Nothing Special   »   [go: up one dir, main page]

WO2009113149A1 - Device for measuring pattern length and method for measuring pattern length - Google Patents

Device for measuring pattern length and method for measuring pattern length Download PDF

Info

Publication number
WO2009113149A1
WO2009113149A1 PCT/JP2008/054295 JP2008054295W WO2009113149A1 WO 2009113149 A1 WO2009113149 A1 WO 2009113149A1 JP 2008054295 W JP2008054295 W JP 2008054295W WO 2009113149 A1 WO2009113149 A1 WO 2009113149A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge
pattern
measurement
profile
value
Prior art date
Application number
PCT/JP2008/054295
Other languages
French (fr)
Japanese (ja)
Inventor
純 松本
祥明 小木曽
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2008/054295 priority Critical patent/WO2009113149A1/en
Priority to DE112008003774T priority patent/DE112008003774T5/en
Priority to JP2010502654A priority patent/JP5066252B2/en
Priority to TW098105962A priority patent/TW200942800A/en
Publication of WO2009113149A1 publication Critical patent/WO2009113149A1/en
Priority to US12/807,615 priority patent/US8431895B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • G03F1/86Inspecting by charged particle beam [CPB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography
    • H01J2237/2816Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention relates to a pattern length measuring apparatus and a length measuring method using an electron beam, and more particularly, to a pattern length measuring apparatus and a pattern length measuring method capable of measuring the distance between pattern edges with good reproducibility.
  • a scanning electron microscope Measured by a scanning electron microscope as a pattern line width measuring method.
  • incident electrons are irradiated while being scanned within an electron beam scanning range, secondary electrons emitted from a sample are acquired through a scintillator, and the amount of electrons acquired is converted into luminance to obtain an image. Data is acquired and displayed on the display device.
  • the distance between the edges of the two patterns is calculated from the value of the acquired image data. It is determined whether or not the line width of the pattern and the distance between the patterns are within an allowable error range, which is used as a criterion for determining whether the photomask quality is good or as process feedback information to the previous process.
  • the measurement of the line width of patterns and the distance between patterns is important in the photomask manufacturing process, and various techniques for measuring the line width and the like have been proposed.
  • the position where the gradient of luminance corresponding to the amount of secondary electrons is maximized is set as the edge position of the pattern.
  • the edge detection in which the position where the secondary electron signal takes the minimum value is regarded as the edge position. A method is disclosed.
  • the position where the gradient of luminance is maximum is set as the edge position, or the position where the secondary electron signal takes the minimum value is set as the edge.
  • the position method is adopted.
  • the edge measurement range is widened and the edge position is determined using a plurality of detection values.
  • the edge position is detected with good reproducibility even if the area designated as the measurement target is slightly shifted.
  • the present invention has been made in view of the problems of the prior art, and an object thereof is to stably detect the edge positions of a pattern and to measure the distance between the pattern edges with high reproducibility and accuracy. It is to provide a length measuring device and a pattern length measuring method.
  • the above-described problems include an electron beam irradiation unit that irradiates an electron beam while scanning the sample, and the pattern based on the amount of electrons generated from the sample on which the pattern is formed by the electron beam irradiation.
  • An image data acquisition unit for acquiring an image
  • a measurement target region setting unit for setting a pair of measurement regions including an edge of the image of the pattern, and detecting the edge shape of the pattern in the measurement region, and the pair of measurement regions
  • a control unit that calculates a distance between the edges of the pattern in the pattern, and the control unit is a flat part of the edge profile in which the edge of the pattern in the measurement region is indicated by the position coordinates of the measurement points at a predetermined interval And the average position of the flat portion is used as the edge position of the pattern in the measurement region.
  • the control unit when the flat portion is not detected, is a value obtained by subtracting a predetermined value assumed to be curved when a pattern is formed from a design value of the pattern width.
  • the edge profile may be averaged by calculating an edge characteristic curve, and the position of the peak value of the edge characteristic curve may be set as the edge position of the pattern.
  • the control unit has a y-coordinate value of the edge position of the pattern in one measurement region of the pair of measurement regions facing in the y-axis direction.
  • the y coordinate value of the edge position of the pattern in the other measurement region is y2, and when y1> y2, y1-y2 may be the distance between the edges in the y-axis direction.
  • Is the x coordinate value of the edge position of the pattern in one measurement region of the pair of measurement regions facing in the x-axis direction, and the x coordinate value of the edge position of the pattern in the other measurement region is
  • x2-x1 may be the distance between the edges in the x-axis direction
  • the control unit averages the edge profile with a predetermined number of measurement points.
  • smoothing the pair To detect the shortest distance between the edge of the pattern in one measurement area and the edge of the pattern in the other measurement area using the position coordinates of each measurement point of the smoothed edge of the pattern in the fixed area It may be.
  • the flat portion in the measurement between the edges of the pattern, is detected from the edge profile that represents the shape of the edge of the pattern in the designated measurement area by the position coordinates, and the average position is calculated as the edge position. ing.
  • the edge profile is differentiated, and the position where the differential value is first zero is obtained as the start position of the flat portion and the position where the differential value is finally zero as the end position. Can do.
  • the profile of the flat portion estimated from the design value of the pattern width is moved and averaged to obtain an edge characteristic curve (moving average profile). And the peak position is calculated as the edge center position.
  • the moving average width when performing the moving average uses the length of the flat portion of the edge of the pattern, the center position of the flat portion of the edge can be uniquely obtained from the calculated edge characteristics. Then, the distance between the edges of the pattern in the pair of designated measurement areas is calculated using the edge position uniquely acquired. Thereby, it is possible to prevent the position of the edge from being changed due to the shift of the measurement region, and it is possible to calculate the distance between the edges with high reproducibility.
  • the pattern length measuring method includes a step of obtaining an image of a pattern of a measurement target region, and an edge profile in which the edge of the pattern in the measurement target region is indicated by position coordinates of measurement points at a predetermined interval.
  • the step of detecting the flat portion and the step of determining the edge position are performed when a pattern is formed from a design value of the width of the pattern. Calculating an edge characteristic curve by moving and averaging the edge profile with a value obtained by subtracting a predetermined value assumed to be curved, and determining a peak value position of the edge characteristic curve as an edge position of the pattern You may make it be.
  • the step of detecting the distance between the edges includes the y-coordinate value of the edge position in one of the pair of measurement areas facing in the y-axis direction. Is y1, the y-coordinate value of the edge position in the other measurement region is y2, and when y1> y2, y1-y2 is the distance in the y-axis direction between the edges.
  • the step of detecting the distance between the edges the x-coordinate value of the edge position in one measurement region of the pair of measurement regions facing in the x-axis direction is x1, and in the other measurement region
  • the step may be to set x2-x1 as the distance between the edges in the x-axis direction, and the distance between the edges is detected.
  • Step is said edge
  • the average of the profile is smoothed at a predetermined number of measurement points, and each coordinate position of the smoothed edge of the pattern in the pair of measurement areas is used to measure the edge of the pattern in one measurement area and the other measurement. And detecting a shortest distance between the edges of the pattern in the region.
  • FIG. 1 is a configuration diagram of a scanning electron microscope used in an embodiment of the present invention.
  • 2A to 2D are explanatory diagrams of electronic images and profiles acquired by the signal processing unit.
  • FIGS. 3A to 3C are diagrams for explaining a ROI for designating a pattern to be measured and a measurement target region.
  • FIG. 4 is a diagram for explaining the relationship between the edge shape and the moving average profile.
  • 5A to 5D are diagrams for explaining the detection accuracy of the edge position with respect to the value of the moving average width.
  • FIGS. 6A to 6H are diagrams showing examples of opposing edge shapes.
  • FIG. 7 is a diagram for explaining edge shape determination.
  • FIG. 8 is a flowchart illustrating an example of processing for calculating the distance between edges.
  • FIG. 9 is a flowchart illustrating an example of processing for detecting the edge position of the pattern in the ROI.
  • FIGS. 10A to 10D are diagrams for explaining a method for detecting an edge position in the ROI.
  • FIG. 1 is a configuration diagram of a scanning electron microscope according to the present embodiment.
  • the scanning electron microscope 100 includes an electronic scanning unit 10, a signal processing unit 30, an image display unit 40, a measurement target region setting unit 50, a storage unit 55, an electronic scanning unit 10, a signal processing unit 30, and an image.
  • the display unit 40, the measurement target region setting unit 50, and the control unit 20 that controls each unit of the storage unit 55 are roughly classified.
  • the control unit 20 includes a profile creation unit 21, a differential profile creation unit 22, an edge detection unit 23, and an inter-edge distance measurement unit 24.
  • the electron scanning unit 10 includes an electron gun 1, a condenser lens 2, a deflection coil 3, an objective lens 4, a moving stage 5, and a sample holder 6.
  • the charged particles 9 irradiated from the electron gun 1 are irradiated to the sample 7 on the moving stage 5 through the condenser lens 2, the deflection coil 3 and the objective lens 4.
  • a charged particle 9 (primary electron beam) is irradiated onto the sample 7 while being scanned two-dimensionally, and secondary electrons emitted from the irradiated part are detected by an electron detector 8 composed of a scintillator or the like.
  • the detected amount of secondary electrons is converted into a digital amount by the AD converter of the signal processing unit 30 and stored in the storage unit 55 as image data.
  • the image data is converted into a luminance signal and displayed on the image display unit 40.
  • the image data is arranged on the two-dimensional array so as to have the same arrangement as the scanning position of the primary electron beam on the sample 7, and a two-dimensional digital image is obtained.
  • Each pixel (pixel) of the two-dimensional digital image represents luminance data with an 8-bit information amount.
  • the electronic deflection amount of the deflection coil 3 and the image scan amount of the image display unit 40 are controlled by the control unit 20. Further, the control unit 20 stores a program for executing the inter-edge measurement.
  • the profile creation unit 21 creates a line profile representing the luminance signal of the SEM image data in the specified range.
  • the line profile represents a luminance signal corresponding to the amount of secondary electrons, and is considered to reflect the cross-sectional shape of the measurement pattern.
  • the differential profile creation unit 22 performs a primary differentiation process on the line profile to create a primary differential profile.
  • the edge detection unit 23 detects the edge of the pattern from the line profile and the primary differential profile. Further, as will be described later, an edge profile indicating the shape of the edge is created, and the edge profile is moved and averaged by a predetermined moving average width to create a moving average profile. The edge position is detected based on this moving average profile.
  • the inter-edge distance measuring unit 24 measures the distance between the edges of the patterns included in the pair of ROIs set by the measurement target region setting unit 50. The distance between the edges of the two patterns in the x-axis or y-axis direction and the shortest distance between the edges of the two patterns are measured.
  • a sample in which a wiring pattern 51 is formed on a photomask substrate 50 is used.
  • a part of the sample 7 has a planar shape as shown in FIG.
  • a portion surrounded by a broken line 52 indicates an observation region of the scanning electron microscope 100.
  • the electron quantity such as secondary electrons obtained by scanning the electron beam on the sample shown in FIG. 2A is detected by the electron detector 8, and the detected electron quantity is converted into a luminance signal.
  • An example of the SEM image displayed by synchronizing the scanning of the electron beam and the scanning of the CRT of the display device is shown.
  • the length measurement area is an area having a width H of 400 pixels and a length L, for example. This region is selected by the operator by the upper line marker LM1, the lower line marker LM2, the left line marker LM3, and the right line marker LM4.
  • the H direction of the length measurement area is divided from the extracted SEM image pixel data, and a line profile corresponding to the luminance distribution is obtained for the divided area.
  • a noise component can be reduced by performing a smoothing process with a width of, for example, 3 pixels in the length L direction.
  • FIG. 2C is a diagram showing a line profile corresponding to the amount of secondary electrons emitted from the sample obtained when the electron beam is irradiated along the line II in FIG. is there.
  • the line profile (contrast profile) changes abruptly at the edge of the pattern.
  • the line profile is differentiated to obtain the maximum peak and the minimum peak of the differential signal amount.
  • the differential waveforms C1 and C2 are obtained by interpolating between the plurality of differential signals Dx before and after the peak to obtain the first peak P1 and the second peak P2 with a resolution of 1/100.
  • the peak position of is calculated.
  • the width W1 of the line pattern is obtained as the distance between the first peak P1 and the second peak P2.
  • the above processing is performed in each divided area, and the average value of the pattern widths calculated in each area is used as a length measurement value, whereby a more accurate line pattern width W1 can be obtained.
  • FIG. 3 is a diagram showing an example of measuring the distance between the edges of the pattern.
  • FIGS. 3A to 3C each show a part of an SEM image of a pattern formed on a sample. If the vertical direction in FIG. 3 is the y-axis direction and the horizontal direction is the x-axis direction, for example, FIG. 3A shows patterns P11 and P12 facing in the y-axis direction, and the measurement target range is the ROI box (ROI11). And the ROI 12), the distance between the edges of these patterns is measured.
  • FIG. 3B shows patterns P21 and P21 that face each other in the y-axis direction and are shifted in the x-axis direction.
  • FIG. 3C shows patterns P31 and P32 facing each other in the x-axis direction.
  • the flat portion when measuring the distance between the end portions of two patterns, the flat portion has a short length, so a wide range of data cannot be obtained, and accurate measurement is performed. Is difficult.
  • the flat part when the flat part is short as described above, it is applied to the corner with a slight deviation of the ROI box, and when the corner is curved unlike the design value, it depends on whether or not the ROI box is applied to the curved part. The value of the edge position changes greatly. As a result, the detection distance between the edges is different for each length measurement, and the reproducibility of the distance detection between the edges is deteriorated.
  • the inventor of the present application paid attention to the use of the shape of the edge portion in order to uniquely detect the edge position. That is, it was noted that the range of the flat part or the center position of the flat part can be uniquely obtained by analyzing the flat measurement part and the edge shapes at both ends thereof.
  • the measurement target region (ROI11 and ROI12) is specified including the curved portion of the corner portion. It will be described below that the range of the flat part to be measured or the center position of the flat part is uniquely calculated from the edge profile of the pattern in the measurement target region (also referred to as ROI box) set in this way.
  • FIG. 4 is a view showing an example of the tip portion of the pattern. Also, the broken line L1 in FIG. 4 indicates the design value, and the solid line L2 indicates the edge profile of the formed pattern. As shown in FIG. 4, the actually formed pattern is not formed according to the design value, and in particular, the corner is formed with roundness.
  • a profile obtained by differentiating the profile of the edge shape of L2 is obtained, and the position where the differential value becomes zero first is the start position of the flat portion, and the position where the differential value finally becomes zero is the end position of the flat portion.
  • the distance between the two points can be determined as the range of the flat portion.
  • the position obtained by averaging the range of the flat portion is used as the edge position.
  • the length of the portion of the pattern edge that can be estimated to be flat is set as the moving average width, and the moving average profile is created by moving the edge profile using the moving average width.
  • the length of the portion of the edge of the pattern that can be estimated to be flat is a value obtained by subtracting the length assumed to form a corner when the pattern is formed from the design value of the edge. For example, the length assumed to be formed in a curved shape is 50 nm regardless of the length of the edge.
  • the edge profile represents the edge shape by indicating the edge in position coordinates for each measurement point at a predetermined interval.
  • a moving average process is performed on each measurement point of the edge profile. That is, when the moving average width is calculated to be, for example, 100 nm, if the number of measurement points of the edge profile corresponding to 100 nm is, for example, 36, averaging is performed at the 36 points before and after each measurement point of the edge profile.
  • the moving average profile L3 has a peak value, and the position of the peak value corresponds to the center of the flat portion of the edge. This position is called the center edge position at the edge of the pattern in the measurement target region.
  • the moving average width is the optimum value, that is, the width of the flat portion of the edge of the measurement target range, the alignment position and the average position can be calculated simultaneously.
  • the moving average width it is difficult to accurately predict the length of the curved portion of the corner of the pattern, and it is difficult to set the moving average width to an optimum value.
  • FIG. 5A shows an example of a pattern whose width in the x direction is W5.
  • the length of the flat portion of the edge of this pattern is the length obtained by subtracting the curved length of the corner portion of the pattern, and the optimum moving average width W is obtained.
  • FIG. 5B shows a moving average profile m1 obtained by moving average with a moving average width W5 larger than the optimum moving average width W with respect to the edge profile E1 of FIG.
  • the moving average profile m1 has a peak value
  • the y coordinate value is different from the actual y coordinate value
  • a difference d5 occurs.
  • An error occurs in the (x, y) coordinate value (also referred to as an average position) of the center position of the edge, and the accuracy of the average position is deteriorated.
  • FIG. 5 (c) shows a moving average profile m2 obtained by moving and averaging the edge profile E1 with the optimum moving average width W.
  • the peak position of the moving average profile m2 indicates the center of the edge.
  • FIG. 5D shows a case where the edge profile E1 is moving averaged with a moving average width W6 smaller than the optimum moving average width W.
  • the moving average profile m3 has a flat portion with a width d6 in which the y coordinate value is constant without taking a peak value. Therefore, the x coordinate value (also referred to as alignment position) of the edge cannot be uniquely determined. Therefore, the accuracy of the alignment position is deteriorated.
  • the alignment position and the average position can be calculated with high accuracy by separately calculating the alignment position and the average position as follows.
  • the moving average width is set to a value W5 larger than the optimum value W, and the moving average width W5 is used to average the edge profile.
  • the moving average width W5 is, for example, a pattern width.
  • the average value of the y coordinate of the edge profile E1 between ⁇ Wm / 2 and + Wm / 2 is obtained with respect to the x coordinate specified by the alignment position calculation.
  • Wm is a value that considers the variation in the width of the flat portion in the actual SEM image, and is preferably a value close to the optimum value W. In this way, the coordinate value (x, y) of the average position is calculated.
  • the shape of the edge to be measured is not limited to a convex shape, but may be a concave shape or a flat shape. Therefore, detection of the edge position corresponding to the shape of the edge will be described below.
  • FIG. 6 shows an example of the shape of opposing edges.
  • FIG. 6A shows a case where the end portions of the left and right patterns P61L and P61R are convex
  • FIG. 6B shows a case where the end portions of the left and right patterns P62L and P62R are concave.
  • FIGS. 6C and 6D show the case where one of the left and right patterns (P63L, P63R, P64L, P64R) is convex and the other is concave.
  • FIGS. 6E and 6F show the case where one of the left and right patterns (P65L, P65R, P66L, and P66R) is convex and the other is flat
  • FIGS. 6G and 6H Indicates a case where one of the left and right patterns (P67L, P67R, P68L, P68R) is concave and the other is flat.
  • the peak of the moving average profile becomes convex in the + x direction.
  • the peak of the moving average profile is convex in the ⁇ x direction.
  • the peak of the moving average profile is convex in the ⁇ x direction.
  • the peak of the moving average profile is convex in the ⁇ x direction.
  • the edge when the edge is a straight line, a peak value cannot be obtained even if moving average is performed, and the center edge is obtained using the peak value of the moving average profile. The position cannot be detected.
  • the position coordinates of the center edge position of the opposing convex edge are used. For example, in the case of FIG. 6E, when the center edge position of the left pattern P65L is C65L (x1, y1) and the x coordinate of the right pattern P65R is x2, the center edge of the right straight edge Let position C65R be (x2, y1). Similarly, in the case of FIGS. 6F to 6H, the center edge position is detected.
  • FIG. 7 shows a part of the edge E in the measurement target region.
  • the edge positions detected by dividing the entire edge E into three parts are respectively A (xa, ya), B (xb, yb), and C (xc, yc).
  • A xa, ya
  • B xb, yb
  • C xc, yc
  • the shape of a pair of edges designated as described above is determined, an edge profile is calculated, a moving average profile indicating edge characteristics is created, and a uniquely determined edge position is detected.
  • the tip when measuring the distance between edges and the edge length is short like the tip of the line pattern, first specify the tip as the measurement target area, An edge profile is created based on the position coordinates of the edge shape of the pattern in the region. A flat portion is detected from the edge profile, and the average position is calculated as the edge position. As one method for detecting the flat portion, the edge profile is differentiated, and the position where the differential value is first zero is obtained as the start position of the flat portion and the position where the differential value is finally zero as the end position. Can do. In addition, when a flat portion cannot be detected because there is no point where the differential value becomes zero, the profile of the flat portion estimated from the design value of the pattern width is moved and averaged to obtain an edge characteristic curve (moving average profile).
  • the peak position is calculated as the edge center position.
  • the center edge position is calculated for each pattern of the pair of designated measurement target areas, and the distance between the center edges is defined as the distance between the edges. Thereby, it is possible to prevent the position of the edge from being different due to the shift of the measurement target region, and it is possible to measure the distance between the edges with high reproducibility.
  • step S11 an SEM image including the measurement target region designated by the designated ROI box is acquired.
  • the SEM image data is extracted from the storage unit 55 stored as pixel data.
  • the edge shape (edge profile) of the pattern in the measurement target region is detected.
  • This edge shape is represented by position coordinates.
  • FIG. 9 is a flowchart showing edge profile detection processing in the measurement target region.
  • FIG. 10 is a diagram for explaining edge profile detection in the measurement target region. In this edge profile detection process, the edge of the pattern in the measurement target region is targeted, and the start position of the edge profile detection is the edge where the ROI box and the pattern intersect.
  • a predetermined interval (hereinafter referred to as a designation step) for detecting an edge within the ROI box designation range is designated.
  • this designation step is a distance corresponding to a predetermined number of pixels.
  • a counter k indicating the position of the detected edge within the ROI box designation range is set to 0.
  • step S22 to step S24 an edge position at a position away from the start position ES by a predetermined designated step d is detected.
  • a temporary edge is detected at a position separated from the start position ES by a distance of (designated step d ⁇ 2). Specifically, as shown in FIG. 10 (a), a line HL orthogonal to the straight line VL from the start position ES to the lower side ( ⁇ Y direction) of FIG. 10 (a) at the position (designated step d ⁇ 2). and a reference line of the profile creation, detects the edge E 11 by creating a line profile. The detected edge E 11 as the temporary detection edge E 11.
  • next step S23 it performs a redetection provisional detection edge E 11 detected in step S22. From the start position ES and the tentative detected edge position E 11 and the straight line on the starting position ES connecting the line perpendicular at a position apart a distance (specified step d ⁇ 2) and the reference line of the profile creation, the reference line A line profile is obtained, and the temporarily detected edge position is detected again. By re-detecting the temporarily detected edge position, the distance from the start position ES is made closer to (designated step d ⁇ 2).
  • the first edge position is detected.
  • a line profile is determined on a line orthogonal to the straight line IL 1 connecting the start position ES and the re-detected temporary detection edge position E 12 and the intermediate position MP 1 , and an edge EP k (x k , y k ) is detected. .
  • the edge EP 1 is detected as the first edge.
  • the edge EP k (x k , y k ) is set as a starting point for the next edge detection.
  • the edge EP 1 is the starting point.
  • step S26 an edge position EP k + 1 (x k + 1 , y k + 1 ) that is a specified step away from the starting edge position EP k (x k , y k ) is detected.
  • step S26 the reference profile creating a line perpendicular at a distance and provisional detection edge E 12, which is re-detected starting point EP 1 from the starting point EP 1 on the straight line IL 2 that connects only (designated step d ⁇ 2)
  • a line profile is created to detect an edge.
  • the detected edge as the temporary detection edge E 21.
  • step S27 similarly to step S24, straight line of connecting the starting point EP 1 and the tentative detected edge position E 21, perpendicular in a position apart a distance from the origin EP 1 (specified step d ⁇ 2)
  • the line is used as a reference line for profile creation, a line profile on this reference line is obtained, and the temporarily detected edge position is redetected.
  • the straight line IL 3 connecting the tentative detection edge position E 22, which is re-detected the starting point EP 1 obtains a line profile on the line perpendicular at the intermediate position MP 2, detects the edge EP k + 1 To do.
  • the edge EP 2 is detected as the second edge.
  • step S29 it is determined whether or not all edges around the pattern have been detected. If it is determined that all have been detected, the process ends. If it is determined that the detection has not yet been completed, the process proceeds to step S30.
  • the edge position in the measurement target area is detected by the above edge shape detection process, and an edge profile is created.
  • a moving average width for performing a moving average on the edge profile created in step S12 is calculated.
  • the moving average width is the length of the flat portion of the edge of the pattern, and is obtained from the point at which the differential value becomes zero first and the last zero point by differentiating the edge profile.
  • the length is obtained by subtracting a predetermined value, for example, 100 nm from the design value of the pattern width. The reason why such a predetermined value is used is that it is assumed that the corners of the actually formed pattern are not formed at right angles but the flat portion is shortened.
  • a moving average process is performed on the edge profile detected in step S12 to calculate a moving average profile.
  • This moving average process is calculated by moving and averaging the edge profile with the moving average width calculated in step S13. That is, an average value is calculated for each measurement point of the edge profile by the number of measurement points corresponding to the moving average width, and a moving average profile is created.
  • the edge position (center edge position) in the measurement target area is detected based on the moving average profile. If the moving average width is the same as the width of the flat portion of the edge of the actual pattern, the peak value of the moving average profile indicates the center position of the flat portion of the edge within the range specified by the ROI. The position is set as the center edge position.
  • the distance between the edges is calculated using the center edge position calculated for the edge of each measurement target region.
  • a pair of ROI boxes ROI11 and ROI12 are shown in FIG. ) Is set.
  • the position coordinate of the peak value of the moving average profile of the edge E12 in the ROI 12 is calculated as C12 (x12, y12), and the position coordinate of the peak value of the moving average profile of the edge E11 in the ROI 11 is C11. It is assumed that (x11, y11) is calculated.
  • the y coordinate y11 of C11 is the minimum value of the edge E11
  • the y coordinate y12 of C12 is the maximum value of the edge E12. Accordingly, the distance d1 in the y direction between the two edges is calculated as y11-y12.
  • FIG. 3B shows two patterns (P21 and P22) formed adjacent to each other in the y-axis direction and shifted in the x-axis direction.
  • a distance d2 in the y-axis direction between the two patterns P21 and P22 is calculated by the method (a).
  • the edge profile of the pattern in the pair of measurement target regions is smoothed by the number of predetermined measurement points. This smoothing process is performed by averaging the position coordinates of the edge profile with, for example, the position coordinates of three adjacent points. As a result, the position coordinates (smoothing profile) of the edge shape with reduced noise are calculated.
  • the length of the flat part of the edge is indicated by the position coordinate as the moving average width.
  • the edge characteristics are calculated by moving and averaging the edge profiles representing the shape of the edge. This edge characteristic uniquely indicates the center position of the flat portion of the edge. Then, the distance between the edges of the pattern designated by the pair of ROIs is calculated using the center position. This makes it possible to calculate the distance between edges with good reproducibility.
  • the detection of the distance between the edges of the pattern has been described for the case where the pattern is formed on a substrate such as glass.
  • the present invention is not limited to this, and the substrate is formed by cutting the substrate such as glass. It is also applicable to the pattern to be applied.
  • the detection of the distance between the edges of the two patterns has been described.
  • the present invention is not limited to this, and can be applied to the detection of the distance between the edges of one pattern.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

A device for measuring a pattern length measures an edge-to-edge spacing of a pattern with excellent repeatability and accuracy. The device for measuring a pattern length has an electron beam irradiation section to irradiate an electron beam onto a specimen while scanning, an image data acquisition section to acquire an image of the pattern in accordance with the amount of electrons generated on the specimen on which the pattern is formed through irradiation of an electron beam, a measurement target area setting section to set up a pair of measurement areas including edges of the pattern image, and a control section which detects shapes of edges on the pattern within the measurement areas and calculates an edge-to-edge spacing of the pattern within a pair of measurement areas. The control section calculates an edge characteristic curve by taking moving average with a specified moving average width for an edge profile where edges on the pattern within the measurement areas are shown with positional coordinates of measurement points at specified intervals and specifies a position of a peak value on the edge characteristic curve as an edge position on the pattern within the measurement areas.

Description

パターン測長装置及びパターン測長方法Pattern length measuring device and pattern length measuring method
 本発明は、電子ビームによるパターン測長装置及び測長方法に関し、特に、パターンのエッジ間の距離を再現性良く測定することのできるパターン測長装置及びパターン測長方法に関する。 The present invention relates to a pattern length measuring apparatus and a length measuring method using an electron beam, and more particularly, to a pattern length measuring apparatus and a pattern length measuring method capable of measuring the distance between pattern edges with good reproducibility.
 パターンの線幅測定方法として、走査型電子顕微鏡による測定が行われている。走査型電子顕微鏡では、電子線走査範囲内に入射電子を走査させながら照射し、シンチレータを介して試料から放出される2次電子を取得し、取得した電子の電子量を輝度に変換して画像データを取得し、表示装置に表示している。 Measured by a scanning electron microscope as a pattern line width measuring method. In a scanning electron microscope, incident electrons are irradiated while being scanned within an electron beam scanning range, secondary electrons emitted from a sample are acquired through a scintillator, and the amount of electrons acquired is converted into luminance to obtain an image. Data is acquired and displayed on the display device.
 このような走査型電子顕微鏡を用いて半導体装置の特性を管理する場合に、ラインパターンの線幅やパターンとパターンとの間の距離が設計基準値内に形成されているか否かの作業を行うことが一般に採用されている。パターンの線幅やパターン間の距離の管理は、次のような手順によって行われている。フォトマスク上に形成されたパターンの所定位置にXYステージで移動した後、測定位置を中心に指定範囲内に電子ビームを照射し、照射ポイントから反射された二次電子に基づいて輝度分布の画像を取得する。そして、測定ポイントの輝度情報から輝度分布の波形を取得しこれを解析してパターンエッジ位置を求め線幅とする。また、取得した画像データの値から、2つのパターンのエッジ間の距離を算出する。このパターンの線幅やパターン間の距離が許容誤差の範囲内にあるか否かを判断し、フォトマスク品質の良否判定の基準としたり、前工程へのプロセスフィードバック情報として使用する。 When managing the characteristics of a semiconductor device using such a scanning electron microscope, work is performed to determine whether the line width of the line pattern and the distance between the patterns are within the design reference value. It is generally adopted. The management of the line width of patterns and the distance between patterns is performed by the following procedure. After moving on the XY stage to the predetermined position of the pattern formed on the photomask, irradiate the electron beam within the specified range centering on the measurement position, and image of the luminance distribution based on the secondary electrons reflected from the irradiation point To get. Then, the waveform of the luminance distribution is acquired from the luminance information of the measurement point and analyzed to obtain the pattern edge position as the line width. Further, the distance between the edges of the two patterns is calculated from the value of the acquired image data. It is determined whether or not the line width of the pattern and the distance between the patterns are within an allowable error range, which is used as a criterion for determining whether the photomask quality is good or as process feedback information to the previous process.
 このように、パターンの線幅やパターン間の距離の測定は、フォトマスクの製造工程において重要であり、線幅等を測定するための種々の手法が提案されている。 Thus, the measurement of the line width of patterns and the distance between patterns is important in the photomask manufacturing process, and various techniques for measuring the line width and the like have been proposed.
 一般的に、2次電子量に対応する輝度の傾きが最大となる位置をパターンのエッジ位置としているが、特許文献1では、2次電子信号が極小値をとる位置をエッジ位置とみなすエッジ検出方法が開示されている。 In general, the position where the gradient of luminance corresponding to the amount of secondary electrons is maximized is set as the edge position of the pattern. However, in Patent Document 1, the edge detection in which the position where the secondary electron signal takes the minimum value is regarded as the edge position. A method is disclosed.
 上述したように、走査型電子顕微鏡を使用してパターンの線幅測定をする場合には、輝度の傾きが最大となる位置をエッジ位置としたり、2次電子信号が極小値をとる位置をエッジ位置とする方法が採用されている。 As described above, when measuring the line width of a pattern using a scanning electron microscope, the position where the gradient of luminance is maximum is set as the edge position, or the position where the secondary electron signal takes the minimum value is set as the edge. The position method is adopted.
 このようなパターンのエッジ検出においては、エッジを測定する範囲を広くして、複数の検出値を用いてエッジ位置を決定している。これにより、測定対象として指定する領域が多少ずれていてもエッジ位置が再現性良く検出される。 In edge detection of such a pattern, the edge measurement range is widened and the edge position is determined using a plurality of detection values. As a result, the edge position is detected with good reproducibility even if the area designated as the measurement target is slightly shifted.
 しかし、例えばラインパターンの末端部のように幅が狭い部分のエッジ位置を検出する場合には、測定範囲を広くとることができず、安定したエッジ位置の検出をすることが困難である。また、測定対象として指定する領域がずれることによって、パターンのコーナー部分の湾曲部を含むときや含まないときがあり、エッジ位置を再現性良く検出することが困難となる。
特開平5-296754号公報
However, for example, when detecting the edge position of a narrow portion such as the end portion of the line pattern, the measurement range cannot be widened, and it is difficult to detect a stable edge position. In addition, the region designated as the measurement target is shifted, so that the curved portion of the corner portion of the pattern may or may not be included, and it becomes difficult to detect the edge position with high reproducibility.
Japanese Patent Laid-Open No. 5-296754
 本発明は、かかる従来技術の課題に鑑みなされたものであり、目的は、パターンのエッジ位置を安定して検出し、パターンのエッジ間の距離を再現性良くかつ精度良く測定することのできるパターン測長装置及びパターン測長方法を提供することである。 The present invention has been made in view of the problems of the prior art, and an object thereof is to stably detect the edge positions of a pattern and to measure the distance between the pattern edges with high reproducibility and accuracy. It is to provide a length measuring device and a pattern length measuring method.
 上記した課題は、電子ビームを試料上に走査しながら照射する電子ビーム照射部と、前記電子ビームの照射によって、パターンが形成された前記試料上から発生する電子の電子量を基に当該パターンの画像を取得する画像データ取得部と、前記パターンの画像のエッジを含む一対の測定領域を設定する測定対象領域設定部と、前記測定領域内のパターンのエッジ形状を検出し、前記一対の測定領域内のパターンのエッジ間の距離を算出する制御部とを有し、前記制御部は、前記測定領域内のパターンのエッジが所定の間隔の測定点の位置座標で示されたエッジプロファイルの平坦部を検出し、当該平坦部の平均位置を前記測定領域内における前記パターンのエッジ位置とすることを特徴とするパターン測長装置により解決する。 The above-described problems include an electron beam irradiation unit that irradiates an electron beam while scanning the sample, and the pattern based on the amount of electrons generated from the sample on which the pattern is formed by the electron beam irradiation. An image data acquisition unit for acquiring an image, a measurement target region setting unit for setting a pair of measurement regions including an edge of the image of the pattern, and detecting the edge shape of the pattern in the measurement region, and the pair of measurement regions A control unit that calculates a distance between the edges of the pattern in the pattern, and the control unit is a flat part of the edge profile in which the edge of the pattern in the measurement region is indicated by the position coordinates of the measurement points at a predetermined interval And the average position of the flat portion is used as the edge position of the pattern in the measurement region.
 この形態に係るパターン測長装置において、前記制御部は、前記平坦部が検出されないとき、前記パターンの幅の設計値からパターンが形成されたときに湾曲すると想定される所定の値を引いた値で前記エッジプロファイルを移動平均してエッジ特性曲線を算出し、当該エッジ特性曲線のピーク値の位置を前記パターンのエッジ位置とするようにしてもよい。 In the pattern length measuring apparatus according to this aspect, when the flat portion is not detected, the control unit is a value obtained by subtracting a predetermined value assumed to be curved when a pattern is formed from a design value of the pattern width. The edge profile may be averaged by calculating an edge characteristic curve, and the position of the peak value of the edge characteristic curve may be set as the edge position of the pattern.
 また、この形態に係るパターン測長装置において、前記制御部は、y軸方向に対向する前記一対の測定領域のうち、一方の測定領域内のパターンのエッジ位置のy座標の値がy1であり、他方の測定領域内のパターンのエッジ位置のy座標の値がy2であり、y1>y2のとき、y1-y2をエッジ間のy軸方向の距離とするようにしてもよく、前記制御部は、x軸方向に対向する前記一対の測定領域のうち、一方の測定領域内のパターンのエッジ位置のx座標の値がx1であり、他方の測定領域内のパターンのエッジ位置のx座標の値がx2であり、x1<x2のとき、x2-x1をエッジ間のx軸方向の距離とするようにしてもよく、前記制御部は、前記エッジプロファイルを所定の測定点の数で平均してスムージングし、前記一対の測定領域内のパターンのスムージングされたエッジの各測定点の位置座標を用いて、一方の測定領域内のパターンのエッジと他方の測定領域内のパターンのエッジとの間の最短距離を検出するようにしてもよい。 Moreover, in the pattern length measuring device according to this aspect, the control unit has a y-coordinate value of the edge position of the pattern in one measurement region of the pair of measurement regions facing in the y-axis direction. The y coordinate value of the edge position of the pattern in the other measurement region is y2, and when y1> y2, y1-y2 may be the distance between the edges in the y-axis direction. Is the x coordinate value of the edge position of the pattern in one measurement region of the pair of measurement regions facing in the x-axis direction, and the x coordinate value of the edge position of the pattern in the other measurement region is When the value is x2 and x1 <x2, x2-x1 may be the distance between the edges in the x-axis direction, and the control unit averages the edge profile with a predetermined number of measurement points. And smoothing the pair To detect the shortest distance between the edge of the pattern in one measurement area and the edge of the pattern in the other measurement area using the position coordinates of each measurement point of the smoothed edge of the pattern in the fixed area It may be.
 本発明では、パターンのエッジ間の測長において、指定された測定領域内のパターンのエッジの形状を位置座標で表したエッジプロファイルから、平坦部を検出してその平均位置をエッジ位置として算出している。平坦部の検出方法の一つとしては、前記のエッジプロファイルを微分して微分値が最初にゼロになる位置を平坦部の開始位置および微分値が最後にゼロとなる位置を終了位置として求めることができる。また、前記微分値がゼロになる点がない等、平坦部が検出できない場合は、パターンの幅の設計値から推定した平坦部の幅でプロファイルを移動平均してエッジ特性曲線(移動平均プロファイル)を求め、そのピーク位置をエッジ中心位置として算出している。移動平均を行う際の移動平均幅は、パターンのエッジの平坦部分の長さを用いているため、算出されたエッジ特性からエッジの平坦部の中心位置を一意的に取得することができる。そして、一対の指定された測定領域内のパターンのエッジ間の距離を、一意的に取得されたエッジ位置を用いて算出している。これにより、エッジの位置が測定領域のずれによって異なることを防止でき、エッジ間の距離を再現性良く算出することが可能になる。 In the present invention, in the measurement between the edges of the pattern, the flat portion is detected from the edge profile that represents the shape of the edge of the pattern in the designated measurement area by the position coordinates, and the average position is calculated as the edge position. ing. As one method for detecting the flat portion, the edge profile is differentiated, and the position where the differential value is first zero is obtained as the start position of the flat portion and the position where the differential value is finally zero as the end position. Can do. In addition, when a flat portion cannot be detected because there is no point where the differential value becomes zero, the profile of the flat portion estimated from the design value of the pattern width is moved and averaged to obtain an edge characteristic curve (moving average profile). And the peak position is calculated as the edge center position. Since the moving average width when performing the moving average uses the length of the flat portion of the edge of the pattern, the center position of the flat portion of the edge can be uniquely obtained from the calculated edge characteristics. Then, the distance between the edges of the pattern in the pair of designated measurement areas is calculated using the edge position uniquely acquired. Thereby, it is possible to prevent the position of the edge from being changed due to the shift of the measurement region, and it is possible to calculate the distance between the edges with high reproducibility.
 本発明の他の形態によれば、上記の形態に係るパターン測長装置において実施されるパターン測長方法が提供される。その一形態に係るパターン測長方法は、測定対象領域のパターンの画像を取得するステップと、前記測定対象領域内のパターンのエッジが所定の間隔の測定点の位置座標で示されたエッジプロファイルを検出するステップと、前記エッジプロファイルの平坦部を検出するステップと、前記平坦部の平均位置を算出して前記パターンのエッジ位置を決定するステップと、前記一対の測定対象領域内の一対のパターンのエッジ間の距離を検出するステップとを含むことを特徴とする。 According to another aspect of the present invention, there is provided a pattern length measuring method implemented in the pattern length measuring apparatus according to the above aspect. The pattern length measuring method according to the embodiment includes a step of obtaining an image of a pattern of a measurement target region, and an edge profile in which the edge of the pattern in the measurement target region is indicated by position coordinates of measurement points at a predetermined interval. A step of detecting, a step of detecting a flat portion of the edge profile, a step of calculating an average position of the flat portion to determine an edge position of the pattern, and a pair of patterns in the pair of measurement target regions Detecting the distance between the edges.
 この形態に係るパターン測長方法において、前記平坦部が検出されないとき、前記平坦部を検出するステップと、前記エッジ位置を決定するステップは、前記パターンの幅の設計値からパターンが形成されたときに湾曲すると想定される所定の値を引いた値で前記エッジプロファイルを移動平均してエッジ特性曲線を算出するステップと、当該エッジ特性曲線のピーク値の位置を前記パターンのエッジ位置に決定するステップであるようにしてもよい。 In the pattern length measurement method according to this aspect, when the flat portion is not detected, the step of detecting the flat portion and the step of determining the edge position are performed when a pattern is formed from a design value of the width of the pattern. Calculating an edge characteristic curve by moving and averaging the edge profile with a value obtained by subtracting a predetermined value assumed to be curved, and determining a peak value position of the edge characteristic curve as an edge position of the pattern You may make it be.
 また、この形態に係るパターン測長方法において、前記エッジ間の距離を検出するステップは、y軸方向に対向する前記一対の測定領域のうち、一方の測定領域内のエッジ位置のy座標の値がy1であり、他方の測定領域内のエッジ位置のy座標の値がy2であり、y1>y2のとき、y1-y2をエッジ間のy軸方向の距離とするステップであるようにしてもよく、前記エッジ間の距離を検出するステップは、x軸方向に対向する前記一対の測定領域のうち、一方の測定領域内のエッジ位置のx座標の値がx1であり、他方の測定領域内のエッジ位置のx座標の値がx2であり、x1<x2のとき、x2-x1をエッジ間のx軸方向の距離とするステップであるようにしてもよく、前記エッジ間の距離を検出するステップは、前記エッジプロファイルを所定の測定点数で平均してスムージングするステップと、前記一対の測定領域内のパターンのスムージングされたエッジの各座標位置を用いて、一方の測定領域内のパターンのエッジと他方の測定領域内のパターンのエッジとの間の最短距離を検出するステップとを含むようにしてもよい。 Further, in the pattern length measuring method according to this aspect, the step of detecting the distance between the edges includes the y-coordinate value of the edge position in one of the pair of measurement areas facing in the y-axis direction. Is y1, the y-coordinate value of the edge position in the other measurement region is y2, and when y1> y2, y1-y2 is the distance in the y-axis direction between the edges. In the step of detecting the distance between the edges, the x-coordinate value of the edge position in one measurement region of the pair of measurement regions facing in the x-axis direction is x1, and in the other measurement region When the value of the x coordinate of the edge position is x2 and x1 <x2, the step may be to set x2-x1 as the distance between the edges in the x-axis direction, and the distance between the edges is detected. Step is said edge The average of the profile is smoothed at a predetermined number of measurement points, and each coordinate position of the smoothed edge of the pattern in the pair of measurement areas is used to measure the edge of the pattern in one measurement area and the other measurement. And detecting a shortest distance between the edges of the pattern in the region.
図1は、本発明の実施形態で使用される走査型電子顕微鏡の構成図である。FIG. 1 is a configuration diagram of a scanning electron microscope used in an embodiment of the present invention. 図2(a)~(d)は、信号処理部が取得する電子像およびプロファイルの説明図である。2A to 2D are explanatory diagrams of electronic images and profiles acquired by the signal processing unit. 図3(a)~(c)は、測長対象のパターンと測定対象領域を指定するROIを説明する図である。FIGS. 3A to 3C are diagrams for explaining a ROI for designating a pattern to be measured and a measurement target region. 図4は、エッジ形状と移動平均プロファイルの関係を説明する図である。FIG. 4 is a diagram for explaining the relationship between the edge shape and the moving average profile. 図5(a)~(d)は、移動平均幅の値に対するエッジ位置の検出精度を説明する図である。5A to 5D are diagrams for explaining the detection accuracy of the edge position with respect to the value of the moving average width. 図6(a)~(h)は、対向するエッジ形状の一例を示す図である。FIGS. 6A to 6H are diagrams showing examples of opposing edge shapes. 図7は、エッジ形状の判定を説明する図である。FIG. 7 is a diagram for explaining edge shape determination. 図8は、エッジ間の距離を算出する処理の一例を示すフローチャートである。FIG. 8 is a flowchart illustrating an example of processing for calculating the distance between edges. 図9は、ROI内のパターンのエッジ位置を検出する処理の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of processing for detecting the edge position of the pattern in the ROI. 図10(a)~(d)は、ROI内のエッジ位置の検出方法を説明する図である。FIGS. 10A to 10D are diagrams for explaining a method for detecting an edge position in the ROI.
 以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 はじめに、パターン測長装置として使用される走査型電子顕微鏡の構成について説明する。次に、一般的なパターンの線幅の測長方法について説明する。次に、再現性の良いエッジ位置の検出を含むパターンのエッジ間の測長について説明し、最後に、パターンのエッジ間の測長方法について説明する。 First, the configuration of a scanning electron microscope used as a pattern length measuring device will be described. Next, a method for measuring the line width of a general pattern will be described. Next, length measurement between edges of a pattern including detection of edge positions with good reproducibility will be described, and finally, a length measurement method between edges of the pattern will be described.
 (走査型電子顕微鏡の構成)
 図1は、本実施形態に係る走査型電子顕微鏡の構成図である。
(Configuration of scanning electron microscope)
FIG. 1 is a configuration diagram of a scanning electron microscope according to the present embodiment.
 この走査型電子顕微鏡100は、電子走査部10と、信号処理部30と、画像表示部40と、測定対象領域設定部50と、記憶部55と、電子走査部10、信号処理部30、画像表示部40、測定対象領域設定部50及び記憶部55の各部を制御する制御部20とに大別される。制御部20は、プロファイル作成部21、微分プロファイル作成部22、エッジ検出部23及びエッジ間距離測長部24を有している。 The scanning electron microscope 100 includes an electronic scanning unit 10, a signal processing unit 30, an image display unit 40, a measurement target region setting unit 50, a storage unit 55, an electronic scanning unit 10, a signal processing unit 30, and an image. The display unit 40, the measurement target region setting unit 50, and the control unit 20 that controls each unit of the storage unit 55 are roughly classified. The control unit 20 includes a profile creation unit 21, a differential profile creation unit 22, an edge detection unit 23, and an inter-edge distance measurement unit 24.
 電子走査部10は、電子銃1とコンデンサレンズ2と偏向コイル3と対物レンズ4と移動ステージ5と試料ホルダ6とを有している。 The electron scanning unit 10 includes an electron gun 1, a condenser lens 2, a deflection coil 3, an objective lens 4, a moving stage 5, and a sample holder 6.
 電子銃1から照射された荷電粒子9をコンデンサレンズ2、偏向コイル3、対物レンズ4を通して移動ステージ5上の試料7に照射するようになっている。 The charged particles 9 irradiated from the electron gun 1 are irradiated to the sample 7 on the moving stage 5 through the condenser lens 2, the deflection coil 3 and the objective lens 4.
 荷電粒子9(1次電子ビーム)を試料7上に2次元走査しながら照射し、照射部位から放出される2次電子は、シンチレータ等で構成される電子検出器8によって検出される。検出された2次電子の電子量は、信号処理部30のAD変換器によってデジタル量に変換され、画像データとして記憶部55に格納される。画像データは輝度信号に変換されて画像表示部40で表示される。画像データは、試料7上における1次電子ビームの走査位置と同じ配置になるように2次元配列上に並べられて、2次元デジタル画像が得られる。この2次元デジタル画像の各画素(ピクセル)は、それぞれ8ビットの情報量で輝度データを表わしている。 A charged particle 9 (primary electron beam) is irradiated onto the sample 7 while being scanned two-dimensionally, and secondary electrons emitted from the irradiated part are detected by an electron detector 8 composed of a scintillator or the like. The detected amount of secondary electrons is converted into a digital amount by the AD converter of the signal processing unit 30 and stored in the storage unit 55 as image data. The image data is converted into a luminance signal and displayed on the image display unit 40. The image data is arranged on the two-dimensional array so as to have the same arrangement as the scanning position of the primary electron beam on the sample 7, and a two-dimensional digital image is obtained. Each pixel (pixel) of the two-dimensional digital image represents luminance data with an 8-bit information amount.
 偏向コイル3の電子偏向量と画像表示部40の画像スキャン量は制御部20によって制御される。また、制御部20には、エッジ間測定を実行するためのプログラムが格納されている。 The electronic deflection amount of the deflection coil 3 and the image scan amount of the image display unit 40 are controlled by the control unit 20. Further, the control unit 20 stores a program for executing the inter-edge measurement.
 プロファイル作成部21では、指定された範囲のSEM画像データの輝度信号を表すラインプロファイルを作成する。ラインプロファイルは、2次電子の電子量に対応した輝度信号を表すものであり、測定パターンの断面形状を反映すると考えられている。 The profile creation unit 21 creates a line profile representing the luminance signal of the SEM image data in the specified range. The line profile represents a luminance signal corresponding to the amount of secondary electrons, and is considered to reflect the cross-sectional shape of the measurement pattern.
 微分プロファイル作成部22では、ラインプロファイルに対して、1次微分処理を施し、1次微分プロファイルを作成する。 The differential profile creation unit 22 performs a primary differentiation process on the line profile to create a primary differential profile.
 エッジ検出部23は、ラインプロファイル、1次微分プロファイルからパターンのエッジを検出する。また、後述するように、エッジの形状を示すエッジプロファイルを作成し、さらに、所定の移動平均幅によってエッジプロファイルを移動平均し、移動平均プロファイルを作成する。この移動平均プロファイルを基にエッジ位置を検出する。 The edge detection unit 23 detects the edge of the pattern from the line profile and the primary differential profile. Further, as will be described later, an edge profile indicating the shape of the edge is created, and the edge profile is moved and averaged by a predetermined moving average width to create a moving average profile. The edge position is detected based on this moving average profile.
 エッジ間距離測長部24は、測定対象領域設定部50で設定された一対のROIに含まれるパターンのエッジ間の距離を測長する。2つのパターンのx軸またはy軸方向のエッジ間の距離や2つのパターンのエッジ間の最短距離が測長される。 The inter-edge distance measuring unit 24 measures the distance between the edges of the patterns included in the pair of ROIs set by the measurement target region setting unit 50. The distance between the edges of the two patterns in the x-axis or y-axis direction and the shortest distance between the edges of the two patterns are measured.
 (一般的なパターンの線幅の測定方法)
 次に、図1に示した走査型電子顕微鏡100を用いて、図2(a)に示す試料のパターンの線幅を測定する一般的な方法について説明する。
(General line width measurement method)
Next, a general method for measuring the line width of the sample pattern shown in FIG. 2A using the scanning electron microscope 100 shown in FIG. 1 will be described.
 試料7として、図2(a)に示すように、フォトマスク基板50上に配線パターン51が形成されたものを使用する。試料7の一部は図2(a)に示すような平面形状となっている。ここで、破線52で囲んだ部分は、走査型電子顕微鏡100の観察領域を示している。 As the sample 7, as shown in FIG. 2A, a sample in which a wiring pattern 51 is formed on a photomask substrate 50 is used. A part of the sample 7 has a planar shape as shown in FIG. Here, a portion surrounded by a broken line 52 indicates an observation region of the scanning electron microscope 100.
 図2(b)は、図2(a)に示す試料上に電子ビームを走査して得られる2次電子等の電子量を電子検出器8によって検出し、検出した電子量を輝度信号に変換し、電子ビームの走査と表示装置のCRTの走査とを同期させて表示したSEM画像の例を示している。 In FIG. 2B, the electron quantity such as secondary electrons obtained by scanning the electron beam on the sample shown in FIG. 2A is detected by the electron detector 8, and the detected electron quantity is converted into a luminance signal. An example of the SEM image displayed by synchronizing the scanning of the electron beam and the scanning of the CRT of the display device is shown.
 図2(b)に示すSEM画像から、測長エリアを指定してSEM画像を抽出する。測長エリアは例えば幅Hが400ピクセル、長さLの領域とする。この領域は、上側ラインマーカーLM1、下側ラインマーカーLM2、左側ラインマーカーLM3及び右側ラインマーカーLM4によってオペレータによって選択される。 2) A SEM image is extracted from the SEM image shown in FIG. The length measurement area is an area having a width H of 400 pixels and a length L, for example. This region is selected by the operator by the upper line marker LM1, the lower line marker LM2, the left line marker LM3, and the right line marker LM4.
 抽出したSEM画像ピクセルデータから、測長エリアのH方向を分割し、分割した領域について輝度分布に対応するラインプロファイルを求める。なお、ラインプロファイルを求めるときに、長さL方向に例えば3ピクセル幅でスムージング処理を行うことによりノイズ成分を小さくすることができる。 The H direction of the length measurement area is divided from the extracted SEM image pixel data, and a line profile corresponding to the luminance distribution is obtained for the divided area. When obtaining a line profile, a noise component can be reduced by performing a smoothing process with a width of, for example, 3 pixels in the length L direction.
 図2(c)は、図2(a)のI-I線に沿って電子ビームを照射したときに得られる試料から放出される2次電子の電子量に対応するラインプロファイルを示した図である。図2(c)に示すように、ラインプロファイル(コントラストプロファイル)は、パターンのエッジ部分で急激に変化する。急激に変化する位置を求めるために、ラインプロファイルを微分して、微分信号量の最大ピークと最小ピークを求める。 FIG. 2C is a diagram showing a line profile corresponding to the amount of secondary electrons emitted from the sample obtained when the electron beam is irradiated along the line II in FIG. is there. As shown in FIG. 2C, the line profile (contrast profile) changes abruptly at the edge of the pattern. In order to obtain a position that changes rapidly, the line profile is differentiated to obtain the maximum peak and the minimum peak of the differential signal amount.
 更に、図2(d)に示すように、ピーク前後の複数の微分信号Dxからピクセル間を補完して微分波形C1,C2を求め、1/100の分解能で第1ピークP1と第2ピークP2のピーク位置を計算する。ラインパターンの幅W1は、第1ピークP1と第2ピークP2との間の距離として求められる。 Further, as shown in FIG. 2D, the differential waveforms C1 and C2 are obtained by interpolating between the plurality of differential signals Dx before and after the peak to obtain the first peak P1 and the second peak P2 with a resolution of 1/100. The peak position of is calculated. The width W1 of the line pattern is obtained as the distance between the first peak P1 and the second peak P2.
 以上の処理を分割したそれぞれの領域で行い、各領域で算出したパターンの幅の平均値を測長値とすることで、より正確なラインパターンの幅W1が得られる。 The above processing is performed in each divided area, and the average value of the pattern widths calculated in each area is used as a length measurement value, whereby a more accurate line pattern width W1 can be obtained.
 (パターンのエッジ間の測長)
 上記した一般的なパターンのエッジ間の測長では、測定対象領域を広くとることによって正確な距離を求めるようにしている。本実施形態では、測定対象領域を広くとることができない場合であっても、エッジ間距離の正確な測長を可能にしている。
(Measurement between pattern edges)
In the above-described length measurement between edges of a general pattern, an accurate distance is obtained by taking a wide measurement target region. In the present embodiment, even when the measurement target area cannot be widened, accurate measurement of the distance between the edges is possible.
 図3はパターンのエッジ間の距離の測長の一例を示す図である。図3(a)~(c)は、それぞれ試料上に形成されたパターンのSEM画像の一部を示している。図3の上下方向をy軸方向、左右方向をx軸方向とすると、例えば図3(a)は、y軸方向に対向したパターンP11,P12を示しており、測定対象範囲をROIボックス(ROI11及びROI12)で指定することにより、これらのパターンのエッジ間の距離を測長する様子を示している。また、図3(b)は、y軸方向に対向し、かつx軸方向にずれたパターンP21、P21を示している。また、図3(c)は、x軸方向に対向したパターンP31,P32を示している。 FIG. 3 is a diagram showing an example of measuring the distance between the edges of the pattern. FIGS. 3A to 3C each show a part of an SEM image of a pattern formed on a sample. If the vertical direction in FIG. 3 is the y-axis direction and the horizontal direction is the x-axis direction, for example, FIG. 3A shows patterns P11 and P12 facing in the y-axis direction, and the measurement target range is the ROI box (ROI11). And the ROI 12), the distance between the edges of these patterns is measured. FIG. 3B shows patterns P21 and P21 that face each other in the y-axis direction and are shifted in the x-axis direction. FIG. 3C shows patterns P31 and P32 facing each other in the x-axis direction.
 図3(a)に示すように、2つのパターンの末端部間の距離を測定する場合、その平坦部は長さが短いため、広範囲のデータを取得することができず、正確な測定をすることが困難である。また、このように平坦部が短いときは、ROIボックスの少しのずれでコーナーにかかり、コーナーが設計値と異なり湾曲しているときは、ROIボックスが湾曲している部分にかかるか否かによってエッジ位置の値が大きく変わってしまう。その結果、測長の都度エッジ間の検出距離が異なることになり、エッジ間の距離検出の再現性が悪くなる。 As shown in FIG. 3A, when measuring the distance between the end portions of two patterns, the flat portion has a short length, so a wide range of data cannot be obtained, and accurate measurement is performed. Is difficult. In addition, when the flat part is short as described above, it is applied to the corner with a slight deviation of the ROI box, and when the corner is curved unlike the design value, it depends on whether or not the ROI box is applied to the curved part. The value of the edge position changes greatly. As a result, the detection distance between the edges is different for each length measurement, and the reproducibility of the distance detection between the edges is deteriorated.
 これに対して、本願発明者は、エッジ位置を一意的に検出するために、エッジ部の形状を利用することに着目した。すなわち、平坦な測定部とその両端のエッジ形状を解析することにより平坦部の範囲または平坦部の中心位置を一意的に求めることが出来ることに着目した。 In contrast, the inventor of the present application paid attention to the use of the shape of the edge portion in order to uniquely detect the edge position. That is, it was noted that the range of the flat part or the center position of the flat part can be uniquely obtained by analyzing the flat measurement part and the edge shapes at both ends thereof.
 本実施形態では、例えば図3(a)に示すように、コーナー部の湾曲部も含めて測定対象領域(ROI11及びROI12)として指定している。このように設定した測定対象領域(ROIボックスとも呼ぶ)内のパターンのエッジプロファイルから測定対象となる平坦部の範囲または平坦部の中心位置が一意的に算出されることについて以下に説明する。 In this embodiment, for example, as shown in FIG. 3A, the measurement target region (ROI11 and ROI12) is specified including the curved portion of the corner portion. It will be described below that the range of the flat part to be measured or the center position of the flat part is uniquely calculated from the edge profile of the pattern in the measurement target region (also referred to as ROI box) set in this way.
 図4はパターンの先端部分の一例を示した図である。また、図4の破線L1は設計値を示し、実線L2は形成されたパターンのエッジプロファイルを示している。図4に示すように、実際に形成されるパターンは設計値通りには形成されず、特にコーナーが丸みを帯びて形成される。 FIG. 4 is a view showing an example of the tip portion of the pattern. Also, the broken line L1 in FIG. 4 indicates the design value, and the solid line L2 indicates the edge profile of the formed pattern. As shown in FIG. 4, the actually formed pattern is not formed according to the design value, and in particular, the corner is formed with roundness.
 前記L2のエッジ形状のプロファイルを微分したプロファイルを求め、最初に微分値がゼロになった位置を平坦部の開始位置、最後に微分値がゼロになった位置を平坦部の終了位置とし、この2点間を平坦部の範囲として求めることができる。 A profile obtained by differentiating the profile of the edge shape of L2 is obtained, and the position where the differential value becomes zero first is the start position of the flat portion, and the position where the differential value finally becomes zero is the end position of the flat portion. The distance between the two points can be determined as the range of the flat portion.
 本実施形態では、前記平坦部の範囲を平均した位置をエッジ位置としている。また、平坦部が検出されないときはパターンのエッジのうちの平坦と推定できる部分の長さを移動平均幅と設定し、エッジプロファイルを移動平均幅によって移動平均して、移動平均プロファイルを作成する。パターンのエッジのうちの平坦と推定できる部分の長さは、エッジの設計値からパターンを形成したときにコーナーが湾曲状に形成されると想定される長さを引いた値としている。例えば、湾曲状に形成されると想定される長さは、エッジの長さによらず50nmとしている。 In the present embodiment, the position obtained by averaging the range of the flat portion is used as the edge position. When the flat portion is not detected, the length of the portion of the pattern edge that can be estimated to be flat is set as the moving average width, and the moving average profile is created by moving the edge profile using the moving average width. The length of the portion of the edge of the pattern that can be estimated to be flat is a value obtained by subtracting the length assumed to form a corner when the pattern is formed from the design value of the edge. For example, the length assumed to be formed in a curved shape is 50 nm regardless of the length of the edge.
 エッジプロファイルは、エッジを所定の間隔の測定点毎に位置座標で示すことによってエッジ形状を表している。このエッジプロファイルの各測定点に対して、移動平均処理を行う。すなわち、移動平均幅が例えば100nmと算出されたとき、100nmに対応するエッジプロファイルの測定点の数が例えば36点であれば、エッジプロファイルの各測定点毎に前後の36点で平均化する。 The edge profile represents the edge shape by indicating the edge in position coordinates for each measurement point at a predetermined interval. A moving average process is performed on each measurement point of the edge profile. That is, when the moving average width is calculated to be, for example, 100 nm, if the number of measurement points of the edge profile corresponding to 100 nm is, for example, 36, averaging is performed at the 36 points before and after each measurement point of the edge profile.
 エッジプロファイルを移動平均した結果、図4に示すように、移動平均プロファイルL3はピーク値を有し、ピーク値の位置がエッジの平坦部分の中心に対応する。この位置を測定対象領域内のパターンのエッジにおける中心エッジ位置と呼ぶ。 As a result of moving average of the edge profile, as shown in FIG. 4, the moving average profile L3 has a peak value, and the position of the peak value corresponds to the center of the flat portion of the edge. This position is called the center edge position at the edge of the pattern in the measurement target region.
 なお、移動平均幅が最適値、すなわち測定対象範囲のエッジの平坦部の幅であればアライメント位置及び平均位置を同時に算出することが可能である。しかし、パターンのコーナーの湾曲部の長さを正確に予測することは難しく、移動平均幅を最適値にすることは困難である。 If the moving average width is the optimum value, that is, the width of the flat portion of the edge of the measurement target range, the alignment position and the average position can be calculated simultaneously. However, it is difficult to accurately predict the length of the curved portion of the corner of the pattern, and it is difficult to set the moving average width to an optimum value.
 図5を参照して移動平均幅の値に対するエッジ位置の検出精度を説明する。図5(a)はx方向の幅がW5のパターンの一例を示している。このパターンのエッジの平坦部の長さはパターンのコーナー部の湾曲した長さを引いた長さであり、最適な移動平均幅Wとなる。図5(b)は図5(a)のエッジプロファイルE1に対して最適な移動平均幅Wよりも大きい移動平均幅W5で移動平均した移動平均プロファイルm1をエッジプロファイルに重ねて示している。図5(b)に示すように、移動平均プロファイルm1はピーク値が存在するものの、y座標の値が実際のエッジのy座標値と異なり、差分d5が発生する。エッジの中心位置の(x、y)座標値(平均位置とも呼ぶ)に誤差が発生し、平均位置の精度が悪くなる。 The edge position detection accuracy with respect to the moving average width value will be described with reference to FIG. FIG. 5A shows an example of a pattern whose width in the x direction is W5. The length of the flat portion of the edge of this pattern is the length obtained by subtracting the curved length of the corner portion of the pattern, and the optimum moving average width W is obtained. FIG. 5B shows a moving average profile m1 obtained by moving average with a moving average width W5 larger than the optimum moving average width W with respect to the edge profile E1 of FIG. As shown in FIG. 5B, although the moving average profile m1 has a peak value, the y coordinate value is different from the actual y coordinate value, and a difference d5 occurs. An error occurs in the (x, y) coordinate value (also referred to as an average position) of the center position of the edge, and the accuracy of the average position is deteriorated.
 図5(c)はエッジプロファイルE1を最適な移動平均幅Wで移動平均した移動平均プロファイルm2を示している。この場合は、移動平均プロファイルm2のピークの位置は、エッジの中心を示している。 FIG. 5 (c) shows a moving average profile m2 obtained by moving and averaging the edge profile E1 with the optimum moving average width W. In this case, the peak position of the moving average profile m2 indicates the center of the edge.
 一方、図5(d)はエッジプロファイルE1を最適な移動平均幅Wよりも小さい移動平均幅W6で移動平均した場合を示している。この場合は、移動平均プロファイルm3がピーク値をとることなくy座標値が一定となる幅d6の平坦部を有する。従って、エッジのx座標値(アライメント位置とも呼ぶ)を一意に決定することができない。よって、アライメント位置の精度が悪くなる。 On the other hand, FIG. 5D shows a case where the edge profile E1 is moving averaged with a moving average width W6 smaller than the optimum moving average width W. In this case, the moving average profile m3 has a flat portion with a width d6 in which the y coordinate value is constant without taking a peak value. Therefore, the x coordinate value (also referred to as alignment position) of the edge cannot be uniquely determined. Therefore, the accuracy of the alignment position is deteriorated.
 移動平均幅が最適値でない場合であっても、次のようにアライメント位置の算出と平均位置の算出を別々に行うことにより、アライメント位置及び平均位置を精度良く算出することができる。 Even if the moving average width is not the optimum value, the alignment position and the average position can be calculated with high accuracy by separately calculating the alignment position and the average position as follows.
 まず、移動平均幅を最適値Wより大きい値W5にして、移動平均幅W5を用いてエッジプロファイルを移動平均する。この移動平均幅W5は例えばパターンの幅とする。これによりアライメント位置、すなわちエッジの平坦部のセンタ位置CLが一意に算出される。    First, the moving average width is set to a value W5 larger than the optimum value W, and the moving average width W5 is used to average the edge profile. The moving average width W5 is, for example, a pattern width. Thereby, the alignment position, that is, the center position CL of the flat portion of the edge is uniquely calculated. *
 次に、アライメント位置の算出で特定したx座標に対して、-Wm/2から+Wm/2までの間(図5(b)参照)のエッジプロファイルE1のy座標の平均値を求める。なお、Wmは実際のSEM画像における平坦部の幅のばらつきを考慮した値であり、最適値Wに近い値が望ましい。このようにして、平均位置の座標値(x、y)が算出される。 Next, the average value of the y coordinate of the edge profile E1 between −Wm / 2 and + Wm / 2 (see FIG. 5B) is obtained with respect to the x coordinate specified by the alignment position calculation. Note that Wm is a value that considers the variation in the width of the flat portion in the actual SEM image, and is preferably a value close to the optimum value W. In this way, the coordinate value (x, y) of the average position is calculated.
 上記したエッジ間の測長では、測定対象領域内の一対のエッジが共に凸状のパターンの場合を対象として説明した。測長の対象となるエッジの形状は凸状に限らず凹状や平坦の場合も考えられる。そこで、以下に、エッジの形状に応じたエッジ位置の検出について説明する。 In the length measurement between the edges described above, the case where the pair of edges in the measurement target region are both convex patterns has been described. The shape of the edge to be measured is not limited to a convex shape, but may be a concave shape or a flat shape. Therefore, detection of the edge position corresponding to the shape of the edge will be described below.
 図6は対向するエッジの形状の一例を示している。図6(a)は左右のパターンP61L,P61Rの末端部が凸状の場合であり、図6(b)は、左右のパターンP62L,P62Rの末端部が凹状の場合を示している。また、図6(c)、(d)は、それぞれ左右のパターン(P63L,P63R,P64L,P64R)の一方が凸状であり他方が凹状の場合を示している。また、図6(e)、(f)は、それぞれ左右のパターン(P65L,P65R,P66L,P66R)の一方が凸状であり他方が平坦の場合であり、図6(g)、(h)は、それぞれ左右のパターン(P67L,P67R,P68L,P68R)の一方が凹状であり他方が平坦の場合を示している。 FIG. 6 shows an example of the shape of opposing edges. FIG. 6A shows a case where the end portions of the left and right patterns P61L and P61R are convex, and FIG. 6B shows a case where the end portions of the left and right patterns P62L and P62R are concave. FIGS. 6C and 6D show the case where one of the left and right patterns (P63L, P63R, P64L, P64R) is convex and the other is concave. FIGS. 6E and 6F show the case where one of the left and right patterns (P65L, P65R, P66L, and P66R) is convex and the other is flat, and FIGS. 6G and 6H. Indicates a case where one of the left and right patterns (P67L, P67R, P68L, P68R) is concave and the other is flat.
 例えば、図6の右方向を+x方向とすると、図6(a)の左側のパターンP61Lではエッジプロファイルを移動平均した後、移動平均プロファイルのピークは+x方向に凸になり、図6(a)の右側のパターンP61Rでは移動平均プロファイルのピークは-x方向に凸になる。また、図6(b)の左側のパターンP62Lでは移動平均プロファイルのピークは-x方向に凸になり、図6(b)の右側のパターンP62Rでは移動平均プロファイルのピークは-x方向に凸になる。これらのピーク値に対応する位置座標を中心エッジ位置とする。図6(c)、(d)の場合も同様である。 For example, assuming that the right direction in FIG. 6 is the + x direction, in the pattern P61L on the left side in FIG. 6A, after moving average the edge profile, the peak of the moving average profile becomes convex in the + x direction. In the right side pattern P61R, the peak of the moving average profile is convex in the −x direction. In the left pattern P62L in FIG. 6B, the peak of the moving average profile is convex in the −x direction, and in the right pattern P62R in FIG. 6B, the peak of the moving average profile is convex in the −x direction. Become. The position coordinates corresponding to these peak values are set as the center edge position. The same applies to FIGS. 6C and 6D.
 また、図6(e)の右側のパターンP65Rのように、エッジが直線状の場合は移動平均をしてもピーク値を得ることができず、移動平均プロファイルのピーク値を利用して中心エッジ位置を検出することができない。この場合は、対向する凸状エッジの中心エッジ位置の位置座標を利用する。例えば、図6(e)の場合に、左側のパターンP65Lの中心エッジ位置がC65L(x1、y1)であり、右側のパターンP65Rのx座標がx2のときは、右側の直線のエッジの中心エッジ位置C65Rを(x2、y1)とする。図6(f)~(h)の場合も同様に、中心エッジ位置が検出される。 Also, as in the pattern P65R on the right side of FIG. 6E, when the edge is a straight line, a peak value cannot be obtained even if moving average is performed, and the center edge is obtained using the peak value of the moving average profile. The position cannot be detected. In this case, the position coordinates of the center edge position of the opposing convex edge are used. For example, in the case of FIG. 6E, when the center edge position of the left pattern P65L is C65L (x1, y1) and the x coordinate of the right pattern P65R is x2, the center edge of the right straight edge Let position C65R be (x2, y1). Similarly, in the case of FIGS. 6F to 6H, the center edge position is detected.
 エッジの形状の判定は次のようにして行う。図7は、測定対象領域内のエッジEの一部を示している。図7に示すように、エッジEの全体を3つの部分に分けて検出されたエッジ位置をそれぞれ、A(xa、ya),B(xb、yb),C(xc、yc)とする。例えば、エッジのx軸方向の凹凸を判定する場合には、xa<xc<xbまたはxc<xa<xbのときは+x方向に凸になっていると判定され、xb<xa<xcまたはxb<xc<xaのときは-x方向に凸になっていると判定される。その他の場合は、エッジは直線であるとみなされる。 Judgment of edge shape is performed as follows. FIG. 7 shows a part of the edge E in the measurement target region. As shown in FIG. 7, the edge positions detected by dividing the entire edge E into three parts are respectively A (xa, ya), B (xb, yb), and C (xc, yc). For example, when determining the unevenness of the edge in the x-axis direction, when xa <xc <xb or xc <xa <xb, it is determined to be convex in the + x direction, and xb <xa <xc or xb < When xc <xa, it is determined to be convex in the −x direction. Otherwise, the edge is considered a straight line.
 以上のようにして指定された一対のエッジの形状を判定し、エッジプロファイルを算出し、さらにエッジ特性を示す移動平均プロファイルを作成して、一意的に決定されるエッジ位置を検出する。 The shape of a pair of edges designated as described above is determined, an edge profile is calculated, a moving average profile indicating edge characteristics is created, and a uniquely determined edge position is detected.
 以上説明したように、エッジ間の距離を測長する場合であって、ラインパターンの先端部のようにエッジの長さが短い場合に、まず、先端部を測定対象領域として指定し、測定対象領域内のパターンのエッジ形状を位置座標によってエッジプロファイルを作成している。このエッジプロファイルから平坦部を検出してその平均位置をエッジ位置として算出している。平坦部の検出方法の一つとしては、前記のエッジプロファイルを微分して微分値が最初にゼロになる位置を平坦部の開始位置および微分値が最後にゼロとなる位置を終了位置として求めることができる。また、前記微分値がゼロになる点がない等、平坦部が検出できない場合は、パターンの幅の設計値から推定した平坦部の幅でプロファイルを移動平均してエッジ特性曲線(移動平均プロファイル)を求め、そのピーク位置をエッジ中心位置として算出している。一対の指定された測定対象領域のそれぞれのパターンに対して中心エッジ位置を算出して、中心エッジ間の距離をエッジ間距離としている。これにより、エッジの位置が測定対象領域のずれによって異なることを防止でき、エッジ間を再現性良く測長することが可能となる。 As described above, when measuring the distance between edges and the edge length is short like the tip of the line pattern, first specify the tip as the measurement target area, An edge profile is created based on the position coordinates of the edge shape of the pattern in the region. A flat portion is detected from the edge profile, and the average position is calculated as the edge position. As one method for detecting the flat portion, the edge profile is differentiated, and the position where the differential value is first zero is obtained as the start position of the flat portion and the position where the differential value is finally zero as the end position. Can do. In addition, when a flat portion cannot be detected because there is no point where the differential value becomes zero, the profile of the flat portion estimated from the design value of the pattern width is moved and averaged to obtain an edge characteristic curve (moving average profile). And the peak position is calculated as the edge center position. The center edge position is calculated for each pattern of the pair of designated measurement target areas, and the distance between the center edges is defined as the distance between the edges. Thereby, it is possible to prevent the position of the edge from being different due to the shift of the measurement target region, and it is possible to measure the distance between the edges with high reproducibility.
 (パターンのエッジ間の測長方法)
 次に、図8のフローチャートを参照しながらエッジ間の測長処理について説明する。本エッジ間の測長処理では、測定対象とする2か所のエッジ位置が一対のROIボックス(測定対象領域)によって指定されているものとして説明する。なお、ROIボックスによる指定では、対象とするエッジを含み、かつROIボックスがずれてもエッジが含まれるような大きさで指定されているものとする。
(Measurement method between pattern edges)
Next, the length measurement process between edges will be described with reference to the flowchart of FIG. In the length measurement process between the edges, it is assumed that two edge positions to be measured are designated by a pair of ROI boxes (measurement target areas). In the specification by the ROI box, it is assumed that the size includes the target edge and the edge is included even if the ROI box is shifted.
 まず、ステップS11において、指定されたROIボックスで指定された測定対象領域を含むSEM画像を取得する。このSEM画像データはピクセルデータとして格納されている記憶部55から抽出する。 First, in step S11, an SEM image including the measurement target region designated by the designated ROI box is acquired. The SEM image data is extracted from the storage unit 55 stored as pixel data.
 次のステップS12において、測定対象領域内のパターンのエッジ形状(エッジプロファイル)を検出する。このエッジ形状は位置座標によって表される。 In the next step S12, the edge shape (edge profile) of the pattern in the measurement target region is detected. This edge shape is represented by position coordinates.
 測定対象領域内のパターンのエッジ形状の検出処理について、図9及び図10を参照しながら説明する。図9は測定対象領域内のエッジプロファイル検出処理を示すフローチャートである。また、図10は、測定対象領域内のエッジプロファイル検出を説明する図である。なお、本エッジプロファイル検出処理においては測定対象領域内のパターンのエッジを対象とし、エッジプロファイル検出の開始位置はROIボックスとパターンとが交差するエッジとする。 The processing for detecting the edge shape of the pattern in the measurement target area will be described with reference to FIGS. FIG. 9 is a flowchart showing edge profile detection processing in the measurement target region. FIG. 10 is a diagram for explaining edge profile detection in the measurement target region. In this edge profile detection process, the edge of the pattern in the measurement target region is targeted, and the start position of the edge profile detection is the edge where the ROI box and the pattern intersect.
 まず、図9のステップS21では初期設定を行う。初期設定では、ROIボックス指定範囲内のエッジを検出する際の所定の間隔(以下、指定ステップとよぶ)を指定する。例えば、この指定ステップは所定のピクセル数に対応する距離とする。また、ROIボックス指定範囲内の検出エッジの位置を示すカウンタkを0と置く。 First, initial setting is performed in step S21 of FIG. In the initial setting, a predetermined interval (hereinafter referred to as a designation step) for detecting an edge within the ROI box designation range is designated. For example, this designation step is a distance corresponding to a predetermined number of pixels. A counter k indicating the position of the detected edge within the ROI box designation range is set to 0.
 次のステップS22からステップS24では、開始位置ESから所定の指定ステップd離れた位置のエッジ位置を検出する。 In the next step S22 to step S24, an edge position at a position away from the start position ES by a predetermined designated step d is detected.
 ステップS22では、開始位置ESから(指定ステップd×2)の距離だけ離れた位置において仮エッジを検出する。具体的には、図10(a)に示すように、開始位置ESから図10(a)の下方(-Y方向)への直線VLと(指定ステップd×2)の位置で直交するラインHLを、プロファイル作成の基準線として、ラインプロファイルを作成してエッジE11を検出する。この検出されたエッジE11を仮検出エッジE11とする。 In step S22, a temporary edge is detected at a position separated from the start position ES by a distance of (designated step d × 2). Specifically, as shown in FIG. 10 (a), a line HL orthogonal to the straight line VL from the start position ES to the lower side (−Y direction) of FIG. 10 (a) at the position (designated step d × 2). and a reference line of the profile creation, detects the edge E 11 by creating a line profile. The detected edge E 11 as the temporary detection edge E 11.
 次のステップS23では、ステップS22で検出した仮検出エッジE11の再検出を行う。開始位置ESと仮検出エッジ位置E11とを結んだ直線上の開始位置ESから(指定ステップd×2)の距離だけ離れた位置で直交するラインをプロファイル作成の基準線とし、この基準線上のラインプロファイルを求め、仮検出エッジ位置を再検出する。この仮検出エッジ位置の再検出によって、開始位置ESからの距離を(指定ステップd×2)により近づけるようにしている。 In the next step S23, it performs a redetection provisional detection edge E 11 detected in step S22. From the start position ES and the tentative detected edge position E 11 and the straight line on the starting position ES connecting the line perpendicular at a position apart a distance (specified step d × 2) and the reference line of the profile creation, the reference line A line profile is obtained, and the temporarily detected edge position is detected again. By re-detecting the temporarily detected edge position, the distance from the start position ES is made closer to (designated step d × 2).
 次のステップS24では、最初のエッジ位置を検出する。開始位置ESと再検出された仮検出エッジ位置E12とを結ぶ直線IL1と、中間位置MP1において直交するライン上でラインプロファイルを求め、エッジEPk(xk、yk)を検出する。図10(b)では、1番目のエッジとしてエッジEP1が検出される。 In the next step S24, the first edge position is detected. A line profile is determined on a line orthogonal to the straight line IL 1 connecting the start position ES and the re-detected temporary detection edge position E 12 and the intermediate position MP 1 , and an edge EP k (x k , y k ) is detected. . In FIG. 10B, the edge EP 1 is detected as the first edge.
 次のステップS25では、エッジEPk(xk、yk)を次のエッジ検出のための起点とする。図10(c)では、エッジEP1を起点としている。 In the next step S25, the edge EP k (x k , y k ) is set as a starting point for the next edge detection. In FIG. 10C, the edge EP 1 is the starting point.
 次のステップS26からステップS28では、起点エッジ位置EPk(xk、yk)から指定ステップ離れたエッジ位置EPk+1(xk+1、yk+1)を検出する。 In the next step S26 to step S28, an edge position EP k + 1 (x k + 1 , y k + 1 ) that is a specified step away from the starting edge position EP k (x k , y k ) is detected.
 ステップS26では、起点EP1と再検出された仮検出エッジE12とを結んだ直線IL2上の起点EP1から(指定ステップd×2)だけ離れた位置において直交するラインをプロファイル作成の基準線として、ラインプロファイルを作成してエッジを検出する。この検出されたエッジを仮検出エッジE21とする。 In step S26, the reference profile creating a line perpendicular at a distance and provisional detection edge E 12, which is re-detected starting point EP 1 from the starting point EP 1 on the straight line IL 2 that connects only (designated step d × 2) As a line, a line profile is created to detect an edge. The detected edge as the temporary detection edge E 21.
 次のステップS27では、ステップS24と同様に、起点EP1と仮検出エッジ位置E21とを結んだ直線上の、起点EP1から(指定ステップd×2)の距離だけ離れた位置で直交するラインをプロファイル作成の基準線とし、この基準線上のラインプロファイルを求め、仮検出エッジ位置を再検出する。 In the next step S27, similarly to step S24, straight line of connecting the starting point EP 1 and the tentative detected edge position E 21, perpendicular in a position apart a distance from the origin EP 1 (specified step d × 2) The line is used as a reference line for profile creation, a line profile on this reference line is obtained, and the temporarily detected edge position is redetected.
 次のステップS28では、起点EP1と再検出された仮検出エッジ位置E22とを結ぶ直線IL3と、中間位置MP2において直交するライン上でラインプロファイルを求め、エッジEPk+1を検出する。図10(d)では、2番目のエッジとしてエッジEP2が検出される。 In the next step S28, the straight line IL 3 connecting the tentative detection edge position E 22, which is re-detected the starting point EP 1, obtains a line profile on the line perpendicular at the intermediate position MP 2, detects the edge EP k + 1 To do. In FIG. 10D, the edge EP 2 is detected as the second edge.
 次のステップS29では、パターン周囲のエッジがすべて検出されたか否かを判定する。すべて検出されたと判定されれば、本処理は終了し、まだ検出が終了していないと判定されれば、ステップS30に移行する。 In the next step S29, it is determined whether or not all edges around the pattern have been detected. If it is determined that all have been detected, the process ends. If it is determined that the detection has not yet been completed, the process proceeds to step S30.
 次のステップS30では、k=k+1とし、ステップS25に移行して、次のエッジ位置を検出する。 In the next step S30, k = k + 1 is set, and the process proceeds to step S25 to detect the next edge position.
 上記のエッジ形状検出処理によって測定対象領域内のエッジ位置が検出され、エッジプロファイルが作成される。 The edge position in the measurement target area is detected by the above edge shape detection process, and an edge profile is created.
 次に、図8のステップS13において、ステップS12で作成されたエッジプロファイルに対して移動平均を行うための移動平均幅を算出する。移動平均幅は、パターンのエッジの平坦部分の長さであり、エッジプロファイルを微分して微分値が最初にゼロになった点と最後のゼロの点から求める。前記の微分値がゼロになる点が検出されない場合はパターン幅の設計値から所定の値、例えば100nmを引いた長さである。このような所定の値を用いているのは、実際に形成されるパターンのコーナーが直角に形成されずに平坦部分が短くなる分を想定しているためである。 Next, in step S13 in FIG. 8, a moving average width for performing a moving average on the edge profile created in step S12 is calculated. The moving average width is the length of the flat portion of the edge of the pattern, and is obtained from the point at which the differential value becomes zero first and the last zero point by differentiating the edge profile. When the point at which the differential value becomes zero is not detected, the length is obtained by subtracting a predetermined value, for example, 100 nm from the design value of the pattern width. The reason why such a predetermined value is used is that it is assumed that the corners of the actually formed pattern are not formed at right angles but the flat portion is shortened.
 次のステップS14において、ステップS12で検出されたエッジプロファイルに対して、移動平均処理を行い、移動平均プロファイルを算出する。この移動平均処理は、ステップS13で算出された移動平均幅でエッジプロファイルを移動平均することによって算出される。すなわち、移動平均幅に相当する測定点の数でエッジプロファイルの各測定点をについて平均値を算出して、移動平均プロファイルを作成する。 In the next step S14, a moving average process is performed on the edge profile detected in step S12 to calculate a moving average profile. This moving average process is calculated by moving and averaging the edge profile with the moving average width calculated in step S13. That is, an average value is calculated for each measurement point of the edge profile by the number of measurement points corresponding to the moving average width, and a moving average profile is created.
 次のステップS15において、移動平均プロファイルを基に測定対象領域内のエッジ位置(中心エッジ位置)を検出する。移動平均幅が実際のパターンのエッジの平坦部の幅と同じであれば、移動平均プロファイルのピーク値は、ROIで指定された範囲内のエッジの平坦部分の中心位置を示すことになるため、その位置を中心エッジ位置とする。 In the next step S15, the edge position (center edge position) in the measurement target area is detected based on the moving average profile. If the moving average width is the same as the width of the flat portion of the edge of the actual pattern, the peak value of the moving average profile indicates the center position of the flat portion of the edge within the range specified by the ROI. The position is set as the center edge position.
 次のステップS16において、各測定対象領域のエッジに対して算出された中心エッジ位置を用いて、エッジ間の距離を算出する。 In the next step S16, the distance between the edges is calculated using the center edge position calculated for the edge of each measurement target region.
 以下に、エッジ間の距離の算出について図3を参照しながら説明する。エッジ間の距離として、(a)2つのパターン間のy軸方向の距離の算出、(b)2つのパターン間のx軸方向の距離の算出、及び(c)2つのパターン間の最短距離の算出について説明する。 Hereinafter, calculation of the distance between edges will be described with reference to FIG. As the distance between edges, (a) the calculation of the distance in the y-axis direction between two patterns, (b) the calculation of the distance in the x-axis direction between two patterns, and (c) the shortest distance between the two patterns The calculation will be described.
 (a)2つのパターン間のy軸方向の距離の算出
 図3(a)に示すパターン間のy軸方向の距離を算出するために、一対のROIボックス(ROI11及びROI12)が図3(a)のように設定される。ステップS16までの処理によって、ROI12内のエッジE12の移動平均プロファイルのピーク値の位置座標がC12(x12、y12)と算出され、ROI11内のエッジE11の移動平均プロファイルのピーク値の位置座標がC11(x11、y11)と算出されたものとする。この場合、C11のy座標y11がそのエッジE11の最小値であり、C12のy座標y12がそのエッジE12の最大値である。従って、2つのエッジ間のy方向の距離d1はy11-y12で算出される。
(A) Calculation of distance in y-axis direction between two patterns In order to calculate the distance in the y-axis direction between patterns shown in FIG. 3 (a), a pair of ROI boxes (ROI11 and ROI12) are shown in FIG. ) Is set. Through the processing up to step S16, the position coordinate of the peak value of the moving average profile of the edge E12 in the ROI 12 is calculated as C12 (x12, y12), and the position coordinate of the peak value of the moving average profile of the edge E11 in the ROI 11 is C11. It is assumed that (x11, y11) is calculated. In this case, the y coordinate y11 of C11 is the minimum value of the edge E11, and the y coordinate y12 of C12 is the maximum value of the edge E12. Accordingly, the distance d1 in the y direction between the two edges is calculated as y11-y12.
 (b)2つのパターン間のx軸方向の距離の算出
 図3(c)に示すパターン間のx軸方向の距離を算出するために、一対のROIボックス(ROI31及びROI32)が図3(c)のように設定される。ステップS16までの処理によって、ROI31内のエッジE31の移動平均プロファイルのピーク値の位置座標がC31(x31、y31)となり、ROI32内のエッジE32の移動平均プロファイルのピーク値の位置座標がC32(x32、y32)と算出されたものとする。この場合、C31のx座標x31がそのエッジE31の最大値であり、C32のx座標x32がそのエッジE32の最小値である。従って、2つのエッジ間のx方向の距離d4はx32-x31で算出される。
(B) Calculation of distance in the x-axis direction between two patterns In order to calculate the distance in the x-axis direction between the patterns shown in FIG. 3 (c), a pair of ROI boxes (ROI 31 and ROI 32) are shown in FIG. ) Is set. By the processing up to step S16, the position coordinate of the peak value of the moving average profile of the edge E31 in the ROI 31 is C31 (x31, y31), and the position coordinate of the peak value of the moving average profile of the edge E32 in the ROI 32 is C32 (x32). , Y32). In this case, the x coordinate x31 of C31 is the maximum value of the edge E31, and the x coordinate x32 of C32 is the minimum value of the edge E32. Therefore, the distance d4 in the x direction between the two edges is calculated as x32-x31.
 (c)2つのパターン間の最短距離の算出
 エッジ間の最短距離の算出について以下に説明する。図3(b)は、y軸方向に隣接して形成されたパターンであって、x軸方向にずれた2つのパターン(P21及びP22)を示している。この2つのパターンP21,P22間のy軸方向の距離d2は上記(a)の方法によって算出される。
(C) Calculation of the shortest distance between two patterns Calculation of the shortest distance between edges will be described below. FIG. 3B shows two patterns (P21 and P22) formed adjacent to each other in the y-axis direction and shifted in the x-axis direction. A distance d2 in the y-axis direction between the two patterns P21 and P22 is calculated by the method (a).
 ここでは、パターン間の最短距離の算出について説明する。まず、一対の測定対象領域(ROI21、ROI22)内のパターンのエッジプロファイルを所定の測定点の数によってスムージングする。このスムージング処理は、エッジプロファイルの位置座標を例えば隣接する3点の位置座標により平均化することによって行う。これにより、ノイズが低減されたエッジ形状の位置座標(スムージングプロファイル)が算出される。 Here, calculation of the shortest distance between patterns will be described. First, the edge profile of the pattern in the pair of measurement target regions (ROI21, ROI22) is smoothed by the number of predetermined measurement points. This smoothing process is performed by averaging the position coordinates of the edge profile with, for example, the position coordinates of three adjacent points. As a result, the position coordinates (smoothing profile) of the edge shape with reduced noise are calculated.
 スムージング処理後のROI21内の測定点(xi、yi)とROI22内の測定点(xj、yj)との距離√((xj-xi2+(yj-yi2)をすべての測定点間で算出し、最小となる値及び位置座標を求める。例えば、ROI21内のエッジ位置N21(x21、y21)とROI22内のエッジ位置N22(x22、y22)のときに最小値をとれば、2つのエッジ間の最短距離d3は、√((x21-x22)2+(y21-y22)2)として算出される。 Distance √ ((x j −x i ) 2 + (y j −y i ) between the measurement point (x i , y i ) in the ROI 21 after the smoothing processing and the measurement point (x j , y j ) in the ROI 22 2 ) is calculated between all measurement points, and the minimum value and position coordinates are obtained. For example, if the minimum value is taken at the edge position N21 (x21, y21) in the ROI 21 and the edge position N22 (x22, y22) in the ROI 22, the shortest distance d3 between the two edges is √ (((x21−x22 ) 2 + (y21−y22) 2 )
 以上説明したように、本実施形態のパターン測長方法では、ROIで指定されたパターンのエッジの位置を特定するために、エッジの平坦部分の長さを移動平均幅として、位置座標で示されたエッジの形状を表すエッジプロファイルを移動平均してエッジ特性を算出している。このエッジ特性はエッジの平坦部の中心位置を一意的に示している。そして、一対のROIで指示されたパターンのエッジ間の距離を、中心位置を用いて算出している。これにより、エッジ間の距離を再現性良く算出することが可能になる。 As described above, in the pattern length measurement method of this embodiment, in order to specify the position of the edge of the pattern specified by the ROI, the length of the flat part of the edge is indicated by the position coordinate as the moving average width. The edge characteristics are calculated by moving and averaging the edge profiles representing the shape of the edge. This edge characteristic uniquely indicates the center position of the flat portion of the edge. Then, the distance between the edges of the pattern designated by the pair of ROIs is calculated using the center position. This makes it possible to calculate the distance between edges with good reproducibility.
 なお、本実施形態では、ガラス等の基板の上にパターンが形成される場合を対象としてパターンのエッジ間の距離の検出について説明したが、これに限定されず、ガラス等の基板を削って形成されるパターンにも適用可能である。 In this embodiment, the detection of the distance between the edges of the pattern has been described for the case where the pattern is formed on a substrate such as glass. However, the present invention is not limited to this, and the substrate is formed by cutting the substrate such as glass. It is also applicable to the pattern to be applied.
 また、本実施形態では、2つのパターンのエッジ間の距離の検出を対象として説明したが、これに限らず、1つのパターンのエッジ間の距離の検出に適用することも可能である。 In the present embodiment, the detection of the distance between the edges of the two patterns has been described. However, the present invention is not limited to this, and can be applied to the detection of the distance between the edges of one pattern.

Claims (12)

  1.  電子ビームを試料上に走査しながら照射する電子ビーム照射部と、
     前記電子ビームの照射によって、パターンが形成された前記試料上から発生する電子の電子量を基に当該パターンの画像を取得する画像データ取得部と、
     前記パターンの画像のエッジを含む一対の測定領域を設定する測定対象領域設定部と、
     前記測定領域内のパターンのエッジ形状を検出し、前記一対の測定領域内のパターンのエッジ間の距離を算出する制御部とを有し、
     前記制御部は、前記測定領域内のパターンのエッジが所定の間隔の測定点の位置座標で示されたエッジプロファイルの平坦部を検出し、当該平坦部の平均位置を前記測定領域内における前記パターンのエッジ位置とすることを特徴とするパターン測長装置。
    An electron beam irradiation unit for irradiating the sample while scanning the electron beam;
    An image data acquisition unit that acquires an image of the pattern based on the amount of electrons generated from the sample on which the pattern is formed by irradiation of the electron beam;
    A measurement target area setting unit that sets a pair of measurement areas including an edge of the image of the pattern;
    A controller that detects an edge shape of the pattern in the measurement region and calculates a distance between the edges of the pattern in the pair of measurement regions;
    The control unit detects a flat portion of an edge profile in which an edge of a pattern in the measurement region is indicated by position coordinates of measurement points at a predetermined interval, and an average position of the flat portion is detected in the pattern in the measurement region. The pattern length measuring device is characterized by the edge position of
  2.  前記制御部は、前記平坦部が検出されないとき、前記パターンの幅の設計値からパターンが形成されたときに湾曲すると想定される所定の値を引いた値で前記エッジプロファイルを移動平均してエッジ特性曲線を算出し、当該エッジ特性曲線のピーク値の位置を前記パターンのエッジ位置とすることを特徴とする請求項1に記載のパターン測長装置。 When the flat portion is not detected, the control unit calculates the edge by moving and averaging the edge profile by a value obtained by subtracting a predetermined value assumed to be curved when a pattern is formed from a design value of the pattern width. The pattern length measuring apparatus according to claim 1, wherein a characteristic curve is calculated, and a position of a peak value of the edge characteristic curve is set as an edge position of the pattern.
  3.  前記制御部は、y軸方向に対向する前記一対の測定領域のうち、一方の測定領域内のパターンのエッジ位置のy座標の値がy1であり、他方の測定領域内のパターンのエッジ位置のy座標の値がy2であり、y1>y2のとき、y1-y2をエッジ間のy軸方向の距離とすることを特徴とする請求項1に記載のパターン測長装置。 The control unit is configured such that, of the pair of measurement areas facing in the y-axis direction, the y coordinate value of the edge position of the pattern in one measurement area is y1, and the edge position of the pattern in the other measurement area is The pattern length measuring apparatus according to claim 1, wherein when the value of the y coordinate is y2 and y1> y2, y1-y2 is a distance between edges in the y-axis direction.
  4.  前記制御部は、x軸方向に対向する前記一対の測定領域のうち、一方の測定領域内のパターンのエッジ位置のx座標の値がx1であり、他方の測定領域内のパターンのエッジ位置のx座標の値がx2であり、x1<x2のとき、x2-x1をエッジ間のx軸方向の距離とすることを特徴とする請求項1に記載のパターン測長装置。 The control unit has an x coordinate value of the edge position of the pattern in one measurement region of the pair of measurement regions facing in the x-axis direction, and the edge position of the pattern in the other measurement region. 2. The pattern length measuring apparatus according to claim 1, wherein when x-coordinate value is x2 and x1 <x2, x2-x1 is a distance between edges in the x-axis direction.
  5.  前記制御部は、前記エッジプロファイルに対して必要に応じてノイズ低減のために所定の測定点の数でスムージング処理を実施したエッジの各測定点の位置座標を用いて、一方の測定領域内のパターンのエッジと他方の測定領域内のパターンのエッジとの間の最短距離を検出することを特徴とする請求項1に記載のパターン測長装置。 The control unit uses the position coordinates of each measurement point of the edge subjected to smoothing processing with a predetermined number of measurement points to reduce noise as necessary for the edge profile, and in one measurement region. The pattern length measuring apparatus according to claim 1, wherein the shortest distance between the edge of the pattern and the edge of the pattern in the other measurement region is detected.
  6.  前記制御部は、前記エッジが平坦部を有し、当該平坦部がx軸に平行であるとしたとき、前記エッジプロファイルを前記エッジの平坦部より長い移動平均幅で移動平均してエッジの中心位置のx座標値を算出し、当該x座標値に対して所定の範囲の前記エッジプロファイルのy座標値の平均値を算出して、前記測定領域内における前記パターンのエッジ位置を算出することを特徴とする請求項1に記載のパターン測長装置。 When the edge has a flat portion and the flat portion is parallel to the x-axis, the control unit performs a moving average of the edge profile with a moving average width longer than the flat portion of the edge, and the center of the edge Calculating an x-coordinate value of the position, calculating an average value of y-coordinate values of the edge profile in a predetermined range with respect to the x-coordinate value, and calculating an edge position of the pattern in the measurement region; The pattern length measuring apparatus according to claim 1, wherein
  7.  電子ビームを試料上に走査しながら照射する電子ビーム照射部と、前記電子ビームの照射によって、パターンが形成された前記試料上から発生する電子の電子量を基に当該パターンの画像を取得する画像データ取得部と、前記パターンの画像のエッジを含む一対の測定領域を設定する測定対象領域設定部とを有するパターン測長装置において、
     測定対象領域のパターンの画像を取得するステップと、
     前記測定対象領域内のパターンのエッジが所定の間隔の測定点の位置座標で示されたエッジプロファイルを検出するステップと、
     前記エッジプロファイルの平坦部を検出するステップと、
     前記平坦部の平均位置を算出して前記パターンのエッジ位置を決定するステップと、
     前記一対の測定対象領域内の一対のパターンのエッジ間の距離を検出するステップとを含むことを特徴とするパターン測長方法。
    An image for acquiring an image of the pattern based on the amount of electrons generated from the sample on which the pattern is formed by the electron beam irradiation, and an electron beam irradiation unit that irradiates the sample while scanning the sample with the electron beam In a pattern length measuring apparatus having a data acquisition unit and a measurement target region setting unit that sets a pair of measurement regions including an edge of the pattern image,
    Acquiring a pattern image of the measurement target region;
    Detecting an edge profile in which the edge of the pattern in the measurement target region is indicated by the position coordinates of the measurement points at a predetermined interval;
    Detecting a flat portion of the edge profile;
    Calculating an average position of the flat portion and determining an edge position of the pattern;
    Detecting a distance between edges of the pair of patterns in the pair of measurement target regions.
  8.  前記平坦部が検出されないとき、前記平坦部を検出するステップと、前記エッジ位置を決定するステップは、
     前記パターンの幅の設計値からパターンが形成されたときに湾曲すると想定される所定の値を引いた値で前記エッジプロファイルを移動平均してエッジ特性曲線を算出するステップと、当該エッジ特性曲線のピーク値の位置を前記パターンのエッジ位置に決定するステップであることを特徴とする請求項7に記載のパターン測長方法。
    When the flat portion is not detected, the step of detecting the flat portion and the step of determining the edge position include:
    Calculating an edge characteristic curve by moving and averaging the edge profile with a value obtained by subtracting a predetermined value assumed to be curved when a pattern is formed from a design value of the pattern width; and The pattern length measuring method according to claim 7, wherein the pattern value measuring step is a step of determining a position of a peak value as an edge position of the pattern.
  9.  前記エッジ間の距離を検出するステップは、
     y軸方向に対向する前記一対の測定領域のうち、一方の測定領域内のパターンのエッジ位置のy座標の値がy1であり、他方の測定領域内のパターンのエッジ位置のy座標の値がy2であり、y1>y2のとき、y1-y2をエッジ間のy軸方向の距離とするステップであることを特徴とする請求項7に記載のパターン測長方法。
    Detecting the distance between the edges comprises:
    Of the pair of measurement areas facing in the y-axis direction, the y-coordinate value of the edge position of the pattern in one measurement area is y1, and the y-coordinate value of the edge position of the pattern in the other measurement area is 8. The pattern length measuring method according to claim 7, wherein y2 is a step of setting y1-y2 as a distance between edges in the y-axis direction when y1> y2.
  10.  前記エッジ間の距離を検出するステップは、
     x軸方向に対向する前記一対の測定領域のうち、一方の測定領域内のパターンのエッジ位置のx座標の値がx1であり、他方の測定領域内のパターンのエッジ位置のx座標の値がx2であり、x1<x2のとき、x2-x1をエッジ間のx軸方向の距離とするステップであることを特徴とする請求項7に記載のパターン測長方法。
    Detecting the distance between the edges comprises:
    Of the pair of measurement areas facing in the x-axis direction, the x coordinate value of the edge position of the pattern in one measurement area is x1, and the x coordinate value of the edge position of the pattern in the other measurement area is 8. The pattern length measuring method according to claim 7, wherein x2 is a step of setting x2-x1 as a distance between edges in the x-axis direction when x1 <x2.
  11.  前記エッジ間の距離を検出するステップは、
     前記エッジプロファイルを所定の測定点の数で平均してスムージングするステップと、
     前記一対の測定領域内のパターンのスムージングされたエッジの各測定点の位置座標を用いて、一方の測定領域内のパターンのエッジと他方の測定領域内のパターンのエッジとの間の最短距離を検出するステップとを含むことを特徴とする請求項7に
    記載のパターン測長方法。
    Detecting the distance between the edges comprises:
    Smoothing the edge profile by averaging the predetermined number of measurement points;
    Using the position coordinates of each measurement point of the smoothed edge of the pattern in the pair of measurement areas, the shortest distance between the edge of the pattern in one measurement area and the edge of the pattern in the other measurement area is determined. The pattern length measuring method according to claim 7, further comprising a detecting step.
  12.  前記エッジ特性曲線を算出するステップとエッジ位置を特定するステップは、
     前記エッジが平坦部を有し、当該平坦部がx軸に平行であるとしたとき、前記エッジプロファイルを前記エッジの平坦部より長い移動平均幅で移動平均してエッジの中心位置のx座標値を算出するステップと、
     当該x座標値に対して所定の範囲の前記エッジプロファイルのy座標値の平均値を算出して、前記測定領域内における前記パターンのエッジ位置を算出するステップであることを特長とする請求項8に記載のパターン測長方法。
                                                                                   
    The step of calculating the edge characteristic curve and the step of specifying the edge position include:
    When the edge has a flat portion and the flat portion is parallel to the x-axis, the edge profile is moved and averaged with a moving average width longer than the flat portion of the edge, and the x coordinate value of the center position of the edge Calculating steps,
    9. The step of calculating an average value of y coordinate values of the edge profile in a predetermined range with respect to the x coordinate value, and calculating an edge position of the pattern in the measurement region. Pattern length measuring method described in 1.
PCT/JP2008/054295 2008-03-10 2008-03-10 Device for measuring pattern length and method for measuring pattern length WO2009113149A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2008/054295 WO2009113149A1 (en) 2008-03-10 2008-03-10 Device for measuring pattern length and method for measuring pattern length
DE112008003774T DE112008003774T5 (en) 2008-03-10 2008-03-10 Structural measuring device and structural measuring method
JP2010502654A JP5066252B2 (en) 2008-03-10 2008-03-10 Pattern length measuring device and pattern length measuring method
TW098105962A TW200942800A (en) 2008-03-10 2009-02-25 Device for measuring pattern length and method for measuring pattern length
US12/807,615 US8431895B2 (en) 2008-03-10 2010-09-09 Pattern measuring apparatus and pattern measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/054295 WO2009113149A1 (en) 2008-03-10 2008-03-10 Device for measuring pattern length and method for measuring pattern length

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/807,615 Continuation US8431895B2 (en) 2008-03-10 2010-09-09 Pattern measuring apparatus and pattern measuring method

Publications (1)

Publication Number Publication Date
WO2009113149A1 true WO2009113149A1 (en) 2009-09-17

Family

ID=41064831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054295 WO2009113149A1 (en) 2008-03-10 2008-03-10 Device for measuring pattern length and method for measuring pattern length

Country Status (5)

Country Link
US (1) US8431895B2 (en)
JP (1) JP5066252B2 (en)
DE (1) DE112008003774T5 (en)
TW (1) TW200942800A (en)
WO (1) WO2009113149A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106947A (en) * 2009-11-17 2011-06-02 Hitachi High-Technologies Corp Edge detection method, length measurement method, charged particle beam apparatus
JP5411866B2 (en) * 2009-10-30 2014-02-12 株式会社アドバンテスト Pattern measuring apparatus and pattern measuring method
JP2014032102A (en) * 2012-08-03 2014-02-20 Hitachi High-Technologies Corp Signal processor and charged particle beam device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530980B2 (en) * 2011-06-14 2014-06-25 株式会社アドバンテスト Pattern measuring apparatus and pattern measuring method
JP5438741B2 (en) * 2011-10-26 2014-03-12 株式会社アドバンテスト Pattern measuring apparatus and pattern measuring method
EP2873088A4 (en) * 2012-07-16 2015-08-05 Fei Co Endpointing for focused ion beam processing
KR101877696B1 (en) * 2012-09-27 2018-07-12 가부시키가이샤 히다치 하이테크놀로지즈 Pattern measurement device, evaluation method of polymer compounds used in self-assembly lithography, and computer program
DE112014003984B4 (en) 2013-09-26 2020-08-06 Hitachi High-Technologies Corporation Device operating with a charged particle beam
EP3779882B1 (en) * 2019-08-16 2022-07-20 Sick IVP AB Providing intensity peak position in image data from light triangulation in a three-dimensional imaging system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458104A (en) * 1990-06-27 1992-02-25 Hitachi Ltd Electron beam size measuring instrument
JPH11201919A (en) * 1998-01-16 1999-07-30 Toshiba Corp Apparatus and method for inspecting pattern and recording medium recording pattern inspection process program
JP2007292732A (en) * 2006-03-29 2007-11-08 Advantest Corp Pattern measuring device and pattern measuring method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275206A (en) * 1985-09-30 1987-04-07 Hitachi Ltd Electron beam length measuring instrument
JPH05296754A (en) 1992-04-17 1993-11-09 Nikon Corp Edge detecting method
US6326618B1 (en) * 1999-07-02 2001-12-04 Agere Systems Guardian Corp. Method of analyzing semiconductor surface with patterned feature using line width metrology
JP2002296761A (en) * 2001-03-29 2002-10-09 Toshiba Corp Method and device for measuring pattern
JP4104934B2 (en) * 2002-08-22 2008-06-18 株式会社トプコン Sample image measuring method and sample image measuring apparatus
JP4286657B2 (en) * 2003-12-26 2009-07-01 株式会社日立ハイテクノロジーズ Method for measuring line and space pattern using scanning electron microscope
JP4262125B2 (en) * 2004-03-26 2009-05-13 株式会社日立ハイテクノロジーズ Pattern measurement method
WO2007094439A1 (en) * 2006-02-17 2007-08-23 Hitachi High-Technologies Corporation Sample dimension inspecting/measuring method and sample dimension inspecting/measuring apparatus
WO2008032387A1 (en) * 2006-09-14 2008-03-20 Advantest Corporation Pattern dimension measuring device and pattern area measuring method
US7791022B2 (en) * 2007-03-13 2010-09-07 Advantest Corp. Scanning electron microscope with length measurement function and dimension length measurement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458104A (en) * 1990-06-27 1992-02-25 Hitachi Ltd Electron beam size measuring instrument
JPH11201919A (en) * 1998-01-16 1999-07-30 Toshiba Corp Apparatus and method for inspecting pattern and recording medium recording pattern inspection process program
JP2007292732A (en) * 2006-03-29 2007-11-08 Advantest Corp Pattern measuring device and pattern measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411866B2 (en) * 2009-10-30 2014-02-12 株式会社アドバンテスト Pattern measuring apparatus and pattern measuring method
JP2011106947A (en) * 2009-11-17 2011-06-02 Hitachi High-Technologies Corp Edge detection method, length measurement method, charged particle beam apparatus
JP2014032102A (en) * 2012-08-03 2014-02-20 Hitachi High-Technologies Corp Signal processor and charged particle beam device

Also Published As

Publication number Publication date
US8431895B2 (en) 2013-04-30
JP5066252B2 (en) 2012-11-07
US20110049362A1 (en) 2011-03-03
DE112008003774T5 (en) 2011-02-24
TWI375786B (en) 2012-11-01
JPWO2009113149A1 (en) 2011-07-14
TW200942800A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
JP5066252B2 (en) Pattern length measuring device and pattern length measuring method
US8110800B2 (en) Scanning electron microscope system and method for measuring dimensions of patterns formed on semiconductor device by using the system
US7590506B2 (en) Pattern measurement apparatus and pattern measuring method
US8779359B2 (en) Defect review apparatus and defect review method
US8330104B2 (en) Pattern measurement apparatus and pattern measurement method
JP4580990B2 (en) Pattern dimension measuring apparatus and pattern area measuring method
WO2007094439A1 (en) Sample dimension inspecting/measuring method and sample dimension inspecting/measuring apparatus
US8258471B2 (en) Pattern measuring apparatus and pattern measuring method
US8357897B2 (en) Charged particle beam device
US8507858B2 (en) Pattern measurement apparatus and pattern measurement method
US8263935B2 (en) Charged particle beam apparatus
JP4262125B2 (en) Pattern measurement method
US20140312224A1 (en) Pattern inspection method and pattern inspection apparatus
US8605985B2 (en) Pattern measurement apparatus and pattern measurement method
JP6044182B2 (en) Method for determining unevenness of fine patterns
US8675948B2 (en) Mask inspection apparatus and mask inspection method
JP2011150840A (en) Inclination measuring method in scanning electron microscope, and scanning electron microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010502654

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120080037744

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112008003774

Country of ref document: DE

Date of ref document: 20110224

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08721711

Country of ref document: EP

Kind code of ref document: A1