Nothing Special   »   [go: up one dir, main page]

WO2009113665A1 - Method of producing drug for swine atrophic rhinitis - Google Patents

Method of producing drug for swine atrophic rhinitis Download PDF

Info

Publication number
WO2009113665A1
WO2009113665A1 PCT/JP2009/054889 JP2009054889W WO2009113665A1 WO 2009113665 A1 WO2009113665 A1 WO 2009113665A1 JP 2009054889 W JP2009054889 W JP 2009054889W WO 2009113665 A1 WO2009113665 A1 WO 2009113665A1
Authority
WO
WIPO (PCT)
Prior art keywords
dnt
toxin
producing
vaccine
swine
Prior art date
Application number
PCT/JP2009/054889
Other languages
French (fr)
Japanese (ja)
Inventor
透 河合
顕治 横川
容子 本田
Original Assignee
財団法人化学及血清療法研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人化学及血清療法研究所 filed Critical 財団法人化学及血清療法研究所
Publication of WO2009113665A1 publication Critical patent/WO2009113665A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/099Bordetella
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/235Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bordetella (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]

Definitions

  • the present invention relates to a method for producing a drug for swine atrophic rhinitis. Specifically, a step of culturing a skin necrotic toxin-producing host obtained by a genetic recombination technique, a step of recovering and purifying soluble skin necrotic toxin from the culture, and a step of detoxifying the skin necrotic toxin And a method for producing a drug for swine atrophic rhinitis, comprising the step of formulating the detoxified skin necrosis toxin.
  • Porcine atrophic rhinitis is a respiratory disease characterized by turbinate dysplasia or atrophy. This is a serious disease for the pig farming industry because it causes serious economic loss due to growth delay, induction of secondary infection, and the like (see, for example, Non-Patent Document 1).
  • Bb Bordetella bronchiseptica
  • Pm toxin-producing Pasteurella multocida
  • Bb possesses hemagglutinin and fimbriae, which are fixing factors, and thus has a strong fixability to the nasal mucosa, but Pm that does not have it is difficult to settle alone. Therefore, the presence of a factor that damages the nasal mucosa in advance is necessary for the formation of toxin-producing Pm infection.
  • the most representative factor is skin necrosis toxin (hereinafter abbreviated as Bb-DNT) produced by Bb. It is believed that toxin-producing Pm settles in the damaged nasal mucosa and that the symptoms of AR are exacerbated by the toxin produced (hereinafter abbreviated as PmT).
  • Bb-DNT has biological activities such as bleeding necrosis, nasal turbinate atrophy, growth delay, vascular smooth muscle contraction, local blood circulation disorder, spleen atrophy and antibody production inhibition. Therefore, the necessity of a vaccine in which Bb-DNT is toxoidated has been pointed out for a long time (see, for example, Non-Patent Document 2).
  • Bb killed vaccine is used as a simple inactivated vaccine, component vaccine based on fibrous hemagglutinin produced by Bb and PmT toxoid, and Pm death is used as a combined vaccine.
  • Bacteria and Bb killed mixed vaccine, PmT toxoid and Bb killed mixed vaccine, Bb-DNT toxoid and PmT toxoid mixed vaccine, etc. have been put into practical use.
  • a toxoid chemically inactivated with formalin or the like is used.
  • useful proteins using genetic recombination techniques is a widely used technique today, and among them, expression systems using E. coli as the host are the most commonly used expression systems.
  • a target gene is bound downstream of a promoter sequence.
  • lac, trp, tac, trc, ara, T7, etc. are known as promoter sequences of E. coli.
  • an insoluble inclusion body is often formed (for example, see Non-Patent Document 6).
  • a method is employed in which the inclusion body is once solubilized using a protein denaturant such as urea or guanidine hydrochloride and then refolded.
  • the problem to be solved by the present invention is a drug for swine atrophic rhinitis which contains recombinant skin necrosis toxoid as an active ingredient, which is effective in preventing the onset of AR and satisfies safety, low cost and stable supply. It is in providing the manufacturing method of.
  • the “drug” in the present invention is defined as a pharmaceutical composition applied for treatment and prevention.
  • Bb-DNT-producing Escherichia coli that produces Bordeterra spp. Skin necrosis toxin (Bb-DNT).
  • Bb-DNT was recovered from the Bb-DNT-producing Escherichia coli, and it was observed that Bb-DNT was recovered from both the soluble and insoluble fractions.
  • an attack test was carried out with an active form of Bordetella sp. Only mice immunized with necrotic toxin have been found to be free from lethality, and the present invention has been completed.
  • the present invention is as follows. [1] A method for producing a drug for swine atrophic rhinitis, comprising a step of recovering recombinant skin necrosis toxin solublely expressed from a skin necrosis toxin producing host.
  • a method for producing a drug for swine atrophic rhinitis comprising the following steps (1) to (4): (1) a step of culturing a skin necrotic toxin-producing host obtained by a genetic recombination technique, (2) recovering and purifying soluble necrotic toxin from the culture of (1), (3) a step of detoxifying the skin necrosis toxin of (2), (4) The process of formulating the detoxified skin necrosis toxin of (3) [3] The production method of [1] or [2], wherein the skin necrosis toxin is derived from Bordetella bacteria.
  • a method for producing a drug for swine atrophic rhinitis that is effective in preventing the onset of AR includes a step of recovering soluble necrotic toxin from crushed Bb-DNT-producing Escherichia coli. Only the skin necrosis toxin recovered by this step is recovered as an antigenic protein having immunogenicity capable of preventing the onset of AR and can be used for subsequent formulation.
  • the feature of the present invention resides in a method for producing a drug for swine atrophic rhinitis including a step of recovering soluble skin necrosis toxin expressed in a soluble manner from a skin necrosis toxin production host.
  • the object of the production method of the present invention is to form an insoluble inclusion body when expressed by genetic recombination technology, and to prevent the onset of AR even if it is solubilized with a protein denaturant such as guanidine hydrochloride or urea. It is a skin necrotic toxin that cannot obtain effective immunogenicity.
  • skin necrosis toxin include Bordeterra bacteria-derived skin necrosis toxin, preferably Bordetella bronchiseptica skin necrosis toxin (Bb-DNT), and pertussis skin necrosis that can be used as an alternative to AR vaccine.
  • Bb-DNT Bordeterra bacteria-derived skin necrosis toxin
  • Bb-DNT Bordetella bronchiseptica skin necrosis toxin
  • pertussis skin necrosis that can be used as an alternative to AR vaccine.
  • Toxin (Bp-DNT) see JP-A-10-251298) and B.
  • Bpp-DNT pertussis skin necrosis toxin with 99% homology to the base sequence of Bb-DNT (hereinafter sometimes referred to as Bpp-DNT)
  • Bpp-DNT base sequence of Bb-DNT
  • Bordetella spp. Skin necrosis toxin gene Bb-DNT cloned from Bordetella bronchiceptica S611 strain isolated and maintained from field materials in 1988 at the Institute of Chemical and Serum Therapy The encoding gene was used.
  • Bordetella bronchiseptica for example, McConkie medium (Nippon Becton Dickinson), Borde Jung medium (Nippon Becton Dickinson), Horiguchi et al. (Horiguchi et al., Microb. Pathog., 6 : 361-368, 1989).
  • the medium of Horiguchi et al. was used for the growth of small and medium-sized cells.
  • the pH is adjusted to 6.8-7.6 according to the attached protocol, followed by autoclaving at 115 ° C for 25 minutes.
  • the culture conditions are usually set in the range of a temperature of 36 to 38 ° C. and a period of 1 to 5 days, but may be appropriately adjusted according to the purpose of use, culture form, amount of planted bacteria, medium scale and the like.
  • the bacterial cells in the culture solution are collected in the sediment by low-speed centrifugation (5000 rpm, 5 to 10 minutes).
  • the gene encoding Bb-DNT of Bordetella bronchiceptica is derived from the general DNA recombination technology described by Sambrook et al. (Molecular Cloning, A Laboratory Manual Second Edition. Cold Spring Harbor Laboratory Press, NY, 1989). In practice, various commercially available kits are used.
  • kits such as TOPO-TA cloning kit (Invitrogen Corporation), pT7 BlueT-Vector (Takara Bio Inc.), QIAGEN PCR Cloning Kit (Qiagen) are used.
  • chromosomal DNA is extracted from bacterial cells collected by low-speed centrifugation using ISOPLANT (Wako Pure Chemical Industries), and LA Taq (Takara Bio Inc.) is used as a template (template).
  • the gene region encoding Bb-DNT is amplified by PCR according to the attached protocol.
  • Primers used for PCR are designed based on the nucleotide sequence registered in GenBank Accession No. U59687. At this time, base sequences of appropriate restriction enzyme cleavage sites are added to the 5 'end of the upstream primer and the 5' end of the downstream primer.
  • the PCR amplification product is cloned into a gene cloning vector, pCR-XL-TOPO (Invitrogen Corp.), and the nucleotide sequence is determined by a DNA sequencer (ABI Prism 310 Genetic Genetic Analyzer, Applied Biosystems).
  • pCR-XL-TOPO Invitrogen Corp.
  • the nucleotide sequence is determined by a DNA sequencer (ABI Prism 310 Genetic Genetic Analyzer, Applied Biosystems).
  • the Bb-DNT gene of the present invention has the base sequence shown in SEQ ID NO: 1.
  • Bb-DNT gene is expressed by excising the Bb-DNT gene from the above-described pCRDNT, incorporating it into an appropriate expression vector, and introducing the expression vector into a host.
  • Bacteria, yeast, animal cells, plant cells, insect cells and the like are commonly used for the expression of foreign proteins.
  • any host can be used, but bacteria such as Escherichia coli that are not toxic to the host are preferred.
  • expression vectors various expression vectors having a promoter region such as trc promoter, T7 promoter, cspA promoter and the like have been developed and marketed for E. coli expression.
  • the Bb-DNT toxoid used as the antigen of the present invention does not retain immunogenicity capable of preventing the onset of AR when it is expressed insoluble. What is expressed as an insoluble inclusion body is once aggregated with a protein denaturant such as guanidine hydrochloride or urea, but easily aggregates when removed. Therefore, the Bb-DNT toxoid of the present invention is preferably expressed in a soluble manner.
  • “to be expressed in a soluble manner” means that the target protein is expressed as a soluble protein in a state dissolved in Escherichia coli cells.
  • coli there are a method of culturing at a low temperature, a method of inducing expression with a low concentration of an inducing agent, a method of adding a secretory signal peptide and a method of coexpression with a chaperone protein. Any method may be used.
  • An appropriate Escherichia coli such as BL21, HMS174, DH5 ⁇ , HB101, JM109, etc., is selected as a host according to the expression vector.
  • a pCold vector (Takara Bio Inc.) having a cspA promoter capable of inducing protein expression at low temperature
  • a pTrc vector (GE Healthcare Bioscience Co., Ltd.) having a trc promoter
  • a pET vector Merck stock having a T7 promoter Company
  • Escherichia coli ColdDNT, TrcDNT, and ETDNT producing Bb-DNT are obtained.
  • a medium for example, LB, SOC, SOB, etc.
  • a reagent for example, ampicillin, etc.
  • the pH of the medium is used in a range suitable for the growth of E. coli (pH 6-8).
  • E. coli expressing Bb-DNT Screening of recombinant E. coli expressing Bb-DNT is performed as follows. If necessary, the cultured and proliferated cells in the presence of an appropriate expression inducer are collected by low-speed centrifugation, and a certain buffer (for example, 10 mM Tris (pH 8), 100 mM NaCl, 1 mM EDTA) is collected. After suspension, the cells are crushed with an ultrasonic crusher, French press, high-pressure homogenizer, etc., and separated and collected into a sediment or supernatant by high-speed centrifugation (15000 rpm, 15 minutes). A surfactant (eg, Triton® X100), lysozyme, etc. may be added to the buffer solution.
  • a surfactant eg, Triton® X100
  • lysozyme, etc. may be added to the buffer solution.
  • Bb-DNT collected in the sediment is generally called an inclusion body.
  • methods based on antigen-antibody reactions such as ELISA, Western blot, and dot blot may be used in addition to the method based on the molecular size described above. Both are general methods for detecting foreign proteins expressed in E. coli, and may be appropriately selected according to the purpose.
  • Bb-DNT-producing Escherichia coli When purifying these proteins from such Bb-DNT-producing Escherichia coli, purification methods generally used in protein chemistry, such as centrifugation, salting out, ultrafiltration, isoelectric precipitation, electrophoresis, etc. A method in which methods such as ion exchange chromatography, gel filtration chromatography, affinity chromatography, hydrophobic chromatography, and hydroxyapatite chromatography are combined is used. Bb-DNT and Bb-DNT toxoids can be easily purified by cation exchange chromatography. The amount of the obtained protein is measured using a BCA Protein Assay Reagent Kit (Pierce Biotechnology, Inc), a protein assay kit (Nippon Bio-Rad Co., Ltd.) and the like.
  • Bb-DNT toxoid is detoxified (toxoided) by various methods and evaluated as a vaccine.
  • formalin or glutaraldehyde is used for detoxification.
  • the detoxification conditions are appropriately adjusted depending on the reagent used and the protein concentration. For example, the treatment is performed for 7 days at 37 to 40 ° C. using 0.8% formalin (Patent Document 1). Evaluation as a vaccine can be carried out by administering a lethal dose of Bb-DNT after immunization of a small animal.
  • the immunization method (for example, subcutaneous, intramuscular, intraperitoneal, nasal, oral, sublingual administration site, immunization period, etc.) is generally in accordance with general methods used for examining immunogenicity of vaccines and the like. Just do it.
  • As a positive control a Bb cell disruption solution treated with formalin as described above is used.
  • As a negative control phosphate buffer solution, physiological saline, purified water or the like is used.
  • Bb-DNT toxoid vaccine and control vaccine thus prepared were intraperitoneally administered intraperitoneally in groups of 5 to 10 mice, 2 weeks later, the second dose, and half the lethal dose after 2 weeks. Administer 10 times more Bb-DNT. Thereafter, the immunity of Bb-DNT toxoid is evaluated by observing the life and death of mice for 7 to 14 days.
  • the Bb-DNT toxoid of the present invention can be an effective material as a vaccine for protecting against the onset of AR.
  • the Bb-DNT toxoid of the present invention contains additives generally used in addition to the above-mentioned adjuvant, such as stabilizers (arginine, polysorbate 80, macrogol 4000, etc.), excipients (mannitol, sorbitol, sucrose), etc. And then processed aseptic filtration, dispensing, lyophilization, etc., and formulated as an injection or transmucosally (nasally, orally, sublingually) to treat AR infection / onset Used as a vaccine to protect.
  • the Bb-DNT toxoid of the present invention can also be used as a mixed vaccine for simultaneously protecting several types of swine infections by mixing with other swine infection vaccines.
  • Such other swine infectious disease vaccines include swine Japanese encephalitis vaccine, swine infectious gastroenteritis vaccine, swine epidemic diarrhea vaccine, swine parvovirus infectious disease vaccine, swine getavirus infectious disease vaccine, swine oesky disease vaccine Swine erysipelas vaccine, swine reproductive / respiratory disorder syndrome vaccine, swine actinobacillus pleuropneumoniae infection vaccine, swine haemophilus paraswiss infection vaccine, swine E. coli diarrhea vaccine, swine mycoplasma hyopneumoniae infection vaccine, etc. Can be mentioned. Hereinafter, the present invention will be specifically described with reference to examples.
  • Bordetella bronchiseptica S611 strain (a strain isolated and maintained from field materials in 1988 at the Institute of Chemical and Serum Therapy) was used. This was inoculated into a medium of Horiguchi et al. (A composition table is shown in Table 1) and cultured at 37 ° C. for 1 day. The cells were collected by centrifugation, and chromosomal DNA was extracted using ISOPLANT (Wako Pure Chemical Industries). The medium of Horiguchi et al. was adjusted to pH 6.8-7.6 and autoclaved at 115 ° C. for 25 minutes.
  • the Bb-DNT gene region was amplified by the PCR method using LA Taq (Takara Bio Inc.) using this chromosomal DNA as a template.
  • the PCR primers used for amplification were designed from the nucleotide sequences registered in GenBank Accession No. U59687 (SEQ ID NOs: 2 and 3).
  • a PciI site is added to the 5 'side of the amplified product, and a BamHI site is added to the 3' side.
  • PCR was performed at 94 ° C for 60 seconds, followed by 20 times of 94 ° C, 30 seconds and 68 ° C for 5 minutes, and then allowed to react at 72 ° C for 10 minutes.
  • the PCR amplification product was mixed with pCR-XL-TOPO (Invitrogen Corporation), reacted according to the attached method, the reaction solution was added to TOP10F '(Invitrogen Corporation), and transformation was performed by a conventional method. Cultivation was carried out overnight at 37 ° C. in a kanamycin-added circle glow agar medium (Funakoshi Co., Ltd.), and a plasmid pCRDNT into which the Bb-DNT gene was inserted was obtained from the colonies that appeared.
  • the base sequence of the Bb-DNT gene was determined by a DNA sequencer (ABI Prism 310 Genetic Analyzer, Applied Biosystems Japan Ltd.). The sequence is shown in SEQ ID NO: 1.
  • ⁇ Construction of expression vector> The plasmid pCRDNT obtained in Example 1 was treated with restriction enzymes PciI and BamHI, and a Bb-DNT gene fragment of about 4.4 Kbp was purified. This was mixed with pTrc99A (Pharmacia Biotech Co., Ltd.) and pET-11d (Merck Co., Ltd.) previously treated with restriction enzymes NcoI and BamHI, and a ligation reaction was performed at 16 ° C. for 30 minutes (Ligation high, Toyobo Co., Ltd.) ). Each ligation reaction solution was added to DH5 ⁇ competent cell (Takara Bio Inc.), and transformation was performed by a conventional method. Expression vectors pTrcDNT and pETDNT into which the Bb-DNT gene was inserted were obtained from colonies that had been inoculated into an ampicillin-added circle glow medium and appeared after overnight culture at 37 ° C.
  • the Bb-DNT gene region was amplified by the PCR method using LA Taq (Takara Bio Inc.) using pCRDNT obtained in Example 1 as a template.
  • the PCR primers used for amplification were designed from the nucleotide sequences registered in GenBank Accession No. U59687 (SEQ ID NOs: 4 and 5).
  • a restriction enzyme KpnI site is added to the 5 'side of the amplified product, and a restriction enzyme BamHI site is added to the 3' side.
  • PCR was performed at 94 ° C for 60 seconds, followed by 20 times of 94 ° C, 30 seconds and 68 ° C for 5 minutes, and then allowed to react at 72 ° C for 10 minutes.
  • the amplified fragment was treated with KpnI and BamHI, mixed with pColdIV (Takara Bio Inc.) previously digested with KpnI and BamHI, and ligated at 16 ° C. for 30 minutes.
  • the ligation reaction solution was added to DH5 ⁇ competent cells, and transformation was performed by a conventional method.
  • An expression vector pColdDNT into which the Bb-DNT gene was inserted was obtained from colonies that had been inoculated into an ampicillin-added circle glow medium and appeared after overnight culture at 37 ° C.
  • E. coli BL21 strain (Merck Co., Ltd.) was transformed with each expression vector obtained in Example 2, and E. coli ColdDNT, TrcDNT and ETDNT producing Bb-DNT were cloned. A part of each clone was inoculated into 3 mL of ampicillin-supplemented YE medium (composition table is shown in Table 2) and cultured overnight with shaking. 50 ⁇ L of the bacterial solution obtained by shaking culture was inoculated into 50 mL of ampicillin-added YE medium and cultured at 37 ° C. with shaking.
  • TrcDNT and ETDNT when OD 660 exceeds 1.0, IPTG (isopropyl- ⁇ -D-galactopyranoside) is added to a final concentration of 1 mM, and about 16 hours at 30 ° C. or 37 ° C. Continued shaking culture at.
  • OD 660 exceeded 1.0 it was allowed to stand at 15 ° C for 1 hour, and after IPTG was added, shaking culture was performed at 15 ° C for about 24 hours. After completion of the culture, the cells were collected by centrifugation, and the cells were suspended in a lysis buffer (50 mM Tris-Cl, 1 mM EDTA, 100 mM NaCl, pH 8.0).
  • Lysozyme (Seikagaku Corporation, 10 mg / mL ⁇ DW) was added to the suspension, followed by lysis treatment at room temperature for 20 minutes. The lysis treatment solution was further sonicated and centrifuged, and the supernatant was used as a soluble fraction and the sediment was used as an insoluble fraction (inclusion body). Each fraction was subjected to SDS-PAGE according to a conventional method, and after CBB staining, the expression levels of Bb-DNT and Bb-DNT toxoid were calculated with a densitometer. The results are shown in Table 3.
  • Bb-DNT solublely expressed in ColdDNT obtained in Example 3 (sBb-ColdDNT) and Bb-DNT solublely expressed in TrcDNT (sBb-TrcDNT) were reported by Horiguchi et al. (Horiguchi et al., FEMS Microbiol. Lett., 66: 39-44, 1990). This was inactivated by adding formalin at a final concentration of 0.8% and treating at 37 ° C. for 7 days. Further, Bb-DNT (isBb-ETDNT) expressed insoluble in ETDNT obtained in Example 3 was dissolved in 8M urea solution.
  • Vaccine solution containing Alhydrogel (Aluminum Hydroxide Gel, Brenntag Biosector A / S) to sBb-ColdDNT, sBb-TrcDNT and isBb-ETDNT solution, containing 1 ug of each antigen and 0.5 mg Alhydrogel per mL was prepared.
  • These three types of vaccines 0.5 mL were injected twice into the abdominal cavity of a 3-week-old female and SPF ddY mice, each 2 weeks apart.
  • a commercially available AR vaccine (Swimgen ART2, Institute for Chemical and Serum Therapy) was used.
  • Patent Document 1 This contains about 10 ⁇ g / mL of Bb-DNT purified and inactivated from the supernatant of the cell disruption solution by ultrasonic treatment of Bb S611 strain according to the method described in Japanese Patent No. 3886406 (Patent Document 1).
  • the production method of the present invention provides a swine atrophic rhinitis drug for preventing the onset of AR in pigs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Otolaryngology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Provided is a method of producing a drug for swine atrophic rhinitis. A method of producing a drug for swine atrophic rhinitis comprising: (1) a step of culturing Bordetella bronchiseptica dermonecrotic toxin-producing Escherichia coli which is obtained by a transgenic technique; (2) a step of collecting and purifying the dermonecrotic toxin which is expressed in a soluble state from a suspension of disrupted cells of the strain as described in (1); (3) a step of detoxifying the dermonecrotic toxin as described in (2) with formalin; and (4) a step of producing a preparation of the detoxified dermonecrotic toxin as described in (3).

Description

豚萎縮性鼻炎用薬剤の製造方法Method for producing a drug for swine atrophic rhinitis
 本発明は、豚萎縮性鼻炎用薬剤の製造方法に関する。詳細には、遺伝子組み換え技術により得られた皮膚壊死毒素産生宿主を培養する工程、前記の培養物から可溶性に発現した皮膚壊死毒素を回収・精製する工程、前記の皮膚壊死毒素を無毒化する工程及び前記の無毒化皮膚壊死毒素を製剤化する工程を含む、豚萎縮性鼻炎用薬剤の製造方法に関する。 The present invention relates to a method for producing a drug for swine atrophic rhinitis. Specifically, a step of culturing a skin necrotic toxin-producing host obtained by a genetic recombination technique, a step of recovering and purifying soluble skin necrotic toxin from the culture, and a step of detoxifying the skin necrotic toxin And a method for producing a drug for swine atrophic rhinitis, comprising the step of formulating the detoxified skin necrosis toxin.
 豚の萎縮性鼻炎(atrophic rhinitis;以下、ARと略すこともある)は、鼻甲介形成不全あるいは萎縮を特徴とする呼吸器系疾患である。発育遅延、二次感染の誘発などにより、重大な経済的損失をもたらすため、養豚業界にとって重大な疾病である(例えば、非特許文献1参照)。その原因菌としてボルデテラ・ブロンキセプチカ(Bordetella bronchiseptica;以下、Bbと略すこともある)及び毒素産生性パスツレラ・ムルトシダ(Pasteurella multocida;以下、Pmと略すこともある)が知られている。Bbは定着因子である赤血球凝集素や線毛を保有しているため、鼻粘膜に対する定着性が強いが、それを保有していないPmは単独では定着することが困難である。そのため、毒素産生性Pm感染が成立するためにはあらかじめ鼻粘膜を障害する因子の存在が必要である。その最も代表的な因子がBbの産生する皮膚壊死毒素(以下、Bb-DNTと略す)である。障害を受けた鼻粘膜に毒素産生性Pmが定着し、産生される毒素(以下、PmTと略す)によりARの症状が悪化すると考えられている。 Porcine atrophic rhinitis (hereinafter sometimes abbreviated as AR) is a respiratory disease characterized by turbinate dysplasia or atrophy. This is a serious disease for the pig farming industry because it causes serious economic loss due to growth delay, induction of secondary infection, and the like (see, for example, Non-Patent Document 1). As its causative bacteria, Bordetella bronchiseptica (hereinafter sometimes abbreviated as Bb) and toxin-producing Pasteurella multocida (hereinafter also abbreviated as Pm) are known. Bb possesses hemagglutinin and fimbriae, which are fixing factors, and thus has a strong fixability to the nasal mucosa, but Pm that does not have it is difficult to settle alone. Therefore, the presence of a factor that damages the nasal mucosa in advance is necessary for the formation of toxin-producing Pm infection. The most representative factor is skin necrosis toxin (hereinafter abbreviated as Bb-DNT) produced by Bb. It is believed that toxin-producing Pm settles in the damaged nasal mucosa and that the symptoms of AR are exacerbated by the toxin produced (hereinafter abbreviated as PmT).
 Bb-DNTは出血壊死、鼻甲介萎縮、発育遅延、血管平滑筋収縮、局所の血行障害、脾臓萎縮及び抗体産生阻害などの生物学的活性を持つ。それ故、古くからBb-DNTをトキソイド化したワクチンの必要性が指摘されていた(例えば、非特許文献2参照)。これまでに、イオン交換クロマトグラフィーによる方法(例えば、非特許文献3参照)、透析、ショ糖密度勾配超遠心及びゲルろ過クロマトグラフィーによる方法(例えば、非特許文献4参照)、核酸除去剤及び陽イオン交換クロマトグラフィーの組み合わせによる方法(例えば、非特許文献5参照)などの方法により精製したBb-DNTについてトキソイドワクチン作製の試みが行なわれたが、いずれも再現性や製造コスト上の問題で商品化には至っていない。唯一、硫酸基を導入したクロマト担体ゲルによる方法(例えば、特許文献1参照)により精製したBb-DNTのトキソイドワクチンが製品化に成功している。現在ではARを予防するために、単味不活化ワクチンとしてBb死菌ワクチン、Bbの産生する繊維状赤血球凝集素を主成分とするコンポーネントワクチン及びPmTトキソイドが使用され、また、混合ワクチンとしてPm死菌とBb死菌の混合ワクチン、PmTトキソイドとBb死菌の混合ワクチン、Bb-DNTトキソイドとPmTトキソイドの混合ワクチンなどが実用化されている。何れもホルマリン等で化学的に不活化したトキソイドが使用されている。 Bb-DNT has biological activities such as bleeding necrosis, nasal turbinate atrophy, growth delay, vascular smooth muscle contraction, local blood circulation disorder, spleen atrophy and antibody production inhibition. Therefore, the necessity of a vaccine in which Bb-DNT is toxoidated has been pointed out for a long time (see, for example, Non-Patent Document 2). So far, methods using ion exchange chromatography (for example, see Non-Patent Document 3), methods using dialysis, sucrose density gradient ultracentrifugation and gel filtration chromatography (for example, see Non-Patent Document 4), nucleic acid removing agents and Attempts were made to produce a toxoid vaccine for Bb-DNT purified by a method such as a combination of ion exchange chromatography (for example, see Non-Patent Document 5). It hasn't arrived. The only toxoid vaccine of Bb-DNT purified by a method using a chromatographic carrier gel into which a sulfate group has been introduced (see, for example, Patent Document 1) has been successfully commercialized. Currently, in order to prevent AR, Bb killed vaccine is used as a simple inactivated vaccine, component vaccine based on fibrous hemagglutinin produced by Bb and PmT toxoid, and Pm death is used as a combined vaccine. Bacteria and Bb killed mixed vaccine, PmT toxoid and Bb killed mixed vaccine, Bb-DNT toxoid and PmT toxoid mixed vaccine, etc. have been put into practical use. In any case, a toxoid chemically inactivated with formalin or the like is used.
 遺伝子組換え技術を用いた有用蛋白質の発現は今日では広く用いられている技術であり、中でも大腸菌を宿主とした発現系は最も一般的に用いられる発現系である。有用蛋白質の発現には、プロモーター配列の下流に目的遺伝子を結合した発現ベクターを構築することが一般的である。例えば大腸菌のプロモーター配列には、lac、trp、tac、trc、ara、T7などが知られている。しかしながら、大腸菌を用いて有用蛋白を高レベルで発現させた場合、しばしば不溶性の封入体を形成することが知られている(例えば、非特許文献6参照)。封入体から活性型の蛋白を得るときは、一般には、一旦、封入体を尿素あるいは塩酸グアニジンなどの蛋白変性剤を用いて可溶化し、これをリフォールディングする方法が取られる。 The expression of useful proteins using genetic recombination techniques is a widely used technique today, and among them, expression systems using E. coli as the host are the most commonly used expression systems. For expression of useful proteins, it is common to construct an expression vector in which a target gene is bound downstream of a promoter sequence. For example, lac, trp, tac, trc, ara, T7, etc. are known as promoter sequences of E. coli. However, it is known that when a useful protein is expressed at a high level using Escherichia coli, an insoluble inclusion body is often formed (for example, see Non-Patent Document 6). When obtaining an active protein from an inclusion body, generally, a method is employed in which the inclusion body is once solubilized using a protein denaturant such as urea or guanidine hydrochloride and then refolded.
 このような可溶化及びリフォールディングには様々な方法が試みられているが、その方法は取り扱う蛋白によって著しく異なり、目的とする活性型蛋白の回収量の低下をきたす場合が多い。Bb-DNTについても大腸菌を用いた発現の試みがなされている。PullingerらはBb-DNTの塩基配列を決定するとともに、trcプロモーターを用いた大腸菌での発現を報告した(例えば、非特許文献7参照)。また、HoriguchiらはT7プロモーターを用いた発現を報告している(例えば、非特許文献8参照)。しかしながら、これらの報告においてはBb-DNTの全長あるいは一部分を組換え大腸菌で精製し、その活性を評価しているのみであり、これら組換え体についての産業上の利用、例えば組換え体の発現量、不溶性画分の毒素活性、あるいはそれを用いたワクチンとしての有用性については示されていない。
特許第3884066号公報 柏崎ら., 豚病学第4版, pp.286-294, 1999 Roop II et al., Infect. Immun., 55: pp.217-222, 1987 Kume et al., Infect. Immun., 52: pp.370-377, 1986 Endoh et al., Microbiol. Immun., 30: pp.659-673, 1986 Horiguchi et al., FEMS Microbiol. Lett., 66: pp.39-44, 1990 Singh et al., J. Biosci. Bioeng., 99: pp.303-310, 2005 Pullinger et al., Infect. Immun., 64: pp.4163-4171, 1996 Horiguchi et al., Proc. Natl. Acad. Sci. USA., 94: pp.11623-11626, 1997
Various methods have been tried for such solubilization and refolding, but the method varies greatly depending on the protein to be handled, and often reduces the recovery amount of the target active protein. Attempts have also been made to express Bb-DNT using E. coli. Pullinger et al. Determined the base sequence of Bb-DNT and reported expression in Escherichia coli using the trc promoter (see, for example, Non-Patent Document 7). Horiguchi et al. Have reported expression using the T7 promoter (see, for example, Non-Patent Document 8). However, in these reports, only the full length or a part of Bb-DNT is purified by recombinant E. coli and its activity is evaluated. The industrial use of these recombinants, for example, expression of the recombinants There is no indication of the amount, the toxin activity of the insoluble fraction, or the usefulness as a vaccine using it.
Japanese Patent No. 3884066 Amagasaki et al., Hog Pathology 4th Edition, pp.286-294, 1999 Roop II et al., Infect. Immun., 55: pp. 217-222, 1987 Kume et al., Infect. Immun., 52: pp.370-377, 1986 Endoh et al., Microbiol. Immun., 30: pp. 659-673, 1986 Horiguchi et al., FEMS Microbiol. Lett., 66: pp.39-44, 1990 Singh et al., J. Biosci. Bioeng., 99: pp.303-310, 2005 Pullinger et al., Infect. Immun., 64: pp.4163-4171, 1996 Horiguchi et al., Proc. Natl. Acad. Sci. USA., 94: pp. 11623-11626, 1997
 上述したように、ARを予防するための死菌ワクチンやコンポーネントワクチンが実用化され、養豚業界に大いに貢献しているものの、コスト、安全対策、ワクチンの品質向上において改善・改良の余地がある。したがって、本発明が解決しようとする課題は、ARの発症阻止に有効で、且つ安全性、低コスト、安定供給を満足させる、組換え皮膚壊死トキソイドを有効成分として含有する豚萎縮性鼻炎用薬剤の製造方法を提供することにある。ここで本発明における「薬剤」とは、治療及び予防に適用される医薬組成物と定義される。 As mentioned above, although dead germ vaccines and component vaccines for preventing AR have been put into practical use and have greatly contributed to the pig farming industry, there is room for improvement and improvement in cost, safety measures, and vaccine quality improvement. Therefore, the problem to be solved by the present invention is a drug for swine atrophic rhinitis which contains recombinant skin necrosis toxoid as an active ingredient, which is effective in preventing the onset of AR and satisfies safety, low cost and stable supply. It is in providing the manufacturing method of. Here, the “drug” in the present invention is defined as a pharmaceutical composition applied for treatment and prevention.
 本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、ボルデテラ属菌の皮膚壊死毒素(Bb-DNT)を産生する組換え大腸菌(以下、Bb-DNT産生大腸菌と称することもある)を作製し、該Bb-DNT産生大腸菌からBb-DNTの回収を試みたところ、Bb-DNTは、可溶性画分及び不溶性画分の両方から回収されることを観察した。得られた可溶性画分及び不溶性画分の皮膚壊死毒素をそれぞれマウスに免疫した後、無毒化処理していない活性型のボルデテラ属菌皮膚壊死毒素で攻撃試験を行ったところ、可溶性画分の皮膚壊死毒素で免疫したマウスのみ致死から免れることを発見し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have referred to recombinant Escherichia coli (hereinafter referred to as Bb-DNT-producing Escherichia coli) that produces Bordeterra spp. Skin necrosis toxin (Bb-DNT). And Bb-DNT was recovered from the Bb-DNT-producing Escherichia coli, and it was observed that Bb-DNT was recovered from both the soluble and insoluble fractions. After immunizing mice with the obtained soluble and insoluble fractions of skin necrosis toxin, an attack test was carried out with an active form of Bordetella sp. Only mice immunized with necrotic toxin have been found to be free from lethality, and the present invention has been completed.
 すなわち、本発明は以下のとおりである。
〔1〕皮膚壊死毒素産生宿主から可溶性に発現した組換え皮膚壊死毒素を回収する工程を含む、豚萎縮性鼻炎用薬剤の製造方法。
〔2〕下記(1)から(4)の工程を含む、豚萎縮性鼻炎用薬剤の製造方法。
(1)遺伝子組み換え技術により得られた皮膚壊死毒素産生宿主を培養する工程、
(2)前記(1)の培養物から可溶性に発現した皮膚壊死毒素を回収・精製する工程、
(3)前記(2)の皮膚壊死毒素を無毒化する工程、
(4)前記(3)の無毒化皮膚壊死毒素を製剤化する工程
〔3〕皮膚壊死毒素がボルデテラ菌由来である、〔1〕又は〔2〕記載の製造方法。
〔4〕ボルデテラ菌がボルデテラ・ブロンキセプチカ、百日咳菌及びパラ百日咳菌からなる群より選択される、〔3〕記載の製造方法。
〔5〕宿主が大腸菌である、〔1〕ないし〔4〕の何れかに記載の製造方法。
That is, the present invention is as follows.
[1] A method for producing a drug for swine atrophic rhinitis, comprising a step of recovering recombinant skin necrosis toxin solublely expressed from a skin necrosis toxin producing host.
[2] A method for producing a drug for swine atrophic rhinitis comprising the following steps (1) to (4):
(1) a step of culturing a skin necrotic toxin-producing host obtained by a genetic recombination technique,
(2) recovering and purifying soluble necrotic toxin from the culture of (1),
(3) a step of detoxifying the skin necrosis toxin of (2),
(4) The process of formulating the detoxified skin necrosis toxin of (3) [3] The production method of [1] or [2], wherein the skin necrosis toxin is derived from Bordetella bacteria.
[4] The production method according to [3], wherein the Bordetella is selected from the group consisting of Bordetella bronchiseptica, Bordetella pertussis, and Parapertussis.
[5] The production method according to any one of [1] to [4], wherein the host is Escherichia coli.
 本発明に従えば、ARの発症阻止に有効な豚萎縮性鼻炎用薬剤の製造方法が提供される。本発明の豚萎縮性鼻炎用薬剤の製造方法においては、Bb-DNT産生大腸菌の破砕物から可溶性に発現した皮膚壊死毒素を回収する工程が含まれる。該工程により回収した皮膚壊死毒素のみが、ARの発症を阻止することができる免疫原性を保持した抗原蛋白として回収され、その後の製剤化に使用できる。 According to the present invention, a method for producing a drug for swine atrophic rhinitis that is effective in preventing the onset of AR is provided. The method for producing a drug for swine atrophic rhinitis of the present invention includes a step of recovering soluble necrotic toxin from crushed Bb-DNT-producing Escherichia coli. Only the skin necrosis toxin recovered by this step is recovered as an antigenic protein having immunogenicity capable of preventing the onset of AR and can be used for subsequent formulation.
 本発明の特徴は、皮膚壊死毒素産生宿主から可溶性に発現した組換え皮膚壊死毒素を回収する工程を含む、豚萎縮性鼻炎用薬剤の製造方法にある。 The feature of the present invention resides in a method for producing a drug for swine atrophic rhinitis including a step of recovering soluble skin necrosis toxin expressed in a soluble manner from a skin necrosis toxin production host.
 本発明の製造方法における対象となるのは、遺伝子組み換え技術により発現させたときに不溶性の封入体を形成し、これを蛋白変性剤である塩酸グアニジンや尿素等で可溶化してもAR発症阻止に有効な免疫原性を得ることができない皮膚壊死毒素である。かかる皮膚壊死毒素として、ボルデテラ菌由来の皮膚壊死毒素が挙げられるが、好ましくは、ボルデテラ・ブロンキセプチカの皮膚壊死毒素(Bb-DNT)、ARワクチンの代替品として利用することができる百日咳菌の皮膚壊死毒素(Bp-DNT)(特開平10-251298号公報参照)、及びBb-DNTの塩基配列と99%のホモロジーがあるパラ百日咳菌の皮膚壊死毒素(以下、Bpp-DNTと称することもある)(非特許文献6、Kimberly E Walker and Alison Ann Weiss Infection and Immunity 62, 3817-3838, 1994参照)である。以下においては、Bb-DNTを用いた豚萎縮性鼻炎用薬剤の製造方法について詳述する。 The object of the production method of the present invention is to form an insoluble inclusion body when expressed by genetic recombination technology, and to prevent the onset of AR even if it is solubilized with a protein denaturant such as guanidine hydrochloride or urea. It is a skin necrotic toxin that cannot obtain effective immunogenicity. Examples of such skin necrosis toxin include Bordeterra bacteria-derived skin necrosis toxin, preferably Bordetella bronchiseptica skin necrosis toxin (Bb-DNT), and pertussis skin necrosis that can be used as an alternative to AR vaccine. Toxin (Bp-DNT) (see JP-A-10-251298) and B. pertussis skin necrosis toxin with 99% homology to the base sequence of Bb-DNT (hereinafter sometimes referred to as Bpp-DNT) (See Non-Patent Document 6, Kimberly E Walker and Alison Ann Weiss Infection and Immunity 62, 3817-3838, 1994). Below, the manufacturing method of the chemical | medical agent for swine atrophic rhinitis using Bb-DNT is explained in full detail.
 (1)ボルデテラ属菌皮膚壊死毒素遺伝子のクローニング
 本願実施例では、財団法人化学及血清療法研究所において1988年に野外材料より分離され維持されたボルデテラ・ブロンキセプチカS611株からクローニングされたBb-DNTをコードする遺伝子を用いた。ボルデテラ・ブロンキセプチカの増殖には、例えば、マッコンキー培地(日本ベクトン・ディッキンソン株式会社)、ボルデ・ジャング培地(日本ベクトン・ディッキンソン株式会社)、堀口らの培地(Horiguchi et al., Microb. Pathog., 6:361-368, 1989)などが用いられる。細菌の分離、マスターシードの調製、大量培養など、目的に合わせて、適宜選択すれば良い。本願実施例では、小・中容量の菌体増殖のために堀口らの培地を使用した。使用前に添付のプロトコールに従ってpHを6.8~7.6に調整した後に115℃、25分間の高圧蒸気滅菌が行なわれる。培養条件は、通常、温度36~38℃、期間1~5日間の範囲で設定されるが、使用目的、培養形態、植え付けた菌量、培地スケール等に応じて適宜調節すれば良い。
(1) Cloning of Bordetella spp. Skin necrosis toxin gene In this example, Bb-DNT cloned from Bordetella bronchiceptica S611 strain isolated and maintained from field materials in 1988 at the Institute of Chemical and Serum Therapy The encoding gene was used. For the growth of Bordetella bronchiseptica, for example, McConkie medium (Nippon Becton Dickinson), Borde Jung medium (Nippon Becton Dickinson), Horiguchi et al. (Horiguchi et al., Microb. Pathog., 6 : 361-368, 1989). What is necessary is just to select suitably according to the objectives, such as isolation | separation of bacteria, preparation of a master seed, and mass culture. In the examples of the present application, the medium of Horiguchi et al. Was used for the growth of small and medium-sized cells. Before use, the pH is adjusted to 6.8-7.6 according to the attached protocol, followed by autoclaving at 115 ° C for 25 minutes. The culture conditions are usually set in the range of a temperature of 36 to 38 ° C. and a period of 1 to 5 days, but may be appropriately adjusted according to the purpose of use, culture form, amount of planted bacteria, medium scale and the like.
 培養液中の菌体は、低速遠心(5000rpm、5~10分間)により沈渣に回収される。ボルデテラ・ブロンキセプチカのBb-DNTをコードする遺伝子は、菌体から抽出したゲノムDNAを出発材料として、Sambrookらが述べている一般的な遺伝子組換え技術(Molecular Cloning, A Laboratory Manual Second Edition. Cold Spring Harbor Laboratory Press, N.Y., 1989)に従って調製することができる。実際には、種々の市販のキットが使用される。例えば、ゲノムDNAの取得には、ISOPLANT(和光純薬)、インスタジーン(日本バイオ・ラッド株式会社)、E.Z.N.A. Bacterial DNA kit(フナコシ株式会社)、MagPrep Bacterial Genomic DNA kit(タカラバイオ株式会社)、DNAアイソレーションキット(ロシュ・ダイアグノスティックス株式会社)、QIAamp DNA Mini Kit(株式会社キアゲン)などのキットが使用され、遺伝子の取得には、制限酵素切断による方法及びPCR法を応用した、Takara Ex Taq(タカラバイオ株式会社)、iTaq DNA polymerase(日本バイオ・ラッド株式会社)、KOD DNA polymerase(東洋紡績株式会社)、Taq DNA polymerase(株式会社キアゲン)などが使用される。また、得られた遺伝子をクローニングするときには、TOPO-TAクローニングキット(インビトロジェン株式会社)、pT7 BlueT-Vector(タカラバイオ株式会社)、QIAGEN PCR Cloning Kit(株式会社キアゲン)などのキットが使用される。 The bacterial cells in the culture solution are collected in the sediment by low-speed centrifugation (5000 rpm, 5 to 10 minutes). The gene encoding Bb-DNT of Bordetella bronchiceptica is derived from the general DNA recombination technology described by Sambrook et al. (Molecular Cloning, A Laboratory Manual Second Edition. Cold Spring Harbor Laboratory Press, NY, 1989). In practice, various commercially available kits are used. For example, to acquire genomic DNA, ISOPLANT (Wako Pure Chemical), Instagene (Nippon Bio-Rad Co., Ltd.), EZNA Bacterial DNA Kit (Funakoshi Co., Ltd.), MagPrep Bacterial Genomic DNA Kit (Takara Bio Inc.), DNA Kits such as isolation kits (Roche Diagnostics Co., Ltd.) and QIAamp DNA Mini Kit (Qiagen Co., Ltd.) are used, and Takara Ex using the restriction enzyme digestion method and PCR method for gene acquisition Taq (Takara Bio Inc.), iTaq DNA Polymerase (Nippon Bio-Rad Co., Ltd.), KOD DNA Polymerase (Toyobo Co., Ltd.), Taq DNA Polymerase (Qiagen Co., Ltd.), etc. are used. Moreover, when cloning the obtained gene, kits such as TOPO-TA cloning kit (Invitrogen Corporation), pT7 BlueT-Vector (Takara Bio Inc.), QIAGEN PCR Cloning Kit (Qiagen) are used.
 より具体的には、低速遠心により回収された菌体からからISOPLANT(和光純薬)を用いて染色体DNAを抽出し、この染色体DNAを鋳型(テンプレート)として、LA Taq(タカラバイオ株式会社)を用いて、添付のプロトコールに従い、PCR法によりBb-DNTをコードする遺伝子領域が増幅される。PCRに用いるプライマーは、GenBank Accession No. U59687に登録された塩基配列に基づいて設計される。このとき上流側プライマーの5’末端及び下流側プライマーの5’末端に適当な制限酵素切断部位の塩基配列が付加される。PCR増幅産物は、遺伝子クローニングベクター、pCR-XL-TOPO(インビトロジェン株式会社)にクローニングされ、DNAシークエンサー(ABI Prism 310 Genetic Analyzer、アプライドバイオシステムズ社)により塩基配列の決定が行われる。こうしてBb-DNT遺伝子が挿入されたプラスミドpCRDNTが取得される。本発明のBb-DNT遺伝子は配列番号1で示した塩基配列を有するものである。 More specifically, chromosomal DNA is extracted from bacterial cells collected by low-speed centrifugation using ISOPLANT (Wako Pure Chemical Industries), and LA Taq (Takara Bio Inc.) is used as a template (template). The gene region encoding Bb-DNT is amplified by PCR according to the attached protocol. Primers used for PCR are designed based on the nucleotide sequence registered in GenBank Accession No. U59687. At this time, base sequences of appropriate restriction enzyme cleavage sites are added to the 5 'end of the upstream primer and the 5' end of the downstream primer. The PCR amplification product is cloned into a gene cloning vector, pCR-XL-TOPO (Invitrogen Corp.), and the nucleotide sequence is determined by a DNA sequencer (ABI Prism 310 Genetic Genetic Analyzer, Applied Biosystems). Thus, the plasmid pCRDNT into which the Bb-DNT gene has been inserted is obtained. The Bb-DNT gene of the present invention has the base sequence shown in SEQ ID NO: 1.
 (2)Bb-DNT遺伝子の発現
 上記のpCRDNTからBb-DNT遺伝子を切り出し、これを適当な発現ベクターに組み込み、当該発現ベクターを宿主に導入することによって、Bb-DNTの発現が行なわれる。外来蛋白の発現には細菌、酵母、動物細胞、植物細胞及び昆虫細胞などが常用される。Bb-DNTトキソイドを発現させる場合は、いずれの宿主も利用できるが、宿主に毒性を示さない大腸菌等の細菌が好ましい。発現ベクターは、大腸菌発現用にtrcプロモーター、T7プロモーター、cspAプロモーターなどのプロモーター領域を有する種々の発現ベクターが開発・市販されているのでこれらの中から適宜選択して使用すれば良い。
(2) Expression of Bb-DNT gene The Bb-DNT gene is expressed by excising the Bb-DNT gene from the above-described pCRDNT, incorporating it into an appropriate expression vector, and introducing the expression vector into a host. Bacteria, yeast, animal cells, plant cells, insect cells and the like are commonly used for the expression of foreign proteins. When expressing Bb-DNT toxoid, any host can be used, but bacteria such as Escherichia coli that are not toxic to the host are preferred. As expression vectors, various expression vectors having a promoter region such as trc promoter, T7 promoter, cspA promoter and the like have been developed and marketed for E. coli expression.
 本発明の抗原として使用されるBb-DNTトキソイドは、不溶性に発現させたままではAR発症を阻止できる免疫原性を保持しない。不溶性の封入体として発現させたものを、一旦、タンパク変性剤、例えば、塩酸グアニジンや尿素で溶解しても、これを除去するときに容易に凝集する性質を有する。したがって、本発明のBb-DNTトキソイドは、可溶性に発現させるのが好ましい。本発明において、「可溶性に発現させる」とは、目的蛋白質が可溶性の蛋白質として大腸菌菌体内に溶解した状態で発現されることをいう。大腸菌においてBb-DNTトキソイドを可溶性に発現させる方法として、低温で培養する方法、低濃度の誘導剤で発現誘導する方法、分泌シグナルペプチドを付加して発現させる方法及びシャペロン蛋白と共発現させる方法が挙げられるが、何れの方法を使用しても良い。 The Bb-DNT toxoid used as the antigen of the present invention does not retain immunogenicity capable of preventing the onset of AR when it is expressed insoluble. What is expressed as an insoluble inclusion body is once aggregated with a protein denaturant such as guanidine hydrochloride or urea, but easily aggregates when removed. Therefore, the Bb-DNT toxoid of the present invention is preferably expressed in a soluble manner. In the present invention, “to be expressed in a soluble manner” means that the target protein is expressed as a soluble protein in a state dissolved in Escherichia coli cells. As a method for soluble expression of Bb-DNT toxoid in E. coli, there are a method of culturing at a low temperature, a method of inducing expression with a low concentration of an inducing agent, a method of adding a secretory signal peptide and a method of coexpression with a chaperone protein. Any method may be used.
 発現ベクターに合わせて適当な大腸菌、例えば、BL21、HMS174、DH5α、HB101、JM109などが宿主として選択される。本願実施例では、低温で蛋白発現を誘導できるcspAプロモーターを有するpColdベクター(タカラバイオ株式会社)、trcプロモーターを有するpTrcベクター(GEヘルスケアバイオサイエンス株式会社)及びT7プロモーターを有するpETベクター(メルク株式会社)を用いた。大腸菌の形質転換は、市販のコンピテントセルを用い、添付の方法に従って行うことができる。こうしてBb-DNTを産生する大腸菌ColdDNT、TrcDNT、ETDNTが得られる。大腸菌の培養に使用される培地(例えば、LB、SOC、SOBなど)及び形質転換体の選択に用いられる試薬(例えば、アンピシリンなど)は、一般に市販されているものを使用すれば良い。また、培地のpHは、大腸菌の増殖に適した範囲(pH6~8)で用いられる。 An appropriate Escherichia coli, such as BL21, HMS174, DH5α, HB101, JM109, etc., is selected as a host according to the expression vector. In this application example, a pCold vector (Takara Bio Inc.) having a cspA promoter capable of inducing protein expression at low temperature, a pTrc vector (GE Healthcare Bioscience Co., Ltd.) having a trc promoter, and a pET vector (Merck stock) having a T7 promoter Company). Transformation of E. coli can be performed using a commercially available competent cell according to the attached method. Thus, Escherichia coli ColdDNT, TrcDNT, and ETDNT producing Bb-DNT are obtained. As a medium (for example, LB, SOC, SOB, etc.) used for culturing Escherichia coli and a reagent (for example, ampicillin, etc.) used for selection of transformants, commercially available ones may be used. Further, the pH of the medium is used in a range suitable for the growth of E. coli (pH 6-8).
 Bb-DNTを発現している組換え大腸菌のスクリーニングは、以下のように行われる。必要に応じて適当な発現誘導剤の存在下に、培養・増殖した菌体を低速遠心分離により回収し、これに一定の緩衝液(例えば、10mM Tris (pH 8)、100mM NaCl、1mM EDTA)を加え懸濁した後、超音波破砕機、フレンチプレス、高圧ホモジナイザー等により菌体を破砕し、高速遠心(15000rpm、15分間)により沈渣又は上清に分離・回収する。緩衝液には界面活性剤(例えば、Triton X100など)、リゾチーム等を添加しても良い。上清及び沈渣に回収したBb-DNTの一定量をSDS-ポリアクリルアミドゲル電気泳動にかけ、クマシーブリリアントブルーで染色した後、分子サイズ及び染色像からBb-DNT蛋白の発現を確認する。沈渣に回収したBb-DNTは、一般に封入体と呼ばれる。なお、Bb-DNT蛋白の確認(または検出)には、上記の分子サイズに基づく方法以外に、ELISA法、ウェスタンブロット法、ドットブロット法などの抗原抗体反応に基づく方法が取られることもある。いずれも大腸菌で発現させた外来蛋白を検出する際の一般的な方法であり、目的に応じて適宜選択すればよい。 Screening of recombinant E. coli expressing Bb-DNT is performed as follows. If necessary, the cultured and proliferated cells in the presence of an appropriate expression inducer are collected by low-speed centrifugation, and a certain buffer (for example, 10 mM Tris (pH 8), 100 mM NaCl, 1 mM EDTA) is collected. After suspension, the cells are crushed with an ultrasonic crusher, French press, high-pressure homogenizer, etc., and separated and collected into a sediment or supernatant by high-speed centrifugation (15000 rpm, 15 minutes). A surfactant (eg, Triton® X100), lysozyme, etc. may be added to the buffer solution. A certain amount of Bb-DNT recovered in the supernatant and sediment is subjected to SDS-polyacrylamide gel electrophoresis and stained with Coomassie Brilliant Blue, and then the expression of Bb-DNT protein is confirmed from the molecular size and stained image. Bb-DNT collected in the sediment is generally called an inclusion body. For confirmation (or detection) of Bb-DNT protein, methods based on antigen-antibody reactions such as ELISA, Western blot, and dot blot may be used in addition to the method based on the molecular size described above. Both are general methods for detecting foreign proteins expressed in E. coli, and may be appropriately selected according to the purpose.
 かかるBb-DNT産生大腸菌からこれらの蛋白を精製する際には、一般に、蛋白質化学において使用される精製方法、例えば、遠心分離、塩析法、限外ろ過法、等電点沈殿法、電気泳動法、イオン交換クロマト法、ゲルろ過クロマト法、アフィニティークロマト法、疎水クロマト法、ハイドロキシアパタイトクロマト法などの方法を組み合わせた方法が使用される。Bb-DNT及びBb-DNTトキソイドは、陽イオン交換クロマトグラフィーにより容易に精製することができる。得られた蛋白質の量は、BCA Protein Assay Reagent Kit(Pierce Biotechnology, Inc)、プロテインアッセイキット(日本バイオ・ラッド株式会社)などを用いて測定される。 When purifying these proteins from such Bb-DNT-producing Escherichia coli, purification methods generally used in protein chemistry, such as centrifugation, salting out, ultrafiltration, isoelectric precipitation, electrophoresis, etc. A method in which methods such as ion exchange chromatography, gel filtration chromatography, affinity chromatography, hydrophobic chromatography, and hydroxyapatite chromatography are combined is used. Bb-DNT and Bb-DNT toxoids can be easily purified by cation exchange chromatography. The amount of the obtained protein is measured using a BCA Protein Assay Reagent Kit (Pierce Biotechnology, Inc), a protein assay kit (Nippon Bio-Rad Co., Ltd.) and the like.
 (3)Bb-DNTトキソイドのワクチンとしての評価
 こうして得られたBb-DNTは、種々の方法で無毒化(トキソイド化)され、ワクチンとしての評価が行われる。無毒化は、一般には、ホルマリン、グルタールアルデヒドが使用される。無毒化の条件は、使用される試薬、蛋白の濃度により適宜調節される。例えば、0.8%のホルマリンを使用し、37~40℃で7日間の処理が行われる(特許文献1)。ワクチンとしての評価は、小動物に免疫した後、致死量のBb-DNTを投与することにより調べることができる。免疫方法(例えば、皮下、筋肉内、腹腔内、経鼻、経口、舌下等の投与部位、免疫期間等)は、通常ワクチン等の免疫原性を調べる場合に使用される一般的な手法に従い行えば良い。陽性コントロールとして、Bbの菌体破砕液を上記と同様にホルマリン処理したものが使用される。陰性コントロールとして、リン酸緩衝液、生理食塩水、精製水などが用いられる。
(3) Evaluation of Bb-DNT toxoid as vaccine The thus obtained Bb-DNT is detoxified (toxoided) by various methods and evaluated as a vaccine. In general, formalin or glutaraldehyde is used for detoxification. The detoxification conditions are appropriately adjusted depending on the reagent used and the protein concentration. For example, the treatment is performed for 7 days at 37 to 40 ° C. using 0.8% formalin (Patent Document 1). Evaluation as a vaccine can be carried out by administering a lethal dose of Bb-DNT after immunization of a small animal. The immunization method (for example, subcutaneous, intramuscular, intraperitoneal, nasal, oral, sublingual administration site, immunization period, etc.) is generally in accordance with general methods used for examining immunogenicity of vaccines and the like. Just do it. As a positive control, a Bb cell disruption solution treated with formalin as described above is used. As a negative control, phosphate buffer solution, physiological saline, purified water or the like is used.
 アジュバントとして、ホルマリン処理Bb-DNTに、水酸化アルミニウム、リン酸アルミニウム、ミネラルオイル及びノンミネラルオイル等を添加することがある。こうして調製されたBb-DNTトキソイドワクチン及びコントロールワクチンを、一群5~10匹のマウスの腹腔内に、2週間後に同量を腹腔内に投与し、2回目投与後、2週後に半数致死量の10倍量以上のBb-DNTを投与する。その後、7~14日間、マウスの生死を観察することにより、Bb-DNTトキソイドの免疫応答能の評価が行なわれる。本発明のBb-DNTトキソイドは、AR発症を防御するためのワクチンとして有効な材料となり得るものである。 As an adjuvant, aluminum hydroxide, aluminum phosphate, mineral oil, non-mineral oil, etc. may be added to formalin-treated Bb-DNT. The Bb-DNT toxoid vaccine and control vaccine thus prepared were intraperitoneally administered intraperitoneally in groups of 5 to 10 mice, 2 weeks later, the second dose, and half the lethal dose after 2 weeks. Administer 10 times more Bb-DNT. Thereafter, the immunity of Bb-DNT toxoid is evaluated by observing the life and death of mice for 7 to 14 days. The Bb-DNT toxoid of the present invention can be an effective material as a vaccine for protecting against the onset of AR.
 本発明のBb-DNTトキソイドは、上記のアジュバントに加えて、一般に用いられる添加剤、例えば、安定化剤(アルギニン、ポリソルベート80、マクロゴール4000など)、賦型剤(マンニトール、ソルビトール、スクロース)などを添加し、無菌濾過、分注、凍結乾燥等の処理を行い製剤化され、注射剤としてあるいは経粘膜的に投与(経鼻、経口、舌下)される製剤として、ARの感染・発症を防御するためのワクチンとして使用される。また、本発明のBb-DNTトキソイドは、他の豚感染症のワクチンと混合することにより、数種の豚感染症を同時に防御するための混合ワクチンとして使用することもできる。このような他の豚感染症ワクチンとしては、豚日本脳炎ワクチン、豚伝染性胃腸炎ワクチン、豚流行性下痢症ワクチン、豚パルボウイルス感染症ワクチン、豚ゲタウイルス感染症ワクチン、豚オーエスキー病ワクチン、豚丹毒ワクチン、豚繁殖・呼吸器障害症候群ワクチン、豚アクチノバシラス・プルロニューモニエ感染症ワクチン、豚ヘモフィルス・パラスイス感染症ワクチン、豚大腸菌性下痢症ワクチン、豚マイコプラズマ・ハイオニューモニエ感染症ワクチンなどが挙げられる。
 以下に、実施例を挙げて本発明を具体的に説明する。
The Bb-DNT toxoid of the present invention contains additives generally used in addition to the above-mentioned adjuvant, such as stabilizers (arginine, polysorbate 80, macrogol 4000, etc.), excipients (mannitol, sorbitol, sucrose), etc. And then processed aseptic filtration, dispensing, lyophilization, etc., and formulated as an injection or transmucosally (nasally, orally, sublingually) to treat AR infection / onset Used as a vaccine to protect. The Bb-DNT toxoid of the present invention can also be used as a mixed vaccine for simultaneously protecting several types of swine infections by mixing with other swine infection vaccines. Such other swine infectious disease vaccines include swine Japanese encephalitis vaccine, swine infectious gastroenteritis vaccine, swine epidemic diarrhea vaccine, swine parvovirus infectious disease vaccine, swine getavirus infectious disease vaccine, swine oesky disease vaccine Swine erysipelas vaccine, swine reproductive / respiratory disorder syndrome vaccine, swine actinobacillus pleuropneumoniae infection vaccine, swine haemophilus paraswiss infection vaccine, swine E. coli diarrhea vaccine, swine mycoplasma hyopneumoniae infection vaccine, etc. Can be mentioned.
Hereinafter, the present invention will be specifically described with reference to examples.
《ボルデテラ属菌Bb-DNT遺伝子のクローニング》
 Bordetella bronchiseptica S611株(財団法人化学及血清療法研究所において1988年に野外材料より分離され維持された株)を使用した。これをHoriguchiらの培地(表1に組成表を示す)に接種し、37℃で1日間培養した。遠心により菌体を回収し、ISOPLANT(和光純薬)を用いて染色体DNAを抽出した。Horiguchiらの培地は、pH6.8~7.6に調整し、115℃、25分間高圧蒸気滅菌を行なった。
<Cloning of Bordetella sp. Bb-DNT gene>
Bordetella bronchiseptica S611 strain (a strain isolated and maintained from field materials in 1988 at the Institute of Chemical and Serum Therapy) was used. This was inoculated into a medium of Horiguchi et al. (A composition table is shown in Table 1) and cultured at 37 ° C. for 1 day. The cells were collected by centrifugation, and chromosomal DNA was extracted using ISOPLANT (Wako Pure Chemical Industries). The medium of Horiguchi et al. Was adjusted to pH 6.8-7.6 and autoclaved at 115 ° C. for 25 minutes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この染色体DNAをテンプレートとし、LA Taq(タカラバイオ株式会社)を用いて、PCR法によりBb-DNT遺伝子領域を増幅した。増幅に用いたPCRプライマーは、GenBank Accession No. U59687に登録された塩基配列より設計した(配列番号2及び3)。増幅産物の5’側にはPciIサイト、3’側にはBamHIサイトが付加される。PCRは、94℃、60秒反応後、94℃、30秒と68℃、5分間を20回繰り返し、その後72℃、10分間反応させた。 The Bb-DNT gene region was amplified by the PCR method using LA Taq (Takara Bio Inc.) using this chromosomal DNA as a template. The PCR primers used for amplification were designed from the nucleotide sequences registered in GenBank Accession No. U59687 (SEQ ID NOs: 2 and 3). A PciI site is added to the 5 'side of the amplified product, and a BamHI site is added to the 3' side. PCR was performed at 94 ° C for 60 seconds, followed by 20 times of 94 ° C, 30 seconds and 68 ° C for 5 minutes, and then allowed to react at 72 ° C for 10 minutes.
 PCR増幅産物をpCR-XL-TOPO(インビトロジェン株式会社)と混合し、添付の方法に従って反応後、反応液をTOP10F'(インビトロジェン株式会社)に加え、常法により形質転換を行った。カナマイシン添加サークルグロー寒天培地(フナコシ株式会社)で37℃、1夜培養し、出現したコロニーから、Bb-DNT遺伝子が挿入されたプラスミドpCRDNTを得た。Bb-DNT遺伝子の塩基配列は、DNAシークエンサー(ABI Prism 310 Genetic Analyzer、アプライドバイオシステムズジャパン株式会社)により決定された。配列を配列番号1に示す。 The PCR amplification product was mixed with pCR-XL-TOPO (Invitrogen Corporation), reacted according to the attached method, the reaction solution was added to TOP10F '(Invitrogen Corporation), and transformation was performed by a conventional method. Cultivation was carried out overnight at 37 ° C. in a kanamycin-added circle glow agar medium (Funakoshi Co., Ltd.), and a plasmid pCRDNT into which the Bb-DNT gene was inserted was obtained from the colonies that appeared. The base sequence of the Bb-DNT gene was determined by a DNA sequencer (ABI Prism 310 Genetic Analyzer, Applied Biosystems Japan Ltd.). The sequence is shown in SEQ ID NO: 1.
 《発現ベクターの構築》
 実施例1で得られたプラスミドpCRDNTを制限酵素PciI及びBamHIで処理し、約4.4KbpのBb-DNT遺伝子断片を精製した。これを、予め制限酵素NcoI及びBamHIで処理したpTrc99A(ファルマシアバイオテク株式会社)、pET-11d(メルク株式会社)と混合し、16℃で30分間ライゲーション反応を行った(Ligation high、東洋紡績株式会社)。各ライゲーション反応液をDH5αコンピテントセル(タカラバイオ株式会社)に加え、常法により形質転換を行った。アンピシリン添加サークルグロー培地に接種し、37℃、一夜培養後に出現したコロニーから、Bb-DNT遺伝子が挿入された発現ベクターpTrcDNT、pETDNTを得た。
<Construction of expression vector>
The plasmid pCRDNT obtained in Example 1 was treated with restriction enzymes PciI and BamHI, and a Bb-DNT gene fragment of about 4.4 Kbp was purified. This was mixed with pTrc99A (Pharmacia Biotech Co., Ltd.) and pET-11d (Merck Co., Ltd.) previously treated with restriction enzymes NcoI and BamHI, and a ligation reaction was performed at 16 ° C. for 30 minutes (Ligation high, Toyobo Co., Ltd.) ). Each ligation reaction solution was added to DH5α competent cell (Takara Bio Inc.), and transformation was performed by a conventional method. Expression vectors pTrcDNT and pETDNT into which the Bb-DNT gene was inserted were obtained from colonies that had been inoculated into an ampicillin-added circle glow medium and appeared after overnight culture at 37 ° C.
 また、実施例1で得られたpCRDNTを鋳型として、LA Taq(タカラバイオ株式会社)を用いて、PCR法によりBb-DNT遺伝子領域を増幅した。増幅に用いたPCRプライマーは、GenBank Accession No. U59687に登録された塩基配列より設計した(配列番号4及び5)。増幅産物の5’側には制限酵素KpnIサイト、3’側には制限酵素BamHIサイトが付加される。PCRは、94℃、60秒反応後、94℃、30秒と68℃、5分間を20回繰り返し、その後72℃、10分間反応させた。増幅した断片をKpnI及びBamHIで処理し、あらかじめKpnI及びBamHIで消化したpColdIV(タカラバイオ株式会社)と混合し、16℃で30分間ライゲーション反応を行った。ライゲーション反応液をDH5αコンピテントセルに加え、常法により形質転換を行った。アンピシリン添加サークルグロー培地に接種し、37℃、一夜培養後に出現したコロニーから、Bb-DNT遺伝子が挿入された発現ベクターpColdDNTを得た。 In addition, the Bb-DNT gene region was amplified by the PCR method using LA Taq (Takara Bio Inc.) using pCRDNT obtained in Example 1 as a template. The PCR primers used for amplification were designed from the nucleotide sequences registered in GenBank Accession No. U59687 (SEQ ID NOs: 4 and 5). A restriction enzyme KpnI site is added to the 5 'side of the amplified product, and a restriction enzyme BamHI site is added to the 3' side. PCR was performed at 94 ° C for 60 seconds, followed by 20 times of 94 ° C, 30 seconds and 68 ° C for 5 minutes, and then allowed to react at 72 ° C for 10 minutes. The amplified fragment was treated with KpnI and BamHI, mixed with pColdIV (Takara Bio Inc.) previously digested with KpnI and BamHI, and ligated at 16 ° C. for 30 minutes. The ligation reaction solution was added to DH5α competent cells, and transformation was performed by a conventional method. An expression vector pColdDNT into which the Bb-DNT gene was inserted was obtained from colonies that had been inoculated into an ampicillin-added circle glow medium and appeared after overnight culture at 37 ° C.
《Bb-DNTの発現》
 実施例2で得られたそれぞれの発現ベクターで大腸菌BL21株(メルク株式会社)を形質転換し、Bb-DNTを産生する大腸菌ColdDNT、TrcDNT及びETDNTをクローニングした。各クローンの一部を3mLのアンピシリン加YE培地(表2に組成表を示す)に接種し、一夜振盪培養した。振盪培養で得られた菌液50μLを50mLのアンピシリン加YE培地に接種し、37℃で振盪培養した。TrcDNT及びETDNTの場合には、OD660が1.0を超えた時点でIPTG(イソプロピル-β-D-ガラクトピラノシド)を終濃度1mMとなるように添加し、約16時間、30℃または37℃で振盪培養を続けた。ColdDNTの場合にはOD660が1.0を超えた時点で15℃に1時間静置し、IPTGを添加後、15℃で約24時間振盪培養を行った。培養終了後、遠心により菌体を回収し、菌体を溶解Buffer(50 mM Tris-Cl, 1mM EDTA, 100mM NaCl, pH8.0)に懸濁した。懸濁液にLysozyme(生化学工業、10mg/mL・DW)を加え、室温で20分間溶菌処理した。溶菌処理液をさらに超音波破砕して遠心し、上清を可溶性画分、沈渣を不溶性画分(封入体)とした。それぞれの画分について、常法に従いSDS-PAGEを行い、CBB染色後、デンシトメーターでBb-DNT及びBb-DNTトキソイドの発現量を算出した。その結果を表3に示す。
<Expression of Bb-DNT>
E. coli BL21 strain (Merck Co., Ltd.) was transformed with each expression vector obtained in Example 2, and E. coli ColdDNT, TrcDNT and ETDNT producing Bb-DNT were cloned. A part of each clone was inoculated into 3 mL of ampicillin-supplemented YE medium (composition table is shown in Table 2) and cultured overnight with shaking. 50 μL of the bacterial solution obtained by shaking culture was inoculated into 50 mL of ampicillin-added YE medium and cultured at 37 ° C. with shaking. In the case of TrcDNT and ETDNT, when OD 660 exceeds 1.0, IPTG (isopropyl-β-D-galactopyranoside) is added to a final concentration of 1 mM, and about 16 hours at 30 ° C. or 37 ° C. Continued shaking culture at. In the case of ColdDNT, when OD 660 exceeded 1.0, it was allowed to stand at 15 ° C for 1 hour, and after IPTG was added, shaking culture was performed at 15 ° C for about 24 hours. After completion of the culture, the cells were collected by centrifugation, and the cells were suspended in a lysis buffer (50 mM Tris-Cl, 1 mM EDTA, 100 mM NaCl, pH 8.0). Lysozyme (Seikagaku Corporation, 10 mg / mL · DW) was added to the suspension, followed by lysis treatment at room temperature for 20 minutes. The lysis treatment solution was further sonicated and centrifuged, and the supernatant was used as a soluble fraction and the sediment was used as an insoluble fraction (inclusion body). Each fraction was subjected to SDS-PAGE according to a conventional method, and after CBB staining, the expression levels of Bb-DNT and Bb-DNT toxoid were calculated with a densitometer. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
《Bb-DNTトキソイドのワクチン評価》
 実施例3で得られたColdDNTで可溶性に発現したBb-DNT(sBb-ColdDNT)及びTrcDNTで可溶性に発現したBb-DNT(sBb-TrcDNT)をHoriguchiらの報告(Horiguchi et al., FEMS Microbiol. Lett., 66:39-44, 1990)に準じて精製した。これに終濃度0.8%の割合でホルマリンを加え、37℃で7日間処理することで不活化した。また、実施例3で得られたETDNTで不溶性に発現したBb-DNT(isBb-ETDNT)を8M尿素溶液で溶解した。sBb-ColdDNT、sBb-TrcDNT及びisBb-ETDNT溶液にアルハイドロゲル(水酸化アルミニウムゲル、Brenntag Biosector A/S)を添加し、1mL当たり1ugの各抗原及び0.5mgのアルハイドロゲルを含有するワクチン液を調製した。この3種類のワクチン0.5mLを、3週齢メス、SPF ddYマウス腹腔内にそれぞれ2週間隔で2回注射した。陽性コントロールとして、市販のARワクチン(スイムジェンART2、財団法人化学及血清療法研究所)を用いた。これはBb S611株の超音波処理による菌体破砕液の上清から特許第3884066号(特許文献1)に記載の方法に従って精製、不活化したBb-DNTを約10μg/mL含む。
《Bb-DNT toxoid vaccine evaluation》
Bb-DNT solublely expressed in ColdDNT obtained in Example 3 (sBb-ColdDNT) and Bb-DNT solublely expressed in TrcDNT (sBb-TrcDNT) were reported by Horiguchi et al. (Horiguchi et al., FEMS Microbiol. Lett., 66: 39-44, 1990). This was inactivated by adding formalin at a final concentration of 0.8% and treating at 37 ° C. for 7 days. Further, Bb-DNT (isBb-ETDNT) expressed insoluble in ETDNT obtained in Example 3 was dissolved in 8M urea solution. Vaccine solution containing Alhydrogel (Aluminum Hydroxide Gel, Brenntag Biosector A / S) to sBb-ColdDNT, sBb-TrcDNT and isBb-ETDNT solution, containing 1 ug of each antigen and 0.5 mg Alhydrogel per mL Was prepared. These three types of vaccines 0.5 mL were injected twice into the abdominal cavity of a 3-week-old female and SPF ddY mice, each 2 weeks apart. As a positive control, a commercially available AR vaccine (Swimgen ART2, Institute for Chemical and Serum Therapy) was used. This contains about 10 μg / mL of Bb-DNT purified and inactivated from the supernatant of the cell disruption solution by ultrasonic treatment of Bb S611 strain according to the method described in Japanese Patent No. 3886406 (Patent Document 1).
 投与量をあわせるために、アルハイドロゲルとPBSを加え、1 mLあたり1ugのBb-DNTと0.5mgのアルハイドロゲルを含むワクチンを調製した。陰性コントロールとして1mLあたり0.5mgのアルハイドロゲルを含むプラセボワクチンをPBSで調製した。2回目投与後2週目に半数致死量の34倍量のBb-DNT(ホルマリン不活化処理をしていない活性型)を腹腔内に注射し、注射後7日間、マウスの生死を観察した。その結果を表4に示す。 In order to adjust the dosage, alhydrogel and PBS were added, and a vaccine containing 1 ug of Bb-DNT and 0.5 mg of alhydrogel per 1 mL was prepared. As a negative control, a placebo vaccine containing 0.5 mg Alhydrogel per mL was prepared in PBS. Two weeks after the second administration, half the lethal dose of Bb-DNT (active form not treated with formalin inactivation) was injected intraperitoneally and observed for 7 days after injection. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の製造方法は、豚のAR発症を阻止するための豚萎縮性鼻炎用薬剤を提供する。 The production method of the present invention provides a swine atrophic rhinitis drug for preventing the onset of AR in pigs.

Claims (5)

  1.  皮膚壊死毒素産生宿主から可溶性に発現した組換え皮膚壊死毒素を回収する工程を含む、豚萎縮性鼻炎用薬剤の製造方法。 A method for producing a drug for swine atrophic rhinitis, comprising a step of recovering soluble skin necrotic toxin solublely expressed from a skin necrotic toxin producing host.
  2.  下記(1)から(4)の工程を含む、豚萎縮性鼻炎用薬剤の製造方法。
    (1)遺伝子組み換え技術により得られた皮膚壊死毒素産生宿主を培養する工程、
    (2)前記(1)の培養物から可溶性に発現した皮膚壊死毒素を回収・精製する工程、
    (3)前記(2)の皮膚壊死毒素を無毒化する工程、
    (4)前記(3)の無毒化皮膚壊死毒素を製剤化する工程
    The manufacturing method of the chemical | medical agent for swine atrophic rhinitis including the process of following (1) to (4).
    (1) a step of culturing a skin necrotic toxin-producing host obtained by a genetic recombination technique,
    (2) recovering and purifying soluble necrotic toxin from the culture of (1),
    (3) a step of detoxifying the skin necrosis toxin of (2),
    (4) Step of formulating the detoxified skin necrosis toxin of (3)
  3.  皮膚壊死毒素がボルデテラ菌由来である、請求項1又は2記載の製造方法。 The production method according to claim 1 or 2, wherein the skin necrosis toxin is derived from Bordetella bacteria.
  4.  ボルデテラ菌がボルデテラ・ブロンキセプチカ、百日咳菌及びパラ百日咳菌からなる群より選択される、請求項3記載の製造方法。 The production method according to claim 3, wherein the Bordetella bacteria is selected from the group consisting of Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis.
  5.  宿主が大腸菌である、請求項1ないし4の何れか一項記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the host is Escherichia coli.
PCT/JP2009/054889 2008-03-13 2009-03-13 Method of producing drug for swine atrophic rhinitis WO2009113665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-063439 2008-03-13
JP2008063439A JP2011116658A (en) 2008-03-13 2008-03-13 Manufacturing method of medicine for swine atrophic rhinitis

Publications (1)

Publication Number Publication Date
WO2009113665A1 true WO2009113665A1 (en) 2009-09-17

Family

ID=41065326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054889 WO2009113665A1 (en) 2008-03-13 2009-03-13 Method of producing drug for swine atrophic rhinitis

Country Status (2)

Country Link
JP (1) JP2011116658A (en)
WO (1) WO2009113665A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878473B2 (en) * 2016-06-28 2021-05-26 キメリックス インコーポレイテッド Brinside fobyl preparation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251298A (en) * 1996-02-01 1998-09-22 Handai Biseibutsubiyou Kenkyukai Vaccine and diagnostic agent for porcine atrophic rhinitis
JP2001508758A (en) * 1996-02-01 2001-07-03 ノース・アメリカン・バクシーン・インコーポレイテッド Group B Expression of Neisseria meningitidis outer membrane (MB3) protein from yeast and vaccine
JP2004242608A (en) * 2003-02-17 2004-09-02 Nitsuseiken Kk Nontoxic variant pasteurella multocida toxin, gene thereof and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251298A (en) * 1996-02-01 1998-09-22 Handai Biseibutsubiyou Kenkyukai Vaccine and diagnostic agent for porcine atrophic rhinitis
JP2001508758A (en) * 1996-02-01 2001-07-03 ノース・アメリカン・バクシーン・インコーポレイテッド Group B Expression of Neisseria meningitidis outer membrane (MB3) protein from yeast and vaccine
JP2004242608A (en) * 2003-02-17 2004-09-02 Nitsuseiken Kk Nontoxic variant pasteurella multocida toxin, gene thereof and method for producing the same

Also Published As

Publication number Publication date
JP2011116658A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
US6214602B1 (en) Host cells for expression of clostridial toxins and proteins
US20100266639A1 (en) Expression system
JP5349070B2 (en) Porphymonasgingivalis polypeptides and nucleotides
US6982314B2 (en) Lawsonia intracellularis proteins, and related methods and materials
JP3440221B2 (en) Protein from Actinobacillus pleuroniumonia
JP4234232B2 (en) Clostridium perfringens vaccine
EP3175864A1 (en) Complex of immunogenic polyproteins of m. hyopneumoniae, synthetic gene encoding the complex of immunogenic polyproteins of m. hyopneumoniae, immunogenic composition, method for producing a complex of immunogenic polyproteins of m. hyopneumoniae, use of a composition based on the complex of immunogenic polyproteins of m. hyopneumoniae
WO2009113664A1 (en) Recombinant dermonecrotic toxoid-containing drug for swine atrophic rhinitis
WO2015123728A1 (en) Mycoplasma surface proteins and uses thereof
KR100510906B1 (en) Attenuated live bacteria of Actino Bacillus pluronomymoniae
EP2853270B1 (en) Recombinant avian-infectious coryza vaccine and process for preparing same
CN114728052A (en) Novel vaccine for haemophilus parasuis
CN108671227B (en) Broad-spectrum multi-subunit vaccine for preventing streptococcus suis infection
CN110891597B (en) Composition for preventing and treating poultry synovium infection
US20100215684A1 (en) Streptococcus m protein, immunogenic fragments, nucleic acids and methods of use
WO2009113665A1 (en) Method of producing drug for swine atrophic rhinitis
JP2022132447A (en) Proteins, immunizing compositions containing pasteurella proteins, and methods of use
EP1518558B1 (en) Vaccine against infection with Actinobacillus pleuropneumoniae comprising purified ApxIV toxin
JP3793889B2 (en) Swine erysipelas expressing Mycoplasma hyopneumoniae antigen and immunization method using the same
TW201815412A (en) Recombinant Avibacterium paragallinarum FlfA fimbrium subunit vaccine for infectious coryza of chickens, preparation method and use thereof
JP2008113592A (en) New toxin produced by clostridium perfringens
KR100841207B1 (en) Recombinant vaccine for preventing and treating porcine atrophic rhinitis
US6713071B1 (en) Proteins from actinobacillus pleuropneumoniae
US20230111599A1 (en) Vaccines comprising glycoengineered bacteria
EP1678301B1 (en) Inducible bacterial expression system utilising sspa promoter from salmonella

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720588

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09720588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP