WO2009117853A1 - 一种培育氮吸收能力提高的植物的方法 - Google Patents
一种培育氮吸收能力提高的植物的方法 Download PDFInfo
- Publication number
- WO2009117853A1 WO2009117853A1 PCT/CN2008/000610 CN2008000610W WO2009117853A1 WO 2009117853 A1 WO2009117853 A1 WO 2009117853A1 CN 2008000610 W CN2008000610 W CN 2008000610W WO 2009117853 A1 WO2009117853 A1 WO 2009117853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequence
- promoter
- fragment
- dna molecule
- plant
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
Definitions
- the present invention relates to a method of cultivating plants having improved nitrogen absorption capacity.
- Tobacco is an important economic crop in China.
- the national roasting tobacco planting area is 16.74 million mu, and the national tobacco leaf purchase volume is maintained at 2.1 million tons. It is an important source of tax revenue in China.
- Nitrogen fertilizer is a fertilizer that is necessary for various crops, especially tobacco growth. The application rate of nitrogen fertilizer directly affects the yield and quality of tobacco leaves.
- the nitrate transporter (IgNRT) gene, the ammonia transporter (IgAMT) gene and the glutamate synthase (IgGSII) gene cloned in ⁇ Isochrysis galbana) have cDNA lengths of 540 bp, 658 bp and 852 bp, respectively.
- the results of real-time PCR showed that the number of IgNRT and IgAMT transcripts was 27.6 and 28.5 in the presence of nitrate, and the number of transcripts in nitrogen deficiency increased by 390 % and 178%, respectively. 4% ⁇ The transcription of the IgNRT and the IgAMT gene was severely inhibited, the number of transcripts decreased by 2.4% and 6.5%.
- the highest expression level of IgGSII was in cells grown in nitrate, followed by cells grown in the absence of nitrogen (50%), and again in cells grown in ammonium (25%). Comparing the expression of nitrate transport protein genes in different diatoms and green algae, the expression patterns of IgNRT, IgAMT and IgGSII genes of different diatoms and green algae were similar, and were regulated by additional nitrogen concentration and nitrogen species. The results of homology analysis showed that the homology of IgNRT and diatom NAT was 47%, and the homology with diatom ammonia transporter (CylAMT) was 48%. The homology of IgGSII to glutamate synthase (SGSA) derived from Skeletonema costatura was 61%.
- SGSA glutamate synthase
- Higher plant gene expression is time-specific and spatially specific, and spatial specificity refers to a specific gene having a property of expression in a specific part of a living body, that is, tissue specificity.
- tissue specificity refers to a specific gene having a property of expression in a specific part of a living body, that is, tissue specificity.
- tissue specificity In the process of genetic improvement of crops by molecular biology, it is often expected that inserted foreign genes can be restricted in expression in specific tissues, thereby enabling plants to obtain useful traits, which requires efficient tissue-specific promoter pairs.
- the expression of the target gene is regulated.
- Myrosinase is a class of isoenzymes that catalyze the hydrolysis of glucosinolates, and its coding gene is a large gene family. The degradation products of myrosinase are involved in plant defense against pests and diseases, sulfur and nitrogen metabolism, and plant growth and apoptosis. The myrosinase is produced in the Brassica plant.
- ⁇ is a myrosinase isolated from Arabidopsis thaliana and specifically expressed in roots and hypocotyls of Arabidopsis (INKENITZ, HEIKE BEI KEFELD, P10TR S PUZ10, et al. jD, a seeding and root specific gene And promoter from Arabidopsis thaliana [J] . Plant Science, 2001, 161: 337-346).
- the method for cultivating a plant having improved nitrogen absorption capacity comprises introducing a recombinant expression vector containing a gene encoding a nitrate transporter into a plant tissue or a cell to obtain a plant having improved nitrogen absorption capacity;
- the gene encoding the nitrate transporter is a DNA molecule as follows 1) or 2) or 3):
- nucleotide sequence thereof is the DNA molecule shown in SEQ ID NO: 2 in the sequence listing;
- the promoter of the gene encoding the gene encoding the nitrate transporter in the M recombinant expression vector may be a constitutive promoter or a root-specific promoter.
- the promoter may specifically be a root-specific promoter.
- the starting vector for constructing the recombinant expression vector may be ⁇ 21 ;
- the PNAT121 can be obtained by inserting the gene encoding the nitrate transporter gene at the BamH I site of pCV121;
- the PCV121 is obtained by substituting a small fragment between the ffi/7d III and c ⁇ ? I sites of pCAMBIA 2301 into a target fragment; the target fragment is a small fragment obtained by double digestion of pMV121 with 3 ⁇ 47d III and ⁇ I;
- the pMV121 is obtained by substituting a small fragment between the ⁇ III and BamHI sites of pUC121 into a 35S promoter fragment; the 35S promoter fragment is a small fragment obtained by double digestion of P BI121 with HindYil and BamHl;
- the pUC121 is 3 ⁇ 4c 1 and 0 7 of pUC19? A small fragment between the I sites was substituted with a NOS terminator fragment; the NOS terminator fragment was a small fragment obtained by double digestion of PBI121 with C I and ⁇ o/PI.
- the recombinant expression vector can replace a small fragment between the Hind III and Xba I sites of PNAT121 Obtained for the root-specific promoter.
- the root-specific promoter may specifically be a DNA molecule as follows 1) or 2) or 3):
- nucleotide sequence thereof is a DNA molecule represented by deoxyribonucleotide at position 5704 of the 5' end of sequence 3 in the sequence listing;
- the root-specific promoter may specifically be a DNA molecule as follows 1) or 2) or 3):
- nucleotide sequence thereof is the DNA molecule of the sequence 4 of the sequence 4 from the 5' end of the 10-1442 deoxyribonucleotide;
- the plant can be a dicot.
- the plant may specifically be tobacco.
- the recombinant expression vector used can be processed, such as a gene encoding a color-changing enzyme or a luminescent compound (GUS gene, luciferase) which can be expressed in plants.
- GUS gene luminescent compound
- Genes, etc. resistant antibiotic markers (gentamicin markers, kanamycin markers, etc.) or anti-chemical marker genes (such as anti-tuberculosis genes). From the safety of transgenic plants, transgenic plants can be directly screened for adversely without any selectable marker genes.
- the recombinant expression vector of the present invention can transform plant cells or tissues by using conventional biological methods such as sputum plasmid, Ri plasmid, plant viral vector, direct DNA transformation, microinjection, conductance, Agrobacterium mediated, and transformed plant tissue. Cultivate into plants.
- the transformed plant host can be either a monocot or a dicot, such as: tobacco, soybean, Arabidopsis, rice, wheat, corn, cucumber, squash, poplar, turfgrass, scorpion, and the like.
- Figure 1 shows the results of electrophoresis detection of PCR-amplified diatom nitrate transporter gene.
- Figure 2 shows the results of restriction enzyme digestion of the positive clone plasmid pNAT.
- Figure 3 shows the results of enzyme digestion identification of the intermediate vector P UC121
- Figure 4 shows the results of restriction enzyme digestion of the intermediate vector pMV121
- Figure 5 shows the results of restriction enzyme digestion of the intermediate vector pCV121
- Figure 6 shows the results of enzyme digestion of plant expression vector ⁇ 121
- Figure 7 is a flow chart of the construction of the intermediate carrier pCV121
- Figure 8 is a flow chart showing the construction of the plant expression vector ⁇ 121
- Figure 9 is a flow chart showing the construction of the recombinant expression vector pTRNAT
- Figure 10 is a flow chart showing the construction of the recombinant expression vector pKYNAT
- Figure 11 shows the results of restriction enzyme digestion of recombinant expression vector pTRNAT
- Figure 12 shows the results of restriction enzyme digestion of recombinant expression vector pKYNAT
- RNA of diatoms was extracted using Invitrogen's TRIZ0L R Reagent kit (Cat. No. 15596-026) and with reference to the kit instructions.
- the specific method includes the following steps:
- the cDNA was synthesized by reverse transcription using Invitrogen's GeneRacer kit and the kit instructions.
- the specific method includes the following steps:
- PCR amplification was carried out under the guidance of a pair of primers (P1 and P2).
- P2 downstream primer: 5, - TCTTCTCGGTATCAGGTTGGG-3, .
- the PCR reaction conditions were: 95 ° C, 5 min ⁇ 94 ° C, 30 s, 67 ° C, lmin, 72 ° C, 2 min, after 30 cycles - 72 ° C extension for 10 min.
- PCR product was detected by 1% agarose gel electrophoresis, and the detection results are shown in Fig. 1.
- Lane 1 is Marker: ⁇ D / Eco/? 1 + /find III
- Lane 2 is a PCR amplification product). There is a distinct amplified band at 1449 bp.
- the PCR-amplified DNA fragment of 1449 bp in length is recovered by freeze-thaw method, and the specific method comprises the following steps:
- the target fragment was cloned by the vector pMD18_T (TaKaRa, Cat. No. D504A) by taking 4ul of the recovered PCR amplification product, adding lul pMD18-T vector, 5ul Ligase Solution I, and then 16°C. Connect 4h.
- the ligated product was transformed into E. coli DH5 ct competent cells, and the positive recombinant clone was screened.
- the plasmid was digested and identified.
- the gene sequence and its encoded amino acid residue sequence were aligned and analyzed, and the nucleotide sequence homology of the gene with the diatom ⁇ 3 ⁇ 477 gene (GenBank No.: gi: 5733416) published in GenBank was 99.31%.
- the amino acid sequence homology of the encoded protein was 99.76%, indicating that the nitrate transporter gene of diatom was obtained, named ⁇ 4 ⁇ 3, and its encoded protein was named NAT3.
- the intermediate carrier pCV121 is constructed.
- the specific process includes the following steps:
- the vector pBI121 (Beijing Bayer Biotech Co., Ltd.) was digested with restriction endonucleases c 1 and ⁇ 3 ⁇ 40 I to recover a 260 bp T-N0S terminator fragment, which was digested with the same enzyme.
- the vector PUC19 (purchased from Dalian Bao Biotech Co., Ltd.) was ligated to obtain an intermediate vector pUC121.
- restriction endonuclease 3 ⁇ 4c I and I were used for double enzyme digestion.
- the results of restriction enzyme digestion were shown in Figure 3 (lane 1 is Marker: ⁇ /EcoR I + ⁇ III; lanes 2 and 3 are digested products).
- a DNA fragment of approximately 260 bp in size was obtained by digestion, which was consistent with the expected results.
- the vector pMV121 constructed in step 2 was digested with restriction endonucleases ⁇ ' ⁇ / III and ⁇ oR I to recover the 1.1 kb target fragment, which was digested with the same enzyme, pCAMBIA 2301 (Beijing). Bayer Biotech Co., Ltd.) was connected to obtain the intermediate vector pCV121.
- restriction endonuclease III and I were used for restriction enzyme digestion.
- the results of restriction enzyme digestion are shown in Figure 5 (lane 1 is a digested product; lane 2 is a Marker: ⁇ ⁇ /EcoR I + Hind III).
- the fragment size is approximately 1. lkb, which matches the expected result.
- the plasmid vector p ⁇ constructed in the first step was digested with restriction endonuclease I to recover 144 ⁇ ; the target fragment of 3 ⁇ 44 ⁇ , which was constructed with the intermediate vector PCV121 of step 2 which was digested with the same enzyme.
- the resulting plant expression vector ⁇ 121 was obtained by ligation.
- restriction endonuclease was used for restriction enzyme digestion.
- the results of restriction enzyme digestion were shown in Figure 6 (lane 1 is Marker: ⁇ ⁇ /Eco? I + Hind III; lane 2 is the enzyme digestion product), and the size of the fragment was 1449 bp, in line with the expected results.
- the PCR reaction conditions were: 94 ° C, 3 min ⁇ 94 ° C, 30 s, 62 ° C, 45 s, 72 ° C, lmin, 35 cycles and a 72 ° C extension for 10 min.
- the PCR product was subjected to 1% agarose gel electrophoresis to obtain an expected molecular weight amplification band.
- the target fragment was cloned by the vector pMD18-T (TaKaRa, Cat. No. D504A) by: PCR amplification product 4ul, followed by lul P MD18-T carrier, 5ul Ligase Solution I, then 16° C is connected for 4h.
- the ligation product was transferred into E. coli DH5 ⁇ competent cells and screened.
- the positive recombinant clone was named pTRP.
- the pTRP digestion revealed that the linkage was correct.
- the sequencing results showed that the insert has the nucleotide sequence of sequence 3 in the sequence listing, and the sequence 3 in the sequence table consists of 712 deoxyribonucleotides, from the 5' end of the 10th - 704 deoxyribose
- the nucleotide is the tobacco TobRB7 promoter sequence.
- TobRB7 promoter sequence contains an A'm/ ⁇ site
- pTRP was first completely digested with restriction endonuclease 3 ⁇ 4a I, and then partially digested with III, agarose. The fragment of about 700 bp was recovered by electrophoresis and ligated into the pNAT121 vector digested with W/7t/III and 3 ⁇ 4a I to obtain the ⁇ -specific expression vector PTRNAT.
- the ligation products were digested with restriction endonucleases III and 3 ⁇ 4s I.
- the results of restriction enzyme digestion are shown in Figure 11 (lane 1 is pTRNAT/ffi/7i/ ⁇ + Xba I, and lane 2 is Marker: ⁇ k/ EcoR I + ⁇ III ) , the fragment size of the digested product was about 700 bp, which was consistent with the expected results.
- a pair of primers (P5 and P6) were designed according to the published sequence (INKE NITZ, HEIKE BEI KEFELD, P10TR S PUZ10, et al. Plant Science, 2001, 161: 337-346), and YK10 was cloned from Arabidopsis total DNA.
- the promoter introduces a ⁇ 3 ⁇ 4'/7 ⁇ ⁇ position at the 5' end of the above primer, and the 3' end introduces a site.
- P5 upstream primer: 5, -GACAAGCTTCTGCAACGAAGTGTACCAAC -3, ,
- P6 downstream primer: 5, -TTGGAATTCTGATTTTATTCAAGAAAAATG -3, .
- the PCR reaction conditions were: 94. C, 3rain—94. C, 30s, 62 ° C, 45 s, 72 ° C, 2 min, 35 cycles, a 72 ° C extension for 10 min.
- the PCR product was subjected to 1% agarose gel electrophoresis to obtain an expected molecular weight amplification band.
- the target fragment was cloned by the vector pMD18-T (TaKaRa, Cat. No. D504A) by: PCR amplification product 4ul, followed by lul pMD18-T vector, 5ul Ligase Solution I, then 16 °C Connect 4h.
- the ligation product was transferred into E. coli DH5 a competent cells, and the positive recombinant clone was screened and named pYK.
- the ⁇ digestion showed that the connection was correct.
- Sequence 4 in the sequence listing consists of 1451 deoxyribonucleotides, and the deoxyribonucleotide from position 10 to 1442 at the 5' end is the Arabidopsis thaliana YK10 promoter sequence.
- the ligation products were identified by restriction enzymes '/ ⁇ 111 and ⁇ 3 ⁇ 43 I.
- the results of enzyme digestion were shown in Figure 12 (lane 1 was pYKNAT/ffi/7i riI+J3 ⁇ 4sI and lane 2 was Marker: ⁇ ).
- ⁇ /BcoR I + Hind III ) the fragment size of the digested product was about 1451 bp, which was consistent with the expected results.
- the recombinant expression vectors pTRNAT and pYKNAT constructed in Example 2 and Example 3 were transformed into Agrobacterium tumefaciens LBA4404 by freeze-thaw method, respectively, and Agrobacterium tumefaciens LBA4404 integrated with pTRNAT and pYKNAT were transformed into tobacco NC89 by leaf disc method. Two rounds of screening were performed with MS medium containing 100 mg/L kanamycin, and each round was screened for 10-15 days to obtain positive transgenic plants. The positive transgenic plants screened were further screened by PCR, and the pair of primers used for PCR were P7 and P8.
- the pTRNAT and pYKNAT transgenic tobacco were identified by PCR.
- the positive transgenic plants were amplified by PCR to obtain 1449 bp bands.
- the results showed that 30 strains of pTRNAT and pYKNAT transgenic tobacco were obtained, that is, 30 strains of pTRNAT transgenic tobacco and 30 strains were obtained.
- pYKNAT transgenic tobacco was identified by PCR.
- T. Generation Screen the obtained transgenic tobacco with T. Generation; use T.
- the seed produced by the self-crossing and the plant grown by it are represented by the 1 ⁇ generation, and the seed is first germinated on the MS medium containing 100 mg/L kanamycin, and the 1 ⁇ generation plant is obtained by screening;
- the resulting seeds and the plants grown therefrom were expressed in T 2 generation, and the 2nd generation seeds were germinated on MS medium containing 100 mg/L kanamycin, and the homozygous lines were obtained by screening.
- N content (including ammonia nitrogen and nitrate nitrogen) is MS. 1/8, other components are the same as MS. Medium.
- N content (including ammonia nitrogen and nitrate nitrogen) is MS. 1/16, the other components are the same as MS. Medium.
- N content (including ammonia nitrogen and nitrate nitrogen) is MS. 1/32, the other components are the same as MS. Medium.
- the seeds of the T 2 generation pYKNAT transgenic tobacco obtained in the step 1 were taken, and the seeds were strictly sterilized and sown in the MS. , 1/8N (N content is 1/8 of MS, including ammonia nitrogen and nitrate nitrogen), 1/disordered 1/32N medium. Thirty lines were sown in each medium, and each seed contained 100 seeds. The test was repeated 3 times.
- Seeds of PNAT121 transgenic tobacco were taken, and the seeds were sterilized and sterilized, and then seeded in MS. , 1/8N (N content is MS. 1/8, including ammonia nitrogen and nitrate nitrogen), 1/pendulum, 1/32N medium. Thirty strains were sown in each medium, and each seed contained 100 seeds. The test was repeated 3 times.
- NC89 non-transgenic tobacco were taken and the seeds were strictly sterilized and sown in MS. , 1/8N (N content is MS. 1/8, including ammonia nitrogen and nitrate nitrogen), 1/16N, 1/32N medium. 100 seeds were sown in each medium. The test was repeated 3 times.
- the seeds of the above four treatments were cultured under the same conditions for 60 days, and the growth of pTRNAT, pYKNAT, ⁇ 21 transgenic tobacco and non-transgenic tobacco NC89 in different media, leaf size, were observed on the 30th day after sowing.
- the growth of pTRNAT, pYKNAT, pNAT121 transgenic tobacco and non-3w tobacco and NC89 non-transgenic tobacco in different media is shown in Table 1.
- the leaf diameter in Table 1 is the average of 30 lines.
- the pTRNAT transgenic tobacco, pYKNAT transgenic tobacco, PNAT121 transgenic tobacco and non-transgenic tobacco in 1/32N medium were severely yellowed and slow-growing; however, compared with non-transgenic tobacco, the leaves of transgenic tobacco were larger and greener. .
- Overall, the growth status of pTRNAT transgenic tobacco, pYKNAT transgenic tobacco, pNAT121 transgenic tobacco and non-transgenic tobacco in nitrogen-deficient medium was significantly different.
- pYKNAT transgenic tobacco and PNAT121 transgenic tobacco were 2-3 times larger than those of non-transgenic tobacco. ; pTRNAT transgenic tobacco leaves than 3-5 times large non-transgenic tobacco and transgenic tobacco compared pYKNAT P NAT121 transgenic tobacco leaves large 1. 5-2 times.
- PNAT121 transgenic tobacco can significantly improve the nitrogen use efficiency of transgenic plants; ⁇ use root-specific promoter to drive the specific expression of NAT gene in roots, which can be improved more than constitutive promoters. Nitrogen use efficiency.
- the TR promoter-driven pTRNAT is more efficient than the YK promoter-driven ⁇ ), which improves the plant's nitrogen use efficiency and allows plants to grow normally under low nitrogen conditions.
- the transgenic plants obtained by the method provided by the present invention have greatly improved nitrogen absorption ability and can grow normally under low nitrogen conditions.
- the growth status of pTRNAT transgenic tobacco, pYKNAT transgenic tobacco and non-transgenic tobacco in nitrogen-deficient medium was significantly different.
- pYKNAT transgenic tobacco was 2-3 times larger than that of non-transgenic tobacco;
- pTRNAT transgenic tobacco was larger than non-transgenic tobacco. ⁇ - 6 times, larger than the leaves of pYKNAT transgenic tobacco 1. 5- 2 times.
- the fresh weight and dry weight of pTRNAT transgenic tobacco grown on different media were significantly higher than that of pYKNA transgenic tobacco and control plants. On 1/16N medium, the dry weight of pTRNAT transgenic tobacco was twice as high as that of control tobacco.
- the invention will play an important role in the field of plant nitrogen fertilizer absorption and breeding of low-nitrogen-resistant plant varieties, and has broad application prospects.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
一种培育氮吸收能力提高的植物的方法 技术领域
本发明涉及一种培育氮吸收能力提高的植物的方法。
背景技术
烟草是我国重要的经济作物, 全国烤烟种植面积达 1674万亩, 全国烟叶收购 量保持在 210万吨左右, 是我国重要的税收来源。 氮肥是各种作物, 尤其烟草生长 所必需的肥料, 氮肥的施用量直接影响到烟叶的产量和品质。
近年来各类作物的氮肥施用量不断增加, 施用量严重超标, 但是作物对土壤中 氮肥的利用率却很低, 对环境造成污染, 河流严重富营养化。
(Diatom Nitrate Transporter) ¾@ , 是 Mark Hildebrand从海中生长的 硅藻(O^ ^roi ^cs /ks / u's)中克隆得到的, 该基因没有内含子。 7\¾Γ基因编 码的硝酸盐转运蛋白与硝酸盐具有非常高的结合力, 可使硅藻从海水中富集硝酸 盐。 研究表明, Λ¾ 转基因植株具有在低含量硝酸盐土壤中正常生长的能力。 NAT 可促进转基因植物在低氮土壤中的生长, 可在不影响作物产量的前提下, 减少甚至 避免氮肥的施用, 避免环境污染。
目前, 人们已经从植物中克隆了多个氮转运相关的基因, 例如从金藻
{Isochrysis galbana)中克隆的硝酸盐转运蛋白(IgNRT)基因、 氨转运蛋白(IgAMT) 基因和谷氨酸盐合成酶(IgGSII)基因,其 cDNA长度分别为 540 bp、658 bp和 852 bp。 实时荧光定量 PCR检测结果表明, 在存在硝酸盐的情况下, IgNRT和 IgAMT转录子 数量平均为 27. 6和 28. 5;氮缺乏时的转录子数量分别增加 390 %和 178 % ;铵存在 时, IgNRT和 IgAMT基因的转录受到严重抑制, 转录子数量分别降低 2. 4%和 6. 5 %。 IgGSII的表达量最高的是在硝酸盐中生长的细胞,其次是在氮缺乏情况下生长 的细胞 (50%), 再次是在铵中生长的细胞 (25%)。 比较不同硅藻和绿藻中硝酸盐转 运蛋白基因的表达情况发现, 不同硅藻和绿藻的 IgNRT、 IgAMT和 IgGSII基因的表 达方式是相似的, 均受到外加氮浓度和氮种类的调控。 同源性分析结果表明, 金藻 IgNRT与硅藻 NAT的同源性为 47 %, 与硅藻氨转运蛋白(CylAMT)的同源性为 48 %。 IgGSII与来源于中肋骨条藻 (Skeletonema costatura)的谷氨酸盐合成酶 (SGSA) 的同源性为 61 %。
高等植物基因表达具有时间特异性和空间特异性, 空间特异性是指特定基因具 有在生物体内特定部位表达的特性, 即组织特异性。 釆用分子生物学对农作物进行 遗传改良的过程中, 常常期望插入的外源基因能够限制在特定的组织中表达, 从 而使植物获得有用的性状, 这就要求通过有效的组织特异性启动子对靶基因的表 达进行调控。
研究表明, 植物水分和各种营养物质的吸收主要是通过根系完成的, 将提高氮 素利用率的转运蛋白基因置于根系特异启动子的驱动之下, 既可以使目的基因发挥 正常功能, 又能最大限度节约植物的代谢成本。 Yamamoto等人从烟草中分离获得了
TobRB7基因(GenBank登录号: S45406), 并证明其具有根组织特异性 (Yamamoto Y T, Taylor C G, Acedo G N, et al. Characterization of cis - acting sequences regulating root-specific gene expression in tobacco. Plant Cell, 1991, 3: 37Γ82) Nan等人进一步证明了 TobRB7基因的启动子是一个双向启动子, 在正反方 向上均具有根组织特异性的表达调控功能。黑芥子酶是一类具有催化芥子油苷水解 的同工酶, 其编码基因是一个庞大的基因家族。 黑芥子酶的降解产物参与植物对病 虫害的防御, 硫、 氮的代谢以及植物的生长, 凋亡。 黑芥子酶多在芸苔科植物中 产生。 ρΚΥΙΟ是从拟南芥中分离的一个黑芥子酶, 在拟南芥的根和下胚轴中特异性 表达(INKENITZ, HEIKE BEI KEFELD, P10TR S PUZ10, et al. jD, a seeding and root specific gene and promoter from Arabidopsis thaliana[J] . Plant Science, 2001, 161: 337-346)。
发明公开
本发明的目的是提供一种培育氮吸收能力提高的植物的方法。
本发明所提供的培育氮吸收能力提高的植物的方法, 是将含有硝酸盐转运 蛋白的编码基因的重组表达载体导入植物组织或细胞,得到氮吸收能力提高的植 物;
所述硝酸盐转运蛋白的编码基因是如下 1) 或 2) 或 3) 的 DNA分子:
1 ) 其核苷酸序列是序列表中序列 2所示的 DNA分子;
2) 在严格条件下与 1) 限定的 DNA序列杂交且编码相同功能蛋白质的 DNA 分子;
3) 与序列表中序列 2限定的 DNA序列具有 90%以上同源性, 且编码相同功 能蛋白质的 DNA分子;
戶; M重组表达载体中启动所述硝酸盐转运蛋白的编码基因转录的启动子可 为组成型启动子或根特异启动子。
所述启动子具体可为根特异启动子。
用于构建所述重组表达载体的出发载体可为 ρΝΑΠ21;
所述 PNAT121可在 pCV121的 BamH I位点插入所述硝酸盐转运蛋白的编码 基因基因得到的;
所述 PCV121是将 pCAMBIA 2301的 ffi/7d III和 c^? I位点间的小片段取代为 目的片段得到的; 所述目的片段是用 ¾7d III和^ I双酶切 pMV121得到的小 片段;
所述 pMV121是将 pUC121的 Ηίηά III和 BamHI位点间的小片段取代为 35S 启动子片段得到的;所述 35S启动子片段是用 HindYil和 BamHl双酶切 PBI121 得到的小片段;
所述 pUC121是将 pUC19的 ¾c 1和 07? I位点间的小片段取代为 N0S终止子片 段得到的; 所述 N0S终止子片段是用 C I和 ^o/P I双酶切 PBI121得到的小片段。
所述重组表达载体可将 PNAT121的 Hind III和 Xba I位点间的小片段取代
为根特异启动子得到。
所述根特异启动子具体可为如下 1 ) 或 2 ) 或 3 ) 的 DNA分子:
1 ) 其核苷酸序列是序列表中序列 3的自 5 ' 末端第 10-704位脱氧核糖核苷 酸所示的 DNA分子;
2 )在严格条件下与 1 )限定的 DNA序列杂交且具有启动子功能的 DNA分子;
3 ) 与 1 ) 限定的 DNA序列具有 90%以上同源性, 且具有启动子功能的 DNA 分子。
所述根特异启动子具体还可为如下 1 ) 或 2 ) 或 3 ) 的 DNA分子:
1 )其核苷酸序列是序列表中序列 4的自 5 '末端第 10-1442位脱氧核糖核苷 酸所示的 DNA分子;
2 )在严格条件下与 1 )限定的 DNA序列杂交且具有启动子功能的 DNA分子;
3 ) 与 1 ) 限定的 DNA序列具有 90%以上同源性, 且具有启动子功能的 DNA 分子。
所述植物可为双子叶植物。
所述植物具体可为烟草。
为了便于对转基因植物细胞或植物进行鉴定及筛选, 可对所用重组表达载 体进行加工, 如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物 的基因 (GUS基因、 萤光素酶基因等) 、 具有抗性的抗生素标记物(庆大霉素标 记物、 卡那霉素标记物等) 或是抗化学试剂标记基因 (如抗除莠剂基因) 等。 从转基因植物的安全性考虑, 可不加任何选择性标记基因, 直接以逆境筛选转 化植株。
本发明的重组表达载体可通过使用 Π质粒、 Ri质粒、 植物病毒载体、直接 DNA转化、显微注射、电导、农杆菌介导等常规生物学方法转化植物细胞或组织, 并将转化的植物组织培育成植株。 被转化的植物宿主既可以是单子叶植物, 也 可以是双子叶植物, 如: 烟草、 大豆、 拟南芥、 水稻、 小麦、 玉米、 黄瓜、 番 茄、 杨树、 草坪草、 苜宿等。
附图说明
图 1为 PCR扩增硅藻硝酸盐转运蛋白基因 的电泳检测结果
图 2为阳性克隆质粒 pNAT的酶切鉴定结果
图 3为中间载体 PUC121的酶切鉴定结果
图 4为中间载体 pMV121的酶切鉴定结果
图 5为中间载体 pCV121的酶切鉴定结果
图 6为 植物表达载体 ρΝΑΤ121的酶切鉴定结果
图 7为中间载体 pCV121的构建流程图
图 8为 植物表达载体 ρΝΑΤ121的构建流程图
图 9为重组表达载体 pTRNAT的构建流程图
图 10为重组表达载体 pKYNAT的构建流程图
图 11为重组表达载体 pTRNAT的酶切鉴定结果
图 12为重组表达载体 pKYNAT的酶切鉴定结果
实施发明的最佳方式
下述实验方法, 如无特别说明, 均为常规方法。
实施例 1、 Λ¾7^植物表达载体 pNAT121的构建
一、 硝酸盐转运蛋白编码基因 的克隆
1、 提取硅藻的总 RNA
使用 Invitrogen公司的 TRIZ0LR Reagent试剂盒 (Cat. No.15596-026)并参 照试剂盒说明书提取硅藻的总 RNA, 具体方法包括以下步骤:
1) 取 50- lOOmg硅藻, 置于液氮中研磨成粉末, 转入 1.5mL离心管中。
2) 加入 ImL TRIZ0L Reagent充分混匀, 室温放置 5min。
3) 加 200μ1氯仿, 振荡 15s, 室温放置 2_3min, 4。C、 12000g离心 10min。
4)取上清, 加入 500μ1异丙醇, 室温放置 10min, 4°C、 12000g离心 5min, 在离心管底部可见白色片状的 RNA沉淀。
5) 弃上清, 小心加入 ImL 70%乙醇, 不要破坏 RNA片状沉淀, 5s后用加 样器将液体全部吸出。
6)室温放置 5- lOmin使乙醇挥发 (不要让其完全干, 否则影响溶解性), 加 入 20μ1 DEPC水溶解沉淀, 得到硅藻总 RNA。
2、 反转录合成 cDNA
以步骤 1获得的硅藻总 RNA为模板, 用 Invitrogen公司的 GeneRacer试剂 盒, 参照试剂盒说明书反转录合成其 cDNA, 具体方法包括以下步骤:
1) 取硅藻总 RNA 10μ1, 加入 Ιμΐ Gene Racer Oligo dT Primer, Ιμΐ dNTPs, Ιμΐ无菌蒸馏水。
2) 65°C温浴 5min以去掉 RNA二级结构, 冰浴 5min, 短暂离心。
3) 依次加入 4μ1 5Χ第一链缓冲液, Ιμΐ 0.1M DTT, Ιμΐ RNaseOut™, Ιμΐ
Superscript™ III RT缓冲液至总体积为 20μ1, 用移液器混匀。
4)短暂离心后, 50Ό温浴 50min。
5) 70°C温浴 15min, 冰上放置 2min停止反应, 最大转速短暂离心。
6)加入 Ιμΐ RnaseH, 37°C温浴 20min。
7)短暂离心, 得到 cDNA, 可立即用于 PCR扩增或 -20°C保存。
3、 目的基因的 PCR扩增
以步骤 2获得的 cDNA为模板, 在一对引物 (P1和 P2) 的引导下进行 PCR扩增。 P1 (上游引物): 5, -ATGAGTGGAACTGATGTTGCA-3 ' ,
P2 (下游引物): 5, - TCTTCTCGGTATCAGGTTGGG- 3, 。
PCR反应条件为: 95°C、 5min→94°C、 30s, 67°C、 lmin, 72°C、 2min, 30 个循环后— 72°C延伸 10min。
反应结束后, 对 PCR产物进行 1%琼脂糖凝胶电泳检测, 检测结果如图 1所示
(泳道 1为 Marker: λ D / Eco/? 1 + /find III; 泳道 2为 PCR扩增产物)。在 1449bp 处有一明显的扩增条带。
4. 冻融法回收 PCR扩增产物
用冻融法回收步骤 3中 PCR扩增的长度为 1449bp的 DNA片段, 具体方法包括 以下步骤:
1) 将长度约 1449bp 的目的片段从琼脂糖凝胶上切下, 置于一新的离心管 中。
2)加入 TE缓冲液 200μ1, 在振荡器上振荡 5min, 再放入液氮中冷冻 5min。
3) 取出, 在 65°C下水浴 5min。
4) 按步骤 2) -3) 的方法重复冷冻、 融化两次。
5) 依次用苯酚、 苯酚 /氯仿 (混合比例 1: 1) 、 氯仿抽提, 用无水乙醇沉 淀 DNA, 然后加入 4ul无菌水溶解沉淀, 沉淀即为回收的目的片段。
5、 目的片段的克隆及测序
用载体 pMD18_T (TaKaRa, Cat. No. D504A)试剂盒进行目的片段的克隆, 具 体方法为:取回收的 PCR扩增产物 4ul,依次加入 lul pMD18- T载体、 5ul Ligase Solution I, 然后 16°C连接 4h。 连接产物转入大肠杆菌 DH5 ct 感受态细胞, 筛 选得到阳性重组克隆, 提质粒进行酶切鉴定, 鉴定结果如图 2所示 (泳道 1为 Marker: λ DNA/EcoR I + Hind III; 泳道 2为酶切产物) , 获得了 1449bp的 酶切片段, 与预期结果一致, 将此重组质粒命名为 pNAT。 再对其进行测序, 测 序结果表明插入片段具有序列表中序列 2的核苷酸序列, 序列表中的序列 2 由 1449个脱氧核糖核苷酸组成, 其开放阅读框(0RF)为序列表中序列 2的自 5' 末 端第 1至 1449位脱氧核糖核苷酸,编码氨基酸序列是序列表中序列 1的蛋白质。 对该基因序列及其编码的氨基酸残基序列进行比对分析, 结果该基因与在 GenBank上公布的硅藻 Λ¾77基因 (GenBank号: gi:5733416) 的核苷酸序列同 源性为 99.31%, 编码蛋白的氨基酸序列同源性为 99.76%, 表明获得了硅藻的 硝酸盐转运蛋白基因, 命名为 Μ4Γ3, 将其编码蛋白命名为 NAT3。
二、 Λ¾Γ·?植物表达载体 pNAT121的获得
1、 中间载体 PCV121的构建
参见图 7构建中间载体 pCV121, 具体过程包括以下步骤:
1) 中间载体 PUC121的构建
用限制性内切酶 c 1和^¾0 I对载体 pBI121(北京拜尔迪生物技术有限公 司)进行双酶切, 回收 260bp的 T-N0S终止子片段, 将其与经相同酶双酶切的载体 PUC19 (购自大连宝生物公司) 连接, 得到中间载体 pUC121。
用限制性内切酶 ¾c I和 I进行双酶切鉴定, 酶切鉴定结果如图 3所示 (泳道 1为 Marker: λ /EcoR I + Ηϊηά III; 泳道 2和 3为酶切产物) , 经酶 切获得了大小约为 260bp的 DNA片段, 与预期结果相符。
2) 中间载体 pMV121的构建
用限制性内切酶 τ¾'/7ί/ III和 ^ I对载体 ρΒΙ121进行双酶切, 回收 800bp的 CaMV 35S启动子片段, 将其与经相同酶双酶切的步骤 1构建的载体 pUC121连接, 获得中间载体 pMV121。
用限制性内切酶7¾¾^ III和 进行双酶切鉴定, 酶切鉴定结果如图 4所 示 (泳道 1为酶切产物; 泳道 2为 Marker: λ /EcoR I + Ηϊηά III) , 经酶切 获得了大小约为 800bp的 DNA片段, 与预期结果相符。
3) 中间载体 pCV121的获得
用限制性内切酶^ ζ' ί/ III和 ^oR I对步骤 2构建的载体 pMV121进行双酶切, 回收 1.1 kb的目的片段, 将其与经相同酶双酶切的载体 pCAMBIA 2301 (北京拜尔 迪生物技术有限公司)连接, 获得中间载体 pCV121。
用限制性内切酶^ III和 I进行酶切鉴定, 酶切鉴定结果如图 5所示 (泳道 1为酶切产物; 泳道 2为 Marker: λ ΌΝΑ/EcoR I + Hind III) , 酶切产物 片段大小约为 1. lkb, 与预期结果相符。
2、 y½47¾t物表达载体 pNAT121的获得
参见图 8构建 Λ¾7^的植物表达载体, 具体方法如下:
用限制性内切酶 I对步骤一构建的携带有 的质粒载体 ρΝΑΤ进行酶 切, 回收 144^ 的;¾4 ^目的片段, 将其与经相同酶酶切的步骤二的 1构建的中间 载体 PCV121进行连接, 得到 的植物表达载体 ρΝΑΤ121。
用限制性内切酶 进行酶切鉴定, 酶切鉴定结果如图 6所示 (泳道 1为 Marker: λ ΌΜ/Eco? I + Hind III; 泳道 2为酶切产物) , 酶切产物片段大小 为 1449bp, 与预期结果相符。
实施例 2、 TR启动子驱动的 Λ¾ ^艮特异表达载体 pTRNAT的构建
参见图 9构建重组表达载体 pTRNAT。
1、 烟草 TR启动子的克隆
根据已经发表的序列(Yuri T. Yamamoto, The Plant Cell, Vol. 3, 371-382,
1991) 设计一对引物 (P3和 P4) , 从烟草总 DNA中克隆 TobRB7启动子。 上述 引物在 5' 端引入 Hindlll位点, 3, 端引入 Xbal位点。
P3 (上游引物) : 5, -TTTAAGCTTTCCTACACAATGTGAATTTG-3' ,
P4 (下游引物) : 5, -CTCTCTAGAAAAATGCCCCAAAAGAAGCTC-3' 。
PCR反应条件为: 94°C、 3min→94°C、 30s, 62°C、 45s, 72°C、 lmin, 35个 循环后一 72°C延伸 10min。
反应结束后, 对 PCR产物经 1%琼脂糖凝胶电泳检测, 获得预期分子量扩增 条带。
2、 目的片段的克隆及测序
用载体 pMD18- T(TaKaRa, Cat. No. D504A)试剂盒进行目的片段的克隆, 具 体方法为:取 PCR扩增产物 4ul,依次加入 lul PMD18-T载体、 5ul Ligase Solution I, 然后 16°C连接 4h。 连接产物转入大肠杆菌 DH5 α 感受态细胞, 经筛选得到
阳性重组克隆命名为 pTRP。 pTRP酶切鉴定连接正确。 再对其进行测序, 测序结 果表明插入片段具有序列表中序列 3的核苷酸序列, 序列表中的序列 3 由 712 个脱氧核糖核苷酸组成, 自 5 ' 末端第 10- 704位脱氧核糖核苷酸为烟草 TobRB7 启动子序列。
3、 TR启动子驱动的 /Μ7^艮特异表达载体 pTRNAT的构建
因为 TobRB7启动子序列内部含有 A'm/ ΙΠ位点, 为获得完整 TobRB7启动子 序列, 首先用限制性内切酶 ¾a I对 pTRP进行彻底酶切, 然后用 III进行部 分酶切, 经琼脂糖电泳回收 700 bp左右的片段, 连接到经 W/7t/ III和 ¾a I酶切 并回收的 pNAT121载体上, 获得 艮特异表达载体 PTRNAT。
对连接产物用限制性内切酶 III和 ¾s I进行酶切鉴定, 酶切鉴定结果 如图 11所示 (泳道 1为 pTRNAT/ffi/7i/ ΙΠ+ Xba I,泳道 2为 Marker : λ k/EcoR I + Ηϊηά III ) , 酶切产物片段大小为 700 bp左右, 与预期结果相符。
实施例 3、 KY启动子驱动的 7\¾ 3根特异表达载体 pKYNAT的构建
1、 拟南芥 YK10启动子的克隆
参见图 10构建重组表达载体 pKYNAT。
根据已经发表的序列 ( INKE NITZ , HEIKE BEI KEFELD , P10TR S PUZ10 , et al . Plant Science , 2001, 161: 337-346 ) 设计一对引物 (P5和 P6 ) , 从 拟南芥总 DNA中克隆 YK10启动子, 在上述引物的 5 ' 端引入 τ¾'/7ί ΙΠ位点, 3 ' 端 引入 位点。
P5 (上游引物) : 5, -GACAAGCTTCTGCAACGAAGTGTACCAAC -3, ,
P6 (下游引物) : 5, -TTGGAATTCTGATTTTATTCAAGAAAAATG -3, 。
PCR反应条件为: 94。C、 3rain— 94。C、 30s , 62°C、 45s , 72°C、 2min, 35个 循环后一 72°C延伸 10min。
反应结束后, 对 PCR产物经 1 %琼脂糖凝胶电泳检测, 获得预期分子量扩增 条带。
2、 目的片段的克隆及测序
用载体 pMD18- T (TaKaRa, Cat. No. D504A)试剂盒进行目的片段的克隆, 具 体方法为:取 PCR扩增产物 4ul,依次加入 lul pMD18- T载体、 5ul Ligase Solution I, 然后 16 °C连接 4h。 连接产物转入大肠杆菌 DH5 a 感受态细胞, 经筛选得到 阳性重组克隆命名为 pYK。 ρΥΚ酶切鉴定连接正确。 再对其进行测序, 测序结果 表明插入片段具有序列表中序列 4的核苷酸序列。 序列表中的序列 4由 1451个 脱氧核糖核苷酸组成, 自 5 ' 末端第 10- 1442位脱氧核糖核苷酸为拟南芥 YK10 启动子序列。
3、 ΙΧ/启动子驱动的 7½4Γ4艮特异表达载体 ρΥΚΝΑΤ的构建
1 ) 将 ρΝΑΤ121用 ¾s I酶切后, 用 Klenow进行末端补平, 再用^ Ζτ^ III 酶 切后回收载体。
2 ) pKY首先用 ^σΤΡ I酶切, 用 Kl enow进行末端补平, 再用 #i 7i/ III 酶切后 回收 1451bP的启动子片段。
3 )将 2 )获得的酶切片段连接到 1 )获得的酶切后 PNAT 121载体上, 获得 YK10 启动子驱动的 艮特异表达载体 pYKNAT。
对连接产物用限制性内切酶 '/^ 111和^¾3 I进行酶切鉴定, 酶切鉴定结果 如图 12所示 (泳道 1为 pYKNAT/ffi/7i riI+J¾sI ,泳道 2为 Marker : λ ΌΜ/BcoR I + Hind I I I ) , 酶切产物片段大小为 1451bp左右, 与预期结果相符。
实施例 4、 转基因烟草的氮吸收能力检测
一、 转基因烟草的获得
将实施例 2和实施例 3构建的重组表达载体 pTRNAT、 pYKNAT分别用冻融法转 化根癌农杆菌 LBA4404, 再用叶盘法分别将整合有 pTRNAT和 pYKNAT的根癌农杆菌 LBA4404转化烟草 NC89 , 用含 100 mg/L卡那霉素的 MS培养基进行 2轮筛选, 每轮 筛选 10- 15天, 得到阳性转基因植株。 将筛选得到的阳性转基因植株用 PCR做进 一步鉴定筛选, PCR所用的一对引物为 P7和 P8。
P7 (上游引物) : 5, -ATGAGTGGAACTGATGTTGCA-3 ' ,
P8 (下游引物) : 5 ' - TCTTCTCGGTATCAGGTTGGG- 3, 。
对 pTRNAT、 pYKNAT转基因烟草进行 PCR鉴定, 阳性转基因植株经 PCR扩增可 获得 1449bp条带, 结果获得 pTRNAT、 pYKNAT转基因烟草各 30株, 即获得了 30个 株系的 pTRNAT转基因烟草和 30个株系的 pYKNAT转基因烟草。
同时将 pNAT121导入烟草 NC89 , 方法同上, 作为对照, 获得 30个株系的
PNAT121转基因烟草。
筛选获得的转基因烟草用 T。代表示; 用 T。代自交产生的种子及由它所长成的 植株用 1\代表示, 代种子首先在含 100mg/L卡那霉素的 MS培养基上萌发, 筛选 获得 1\代植株; L代自交产生的种子及由它所长成的植株用 T2代表示, Τ2代种子 继续在含 100mg/L卡那霉素的 MS培养基上萌发, 筛选获得纯合株系。
二、 转基因烟草的氮吸收能力检测
1、 配制培养基
分别配制如下培养基- 1 ) MS。培养基。
2 ) 1/8 N培养基: N含量 (包括氨态氮和硝态氮) 为 MS。的 1/8, 其他组分含量 同 MS。培养基。
3 ) 1/16 N培养基: N含量 (包括氨态氮和硝态氮) 为 MS。的 1/16, 其他组分含 量同 MS。培养基。
4 ) 1/32 N培养基: N含量 (包括氨态氮和硝态氮) 为 MS。的 1/32, 其他组分含 量同 MS。培养基。
2、 转基因烟草的氮降低敏感性试验
取步骤 1得到的 L代 pTRNAT转基因烟草的种子, 将种子经严格消毒灭菌后,
分别播种在 MS。、 1/8N ( N含量为 MS。的 1/8, 包括氨态氮和硝态氮) 、 1/擺、 1/32N 培养基中。 每种培养基均播种 30个株系, 每个株系各 100粒种子。 试验重复 3次。
取步骤 1得到的 T2代 pYKNAT转基因烟草的种子, 将种子经严格消毒灭菌后, 分别播种在 MS。、 1/8N ( N含量为 MS。的 1/8, 包括氨态氮和硝态氮)、 1/亂 1/32N 培养基中。 每种培养基均播种 30个株系, 每个株系各 100粒种子。 试验重复 3次。
取 PNAT121转基因烟草(非特异启动子)的种子, 将种子经严格消毒灭菌后, 分别播种在 MS。、 1/8N ( N含量为 MS。的 1/8, 包括氨态氮和硝态氮) 、 1/擺、 1/32N 培养基中。 每种培养基均播种 30个株系, 每个株系各 100粒种子。 试验重复 3次。
取 NC89非转基因烟草 (CK) 的种子, 将种子经严格消毒灭菌后, 分别播种 在 MS。、 1/8N (N含量为 MS。的 1/8, 包括氨态氮和硝态氮) 、 1/16N、 1/32N培养基 中。 每种培养基均播种 100粒种子。 试验重复 3次。
将上述四种处理的种子在相同的条件下培养 60天, 在播种后第 30天观察 pTRNAT、 pYKNAT, ρΝΑΊΊ21转基因烟草和非转基因烟草 NC89在不同培养基中的生长情况, 叶片大小。 在不同培养基中的 pTRNAT、 pYKNAT, pNAT121转基因烟草及非 ¾ 基因 烟草和 NC89非转基因烟草的生长情况如表 1所示。 表 1中的叶片直径为 30个株系 的平均值。
表 1 不同氮含量转基因烟草生长的影响
播 转基因植株叶片直径 (mm)
叶片直径 pNAT121转化 pTRNAT转化 pYKNAT转化植 (mm) 植株 植株 株
MS„ 1 30 7-8 7-8 7-8 7-8
1/8N 1 30 4-5 6-7 7-8 6-7
1/16N 1 30 3-4 5-6 6-7 6-7
1/32N 1 30 1-2 4-5 5-6 4-5 在 MS。培养基中, pTRNAT、 pYKNAT, pNAT121转基因烟草及非转基因烟草的 生长状况没有明显差别, 在腦、 1/16N培养基中的 pTRNAT、 pYKNAT、 pNAT121 转基因烟草与播种在相同培养基中的非转基因烟草相比, 叶片略大, pTRNAT、 pYKNAT转基因烟草优于 pNAT121转基因烟草。在 1/32N培养基中的 pTRNAT转基 因烟草、 pYKNAT转基因烟草、 PNAT121转基因烟草及非转基因烟草均严重黄化、 生长缓慢; 但与非转基因烟草相比, 转基因烟草的叶片较大, 颜色也绿些。 总 体来讲,在氮缺乏培养基中的 pTRNAT转基因烟草、 pYKNAT转基因烟草、 pNAT121 转基因烟草和非转基因烟草的生长状况差异明显, pYKNAT转基因烟草和 PNAT121 转基因烟草比非转基因烟草的叶片大 2-3倍; pTRNAT转基因烟草比非转基因烟 草的叶片大 3-5倍,较 pYKNAT转基因烟草和 PNAT121转基因烟草的叶片大 1. 5-2 倍。以上结果表明: PNAT121转基因烟草能够明显提高转基因植物的氮利用效率; 釆用根特异启动子驱动 NAT基因在根部的特异表达, 比组成型启动子更能提高
氮素利用效率。 TR启动子驱动的 pTRNAT)较 YK启动子驱动的 Γ ρΥΚΝΑΤ) 更能提高植物的氮利用率, 使植物在低氮情况下仍能正常生长。
播种后 60 称取在不同培养基中生长的转基因烟草和 NC89非转基因烟草的鲜 重, 再将各植株放入 80Ό烘箱烘烤 1小时, 称取各植株的干重, 统计结果如表 2所示。 表 2中的植株鲜重和干重为 30个株系的平均值。
表 2 转基因烟草及非转基因烟草的干、 鲜重统计结果 培养基 鲜重 ( mg) 干重 ( mg)
类型
NC89 PNAT121 pTRNAT pYKNAT NC89 PNAT121 pTRNAT pYKNAT
MSo 255 258 256 257 26. 3 26. 8 26. 4 27. 3
1/8N 149 159 173 166 15. 0 19. 7 24. 7 21. 1
1/16N 56. 0 62. 0 76. 0 66. 0 8. 0 11. 8 16. 2 13. 1
1/32N 31. 0 46. 0 54. 0 48. 0 5. 0 6. 5 9. 6 7. 2 在不同培养基上生长的转基因烟草的鲜重和干重均显著高于非转基因植 株; 根特异启动子驱动的 NAT 转基因烟草的鲜重和干重高于组成型表达的 PNAT121 转基因烟草, 不同的根特异启动子对提高氮利用效率的程度不同, TRP 启动子优于 YK10启动子。在 1/16N培养基上, pTRNAT转基因烟草的干重高达对 照烟草的 2倍。 结果进一步证明 TR启动子驱动的腐3 ( pTRNAT ) 较 YK启动子 驱动的 固 ( pYKNAT ) 更能提高植物的氮利用率, 使植物在低氮情况下仍能正 常生长。
工业应用
应用本发明提供的方法获得的转基因植物, 氮吸收能力大大提高, 在低氮情 况下仍能正常生长。 在氮缺乏培养基中的 pTRNAT转基因烟草、 pYKNAT转基因烟草和 非转基因烟草的生长状况差异明显, pYKNAT转基因烟草比非转基因烟草的叶片大 2 - 3倍; pTRNAT转基因烟草比非转基因烟草的叶片大 3- 6倍, 较 pYKNAT转基因烟草的 叶片大 1. 5- 2倍。 在不同培养基上生长的 pTRNAT转基因烟草的鲜重和干重均显著高 于 pYKNA转基因烟草及对照植株。 在 1/16N培养基上, pTRNAT转基因烟草的干重高达 对照烟草的 2倍。本发明将在植物氮肥吸收领域及抗低氮植物品种的繁育工作中发挥 重要作用, 应用前景广阔。
Claims
权利要求 一种培育氮吸收能力提高的植物的方法, 是将含有硝酸盐转运蛋白的编 码基因的重组表达载体导入植物组织或细胞, 得到氮吸收能力提高的植物; 所述硝酸盐转运蛋白的编码基因是如下 1) 或 2) 或 3) 的 DNA分子:
1) 其核苷酸序列是序列表中序列 2所示的 DNA分子;
2) 在严格条件下与 1) 限定的 DNA序列杂交且编码相同功能蛋白质的 DNA 分子;
3) 与序列表中序列 2限定的 DNA序列具有 90%以上同源性, 且编码相同功 能蛋白质的 DNA分子;
所述重组表达载体中启动所述硝酸盐转运蛋白的编码基因转录的启动子为 组成型启动子或根特异启动子。
2、 如权利要求 1所述的方法, 其特征在于: 所述启动子为根特异启动子。
3、 如权利要求 2所述的方法,其特征在于: 用于构建所述重组表达载体的 出发载体为 ρΝΑ 21;
所述 PNAT121是在 pCV121的 BamH I位点间插入所述硝酸盐转运蛋白的编 码基因基因得到的;
所述 PCV121是将 pCAMBIA 2301的^ III和 coR I位点间的小片段取代为 目的片段得到的; 所述目的片段是用 III和^ oR I双酶切 pMV121得到的小 片段;
所述 pMV121是将 pUC121的 Ηίηά III和 a/a¥ I位点间的小片段取代为 35S 启动子片段得到的;所述 35S启动子片段是用 Hi III和 BamHl双酶切 ρΒΠ21 得到的小片段;
所述 PUC121是将 pUC19的 fee I和 oT? I位点间的小片段取代为 N0S终止子片 段得到的; 所述 N0S终止子片段是用 5¾C I和 <^ I双酶切 pBI121得到的小片段。
4、如权利要求 3所述的方法,其特征在于:所述重组表达载体是将 pNAT121 的 Hind III和 Xba I位点间的小片段取代为根特异启动子得到的。
5、 如权利要求 4所述的方法, 其特征在于: 所述根特异启动子是如下 1) 或 2) 或 3) 的 DNA分子:
1) 其核苷酸序列是序列表中序列 3的自 5' 末端第 10-704位脱氧核糖核苷 酸所示的 DNA分子;
2)在严格条件下与 1)限定的 DNA序列杂交且具有启动子功能的 DNA分子;
3) 与 1) 限定的 DNA序列具有 90%以上同源性, 且具有启动子功能的 DNA 分子。
6、 如权利要求 4所述的方法, 其特征在于: 所述根特异启动子是如下 1) 或 2) 或 3) 的 DNA分子:
1)其核苷酸序列是序列表中序列 4的自 5'末端第 10- 1442位脱氧核糖核苷
酸所示的 DNA分子;
2)在严格条件下与 1)限定的 DMA序列杂交且具有启动子功能的 DNA分子;
3) 与 1) 限定的 DNA序列具有 90%以上同源性, 且具有启动子功能的 DNA 分子。
7、 如权利要求 1至 6中任一所述的方法,其特征在于: 所述植物为双子叶 植物。
8、 如权利要求 7所述的方法,其特征在于: 所述植物为烟草。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2008/000610 WO2009117853A1 (zh) | 2008-03-27 | 2008-03-27 | 一种培育氮吸收能力提高的植物的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2008/000610 WO2009117853A1 (zh) | 2008-03-27 | 2008-03-27 | 一种培育氮吸收能力提高的植物的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009117853A1 true WO2009117853A1 (zh) | 2009-10-01 |
Family
ID=41112913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/000610 WO2009117853A1 (zh) | 2008-03-27 | 2008-03-27 | 一种培育氮吸收能力提高的植物的方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009117853A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102577725A (zh) * | 2012-01-16 | 2012-07-18 | 四川农业大学 | 云烟97烤烟品种的施肥方法 |
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
CN110655563A (zh) * | 2019-11-01 | 2020-01-07 | 中国海洋大学 | 一种浒苔中硝酸盐转运蛋白体及其编码基因 |
CN114561400A (zh) * | 2022-03-07 | 2022-05-31 | 安徽农业大学 | 红颜草莓硝酸盐转运蛋白基因FaNRT1.1及其应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5459252A (en) * | 1991-01-31 | 1995-10-17 | North Carolina State University | Root specific gene promoter |
CN1434869A (zh) * | 1999-12-16 | 2003-08-06 | 普拉通公司 | 根特异性启动子 |
US20050044585A1 (en) * | 1996-02-14 | 2005-02-24 | Good Allen G. | Plants with enhanced levels of nitrogen utilization proteins in their root epidermis and uses thereof |
CN1737148A (zh) * | 2005-07-15 | 2006-02-22 | 南开大学 | 高亲和铵转运因子融合基因及其在转基因植物中的应用 |
CN1887903A (zh) * | 2006-07-19 | 2007-01-03 | 北京优利康生物农业技术有限公司 | 硅藻的硝酸盐转运蛋白及其编码基因与应用 |
-
2008
- 2008-03-27 WO PCT/CN2008/000610 patent/WO2009117853A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5459252A (en) * | 1991-01-31 | 1995-10-17 | North Carolina State University | Root specific gene promoter |
US20050044585A1 (en) * | 1996-02-14 | 2005-02-24 | Good Allen G. | Plants with enhanced levels of nitrogen utilization proteins in their root epidermis and uses thereof |
CN1434869A (zh) * | 1999-12-16 | 2003-08-06 | 普拉通公司 | 根特异性启动子 |
CN1737148A (zh) * | 2005-07-15 | 2006-02-22 | 南开大学 | 高亲和铵转运因子融合基因及其在转基因植物中的应用 |
CN1887903A (zh) * | 2006-07-19 | 2007-01-03 | 北京优利康生物农业技术有限公司 | 硅藻的硝酸盐转运蛋白及其编码基因与应用 |
Non-Patent Citations (2)
Title |
---|
NITZ, I. ET AL.: "Pykl 0, a seedling and root specific gene and promoter from Arabidopsis thaliana", PLANT SCIENCE, vol. 161, no. 2, July 2001 (2001-07-01), pages 337 - 346, XP001013257, DOI: doi:10.1016/S0168-9452(01)00412-5 * |
YAMAMOTO, Y.T. ET AL.: "Characterization of cis-acting sequences regulating root-specific gene expression in tobacco.", PLANT CELL, vol. 3, no. 4, April 1991 (1991-04-01), pages 371 - 382, XP002980317, DOI: doi:10.1105/tpc.3.4.371 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
CN102577725A (zh) * | 2012-01-16 | 2012-07-18 | 四川农业大学 | 云烟97烤烟品种的施肥方法 |
CN110655563A (zh) * | 2019-11-01 | 2020-01-07 | 中国海洋大学 | 一种浒苔中硝酸盐转运蛋白体及其编码基因 |
CN110655563B (zh) * | 2019-11-01 | 2021-03-19 | 中国海洋大学 | 一种浒苔中硝酸盐转运蛋白体及其编码基因 |
CN114561400A (zh) * | 2022-03-07 | 2022-05-31 | 安徽农业大学 | 红颜草莓硝酸盐转运蛋白基因FaNRT1.1及其应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018253496B2 (en) | Isolated Polynucleotides and Polypeptides and Methods of Using Same for Increasing Plant Yield, Biomass, Growth Rate, Vigor, Oil Content, Abiotic Stress Tolerance of Plants and Nitrogen Use Efficiency | |
CN107779468B (zh) | 水稻nrt1.1a基因及其编码蛋白在提高植物产量育种中的应用 | |
WO2015172269A1 (zh) | 一种含有草甘膦抗性基因的表达载体及其应用 | |
CN107674873B (zh) | 小麦热激转录因子基因TaHsfA2i及其编码蛋白与应用 | |
WO2011022930A1 (zh) | 与水稻粒形和叶形相关的蛋白及其编码基因与应用 | |
CN113574173A (zh) | 突变的羟基苯丙酮酸双加氧酶多肽、其编码基因及用途 | |
WO2009117853A1 (zh) | 一种培育氮吸收能力提高的植物的方法 | |
CN114276429B (zh) | 兼抗纹枯病与茎基腐病的转TaLRK-R基因小麦的培育方法及其相关生物材料 | |
WO2011047607A1 (zh) | 植物耐逆性相关蛋白GmSIK1及其编码基因与应用 | |
CN110713994B (zh) | 一种植物耐逆性相关蛋白TaMAPK3及其编码基因和应用 | |
CN107602683B (zh) | 一个来源于玉米的转录因子ZmNLP4及其用途 | |
CN113444736A (zh) | GhbHLH122基因在调控植物开花中的应用 | |
CN114277034A (zh) | 芦笋中抗旱性AoSAP8_P基因、核酸分子及其应用 | |
CN111808180B (zh) | 植物抗旱杂种优势相关蛋白TaNF-YB3及其编码基因和应用 | |
CN112795580B (zh) | 火龙果基因HuAAE3及其在调控植物抗高温胁迫中的应用 | |
CN112195178B (zh) | 番茄抗晚疫病长链非编码RNA-lncRNA40787及其克隆方法与应用方法 | |
WO2013133454A1 (ja) | 高い種子収量性を有する環境ストレス耐性植物及びその作製方法 | |
CN111574604B (zh) | 小麦抗病蛋白TaAFRK及其相关生物材料与应用 | |
CN115044592A (zh) | 一种调控玉米株型和瘤黑粉病抗性的基因ZmADT2及其编码蛋白和应用 | |
CN109734786B (zh) | 植物花粉育性恢复相关蛋白TaDMT25及其编码基因和应用 | |
CN109971764B (zh) | 水稻OsNRT2.1基因在提高水稻籽粒中的锰元素含量中的应用 | |
WO2019128005A1 (zh) | 一种抗性基因及其用于制备转基因植物的应用 | |
CN109777790B (zh) | 植物抗旱、耐盐相关蛋白EeSAPK4及其编码基因和应用 | |
CN113817038B (zh) | 来源于小豆的蛋白VaVPAC及其编码基因在增强烟草抗旱性方面的应用 | |
CN112266412B (zh) | 二系杂交小麦产量杂种优势相关蛋白TaCCA1-7D及其编码基因和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08715055 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08715055 Country of ref document: EP Kind code of ref document: A1 |