly integrally formed. Therefore, a honeycomb structure having high strength can be obtained even if the porosity is increased.
  • the honeycomb structure in which any one end portion of the cell is sealed can be immersed in the slurry containing the catalyst. Therefore, when the honeycomb structure is immersed in the slurry with one end face down, and the honeycomb structure is pulled up from the slurry, the slurry does not flow out of the cell in which the lower end of the cell is sealed. The slurry existing in the cell whose lower end is sealed flows out from the adjacent cell where the lower end of the cell is not sealed through the wall portion. For this reason, the amount of the catalyst remaining in the wall portion before firing can be increased, and a large amount of catalyst can be supported on the honeycomb structure. Accordingly, the supported catalyst amount of the honeycomb structure can be increased to 100 to 400 g / L, and a honeycomb structure having excellent purification performance of CO, HC, NOx, etc. can be obtained.
  • the honeycomb structure according to claim 1 has peaks at three places when the pore distribution curve is drawn. This indicates that the pore size distribution of the honeycomb structure is controlled within a preferable range.
  • the pores present in the pore diameter range of 15 to 50 ⁇ m and the pore diameter range of 1 to 15 ⁇ m can increase the PM collection efficiency while keeping the pressure loss low.
  • pores present in a range where the pore diameter is 0.005 to 0.03 ⁇ m contributes to purification of harmful components (CO, HC, NOx, etc.).
  • the catalyst includes an oxide, a noble metal, an alkali metal, and an alkaline earth metal.
  • the amount of catalyst is the sum of the amounts of oxide, noble metal, alkali metal and alkaline earth metal.
  • the catalyst loading amount of the honeycomb structure being 250 g / L indicates that 250 g of catalyst is supported per liter of the honeycomb structure volume.
  • the honeycomb member further contains an inorganic substance,
  • the inorganic fiber is fixed via the inorganic substance,
  • the inorganic substance is localized at or near the intersection of the inorganic fibers.
  • the catalyst includes at least one selected from the group consisting of a noble metal, an alkali metal, and an alkaline earth metal, and an oxide.
  • a honeycomb structure according to a fifth aspect includes the one honeycomb member.
  • the honeycomb structure according to claim 6 is formed by binding a plurality of the honeycomb members via an adhesive layer.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along line AA of the honeycomb structure shown in FIG. 1 (a).
  • a honeycomb structure 1 shown in FIGS. 1 (a) and 1 (b) is composed of a single columnar honeycomb member 100 made mainly of inorganic fibers and integrally formed with inorganic fibers.
  • a large number of cells 111 are arranged in parallel in the longitudinal direction (direction a in FIG.
  • the honeycomb member 100 is a member mainly made of inorganic fibers, but the honeycomb member 100 contains an inorganic substance in addition to the inorganic fibers, and the shape of the honeycomb member 100 is maintained by fixing the inorganic fibers to each other through the inorganic substance. ing. This inorganic substance is localized at the intersection of inorganic fibers or in the vicinity thereof.
  • sealing material 112 for example, a material obtained by drying and solidifying a paste made of an inorganic binder, an organic binder, inorganic fibers, and / or inorganic particles can be used.
  • the catalyst supported on the wall portion of the honeycomb member is composed of a catalyst component and an oxide for purifying NOx in the exhaust gas.
  • the catalyst component for purifying NOx in the exhaust gas include alkali metals and alkaline earth metals.
  • the alkali metal potassium, sodium and the like are desirable, and as the alkaline earth metal, barium and the like are desirable.
  • zeolite, titania, etc. are mentioned as a catalyst component for purifying NOx in exhaust gas.
  • the oxide has a function as a catalyst support layer for supporting the catalyst component.
  • the oxide is preferably a material having a high specific surface area and capable of supporting the catalyst in a highly dispersed state, and examples thereof include oxide ceramics such as alumina, ceria, zirconia, silica, and mullite. These materials may be used alone or in combination of two or more. Among these, it is desirable to select one having a high specific surface area of 250 m 2 / g or more, and ⁇ -alumina is particularly desirable.
  • the desirable lower limit of the porosity of the honeycomb member carrying the catalyst is 35%, and the desirable upper limit is 50%.
  • the porosity is less than 35%, the pressure loss increases.
  • the porosity exceeds 50%, the PM collection efficiency is lowered.
  • the pore distribution in the wall portion of the honeycomb member carrying the catalyst was measured by mercury porosimetry, and the pore diameter ( ⁇ m) was taken on the X axis and the log differential pore volume (mL / g) was taken on the Y axis.
  • the pore distribution curve drawn in this manner has peaks at three points in the range of 0.005 to 0.03 ⁇ m, the range of 1 to 15 ⁇ m, and the range of 15 to 50 ⁇ m.
  • this pore distribution curve will be described.
  • FIGS. 2, 3 and 4 are examples of the result of measuring the pore distribution curve of the wall portion of the honeycomb member constituting the honeycomb structure of the present invention.
  • the honeycomb members whose pore distribution was measured in FIGS. 2, 3 and 4 carry barium and potassium as catalyst components and ⁇ -alumina as an oxide.
  • FIGS. 2, 3 and 4 show barium.
  • 2 is a pore distribution curve when the amount of catalyst supported on a catalyst comprising potassium, potassium and ⁇ -alumina is changed to 150 g / L, 200 g / L and 300 g / L, respectively.
  • the pore distribution curve can be obtained by cutting a part of the wall portion of the honeycomb member supporting the catalyst and using the mercury intrusion method for the cut part of the wall portion.
  • peak 1 the peak where the pore diameter is in the range of 0.005 to 0.03 ⁇ m is called “peak 1”, and the peak where the pore diameter is in the range of 1 to 15 ⁇ m is called “peak 2”. Peaks having a pore diameter in the range of 15 to 50 ⁇ m are shown as “peak 3”.
  • FIGS. 2, 3 and 4 there are three peaks in the pore distribution curve of the wall portion of the honeycomb member constituting the honeycomb structure of the present invention.
  • the presence of a plurality of peaks in the wall portion of the honeycomb member indicates that both pores having a large pore diameter and pores having a small pore diameter exist in the wall portion of the honeycomb member. Due to the presence of pores having a large pore diameter, PM can be collected without increasing pressure loss. In addition, since the pores having a small pore diameter are formed by supporting a catalyst containing a catalyst component, the pores contribute to purification of harmful components such as CO, HC and NOx.
  • the pore distribution curve has a flat shape. is doing. This indicates that the number of pores having a pore diameter preferable for collecting PM is reduced.
  • an alumina fiber, a glass fiber, an organic binder, a plasticizer, a lubricant and water are mixed and sufficiently mixed to prepare a mixture.
  • the above mixture is introduced into the cylinder from the mixture tank of the plunger type extruder, the piston is pushed into the die side, the mixture is pushed out from the cylindrical die, and a plurality of through holes are separated from the wall portion in the longitudinal direction.
  • a long body of a cylindrical honeycomb formed body arranged side by side is manufactured.
  • the obtained honeycomb formed body is cut with a microwave dryer and a hot air dryer. Dry at 100 to 200 ° C. in an air atmosphere for 5 to 60 minutes.
  • the dried honeycomb formed body is degreased in a degreasing furnace at 200 to 600 ° C. in an air atmosphere for 1 to 5 hours, and then fired in a firing furnace at 900 to 1050 ° C. Further, the obtained honeycomb formed body is subjected to an acid treatment by immersing it in a hydrochloric acid solution of 1 to 10 mol / l for 0.5 to 24 hours, and then fired again at 900 to 1050 ° C. in a firing furnace. Thus, a honeycomb member having a through hole is produced.
  • the sealing material paste which consists of an inorganic binder, an organic binder, an inorganic fiber, and / or an inorganic particle is prepared. Then, the plug material paste is filled into a predetermined through hole of the honeycomb member, one end of the through hole is plugged, and the plug material paste is dried and solidified by using a drier. Form the material.
  • a honeycomb member in which either one end of the cell is sealed with a sealing material can be produced.
  • a catalyst is supported on the wall portion of the honeycomb member.
  • the method for supporting the catalyst on the wall portion of the honeycomb member include a method in which the honeycomb member is immersed in a slurry containing the catalyst, pulled up, and fired.
  • the honeycomb member is dried at 110 to 200 ° C. for about 2 hours, and the dried honeycomb member is heated and fired at 500 to 1000 ° C., whereby a layer made of ⁇ -alumina (catalyst supporting layer) is formed on the wall of the honeycomb member.
  • honeycomb member is immersed in a catalyst solution containing barium and potassium in the longitudinal direction, the honeycomb member after immersion is dried, and the dried honeycomb member is 500 to 800 in an inert atmosphere.
  • the catalyst component is supported on the catalyst support layer by heating and firing at ° C.
  • FIG. 5 is a cross-sectional view schematically showing an example of an exhaust gas purification system using the honeycomb structure of the present embodiment.
  • the honeycomb structure 1 is installed in a metal casing 11 serving as a flow path for the exhaust gas G.
  • An introduction pipe 12 is connected to an end of the metal casing 11 on the side where the exhaust gas G exhausted from an internal combustion engine such as an engine is introduced, and the other end of the metal casing 11 is connected to the other end of the metal casing 11.
  • arrows indicate the flow of the exhaust gas G.
  • the honeycomb structure 1 is installed in the metal casing 11 with the holding sealing material 14 wound around the outer periphery thereof.
  • the exhaust gas G (including harmful components and PM) discharged from an internal combustion engine such as an engine is introduced into the metal casing 11 through the introduction pipe 12.
  • the honeycomb member constituting the honeycomb structure of the present embodiment is mainly formed by integrally forming inorganic fibers. Therefore, a honeycomb structure having high strength can be obtained even if the porosity is increased.
  • the honeycomb structure of the present embodiment has peaks at three places when the pore distribution curve is drawn. This indicates that the pore size distribution of the honeycomb structure is controlled within a preferable range.
  • the pores present in the ranges of 15 to 50 ⁇ m and 1 to 15 ⁇ m can increase the PM collection efficiency while keeping the pressure loss low.
  • pores present in a range where the pore diameter is 0.005 to 0.03 ⁇ m contributes to purification of harmful components (CO, HC, NOx, etc.).
  • the honeycomb structure of the present embodiment contains an inorganic substance, inorganic fibers are fixed via the inorganic substance, and the inorganic substance is localized at or near the intersection of the inorganic fibers.
  • Example 1 Production of honeycomb member (1-1) Mixing step First, 12.3 parts by weight of alumina fiber (average fiber length: 0.3 mm, average fiber diameter: 5 ⁇ m) made of 72% alumina and 28% silica, glass Fiber (average fiber diameter: 9 ⁇ m, average fiber length: 3 mm) 6.2 parts by weight, organic binder (methyl cellulose) 11.7 parts by weight, pore former (acrylic resin) 7.1 parts by weight, plasticizer (Nippon Yushi Co., Ltd.) A mixture was prepared by mixing 8.1 parts by weight (manufactured by Unilube), 3.8 parts by weight of a lubricant (glycerin) and 50.9 parts by weight of water and thoroughly stirring.
  • alumina fiber average fiber length: 0.3 mm, average fiber diameter: 5 ⁇ m
  • glass Fiber average fiber diameter: 9 ⁇ m, average fiber length: 3 mm
  • organic binder methyl cellulose 11.7 parts by weight
  • pore former acrylic resin
  • plasticizer Nippon Yushi Co
  • the columnar honeycomb formed body obtained in the degreasing step (1-4) is heat-treated in an electric furnace at 400 ° C. for 3 hours in an air atmosphere, and the organic matter contained in the honeycomb formed body was removed.
  • Catalyst support (2-1) Formation of catalyst support layer ⁇ -alumina particles having an average particle diameter of 0.8 ⁇ m were mixed with a sufficient amount of water and stirred to prepare an alumina slurry.
  • the honeycomb member was immersed in the alumina slurry with the longitudinal direction thereof set and held for 1 minute. Subsequently, after the honeycomb member is pulled up from the alumina slurry to leave the ⁇ -alumina particles on the wall portion, a drying process is performed in which the honeycomb member is heated at 110 ° C. for 1 hour, and further fired at 700 ° C. for 1 hour. As a result, a catalyst support layer made of ⁇ -alumina was formed.
  • the amount of catalyst supported was determined so that the amount of ⁇ -alumina supported was 60 g (60 g / L) per liter of honeycomb structure, and the catalyst component was supported at 60 g / L.
  • the amount of the catalyst supported was adjusted by repeating the immersion in the alumina slurry and the catalyst solution, the drying step, and the firing step.
  • the weight of the catalyst component was the total weight of barium and potassium.
  • Example 2 A honeycomb structure was manufactured in the same manner as in Example 1 except that the amount of catalyst supported was 243 g / L (alumina 120 g / L, total amount of barium and potassium 120 g / L, platinum 3 g / L).
  • Example 3 A honeycomb structure was manufactured in the same manner as in Example 1 except that the amount of catalyst supported was 363 g / L (alumina 180 g / L, total amount of barium and potassium 180 g / L, platinum 3 g / L).
  • Example 1 A honeycomb structure was manufactured in the same manner as in Example 1 except that the amount of catalyst supported was 83 g / L (alumina 40 g / L, total amount of barium and potassium 40 g / L, platinum 3 g / L).
  • Example 2 A honeycomb structure was manufactured in the same manner as in Example 1 except that the supported amount of the catalyst was 483 g / L (alumina 240 g / L, total amount of barium and potassium 240 g / L, platinum 3 g / L).
  • Example 3 A honeycomb structure made of a porous ceramic mainly composed of silicon carbide was produced, and the catalyst was 123 g / L (alumina 60 g / L, total amount of barium and potassium 60 g / L in the same manner as in Example 1; Platinum 3 g / L) was supported to prepare a honeycomb structure on which a catalyst was supported.
  • the porous ceramic which has silicon carbide as a main component was produced as follows.
  • honeycomb molded body was degreased at 400 ° C., and fired under a normal pressure argon atmosphere at 2200 ° C. for 3 hours to produce a honeycomb structure made of a silicon carbide sintered body.
  • the honeycomb structure made of the silicon carbide sintered body had the same outer diameter and cell dimensions as those in Example 1.
  • the porosity of the honeycomb structure was measured and found to be 45%. The following measurements were performed on the honeycomb structures manufactured in each Example and each Comparative Example.
  • a part of the wall portion of the honeycomb structure is cut into a cube of about 1 cm square, and pores in a pore diameter range of 0.1 to 600 ⁇ m using a porosimeter (Shimadzu Corporation, Autopore III 9420) by mercury porosimetry. The distribution was measured, and a pore distribution curve was drawn with the pore diameter ( ⁇ m) on the X axis and the log differential pore volume (mL / g) on the Y axis.
  • Table 1 shows a peak (peak 1) with a pore diameter of 0.005 to 0.03 ⁇ m and a pore diameter of 1 to 15 ⁇ m in the pore distribution curves of the honeycomb structures manufactured in each of the examples and comparative examples.
  • peak 2 shows a peak with a pore diameter of 0.005 to 0.03 ⁇ m and a pore diameter of 1 to 15 ⁇ m in the pore distribution curves of the honeycomb structures manufactured in each of the examples and comparative examples.
  • peak 2 and a peak (peak 3) having a pore diameter of 15 to 50 ⁇ m are shown together.
  • the NOx purification rate was measured using a NOx purification rate measuring device 230 as shown in FIG.
  • FIG. 6 is an explanatory diagram of a NOx purification rate measuring device and a PM collection efficiency measuring device.
  • the NOx purification rate measuring device 230 includes a 2 L (liter) common rail type diesel engine 231, an exhaust gas pipe 232 that distributes exhaust gas from the engine 231, and a honeycomb structure 1 that is connected to the exhaust gas pipe 232 and wound with an alumina mat 233. Sampled by the metal casing 234 that fixes the exhaust gas, the sampler 235 that samples the exhaust gas before flowing through the honeycomb structure 1, the sampler 236 that samples the exhaust gas after flowing through the honeycomb structure 1, and the samplers 235 and 236. A diluter 237 for diluting the exhaust gas and a NOx detector tube 238 for measuring the concentration of NOx contained in the diluted exhaust gas are configured.
  • the PM collection efficiency was measured using the PM collection efficiency measurement device 230 having the same configuration except that the NOx detection tube 238 was replaced with the PM counter 238 in the NOx purification rate measurement device 230 shown in FIG.
  • This apparatus is configured as a scanning mobility particle size analyzer (Scanning Mobility Particle Sizer SMPS) equipped with a PM counter 238 (manufactured by TSI, agglomerated particle counter 3022A-S) that measures the amount of PM.
  • the PM collection efficiency is measured by replacing the NOx concentration N 0 and the NOx concentration N 1 in the measurement of the NOx purification rate with the PM amount P 0 before passing through the honeycomb structure 1 and after passing through the honeycomb structure 1.
  • the PM amount P 1 was determined by using the PM counter 238.
  • Collection efficiency (%) [(P 0 ⁇ P 1 ) / P 0 ] ⁇ 100
  • Pressure loss was measured using a pressure loss measuring device 210 as shown in FIG.
  • This pressure loss measuring device 210 is arranged so that the honeycomb structure 1 is fixed in the metal casing 213 in the exhaust gas pipe 212 of the blower 211 so that the pressure before and after the honeycomb structure 1 can be detected. 214 is attached. Then, the blower 211 was operated so that the exhaust gas flow rate was 400 m 3 / h, and the differential pressure (pressure loss) after 5 minutes from the start of the operation was measured.
  • the measurement results of pressure loss in each example and each comparative example are summarized in Table 1.
  • the honeycomb structures produced in Examples 1 to 3 having a catalyst carrying amount in the range of 100 to 400 g / L and having three peaks in the pore distribution measurement are NOx. It can be seen that the honeycomb structure has a high purification rate and high collection efficiency and low pressure loss. Further, the honeycomb structure manufactured in Comparative Example 1 had a low NOx purification rate and a low collection efficiency because the amount of catalyst supported by the honeycomb structure was less than 100 g / L. Further, the honeycomb structure manufactured in Comparative Example 2 had a high pressure loss because the amount of catalyst supported on the honeycomb structure exceeded 400 g / L.
  • the honeycomb structure manufactured in Comparative Example 3 is made of a porous ceramic mainly composed of silicon carbide, the porosity thereof is low, and when the amount of catalyst supported on the honeycomb structure is 123 g / L, the pressure is low. The loss was high.
  • honeycomb structure of the present embodiment is the same as that of the first embodiment except that a plurality of honeycomb members are bonded via an adhesive layer.
  • FIG. 8 is a perspective view schematically showing another example of the honeycomb structure of the present invention.
  • FIG. 9A is a perspective view schematically showing an example of the honeycomb member
  • FIG. 9B is a cross-sectional view of the honeycomb member taken along the line BB in FIG. 9A.
  • honeycomb structure 3 shown in FIG. 8 a plurality of honeycomb members 200 mainly made of inorganic fibers are bound through an adhesive layer 201 to form a honeycomb block 203, and a seal is formed on the outer peripheral surface of the honeycomb block 203.
  • a material layer 202 is formed.
  • the configuration of the honeycomb member 200 shown in FIGS. 9A and 9B is the same as that of the honeycomb member 100 shown in FIG. 1 except that the shape thereof is a prismatic shape.
  • a large number of cells 204 are arranged in parallel in the longitudinal direction (direction b in FIG. 9A) with a wall portion therebetween, and either end of the cell 204 is a sealing material 205. It is sealed with. Accordingly, the exhaust gas G that has flowed into the cell 204 with one end face opened always flows out of the other cell 204 with the other end face opened after passing through the wall portion 206 separating the cells 204. Therefore, the wall portion 204 functions as a filter for collecting PM and the like.
  • the adhesive layer is formed by drying and solidifying a paste made of an inorganic binder, an organic binder, inorganic fibers, and / or inorganic particles, similarly to the sealing material described in the first embodiment.
  • the sealing material layer is also formed using a material similar to the material used for forming the adhesive layer.
  • the honeycomb structure of the present embodiment carries 100 to 400 g of catalyst per liter of the honeycomb structure volume, and the pore distribution in the walls of the honeycomb member It is the same as in the first embodiment that the curve has three peaks.
  • the type of catalyst to be supported is the same as in the first embodiment.
  • a method for manufacturing the honeycomb structure of the present embodiment will be described. First, except for changing the shape of the die, in the same manner as the method for manufacturing a honeycomb structure of the first embodiment, a prism-shaped honeycomb molded body in which a plurality of through holes are arranged in parallel in the longitudinal direction with a wall portion therebetween. A long body is produced.
  • the catalyst is supported on the wall of the prismatic honeycomb member in which a part of the through hole is sealed.
  • the method for supporting the catalyst can be the same as in the first embodiment.
  • the sealing material paste which consists of an inorganic binder, an organic binder, an inorganic fiber, and / or an inorganic particle is prepared.
  • this sealing material paste the same paste as the sealing material paste described above can be used.
  • a sealing material paste serving as an adhesive layer is applied to the side surface of the honeycomb member supporting the catalyst to form a sealing material paste layer, and other honeycomb members are sequentially stacked on the sealing material paste layer.
  • the process is repeated to produce an aggregate of honeycomb members in which a predetermined number of honeycomb members are bundled. Further, the aggregate of the honeycomb members is heated to dry and solidify the sealing material paste layer to form an adhesive layer, thereby producing a prismatic honeycomb block.
  • the outer periphery of the honeycomb block is cut using a diamond cutter to produce a cylindrical honeycomb block. Furthermore, if necessary, a sealing material layer is formed by applying a sealing material paste to the outer peripheral surface of the cylindrical honeycomb block and drying and solidifying the sealing material paste. Production of the honeycomb structure is completed by the above process.
  • the effects (1) to (4) described in the first embodiment can be exhibited.
  • honeycomb structure of the present invention in the embodiments described so far is a honeycomb structure excellent in NOx purification performance, but by changing the type of catalyst component supported on the honeycomb structure, CO, HC, SOx, etc. A honeycomb structure having excellent purification performance can be obtained.
  • a honeycomb structure excellent in SOx purification performance can be obtained by supporting a catalyst for oxidizing SOx and a sulfur absorbent (for example, MgO) that absorbs oxidized SOx on the honeycomb structure.
  • a catalyst for oxidizing SOx and a sulfur absorbent (for example, MgO) that absorbs oxidized SOx on the honeycomb structure.
  • MgO sulfur absorbent
  • a honeycomb structure having excellent purification performance of CO, HC, etc. can be obtained.
  • a noble metal is supported on the honeycomb structure, the combustion temperature of PM during the regeneration process can be lowered.
  • a noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) is desirable, and among these, platinum is more desirable.
  • the catalyst component for purifying NOx, the catalyst component for purifying SOx, and the catalyst component for purifying CO, HC, etc. may be used alone or in combination of two or more catalyst components. It is good also as a honeycomb structure which has a function which purifies a plurality of kinds of harmful ingredients by using together.
  • the cross-sectional shape perpendicular to the longitudinal direction of the honeycomb structure is not particularly limited to a circle, and may be various shapes such as a rectangle, but only a curve or a shape surrounded by a curve and a straight line. It is desirable to be.
  • a shape in which a part of a simple closed curve such as an ellipse, an ellipse (race track shape), an ellipse, or an ellipse has a recess (concave shape) can be exemplified. .
  • Examples of the material of the inorganic fibers constituting the honeycomb structure include oxide ceramics such as silica-alumina, mullite, alumina, silica, titania and zirconia, nitride ceramics such as silicon nitride and boron nitride, and carbides such as silicon carbide. Examples include ceramic and basalt. These may be used alone or in combination of two or more.
  • At least one selected from the group consisting of silicon carbide, alumina, basalt, silica, silica-alumina, titania and zirconia is desirable. This is because a honeycomb structure using these is excellent in heat resistance.
  • inorganic substance which comprises a honeycomb structure
  • melt or sublime can be used, for example.
  • the inorganic material is preferably melted at a temperature lower than the heat resistant temperature of the inorganic fiber.
  • what contains a silica is desirable,
  • inorganic glass such as silicate glass, silicate alkali glass, borosilicate glass, etc. are mentioned, for example.
  • the honeycomb structure it is desirable to fix the cross
  • the inorganic material is melted and solidified to fix the inorganic fibers, the bonding strength between the inorganic fibers is increased, the defibrillation of the inorganic fibers is further prevented, and the strength of the honeycomb structure is further improved. Because it will be.
  • the tensile strength of the honeycomb structure is desirably 0.3 MPa or more, and more desirably 0.4 MPa or more. If the tensile strength is less than 0.3 MPa, sufficient reliability may not be obtained when the honeycomb structure is used as a DPF.
  • the tensile strength can be measured with an Instron universal testing machine by processing a honeycomb member into a sheet shape and fixing both ends with a jig.
  • the lower limit of the fiber length of the inorganic fiber is desirably 0.1 mm, and more desirably 0.5 mm. Moreover, as an upper limit, 50 mm is desirable and 20 mm is more desirable. If the fiber length is less than 0.1 mm, it becomes difficult to fix the inorganic fibers together via an inorganic substance, and sufficient strength may not be obtained. On the other hand, if the fiber length exceeds 50 mm, the fibers are homogeneous. This is because it may be difficult to produce a simple honeycomb member and a honeycomb structure having sufficient strength may not be obtained.
  • a desirable lower limit of the fiber diameter of the inorganic fiber is 0.3 ⁇ m, and a desirable upper limit is 30 ⁇ m.
  • the fiber diameter is less than 0.3 ⁇ m, the inorganic fiber itself is easily broken, and as a result, the obtained honeycomb structure is easily eroded.
  • the fiber diameter exceeds 30 ⁇ m, the inorganic fibers are inorganic. In some cases, it becomes difficult to fix the adhesive, and sufficient strength cannot be obtained.
  • a more desirable lower limit of the fiber diameter is 0.5 ⁇ m, and a more desirable upper limit is 15 ⁇ m.
  • a desirable lower limit is 0.04 g / cm 3 and a desirable upper limit is 0.4 g / cm 3 .
  • the distance between adjacent cells is preferably 0.2 mm or more. This is because if the thickness is less than 0.2 mm, the strength of the honeycomb member may decrease.
  • the desirable upper limit of the distance between adjacent cells is 1.0 mm. If the wall is too thick, pressure loss may increase.
  • the cell density in the direction perpendicular to the cell formation direction is not particularly limited, and the desirable lower limit is 15.5 cells / cm 2 (100 cells / in 2 ), and the desirable upper limit is 93 cells. / Cm 2 (600 / in 2 ), the more desirable lower limit is 23.3 / cm 2 (150 / in 2 ), and the more desirable upper limit is 77.5 / cm 2 (500 / in 2 ). It is.
  • the shape of the cell in plan view is not particularly limited to a quadrangle, and examples thereof include a triangle, a hexagon, an octagon, a dodecagon, a circle, an ellipse, and a star.
  • Examples of the inorganic binder in the sealing material paste or the sealing material paste include silica sol and alumina sol. These may be used alone or in combination of two or more. Among inorganic binders, silica sol is desirable.
  • organic binder in the sealing material paste or the sealing material paste examples include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among organic binders, carboxymethylcellulose is desirable.
  • inorganic fiber in the sealing material paste or the sealing material paste examples include ceramic fibers such as silica-alumina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among inorganic fibers, alumina fibers are desirable.
  • Examples of the inorganic particles in the sealing material paste or the sealing material paste include carbides and nitrides. Specific examples include inorganic powders made of silicon carbide, silicon nitride, and boron nitride. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • a pore-forming agent such as balloons that are fine hollow spheres containing an oxide-based ceramic, spherical acrylic particles, or graphite may be added to the sealing material paste or the sealing material paste as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the method for sealing the cells is not particularly limited, and the sealing may be performed by filling the sealing material paste and solidifying it by drying, or sealing made of resin, ceramic, metal, or the like. Sealing may be performed by inserting a stationary body into the cell (through hole).
  • the method of supporting the catalyst on the wall portion of the honeycomb member is not particularly limited, and the honeycomb block is manufactured without supporting the catalyst on the wall portion of the honeycomb member. You may use the method of immersing in an alumina slurry and a catalyst solution, and also baking.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • FIG. 1 (b) is a cross-sectional view taken along line AA of the honeycomb structure shown in FIG. 1 (a). It is. It is an example of the result of having measured the pore distribution curve of the wall part of the honeycomb member which comprises the honeycomb structure of this invention. It is an example of the result of having measured the pore distribution curve of the wall part of the honeycomb member which comprises the honeycomb structure of this invention. It is an example of the result of having measured the pore distribution curve of the wall part of the honeycomb member which comprises the honeycomb structure of this invention. It is sectional drawing which shows typically an example of the exhaust gas purification system using the honeycomb structure of this embodiment.
  • FIG. 9A is a perspective view schematically showing an example of the honeycomb member
  • FIG. 9B is a cross-sectional view of the honeycomb member taken along the line BB in FIG. 9A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

本発明は、大量の触媒が担持されていてCO、HC、NOx等の浄化性能に優れ、かつ、圧力損失が低いハニカム構造体を提供することを目的とするものであり、本発明のハニカム構造体は、多数のセルが壁部を隔てて長手方向に並設された、主に無機繊維が一体成形されている柱状のハニカム部材からなるハニカム構造体であって、上記セルのいずれか一方の端部は、封止されており、上記壁部には、触媒が上記ハニカム構造体の体積1リットルあたり100~400g担持されており、上記ハニカム部材は、水銀圧入法による細孔分布において、X軸に細孔直径(μm)を、Y軸にlog微分細孔容積(mL/g)をとって描いた細孔分布曲線が0.005~0.03μmの範囲、1~15μmの範囲、及び、15~50μmの範囲の3ヶ所にピークを有することを特徴とする。

Description

ハニカム構造体
本発明は、ハニカム構造体に関する。
バス、トラック等の車両や建設機械等の内燃機関から排出されるスス等のパティキュレート(以下、PMともいう)が、環境や人体に害を及ぼすことが近年問題となっている。そこで、排ガス中のPMを捕集して、排ガスを浄化するフィルタとしてコージェライトや炭化ケイ素等の多孔質セラミックからなるハニカム構造体を用いたハニカムフィルタが種々提案されている。
さらに、ハニカム構造体に触媒を担持させることによって、排ガス中のCO(一酸化炭素)、HC(炭化水素)、NOx(窒素酸化物)等を浄化する触媒担体としての機能を有するハニカム構造体も知られている。
また、ハニカムフィルタに触媒を担持した触媒化DPF(Diesel Particulate Filter)も知られている。
現在、ディーゼル車からの排ガスの浄化は、触媒担体からなるDOC(Diesel Oxidation Catalyst)によるCO及びHCの浄化と、DPFによるPMの捕集とを組み合わせることによって行われている。
しかし、今後さらに排ガス規制が厳しくなることから、NSC(NOx Storage Catalyst)、LNC(Lean NOx Catalyst)、又は、SCR(Selective Catalytic Reduction)等によるNOxの浄化が求められている。
厳しい排ガス規制を満足するディーゼル車排ガス浄化システムとして、DOC、DPF、及び、NSC、LSC又はSCRを組み合わせた排ガス浄化システムが提案されている。
具体的には、SCRシステム(前段DOC+SCR触媒+DPF+後段DOC)、LNCシステム(DOC+DPF+LNC)、及び、NSCシステム(DOC+NSC+DPF)等のシステムが提案されている。
これらの排ガス浄化システムを用いて排ガスの浄化を行うためには、ハニカム構造体からなる触媒担体及びフィルタを並列して複数個設置する必要がある。
しかし、複数個のハニカム構造体を設置すると排ガス浄化に必要なハニカム構造体の体積が大きくなるという問題がある。
この問題に対し、従来のハニカム構造体と同等以上の高い浄化能力を有した触媒化DPFを用いることによって、設置するハニカム構造体の数を少なくすることや、有害成分の浄化に必要なハニカム構造体の体積を小さくすることが考えられている。
NOx浄化能力の高いハニカム構造体に求められる性能を考慮すると、これまでDOCとして用いられていたハニカム構造体よりも触媒担持量を増やす必要があるため、大量の触媒を担持させることのできるハニカム構造体が求められている。
具体的には、ハニカム構造体に触媒を100g/L以上、望ましくは触媒を250g/L以上担持させることができるハニカム構造体が求められている。
そして、ハニカム構造体に大量の触媒を担持させるためには、ハニカム構造体の気孔率を高くすることが必要となる。具体的には、気孔率が60%以上、望ましくは75%以上であることが必要であると考えられている。
特許文献1には、気孔率の高いハニカム構造体の一例が開示されている。
特許文献1には、主に無機繊維からなる材料を押出形成等によって一体成形した、高気孔率のハニカム構造体が記載されている。
無機繊維からなるハニカム構造体は、セラミック粒子の焼結体ではないため、高気孔率にすることに適しており、特許文献1には、ハニカム構造体の貫通孔のいずれか一方の端部を金属板等からなる端部用積層部材によって封止したハニカムフィルタが記載されている。
また、ハニカム構造体を構成する無機繊維の一部に触媒を担持させることができることが記載されている。
国際公開第07/129430号パンフレット
ハニカム構造体に担持させる触媒の量を多くするためには、ハニカム構造体の気孔率を高くすることが必要である。
しかし、多孔質セラミックからなるハニカム構造体を高気孔率(例えば、60%以上)にした場合、気孔率の上昇に伴って多孔質セラミックの強度が低下するために、ハニカム構造体に容易に破壊が生じることがある。
また、多孔質セラミックからなるハニカム構造体に触媒を100g/L以上担持させると、ハニカム構造体の気孔の大部分が触媒によって覆われてしまう。そのため、触媒を100g/L以上担持させたハニカム構造体では圧力損失が高くなることがある。
すなわち、多孔質セラミックからなるハニカム構造体に触媒を100g/L以上担持させて使用可能なハニカムフィルタとすることは困難であった。
一方、特許文献1に記載の主に無機繊維からなるハニカム構造体は、高気孔率とすることに適しており、気孔率を60%以上としても破壊が生じにくい。
また、無機繊維からなるハニカム構造体をハニカムフィルタとして使用する場合、排気管に装着するための金属ケーシング(金属製の筒状体)内にハニカム構造体と端部用積層部材を積層し、押え用金具によって固定することでハニカムフィルタとする。
そして、この固定の際に、ハニカム構造体の貫通孔が封止される。
ハニカム構造体に触媒を担持させる際には、貴金属等及び酸化物からなる触媒を含むスラリーを調製し、このスラリーにハニカム構造体を浸漬し、焼成する方法が好適に用いられる。
しかしながら、特許文献1に記載の主に無機繊維からなるハニカム構造体に触媒を担持させる場合、ハニカム構造体を金属ケーシング内に固定してハニカムフィルタとした後にはスラリーに浸漬することが難しい。そのため、貫通孔を有するハニカム構造体を上記スラリーに浸漬し、焼成することによってハニカム構造体に触媒を担持させる方法が用いられる。
しかし、このような触媒担持方法では、触媒を含むスラリーからハニカム構造体を引き上げた際に、貫通孔からスラリー中の触媒がこぼれてしまうため、焼成前に貫通孔内に留まる触媒の量が少なくなると考えられる。
そのため、特許文献1に記載されたような主に無機繊維からなるハニカム構造体に大量の触媒を担持させることは困難である。
本発明は、大量の触媒が担持されていてCO、HC、NOx等の浄化性能に優れ、かつ、圧力損失が低いハニカム構造体を提供することを目的とする。
請求項1に記載のハニカム構造体は、多数のセルが壁部を隔てて長手方向に並設された、主に無機繊維が一体成形されている柱状のハニカム部材からなるハニカム構造体であって、
上記セルのいずれか一方の端部は、封止されており、
上記壁部には、触媒が上記ハニカム構造体の体積1リットルあたり100~400g担持されており、
上記ハニカム部材は、水銀圧入法による細孔分布において、X軸に細孔直径(μm)を、Y軸にlog微分細孔容積(mL/g)をとって描いた細孔分布曲線が0.005~0.03μmの範囲、1~15μmの範囲、及び、15~50μmの範囲の3ヶ所にピークを有することを特徴とする。
請求項1に記載のハニカム構造体を構成するハニカム部材は、主に無機繊維が一体成形されている。そのため、気孔率を高くしても強度の高いハニカム構造体とすることができる。
さらに、セルのいずれか一方の端部が封止されているため、セルのいずれか一方の端部が封止されたハニカム構造体を触媒を含むスラリーに浸漬することができる。そのため、ハニカム構造体を一方の端面を下にしてスラリーに浸漬し、上記スラリーからハニカム構造体を引き上げた際に、セルの下端が封止されたセルからはスラリーが流出することがなく、セルの下端が封止されたセル内に存在するスラリーは、壁部を通ってセルの下端が封止されていない隣のセルから流出することとなる。
そのため、焼成前に壁部内に留まる触媒の量を多くして、ハニカム構造体に多くの触媒を担持させることができる。
従って、ハニカム構造体の触媒の担持量を100~400g/Lと多くすることができ、CO、HC、NOx等の浄化性能に優れたハニカム構造体とすることができる。
また、請求項1に記載のハニカム構造体は、その細孔分布曲線を描いた場合に、3ヶ所にピークを有する。
このことは、ハニカム構造体の気孔径分布が好ましい範囲に制御されていることを示している。
気孔径が15~50μmである範囲及び1~15μmである範囲に存在する気孔によって、圧力損失を低く保ちつつ、PMの捕集効率を高くすることができる。
また、気孔径が0.005~0.03μmである範囲に存在する気孔は、有害成分(CO、HC、NOx等)の浄化に寄与する。
なお、本明細書において、触媒とは、酸化物、貴金属、アルカリ金属及びアルカリ土類金属を含むこととする。また、触媒の量は、酸化物、貴金属、アルカリ金属及びアルカリ土類金属の量の合計である。
また、本明細書において、例えば、ハニカム構造体の触媒の担持量が250g/Lであるとは、ハニカム構造体の体積1リットルあたりに触媒が250g担持されていることを示す。
請求項2に記載のハニカム構造体では、上記ハニカム部材は、さらに無機物を含有し、
上記無機物を介して上記無機繊維が固着されており、
上記無機物が上記無機繊維の交差部又はその近傍に局在している。
無機繊維を無機物で固着することによって、無機繊維の解繊が防止され、ハニカム構造体の強度を高くすることができる。
請求項3に記載のハニカム構造体において、上記無機物は、シリカを含有しており、溶融固化することによって上記無機繊維同士を固着している。
無機物が溶融固化して無機繊維同士を固定することで、無機繊維同士の結合強度が高くなり、無機繊維の解繊がさらに防止されて、ハニカム構造体の強度をより高くすることができる。
請求項4に記載のハニカム構造体において、上記触媒は、貴金属、アルカリ金属及びアルカリ土類金属からなる群より選ばれる少なくとも一種と、酸化物とからなる。
請求項5に記載のハニカム構造体は、1つの上記ハニカム部材からなる。
また、請求項6に記載のハニカム構造体は、複数の上記ハニカム部材が接着材層を介して結束されてなる。
(第一実施形態)
以下、本発明のハニカム構造体の実施形態について図面を参照しながら説明する。
図1(a)は、本発明のハニカム構造体の一例を模式的に示した斜視図であり、図1(b)は、図1(a)に示すハニカム構造体のA-A線断面図である。
図1(a)及び図1(b)に示すハニカム構造体1は、主に無機繊維からなり、無機繊維が一体成形されてなる1つの円柱状のハニカム部材100からなる。
ハニカム部材100は、多数のセル111が壁部113を隔てて長手方向(図1(a)中、aの方向)に並設されており、セル111のいずれかの端部が封止材112で封止されている。
従って、一方の端面が開口したセル111に流入した排ガスGは、必ずセル111を隔てる壁部113を通過した後、他方の端面が開口した他のセル111から流出するようになっている。従って、壁部113がPM等を捕集するためのフィルタとして機能する。
ハニカム部材100は、主に無機繊維からなる部材であるが、ハニカム部材100には無機繊維の他に無機物を含有し、この無機物を介して無機繊維同士が固着されることによってその形状が保持されている。
この無機物は無機繊維の交差部又はその近傍に局在している。
また、封止材112としては、例えば、無機バインダと有機バインダと無機繊維及び/又は無機粒子とからなるペーストを乾燥固化させてなるものを使用することができる。
ハニカム部材の壁部には、触媒がハニカム構造体の体積1リットルあたり100~400g担持されている。
本実施形態においてハニカム部材の壁部に担持される触媒は、排ガス中のNOxを浄化するための触媒成分と酸化物とからなる。
排ガス中のNOxを浄化するための触媒成分としては、アルカリ金属又はアルカリ土類金属が挙げられる。アルカリ金属としては、カリウム、ナトリウム等が望ましく、アルカリ土類金属としてはバリウム等が望ましい。
また、排ガス中のNOxを浄化するための触媒成分として、ゼオライト、チタニア等も挙げられる。
触媒成分として働くこれらの触媒は、単独で用いられてもよいし、2種以上併用されてもよい。
また、酸化物は上記触媒成分を支えるための触媒担持層としての働きを有する。酸化物としては、比表面積が高く触媒を高分散させて担持させることのできる材料であることが望ましく、例えば、アルミナ、セリア、ジルコニア、シリカ、ムライト等の酸化物セラミックが挙げられる。
これらの材料は、単独で使用してもよいし、2種以上併用してもよい。
この中でも、250m/g以上の高い比表面積を有するものを選択することが望ましく、γ-アルミナが特に望ましい。
なお、触媒が担持されたハニカム部材の気孔率は、望ましい下限が35%であり、望ましい上限が50%である。
上記気孔率が35%未満であると、圧力損失が高くなる。
一方、上記気孔率が50%を超えるとPMの捕集効率が低くなる。
また、触媒が担持されたハニカム部材の壁部の細孔分布を水銀圧入法により測定し、X軸に細孔直径(μm)を、Y軸にlog微分細孔容積(mL/g)をとって描いた細孔分布曲線は、0.005~0.03μmの範囲、1~15μmの範囲、及び、15~50μmの範囲の3ヶ所にピークを有する。
以下、この細孔分布曲線について説明する。
図2、図3及び図4は、本発明のハニカム構造体を構成するハニカム部材の壁部の細孔分布曲線を測定した結果の一例である。
図2、図3及び図4において細孔分布を測定したハニカム部材には、触媒成分としてバリウム及びカリウムが、酸化物としてγ-アルミナが担持されており、図2、図3及び図4はバリウム及びカリウム、並びに、γ-アルミナからなる触媒の触媒担持量をそれぞれ150g/L、200g/L、300g/Lと変化させた際の細孔分布曲線である。
なお、細孔分布曲線は、触媒を担持させたハニカム部材の壁部の一部を切断し、切断した上記壁部の一部に対して水銀圧入法を用いることによって求めることができる。
各図においては、細孔直径が0.005~0.03μmの範囲に位置するピークを「ピーク1」として、細孔直径が1~15μmの範囲に位置するピークを「ピーク2」として、細孔直径が15~50μmの範囲に位置するピークを「ピーク3」としてそれぞれ示している。
図2、図3及び図4に示すように、本発明のハニカム構造体を構成するハニカム部材の壁部の細孔分布曲線には、ピークが3ヶ所に存在する。
細孔直径が0.005~0.03μmである範囲に存在するピーク1は、γ-アルミナの1次粒子に由来するピークであると推測される。
また、細孔直径が1~15μmである範囲に存在するピーク2は、γ-アルミナの2次粒子に由来するピークであると推測される。
さらに、細孔直径が15~50μmである範囲に存在するピーク3は、ハニカム部材の壁部の気孔径に由来するピークであると推測される。
ハニカム部材の壁部に複数のピークが存在することは、ハニカム部材の壁部には気孔径の大きい気孔と気孔径の小さい気孔が共に存在することを示している。
気孔径の大きい気孔が存在することによって、圧力損失が高くなることなくPMの捕集を行うことができる。
また、気孔径の小さい気孔は触媒成分を含む触媒が担持されることによって形成されているため、CO、HC、NOx等の有害成分の浄化に寄与する。
なお、従来の多孔質セラミックからなるハニカム構造体に触媒を100g/L以上担持させて、同様に細孔分布を測定して細孔分布曲線を描くと、その細孔分布曲線は平坦な形状をしている。このことは、PMの捕集に好ましい気孔径を有する気孔が少なくなっていることを示している。
以下、本実施形態のハニカム構造体の製造方法について説明する。
まず、アルミナファイバ、ガラスファイバ、有機バインダ、可塑剤、潤滑剤及び水を混合し、充分攪拌することによって、混合物を調製する。
次に、上記混合物をプランジャー式押出成形機の混合物タンクよりシリンダー内に投入し、ピストンをダイス側に押し込んで円柱状のダイスより混合物を押し出し、複数の貫通孔が壁部を隔てて長手方向に並設された円柱状のハニカム成形体の長尺体を作製する。
次に、上記ハニカム成形体の長尺体を、切断ディスクが切断部材として備えられた切断装置により所定の長さに切断した後、得られたハニカム成形体をマイクロ波乾燥機及び熱風乾燥機により、100~200℃、大気雰囲気下、5~60分乾燥する。
次に、上記乾燥させたハニカム成形体を脱脂炉中で、200~600℃、大気雰囲気、1~5時間脱脂した後、焼成炉中で、900~1050℃で焼成する。
さらに、得られたハニカム成形体を1~10mol/lの塩酸溶液に、0.5~24時間浸漬させることによって酸処理を施した後に、再度焼成炉中で、900~1050℃で焼成することにより、貫通孔を有するハニカム部材を作製する。
次に、無機バインダと有機バインダと無機繊維及び/又は無機粒子とからなる封止材ペーストを調製する。
そして、封止材ペーストをハニカム部材の所定の貫通孔に充填して貫通孔のいずれか一方の端部を目封じし、封止材ペーストを乾燥機を用いて乾燥させて固化させ、封止材を形成する。
上記方法により、セルのいずれか一方の端部が封止材で封止されたハニカム部材を作製することができる。
さらに、このハニカム部材の壁部に触媒を担持する。
ハニカム部材の壁部に触媒を担持する方法としては、触媒を含むスラリーにハニカム部材を浸漬して、引き上げ、焼成する方法が挙げられる。
その後、ハニカム部材を110~200℃で2時間程度乾燥させ、乾燥後のハニカム部材を500~1000℃で加熱焼成することにより、ハニカム部材の壁部にγ-アルミナからなる層(触媒担持層)を形成する。
さらに、バリウム及びカリウムを含有する触媒溶液中に、その長手方向を立てて、ハニカム部材を浸漬し、浸積後のハニカム部材を乾燥させ、乾燥後のハニカム部材を不活性雰囲気下、500~800℃で加熱焼成することにより触媒担持層に触媒成分を担持させる。
続いて、本実施形態のハニカム構造体を用いた排ガス浄化システムの一例について説明する。
図5は、本実施形態のハニカム構造体を用いた排ガス浄化システムの一例を模式的に示す断面図である。
図5に示す排ガス浄化システム10では、ハニカム構造体1が、排ガスGの流路となる金属ケーシング11内に設置されている。金属ケーシング11の両端部のうち、エンジン等の内燃機関から排出された排ガスGが導入される側の端部には、導入管12が接続されており、金属ケーシング11のもう一方の端部には、排ガスGを外部に導く排出管13が接続されている。なお、図5中、矢印は排ガスGの流れを示している。
ハニカム構造体1は、それらの外周部に保持シール材14が巻かれた状態で金属ケーシング11内に設置されている。
このような構成からなる排ガス浄化システム10では、エンジン等の内燃機関から排出された排ガスG(有害成分やPMを含む)は、導入管12を通って金属ケーシング11内に導入される。
次に、排ガスGは、ハニカム構造体1に流入する。ハニカム構造体1を通過する際に、PMがセル111内や壁部113で捕集(ろ過)される。
また、壁部113に担持させた触媒(バリウム及びカリウム)の働きにより、排ガスG中のNOxが浄化される。
そして、排ガスGは排出管13を通って外部に排出される。
以下、本実施形態のハニカム構造体の作用効果について列挙する。
(1)本実施形態のハニカム構造体を構成するハニカム部材は、主に無機繊維が一体成形されてなる。そのため、気孔率を高くしても強度の高いハニカム構造体とすることができる。
(2)また、ハニカム構造体のセルのいずれか一方の端部が封止されているため、焼成前に壁部内に留まる触媒の量を多くして、ハニカム構造体に担持させる触媒の担持量を100~400g/Lと多くすることができる。そのためCO、HC、NOx等の浄化性能に優れたハニカム構造体とすることができる。
(3)また、本実施形態のハニカム構造体は、その細孔分布曲線を描いた場合に、3ヶ所にピークを有する。このことは、ハニカム構造体の気孔径分布が好ましい範囲に制御されていることを示している。
気孔径が15~50μmと1~15μmである範囲に存在する気孔によって、圧力損失を低く保ちつつ、PMの捕集効率を高くすることができる。
また、気孔径が0.005~0.03μmである範囲に存在する気孔は、有害成分(CO、HC、NOx等)の浄化に寄与する。
(4)本実施形態のハニカム構造体は無機物を含有し、無機物を介して無機繊維が固着されており、無機物が無機繊維の交差部又はその近傍に局在している。
無機繊維を無機物で固着することによって、無機繊維の解繊が防止され、ハニカム構造体の強度を高くすることができる。
以下、本発明の第一実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
(1)ハニカム部材の作製
(1-1)混合工程
まず、アルミナ72%とシリカ28%とからなるアルミナファイバ(平均繊維長:0.3mm、平均繊維径:5μm)12.3重量部、ガラスファイバ(平均繊維径:9μm、平均繊維長:3mm)6.2重量部、有機バインダ(メチルセルロース)11.7重量部、造孔剤(アクリル樹脂)7.1重量部、可塑剤(日本油脂社製 ユニルーブ)を8.1重量部、潤滑剤(グリセリン)を3.8重量部及び水50.9重量部を混合し、充分撹拌することにより混合物を調製した。
(1-2)押出成形工程
(1-1)で得られた混合物をプランジャー式押出成形機の混合物タンクよりシリンダー内に投入し、ピストンをダイス側に押し込んでダイスより混合物を押し出し、貫通孔を有する、円柱状のハニカム成形体の長尺体を作製した。
(1-3)切断工程
(1-2)で得られた円柱状のハニカム成形体の長尺体を、切断ディスクを切断部材として備えた切断装置を用いて切断した。これにより、ハニカム成形体を得た。
(1-4)乾燥工程
(1-3)で得られた円柱状のハニカム成形体を、マイクロ波乾燥機及び熱風乾燥機により、大気雰囲気下、200℃で3時間乾燥処理し、ハニカム成形体中に含まれる水分を除去した。
(1-5)脱脂工程
(1-4)で得られた円柱状のハニカム成形体を、電気炉中で、大気雰囲気下、400℃で3時間加熱処理し、ハニカム成形体中に含まれる有機物を除去した。
(1-6)熱処理及び酸処理工程
(1-5)で得られた円柱状のハニカム成形体に対し、焼成炉中で、大気雰囲気下、950℃で5時間の条件で加熱処理を行った。
その後、得られたハニカム成形体を90℃、4mol/lのHCl溶液に1時間浸漬することにより酸処理を施し、さらに、1050℃、5時間の条件で再度熱処理を行って、外径寸法が160mmφ×60mmであり、壁部の厚さ16mil(0.4mm)でセル密度200cpsi(31個/cm)であるハニカム部材を作製した。
(1-7)封止工程
平均繊維長20μmのアルミナファイバ30重量%、平均粒子径0.6μmの炭化ケイ素粒子21重量%、シリカゾル15重量%、カルボキシメチルセルロース5.6重量%、及び、水28.4重量%を含む耐熱性の封止材ペーストを調製した。
続いて、(1-6)で得られたハニカム部材の所定の貫通孔に封止材ペーストを充填し、再び乾燥機を用いて乾燥させた。
上記工程によって、主に無機繊維からなり、セルのいずれか一方の端部が封止されたハニカム部材を作製した。
このハニカム部材の壁部の気孔率を重量法を用いて測定したところ、85%であった。
(2)触媒の担持
(2-1)触媒担持層の形成
平均粒子径0.8μmのγ-アルミナ粒子を充分量の水と混合して攪拌し、アルミナスラリーを作製した。このアルミナスラリー中にハニカム部材をその長手方向を立てて浸漬し、1分間保持した。
続いて、ハニカム部材をアルミナスラリーから引き上げて壁部にγ-アルミナ粒子を残存させた後、ハニカム部材を110℃で1時間加熱する乾燥工程を行い、さらに700℃で1時間焼成する焼成工程を行って、γ-アルミナからなる触媒担持層を形成した。
(2-2)触媒成分の担持
バリウム及びカリウムを含む触媒溶液(炭酸バリウム及び炭酸カリウムの酢酸水溶液で、バリウム0.5mol/L、カリウム0.5mol/L)中に、ハニカム部材をその長手方向を立てて浸漬し、1分間保持した。
続いて、このハニカム部材を110℃で2時間乾燥し、窒素雰囲気中500℃で1時間焼成することによって触媒担持層にバリウム及びカリウムを含む触媒成分を担持させた。
触媒の担持量は、γ-アルミナの担持量がハニカム構造体の体積1リットルあたり60g(60g/L)となるように定め、さらに触媒成分が60g/L担持されるようにした。
なお、触媒の担持量は、アルミナスラリー及び触媒溶液への浸漬と乾燥工程、焼成工程をそれぞれ繰り返し行うことによって調整した。
なお、触媒成分の重量は、バリウム及びカリウムの合計重量とした。
以上の工程によって、γ-アルミナ、バリウム及びカリウムを含む触媒が120g/L担持されたハニカム部材からなるハニカム構造体を作製した。
(2-3)貴金属の担持
上記ハニカム構造体を、ジニトロジアンミン白金硝酸溶液([Pt(NH(NO]HNO、白金濃度3.6重量%)溶液(白金溶液)中に浸漬し、1分間保持した。
続いて、このハニカム構造体を110℃で2時間乾燥し、窒素雰囲気中700℃で1時間焼成することによってハニカム構造体に白金触媒を3g/L担持させた。
従って、本実施例で作製したハニカム構造体に担持されている触媒の合計量は、123g/Lとなる。
(実施例2)
触媒の担持量を243g/L(アルミナ120g/L、バリウムとカリウムの合計量120g/L、白金3g/L)とした他は実施例1と同様にしてハニカム構造体を作製した。
(実施例3)
触媒の担持量を363g/L(アルミナ180g/L、バリウムとカリウムの合計量180g/L、白金3g/L)とした他は実施例1と同様にしてハニカム構造体を作製した。
(比較例1)
触媒の担持量を83g/L(アルミナ40g/L、バリウムとカリウムの合計量40g/L、白金3g/L)とした他は実施例1と同様にしてハニカム構造体を作製した。
(比較例2)
触媒の担持量を483g/L(アルミナ240g/L、バリウムとカリウムの合計量240g/L、白金3g/L)とした他は実施例1と同様にしてハニカム構造体を作製した。
(比較例3)
炭化ケイ素を主成分とする多孔質セラミックからなるハニカム構造体を作製し、実施例1と同様にして壁部に触媒を123g/L(アルミナ60g/L、バリウムとカリウムの合計量60g/L、白金3g/L)担持させて、触媒が担持されたハニカム構造体を作製した。
なお、炭化ケイ素を主成分とする多孔質セラミックは以下のようにして作製した。
押出成形工程において平均粒子径22μmを有する炭化ケイ素の粗粉末52.8重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末22.6重量%とを湿式混合し、得られた混合物に対して、アクリル樹脂2.1重量%、有機バインダ(メチルセルロース)4.6重量%、潤滑剤(日本油脂社製 ユニルーブ)2.8重量%、グリセリン1.3重量%、及び、水13.8重量%を加えて混練して混合組成物を得た後、押出成形を行い、セルの目封じをしていない生のハニカム成形体を作製した。
次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体とした後、上記生成形体と同様の組成のペーストを所定のセルに充填し、再び乾燥機を用いて乾燥させた。
ハニカム成形体の乾燥体を400℃で脱脂し、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成を行うことにより炭化ケイ素焼結体からなるハニカム構造体を作製した。
なお、炭化ケイ素焼結体からなるハニカム構造体の外径寸法、セルの寸法等は実施例1と同様とした。
このハニカム構造体の気孔率を測定したところ、45%であった。
各実施例及び各比較例で作製したハニカム構造体に対して、以下の測定を行った。
(細孔分布測定)
ハニカム構造体の壁部の一部を1cm角程度の立方体に切り出して、水銀圧入法によるポロシメーター(島津製作所社製、オートポアIII 9420)を用い、細孔直径0.1~600μmの範囲で細孔分布を測定してX軸に細孔直径(μm)を、Y軸にlog微分細孔容積(mL/g)をとって細孔分布曲線を描いた。
表1に、各実施例及び各比較例で作製したハニカム構造体の細孔分布曲線における、細孔直径が0.005~0.03μmのピーク(ピーク1)、細孔直径が1~15μmのピーク(ピーク2)及び細孔直径が15~50μmのピーク(ピーク3)の有無をまとめて示した。
(NOx浄化率測定)
図6に示したようなNOx浄化率測定装置230を用いてNOx浄化率を測定した。図6は、NOx浄化率測定装置及びPM捕集効率測定装置の説明図である。
このNOx浄化率測定装置230は、2L(リットル)のコモンレール式ディーゼルエンジン231と、エンジン231からの排ガスを流通する排ガス管232と、排ガス管232に接続されアルミナマット233を巻いたハニカム構造体1を固定する金属ケーシング234と、ハニカム構造体1を流通する前の排ガスをサンプリングするサンプラー235と、ハニカム構造体1を流通した後の排ガスをサンプリングするサンプラー236と、サンプラー235、236によりサンプリングされた排ガスを希釈する希釈器237と、希釈された排ガスに含まれるNOxの濃度を測定するNOx検知管238とにより構成されている。
次に、測定手順を説明する。エンジンを運転し、排ガスの温度が250℃に安定してから、リーン運転を55秒、リッチスパイク運転5秒を1サイクルとして5分間運転を行った。
この5分間の運転中におけるハニカム構造体1を流通する前のNOx濃度Nと、ハニカム構造体1を通過した後のNOx濃度NとをNOx検知管238を用いて把握した。そして、全運転時間(5分間)のNO濃度の積分を行って、その差から以下の式でNOx浄化率を測定した。
NOx浄化率(%)=[(N-N)/N]×100
各実施例及び各比較例におけるNOx浄化率の測定結果を表1にまとめて示した。
(PM捕集効率の測定)
PM捕集効率は、図6に示したNOx浄化率測定装置230においてNOx検知管238をPMカウンタ238に交換した他は同様の構成である、PM捕集効率測定装置230を用いて測定した。
この装置はPMの量を測定するPMカウンタ238(TSI社製、凝集粒子カウンタ3022A-S)とを備えた走査型モビリティ粒子径分析装置(Scanning Mobility Particle Sizer SMPS)として構成されている。
PM捕集効率の測定は、NOx浄化率の測定におけるNOx濃度N及びNOx濃度Nに代えて、ハニカム構造体1を流通する前のPM量Pと、ハニカム構造体1を通過した後のPM量PとをPMカウンタ238を用いて把握することにより行った。そして、下記計算式を用いて捕集効率を算出した。
捕集効率(%)=[(P-P)/P]×100
各実施例及び各比較例における捕集効率の測定結果を表1にまとめて示した。
(圧力損失の測定)
図7に示したような圧力損失測定装置210を用いて圧力損失を測定した。
この圧力損失測定装置210は、送風機211の排気ガス管212に、ハニカム構造体1を金属ケーシング213内に固定して配置し、ハニカム構造体1の前後の圧力を検出可能になるように圧力計214が取り付けられている。
そして、送風機211を排気ガスの流通量が400m/hになるように運転し、運転開始から5分後の差圧(圧力損失)を測定した。
各実施例及び各比較例における圧力損失の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
表1に示す結果から、実施例1~3において作製した、ハニカム構造体の触媒担持量が100~400g/Lの範囲であり、細孔分布測定においてピークを3つ有するハニカム構造体は、NOx浄化率及び捕集効率が高く、圧力損失の低いハニカム構造体となることがわかる。
また、比較例1で作製したハニカム構造体は、ハニカム構造体の触媒担持量が100g/L未満と少ないためにNOx浄化率が低く、捕集効率が低くなっていた。
また、比較例2で作製したハニカム構造体は、ハニカム構造体の触媒担持量が400g/Lを超えて多いために圧力損失が高くなっていた。
また、比較例3で作製したハニカム構造体は、炭化ケイ素を主成分とする多孔質セラミックからなるため、その気孔率が低く、ハニカム構造体の触媒担持量を123g/Lとした場合には圧力損失が高くなっていた。
(第二実施形態)
以下、本発明の一実施形態である第二実施形態について説明する。
本実施形態のハニカム構造体は、複数のハニカム部材が接着材層を介して接着されている他は第一実施形態と同様である。
図8は、本発明のハニカム構造体の別の一例を模式的に示す斜視図である。
図9(a)は、ハニカム部材の一例を模式的に示した斜視図であり、図9(b)は、図9(a)に示すハニカム部材のB-B線断面図である。
図8に示すハニカム構造体3では、主に無機繊維からなるハニカム部材200が接着材層201を介して複数個結束されてハニカムブロック203を構成し、さらに、このハニカムブロック203の外周面にシール材層202が形成されている。
図9(a)及び図9(b)に示すハニカム部材200の構成は、その形状が角柱形状である他は図1に示すハニカム部材100と同様である。
ハニカム部材200には、多数のセル204が壁部を隔てて長手方向(図9(a)中、bの方向)に並設されており、セル204のいずれかの端部が封止材205で封止されている。従って、一方の端面が開口したセル204に流入した排ガスGは、必ずセル204を隔てる壁部206を通過した後、他方の端面が開口した他のセル204から流出するようになっている。従って、壁部204がPM等を捕集するためのフィルタとして機能する。
接着材層は、第一実施形態において説明した封止材と同様に、無機バインダと有機バインダと無機繊維及び/又は無機粒子とからなるペーストを乾燥固化させてなることにより形成される。また、シール材層も、接着材層の形成に用いられる材料と同様の材料を用いて形成される。
本実施形態のハニカム構造体には、第一実施形態のハニカム構造体と同様に、ハニカム構造体の体積1リットルあたり100~400gの触媒が担持されており、ハニカム部材の壁部の細孔分布曲線がピークを3ヶ所に有することも第一実施形態と同様である。
また、担持される触媒の種類も第一実施形態と同様である。
以下、本実施形態のハニカム構造体の製造方法について説明する。
まず、ダイスの形状を変更する他は第一実施形態のハニカム構造体の製造方法と同様にして、複数の貫通孔が壁部を隔てて長手方向に並設された角柱状のハニカム成形体の長尺体を作製する。
次に、第一実施形態と同様にして切断、乾燥、焼成、酸処理等を行い、貫通孔を有する角柱状のハニカム部材を作成し、さらに貫通孔のいずれか一方の端部を封止材で封止する。
続いて、貫通孔の一部が封止された角柱状のハニカム部材の壁部に触媒を担持させる。
触媒を担持させる方法は、第一実施形態と同様にすることができる。
次に、無機バインダと有機バインダと無機繊維及び/又は無機粒子とからなるシール材ペーストを調製する。このシール材ペーストとしては、上述した封止材ペーストと同様のペーストを用いることができる。
そして、触媒を担持させたハニカム部材の側面に、接着材層となるシール材ペーストを塗布してシール材ペースト層を形成し、このシール材ペースト層の上に、順次他のハニカム部材を積層する工程を繰り返して所定数のハニカム部材が結束されたハニカム部材の集合体を作製する。
さらに、このハニカム部材の集合体を加熱してシール材ペースト層を乾燥、固化させて接着材層を形成し、角柱状のハニカムブロックを作製する。
続いて、ダイヤモンドカッターを用いてハニカムブロックの外周に切削加工を施し、円柱状のハニカムブロックを作製する。
さらに、必要に応じて、円柱状のハニカムブロックの外周面にシール材ペーストを塗布し、シール材ペーストを乾燥固化させることによってシール材層を形成する。
上記工程によってハニカム構造体の作製を完了する。
本実施形態のハニカム構造体においても、第一実施形態において説明した効果(1)~(4)を発揮することができる。
(その他の実施形態) 
これまで説明した実施形態における本発明のハニカム構造体は、NOx浄化性能に優れたハニカム構造体であるが、ハニカム構造体に担持させる触媒成分の種類を変更することによって、CO、HC、SOx等の浄化性能に優れたハニカム構造体とすることができる。
例えば、ハニカム構造体にSOxを酸化する触媒と、酸化したSOxを吸臓する硫黄吸収剤(例えばMgO)を担持させることによってSOx浄化性能に優れたハニカム構造体とすることができる。
また、ハニカム構造体に貴金属を担持させることによって、CO、HC等の浄化性能に優れたハニカム構造体とすることができる。また、ハニカム構造体に貴金属を担持させると再生処理の際のPMの燃焼温度を低くすることができる。
貴金属としては、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属が望ましく、このなかでは、白金がより望ましい。
また、NOxを浄化するための触媒成分、SOxを浄化するための触媒成分、CO、HC等を浄化するための触媒成分は、それぞれ単独で用いられてもよいし、2種以上の触媒成分を併用することによって複数種類の有害成分を浄化する機能を有するハニカム構造体としてもよい。
ハニカム構造体の長手方向に対して垂直な断面形状は、特に円形に限られるものではなく、矩形等、種々の形状とすることができるが、曲線のみ又は曲線と直線とで囲まれた形状であることが望ましい。
その具体例として、円形以外には、例えば、楕円形、長円形(レーストラック形)、楕円形又は長円形等の単純閉曲線の一部が凹部を有する形状(concave形状)等を挙げることができる。
ハニカム構造体を構成する無機繊維の材質としては、例えば、シリカ-アルミナ、ムライト、アルミナ、シリカ、チタニア、ジルコニア等の酸化物セラミック、窒化ケイ素、窒化ホウ素等の窒化物セラミック、炭化珪素等の炭化物セラミック、玄武岩等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
これらのなかでは、炭化珪素、アルミナ、玄武岩、シリカ、シリカ-アルミナ、チタニア及びジルコニアよりなる群から選ばれた少なくとも1種が望ましい。
これらを用いたハニカム構造体は耐熱性に優れるからである。
ハニカム構造体を構成する無機物としては、例えば、上記無機繊維が溶融又は昇華しない温度で溶融するものを用いることができる。また、上記無機物は、上記無機繊維の耐熱温度より低い温度で溶融するものが望ましい。
上記無機物としては、シリカを含有するものが望ましく、その具体例としては、例えば、珪酸ガラス、珪酸アルカリガラス、ホウ珪酸ガラス等の無機ガラス等が挙げられる。
また、上記ハニカム構造体においては、無機物が溶融固化することで、無機繊維同士の交差部分又はその近傍を固定していることが望ましい。
上記無機物が溶融固化して上記無機繊維同士を固定することで、上記無機繊維同士の結合強度が高くなり、上記無機繊維の解繊がさらに防止されて、上記ハニカム構造体の強度がより向上することとなるからである。
上記ハニカム構造体の引張強度は、0.3MPa以上であることが望ましく、0.4MPa以上であることがより望ましい。
上記引張強度が0.3MPa未満では、上記ハニカム構造体をDPFとして用いた場合に、充分な信頼性を得ることができない場合がある。
なお、上記引張強度は、ハニカム部材をシート状に加工し、その両端を治具で固定して、インストロン型万能試験機により測定することができる。
上記無機繊維の繊維長の下限値としては0.1mmが望ましく、0.5mmがより望ましい。また、上限値としては50mmが望ましく、20mmがより望ましい。
上記繊維長が0.1mm未満では、無機繊維同士を無機物を介して固着することが困難になり、充分な強度を得ることができない場合があり、一方、上記繊維長が50mmを超えると、均質なハニカム部材を作製することが難しく、充分な強度を有するハニカム構造体とすることができない場合があるからである。
上記無機繊維の繊維径の望ましい下限値は0.3μmであり、望ましい上限値は30μmである。
上記繊維径が0.3μm未満では、無機繊維自身が折れ易く、その結果、得られたハニカム構造体が風食され易くなり、一方、上記繊維径が30μmを超えると、無機繊維同士が無機物を介して固着することが困難になり、充分な強度を得ることができない場合がある。上記繊維径のより望ましい下限値は0.5μmであり、より望ましい上限値は15μmである。
上記ハニカム構造体のみかけの密度は、望ましい下限が0.04g/cmであり、望ましい上限が0.4g/cmである。
また、上記ハニカム構造体において、隣接するセル間の距離(すなわち、壁部の厚さ)は、0.2mm以上であることが望ましい。0.2mm未満では、ハニカム部材の強度が低下することがあるからである。
一方、上記隣接するセル間の距離(壁部の厚さ)の望ましい上限は1.0mmである。壁部の厚さが厚すぎると圧力損失が増加することがある。
上記ハニカム構造体において、セルの形成方向に対して垂直方向におけるセルの密度は特に限定されず、望ましい下限は、15.5個/cm(100個/in)、望ましい上限は、93個/cm(600個/in)、より望ましい下限は、23.3個/cm(150個/in)、より望ましい上限は、77.5個/cm(500個/in)である。
なお、上記セルの平面視形状については特に四角形に限定されず、例えば、三角形、六角形、八角形、十二角形、円形、楕円形、星型等の形状を挙げることができる。
本発明のハニカム構造体において、封止材の形成のために用いる封止材ペーストと、接着材層及びシール材層の形成のために用いるシール材ペーストは、同じ材料であってもよいし、異なる材料であっても良い。
封止材ペースト又はシール材ペーストにおける無機バインダとしては、例えば、シリカゾル、アルミナゾル等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機バインダのなかでは、シリカゾルが望ましい。
封止材ペースト又はシール材ペーストにおける有機バインダとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。有機バインダのなかでは、カルボキシメチルセルロースが望ましい。
封止材ペースト又はシール材ペーストにおける無機繊維としては、例えば、シリカ-アルミナ、ムライト、アルミナ、シリカ等のセラミックファイバー等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機繊維のなかでは、アルミナファイバが望ましい。
封止材ペースト又はシール材ペーストにおける無機粒子としては、例えば、炭化物、窒化物等が挙げられる。具体的には、炭化ケイ素、窒化ケイ素、窒化ホウ素からなる無機粉末等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機粒子のなかでは、熱伝導性に優れる炭化ケイ素が望ましい。
さらに、封止材ペースト又はシール材ペーストには、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらのなかでは、アルミナバルーンが望ましい。
また、セルの封止を行う方法は特に限定されるものではなく、上記封止材ペーストを充填して乾燥固化することによって封止を行ってもよいし、樹脂、セラミック又は金属等からなる封止体をセル(貫通孔)に挿入して封止を行ってもよい。
また、本発明のハニカム構造体の用途は、ディーゼル車用排ガス浄化システムに限定されるものではない。本発明のハニカム構造体は、三元触媒を担持させることによって、ガソリン車用排ガス浄化システムに用いることもできる。
また、第二実施形態においてハニカム部材を結束する方法は特に限定されるものではなく、作製するハニカムブロックの形状と略同形状の型枠内に各ハニカム部材を仮固定した状態とし、シール材ペーストを各ハニカム部材間に注入する方法等によって所定数のハニカム部材を結束してハニカム部材の集合体を作製する方法を用いてもよい。
また、ハニカム部材の個数、形状は特に限定されるものではない。
また、第二実施形態においてハニカム部材の壁部に触媒を担持させる方法は特に限定されるものではなく、ハニカム部材の壁部に触媒を担持することなくハニカムブロックを作製し、その後にハニカムブロックをアルミナスラリー及び触媒溶液へ浸漬し、さらに焼成等を行う方法を用いても良い。
図1(a)は、本発明のハニカム構造体の一例を模式的に示した斜視図であり、図1(b)は、図1(a)に示すハニカム構造体のA-A線断面図である。 本発明のハニカム構造体を構成するハニカム部材の壁部の細孔分布曲線を測定した結果の一例である。 本発明のハニカム構造体を構成するハニカム部材の壁部の細孔分布曲線を測定した結果の一例である。 本発明のハニカム構造体を構成するハニカム部材の壁部の細孔分布曲線を測定した結果の一例である。 本実施形態のハニカム構造体を用いた排ガス浄化システムの一例を模式的に示す断面図である。 NOx浄化率測定装置及びPM捕集効率測定装置の説明図である。 圧力損失測定装置の説明図である。 本発明のハニカム構造体の別の一例を模式的に示す斜視図である。 図9(a)は、ハニカム部材の一例を模式的に示した斜視図であり、図9(b)は、図9(a)に示すハニカム部材のB-B線断面図である。
符号の説明
1、3 ハニカム構造体
100、200 ハニカム部材
111、204 セル
112、205 封止材
113、206 壁部
201 接着材層
G 排ガス

Claims (6)

  1. 多数のセルが壁部を隔てて長手方向に並設された、主に無機繊維が一体成形されている柱状のハニカム部材からなるハニカム構造体であって、
    前記セルのいずれか一方の端部は、封止されており、
    前記壁部には、触媒が前記ハニカム構造体の体積1リットルあたり100~400g担持されており、
    前記ハニカム部材は、水銀圧入法による細孔分布において、X軸に細孔直径(μm)を、Y軸にlog微分細孔容積(mL/g)をとって描いた細孔分布曲線が0.005~0.03μmの範囲、1~15μmの範囲、及び、15~50μmの範囲の3ヶ所にピークを有することを特徴とするハニカム構造体。
  2. 前記ハニカム部材は、さらに無機物を含有し、
    前記無機物を介して前記無機繊維が固着されており、
    前記無機物が前記無機繊維の交差部又はその近傍に局在している請求項1に記載のハニカム構造体。
  3. 前記無機物は、シリカを含有しており、溶融固化することによって前記無機繊維同士を固着している請求項2に記載のハニカム構造体。
  4. 前記触媒は、貴金属、アルカリ金属及びアルカリ土類金属からなる群より選ばれる少なくとも一種と、酸化物とからなる請求項1~3のいずれかに記載のハニカム構造体。
  5. 1つの前記ハニカム部材からなる請求項1~4のいずれかに記載のハニカム構造体。
  6. 複数の前記ハニカム部材が接着材層を介して結束されてなる請求項1~4のいずれかに記載のハニカム構造体。
PCT/JP2008/055464 2008-03-24 2008-03-24 ハニカム構造体 WO2009118816A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2008/055464 WO2009118816A1 (ja) 2008-03-24 2008-03-24 ハニカム構造体
AT08016772T ATE504411T1 (de) 2008-03-24 2008-09-24 Wabenstrukturkörper
EP08016772A EP2105271B1 (en) 2008-03-24 2008-09-24 Honeycomb structured body
DE602008006017T DE602008006017D1 (de) 2008-03-24 2008-09-24 Wabenstrukturkörper
US12/346,575 US8021621B2 (en) 2008-03-24 2008-12-30 Honeycomb structure, exhaust gas purifying apparatus, and method for producing honeycomb structure
KR1020090015208A KR101195799B1 (ko) 2008-03-24 2009-02-24 허니컴 구조체
CN2009101180886A CN101543791B (zh) 2008-03-24 2009-02-27 蜂窝结构体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055464 WO2009118816A1 (ja) 2008-03-24 2008-03-24 ハニカム構造体

Publications (1)

Publication Number Publication Date
WO2009118816A1 true WO2009118816A1 (ja) 2009-10-01

Family

ID=39940624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055464 WO2009118816A1 (ja) 2008-03-24 2008-03-24 ハニカム構造体

Country Status (7)

Country Link
US (1) US8021621B2 (ja)
EP (1) EP2105271B1 (ja)
KR (1) KR101195799B1 (ja)
CN (1) CN101543791B (ja)
AT (1) ATE504411T1 (ja)
DE (1) DE602008006017D1 (ja)
WO (1) WO2009118816A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189358A (ja) * 2012-03-15 2013-09-26 Ngk Insulators Ltd ハニカム構造体、及びハニカム触媒体

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0908461B1 (pt) 2008-02-05 2020-06-16 Basf Corporation Sistema de tratamento de emissão adequado para o tratamento de um sistema de descarga a jusante de um motor a gasolina de injeção direta
WO2009141874A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
WO2009141878A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
JP2011140210A (ja) * 2009-06-24 2011-07-21 Sumitomo Chemical Co Ltd 成形体およびその製造方法、並びに触媒およびその製造方法
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
RU2470708C2 (ru) * 2011-01-25 2012-12-27 Федеральное государственное унитарное предприятие "Научное конструкторско-технологическое бюро "Кристалл" (ФГУП "НКТБ "Кристалл") Способ приготовления катализатора и катализатор окисления и очистки газов
WO2014061320A1 (ja) * 2012-10-19 2014-04-24 日本碍子株式会社 集塵用ハニカムフィルタ
KR102059879B1 (ko) * 2013-02-22 2019-12-31 한국에너지기술연구원 섬유강화 세라믹 복합소재 허니컴 및 이의 제조방법
CN103706193B (zh) * 2014-01-14 2015-11-25 大连海事大学 一种尾气净化装置
CN108698037B (zh) * 2016-03-24 2019-10-18 株式会社科特拉 排气净化装置
JP6998870B2 (ja) * 2016-07-14 2022-02-04 イビデン株式会社 ハニカム構造体及び該ハニカム構造体の製造方法
JP2018143955A (ja) * 2017-03-06 2018-09-20 イビデン株式会社 ハニカムフィルタ
CN107029750A (zh) * 2017-05-14 2017-08-11 蒋春霞 一种自更新长效高活性脱硝催化剂的制备方法
CN108126730A (zh) * 2017-12-15 2018-06-08 中国第汽车股份有限公司 改善整体挤出式蜂窝催化剂导热系数的方法
CN111801163B (zh) * 2018-03-30 2023-01-06 三井金属矿业株式会社 废气净化催化剂
CA3094306C (en) 2018-04-04 2024-05-14 Unifrax I Llc Activated porous fibers and products including same
JP6781742B2 (ja) * 2018-09-12 2020-11-04 イビデン株式会社 ハニカム構造体
JP7274395B2 (ja) * 2019-10-11 2023-05-16 日本碍子株式会社 ハニカム構造体
KR102288257B1 (ko) 2019-10-25 2021-08-10 주식회사 케이티앤지 천연식물소재를 함유한 기능성 담배필터, 담배 및 그 제조방법
JP7449721B2 (ja) * 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP7449720B2 (ja) * 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP7353217B2 (ja) * 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ
JP7353218B2 (ja) * 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ
KR102431789B1 (ko) 2020-12-28 2022-08-12 (주) 세라컴 노후 경유차 배기가스 후처리 시스템의 환원제 분사 시스템
KR102441028B1 (ko) 2021-09-23 2022-09-07 (주)세라컴 탈질촉매가 코팅된 필터를 포함한 디젤엔진용 배기가스 후처리 시스템
KR102686273B1 (ko) 2022-07-12 2024-07-22 (주) 세라컴 디젤엔진용 배기가스 후처리 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229412A (ja) * 1995-11-30 1996-09-10 Nippon Shokubai Co Ltd 窒素酸化物除去用触媒および該触媒を用いた窒素酸化物の除去方法
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
JP2005248726A (ja) * 2004-03-01 2005-09-15 Toyota Motor Corp 排ガス浄化用フィルタ触媒
WO2006041174A1 (ja) * 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体
JP2007252997A (ja) * 2006-03-21 2007-10-04 Toyota Central Res & Dev Lab Inc フィルタ型排ガス浄化用触媒
WO2007129430A1 (ja) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. ハニカム構造体、ハニカム構造体の製造方法、ハニカムフィルタ及びハニカムフィルタの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1508355B1 (en) * 1999-09-29 2007-01-10 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
JP4094830B2 (ja) * 2000-11-24 2008-06-04 日本碍子株式会社 多孔質ハニカムフィルター及びその製造方法
JP4459476B2 (ja) * 2001-05-01 2010-04-28 日本碍子株式会社 多孔質ハニカム構造体及びその製造方法
US6677261B1 (en) 2002-07-31 2004-01-13 Corning Incorporated Alumina-bound high strength ceramic honeycombs
ATE369200T1 (de) 2003-06-10 2007-08-15 Ibiden Co Ltd Honigwaben-strukturkörper
CN100542674C (zh) * 2003-06-10 2009-09-23 揖斐电株式会社 蜂窝状结构体
EP1839719A3 (en) 2003-07-15 2007-11-07 Ibiden Co., Ltd. Honeycomb structural body
KR100794541B1 (ko) 2004-06-30 2008-01-17 이비덴 가부시키가이샤 배기가스 정화 장치
JP5191657B2 (ja) 2004-12-27 2013-05-08 イビデン株式会社 セラミックハニカム構造体
KR100883946B1 (ko) 2004-12-27 2009-02-18 이비덴 가부시키가이샤 세라믹 허니컴 구조체
WO2006082938A1 (ja) * 2005-02-04 2006-08-10 Ibiden Co., Ltd. セラミックハニカム構造体およびその製造方法
WO2006092986A1 (ja) 2005-03-02 2006-09-08 Ibiden Co., Ltd. 無機繊維集合体、無機繊維集合体の製造方法、ハニカム構造体及びハニカム構造体の製造方法
EP1867374A4 (en) 2005-03-31 2008-05-07 Ibiden Co Ltd HONEYCOMB STRUCTURE BODY
CN1976745B (zh) 2005-05-27 2011-08-24 揖斐电株式会社 蜂窝状过滤器
WO2007086182A1 (ja) 2006-01-27 2007-08-02 Ibiden Co., Ltd. ハニカム構造体、ハニカム構造体の製造方法及び排ガス浄化装置
JP4863904B2 (ja) * 2006-03-31 2012-01-25 イビデン株式会社 ハニカム構造体およびその製造方法
WO2007122779A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム構造体、ハニカム構造体の製造方法、ケーシング及び排ガス浄化装置
EP1852406A3 (en) 2006-05-01 2008-08-06 Ibiden Co., Ltd. honeycomb structured body, method for manufacturing honeycomb structured body, honeycomb filter and method for manufacturing honeycomb filter
WO2008139564A1 (ja) 2007-05-07 2008-11-20 Ibiden Co., Ltd. ハニカムフィルタ
JPWO2008146350A1 (ja) 2007-05-25 2010-08-12 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2008146367A1 (ja) 2007-05-29 2008-12-04 Ibiden Co., Ltd. ハニカムフィルタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229412A (ja) * 1995-11-30 1996-09-10 Nippon Shokubai Co Ltd 窒素酸化物除去用触媒および該触媒を用いた窒素酸化物の除去方法
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
JP2005248726A (ja) * 2004-03-01 2005-09-15 Toyota Motor Corp 排ガス浄化用フィルタ触媒
WO2006041174A1 (ja) * 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体
JP2007252997A (ja) * 2006-03-21 2007-10-04 Toyota Central Res & Dev Lab Inc フィルタ型排ガス浄化用触媒
WO2007129430A1 (ja) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. ハニカム構造体、ハニカム構造体の製造方法、ハニカムフィルタ及びハニカムフィルタの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189358A (ja) * 2012-03-15 2013-09-26 Ngk Insulators Ltd ハニカム構造体、及びハニカム触媒体

Also Published As

Publication number Publication date
US8021621B2 (en) 2011-09-20
ATE504411T1 (de) 2011-04-15
CN101543791A (zh) 2009-09-30
KR20090101822A (ko) 2009-09-29
EP2105271B1 (en) 2011-04-06
EP2105271A1 (en) 2009-09-30
DE602008006017D1 (de) 2011-05-19
CN101543791B (zh) 2011-08-24
US20090238733A1 (en) 2009-09-24
KR101195799B1 (ko) 2012-11-05

Similar Documents

Publication Publication Date Title
WO2009118816A1 (ja) ハニカム構造体
JP2009255047A (ja) ハニカム構造体
JP5142529B2 (ja) ハニカム構造体
KR100692356B1 (ko) 벌집형 구조체
JP4812316B2 (ja) ハニカム構造体
EP1785603B1 (en) Exhaust gas purification system
JP4874812B2 (ja) フィルタ及びフィルタ集合体
JP5237630B2 (ja) ハニカム構造体
JP5042824B2 (ja) ハニカム構造体、ハニカム構造体集合体及びハニカム触媒
EP1974798A1 (en) Exhaust gas purifying system
EP2103342A1 (en) Catalyst-carrying filter
JP2009006326A (ja) セラミックフィルタおよび排ガス浄化装置
WO2005037405A1 (ja) ハニカム構造体
EP2022563A1 (en) Exhaust gas purification catalyst
JP4753785B2 (ja) ハニカム構造体
JP2007098274A (ja) 多孔質ハニカム構造体及びそれを利用した排ガス浄化装置
JPWO2006035823A1 (ja) ハニカム構造体
JP5775512B2 (ja) ハニカムフィルタ及びハニカムフィルタの製造方法
EP1982766A1 (en) Honeycomb filter
WO2006106785A1 (ja) ハニカム構造体
JP2007253144A (ja) ハニカム構造体及び排ガス浄化装置
US20200386134A1 (en) Filter and method for manufacturing same
JP5227617B2 (ja) ハニカムフィルタ
JP2007275874A (ja) 触媒及びパティキュレートフィルター型排ガス浄化触媒
EP2609980B1 (en) Honeycomb filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08722730

Country of ref document: EP

Kind code of ref document: A1