Nothing Special   »   [go: up one dir, main page]

WO2009021909A1 - Verfahren zum betrieb eines gleichstrom-spannungswandlers in einem hybridfahrzeug - Google Patents

Verfahren zum betrieb eines gleichstrom-spannungswandlers in einem hybridfahrzeug Download PDF

Info

Publication number
WO2009021909A1
WO2009021909A1 PCT/EP2008/060432 EP2008060432W WO2009021909A1 WO 2009021909 A1 WO2009021909 A1 WO 2009021909A1 EP 2008060432 W EP2008060432 W EP 2008060432W WO 2009021909 A1 WO2009021909 A1 WO 2009021909A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
vehicle
operating
electrical system
Prior art date
Application number
PCT/EP2008/060432
Other languages
English (en)
French (fr)
Inventor
Mesut Er
Stefan Wallner
Notker Amann
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Publication of WO2009021909A1 publication Critical patent/WO2009021909A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/112Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for operating a DC-DC converter (DC / DC converter) in a hybrid vehicle comprising a normal vehicle electrical system and a high-voltage vehicle electrical system, between which the DC-DC converter is connected, according to the preamble of patent claim 1.
  • DC-DC converter DC / DC converter
  • hybrid vehicles comprising a hybrid transmission are known. They comprise, in addition to the internal combustion engine, at least one electric motor or one electrical machine.
  • a generator is driven by the internal combustion engine, with the generator supplying electric power to the electric motor driving the wheels.
  • parallel hybrid vehicles are known in which an addition of the torques of the internal combustion engine and at least one connectable to the internal combustion engine electric machine.
  • the electric machines can be connected to the belt drive or to the crankshaft of the internal combustion engine. The torques generated by the internal combustion engine and / or the at least one electric machine are transmitted to the driven axle via a downstream transmission.
  • a drive train with an electrically adjustable hybrid transmission and an electrohydraulic control system a plurality of electric power units and a plurality of torque-transmitting mechanisms is known.
  • the torque-transmitting mechanisms can be selectively engaged by the electro-hydraulic control system to four forward gears, a neutral state, a low and high speed electrical operation, a to provide electrically variable low and high speed operating modes and a hill hold mode.
  • a hybrid drive for vehicles at least including a main engine, in particular an internal combustion engine, a generator, an electric motor and a, a sun gear, a ring gear, a planet carrier and planetary gears having planetary gear, which includes at least one output shaft. It is provided that for a first driving range of the vehicle for adding the torques, the drive shafts of the main motor and the electric motor are coupled to the sun gear of the planetary gear and for another driving range of one of the two motors for mechanically adding the rotational speeds according to the superposition principle frictionally on the ring gear the planetary gear is coupled.
  • the first electrical system is the normal electrical system of the vehicle, which is usually designed for cars in 12 V and for commercial vehicles in 24 V technology and the supply of normal electrical loads in the Vehicle serves.
  • the second electrical system is the so-called high-voltage electrical system, which is designed at a higher voltage level, as the first electrical system, whereby the currents are smaller.
  • the at least one electric machine of the hybrid vehicle is connected, with the drive-specific tasks are met.
  • a DC-DC converter DC / DC converter
  • the DC-DC converter can be constructed unidirectionally, the power flow is carried out only from the second to the first electrical system or be bidirectional.
  • the DC-DC converter is turned on in dependence on the position of the ignition key; when the ignition is "on” power is transmitted, whereby when the driver turns off the vehicle, the power flow is interrupted.
  • a control device for a hybrid vehicle with a two-voltage onboard network comprising a DC voltage converter is known, which increases the power supply to an energy storage unit to reduce the discharge amount from the energy storage unit, if the power consumption of the low voltage system increases.
  • the present invention has for its object to provide a method for operating the DC-DC converter (DC / DC converter) in a hybrid vehicle, which allows flexible control of the converter, whereby the overall efficiency of the vehicle is increased.
  • the DC-DC converter is preferably driven by the hybrid controller; It is also possible that another control unit of the vehicle takes over the control.
  • the DC-DC converter is switched on and off in response to signals from the controller, in the context of an advantageous development of the invention by the hybrid control a particular analog or digitally coded signal is specified as a target voltage on the side of the normal electrical system, as in the following of the attached figure, which is a structural diagram of the electrical system and the drive system of a parallel hybrid vehicle will be explained in more detail by way of example.
  • the drive train of the hybrid vehicle is denoted by 1. It comprises an internal combustion engine 2, which can be detachably connected via a coupling 3 to an electric machine 4.
  • the electric machine 4 is in turn either connected to the transmission 5 or, as shown, via a further clutch 6 to the transmission 5 detachably connectable.
  • the output is provided with the reference numeral 7.
  • the electrical system comprises a normal vehicle electrical system 8 with an energy store 13, which is usually designed for passenger cars in 12 V and for commercial vehicles in 24 V technology and the supply of the usual electrical consumers in the vehicle, such as the electric Len- kung 9, the wiper 10 and other electrical ancillaries 1 1 and a high-voltage electrical system 12 with a high-voltage energy storage 14, to which at least one electric machine 4 of the hybrid vehicle is connected.
  • a DC-DC converter (DC / DC converter) 15 is installed, by means of which electrical power can be transmitted between the two on-board networks.
  • the DC-DC converter can be designed as a unidirectional or as a bidirectional voltage converter, in the first case, the power flow from the normal electrical system 8 takes place in the high-voltage electrical system 12.
  • the arranged between the high-voltage energy storage 14 and the electric machine 4 inverter is denoted by 16.
  • the DC-DC converter 15 is driven in dependence on the driving state of the vehicle and / or the voltage of one of the vehicle electrical systems 8, 12, the control being effected by the hybrid control 17 or by another suitable control device of the vehicle.
  • the DC-DC converter 15 In the context of a first embodiment of the invention, it is proposed to operate the DC-DC converter 15 with a fixed or variable nominal voltage, wherein the DC-DC converter 15 is turned on when the internal combustion engine 2 of the vehicle is running. As a result of this procedure, the torque of the internal combustion engine 2 is used by the at least one electric machine 4 of the vehicle in order to control the energy content of the high-voltage vehicle electrical system 12.
  • the target voltage in the sense of the following description is the target voltage on the side of the normal electrical system 8.
  • the DC-DC converter 15 can be operated with a fixed target voltage, wherein it is then turned on when the vehicle is in a coasting phase, so that the braking energy available in the coasting phase (recuperation energy) from the electric machine 4 in electrical Energy can be converted. Since the DC voltage converter 15 transmits this energy from the high-voltage electrical system 12 to the "normal" vehicle electrical system 8, this increases the energy content of the high-voltage energy store 14 in the energy store 13. Furthermore, this avoids the need for the required electrical energy from fuel, ie, by means of the internal combustion engine 2. Instead of a fixed setpoint voltage, the DC voltage converter 15 can also be operated with a variable setpoint voltage in this case.
  • the target voltage is increased according to the invention when the vehicle is in a coasting phase and lowered when the vehicle is in a pulling phase.
  • This procedure requires less electrical energy from the high-voltage electrical system 12 when the generation of electrical energy costs fuel (ie in the pulling phase) and requires more electrical energy when it is available free of charge in the form of recuperation energy (ie in the overrun phase).
  • the vehicle can be more supported by the electric machine 4 in traction phases, resulting in electrical boosting and better acceleration performance, since the electric machine 4 must feed less energy into the electrical system 8.
  • the DC voltage converter 15 is always turned on when the normal electrical system 8 has too low a voltage, whereby the electrical supply to the normal electrical loads 9, 10, 1 1 is ensured. This can also be done when the internal combustion engine 2 is not started. Alternatively or additionally, it may be provided that the DC voltage converter 15 is switched on (even when the internal combustion engine is not started) when the high-voltage on-board electrical system 12 has too high a voltage, which advantageously causes overcharging of the high-voltage energy accumulator 14 of the high-voltage battery. Onboard network 12 counteracted.
  • the DC-voltage converter 15 is turned on when the engine 2 of the vehicle is in a favorable operating point in terms of efficiency, for example, when it outputs a high power. Due to this design, the low power transmitted by the high-voltage on-board electrical system 12 into the normal on-board electrical system 8 is less significant. Since power is taken from the engine 2 here, when the engine 2 has a favorable efficiency, a significant fuel economy is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Im Rahmen des Verfahrens zum Betrieb eines Gleichstrom-Spannungswandlers (15) in einem Hybridfahrzeug, umfassend ein normales Bordnetz (8) und ein Hochvolt-Bordnetz (12), zwischen denen der Gleich- strom-Spannungswandler (15) geschaltet ist, erfolgt die Ansteuerung des Gleichstrom-Spannungswandlers (15) in Abhängigkeit vom Fahrzustand des Fahrzeugs und/oder der Spannung eines der Bordnetze (8, 12).

Description

Verfahren zum Betrieb eines Gleichstrom-Spannunqswandlers in einem Hybridfahrzeuq
Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Betrieb eines Gleichstrom-Spannungswandlers (DC/DC Wandlers) in einem Hybridfahrzeug umfassend ein normales Bordnetz und ein Hochvolt-Bordnetz, zwischen denen der Gleichstrom-Spannungswandler geschaltet ist, gemäß dem Oberbegriff des Patentanspruchs 1 .
Aus dem Stand der Technik sind Hybridfahrzeuge umfassend ein Hybridgetriebe bekannt. Sie umfassen zusätzlich zu dem Verbrennungsmotor zumindest einen Elektromotor bzw. eine elektrische Maschine. Bei seriellen Hybridfahrzeugen wird ein Generator vom Verbrennungsmotor angetrieben, wobei der Generator den die Räder antreibenden Elektromotor mit elektrischer Energie versorgt. Des weiteren sind parallele Hybridfahrzeuge bekannt, bei denen eine Addition der Drehmomente des Verbrennungsmotors und zumindest einer mit dem Verbrennungsmotor verbindbaren elektrischen Maschine erfolgt. Hierbei sind die elektrischen Maschinen mit dem Riementrieb oder mit der Kurbelwelle des Verbrennungsmotors verbindbar. Die vom Verbrennungsmotor und/oder der zumindest einen elektrischen Maschine erzeugten Drehmomente werden über ein nachgeschaltetes Getriebe an die angetriebene Achse übertragen.
Beispielsweise ist im Rahmen der DE102006019679 A1 ein Antriebsstrang mit einem elektrisch verstellbaren Hybridgetriebe und einem elektrohyd- raulischen Steuersystem, mehreren elektrischen Leistungseinheiten und mehreren Drehmomentübertragungsmechanismen bekannt. Hierbei können die Drehmomentübertragungsmechanismen durch das elektrohydraulische Steuersystem selektiv eingerückt werden, um vier Vorwärtsgänge, einen neutralen Zustand, eine elektrische Betriebsart mit niedriger und hoher Drehzahl, eine elektrisch verstellbare Betriebsart mit niedriger und hoher Drehzahl und eine Berghalte-Betriebsart bereitzustellen.
Aus der DE 102005057607 B3 ist ein Hybridantrieb für Fahrzeuge bekannt, zumindest beinhaltend einen Hauptmotor, insbesondere eine Brennkraftmaschine, einen Generator, einen Elektromotor und ein, ein Sonnenrad, ein Hohlrad, einen Planetenträger sowie Planetenräder aufweisendes Planetengetriebe, das mindestens eine Abtriebswelle beinhaltet. Hierbei ist vorgesehen, dass für einen ersten Fahrbereich des Fahrzeuges zur Addition der Drehmomente die Antriebswellen des Hauptmotors und des Elektromotors auf das Sonnenrad des Planetengetriebes gekoppelt sind und für einen weiteren Fahrbereich einer der beiden Motoren zur mechanischen Addition der Drehzahlen entsprechend dem Überlagerungsprinzip kraftschlüssig auf das Hohlrad des Planetengetriebes koppelbar ist.
In der Regel sind bei derartigen Hybridfahrzeugen zwei Bordnetze mit unterschiedlicher Spannung vorgesehen, wobei das erste Bordnetz das normale Bordnetz des Fahrzeug ist, welches üblicherweise für PKW in 12 V und für Nutzfahrzeuge in 24 V-Technik ausgeführt ist und der Versorgung der normalen elektrischen Verbraucher im Fahrzeug dient. Das zweite Bordnetz ist das sogenannte Hochvolt-Bordnetz, welches auf einem höheren Spannungsniveau ausgeführt ist, als das erste Bordnetz, wodurch die Ströme kleiner werden.
Am zweiten Bordnetz ist die zumindest eine Elektromaschine des Hybridfahrzeugs angeschlossen, mit der die antriebsspezifischen Aufgaben erfüllt werden. Aus dem Stand der Technik ist bekannt, in derartigen Fahrzeugen einen Gleichstrom-Spannungswandler (DC/DC-Wandler) einzubauen, der elektrische Leistungen zwischen den beiden Bordnetzen überträgt. Durch diese Vorgehensweise entfällt die Notwendigkeit des Vorsehens einer Lichtmaschine zur Versorgung des ersten Bordnetzes. Der Gleichstrom-Spannungswandler kann unidirektional aufgebaut sein, wobei der Leistungsfluss nur vom zweiten in das erste Bordnetz erfolgt oder bidirektional ausgeführt sein.
Üblicherweise wird der Gleichstrom-Spannungswandler in Abhängigkeit von der Stellung des Zündschlüssels eingeschaltet; bei Zündung „Ein" wird Leistung übertragen, wobei, wenn der Fahrer das Fahrzeug abschaltet der Leistungsfluss unterbrochen wird. Dies resultiert innachteiliger Weise darin, dass bei Zündung „Ein" immer Leistung zwischen den Bordnetzen fließt, so dass, da ein Gleichstrom-Spannungswandler einen Wirkungsgrad kleiner 1 aufweist, Energie verloren geht, was sich auf den Kraftstoffverbrauch negativ auswirkt.
Aus der DE 100 47 932 A1 ist eine Steuer/Regelvorrichtung für ein Hybridfahrzeug mit einem Zweispannungsbordnetz umfassend einen Gleichstrom- Spannungswandler bekannt, welche die Stromenergiezufuhr zu einer Energiespeichereinheit erhöht, um den Entladebetrag von der Energiespeichereinheit zu reduzieren, falls der Stromenergieverbrauch des Niederspannungssystems zunimmt.
Im Rahmen der DE 41 38 943 C1 ist ein Zweispannungsbordnetz beschrieben, bei dem der zwischen den beiden Bordnetzen angeordnete Gleichspannungswandler Bestandteil eines Lade-/Trennmodus ist, wobei in Abhängigkeit von Signalen, insbesondere von gemessenen Strömen, die Verbindung zwischen beiden Bordnetzen unterbrochen wird, um im Fehlerfall Rückwirkungen von einem Bordnetz ins andere zu verhindern.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betrieb des Gleichstrom-Spannungswandlers (DC/DC Wandlers) in einem Hybridfahrzeug anzugeben, welches eine flexible Ansteuerung des Wandlers ermöglicht, wodurch der Gesamtwirkungsgrad des Fahrzeugs erhöht wird. Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Weitere erfindungsgemäße Ausgestaltungen und Vorteile gehen aus den Unteransprüchen hervor.
Demnach wird ein Verfahren zum Betrieb des Gleichstrom- Spannungswandlers vorgeschlagen, im Rahmen dessen bei der Ansteuerung des Gleichstrom-Spannungswandlers der Fahrzustand des Fahrzeugs und/oder die Spannung eines der Bordnetze des Fahrzeugs berücksichtigt wird.
Gemäß der Erfindung wird der Gleichstrom-Spannungswandler vorzugsweise von der Hybridsteuerung angesteuert; es ist auch möglich, dass eine weitere Steuereinheit des Fahrzeugs die Steuerung übernimmt. Hierbei wird der Gleichstrom-Spannungswandler in Abhängigkeit von Signalen der Steuerung ein- und ausgeschaltet, wobei im Rahmen einer vorteilhaften Weiterbildung der Erfindung von der Hybridsteuerung ein insbesondere analog oder digital kodiertes Signal als Sollspannung an der Seite des normalen Bordnetzes vorgegeben wird, wie im folgenden anhand der beigefügten Figur, welche ein Strukturbild des elektrischen Systems und des Antriebssystems eines parallelen Hybridfahrzeugs darstellt, beispielhaft näher erläutert wird.
In Figur 1 ist der Antriebsstrang des Hybridfahrzeugs mit 1 bezeichnet. Er umfasst einen Verbrennungsmotor 2, welcher über eine Kupplung 3 mit einer Elektromaschine 4 lösbar verbindbar ist. Die Elektromaschine 4 ist wiederum entweder mit dem Getriebe 5 verbunden oder, wie dargestellt, über eine weitere Kupplung 6 mit dem Getriebe 5 lösbar verbindbar. In der Figur ist der Abtrieb mit dem Bezugszeichen 7 versehen.
Das elektrische System umfasst ein normales Bordnetz 8 mit einem E- nergiespeicher 13, welches üblicherweise für PKW in 12 V und für Nutzfahrzeuge in 24 V-Technik ausgeführt ist und der Versorgung der üblichen elektrischen Verbraucher im Fahrzeug, wie beispielsweise der elektrischen Len- kung 9, der Scheibenwischer 10 und sonstiger elektrischer Nebenaggregate 1 1 dient und ein Hochvolt-Bordnetz 12 mit einem Hochvolt-Energiespeicher 14, an dem zumindest eine Elektromaschine 4 des Hybridfahrzeugs angeschlossen ist. Zwischen dem normalen Bordnetz 8 und dem Hochvolt-Bordnetz 12 ist ein Gleichstrom-Spannungswandler (DC/DC-Wandler) 15 eingebaut, mittels dessen elektrische Leistungen zwischen den beiden Bordnetzen übertragen werden können. Der Gleichstrom-Spannungswandler kann als unidirektionaler oder als bidirektionaler Spannungswandler ausgeführt sein, wobei im ersten Fall der Leistungsfluss vom normalen Bordnetz 8 in das Hochvolt-Bordnetz 12 erfolgt. In der Figur ist der zwischen dem Hochvolt-Energiespeicher 14 und der Elektromaschine 4 angeordnete Wechselrichter mit 16 bezeichnet.
Gemäß der Erfindung wird der Gleichstrom-Spannungswandler 15 in Abhängigkeit vom Fahrzustand des Fahrzeugs und/oder der Spannung eines der Bordnetze 8, 12 angesteuert, wobei die Ansteuerung durch die Hybridsteuerung 17 oder durch ein weiteres geeignetes Steuergerät des Fahrzeugs erfolgt.
Im Rahmen einer ersten Ausführungsform der Erfindung wird vorgeschlagen, den Gleichstrom-Spannungswandler 15 mit einer festen oder variablen Sollspannung zu betreiben, wobei der Gleichstrom-Spannungswandler 15 eingeschaltet wird, wenn der Verbrennungsmotor 2 des Fahrzeugs läuft. Durch diese Vorgehensweise wird von der zumindest einen Elektromaschine 4 des Fahrzeugs das Drehmoment des Verbrennungsmotors 2 genutzt, um den E- nergieinhalt vom Hochvolt-Bordnetz 12 zu kontrollieren. Die Sollspannung im Sinne der folgenden Beschreibung ist die Sollspannung an der Seite des normalen Bordnetzes 8.
In vorteilhafter Weise wird dadurch vermieden, dass das Hochvolt- Bordnetz 12 bzw. der Hochvolt-Energiespeicher 14 entleert wird, da in diesem Zustand das Hochvolt-Bordnetz 12 bzw. der Hochvolt-Energiespeicher 14 mittels der Energie des Verbrennungsmotors 2 aufgeladen werden kann.
Gemäß der Erfindung kann der Gleichstrom-Spannungswandler 15 mit einer festen Sollspannung betrieben werden, wobei er dann eingeschaltet wird, wenn sich das Fahrzeug in einer Schubphase befindet, so dass die in der Schubphase zur Verfügung stehende Bremsenergie (Rekuperationsenergie) von der Elektromaschine 4 in elektrische Energie umgewandelt werden kann. Da der Gleichstrom-Spannungswandler 15 diese Energie vom Hochvolt-Bordnetz 12 ins „normale" Bordnetz 8 überträgt, wird dadurch der Energieinhalt des Hochvolt-Energiespeichers 14 in den Energiespeichers 13 vergrößert. Des Weiteren wird dadurch vermieden, dass die benötigte elektrische Energie aus Kraftstoff, d.h. mittels des Verbrennungsmotors 2, erzeugt werden muss. Anstelle einer festen Sollspannung kann der Gleichstrom-Spannungswandler 15 in diesem Fall auch mit einer variablen Sollspannung betrieben werden.
Im Rahmen einer weiteren Variante des erfindungsgemäßen Verfahrens wird vorgeschlagen, den Gleichstrom-Spannungswandler 15 mit variabler Sollspannung zu betreiben. Hierbei wird erfindungsgemäß die Sollspannung erhöht, wenn sich das Fahrzeug in einer Schubphase befindet und erniedrigt, wenn sich das Fahrzeug in einer Zugphase befindet. Durch diese Vorgehensweise wird weniger elektrische Energie vom Hochvolt-Bordnetz 12 gefordert, wenn die Erzeugung von elektrischer Energie Kraftstoff kostet (d.h. in der Zugphase) und mehr elektrische Energie gefordert, wenn diese in Form von Rekuperationsenergie kostenlos zur Verfügung steht (d.h. in der Schubphase). Somit kann das Fahrzeug von der Elektromaschine 4 in Zugphasen mehr unterstützt werden, was in elektrischem Boosten und einem besseren Beschleunigungsverhalten resultiert, da die Elektromaschine 4 weniger Energie ins Bordnetz 8 speisen muss. Erfindungsgemäß kann auch vorgesehen sein, dass der Gleichstrom- Spannungswandler 15 immer dann eingeschaltet wird, wenn das normale Bordnetz 8 eine zu niedrige Spannung hat, wodurch die elektrische Versorgung der normalen elektrischen Verbraucher 9, 10, 1 1 sichergestellt wird. Dies kann auch bei nicht angelassenem Verbrennungsmotor 2 erfolgen. Alternativ oder zusätzlich dazu kann vorgesehen sein, dass der Gleichstrom-Spannungswandler 15 eingeschaltet wird (auch bei nicht angelassenem Verbrennungsmotor), wenn das Hochvolt-Bordnetz 12 eine zu hohe Spannung hat, was in vorteilhafter Weise einer Überladung des Hochvolt-Energiespeichers 14 des Hochvolt-Bordnetzes 12 entgegengewirkt.
Gemäß einer weiteren Ausgestaltung der Erfindung wird der Gleichstrom-Spannungswandler 15 eingeschaltet, wenn sich der Verbrennungsmotor 2 des Fahrzeugs in einem hinsichtlich des Wirkungsgrades günstigen Betriebspunkt befindet, beispielsweise wenn er eine hohe Leistung abgibt. Durch diese Konzeption fällt die geringe vom Hochvolt-Bordnetz 12 ins normale Bordnetz 8 übertragene Leistung weniger ins Gewicht. Da hierbei vom Verbrennungsmotor 2 Leistung abgenommen wird, wenn der Verbrennungsmotor 2 einen günstigen Wirkungsgrad hat, wird eine signifikante Kraftstoffersparnis erzielt.
Bezuqszeichen
1 Antriebsstrang
2 Verbrennungsmotor
3 Kupplung
4 Elektromaschine
5 Getriebe
6 Kupplung
7 Abtrieb
8 normales Bordnetz
9 elektrische Lenkung
10 Scheibenwischer
1 1 Nebenaggregate
12 Hochvolt-Bordnetz
13 Energiespeicher
14 Hochvolt-Energiespeicher
15 Gleichstrom-Spannungswandler
1 6 Wechselrichter
17 Hybridsteuerung

Claims

P ate n tan s p rü c h e
1. Verfahren zum Betrieb eines Gleichstrom-Spannungswandlers in einem Hybridfahrzeug, umfassend ein normales Bordnetz (8) und ein Hochvolt- Bordnetz (12), zwischen denen der Gleichstrom-Spannungswandler (15) geschaltet ist, dadurch ge ke n n ze i c h n et , dass die Ansteuerung des Gleichstrom-Spannungswandlers (15) in Abhängigkeit vom Fahrzustand des Fahrzeugs und/oder der Spannung eines der Bordnetze (8, 12) erfolgt.
2. Verfahren zum Betrieb des Gleichstrom-Spannungswandlers in einem Hybridfahrzeug, nach Anspruch 1 , dadurch ge ke n n ze i c h n et , dass die Ansteuerung des Gleichstrom-Spannungswandlers (15) durch die Hybridsteuerung (17) oder durch ein weiteres geeignetes Steuergerät des Fahrzeugs erfolgt.
3. Verfahren zum Betrieb des Gleichstrom-Spannungswandlers in einem Hybridfahrzeug, nach Anspruch 1 oder 2, dadurch g e ke n n ze i c h n et , dass der Gleichstrom-Spannungswandler (15) mit einer festen oder variablen Sollspannung betrieben wird, wobei der Gleichstrom-Spannungswandler (15) eingeschaltet wird, wenn der Verbrennungsmotor (2) des Fahrzeugs läuft.
4. Verfahren zum Betrieb des Gleichstrom-Spannungswandlers in einem Hybridfahrzeug, nach Anspruch 1 , 2 oder 3, dadurch g e ke n n ze i c h n et , dass der Gleichstrom-Spannungswandler (15) mit einer festen Sollspannung betrieben wird, wobei er eingeschaltet wird, wenn sich das Fahrzeug in einer Schubphase befindet, so dass die in der Schubphase zur Verfügung stehende Bremsenergie als Rekuperationsenergie von der Elektromaschine (4) in elektrische Energie umgewandelt und in einem dem Hochvolt-Bordnetz (12) zugeordneten Hochvolt-Energiespeicher (14) sowie in einem dem normalen Bordnetz (8) zugeordneten Energiespeicher (13) gespeichert wird.
5. Verfahren zum Betrieb des Gleichstrom-Spannungswandlers in einem Hybridfahrzeug, nach Anspruch 1 , 2 oder 3, dadurch g e ke n n ze i c h n et , dass der Gleichstrom-Spannungswandler (15) mit variabler Sollspannung betrieben wird, wobei die Sollspannung erhöht wird, wenn sich das Fahrzeug in einer Schubphase befindet und erniedrigt wird, wenn sich das Fahrzeug in einer Zugphase befindet.
6. Verfahren zum Betrieb des Gleichstrom-Spannungswandlers in einem Hybridfahrzeug, nach einem der vorangehenden Ansprüche, dadurch g e - ke n n ze i c h n et , dass der Gleichstrom-Spannungswandler (15) immer dann eingeschaltet wird, wenn das normale Bordnetz (8) eine zu niedrige Spannung hat.
7. Verfahren zum Betrieb des Gleichstrom-Spannungswandlers in einem Hybridfahrzeug, nach einem der vorangehenden Ansprüche 1 bis 5, dadurch g e ke n n ze i c h n et , dass der Gleichstrom-Spannungswandler (15) immer dann eingeschaltet wird, wenn das Hochvolt-Bordnetz (12) eine zu hohe Spannung hat.
8. Verfahren zum Betrieb des Gleichstrom-Spannungswandlers in einem Hybridfahrzeug, nach einem der vorangehenden Ansprüche, dadurch g e - ke n n ze i c h n et , dass der Gleichstrom-Spannungswandler (15) eingeschaltet wird, wenn sich der Verbrennungsmotor (2) des Fahrzeugs in einem hinsichtlich des Wirkungsgrades günstigen Betriebspunkt befindet.
PCT/EP2008/060432 2007-08-16 2008-08-08 Verfahren zum betrieb eines gleichstrom-spannungswandlers in einem hybridfahrzeug WO2009021909A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007038587.2 2007-08-16
DE102007038587A DE102007038587A1 (de) 2007-08-16 2007-08-16 Verfahren zum Betrieb eines Gleichstrom-Spannungswandlers in einem Hybridfahrzeug

Publications (1)

Publication Number Publication Date
WO2009021909A1 true WO2009021909A1 (de) 2009-02-19

Family

ID=39764857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060432 WO2009021909A1 (de) 2007-08-16 2008-08-08 Verfahren zum betrieb eines gleichstrom-spannungswandlers in einem hybridfahrzeug

Country Status (2)

Country Link
DE (1) DE102007038587A1 (de)
WO (1) WO2009021909A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110649A3 (fr) * 2012-01-23 2014-12-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Gestion combinee de deux sources de tension
US20190319537A1 (en) * 2016-10-11 2019-10-17 Robert Bosch Gmbh Control device for a dc-to-dc converter, dc-to-dc converter, and method for controlling a dc-to-dc converter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036055A1 (de) 2009-08-04 2010-09-16 Daimler Ag Betriebsverfahren für ein Hybridfahrzeug
DE102009048614A1 (de) 2009-10-06 2010-07-01 Daimler Ag Fahrzeug und Betriebsverfahren
DE102010046616A1 (de) 2010-09-25 2012-03-29 Volkswagen Ag System und Verfahren zum Versorgen elektrisch betriebener Verbraucher und Kraftfahrzeuge
DE102012201829A1 (de) 2011-12-14 2013-06-20 Robert Bosch Gmbh Verfahren zur Stromregelung in einem Gleichspannungsnetz eines Gleichspannungswandlers sowie ein Gleichspannungswandler
DE102013205221A1 (de) * 2013-03-25 2014-09-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb eines DC/DC-Abwärtswandlers zur elektrischen Ansteuerung eines Hybridkraftfahrzeugs
KR101664713B1 (ko) 2015-06-22 2016-10-11 현대자동차주식회사 하이브리드 차량의 직류변환장치 전압 제어 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218667A (ja) * 2001-01-16 2002-08-02 Mitsubishi Electric Corp バッテリー用電力回路および自動車のバッテリー用電力回路
EP1319548A2 (de) * 2001-12-12 2003-06-18 Honda Giken Kogyo Kabushiki Kaisha Hybridfahrzeug und Regelverfahren dafür
US20050068003A1 (en) * 2003-09-26 2005-03-31 Ford Global Technologies, Llc Method and system for controllably transferring energy from a high voltage bus to a low voltage bus in a hybrid electric vehicle
EP1575153A1 (de) * 2002-12-16 2005-09-14 Mitsubishi Denki Kabushiki Kaisha Stromversorgungseinheit für einkraftfahrzeug
GB2419751A (en) * 2004-11-01 2006-05-03 Ford Global Tech Llc Control of electric storage system for electric vehicle
EP1780864A1 (de) * 2004-08-04 2007-05-02 Toyota Jidosha Kabushiki Kaisha Motoransteuerungsvorrichtung mit der fähigkeit einer zuverlässigen ansteuerung eines motors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138943C1 (de) 1991-11-27 1993-05-27 Robert Bosch Gmbh, 7000 Stuttgart, De
JP3839199B2 (ja) 1999-10-06 2006-11-01 本田技研工業株式会社 ハイブリッド車両の制御装置
US7395837B2 (en) 2005-04-28 2008-07-08 General Motors Corporation Multiplexed pressure switch system for an electrically variable hybrid transmission
DE102005057607B3 (de) 2005-12-02 2007-04-05 Hytrac Gmbh Hybridantrieb für Fahrzeuge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218667A (ja) * 2001-01-16 2002-08-02 Mitsubishi Electric Corp バッテリー用電力回路および自動車のバッテリー用電力回路
EP1319548A2 (de) * 2001-12-12 2003-06-18 Honda Giken Kogyo Kabushiki Kaisha Hybridfahrzeug und Regelverfahren dafür
EP1575153A1 (de) * 2002-12-16 2005-09-14 Mitsubishi Denki Kabushiki Kaisha Stromversorgungseinheit für einkraftfahrzeug
US20050068003A1 (en) * 2003-09-26 2005-03-31 Ford Global Technologies, Llc Method and system for controllably transferring energy from a high voltage bus to a low voltage bus in a hybrid electric vehicle
EP1780864A1 (de) * 2004-08-04 2007-05-02 Toyota Jidosha Kabushiki Kaisha Motoransteuerungsvorrichtung mit der fähigkeit einer zuverlässigen ansteuerung eines motors
GB2419751A (en) * 2004-11-01 2006-05-03 Ford Global Tech Llc Control of electric storage system for electric vehicle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALI EMADI,SHELDON S. WILLIAMSON,ALIREZA KHALIGH,: "Power Electronics Intensive Solutions for Advanced Electric, Hybrid Electric, and Fuel Cell Vehicular Power Systems", IEEE TRANSACTIONS ON POWER ELECTRONICS,, vol. 21, no. 3, May 2006 (2006-05-01), XP002497633 *
MIAOSEN SHEN,FANG Z. PENG,LEON M. TOLBERT: "Multi-Level DC/DC Power Conversion System with Multiple DC Sources", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2007. PESC 2007. IEEE, 17 June 2007 (2007-06-17), IEEE, XP002497632 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110649A3 (fr) * 2012-01-23 2014-12-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Gestion combinee de deux sources de tension
US9948095B2 (en) 2012-01-23 2018-04-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Combined control of two voltage sources
EP3604020A1 (de) * 2012-01-23 2020-02-05 Commissariat à l'Energie Atomique et aux Energies Alternatives Kombinierte steuerung von zwei spannungsquellen
US20190319537A1 (en) * 2016-10-11 2019-10-17 Robert Bosch Gmbh Control device for a dc-to-dc converter, dc-to-dc converter, and method for controlling a dc-to-dc converter
US10790745B2 (en) * 2016-10-11 2020-09-29 Robert Bosch Gmbh Control device and method for controlling a DC-to-DC converter having input interference

Also Published As

Publication number Publication date
DE102007038587A1 (de) 2009-05-07

Similar Documents

Publication Publication Date Title
DE10353256B3 (de) Hybridantriebssystem für ein Kraftfahrzeug
WO2009021909A1 (de) Verfahren zum betrieb eines gleichstrom-spannungswandlers in einem hybridfahrzeug
DE102007038585A1 (de) Verfahren zur Lastpunktverschiebung im Hybridbetrieb bei einem parallelen Hybridfahrzeug
DE102008030581A1 (de) Triebstrang für ein Kraftfahrzeug und Verfahren zum Betreiben eines Triebstrangs eines Kraftfahrzeuges
DE10162017A1 (de) Vorrichtung und Verfahren zur Regelung der Fahrgeschwindigkeit eines Fahrzeugs
EP2500197B1 (de) Über Nebentrieb verbundener Hybridantrieb
DE102008043849A1 (de) Mehrachsiges Hybrid-Antriebssystem für ein Fahrzeug
EP3515741B1 (de) Verfahren zum betreiben eines hybridfahrzeugs
EP3326852B1 (de) Motorsteuerung von fahrzeugen mit mehreren e-maschinen
DE102005037713A1 (de) Antriebsstrang für ein Kraftfahrzeug sowie Verfahren zum Betreiben eines Antriebsstranges
DE102006045824A1 (de) Verfahren und Vorrichtung zur Steuerung eines Hybrid-Fahrzeugantriebs
DE102010018448A1 (de) Hybridantriebsstrang und Verfahren für seinen Betrieb
DE102014222359A1 (de) Hybridantriebssystem
WO2012010615A1 (de) Verfahren und vorrichtung zum betreiben eines fahrzeuges, welches mindestens eine elektrische maschine umfasst
DE102005039929B4 (de) Verfahren zum Rangieren eines mit einem elektrodynamischen Antriebssystem ausgerüsteten Fahrzeugs
DE102006012860A1 (de) Verfahren zum Betrieb eines Hybridantriebs für ein Fahrzeug
DE102007011791A1 (de) Antriebsstrang
DE102012208462B4 (de) Vorrichtung zum Betreiben eines Antriebsstrangs
EP3880503A1 (de) Hybrid-antriebseinheit, hybrid-antriebsanordnung sowie verfahren zum betreiben einer hybrid-antriebsanordnung
WO2018095628A1 (de) Verfahren und vorrichtung für einen reserveantrieb eines fahrzeugs
DE102018124887B4 (de) Antriebsvorrichtung für ein schaltgetriebeloses Schienenfahrzeug mit Verbrennungskraftmaschine, ein damit versehenes Schienenfahrzeug sowie ein Betriebsverfahren für eine solche Antriebsvorrichtung
WO2009065689A2 (de) Verfahren zur momentenverteilung bei einem parallelen hybridfahrzeug
DE102007041571A1 (de) Verfahren zum Steuern und/oder Regeln einer Hybridantriebsanordnung
DE102015013542B4 (de) Antriebsstrang eines Kraftfahrzeugs und Kraftfahrzeug
DE102012001799A1 (de) Antriebsstrang für ein Fahrzeug und Verfahren zum Betrieb eines einen solchen Antriebsstrang aufweisenden Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787028

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08787028

Country of ref document: EP

Kind code of ref document: A1