Nothing Special   »   [go: up one dir, main page]

WO2009096551A1 - Diagnostic system for bearing - Google Patents

Diagnostic system for bearing Download PDF

Info

Publication number
WO2009096551A1
WO2009096551A1 PCT/JP2009/051633 JP2009051633W WO2009096551A1 WO 2009096551 A1 WO2009096551 A1 WO 2009096551A1 JP 2009051633 W JP2009051633 W JP 2009051633W WO 2009096551 A1 WO2009096551 A1 WO 2009096551A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
abnormality
diagnosis
determination
sensor
Prior art date
Application number
PCT/JP2009/051633
Other languages
French (fr)
Japanese (ja)
Inventor
Kouichi Kira
Masahiro Oda
Hiroyuki Uchida
Toyotsugu Hamayama
Akira Urano
Original Assignee
Jfe Advantech Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Advantech Co., Ltd. filed Critical Jfe Advantech Co., Ltd.
Priority to KR1020107018650A priority Critical patent/KR101429952B1/en
Priority to JP2009551619A priority patent/JP4874406B2/en
Publication of WO2009096551A1 publication Critical patent/WO2009096551A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Definitions

  • the present invention relates to a bearing diagnosis system, and in particular, allows an administrator to intuitively grasp the abnormal state of a bearing used in a rotating machine facility. Specifically, in the signal of the sensor that monitors the bearing state, the signal component indicating the abnormality or damage of the bearing is small, so even if the signal cannot be distinguished from the signal due to disturbance, the bearing state can be evaluated accurately. It is what you are doing.
  • FIG. 22 shows a vibration waveform of the rolling bearing in which the outer ring is damaged.
  • the vibration amplitude is modulated every time the rolling element passes through the damaged part of the outer ring.
  • the vibration generated by damage is very small. Therefore, such vibration is caused by vibration generated by rotation of the bearing or other factors generated around the bearing.
  • the S / N ratio becomes very poor due to being buried in vibration.
  • the state of the bearing cannot be diagnosed by simply detecting the amplitude modulation.
  • a method of improving the SN ratio by performing special signal processing on the vibration signal, or measuring an AE (acoustic emission) signal has been proposed.
  • Patent Document 1 vibration of a low-speed rotating machine is detected by a bearing portion, and the vibration detection signal is subjected to band-pass filter processing to obtain a spectrum domain power at the time of bearing damage. Extract the eigenband component representing the increasing abnormal state, calculate the crest factor of this eigenband component, calculate the crest factor of the calculated crest factor, and compare it with the preset threshold value to diagnose the abnormality of the low-speed rotating machine A method of performing is proposed.
  • a vibration time waveform that is raised to a power and exceeds a threshold is counted as an event (abnormality). For example, the count number at a certain time interval such as one hour or one day is calculated.
  • There is a method of quantifying the abnormality of the bearing by monitoring the increase / decrease and the increase / decrease of the count number per one rotation.
  • one occurrence of the AE signal is counted as one event, for example, increase / decrease of the count number at regular time intervals such as one hour or one day, or the count number per one rotation.
  • the event duration is integrated with one occurrence of the AE signal as one event, for example, the increase or decrease of the event integration time at regular time intervals such as 1 hour or 1 day, or the event integration time per rotation.
  • the bearing abnormality by monitoring the increase and decrease.
  • the AE signal can detect a very small change in the equipment state, but reacts sensitively, so it cannot be said to be abnormal. Even if it exists, there are many overdetections that determine that it is abnormal, and there is a problem that it is difficult to handle in measurement and diagnosis.
  • the reference value for determining the occurrence of an event is usually a fixed value calculated from the data based on the normal signal collected during the initial adjustment period of the rotating machinery equipment. Many.
  • the reference value is a fixed value and a failure diagnosis of a bearing or the like is performed by comparing the reference value and the signal
  • the signal level changes when the rotational speed of the rotating machine equipment changes and a load fluctuation occurs. There is a problem that an event cannot be correctly judged and a malfunction is induced.
  • the abnormal cycle time of a bearing that occurs once per rotation is about 60 msec, and the period can be detected by measuring about 1 second even if data acquisition for multiple rotations is considered.
  • the cycle in which the abnormality occurs becomes longer as the rotational speed becomes lower. Therefore, the abnormal cycle time of the bearing that occurs once in one rotation in the rotating facility of 1 rpm is about 60 sec, Considering the data acquisition, it is necessary to measure about 1000 seconds.
  • the abnormal cycle time of the bearing that occurs once per rotation is about 600 seconds, and taking data acquisition for a plurality of rotations requires measurement of about 10,000 seconds.
  • the sampling frequency is 1 kHz to 3 kHz.
  • the number of data required for each rotation speed may be 1000 data for 1000 rpm, but 1000000 data for 1 rpm and 10000000 data for 0.1 rpm.
  • the data capacity is 2 kbytes at 1000 rpm, 2 Mbytes at 1 rpm, and 20 Mbytes at 0.1 rpm. There is a problem that it takes time.
  • Patent Document 2 the collected vibration signal is divided at a preset time interval, and the frequency of the vibration signal is analyzed for each divided section to obtain a power spectrum.
  • a signal processing method for improving the S / N ratio by discriminating a signal at a normal location and a signal at an abnormal location from a power value is disclosed.
  • the average power spectrum in the remaining divided sections obtained by removing the divided section having a large total power value is obtained. It is regarded as a power spectrum at a normal location, and an abnormal vibration is detected by obtaining a ratio between the average power spectrum and the power spectrum for each divided section.
  • the present invention has been made in view of the above problems, and allows an administrator to intuitively grasp the state of failure of a rolling bearing or a sliding bearing attached to a rotating machine facility, without storing a large amount of measurement data.
  • it is an issue to reliably perform failure diagnosis.
  • it is an object to make it possible to accurately diagnose the state of the bearing even when the disturbance signal is large and the S / N ratio of the signal component indicating abnormality or damage of the bearing is very low.
  • a diagnostic system for a bearing in a rotary machine facility A sensor for detecting the occurrence of damage attached to a fixed member of the bearing; A monitoring and diagnosis device connected to the sensor; A diagnostic notification means for connecting with the monitoring diagnostic device and displaying an abnormal state in percentage;
  • the monitoring and diagnosis apparatus includes: A storage unit for storing measurement data detected by the sensor; A reference level calculation unit that calculates an abnormality determination reference level based on the measurement data stored in the storage unit; One rotation time or intermittent operation time of the rotating shaft supported by the bearing is equally divided into a plurality of sections, and the abnormality determination reference level is compared with the measurement data of each section, for each section. And a determination unit for determining whether or not there is an abnormality is provided.
  • One rotation time or one intermittent operation time of the rotating shaft supported by the bearing is divided into 100 sections for display as a percentage.
  • the time required for one rotation of the rotating shaft supported by the bearing of the rotating equipment or one intermittent operation of the intermittent operation equipment is divided into 100 sections, and an event is generated for each section. (Abnormality occurrence) is diagnosed and the number of sections where an abnormality has occurred in the rolling bearing is calculated. For this reason, the number of sections in which the abnormality occurs is a percentage of the time (width) of the bearing abnormal state with respect to one rotation time or one intermittent operation time, and the facility administrator looks at the number of sections in which the abnormality has occurred.
  • the time occupied by the abnormal state of the bearing per one rotation time or one intermittent operation time can be intuitively recognized.
  • the abnormality determination is performed using the abnormality occurrence count of the signal such as AE (Acoustic Emission) or the integrated value of the abnormality occurrence time as in the prior art, it cannot be said that the abnormality is caused by the continuous AE occurrence phenomenon.
  • one rotation time or one intermittent operation time is divided into a plurality of sections, and the abnormality of the rolling bearing is determined based on the number of sections in which the abnormality has occurred. Therefore, overdetection can be suppressed.
  • the number of rotations of the rotating shaft of the rotating machine equipment supported by the bearing is preferably 0.1 rpm or more and 300 rpm or less, more preferably 0.1 rpm or more and 150 rpm or less, and further preferably 0.1 rpm or more and 100 rpm or less.
  • the bearing is preferably a rolling bearing or a sliding bearing.
  • the sensor is any one of a vibration acceleration pickup, an acoustic emission (AE), an ultrasonic sensor, and a sound detection sensor fixed to the bearing housing.
  • the abnormality determination reference level is set to a constant multiple of the average value of the measurement data stored in the storage unit for each rotation or one intermittent operation of the rotating shaft supported by the bearing. is doing. As described above, the abnormality determination reference level is set for each rotation or one intermittent operation of the rotating shaft supported by the bearing, so that the rotation speed and load of the rotating machine equipment to which the bearing is attached are changed. In addition, it is possible to determine the failure of the bearing in accordance with the rotational speed and load.
  • a diagnostic parameter calculator that calculates a diagnostic determination parameter that is the number of sections in which an abnormality has occurred; It is preferable that a simple diagnosis determination unit that compares the diagnosis determination parameter with a predetermined abnormality determination criterion to determine whether or not there is an abnormality is provided.
  • the diagnosis parameter is calculated by the diagnosis parameter calculation unit, and the diagnosis determination parameter is compared with the abnormality determination reference value by the diagnosis determination unit.
  • the diagnosis determination parameter is compared with the abnormality determination reference value by the diagnosis determination unit.
  • the determination unit of the monitoring / diagnostic apparatus sets an abnormal section only when the section in which abnormality is determined is a set number of adjacent sections within 2 to 10, and abnormal determination in a section less than the set number is an abnormality that is removed as noise. It is preferable that a generation section continuation determination unit is provided.
  • the determination unit of the monitoring diagnostic apparatus includes an averaging processing unit that averages the diagnosis determination parameters for a plurality of rotations or a plurality of intermittent operations.
  • an averaging processing unit that averages the diagnosis determination parameters for a plurality of rotations or a plurality of intermittent operations.
  • the abnormality determination criterion to be compared with the diagnosis determination parameter is set at a plurality of levels such as a caution level and a danger level.
  • a plurality of abnormality determination criteria are provided, and the occurrence of abnormality is diagnosed by comparing each level of the caution level and the danger level with the diagnosis determination parameter, so that the bearing failure can be diagnosed in more detail.
  • the determination unit of the monitoring and diagnosis apparatus calculates the degree of coincidence of the determination results of occurrence of abnormalities for each distinction by shifting the abnormal cycle reference position of the abnormality determination result table for a plurality of rotations or a plurality of intermittent operations. It is preferable to include a synchronous search processing unit that searches for an abnormal cycle reference position where the frequency becomes high and automatically calculates an abnormal cycle from the abnormal cycle reference position.
  • the synchronous search processing unit gradually shifts the abnormal cycle reference position and creates a correction table based on the abnormality determination result table.
  • the degree of coincidence of the determination result of occurrence of abnormality for each section of the correction table is calculated for each abnormal period reference position, and the abnormal period reference position in the correction table having the highest degree of coincidence is detected.
  • An abnormal period in which an abnormality occurs in the bearing is calculated from the thus determined abnormal period reference position.
  • the present invention enables accurate fault diagnosis of the bearing state even when the disturbance signal is large and the S / N ratio of the signal component indicating abnormality or damage of the bearing is very low.
  • the second invention and the third invention are provided.
  • a second invention is a diagnostic system for a bearing in a rotary machine facility, A sensor for detecting the occurrence of damage attached to a fixed member of the bearing; A monitoring and diagnosis device connected to the sensor; A diagnostic notification means for connecting to the monitoring diagnostic device and displaying a diagnostic result;
  • the third invention is A bearing diagnosis system for rotating machinery equipment, A sensor for detecting the occurrence of damage attached to a fixed member of the bearing; A monitoring and diagnosis device connected to the sensor; A diagnostic notification means for connecting to the monitoring diagnostic device and displaying a diagnostic result;
  • the monitoring and diagnosis apparatus includes: A storage unit for storing a signal waveform detected by the sensor; A signal waveform calculation unit stored in the storage unit;
  • the degree of kurtosis is obtained from a waveform signal detected by a vibration sensor or the like, an abnormality occurrence state is indicated by the degree of kurtosis, and whether the abnormality is sudden disturbance vibration or It is possible to judge whether it is due to damage. That is, kurtosis is used as an index representing the degree to which the frequency spectrum of the waveform signal detected by the vibration sensor has a peak at a specific frequency. In the normal distribution, the value of the kurtosis is small, and the distribution having a sharper shape than the normal distribution has a larger value of the kurtosis. Therefore, when the sharpness is high, it indicates that the vibration having periodicity is occurring.
  • the sharpness when the sharpness is high, it indicates that the vibration generated by the bearing damage is included.
  • the vibration when the kurtosis is low, the vibration is sudden disturbance vibration, so it can be determined that the vibration is caused by a factor other than the bearing damage.
  • any one of the first to third inventions Calculated from the bearing device information and / or the rotation speed information, and calculated by the calculation abnormality occurrence period or an integer multiple of the calculation abnormality occurrence period, which is different for each abnormality cause, by the synchronous search processing unit or the calculation unit.
  • An abnormality period is compared, and when the degree of coincidence between the calculation abnormality occurrence period or an integer multiple of the calculation abnormality occurrence period and the abnormality period is high, an abnormality caused by the cause corresponding to the calculation abnormality occurrence period is present in the bearing. It is preferable to include a determination unit that diagnoses the occurrence.
  • the cause of the abnormality is at least one of inner ring damage, outer ring damage, and rolling element damage
  • it is an abnormal metal contact of the rotating shaft that occurs once or a plurality of times in one rotation or one intermittent operation.
  • the abnormal metal contact is a metal contact of the rotating shaft due to abnormal vibration of the rotating shaft, a metal contact of the rotating shaft due to an oil film abnormality of the slide bearing, or the like.
  • the abnormality occurrence cycle differs for each cause of abnormality.
  • the abnormality occurrence cycle corresponding to each abnormality cause is calculated from the bearing device information and the rotation speed information. Further, in the case of a slide bearing, an abnormality occurrence cycle corresponding to the rotation speed is caused by shaft contact.
  • the cause of the abnormality corresponding to the calculated abnormal occurrence period has occurred in the bearing. Diagnose. In this way, the abnormality occurrence period corresponding to each abnormality cause is calculated, and the abnormality cause occurring in the bearing is calculated by comparing the abnormality abnormality period with the calculation abnormality occurrence period or an integer multiple of the calculation abnormality occurrence period. Can be identified.
  • the movable type combining the sensor, the monitoring diagnostic device, and the diagnostic notification unit, or the diagnostic notification unit may be wirelessly connected to the monitoring diagnostic device to be portable.
  • the diagnostic system By making the rolling bearing diagnostic system movable, the diagnostic system can be carried, and a sensor can be attached to the rolling bearing to be diagnosed to diagnose a failure of the rolling bearing. Further, by wirelessly connecting the monitoring diagnostic apparatus and the diagnostic communication means, the administrator can carry the diagnostic communication means and know the state of the low-speed rotating machine equipment.
  • the time required for one rotation of the rotating shaft supported by the bearing of the rotating equipment or one operation of the intermittent operation equipment is divided into approximately 100 sections, The occurrence of abnormality is diagnosed for each section, and the number of sections in which the abnormality has occurred is calculated. For this reason, the number of sections in which the abnormality occurs is a percentage of the time (width) of the bearing abnormal state with respect to one rotation time or one intermittent operation time, and the facility administrator looks at the number of sections in which the abnormality has occurred.
  • the time occupied by the abnormal state of the bearing per rotation time can be intuitively recognized.
  • the determination unit creates a correction table by gradually shifting the abnormal cycle reference position from the abnormality determination result table that is the determination result of occurrence of abnormality in each section for a plurality of rotations or a plurality of intermittent operations, and the degree of coincidence becomes highest.
  • An abnormal cycle reference position is detected, and an abnormal cycle in which an abnormality occurs in the bearing is calculated from the abnormal cycle reference position.
  • Anomaly occurrence period is different for each cause of anomaly, and it is generated in the bearing by comparing the anomaly period with the calculated anomaly occurrence period calculated for each anomaly cause or an integer multiple of the calculated anomaly occurrence period. It is possible to identify the cause of abnormality.
  • the abnormality occurrence state can be visually displayed by displaying the signal waveform detected by the sensor as a spectrum waveform having a sharpness.
  • the present invention is realized using an rms value calculation circuit and an equivalent peak calculation circuit. be able to.
  • the data processing device does not require a large capacity data storage means or a high speed arithmetic unit. Furthermore, it is possible to diagnose and determine the cause of occurrence of an abnormality in the rolling bearing.
  • FIG. 1 It is a block diagram of the bearing diagnostic system which shows 3rd Embodiment. It is a block diagram of the bearing diagnostic system which shows the modification of 3rd Embodiment. It is a block diagram of the monitoring diagnostic apparatus which shows 4th Embodiment. It is a block diagram of the monitoring diagnostic apparatus which shows 5th Embodiment.
  • (A) (B) is a graph which shows the vibration waveform of the bearing obtained with the conventional diagnostic apparatus.
  • (A), (B), and (C) are graphs showing the kurtosis degrees Ks and Ki of the bearing obtained in the fourth embodiment. It is a figure which shows the frequency spectrum Ss obtained in 4th Embodiment. It is a graph which shows a prior art example.
  • the bearing diagnosis system 10 for a rotating machine facility diagnoses the state of a rolling bearing 11a of a low-speed rotating motor, which is one of rotating machine facilities 11 installed in a steel facility factory.
  • the diagnostic system 10 includes a damage occurrence detection sensor 20 mounted on a rolling bearing 11 a of a low-speed rotating machinery facility 11 that continuously rotates a plurality of rotations.
  • the monitor / diagnosis apparatus 30 connected, the monitor 40 which comprises the diagnostic notification means connected with the monitor / diagnosis apparatus 30, and the tachometer 21 which measures the rotation speed of the motor are provided.
  • the damage occurrence detection sensor 20 is an AE sensor that detects acoustic emission, and is fixed to a bearing housing 11d of a low-speed rotation motor 11c provided on the foundation frame 11b with screws.
  • the tachometer 21 is attached to the load side bearing mount 11e.
  • the attachment position of the damage occurrence detection sensor 20 is not limited to the above position. Further, the rotational speed information of the motor may be stored in advance in the microcomputer 34 of the monitoring / diagnosis apparatus 30 without attaching the tachometer 21.
  • a vibration acceleration pickup that detects vibration, an ultrasonic sensor, or a sound detection sensor may be used instead of the damage occurrence detection sensor 20.
  • the monitoring / diagnosis device 30 includes a signal amplification circuit 31, a filter circuit 32, a detection circuit 33, and a microcomputer 34.
  • the signal amplifier circuit 31 is an amplifier that amplifies the signal measured by the damage occurrence detection sensor 20.
  • the filter circuit 32 is a band-pass filter that removes noise components from the signal amplified by the signal amplifier circuit 31. In the case of the vibration acceleration pickup, the filter circuit 32 is a filter that passes a band of 1 kHz to 20 kHz. When an AE sensor is used, a filter that passes a band of 50 kHz to 500 kHz is used.
  • the detection circuit 33 detects (envelope processing) the signal from which noise has been removed by the filter circuit 32. Depending on the signal, the detection circuit 33 may not be provided, and in the case of a vibration signal, a power process may be performed instead of detection.
  • the microcomputer 34 includes a CPU 35, a ROM 36, a RAM 37, and a port 38.
  • the port 38 of the microcomputer 34 A / D converts the signal from the detection circuit 33 at a predetermined sampling period.
  • the ROM 36 and the RAM 37 constitute a storage unit.
  • the RAM 37 stores an abnormality determination result table calculated by the CPU 35 and temporarily stores data calculated by the CPU 35.
  • the ROM 36 stores the operation of the CPU as software. As shown in FIG. 3, the CPU 35 includes a reference level calculation unit 50 and a determination unit 59.
  • the determination unit 59 includes a diagnostic parameter calculation unit 51, an abnormality occurrence section continuation determination unit 52, an averaging processing unit 54, Each unit includes a simple diagnosis determination unit 55, a synchronous search processing unit 56, and a cause diagnosis processing unit 57.
  • the CPU 35 reads out the software from the ROM 36 and executes it to operate each unit.
  • the reference level calculation unit 50 receives the rotation speed information of the motor from the tachometer 21 and calculates a time required for one rotation of the motor (one rotation time).
  • the time data output from the port 38 is stored in the RAM 37 for a time length of one or more rotations of the motor.
  • the rotation number information of the motor 11c may be stored in advance in the reference level calculation unit 50, and one rotation time may be calculated using the rotation number information.
  • the diagnostic parameter calculation unit 51 divides one rotation time into equal intervals of 1/100, and sets each section as section No. 1 to Section No. 100.
  • Section No. 1 in the order of the measured data for one rotation time length. 1 to Section No. Sort into 100 sections.
  • section no. 1 to Section No. It is determined whether there is data exceeding the abnormality determination reference level E in the data allocated to each of the 100 sections. For example, in FIG. 6, 7 and 8 are abnormal occurrence sections because the data exceeds the abnormality determination reference level E.
  • FIG. 5 is an example of the abnormality determination result table T1, and shows whether or not an abnormality has occurred for each section with respect to the rotation of the motor from the latest to nine rotations. Further, the total value of the number of sections in which an abnormality has occurred within one rotation time is calculated and used as the diagnosis determination parameter A. That is, the diagnosis determination parameter A is the number of abnormality occurrence sections (Y) within one rotation time length.
  • the abnormality occurrence section continuation determination unit 52 detects a section in which an abnormality occurs continuously from the table T1 of the abnormality determination result obtained by the diagnosis parameter calculation unit 51. For example, as shown in FIG. 6-No. In FIG. 8, the abnormality occurs continuously for three sections, and the number of consecutive sections is three. In addition, section No. 11-No. 14 is the number of consecutive occurrence sections is four. On the other hand, the section No. 98 is a section where an abnormality has occurred. In 97 and 99, no abnormality has occurred, and the number of consecutive occurrence sections is one.
  • the continuity determination interval number k may be selected from 2 to 10.
  • the abnormality occurrence section continuation determination unit 52 creates an abnormality determination result table T2 that is corrected by determining continuity for each rotation, and stores it in the RAM 37.
  • the diagnosis determination parameter determination value Ax is averaged every rotation and is a moving average value. That is, as shown in FIG. 8, when the averaging processing unit 54 receives a table of abnormality determination results before two rotations, a diagnosis determination parameter determination value Ax1 is obtained from the diagnosis determination parameters An before nine rotations and two rotations before. When the table before one rotation is received, the diagnosis determination parameter determination value Ax2 is obtained from the diagnosis determination parameter An from one rotation before eight rotations. When the most recent table is received, the most recent diagnosis determination parameter from seven rotations before The diagnosis determination parameter determination value Ax3 is obtained from An.
  • the simple diagnosis determination unit 55 stores the attention level determination reference value as 5, for example, and the danger level determination reference value as 15, for example.
  • the diagnosis determination parameter determination value Ax is compared with the determination reference value every rotation, and if the diagnosis determination parameter determination value Ax is larger than each determination reference value, a failure of a caution level and a danger level occurs in the rolling bearing 11a. It is determined that there is.
  • the simple diagnosis determination unit 55 displays the determination result on the monitor 40.
  • the simple diagnosis determination unit 55 determines that a failure of the attention level or the danger level has occurred
  • the synchronization search processing unit 56 and the cause diagnosis processing unit 57 identify the cause of the abnormality of the rolling bearing 11a.
  • the synchronous search processing unit 56 and the cause diagnosis processing unit 57 identify inner ring damage, outer ring damage, and rolling element damage as an abnormality of the rolling bearing 11a.
  • an abnormality occurs at a different cycle (abnormality generation cycle) depending on the damaged portion.
  • the synchronous search processing unit 56 uses the abnormality determination result table T2 to obtain the abnormal cycle Bm that is closest to the rotation cycle of the rotating machine, and the cause diagnosis processing unit 57 determines the cause of the failure from the relationship between the abnormal cycle Bm and the abnormality occurrence cycle. I have identified.
  • the synchronous search processing unit 56 automatically detects the abnormal cycle reference position and determines the abnormal cycle Bm.
  • the abnormal period Bm is a period obtained by multiplying the abnormality generation period in which an abnormality occurs due to damage to the rolling bearing 11a by m, and the value of m is a value that makes the abnormal period Bm closest to the rotation period of the rotating machine.
  • the abnormal cycle Bm is not necessarily synchronized with the rotation cycle of the rotating machine, and the abnormal cycle Bm may or may not be the same cycle as the rotation cycle of the rotating machine. A method for obtaining the abnormal period Bm will be described below.
  • the correction table Ta is created using the abnormality determination result table T2 obtained by the averaging processing unit 54.
  • the abnormality determination result table T2 is created so as to be 100 sections based on the rotation cycle reference position that divides the rotation cycle.
  • the abnormality cycle Bm is based on the abnormality determination result table T2 in the past direction. When it is assumed that the period is 101 sections long by one section, a correction table Ta having 100 sections is created.
  • the abnormality determination result table T2-0 to the table T2-4 are arranged, and the section No. of the latest table T2-4 is arranged.
  • the abnormal period Bm is divided in the past direction. Since the abnormal period Bm is assumed to be 101, the section No. of the table T2-4 is past in the past direction.
  • 101 section up to 100 is abnormal cycle BmA
  • 101 section up to 99 is abnormal cycle BmB
  • 101 section up to 98 is abnormal cycle BmC
  • 101 section up to 97 is the abnormal period BmD.
  • the abnormal cycle reference position is set as the section No. in table T2-4. 100, section No. of table T2-3. 99, section No. of table T2-2. 98, section No. of table T2-1. 97, and the abnormal cycle reference position is defined as the 100th section of the correction table Ta, and 100 sections are extracted from the abnormal cycle reference position in the past direction, and the correction table Ta-4 to the abnormal cycle BmA, BmB, BmC, BmD Ta-1. At this time, for example, the section number of table T2-3. 100 etc. do not enter the correction table Ta.
  • FIG. 10 is a diagram showing from which section of the original table T2 the correction tables Ta-4 to Ta-1 are configured.
  • FIG. 9 shows a case where the search interval difference in FIG. Similarly, when the rotation time is assumed to be 102 or 103 in the past direction by 2 or 3 sections longer in the table T2, that is, when the search section difference in FIG. Ask for.
  • the search section difference is set to 0 to 10 to obtain the correction table Ta.
  • the search interval difference may be set to 0-20.
  • the search section difference 0 is the case where the original table T2 and the correction tables Ta-4 to Ta-1 are the same, and shows the case where the rotation period and the abnormal period Bm coincide as shown in FIG.
  • the total matching degree h is calculated for each of the correction tables Ta having the search section differences of 0 to 10 thus obtained.
  • an abnormality occurrence (Y) determination interval number k which is the number of intervals in which an abnormality has occurred is obtained, and an interval No. Section Nos. 1 to 100 ⁇ f which is the sum of the different matching degrees f is obtained, and the total matching degree h is obtained from the equation (8).
  • Total matching degree h ⁇ f ⁇ k equation (8)
  • the total matching degree h is obtained for each of the correction tables Ta when the search section difference is 0 to 10, and the correction table Ta having the highest total matching degree h is selected.
  • the abnormal cycle Bm is determined from the abnormal cycle reference position to the next abnormal cycle reference position in the selected correction table Ta.
  • the cause diagnosis processing unit 57 specifies the cause of the failure of the rolling bearing 11a using the abnormal cycle Bm obtained by the synchronous search processing unit 56.
  • FIG. 13 shows the structure of the rolling bearing 11a, an outer ring 60 fixed to the rotating machine case, an inner ring 61 fixed to the shaft of the rotating machine and arranged concentrically with the outer ring, and between the outer ring 60 and the inner ring 61. It consists of a plurality of spherical rolling elements 62 that are arranged to roll freely.
  • Possible causes of failure of the rolling bearing 11a include inner ring damage, outer ring damage, and rolling element damage.
  • the abnormality occurrence period for each damage is expressed by the equation (11) according to the geometric dimension of the rolling bearing 11a. It is calculated
  • the abnormality occurrence period Tin when the inner ring is damaged is expressed by Expression (11)
  • the abnormality generation period Tout when the outer ring is damaged is expressed by Expression (12)
  • the abnormality generation period Tball when the rolling element is damaged is expressed by Expression (13).
  • the rotation frequency fr is the number of rotations (rpm) from the tachometer divided by 60.
  • These abnormality occurrence cycles Tin, Tout, and Tball are multiplied by s as a calculation abnormality occurrence cycle Tx, and calculation is performed by changing s from 1 to 10.
  • the calculation abnormality occurrence period Tx is the calculation result time Tin1 to Tin10 of Tin ⁇ s, the calculation result time Tout1 to Tout10 of Tout ⁇ s, and the calculation result time Tball1 to Tball10 of Tball ⁇ s.
  • the abnormal cycle Bm obtained by the synchronous search processing unit 56 is compared with the calculated calculation abnormality occurrence cycle Tx, that is, Tin1 to Tin10, Tout1 to Tout10, and Tball1 to Tball10.
  • the damage corresponding to the calculation abnormality occurrence period Tx is diagnosed as an abnormality cause, and these diagnosis results are displayed on the monitor.
  • a predetermined time width is determined around the abnormal period Bm, and when the value of the calculated abnormality occurrence period Tx is within the time width, the damage corresponding to the calculated abnormality occurrence period Tx is diagnosed as the cause of the abnormality.
  • Tin 10 is within a predetermined time width centered on the abnormal period Bm, it is diagnosed that the inner ring is damaged.
  • Tin 10 and Tout 8 are within a predetermined time width centered on the abnormal period Bm, it is diagnosed that the inner ring and the outer ring are damaged.
  • a sliding bearing may be attached to the rotary machine equipment 11.
  • the calculation abnormality occurrence period Tx is obtained by 1 / fr, and the calculation abnormality generation period Tx
  • the cause of the abnormality is diagnosed by comparing the abnormal period Bm.
  • the abnormality occurrence period Tn is obtained by one rotation period / number of abnormality occurrences per rotation (p), and the abnormality occurrence period Tn
  • the cause of the abnormality is diagnosed by comparing p times the number of times with the abnormal period Bm.
  • the time required for one rotation of the rolling bearing 11a of the equipment rotating at a low speed or one operation of the intermittent operation equipment is divided into about 100 sections, and the occurrence of abnormality (occurrence of abnormality) is diagnosed for each section.
  • the number of sections in which an abnormality has occurred is calculated.
  • the number of sections in which the abnormality occurs is a percentage of the time (width) of the bearing abnormal state with respect to one rotation time or one operation time, and the facility administrator looks at the number of sections where the abnormality has occurred,
  • the time occupied by the abnormal state of the bearing per rotation time can be intuitively recognized.
  • the synchronization search processing unit 56 and the cause diagnosis processing unit 57 gradually shift the abnormal cycle reference position from the abnormality determination result table that is the determination result of abnormality occurrence in each section for a plurality of rotations or a plurality of intermittent operations. And the abnormal cycle reference position with the highest degree of coincidence is detected. An abnormal period in which an abnormality occurs in the bearing is calculated from the thus determined abnormal period reference position. The abnormality occurrence period is different for each abnormality cause, and the degree of coincidence can be determined by comparing the abnormality abnormality period with the calculation abnormality occurrence period calculated for each abnormality cause or an integer multiple of the calculation abnormality occurrence period. When there is a high calculation abnormality occurrence cycle, it can be diagnosed that an abnormality cause corresponding to the calculation abnormality occurrence cycle is occurring in the bearing.
  • FIG. 14 shows a second embodiment.
  • the second embodiment is an embodiment of the first invention.
  • one operation operation of the rotating facility is less than one rotation
  • the rolling bearing 11a of the intermittent operation facility that repeatedly performs the operation is set as a diagnosis target.
  • An example of the intermittent operation facility is a ladle turret that is one of steel facilities. The ladle turret repeats the operation of 1/2 rotation at a low speed of 1 rpm per operation.
  • a limit switch 22 is connected to a microcomputer 34 instead of the tachometer 21. The limit switch 22 causes the CPU 35 to detect operation start and operation stop in the intermittent operation facility.
  • the reference level calculation unit 50 of the CPU 35 stores the signal from the damage occurrence detection sensor 20 in the RAM 37 for a length equal to or longer than one intermittent operation time.
  • the diagnostic parameter calculation unit 51 obtains a one-time intermittent operation average value by dividing the total of one-time intermittent operation time length data stored in the RAM 37 by the number of data.
  • the abnormality determination reference level E is obtained from the one-time intermittent operation average value ⁇ m. Further, the one-time intermittent operation time is divided into 100 sections, and an abnormality determination result table is created by comparing with the abnormality determination reference level E for each section.
  • the averaging processing unit 54 obtains the diagnosis determination parameter A and the determination value of the diagnosis determination parameter A using the abnormality determination result table for the latest j times of intermittent operation and the table obtained in the same equipment operation state. Yes.
  • the same equipment operation state means that in the case of a motor that rotates 1/2 turn in one operation and repeats 1/2 turn operation as A ⁇ B ⁇ A ⁇ B ⁇ A ⁇ B, The operation state of B is said.
  • the predetermined processing is performed using the tables obtained in the A operation state or the tables obtained in the B operation state.
  • the correction table Ta is obtained using tables obtained in the same equipment operation state.
  • the number of sections in which the abnormality has occurred is expressed as a percentage of the time (width) of the bearing abnormal state with respect to one operation time.
  • the manager can intuitively recognize the time occupied by the abnormal state of the bearing per operation time by looking at the number of sections in which the abnormality has occurred.
  • FIG. 15 shows a third embodiment.
  • the third embodiment is an embodiment of the first invention.
  • the diagnosis system 10 according to the third embodiment is a movable type in which the monitoring diagnosis device 30 and the monitor 40 are combined.
  • the monitoring / diagnosis device 30 and the monitor 40 are, for example, laptop computers.
  • the monitoring / diagnosis device 30 is connected to the damage occurrence detection sensor 20, and the damage occurrence detection sensor 20 is attached to the bearing housing 11d with a magnet.
  • a dedicated jig may be attached to the damage occurrence detection sensor 20, and the sensor may be fixed by manually pressing the sensor against the bearing housing 11d.
  • the damage detection sensor 20 is fixed to the bearing housing 11d in advance with a screw or an adhesive, and a portable measuring instrument is connected to the sensor for diagnosis. Also good.
  • the diagnostic system 10 portable as a movable type, it is possible to carry out the diagnostic system 10 to the rolling bearing 11a to be diagnosed and perform an abnormality diagnosis.
  • symbol is attached
  • FIG. 16 shows a modification of the third embodiment, in which a diagnostic device 50 in which a damage detection sensor 20, a monitoring diagnostic device 30, and a tachometer 21 are integrated is fixed to a rolling bearing 11a. Further, the monitoring / diagnosis apparatus 30 is provided with a communication unit, and is wirelessly connected to a mobile phone 41 constituting the diagnosis notification unit. The diagnosis device 50 transmits the diagnosis result obtained by the simple diagnosis determination unit 55 to the mobile phone 41. When the administrator carries the mobile phone 41, the diagnosis result of the rotating machine equipment 11 can be received even at a location away from the rotating machine equipment 11. In addition, since another structure and effect are the same as that of 1st Embodiment, the same code
  • FIG. 17 shows a fourth embodiment.
  • the fourth embodiment is an embodiment of the second invention.
  • a vibration sensor 61 is attached to a rolling bearing unit 62 on one side of a roll rotating at 46 rpm of a rotating machine facility, and the state of the bearing is monitored.
  • the output signal of the vibration sensor 61 is amplified to a predetermined level by the amplifier 63, and then transmitted to the A / D converter 64.
  • the output signal of the A / D converter 64 is transmitted to the arithmetic processing unit 65, and the calculation is performed.
  • the processing device A is connected to an output device 66 comprising a diagnostic notification means such as a monitor.
  • the arithmetic processing unit 65 includes a storage device 71 connected to an A / D converter 64, a waveform dividing unit 72, a frequency spectrum calculating unit 73, a frequency spectrum sum calculating unit 74, a frequency spectrum sum waveform signal generating unit 75, and a waveform signal.
  • the A / D converter 64 discretizes the vibration waveform at a sampling frequency of 50 kHz
  • the arithmetic processing unit 65 calculates the kurtosis degree Ks from the discrete waveform, and the calculated kurtosis degree Ks by the output unit 66 in the past.
  • an alarm is displayed when the kurtosis Ks reaches a predetermined level.
  • the rotational speed of the bearing unit 62 whose state is monitored in advance is input to the arithmetic processing unit 65, and a vibration waveform of one rotation or more of the bearing can be stored in the storage device 71.
  • a waveform signal Sx is created by arranging Sj by the waveform signal creation means 75 of the frequency spectrum sum.
  • the frequency spectrum calculating means 76 of the waveform signal calculates the frequency spectrum Ss of the waveform signal Sx, and the sharpness calculating means of the frequency spectrum calculates Equation (14) to obtain the kurtosis Ks.
  • xi represents each spectrum of the frequency spectrum Ss, and xa is an average value thereof.
  • N 0 is the number of xi.
  • the abnormality cause determination means 78 is inputted in advance with the number of rolling elements Z of the rolling bearing of the bearing unit 12, the diameter d of the rolling elements, the pitch circle diameter D, and the contact angle ⁇ between the rolling elements 62 and the transfer surface. Together with the speed, the period of occurrence of anomaly when damage occurs is calculated. Further, from the peak frequencies fs1, fs2, fs3,... Of the frequency spectrum Ss obtained by the frequency spectrum calculating means 76 of the waveform signal, the corresponding periods Ts1, Ts2, Ts3,. If they match, it is determined that the abnormality has occurred in the rolling bearing of the bearing unit 12.
  • a vibration waveform indicating the state of the bearing is detected by the vibration sensor 61, the detected vibration waveform is collected and stored, and transmitted to the arithmetic processing unit 65 via the amplifier 63 and the A / D converter 64.
  • the storage unit 71 stores the vibration waveform
  • the waveform dividing means 72 divides the stored waveform into n sections.
  • the time length of the divided section is tmsec, it is desirable to determine the divided section function n according to the rotational speed of the bearing. That is, if the division function n is set in accordance with the number of rotations of the bearing, a vibration waveform having a length of time corresponding to one rotation, two rotations, three rotations,...
  • the divided sections are (1) a section where vibration close to a normal state occurs, (2) a section where disturbance vibration is added to vibration close to a normal state, and (3) abnormalities. It can be roughly divided into a section in which vibration is generated and (4) a section in which disturbance vibration is added to abnormal vibration.
  • the frequency spectrum is the lowest in the section where the vibration close to the normal state (1) occurs, and the frequency spectrum is the highest in the section where the disturbance vibration is added to the abnormal vibration (4). Therefore, when the sum of the frequency spectra is obtained, it can be determined whether the divided section includes abnormal vibrations, disturbance vibrations, or both depending on the magnitude of the sum of the frequency spectra Fjk.
  • Fjk when obtaining the sum of the frequency spectrum Fjk, it is desirable to obtain the sum by limiting to a spectrum in a specific frequency range.
  • the vibration generated by damage to the rolling bearing is a relatively high frequency vibration of 1 kHz to 40 kHz. For example, it is clear that a vibration of several tens of Hz is a disturbance vibration of a low frequency.
  • the vibration of a rotating machine such as a bearing is generated with rotation and thus has periodicity.
  • the disturbance signal is generated suddenly and randomly, there is no periodicity. For this reason, when the frequency of the waveform signal Sx is analyzed, a spectrum having a peak at a specific frequency is obtained in the vibration generated by the bearing abnormality, whereas the disturbance vibration generated at random has a shape in which the frequency spectrum is dispersed.
  • the kurtosis degree Ks is used as an index representing the degree to which the frequency spectrum Ss of the waveform signal Sx has a peak at a specific frequency.
  • the kurtosis is 3, and as the distribution has a sharper shape than the normal distribution, the value of the kurtosis increases. Therefore, when the kurtosis Ks is high, it indicates that vibration having periodicity is generated, and therefore vibration generated by damage to the bearing is included. Conversely, when the kurtosis Ks is low, the vibration is a sudden disturbance vibration, so it can be determined that the vibration is caused by a factor other than the bearing damage. Therefore, information for determining the state of the bearing can be obtained by displaying the value of the kurtosis Ks and its change with time as a trend graph.
  • FIG. 18 shows a fifth embodiment.
  • the fifth embodiment is an embodiment of the third invention. Similar to the fourth embodiment, a vibration sensor 61 is attached to the rolling bearing unit 62 on one side of a roll rotating at 46 rpm to monitor the state of the bearing. The output signal of the vibration sensor 61 is amplified to a predetermined level by the amplifier 63, passes through a bandpass filter 80 having a passband of 1 kHz to 20 kHz, and is then transmitted to the A / D converter 64.
  • an analog filter is used as the bandpass filter 80, but after the A / D converter 64 stores the vibration waveform after A / D conversion, the stored vibration waveform passes through the digital filter. It is possible to extract a component of 1 kHz to 20 kHz.
  • An output signal from the A / D converter 64 is output to the arithmetic processing unit 67.
  • the arithmetic processing unit 67 includes a storage device 71 and a waveform dividing unit 72, an rms value calculating unit 81 connected to the waveform dividing unit 72, and an rms waveform signal generating unit 82.
  • the rms waveform signal creation means 82 is connected to the frequency spectrum calculation means 76 of the waveform signal, and the frequency spectrum calculation means 76 of the waveform signal is connected to the frequency spectrum kurtosis calculation means 77 and the abnormality cause determination means 78.
  • the kurtosis is calculated by the frequency spectrum kurtosis calculation means 77 from the discrete waveform of the frequency spectrum calculated by the frequency spectrum calculation means 76 of the waveform signal, and the calculated kurtosis is displayed by the output device 66.
  • the process for obtaining the waveform signal Sy, the frequency spectrum Si of the waveform signal Sy, and the kurtosis Ki of the frequency spectrum Si from the obtained RMSj is the same as in the fourth embodiment. Further, if the rms value calculation means 81 is replaced with equivalent peak calculation means, the kurtosis degree due to the equivalent peak Pj can be obtained in exactly the same manner.
  • the cause of damage is also diagnosed and determined in the same manner as in the fourth embodiment.
  • the fifth embodiment employs the following method as a method of abnormality diagnosis.
  • Fast Fourier Transform has been widely used as a method for calculating a frequency spectrum from a time waveform signal.
  • the above relationship is used, and the sum of the frequency spectra in the divided sections is replaced with an rms value or an equivalent peak value.
  • the rms value or equivalent peak is previously applied to the vibration waveform after passing through the bandpass filter. You must find the value.
  • a waveform signal in which the rms value obtained for each divided section j 1, 2,..., N is RMSj and the equivalent peak value is Pj with respect to the vibration waveform after passing through the band-pass filter. If Sy is created and the kurtosis degree Ki of the frequency spectrum Si is obtained, the state of the bearing can be determined in the same manner as the method using the sum of the frequency spectra.
  • the occurrence of abnormalities in the rolling bearing can be considered to be inner ring damage, outer ring damage, and rolling element damage.
  • the abnormality generation period for each damage depends on the geometric dimensions of the rolling bearing. It is obtained by the equations (11) to (13) described in the embodiment. That is, if the number of rolling elements is Z, the rolling element diameter is d, the pitch circle diameter is D, each contact between the rolling elements 62 and the transfer surface is ⁇ , and the rotational frequency of the rotating machine to which the rolling bearing 11a is attached is fr.
  • the abnormality occurrence period Tin when the inner ring is damaged is expressed by Expression (11)
  • the abnormality generation period Tout when the outer ring is damaged is expressed by Expression (12)
  • the abnormality generation period Tball when the rolling element is damaged is expressed by Expression (13).
  • the rotation frequency fr is the number of rotations (rpm) from the tachometer divided by 60.
  • the calculation is performed by changing s from 1 to 10 with s times the abnormality occurrence period Tin, Tout, and Tball as the calculation abnormality occurrence period Tx.
  • the calculation abnormality occurrence period Tx is the calculation result time Tin1 to Tin10 of Tin ⁇ s, the calculation result time Tout1 to Tout10 of Tout ⁇ s, and the calculation result time Tball1 to Tball10 of Tball ⁇ s.
  • the value of the calculation abnormality occurrence period Tx is within the time width, damage corresponding to the calculation abnormality occurrence period Tx is determined. Diagnose the cause of the abnormality.
  • FIGS. 19A and 19B show vibration waveforms obtained by the conventional method
  • FIGS. 20A, 20B, and 20C show vibration waveforms obtained by the diagnostic system of the fifth embodiment.
  • FIG. 19A shows a vibration waveform before replacement of the rolling bearing
  • FIG. 19B shows a vibration waveform after replacement.
  • the vibration waveform after replacement is a replacement of a new rolling bearing with no damage.
  • there is no significant difference before and after the replacement and the conventional method cannot determine the quality of the bearing.
  • FIG. 20 shows the degree of kurtosis when the fifth embodiment is adopted for the vibration waveform of FIG.
  • the vibration waveform is measured four times before and after the replacement, and the kurtosis is obtained from each vibration waveform.
  • (1) Sharpness by spectral sum is 26 to 43
  • Sharpness by rms value is 20 to 39
  • Sharpness by equivalent peak value is 20-40 Met.
  • (1) Sharpness by spectral sum is 3-8
  • Sharpness by rms value is 3-11
  • the kurtosis by the equivalent peak value is 4-12 It was confirmed that the bearing condition can be accurately determined.
  • FIG. 21 shows a vibration waveform in which the diagnosis system of the fourth embodiment is applied to a rolling bearing rotating at 100 rpm.
  • Tout 0.155 s is obtained as an abnormality occurrence period at the time of damage. Since this is almost equal to twice Ts1 and Ts2, it can be determined that the outer ring of the rolling bearing is damaged.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

This object aims to provide a diagnostic system for a bearing, configured to allow a manager to intuitively understand a failure condition of a rotation bearing or a slide bearing set at a slow rotation machine installation and to reliably diagnose the failure. A diagnostic system (10) for a bearing in a rotation machine installation is provided with a damage occurrence detection sensor (20) set on a fixed member of the bearing, a monitoring diagnostic device (30) connected with the sensor, and a diagnosis notification means (40) that displays an abnormality occurrence condition by a percentage. The monitoring diagnostic device (30) is comprised of a memory (37) that stores measurement data detected by the sensor, a standard level calculation unit (50) that calculates a level of the abnormality judgment standard, and a judgment unit (59) that equally divides one rotation time of a continuous rotation of a spindle supported by the bearing or one rotation time by an intermittent operation of the spindle into a plurality of sections, compares the extraordinary judgment standard level with the measurement data of each section, and judges whether or not there is an abnormality situation for every section.

Description

軸受の診断システムBearing diagnosis system
 本発明は、軸受の診断システムに関し、特に、回転機械設備に用いられる軸受の異常の状態を管理者が直感的に把握することができるものである。詳しくは、軸受の状態を監視するセンサの信号において、軸受の異常や損傷を示す信号成分が小さいがために、外乱による信号と見分けがつかないような場合でも、的確に軸受の状態を評価できるようにしているものである。 The present invention relates to a bearing diagnosis system, and in particular, allows an administrator to intuitively grasp the abnormal state of a bearing used in a rotating machine facility. Specifically, in the signal of the sensor that monitors the bearing state, the signal component indicating the abnormality or damage of the bearing is small, so even if the signal cannot be distinguished from the signal due to disturbance, the bearing state can be evaluated accurately. It is what you are doing.
 一般的に産業用プラントにおいては多数の回転機械設備が用いられており、設備効率を最大限に活用するために回転機械設備の保守管理が行われている。その保守管理においては、その故障頻度が高くかつ影響が大きい転がり軸受やすべり軸受の状態監視が最も重要視されている。
 通常、おおよそ100rpm以上の回転速度で運転している回転機械設備においては、運転状態の振動信号や音信号の計測による軸受の状態監視に代表される設備状態の定量化が行われている。
In general, a large number of rotating machinery equipment is used in industrial plants, and maintenance management of the rotating machinery equipment is performed in order to make maximum use of equipment efficiency. In the maintenance management, monitoring of the state of rolling bearings and plain bearings, which have a high frequency of failure and a large influence, is regarded as the most important.
Usually, in a rotating machine facility operating at a rotational speed of approximately 100 rpm or more, quantification of the facility state represented by bearing state monitoring by measurement of vibration signals and sound signals of the operation state is performed.
 例えば、転がり軸受の状態を診断するために、振動センサを軸受のハウジングに取り付け、その振動波形から転がり軸受の損傷を検出する技術が利用されている。
 図22は、外輪に損傷が発生した転がり軸受の振動波形を示すものである。該図22に示すように、転動体が外輪の損傷部位を通過する度に振動振幅が変調を受ける様子を明確に観察できる。
 しかし、回転数が100rpm以下のような低速回転機械では、損傷によって発生する振動が微小であるために、このような振動が軸受の回転によって発生する振動や軸受周辺で発生する他の要因による外乱振動に埋没してS/N比が非常に悪くなる。そのため、単純に振幅変調を検出する方法では軸受の状態を診断することができない。
 このため、従来より、SN比を向上させかつ確実に軸受の状態監視を行うための手法として、振動信号に特殊な信号処理を行いSN比を向上させる方法や、AE(アコースティックエミッション)信号の計測による診断手法が提案されている。
For example, in order to diagnose the state of a rolling bearing, a technique is used in which a vibration sensor is attached to a housing of the bearing and damage to the rolling bearing is detected from the vibration waveform.
FIG. 22 shows a vibration waveform of the rolling bearing in which the outer ring is damaged. As shown in FIG. 22, it can be clearly observed that the vibration amplitude is modulated every time the rolling element passes through the damaged part of the outer ring.
However, in a low-speed rotating machine with a rotation speed of 100 rpm or less, the vibration generated by damage is very small. Therefore, such vibration is caused by vibration generated by rotation of the bearing or other factors generated around the bearing. The S / N ratio becomes very poor due to being buried in vibration. For this reason, the state of the bearing cannot be diagnosed by simply detecting the amplitude modulation.
For this reason, conventionally, as a technique for improving the SN ratio and monitoring the state of the bearing reliably, a method of improving the SN ratio by performing special signal processing on the vibration signal, or measuring an AE (acoustic emission) signal. A diagnostic method based on the above has been proposed.
 例えば、特開平6-323899号公報(特許文献1)においては、低速回転機械の振動を軸受部で検出し、振動検出信号をバンドパスフィルタ処理して軸受損傷時の周波数領域のスペクトラムのパワーが増加する異常状態を表す固有帯域成分を抽出し、この固有帯域成分の波高率を算出し、算出した波高率のさらに波高率を算出し、予め設定した閾値と比較して低速回転機械の異常診断を行う方法が提案されている。
 ノイズによるピーク値にそれほどばらつきがなく、軸受損傷による突発波形の表れる周期はノイズによるものより長いことに着目して前記波高率を算出することで、ノイズを平坦化してレベルを低下させ、損傷による信号成分のピーク値を際立たせている。
For example, in Japanese Patent Application Laid-Open No. 6-323899 (Patent Document 1), vibration of a low-speed rotating machine is detected by a bearing portion, and the vibration detection signal is subjected to band-pass filter processing to obtain a spectrum domain power at the time of bearing damage. Extract the eigenband component representing the increasing abnormal state, calculate the crest factor of this eigenband component, calculate the crest factor of the calculated crest factor, and compare it with the preset threshold value to diagnose the abnormality of the low-speed rotating machine A method of performing is proposed.
Paying attention to the fact that the peak value due to noise is not so varied, and the period in which the sudden waveform due to bearing damage appears is longer than that due to noise, calculating the crest factor, leveling the noise and lowering the level, due to damage The peak value of the signal component is highlighted.
 また、振動信号を用いた他の診断手法として、振動時間波形をべき乗処理し閾値を越えたものをイベント(異常)としてカウントし、例えば1時間あるいは1日あたりなど一定時間間隔でのカウント数の増減や、1回転あたりでのカウント数の増減を監視することで軸受の異常を定量化する手法などがある。 In addition, as another diagnostic method using a vibration signal, a vibration time waveform that is raised to a power and exceeds a threshold is counted as an event (abnormality). For example, the count number at a certain time interval such as one hour or one day is calculated. There is a method of quantifying the abnormality of the bearing by monitoring the increase / decrease and the increase / decrease of the count number per one rotation.
 さらに、AE信号の計測による診断として、AE信号の1回の発生を1イベントとしてカウントし、例えば1時間あるいは1日あたりなど一定時間間隔でのカウント数の増減や、1回転あたりでのカウント数の増減を監視することで軸受異常を定量化する手法がある。また、AE信号の1回の発生を1イベントとしてイベントの持続時間を積算し、例えば1時間あるいは1日あたりなど一定時間間隔でのイベント積算時間の増減や、1回転あたりでのイベント積算時間の増減を監視することで軸受の異常を定量化する手法などもある。 Further, as a diagnosis by measuring the AE signal, one occurrence of the AE signal is counted as one event, for example, increase / decrease of the count number at regular time intervals such as one hour or one day, or the count number per one rotation. There is a method of quantifying the bearing abnormality by monitoring the increase / decrease of the bearing. Also, the event duration is integrated with one occurrence of the AE signal as one event, for example, the increase or decrease of the event integration time at regular time intervals such as 1 hour or 1 day, or the event integration time per rotation There is also a method of quantifying the bearing abnormality by monitoring the increase and decrease.
 しかし、AE信号あるいは振動信号のカウントや積算時間から軸受の異常を監視する場合、回転機械設備の管理者は、モニタ等の警告手段に表示されるカウント数や積算時間結果を見て、数値そのものからは軸受の故障の状態を直感的に把握できないという問題点を有している。 However, when monitoring a bearing abnormality from the AE signal or vibration signal count or accumulated time, the administrator of the rotating machine equipment looks at the count number displayed on the warning means such as a monitor or the accumulated time result, and the numerical value itself. Has a problem that the state of failure of the bearing cannot be grasped intuitively.
 さらに、AE信号を閾値と比較して軸受の異常を監視する方法においては、AE信号は非常に微小な設備状態変化も検出可能である一方、敏感に反応するため、異常とはいえない状態であっても異常であると判定する過検出も多く、計測や診断において取り扱いが難しいという問題点を有している。
 また、イベントの発生(異常発生)を判断するための基準値は、通常、回転機械設備の初期調整期間に採取された正常時の信号を基準とし、該データから算出した固定値とする場合が多い。このように基準値を固定値として、基準値と信号を比較して軸受等の故障診断を行う場合、回転機械設備の回転数が変化して負荷変動が生じると信号レベルが変化してしまい、正しくイベントの判定ができずに誤動作を誘発するという問題点を有している。
Furthermore, in the method of monitoring the bearing abnormality by comparing the AE signal with the threshold value, the AE signal can detect a very small change in the equipment state, but reacts sensitively, so it cannot be said to be abnormal. Even if it exists, there are many overdetections that determine that it is abnormal, and there is a problem that it is difficult to handle in measurement and diagnosis.
In addition, the reference value for determining the occurrence of an event (occurrence of an abnormality) is usually a fixed value calculated from the data based on the normal signal collected during the initial adjustment period of the rotating machinery equipment. Many. As described above, when the reference value is a fixed value and a failure diagnosis of a bearing or the like is performed by comparing the reference value and the signal, the signal level changes when the rotational speed of the rotating machine equipment changes and a load fluctuation occurs. There is a problem that an event cannot be correctly judged and a malfunction is induced.
 さらにまた、複数回転以上連続で回転する設備ではなく、例えば鉄鋼設備のひとつであるレードルターレットのように、1回の運転動作が1回転に満たず、かつ、該動作を繰り返し行う間欠運転設備の場合、1回の測定で1回転分のデータが得られないため異常状態の定量化が困難であるという問題点を有している。 Furthermore, it is not an equipment that rotates continuously more than a plurality of revolutions, but an intermittent operation equipment that performs one operation less than one rotation and repeats the operation, such as a ladle turret that is one of steel facilities. In this case, there is a problem that it is difficult to quantify an abnormal state because data for one rotation cannot be obtained by one measurement.
 さらに、AE信号あるいは振動信号等の時間波形データをFFT演算し、該周波数分析結果から軸受に異常が発生する周期を検出する場合、100rpm以下のような低速回転設備においては扱うデータ量が膨大なものとなり一般的な解析装置においては解析が困難である。 Furthermore, when time waveform data such as an AE signal or vibration signal is subjected to an FFT operation and a cycle in which an abnormality occurs in the bearing is detected from the frequency analysis result, the amount of data handled in a low-speed rotating facility such as 100 rpm or less is enormous. Therefore, analysis is difficult in a general analysis device.
 例えば、1000rpmの中高速の回転設備においては、1回転に1回発生する軸受の異常周期時間は約60msecであり複数回転分のデータ取得を考えても1秒程度の計測で周期検出は可能となる。
 しかし、低速回転の場合、その異常の発生する周期は回転数が低くなるにつれ長くなるため、1rpmの回転設備において1回転に1回発生する軸受の異常周期時間は約60secであり、複数回転分のデータ取得を考えると1000秒程度の計測を行う必要がある。
 さらに、0.1rpmの回転設備の場合は、1回転に1回発生する軸受の異常周期時間は約600秒であり、複数回転分のデータ取得を考えると10000秒程度の計測が必要となる。
For example, in a medium / high-speed rotating facility of 1000 rpm, the abnormal cycle time of a bearing that occurs once per rotation is about 60 msec, and the period can be detected by measuring about 1 second even if data acquisition for multiple rotations is considered. Become.
However, in the case of low-speed rotation, the cycle in which the abnormality occurs becomes longer as the rotational speed becomes lower. Therefore, the abnormal cycle time of the bearing that occurs once in one rotation in the rotating facility of 1 rpm is about 60 sec, Considering the data acquisition, it is necessary to measure about 1000 seconds.
Furthermore, in the case of a rotating facility of 0.1 rpm, the abnormal cycle time of the bearing that occurs once per rotation is about 600 seconds, and taking data acquisition for a plurality of rotations requires measurement of about 10,000 seconds.
 通常、軸受異常検出を目的とした時間波形データ計測の場合、検波処理後の波形を用いて計測を行うため、そのサンプリング周波数は1kHz~3kHzで行われている。
 サンプリング周波数を1kHzとした場合、前記各回転数の場合に必要なデータ数は、1000rpmの場合は1000データでよいが、1rpmの場合1000000データ、0.1rpmの場合10000000データとなる。これらのデータ数からデータ容量を概算すると1000rpmの場合2kByte、1rpmの場合2MByte、0.1rpmの場合20MByteと膨大なデータ容量となり、高度な処理能力を持つ解析装置が必要となると共に、解析にも時間がかかるという問題がある。
Normally, in the case of time waveform data measurement for the purpose of bearing abnormality detection, since the measurement is performed using the waveform after the detection process, the sampling frequency is 1 kHz to 3 kHz.
When the sampling frequency is 1 kHz, the number of data required for each rotation speed may be 1000 data for 1000 rpm, but 1000000 data for 1 rpm and 10000000 data for 0.1 rpm. Estimating the data capacity from the number of data, the data capacity is 2 kbytes at 1000 rpm, 2 Mbytes at 1 rpm, and 20 Mbytes at 0.1 rpm. There is a problem that it takes time.
 さらに、特許第3920715号公報(特許文献2)では、採取した振動信号をあらかじめ設定した時間間隔で分割し、その分割区間毎に振動信号の周波数を解析してパワースペクトルを求め、パワースペクトルの総パワー値から軸受の正常箇所の信号と異常個所の信号を識別して、S/N比を向上させる信号処理方法が開示されている。
 前記の信号処理方法では、異常個所の振動の方が正常箇所の振動よりも総パワー値が大きくなることに着目し、総パワー値の大きい分割区間を取り除いた残りの分割区間における平均パワースペクトルを正常箇所のパワースペクトルとみなして、この平均パワースペクトルと分割区間毎のパワースペクトルとの比を求めて異常振動を検出するものである。
Further, in Japanese Patent No. 3920715 (Patent Document 2), the collected vibration signal is divided at a preset time interval, and the frequency of the vibration signal is analyzed for each divided section to obtain a power spectrum. A signal processing method for improving the S / N ratio by discriminating a signal at a normal location and a signal at an abnormal location from a power value is disclosed.
In the above signal processing method, paying attention to the fact that the total power value is larger in the vibration of the abnormal portion than in the vibration of the normal portion, the average power spectrum in the remaining divided sections obtained by removing the divided section having a large total power value is obtained. It is regarded as a power spectrum at a normal location, and an abnormal vibration is detected by obtaining a ratio between the average power spectrum and the power spectrum for each divided section.
 しかしながら、特許文献2の異常診断の検出方法では、ある分割区間において、不規則に発生する外乱振動が振動波形の大部分を占める場合、その区間のパワースペクトルの総パワー値も大きくなる。そのため、必ずしも、総パワー値の大きな区間が軸受の異常箇所の振動に対応するとは限らない。その結果、外乱振動を軸受の異常箇所の振動と誤認識する可能性がある。 However, in the abnormality diagnosis detection method of Patent Document 2, when disturbance vibrations that occur irregularly occupy most of the vibration waveform in a certain divided section, the total power value of the power spectrum in that section also increases. Therefore, a section with a large total power value does not necessarily correspond to vibration at an abnormal portion of the bearing. As a result, disturbance vibration may be erroneously recognized as vibration at an abnormal portion of the bearing.
特開平6-323899号公報JP-A-6-323899 特許第3920715号公報Japanese Patent No. 3920715
 本発明は、前記問題に鑑みてなされたもので、回転機械設備に取り付けられた転がり軸受やすべり軸受の故障の状態を管理者に直感的に把握させると共に、多量の測定データを記憶しなくても確実に故障診断を行うことを課題としている。
 かつ、外乱信号が大きく、軸受の異常や損傷を示す信号成分のS/N比が非常に低い場合であっても、的確に軸受の状態を故障診断を行えるようにすることを課題としている。
The present invention has been made in view of the above problems, and allows an administrator to intuitively grasp the state of failure of a rolling bearing or a sliding bearing attached to a rotating machine facility, without storing a large amount of measurement data. However, it is an issue to reliably perform failure diagnosis.
In addition, it is an object to make it possible to accurately diagnose the state of the bearing even when the disturbance signal is large and the S / N ratio of the signal component indicating abnormality or damage of the bearing is very low.
 前記課題を解決するため、第1の発明として、回転機械設備における軸受の診断システムであって、
 前記軸受の固定部材に取り付けられる損傷発生検出用のセンサと、
 前記センサと接続した監視診断装置と、
 前記監視診断装置と接続し、異常発生状態を百分率で表示する診断通知手段と、
 を備え、
 前記監視診断装置は、
 前記センサで検出された計測データを記憶する記憶部と、
 前記記憶部で記憶された計測データに基づき、異常判定基準レベルを算出する基準レベル演算部と、
 前記軸受支持された回転軸の1回転時間または間欠動作で1回の該間欠動作時間を複数区間に等分割し、前記異常判定基準レベルと前記各区間の計測データとを比較して、区間毎に異常の有無を判定する判定部とを備えていることを特徴とする軸受の診断システムを提供している。
 前記軸受支持された回転軸の1回転時間または1回の間欠動作時間は、百分率で表示するために100区間に分割している。
In order to solve the above-mentioned problem, as a first invention, there is provided a diagnostic system for a bearing in a rotary machine facility,
A sensor for detecting the occurrence of damage attached to a fixed member of the bearing;
A monitoring and diagnosis device connected to the sensor;
A diagnostic notification means for connecting with the monitoring diagnostic device and displaying an abnormal state in percentage;
With
The monitoring and diagnosis apparatus includes:
A storage unit for storing measurement data detected by the sensor;
A reference level calculation unit that calculates an abnormality determination reference level based on the measurement data stored in the storage unit;
One rotation time or intermittent operation time of the rotating shaft supported by the bearing is equally divided into a plurality of sections, and the abnormality determination reference level is compared with the measurement data of each section, for each section. And a determination unit for determining whether or not there is an abnormality is provided.
One rotation time or one intermittent operation time of the rotating shaft supported by the bearing is divided into 100 sections for display as a percentage.
 本発明の軸受診断システムによれば、回転する設備の軸受支持された回転軸の1回転または間欠運転設備の1回の間欠動作に必要な時間を100区間に分割し、区間毎にイベントの発生(異常発生)を診断して転がり軸受に異常が発生した区間数を演算している。このため、該異常発生の区間数は1回転時間または1間欠動作時間に対する軸受異常状態の時間(広さ)を百分率で示したものとなり、設備の管理者は異常が発生した区間数を見て、1回転時間または1間欠動作時間あたりに軸受の異常状態の占める時間を直感的に認識することができる。 According to the bearing diagnosis system of the present invention, the time required for one rotation of the rotating shaft supported by the bearing of the rotating equipment or one intermittent operation of the intermittent operation equipment is divided into 100 sections, and an event is generated for each section. (Abnormality occurrence) is diagnosed and the number of sections where an abnormality has occurred in the rolling bearing is calculated. For this reason, the number of sections in which the abnormality occurs is a percentage of the time (width) of the bearing abnormal state with respect to one rotation time or one intermittent operation time, and the facility administrator looks at the number of sections in which the abnormality has occurred. The time occupied by the abnormal state of the bearing per one rotation time or one intermittent operation time can be intuitively recognized.
 また、従来技術のようにAE(アコースティックエミッション)などの信号の異常発生のカウントや異常発生時間の積算値を用いて異常判定を行うと、連続AE発生現象などによって異常とはいえない状態であっても異常であると判定する過検出となることがあるが、本発明では1回転時間または1間欠動作時間を複数区分に分割して異常が発生した区間の数により転がり軸受の異常を判定しているため、過検出を抑制することができる。 In addition, when the abnormality determination is performed using the abnormality occurrence count of the signal such as AE (Acoustic Emission) or the integrated value of the abnormality occurrence time as in the prior art, it cannot be said that the abnormality is caused by the continuous AE occurrence phenomenon. However, in the present invention, one rotation time or one intermittent operation time is divided into a plurality of sections, and the abnormality of the rolling bearing is determined based on the number of sections in which the abnormality has occurred. Therefore, overdetection can be suppressed.
 前記軸受支持された回転機械設備の回転軸の回転数は0.1rpm以上300rpm以下が好ましく、より好ましくは0.1rpm以上150rpm以下であり、さらに好ましくは0.1rpm以上100rpm以下である。
 また、前記軸受は転がり軸受またはすべり軸受であることが好ましい。
 さらに、前記センサは、軸受ハウジングに固定される振動加速度ピックアップ、アコースティックエミッション(AE)、超音波センサ、音検出センサのいずれかであることが好ましい。
The number of rotations of the rotating shaft of the rotating machine equipment supported by the bearing is preferably 0.1 rpm or more and 300 rpm or less, more preferably 0.1 rpm or more and 150 rpm or less, and further preferably 0.1 rpm or more and 100 rpm or less.
The bearing is preferably a rolling bearing or a sliding bearing.
Furthermore, it is preferable that the sensor is any one of a vibration acceleration pickup, an acoustic emission (AE), an ultrasonic sensor, and a sound detection sensor fixed to the bearing housing.
 前記監視診断装置の基準レベル演算部では、前記軸受支持された回転軸の1回転または1間欠動作毎に、前記異常判定基準レベルを前記記憶部で記憶した計測データの平均値の定数倍に設定している。
 このように、異常判定基準レベルを軸受支持された回転軸の1回転または1間欠動作毎に設定しているので、軸受が取り付けられた回転機械設備の回転数や負荷が変化する場合であっても、該回転数や負荷に合わせた軸受の故障の判定を行うことができる。
In the reference level calculation unit of the monitoring and diagnosing device, the abnormality determination reference level is set to a constant multiple of the average value of the measurement data stored in the storage unit for each rotation or one intermittent operation of the rotating shaft supported by the bearing. is doing.
As described above, the abnormality determination reference level is set for each rotation or one intermittent operation of the rotating shaft supported by the bearing, so that the rotation speed and load of the rotating machine equipment to which the bearing is attached are changed. In addition, it is possible to determine the failure of the bearing in accordance with the rotational speed and load.
 前記監視診断装置の判定部では、
 異常が発生した区間の数である診断判定パラメータを算出する診断パラメータ演算部と、
 前記診断判定パラメータと予め定めた異常判定基準を比較して、異常の有無を判定する簡易診断判定部を備えていることが好ましい。
In the determination unit of the monitoring diagnostic device,
A diagnostic parameter calculator that calculates a diagnostic determination parameter that is the number of sections in which an abnormality has occurred;
It is preferable that a simple diagnosis determination unit that compares the diagnosis determination parameter with a predetermined abnormality determination criterion to determine whether or not there is an abnormality is provided.
 診断パラメータ演算部で診断判定パラメータを演算し、診断判定部で該診断判定パラメータと異常判定基準値を比較している。1回転時間または1間欠動作時間あたりに軸受の異常状態の占める時間が異常判定基準値を超えている場合には、軸受が故障していると診断することができる。 The diagnosis parameter is calculated by the diagnosis parameter calculation unit, and the diagnosis determination parameter is compared with the abnormality determination reference value by the diagnosis determination unit. When the time occupied by the abnormal state of the bearing per one rotation time or one intermittent operation time exceeds the abnormality determination reference value, it can be diagnosed that the bearing has failed.
 前記監視診断装置の判定部では、異常判定された区間が2~10内の設定個数の連続した隣接区間である場合のみ異常区間とし、前記設定個数未満の区間の異常判定はノイズとして除去する異常発生区間連続判定部を備えていることが好ましい。 The determination unit of the monitoring / diagnostic apparatus sets an abnormal section only when the section in which abnormality is determined is a set number of adjacent sections within 2 to 10, and abnormal determination in a section less than the set number is an abnormality that is removed as noise. It is preferable that a generation section continuation determination unit is provided.
 転がり軸受に故障が発生するときには、1区間だけに異常が発生するのではなく連続して複数区間で異常が発生すると考えられる。このため、隣接区間の連続性を評価し、異常判定された区間が隣接する個数が設定個数未満の区間は、異常が発生した区間数の合計値から除外することで、測定データに含まれる突発性のノイズを除去し、該ノイズによる故障の誤判定を防ぐことができる。 ¡When a failure occurs in a rolling bearing, it is considered that an abnormality does not occur only in one section but an abnormality occurs in a plurality of sections continuously. For this reason, the continuity of adjacent sections is evaluated, and sections where the number of adjacent sections determined to be abnormal are less than the set number are excluded from the total number of sections in which an abnormality has occurred. Noise can be removed, and erroneous determination of failure due to the noise can be prevented.
 さらに、前記監視診断装置の判定部は、複数回転分または複数間欠動作分の前記診断判定パラメータの平均化を行う平均化処理部を備えていることが好ましい。
 診断判定パラメータを平均して用いることで、測定データに含まれるノイズを除去し、該ノイズによる故障の診断の誤判定を防ぐことができる。
Furthermore, it is preferable that the determination unit of the monitoring diagnostic apparatus includes an averaging processing unit that averages the diagnosis determination parameters for a plurality of rotations or a plurality of intermittent operations.
By using the diagnosis determination parameters on average, noise included in the measurement data can be removed, and erroneous determination of failure diagnosis due to the noise can be prevented.
 前記診断判定パラメータと比較する前記異常判定基準は、注意レベル、危険レベル等の複数レベルで設定していることが好ましい。
 異常判定基準を複数設け、注意レベル、危険レベルの各レベルと診断判定パラメータを比較することにより異常発生の診断を行うことで、より詳細に軸受の故障の診断を行うことができる。
It is preferable that the abnormality determination criterion to be compared with the diagnosis determination parameter is set at a plurality of levels such as a caution level and a danger level.
A plurality of abnormality determination criteria are provided, and the occurrence of abnormality is diagnosed by comparing each level of the caution level and the danger level with the diagnosis determination parameter, so that the bearing failure can be diagnosed in more detail.
 また、前記監視診断装置の判定部は、複数回転分または複数間欠動作分の異常判定結果テーブルの異常周期基準位置をずらして各区別の異常発生の判定結果の一致度を算出し、最も一致度が高くなる異常周期基準位置を検索して、前記異常周期基準位置から異常周期を自動で算出する同期検索処理部を備えていることが好ましい。 In addition, the determination unit of the monitoring and diagnosis apparatus calculates the degree of coincidence of the determination results of occurrence of abnormalities for each distinction by shifting the abnormal cycle reference position of the abnormality determination result table for a plurality of rotations or a plurality of intermittent operations. It is preferable to include a synchronous search processing unit that searches for an abnormal cycle reference position where the frequency becomes high and automatically calculates an abnormal cycle from the abnormal cycle reference position.
 同期検索処理部は、異常周期基準位置を徐々にずらして、該異常判定結果テーブルを元に補正テーブルを作成する。異常周期基準位置毎に該補正テーブルの区間別の異常発生の判定結果の一致度を算出し、最も一致度が高くなる補正テーブルでの異常周期基準位置を検出している。このように定めた異常周期基準位置から軸受に異常が発生する異常周期を算出している。 The synchronous search processing unit gradually shifts the abnormal cycle reference position and creates a correction table based on the abnormality determination result table. The degree of coincidence of the determination result of occurrence of abnormality for each section of the correction table is calculated for each abnormal period reference position, and the abnormal period reference position in the correction table having the highest degree of coincidence is detected. An abnormal period in which an abnormality occurs in the bearing is calculated from the thus determined abnormal period reference position.
 さらに、本発明は、外乱信号が大きく、軸受の異常や損傷を示す信号成分のS/N比が非常に低い場合であっても、的確に軸受の状態を故障診断を行えるようにした、下記の第2の発明および第3の発明を提供している。 Furthermore, the present invention enables accurate fault diagnosis of the bearing state even when the disturbance signal is large and the S / N ratio of the signal component indicating abnormality or damage of the bearing is very low. The second invention and the third invention are provided.
 第2の発明は、回転機械設備における軸受の診断システムであって、
 前記軸受の固定部材に取り付けられる損傷発生検出用のセンサと、
 前記センサと接続した監視診断装置と、
 前記監視診断装置と接続し、診断結果を表示する診断通知手段と、
 を備え、
 前記監視診断装置は、
 前記センサで検出された信号波形を記憶する記憶部と、
 前記記憶部で記憶した信号波形の演算部を備え、
 前記演算部は、
 前記信号波形を軸受の回転速度に応じてj=1,2,…,nに分割する手段と、
 前記分割された分割区間毎に周波数スペクトルFjk(j=1,2,…,n、k=1,2,…,m)を求める手段と、
 周波数スペクトルのうち所定の周波数範囲のスペクトル和Sj(j=1,2,…,n)を求める手段と、
 前記スペクトル和Sjを時系列に並べた波形信号Sxを作成し、その波形信号Sxの周波数スペクトルSsを求める手段と、
 前記スペクトル波形Ssの尖り度Ksを求める手段を備え、
 前記尖り度Ksを求めたスペクトル波形を前記診断通知手段で表示することを特徴とする。
A second invention is a diagnostic system for a bearing in a rotary machine facility,
A sensor for detecting the occurrence of damage attached to a fixed member of the bearing;
A monitoring and diagnosis device connected to the sensor;
A diagnostic notification means for connecting to the monitoring diagnostic device and displaying a diagnostic result;
With
The monitoring and diagnosis apparatus includes:
A storage unit for storing a signal waveform detected by the sensor;
A signal waveform calculation unit stored in the storage unit;
The computing unit is
Means for dividing the signal waveform into j = 1, 2,..., N according to the rotational speed of the bearing;
Means for obtaining a frequency spectrum Fjk (j = 1, 2,..., N, k = 1, 2,..., M) for each of the divided sections;
Means for obtaining a spectrum sum Sj (j = 1, 2,..., N) in a predetermined frequency range of the frequency spectrum;
Creating a waveform signal Sx in which the spectrum sums Sj are arranged in time series, and obtaining a frequency spectrum Ss of the waveform signal Sx;
Means for obtaining a kurtosis Ks of the spectral waveform Ss;
The spectrum waveform obtained from the kurtosis Ks is displayed by the diagnosis notification means.
 第3の発明は、
 回転機械設備における軸受の診断システムであって、
 前記軸受の固定部材に取り付けられる損傷発生検出用のセンサと、
 前記センサと接続した監視診断装置と、
 前記監視診断装置と接続し、診断結果を表示する診断通知手段と、
 を備え、
 前記監視診断装置は、
 前記センサで検出された信号波形を記憶する記憶部と、
 前記記憶部で記憶した信号波形の演算部を備え、
 前記演算部は、
 前記信号波形にバンドパスフィルタを施す手段と、
 前記バンドパスフィルタ通過後の信号波形を軸受の回転速度に応じてj=1,2,…,nに分割する手段と、
 前記分割された分割区間毎に信号のrms値RMSj(j=1,2,…,n)、あるいは等価ピーク値Pjを求める手段と、
 前記rms値RMSj(j=1,2,…,n)、あるいは等価ピーク値Pjを時系列に並べた波形信号Syを作成し、その波形信号Syの周波数スペクトルSiを求める手段と、
 前記スペクトル波形Siの尖り度Kiを求める手段を備え、
 前記尖り度Kiを求めたスペクトル波形を前記診断通知手段で表示することを特徴とする。
The third invention is
A bearing diagnosis system for rotating machinery equipment,
A sensor for detecting the occurrence of damage attached to a fixed member of the bearing;
A monitoring and diagnosis device connected to the sensor;
A diagnostic notification means for connecting to the monitoring diagnostic device and displaying a diagnostic result;
With
The monitoring and diagnosis apparatus includes:
A storage unit for storing a signal waveform detected by the sensor;
A signal waveform calculation unit stored in the storage unit;
The computing unit is
Means for applying a bandpass filter to the signal waveform;
Means for dividing the signal waveform after passing through the band-pass filter into j = 1, 2,..., N according to the rotational speed of the bearing;
Means for determining the rms value RMSj (j = 1, 2,..., N) of the signal or equivalent peak value Pj for each of the divided sections;
Means for generating a waveform signal Sy in which the rms value RMSj (j = 1, 2,..., N) or the equivalent peak value Pj is arranged in time series, and obtaining the frequency spectrum Si of the waveform signal Sy;
Means for obtaining a kurtosis degree Ki of the spectral waveform Si;
The spectrum waveform for which the kurtosis degree Ki is obtained is displayed by the diagnosis notification means.
 前記第2の発明および第3の発明は、振動センサ等で検出した波形信号から尖り度を求め、該尖り度で異常発生状況を示し、該異常が突発的な外乱振動であるか、軸受の損傷によるものか判断できるようにしている。
 即ち、振動センサで検出される波形信号の周波数スペクトルが特定の周波数にピークを有する度合いを表す指標として、尖り度を用いる。正規分布では尖り度の値は小さくなり、正規分布よりも尖った形を持つ分布であればあるほど尖り度の値は大きくなる。それ故、尖り度が高い場合は、周期性を持った振動が発生していることを示すことになる。よって、尖り度が高い場合には軸受の損傷によって発生した振動が含まれていることを示す。逆に、尖り度が低い場合は、その振動は突発的な外乱振動であるから、軸受損傷とは別の要因で発生したものと判断することができる。
In the second and third inventions, the degree of kurtosis is obtained from a waveform signal detected by a vibration sensor or the like, an abnormality occurrence state is indicated by the degree of kurtosis, and whether the abnormality is sudden disturbance vibration or It is possible to judge whether it is due to damage.
That is, kurtosis is used as an index representing the degree to which the frequency spectrum of the waveform signal detected by the vibration sensor has a peak at a specific frequency. In the normal distribution, the value of the kurtosis is small, and the distribution having a sharper shape than the normal distribution has a larger value of the kurtosis. Therefore, when the sharpness is high, it indicates that the vibration having periodicity is occurring. Therefore, when the sharpness is high, it indicates that the vibration generated by the bearing damage is included. On the other hand, when the kurtosis is low, the vibration is sudden disturbance vibration, so it can be determined that the vibration is caused by a factor other than the bearing damage.
 前記第1~第3の発明のいずれの発明においても、
 軸受機器情報及び/または回転数情報から演算され、異常原因毎に値が異なる計算異常発生周期または該計算異常発生周期の整数倍周期と、前記同期検索処理部、あるいは前記演算部で算出される異常周期とを比較し、前記計算異常発生周期または前記計算異常発生周期の整数倍周期と、前記異常周期の一致度が高い場合に、該計算異常発生周期に対応する原因による異常が前記軸受に発生していると診断する判定部を備えていることが好ましい。
 前記異常原因は、転がり軸受の場合、内輪損傷、外輪損傷、転動体損傷の少なくとも一つであり、
 すべり軸受の場合、1回転または1間欠動作に1回または複数回発生する回転軸の異常な金属接触である。異常な金属接触とは、具体的には、回転軸の異常振動による回転軸の金属接触、すべり軸受の油膜異常による回転軸の金属接触などである。
In any one of the first to third inventions,
Calculated from the bearing device information and / or the rotation speed information, and calculated by the calculation abnormality occurrence period or an integer multiple of the calculation abnormality occurrence period, which is different for each abnormality cause, by the synchronous search processing unit or the calculation unit. An abnormality period is compared, and when the degree of coincidence between the calculation abnormality occurrence period or an integer multiple of the calculation abnormality occurrence period and the abnormality period is high, an abnormality caused by the cause corresponding to the calculation abnormality occurrence period is present in the bearing. It is preferable to include a determination unit that diagnoses the occurrence.
In the case of a rolling bearing, the cause of the abnormality is at least one of inner ring damage, outer ring damage, and rolling element damage,
In the case of a sliding bearing, it is an abnormal metal contact of the rotating shaft that occurs once or a plurality of times in one rotation or one intermittent operation. Specifically, the abnormal metal contact is a metal contact of the rotating shaft due to abnormal vibration of the rotating shaft, a metal contact of the rotating shaft due to an oil film abnormality of the slide bearing, or the like.
 異常発生周期は異常原因毎に異なっており、転がり軸受の場合、軸受機器情報や回転数情報から各異常原因に応じた異常発生周期を演算する。また、すべり軸受の場合には、軸接触により回転数に応じた異常発生周期となる。演算した計算異常発生周期または該計算異常発生周期の整数倍周期と、前記異常周期とを比較し、ほぼ一致する場合には、該計算異常発生周期に対応する異常原因が軸受に発生していると診断する。
 このように、各異常原因に応じた異常発生周期を演算し、計算異常発生周期または該計算異常発生周期の整数倍周期と、前記異常周期とを比較することで、軸受に発生する異常原因を特定することができる。
The abnormality occurrence cycle differs for each cause of abnormality. In the case of a rolling bearing, the abnormality occurrence cycle corresponding to each abnormality cause is calculated from the bearing device information and the rotation speed information. Further, in the case of a slide bearing, an abnormality occurrence cycle corresponding to the rotation speed is caused by shaft contact. When the calculated abnormal occurrence period or an integer multiple of the calculated abnormal occurrence period is compared with the abnormal period, the cause of the abnormality corresponding to the calculated abnormal occurrence period has occurred in the bearing. Diagnose.
In this way, the abnormality occurrence period corresponding to each abnormality cause is calculated, and the abnormality cause occurring in the bearing is calculated by comparing the abnormality abnormality period with the calculation abnormality occurrence period or an integer multiple of the calculation abnormality occurrence period. Can be identified.
 前記センサと監視診断装置と診断通知手段を組み合わせた可動型、または前記監視診断装置に対して前記診断通知手段は無線接続して携帯型としていてもよい。
 転がり軸受の診断システムを可動型とすることで該診断システムを持ち運ぶことができ、診断対象となる転がり軸受にセンサを取り付けて転がり軸受の故障を診断することができる。
 また、監視診断装置と診断通信手段を無線接続することで、管理者は診断通信手段を携帯して低速回転機械設備の状態を知ることができる。
The movable type combining the sensor, the monitoring diagnostic device, and the diagnostic notification unit, or the diagnostic notification unit may be wirelessly connected to the monitoring diagnostic device to be portable.
By making the rolling bearing diagnostic system movable, the diagnostic system can be carried, and a sensor can be attached to the rolling bearing to be diagnosed to diagnose a failure of the rolling bearing.
Further, by wirelessly connecting the monitoring diagnostic apparatus and the diagnostic communication means, the administrator can carry the diagnostic communication means and know the state of the low-speed rotating machine equipment.
 前述したように、第1の発明の軸受の診断システムによれば、回転する設備の軸受支持された回転軸の1回転または間欠運転設備の1動作に必要な時間をおよそ100区間に分割し、区間毎に異常の発生を診断して異常が発生した区間数を演算している。このため、該異常発生の区間数は1回転時間または1間欠動作時間に対する軸受異常状態の時間(広さ)を百分率で示したものとなり、設備の管理者は異常が発生した区間数を見て、1回転時間あたりに軸受の異常状態の占める時間を直感的に認識することができる。 As described above, according to the bearing diagnosis system of the first invention, the time required for one rotation of the rotating shaft supported by the bearing of the rotating equipment or one operation of the intermittent operation equipment is divided into approximately 100 sections, The occurrence of abnormality is diagnosed for each section, and the number of sections in which the abnormality has occurred is calculated. For this reason, the number of sections in which the abnormality occurs is a percentage of the time (width) of the bearing abnormal state with respect to one rotation time or one intermittent operation time, and the facility administrator looks at the number of sections in which the abnormality has occurred. The time occupied by the abnormal state of the bearing per rotation time can be intuitively recognized.
 また、判定部は複数回転分または複数間欠動作分の各区間の異常発生の判定結果である異常判定結果テーブルから異常周期基準位置を徐々にずらして補正テーブルを作成し、最も一致度が高くなる異常周期基準位置を検出し、該異常周期基準位置から軸受に異常が発生する異常周期を算出している。異常発生周期は異常原因毎に異なっており、異常原因毎に演算される計算異常発生周期、または、該計算異常発生周期の整数倍周期と、前記異常周期とを比較することで、軸受に発生する異常原因を特定することができる。 In addition, the determination unit creates a correction table by gradually shifting the abnormal cycle reference position from the abnormality determination result table that is the determination result of occurrence of abnormality in each section for a plurality of rotations or a plurality of intermittent operations, and the degree of coincidence becomes highest. An abnormal cycle reference position is detected, and an abnormal cycle in which an abnormality occurs in the bearing is calculated from the abnormal cycle reference position. Anomaly occurrence period is different for each cause of anomaly, and it is generated in the bearing by comparing the anomaly period with the calculated anomaly occurrence period calculated for each anomaly cause or an integer multiple of the calculated anomaly occurrence period. It is possible to identify the cause of abnormality.
 第2および第3の発明によれば、センサで検出された信号波形を、尖り度を有するスペクトル波形で表示することにより、異常発生状況を視覚的に表示できる。
 これにより、回転機械から発生する信号の周期性を定量的に評価することによって、突発的に発生する外乱信号に軸受の異常や損傷を示す信号が埋没しても、軸受の状態を評価することができる。その結果、低速回転機械のように信号のS/N比が非常に低い場合であっても、軸受の異常を検出することができる。
 また、信号を小区間に分割し、その分割区間におけるrms値や等価ピーク値から軸受の状態を判断することができるので、rms値演算回路や等価ピーク演算回路を利用して本発明を実現することができる。その結果、データ処理装置に大容量のデータ記憶手段や高速演算ユニットが不要になる。さらに、転がり軸受の異常発生原因を診断判定することができる。
According to the second and third aspects of the present invention, the abnormality occurrence state can be visually displayed by displaying the signal waveform detected by the sensor as a spectrum waveform having a sharpness.
This enables quantitative evaluation of the periodicity of signals generated from rotating machinery, so that the state of the bearings can be evaluated even if a signal indicating abnormalities or damage of the bearings is buried in a disturbance signal that occurs suddenly. Can do. As a result, even if the signal S / N ratio is very low as in a low-speed rotating machine, it is possible to detect a bearing abnormality.
Further, since the signal can be divided into small sections and the state of the bearing can be determined from the rms value and the equivalent peak value in the divided section, the present invention is realized using an rms value calculation circuit and an equivalent peak calculation circuit. be able to. As a result, the data processing device does not require a large capacity data storage means or a high speed arithmetic unit. Furthermore, it is possible to diagnose and determine the cause of occurrence of an abnormality in the rolling bearing.
本発明である転がり軸受診断システムの第1実施形態を示す構成図である。It is a block diagram which shows 1st Embodiment of the rolling bearing diagnostic system which is this invention. 監視診断装置の構成を示すブロック図である。It is a block diagram which shows the structure of a monitoring diagnostic apparatus. CPUの動作を示すブロック図である。It is a block diagram which shows operation | movement of CPU. 1回転時間を100区間に分割し、区間毎に測定データを異常判定基準レベルと比較して異常発生を診断する動作の説明図である。It is explanatory drawing of the operation | movement which divides | segments 1 rotation time into 100 areas and compares the measurement data with an abnormality determination reference | standard level for every area, and diagnoses abnormality generation. 異常判定結果テーブルの例である。It is an example of an abnormality determination result table. 異常発生区間の連続性判定の説明図である。It is explanatory drawing of the continuity determination of an abnormality generation area. 異常発生区間の連続性判定時の判定前と判定後の修正テーブルの説明図である。It is explanatory drawing of the correction table before the determination at the time of the continuity determination of an abnormality generation area, and after determination. 診断判定パラメータ決定値を求める説明図である。It is explanatory drawing which calculates | requires a diagnostic determination parameter determination value. 回転時間と異常発生周期または異常発生周期のm倍が異なる場合の補正テーブルの作成の説明図である。It is explanatory drawing of preparation of the correction table in case rotation time and abnormality occurrence period or m times of abnormality occurrence period differ. 補正テーブルが元のテーブルのどの区間から構成されているかを示した図である。It is the figure which showed from which section of the original table the correction table is comprised. 回転時間と異常発生周期または異常発生周期のm倍が同じ場合の補正テーブルの作成の説明図である。It is explanatory drawing of preparation of the correction table in case rotation time and abnormality occurrence period or m times of abnormality occurrence period are the same. 総合一致度を求める説明図である。It is explanatory drawing which calculates | requires a total matching degree. 転がり軸受の構造の説明図であり、(A)は断面図、(B)は(A)の垂直方向の部分断面図である。It is explanatory drawing of the structure of a rolling bearing, (A) is sectional drawing, (B) is a fragmentary sectional view of the perpendicular direction of (A). 第2実施形態を示す監視診断装置のブロック図である。It is a block diagram of the monitoring diagnostic apparatus which shows 2nd Embodiment. 第3実施形態を示す軸受診断システムの構成図である。It is a block diagram of the bearing diagnostic system which shows 3rd Embodiment. 第3実施形態の変形例を示す軸受診断システムの構成図である。It is a block diagram of the bearing diagnostic system which shows the modification of 3rd Embodiment. 第4実施形態を示す監視診断装置のブロック図である。It is a block diagram of the monitoring diagnostic apparatus which shows 4th Embodiment. 第5実施形態を示す監視診断装置のブロック図である。It is a block diagram of the monitoring diagnostic apparatus which shows 5th Embodiment. (A)(B)は従来の診断装置で得られた軸受の振動波形を示すグラフである。(A) (B) is a graph which shows the vibration waveform of the bearing obtained with the conventional diagnostic apparatus. (A)(B)(C)は第4実施形態で得られた軸受けの尖り度Ks、Kiを示すグラフである。(A), (B), and (C) are graphs showing the kurtosis degrees Ks and Ki of the bearing obtained in the fourth embodiment. 第4実施形態で得られた周波数スペクトルSsを示す図である。It is a figure which shows the frequency spectrum Ss obtained in 4th Embodiment. 従来例を示すグラフである。It is a graph which shows a prior art example.
符号の説明Explanation of symbols
10 転がり軸受診断システム
11a 転がり軸受
20 損傷発生検出用センサ
21 回転計
30 監視診断装置
40 モニタ
50 時間データ記憶処理部
51 診断パラメータ演算部
54 平均化処理部
55 簡易診断判定部
56 同期検索処理部
57 原因診断処理部
A、Ax 診断判定パラメータ
E 異常判定基準レベル
T1 診断パラメータ演算部で作成された異常判定結果テーブル
T2 異常発生区間連続判定部で作成された異常判定結果テーブル
Ta 補正テーブル
Tx 計算異常発生周期
Ba 異常周期
61 振動センサ
62 転がり軸受ユニット
63 増幅器
64 A/D変換器
65、67 演算処理装置
66 出力装置
71 記憶装置
72 波形分割手段
73 周波数スペクトル演算手段
74 周波数スペクトル和演算手段
75 周波数スペクトル和の波形信号作成手段
76 波形信号の周波数スペクトル演算手段
77 周波数スペクトルの尖り度演算手段
78 異常原因の判定手段
81 rms値演算手段
82 rms値の波形信号作成手段
DESCRIPTION OF SYMBOLS 10 Rolling bearing diagnostic system 11a Rolling bearing 20 Damage occurrence detection sensor 21 Tachometer 30 Monitoring diagnostic device 40 Monitor 50 Time data storage processing unit 51 Diagnostic parameter calculation unit 54 Averaging processing unit 55 Simple diagnosis determination unit 56 Synchronous search processing unit 57 Cause diagnosis processing unit A, Ax Diagnosis determination parameter E Abnormality determination reference level T1 Abnormality determination result table T2 created by the diagnostic parameter calculation unit Abnormality determination result table Ta created by the abnormality occurrence section continuous determination unit Ta correction table Tx Calculation abnormality occurrence Period Ba Abnormal period 61 Vibration sensor 62 Rolling bearing unit 63 Amplifier 64 A / D converter 65, 67 Arithmetic processing unit 66 Output unit 71 Storage unit 72 Waveform dividing unit 73 Frequency spectrum calculating unit 74 Frequency spectrum sum calculating unit 75 Frequency spectrum sum Waveform signal creation Stage 76 waveform signal of the frequency spectrum computing unit 77 the frequency spectrum of the kurtosis calculation means 78 cause of the abnormality judgment means 81 rms value calculating means 82 rms value of the waveform signal generating means
 本発明の実施形態を図面を参照して説明する。
 図1乃至図13に前記第1の発明の第1実施形態を示す。
 本発明の回転機械設備の軸受診断システム10は、鉄鋼設備の工場内に設置する回転機械設備11のひとつである低速回転モータの転がり軸受11aの状態を診断するものとしている。
 図1に示すように、診断システム10は、複数回転以上連続して回転する低速回転機械設備11の転がり軸受11aに損傷発生検出用センサ20を搭載しており、該損傷発生検出用センサ20と接続した監視診断装置30と、該監視診断装置30と接続した診断通知手段を構成するモニタ40と、該モータの回転数を計測する回転計21を備えている。
Embodiments of the present invention will be described with reference to the drawings.
1 to 13 show a first embodiment of the first invention.
The bearing diagnosis system 10 for a rotating machine facility according to the present invention diagnoses the state of a rolling bearing 11a of a low-speed rotating motor, which is one of rotating machine facilities 11 installed in a steel facility factory.
As shown in FIG. 1, the diagnostic system 10 includes a damage occurrence detection sensor 20 mounted on a rolling bearing 11 a of a low-speed rotating machinery facility 11 that continuously rotates a plurality of rotations. The monitor / diagnosis apparatus 30 connected, the monitor 40 which comprises the diagnostic notification means connected with the monitor / diagnosis apparatus 30, and the tachometer 21 which measures the rotation speed of the motor are provided.
 損傷発生検出用センサ20はアコースティックエミッションを検出するAEセンサからなり、基礎架台11b上に設けた低速回転モータ11cの軸受ハウジング11dにネジ止め固定している。また、回転計21は負荷側軸受架台11eに取り付けている。なお、損傷発生検出用センサ20の取り付け位置は前記位置に限定されるものではない。
 また、回転計21は取り付けず、モータの回転数情報を予め監視診断装置30のマイコン34に記憶させておいてもよい。さらにまた、損傷発生検出用センサ20に替えて振動を検出する振動加速度ピックアップ、超音波センサ、音検出センサを用いてもよい。
The damage occurrence detection sensor 20 is an AE sensor that detects acoustic emission, and is fixed to a bearing housing 11d of a low-speed rotation motor 11c provided on the foundation frame 11b with screws. The tachometer 21 is attached to the load side bearing mount 11e. The attachment position of the damage occurrence detection sensor 20 is not limited to the above position.
Further, the rotational speed information of the motor may be stored in advance in the microcomputer 34 of the monitoring / diagnosis apparatus 30 without attaching the tachometer 21. Furthermore, instead of the damage occurrence detection sensor 20, a vibration acceleration pickup that detects vibration, an ultrasonic sensor, or a sound detection sensor may be used.
 監視診断装置30は、図2に示すように、信号増幅回路31と、フィルタ回路32と、検波回路33と、マイコン34を備えている。
 信号増幅回路31は損傷発生検出用センサ20で計測された信号を増幅するアンプである。
 フィルタ回路32は、信号増幅回路31で増幅された信号からノイズ成分を除去するバンドパスフィルタであり、振動加速度ピックアップの場合、1kHz~20kHzの帯域を通過させるフィルタとしている。なお、AEセンサを用いている場合には、50kHz~500kHzの帯域を通過させるフィルタとする。
 検波回路33は、フィルタ回路32でノイズ除去された信号を検波(エンベロープ処理)している。なお、信号によっては、検波回路33を設けない場合もあり、また、振動信号の場合、検波ではなくべき乗処理を行う場合もある。
As shown in FIG. 2, the monitoring / diagnosis device 30 includes a signal amplification circuit 31, a filter circuit 32, a detection circuit 33, and a microcomputer 34.
The signal amplifier circuit 31 is an amplifier that amplifies the signal measured by the damage occurrence detection sensor 20.
The filter circuit 32 is a band-pass filter that removes noise components from the signal amplified by the signal amplifier circuit 31. In the case of the vibration acceleration pickup, the filter circuit 32 is a filter that passes a band of 1 kHz to 20 kHz. When an AE sensor is used, a filter that passes a band of 50 kHz to 500 kHz is used.
The detection circuit 33 detects (envelope processing) the signal from which noise has been removed by the filter circuit 32. Depending on the signal, the detection circuit 33 may not be provided, and in the case of a vibration signal, a power process may be performed instead of detection.
 マイコン34はCPU35とROM36、RAM37、ポート38からなる。
 マイコン34のポート38は検波回路33からの信号を所定のサンプリング周期でA/D変換している。
 ROM36、RAM37は記憶部を構成しており、RAM37はCPU35で演算される異常判定結果テーブルを記憶すると共に、CPU35で演算されるデータを一時的に記憶している。ROM36はCPUの動作をソフトウェアとして記憶している。
 CPU35は、図3に示すように、基準レベル演算部50と判定部59を備え、判定部59は、診断パラメータ演算部51と、異常発生区間連続判定部52と、平均化処理部54と、簡易診断判定部55と、同期検索処理部56と、原因診断処理部57の各部を備えている。CPU35はROM36からソフトウェアを読み出して実行することで各部の動作を行う。
The microcomputer 34 includes a CPU 35, a ROM 36, a RAM 37, and a port 38.
The port 38 of the microcomputer 34 A / D converts the signal from the detection circuit 33 at a predetermined sampling period.
The ROM 36 and the RAM 37 constitute a storage unit. The RAM 37 stores an abnormality determination result table calculated by the CPU 35 and temporarily stores data calculated by the CPU 35. The ROM 36 stores the operation of the CPU as software.
As shown in FIG. 3, the CPU 35 includes a reference level calculation unit 50 and a determination unit 59. The determination unit 59 includes a diagnostic parameter calculation unit 51, an abnormality occurrence section continuation determination unit 52, an averaging processing unit 54, Each unit includes a simple diagnosis determination unit 55, a synchronous search processing unit 56, and a cause diagnosis processing unit 57. The CPU 35 reads out the software from the ROM 36 and executes it to operate each unit.
 基準レベル演算部50は、回転計21からモータの回転数情報を受け取り、モータの1回転に必要な時間(1回転時間)を算出している。かつ、ポート38から出力される時間データを、モータの1回転以上分の時間長分、RAM37に記憶させている。
 なお、回転計21を設けず、基準レベル演算部50にモータ11cの回転数情報を予め記憶し、該回転数情報を用いて1回転時間を算出してもよい。
The reference level calculation unit 50 receives the rotation speed information of the motor from the tachometer 21 and calculates a time required for one rotation of the motor (one rotation time). In addition, the time data output from the port 38 is stored in the RAM 37 for a time length of one or more rotations of the motor.
In addition, without providing the tachometer 21, the rotation number information of the motor 11c may be stored in advance in the reference level calculation unit 50, and one rotation time may be calculated using the rotation number information.
 基準レベル演算部50は、異常判定基準レベルEの演算を行っている。まず、RAM37に記憶された時間データである1回転時間長データの平均値を式(1)より求める。
 次に、異常判定基準レベルEを式(2)より求める。本実施形態ではmを4としているが、計測対象に合わせて2.0以上10.0以下としてもよい。
 1回転平均値=1回転分時間長データの合計÷1回転分時間長データ数   式(1)
 異常判定基準レベルE=1回転平均値×m   式(2)
The reference level calculation unit 50 calculates the abnormality determination reference level E. First, an average value of one rotation time length data, which is time data stored in the RAM 37, is obtained from the equation (1).
Next, the abnormality determination reference level E is obtained from equation (2). In this embodiment, m is 4, but may be 2.0 or more and 10.0 or less according to the measurement target.
Average value per rotation = Total time length data for one rotation ÷ Number of time length data for one rotation Formula (1)
Abnormality judgment reference level E = 1 rotation average value × m Formula (2)
 さらに、診断パラメータ演算部51では、図4に示すように、1回転時間を1/100の等間隔に分割し、各区間を区間No.1~区間No.100とする。1回転時間長分データを計測された時間順に区間No.1~区間No.100の区間に振り分ける。
 次に、区間No.1~区間No.100の各区間に振り分けられたデータに異常判定基準レベルEを越えたデータがあるかを判定する。例えば図4において、区間No.6、7、8はデータが異常判定基準レベルEを超えているので、異常発生区間である。
Further, as shown in FIG. 4, the diagnostic parameter calculation unit 51 divides one rotation time into equal intervals of 1/100, and sets each section as section No. 1 to Section No. 100. Section No. 1 in the order of the measured data for one rotation time length. 1 to Section No. Sort into 100 sections.
Next, section no. 1 to Section No. It is determined whether there is data exceeding the abnormality determination reference level E in the data allocated to each of the 100 sections. For example, in FIG. 6, 7 and 8 are abnormal occurrence sections because the data exceeds the abnormality determination reference level E.
 異常判定基準レベルEを越えたデータがある区間を異常発生区間Yとした異常判定結果のテーブルT1を1回転ごとに作成する。図5は異常判定結果テーブルT1の例であり、直近から9回転前までのモータの回転について、区間毎に異常が発生したか否かを示している。
 さらに、1回転時間内で異常発生区間の区間数合計値を算出し、診断判定パラメータAとする。即ち、診断判定パラメータAは1回転時間長内の異常発生区間(Y)数である。
A table T1 of the abnormality determination result is created for each rotation, with the section having data exceeding the abnormality determination reference level E as the abnormality occurrence section Y. FIG. 5 is an example of the abnormality determination result table T1, and shows whether or not an abnormality has occurred for each section with respect to the rotation of the motor from the latest to nine rotations.
Further, the total value of the number of sections in which an abnormality has occurred within one rotation time is calculated and used as the diagnosis determination parameter A. That is, the diagnosis determination parameter A is the number of abnormality occurrence sections (Y) within one rotation time length.
 異常発生区間連続判定部52は、診断パラメータ演算部51で求めた異常判定結果のテーブルT1より、異常が連続して発生している区間を検出している。例えば、図6に示すように、区間No.6~No.8は3区間連続して異常が発生しており、連続発生区間数は3である。また、区間No.11~No.14は連続発生区間数が4である。一方、区間No.98は異常が発生している区間であるが、隣接する区間No.97、99は異常が発生しておらず、連続発生区間数は1である。 The abnormality occurrence section continuation determination unit 52 detects a section in which an abnormality occurs continuously from the table T1 of the abnormality determination result obtained by the diagnosis parameter calculation unit 51. For example, as shown in FIG. 6-No. In FIG. 8, the abnormality occurs continuously for three sections, and the number of consecutive sections is three. In addition, section No. 11-No. 14 is the number of consecutive occurrence sections is four. On the other hand, the section No. 98 is a section where an abnormality has occurred. In 97 and 99, no abnormality has occurred, and the number of consecutive occurrence sections is one.
 このように異常連続発生区間を検出した後、異常発生区間連続判定部52は、図7に示すように、連続発生区間数が連続性判定区間数k未満の区間は異常が発生していない(N)とし、異常発生区間数の合計値(診断判定パラメータA)から除外する。図7では、k=4とし、連続発生区間数が3以下の場合は異常が発生していないものとしている。なお、連続性判定区間数kは2~10の中から選択してもよい。
 異常発生区間連続判定部52は、1回転毎に連続性を判定して修正された異常判定結果テーブルT2を作成し、RAM37に記憶させる。
After detecting the abnormal continuous occurrence section in this manner, the abnormal occurrence section continuous determination unit 52, as shown in FIG. 7, no abnormality has occurred in the section where the number of consecutive occurrence sections is less than the number k of continuity determination sections ( N) and excluded from the total number of abnormality occurrence sections (diagnosis determination parameter A). In FIG. 7, when k = 4 and the number of continuously generated sections is 3 or less, it is assumed that no abnormality has occurred. The continuity determination interval number k may be selected from 2 to 10.
The abnormality occurrence section continuation determination unit 52 creates an abnormality determination result table T2 that is corrected by determining continuity for each rotation, and stores it in the RAM 37.
 平均化処理部54は、直近n回転分の修正異常判定結果テーブルT2を用いて、図8に示すように、回転毎に異常が発生した区間数である診断判定パラメータAnを求めている。
 さらに、直近n回転分の診断判定パラメータAnの平均を式(3)より求め、診断判定パラメータ決定値Axとしている。図8ではn=8として直近8回転分の診断判定パラメータAnの平均を求めているが、nは1~16のいずれかの値であってもよい。
Figure JPOXMLDOC01-appb-M000001
The averaging processing unit 54 uses the correction abnormality determination result table T2 for the latest n rotations, as shown in FIG. 8, to obtain a diagnosis determination parameter An that is the number of sections in which an abnormality has occurred for each rotation.
Further, the average of the diagnosis determination parameters An for the latest n rotations is obtained from the equation (3), and is set as the diagnosis determination parameter determination value Ax. In FIG. 8, the average of the diagnostic determination parameters An for the latest eight rotations is obtained with n = 8, but n may be any value from 1 to 16.
Figure JPOXMLDOC01-appb-M000001
 診断判定パラメータ決定値Axは、平均を1回転ごとに行うと共に移動平均値としている。即ち、図8に示すように、2回転前の異常判定結果のテーブルを平均化処理部54が受け取ったときには、9回転前から2回転前の診断判定パラメータAnから診断判定パラメータ決定値Ax1を求め、1回転前のテーブルを受け取ったときには、8回転前から1回転前の診断判定パラメータAnから診断判定パラメータ決定値Ax2を求め、直近のテーブルを受け取ったときには、7回転前から直近の診断判定パラメータAnから診断判定パラメータ決定値Ax3を求めている。 The diagnosis determination parameter determination value Ax is averaged every rotation and is a moving average value. That is, as shown in FIG. 8, when the averaging processing unit 54 receives a table of abnormality determination results before two rotations, a diagnosis determination parameter determination value Ax1 is obtained from the diagnosis determination parameters An before nine rotations and two rotations before. When the table before one rotation is received, the diagnosis determination parameter determination value Ax2 is obtained from the diagnosis determination parameter An from one rotation before eight rotations. When the most recent table is received, the most recent diagnosis determination parameter from seven rotations before The diagnosis determination parameter determination value Ax3 is obtained from An.
 簡易診断判定部55は、注意レベル判定基準値を例えば5、危険レベル判定基準値を例えば15とし、予め記憶している。1回転毎に診断判定パラメータ決定値Axを判定基準値と比較し、診断判定パラメータ決定値Axが各判定基準値よりも大きい場合には転がり軸受11aに注意レベル、危険レベルの故障が発生していると判定している。
 簡易診断判定部55は、モニタ40に判定結果を表示している。
The simple diagnosis determination unit 55 stores the attention level determination reference value as 5, for example, and the danger level determination reference value as 15, for example. The diagnosis determination parameter determination value Ax is compared with the determination reference value every rotation, and if the diagnosis determination parameter determination value Ax is larger than each determination reference value, a failure of a caution level and a danger level occurs in the rolling bearing 11a. It is determined that there is.
The simple diagnosis determination unit 55 displays the determination result on the monitor 40.
 次に、転がり軸受11aの異常原因の特定について説明する。
 簡易診断判定部55で注意レベル、危険レベルの故障が発生していると判定した場合には、同期検索処理部56及び原因診断処理部57において、転がり軸受11aの異常原因の特定を行っている。
 同期検索処理部56及び原因診断処理部57は転がり軸受11aの異常として、内輪損傷、外輪損傷、転動体損傷を特定する。転がり軸受11aが損傷すると、詳細は後述するが、損傷箇所によって異なる周期(異常発生周期)で異常が発生する。同期検索処理部56は異常判定結果テーブルT2を用いて、回転機械の回転周期に最も近い異常周期Bmを求め、原因診断処理部57は該異常周期Bmと異常発生周期との関係から故障原因の特定を行っている。
Next, identification of the cause of abnormality of the rolling bearing 11a will be described.
When the simple diagnosis determination unit 55 determines that a failure of the attention level or the danger level has occurred, the synchronization search processing unit 56 and the cause diagnosis processing unit 57 identify the cause of the abnormality of the rolling bearing 11a. .
The synchronous search processing unit 56 and the cause diagnosis processing unit 57 identify inner ring damage, outer ring damage, and rolling element damage as an abnormality of the rolling bearing 11a. When the rolling bearing 11a is damaged, although details will be described later, an abnormality occurs at a different cycle (abnormality generation cycle) depending on the damaged portion. The synchronous search processing unit 56 uses the abnormality determination result table T2 to obtain the abnormal cycle Bm that is closest to the rotation cycle of the rotating machine, and the cause diagnosis processing unit 57 determines the cause of the failure from the relationship between the abnormal cycle Bm and the abnormality occurrence cycle. I have identified.
 同期検索処理部56及び原因診断処理部57の動作の詳細について説明する。
 同期検索処理部56は、異常周期基準位置を自動で検出して異常周期Bmを決定している。異常周期Bmは、転がり軸受11aの損傷により異常が発生する異常発生周期をm倍した周期であり、mの値は異常周期Bmが回転機械の回転周期に最も近くなるような値である。異常周期Bmは回転機械の回転周期と同期するとは限らず、異常周期Bmは回転機械の回転周期と同じ周期となる場合もあるが、ならない場合もある。
 異常周期Bmの求め方について、以下に説明する。
 まず、平均化処理部54で求めた異常判定結果テーブルT2を用いて補正テーブルTaを作成する。
 診断パラメータ演算部51では、異常判定結果テーブルT2を回転周期を区切る回転周期基準位置を基準として100区間となるように作成しており、まず、異常周期Bmが過去方向に異常判定結果テーブルT2より1区間分長い101区間の期間であると仮定した場合に、区間数が100の補正テーブルTaを作成する。
Details of the operations of the synchronous search processing unit 56 and the cause diagnosis processing unit 57 will be described.
The synchronous search processing unit 56 automatically detects the abnormal cycle reference position and determines the abnormal cycle Bm. The abnormal period Bm is a period obtained by multiplying the abnormality generation period in which an abnormality occurs due to damage to the rolling bearing 11a by m, and the value of m is a value that makes the abnormal period Bm closest to the rotation period of the rotating machine. The abnormal cycle Bm is not necessarily synchronized with the rotation cycle of the rotating machine, and the abnormal cycle Bm may or may not be the same cycle as the rotation cycle of the rotating machine.
A method for obtaining the abnormal period Bm will be described below.
First, the correction table Ta is created using the abnormality determination result table T2 obtained by the averaging processing unit 54.
In the diagnosis parameter calculation unit 51, the abnormality determination result table T2 is created so as to be 100 sections based on the rotation cycle reference position that divides the rotation cycle. First, the abnormality cycle Bm is based on the abnormality determination result table T2 in the past direction. When it is assumed that the period is 101 sections long by one section, a correction table Ta having 100 sections is created.
 図9に示すように、異常判定結果テーブルT2-0からテーブルT2-4までを並べ、直近のテーブルT2-4の区間No.100を基準として、過去方向に異常周期Bmごとに区切っていく。異常周期Bmは101の区間と仮定しているため、過去方向にテーブルT2-4の区間No.100からテーブルT2-3の区間No.100までの101区間が異常周期BmA、テーブルT2-3の区間No.99からテーブルT2-2の区間No.99までの101区間が異常周期BmB、テーブルT2-2の区間No.98からテーブルT2-1の区間No.98までの101区間が異常周期BmC、テーブルT2-1の区間No.97からテーブルT2-0の区間No.97までの101区間が異常周期BmDとなる。 As shown in FIG. 9, the abnormality determination result table T2-0 to the table T2-4 are arranged, and the section No. of the latest table T2-4 is arranged. With reference to 100, the abnormal period Bm is divided in the past direction. Since the abnormal period Bm is assumed to be 101, the section No. of the table T2-4 is past in the past direction. 100 to the section No. in table T2-3. 101 section up to 100 is abnormal cycle BmA, section No. of table T2-3. 99 to section T.2 of table T2-2. 101 section up to 99 is abnormal cycle BmB, section No. of table T2-2. 98 to section T. 2 of table T2-1. 101 section up to 98 is abnormal cycle BmC, section No. of table T2-1. 97 to section T.0 of table T2-0. 101 section up to 97 is the abnormal period BmD.
 ここで、異常周期基準位置をテーブルT2-4の区間No.100、テーブルT2-3の区間No.99、テーブルT2-2の区間No.98、テーブルT2-1の区間No.97とすると共に、これら異常周期基準位置を補正テーブルTaの100区間目とし、異常周期基準位置から過去方向に100区間分を取り出し、異常周期BmA、BmB、BmC、BmDの補正テーブルTa-4~Ta-1とする。このとき、例えばテーブルT2-3の区間No.100等は補正テーブルTaには入らない。 Here, the abnormal cycle reference position is set as the section No. in table T2-4. 100, section No. of table T2-3. 99, section No. of table T2-2. 98, section No. of table T2-1. 97, and the abnormal cycle reference position is defined as the 100th section of the correction table Ta, and 100 sections are extracted from the abnormal cycle reference position in the past direction, and the correction table Ta-4 to the abnormal cycle BmA, BmB, BmC, BmD Ta-1. At this time, for example, the section number of table T2-3. 100 etc. do not enter the correction table Ta.
 図10は補正テーブルTa-4~Ta-1が元のテーブルT2のどの区間から構成されているかを示した図である。図9は図10の検索区間差が1の場合である。同様に、回転時間が過去方向にテーブルT2の2区間分または3区間分長く102、103区間と仮定した場合、即ち、図10の検索区間差が2または3の場合についても、それぞれ補正テーブルTaを求める。また、図10には検索区間差が3までしか記載されていないが、検索区間差を0~10に設定してそれぞれ補正テーブルTaを求める。なお、検索区間差を0~20に設定してもよい。
 なお、検索区間差0とは元のテーブルT2と補正テーブルTa-4~Ta-1が同じである場合であり、図11のように回転周期と異常周期Bmが一致する場合を示している。
FIG. 10 is a diagram showing from which section of the original table T2 the correction tables Ta-4 to Ta-1 are configured. FIG. 9 shows a case where the search interval difference in FIG. Similarly, when the rotation time is assumed to be 102 or 103 in the past direction by 2 or 3 sections longer in the table T2, that is, when the search section difference in FIG. Ask for. In FIG. 10, only the search section difference is described up to 3, but the search section difference is set to 0 to 10 to obtain the correction table Ta. The search interval difference may be set to 0-20.
The search section difference 0 is the case where the original table T2 and the correction tables Ta-4 to Ta-1 are the same, and shows the case where the rotation period and the abnormal period Bm coincide as shown in FIG.
 次に、このように求めた検索区間差が0~10の補正テーブルTaそれぞれにおいて、総合一致度hを算出する。
 総合一致度hは以下のように求めている。
 まず、直近4回転分の補正テーブルTa-4~Ta-1において、同一区間No.間で異常が発生した数である異常発生判定数を求める。例えば、図12の区間No.3においては、補正テーブル1、4で異常が発生しているので、異常発生判定数は2である。
 次に、区間毎に、区間No.別一致度fを式(7)より求める。
 jは補正テーブルの数であり、図10では直近4回転分の補正テーブルを用いているので、jは4である。
 区間No.別一致度f=異常発生判定(Y)数÷j×100%  式(7)
Next, the total matching degree h is calculated for each of the correction tables Ta having the search section differences of 0 to 10 thus obtained.
The total matching degree h is obtained as follows.
First, in the correction tables Ta-4 to Ta-1 for the latest four rotations, the same section No. The number of occurrences of abnormality that is the number of occurrences of abnormality is obtained. For example, the section no. In 3, since an abnormality has occurred in the correction tables 1 and 4, the number of abnormality occurrence determinations is 2.
Next, for each section, the section number. The separate matching degree f is obtained from equation (7).
j is the number of correction tables. In FIG. 10, since the correction tables for the latest four rotations are used, j is four.
Section No. Another degree of coincidence f = number of abnormality occurrence determination (Y) ÷ j × 100% Equation (7)
 さらに、異常が発生した区間の数である異常発生(Y)判定区間数kを求めると共に、区間No.1~100の区間No.別一致度fの合計であるΣfを求め、式(8)より総合一致度hを求める。
 総合一致度h=Σf÷k  式(8)
Further, an abnormality occurrence (Y) determination interval number k which is the number of intervals in which an abnormality has occurred is obtained, and an interval No. Section Nos. 1 to 100 Σf which is the sum of the different matching degrees f is obtained, and the total matching degree h is obtained from the equation (8).
Total matching degree h = Σf ÷ k equation (8)
 検索区間差0~10の場合の補正テーブルTaについてそれぞれ総合一致度hを求め、総合一致度hが最も高い補正テーブルTaを選択する。
 選択された補正テーブルTaでの異常周期基準位置から次の異常周期基準位置までを異常周期Bmと定める。
The total matching degree h is obtained for each of the correction tables Ta when the search section difference is 0 to 10, and the correction table Ta having the highest total matching degree h is selected.
The abnormal cycle Bm is determined from the abnormal cycle reference position to the next abnormal cycle reference position in the selected correction table Ta.
 即ち、異常周期Bmは式(9)で求められる区間数となる。1区間当たりの時間Taは1回転時間R÷100で求められるため、異常周期Bmは式(10)となる。これらの演算は全て同期検索処理部56において自動的に行う。
 区間数Ea=選択された補正テーブルTaの検索区間差+100  式(9)
 異常周期Bm=1区間当たりの時間Ta×区間数Ea  式(10)
That is, the abnormal period Bm is the number of sections obtained by the equation (9). Since the time Ta per section is obtained by one rotation time R ÷ 100, the abnormal cycle Bm is expressed by the equation (10). All of these operations are automatically performed in the synchronous search processing unit 56.
Number of sections Ea = search section difference of selected correction table Ta + 100 (9)
Abnormal cycle Bm = time Ta × number of sections Ea per section (10)
 原因診断処理部57は、同期検索処理部56で求めた異常周期Bmを用いて、転がり軸受11aの故障の原因の特定を行う。
 図13は転がり軸受11aの構造を示し、回転機械のケースに固定される外輪60と、回転機械の軸に固定され外輪と同心に配置されている内輪61と、外輪60と内輪61の間に転動自在に配置される複数の球体の転動体62からなる。
The cause diagnosis processing unit 57 specifies the cause of the failure of the rolling bearing 11a using the abnormal cycle Bm obtained by the synchronous search processing unit 56.
FIG. 13 shows the structure of the rolling bearing 11a, an outer ring 60 fixed to the rotating machine case, an inner ring 61 fixed to the shaft of the rotating machine and arranged concentrically with the outer ring, and between the outer ring 60 and the inner ring 61. It consists of a plurality of spherical rolling elements 62 that are arranged to roll freely.
 転がり軸受11aの故障の原因として内輪損傷、外輪損傷、転動体損傷が考えられ、これらに損傷が発生した場合、各損傷毎の異常発生周期は転がり軸受11aの幾何学的寸法により式(11)~式(13)により求められる。即ち、転動体数をZ,転動体直径をd、ピッチ円径をD、転動体62と転走面との接触角をαとし、転がり軸受11aが取り付けられた回転機械の回転周波数をfrとすると、内輪損傷時の異常発生周期Tinは式(11)、外輪損傷時の異常発生周期Toutは式(12)、転動体損傷時の異常発生周期Tballは式(13)で表される。なお、回転周波数frは回転計からの回転数(rpm)を60で割ったものである。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Possible causes of failure of the rolling bearing 11a include inner ring damage, outer ring damage, and rolling element damage. When these damages occur, the abnormality occurrence period for each damage is expressed by the equation (11) according to the geometric dimension of the rolling bearing 11a. It is calculated | required by-Formula (13). That is, the number of rolling elements is Z, the rolling element diameter is d, the pitch circle diameter is D, the contact angle between the rolling elements 62 and the rolling surface is α, and the rotational frequency of the rotating machine to which the rolling bearing 11a is attached is fr. Then, the abnormality occurrence period Tin when the inner ring is damaged is expressed by Expression (11), the abnormality generation period Tout when the outer ring is damaged is expressed by Expression (12), and the abnormality generation period Tball when the rolling element is damaged is expressed by Expression (13). The rotation frequency fr is the number of rotations (rpm) from the tachometer divided by 60.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 これら異常発生周期Tin、Tout、Tballのs倍を計算異常発生周期Txとし、sを1~10まで変化させて計算する。即ち、計算異常発生周期Txは、Tin×sの計算結果時間Tin1~Tin10と、Tout×sの計算結果時間Tout1~Tout10と、Tball×sの計算結果時間Tball1~Tball10である。
 同期検索処理部56で求めた異常周期Bmと、演算した計算異常発生周期TxであるTin1~Tin10、Tout1~Tout10、Tball1~Tball10とを比較する。計算異常発生周期Txの値が、異常周期Bmとほぼ一致する場合には、該計算異常発生周期Txに該当する損傷を異常原因と診断し、これら診断結果をモニタに表示する。
 具体的には、異常周期Bmを中心として所定の時間幅を定め、計算異常発生周期Txの値が時間幅内にある場合に、該計算異常発生周期Txに該当する損傷を異常原因と診断する。例えば、Tin10が異常周期Bmを中心とした所定の時間幅内にある場合には、内輪に損傷が発生していると診断する。
 なお、異常原因は複数存在することもある。例えば、Tin10及びTout8が異常周期Bmを中心とした所定の時間幅内にあるときは、内輪及び外輪に損傷が発生していると診断する。
These abnormality occurrence cycles Tin, Tout, and Tball are multiplied by s as a calculation abnormality occurrence cycle Tx, and calculation is performed by changing s from 1 to 10. In other words, the calculation abnormality occurrence period Tx is the calculation result time Tin1 to Tin10 of Tin × s, the calculation result time Tout1 to Tout10 of Tout × s, and the calculation result time Tball1 to Tball10 of Tball × s.
The abnormal cycle Bm obtained by the synchronous search processing unit 56 is compared with the calculated calculation abnormality occurrence cycle Tx, that is, Tin1 to Tin10, Tout1 to Tout10, and Tball1 to Tball10. When the value of the calculation abnormality occurrence period Tx substantially coincides with the abnormality period Bm, the damage corresponding to the calculation abnormality occurrence period Tx is diagnosed as an abnormality cause, and these diagnosis results are displayed on the monitor.
Specifically, a predetermined time width is determined around the abnormal period Bm, and when the value of the calculated abnormality occurrence period Tx is within the time width, the damage corresponding to the calculated abnormality occurrence period Tx is diagnosed as the cause of the abnormality. . For example, when Tin 10 is within a predetermined time width centered on the abnormal period Bm, it is diagnosed that the inner ring is damaged.
There may be a plurality of abnormal causes. For example, when Tin 10 and Tout 8 are within a predetermined time width centered on the abnormal period Bm, it is diagnosed that the inner ring and the outer ring are damaged.
 なお、本実施形態において、回転機械設備11にすべり軸受が取り付けられていてもよい。この場合、回転軸の異常な金属接触などにより異常が発生し、該異常が一回転に1回発生するものとすると、計算異常発生周期Txは1/frで求められ、該計算異常発生周期Txと異常周期Bmを比較することで異常原因を診断する。
 また、すべり軸受において、1回転に複数回(2~10回)異常が発生する場合も、異常発生周期Tnを1回転周期/1回転あたりの異常発生回数(p)で求め、異常発生周期Tnのp倍と異常周期Bmを比較することで異常原因を診断する。
In the present embodiment, a sliding bearing may be attached to the rotary machine equipment 11. In this case, if an abnormality occurs due to an abnormal metal contact of the rotating shaft and the abnormality occurs once per rotation, the calculation abnormality occurrence period Tx is obtained by 1 / fr, and the calculation abnormality generation period Tx The cause of the abnormality is diagnosed by comparing the abnormal period Bm.
Further, even when an abnormality occurs multiple times (2 to 10 times) in one rotation in the slide bearing, the abnormality occurrence period Tn is obtained by one rotation period / number of abnormality occurrences per rotation (p), and the abnormality occurrence period Tn The cause of the abnormality is diagnosed by comparing p times the number of times with the abnormal period Bm.
 本発明によれば、低速で回転する設備の転がり軸受11aの1回転または間欠運転設備の1動作に必要な時間をおよそ100区間に分割し、区間毎に異常の発生(異常発生)を診断して異常が発生した区間数を演算している。このため、該異常発生の区間数は1回転時間または1動作時間に対する軸受異常状態の時間(広さ)を百分率で示したものとなり、設備の管理者は異常が発生した区間数を見て、1回転時間あたりに軸受の異常状態の占める時間を直感的に認識することができる。 According to the present invention, the time required for one rotation of the rolling bearing 11a of the equipment rotating at a low speed or one operation of the intermittent operation equipment is divided into about 100 sections, and the occurrence of abnormality (occurrence of abnormality) is diagnosed for each section. The number of sections in which an abnormality has occurred is calculated. For this reason, the number of sections in which the abnormality occurs is a percentage of the time (width) of the bearing abnormal state with respect to one rotation time or one operation time, and the facility administrator looks at the number of sections where the abnormality has occurred, The time occupied by the abnormal state of the bearing per rotation time can be intuitively recognized.
 また、同期検索処理部56及び原因診断処理部57は、複数回転分または複数間欠動作分の各区間の異常発生の判定結果である異常判定結果テーブルから異常周期基準位置を徐々にずらして補正テーブルを作成し、最も一致度が高くなる異常周期基準位置を検出している。このように定めた異常周期基準位置から軸受に異常が発生する異常周期を算出している。異常発生周期は異常原因毎に異なっており、異常原因毎に演算される計算異常発生周期、または、該計算異常発生周期の整数倍周期と、前記異常周期とを比較することで、一致度が高い計算異常発生周期がある場合には、該計算異常発生周期に対応する異常原因が軸受に発生していると診断することができる。 Further, the synchronization search processing unit 56 and the cause diagnosis processing unit 57 gradually shift the abnormal cycle reference position from the abnormality determination result table that is the determination result of abnormality occurrence in each section for a plurality of rotations or a plurality of intermittent operations. And the abnormal cycle reference position with the highest degree of coincidence is detected. An abnormal period in which an abnormality occurs in the bearing is calculated from the thus determined abnormal period reference position. The abnormality occurrence period is different for each abnormality cause, and the degree of coincidence can be determined by comparing the abnormality abnormality period with the calculation abnormality occurrence period calculated for each abnormality cause or an integer multiple of the calculation abnormality occurrence period. When there is a high calculation abnormality occurrence cycle, it can be diagnosed that an abnormality cause corresponding to the calculation abnormality occurrence cycle is occurring in the bearing.
 図14に第2実施形態を示す。該第2実施形態は前記第1の発明の実施形態である。
 第2実施形態においては、回転設備の1回の運転動作が1回転に満たず、該動作を繰り返し行う間欠運転設備の転がり軸受11aを診断対象としている。
 該間欠運転設備の例としては、鉄鋼設備のひとつであるレードルターレットが挙げられる。レードルターレットは1回の動作について1rpmの低速で1/2回転の動作を繰り返している。
 図14に示すように、回転計21に変えてリミットスイッチ22をマイコン34と接続している。該リミットスイッチ22により、CPU35は間欠運転設備における動作開始及び動作停止を検知する。
FIG. 14 shows a second embodiment. The second embodiment is an embodiment of the first invention.
In the second embodiment, one operation operation of the rotating facility is less than one rotation, and the rolling bearing 11a of the intermittent operation facility that repeatedly performs the operation is set as a diagnosis target.
An example of the intermittent operation facility is a ladle turret that is one of steel facilities. The ladle turret repeats the operation of 1/2 rotation at a low speed of 1 rpm per operation.
As shown in FIG. 14, a limit switch 22 is connected to a microcomputer 34 instead of the tachometer 21. The limit switch 22 causes the CPU 35 to detect operation start and operation stop in the intermittent operation facility.
 この場合、CPU35の基準レベル演算部50は、1回の間欠動作時間以上の長さ分、損傷発生検出用センサ20からの信号をRAM37に記憶させる。
 また、診断パラメータ演算部51は、RAM37に記憶された1回の間欠動作時間長データの合計をデータ数で除算して1回間欠動作平均値を求めている。該1回間欠動作平均値×mから異常判定基準レベルEを求めている。
 さらに、1回間欠動作時間を100区間に分割し、区間毎に異常判定基準レベルEと比較して異常判定結果テーブルを作成している。
In this case, the reference level calculation unit 50 of the CPU 35 stores the signal from the damage occurrence detection sensor 20 in the RAM 37 for a length equal to or longer than one intermittent operation time.
In addition, the diagnostic parameter calculation unit 51 obtains a one-time intermittent operation average value by dividing the total of one-time intermittent operation time length data stored in the RAM 37 by the number of data. The abnormality determination reference level E is obtained from the one-time intermittent operation average value × m.
Further, the one-time intermittent operation time is divided into 100 sections, and an abnormality determination result table is created by comparing with the abnormality determination reference level E for each section.
 平均化処理部54は、直近j回の間欠動作分の異常判定結果テーブルであって同一の設備動作状態で得られたテーブルを用いて、診断判定パラメータA及び診断判定パラメータA決定値を求めている。
 同一の設備動作状態とは、1回の動作で1/2回転し、1/2回転動作をA→B→A→B→A→Bのように繰り返すモータの場合において、Aの動作状態またはBの動作状態をいう。このように、Aの動作状態で得られたテーブル同士、またはBの動作状態で得られたテーブル同士を用いて所定の処理を行っている。
 また、同期検索処理部56においても、同一の設備動作状態で得られたテーブルを用いて、補正テーブルTaを求めている。
The averaging processing unit 54 obtains the diagnosis determination parameter A and the determination value of the diagnosis determination parameter A using the abnormality determination result table for the latest j times of intermittent operation and the table obtained in the same equipment operation state. Yes.
The same equipment operation state means that in the case of a motor that rotates 1/2 turn in one operation and repeats 1/2 turn operation as A → B → A → B → A → B, The operation state of B is said. As described above, the predetermined processing is performed using the tables obtained in the A operation state or the tables obtained in the B operation state.
Also in the synchronous search processing unit 56, the correction table Ta is obtained using tables obtained in the same equipment operation state.
 本発明によれば、間欠運転設備に取り付けられた転がり軸受11aであっても、該異常発生の区間数を1動作時間に対する軸受異常状態の時間(広さ)を百分率で示したものとして、設備の管理者は異常が発生した区間数を見て、1動作時間あたりに軸受の異常状態の占める時間を直感的に認識することができる。 According to the present invention, even in the case of the rolling bearing 11a attached to the intermittent operation facility, the number of sections in which the abnormality has occurred is expressed as a percentage of the time (width) of the bearing abnormal state with respect to one operation time. The manager can intuitively recognize the time occupied by the abnormal state of the bearing per operation time by looking at the number of sections in which the abnormality has occurred.
 なお、他の構成および作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。 In addition, since another structure and an effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図15に第3実施形態を示す。該第3実施形態は前記第1の発明の実施形態である。
 第3実施形態の診断システム10は監視診断装置30とモニタ40を組み合わせて一体とし可動型としている。監視診断装置30とモニタ40は例えばラップトップ型パソコンである。
 監視診断装置30は損傷発生検出用センサ20と接続しており、損傷発生検出用センサ20は、軸受ハウジング11dにマグネットで取り付けている。また、損傷発生検出用センサ20に専用治具を装着し、該センサを人が手で軸受ハウジング11dに押し付けて固定してもよい。さらに、軸受ハウジング11dに人が近寄れない場所においては、損傷発生検出用センサ20のみ軸受ハウジング11dに予めネジや接着材で固定しておき、ポータブル型の計測器を該センサに接続し診断してもよい。
 該診断システム10を可動型として持ち運び可能とすることで、診断対象である転がり軸受11aまで該診断システム10を持ち運んで異常診断を行うことができる。
 なお、他の構成および作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
FIG. 15 shows a third embodiment. The third embodiment is an embodiment of the first invention.
The diagnosis system 10 according to the third embodiment is a movable type in which the monitoring diagnosis device 30 and the monitor 40 are combined. The monitoring / diagnosis device 30 and the monitor 40 are, for example, laptop computers.
The monitoring / diagnosis device 30 is connected to the damage occurrence detection sensor 20, and the damage occurrence detection sensor 20 is attached to the bearing housing 11d with a magnet. Alternatively, a dedicated jig may be attached to the damage occurrence detection sensor 20, and the sensor may be fixed by manually pressing the sensor against the bearing housing 11d. Further, in a place where a person cannot approach the bearing housing 11d, only the damage detection sensor 20 is fixed to the bearing housing 11d in advance with a screw or an adhesive, and a portable measuring instrument is connected to the sensor for diagnosis. Also good.
By making the diagnostic system 10 portable as a movable type, it is possible to carry out the diagnostic system 10 to the rolling bearing 11a to be diagnosed and perform an abnormality diagnosis.
In addition, since another structure and effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図16は第3実施形態の変形例であり、損傷発生検出用センサ20と監視診断装置30と回転計21を一体型とした診断装置50を転がり軸受11aに固定している。また、監視診断装置30には通信手段を設け、診断通知手段を構成する携帯電話41と無線接続している。診断装置50は、簡易診断判定部55による診断結果を携帯電話41に送信する。
 管理者が携帯電話41を携帯することで、回転機械設備11から離れた場所であっても、回転機械設備11の診断結果を受信することができる。
 なお、他の構成および作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
FIG. 16 shows a modification of the third embodiment, in which a diagnostic device 50 in which a damage detection sensor 20, a monitoring diagnostic device 30, and a tachometer 21 are integrated is fixed to a rolling bearing 11a. Further, the monitoring / diagnosis apparatus 30 is provided with a communication unit, and is wirelessly connected to a mobile phone 41 constituting the diagnosis notification unit. The diagnosis device 50 transmits the diagnosis result obtained by the simple diagnosis determination unit 55 to the mobile phone 41.
When the administrator carries the mobile phone 41, the diagnosis result of the rotating machine equipment 11 can be received even at a location away from the rotating machine equipment 11.
In addition, since another structure and effect are the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図17に第4実施形態を示す。第4実施形態は前記第2の発明の実施形態である。
 第4実施形態では、回転機械設備の46rpmで回転するロールの片側の転がり軸受ユニット62に振動センサ61を取り付けて軸受の状態を監視している。
 振動センサ61の出力信号は増幅器63で所定のレベルに増幅された後、A/D変換器64に送信され、該A/D変換器64の出力信号を演算処理装置65に送信し、該演算処理装置Aをモニタ等の診断通知手段からなる出力装置66に接続している。
FIG. 17 shows a fourth embodiment. The fourth embodiment is an embodiment of the second invention.
In the fourth embodiment, a vibration sensor 61 is attached to a rolling bearing unit 62 on one side of a roll rotating at 46 rpm of a rotating machine facility, and the state of the bearing is monitored.
The output signal of the vibration sensor 61 is amplified to a predetermined level by the amplifier 63, and then transmitted to the A / D converter 64. The output signal of the A / D converter 64 is transmitted to the arithmetic processing unit 65, and the calculation is performed. The processing device A is connected to an output device 66 comprising a diagnostic notification means such as a monitor.
 前記演算処理装置65は、A/D変換器64に接続した記憶装置71、波形分割手段72、周波数スペクトル演算手段73、周波数スペクトル和演算手段74、周波数スペクトル和の波形信号作成手段75、波形信号の周波数スペクトル演算手段76、周波数スペクトルの尖り度演算手段77、異常原因の判定手段78を備えている。
 前記A/D変換器64は50kHzのサンプリング周波数にて振動波形を離散化し、演算処理装置65が前記離散波形から尖り度Ksを計算し、計算された尖り度Ksを出力装置66によって、過去の計算結果とともに傾向グラフとして表示すると同時に、尖り度Ksが予め定めたレベルに到達した時に警報を表示するようにしている。
The arithmetic processing unit 65 includes a storage device 71 connected to an A / D converter 64, a waveform dividing unit 72, a frequency spectrum calculating unit 73, a frequency spectrum sum calculating unit 74, a frequency spectrum sum waveform signal generating unit 75, and a waveform signal. Frequency spectrum calculation means 76, frequency spectrum kurtosis calculation means 77, and abnormality cause determination means 78.
The A / D converter 64 discretizes the vibration waveform at a sampling frequency of 50 kHz, the arithmetic processing unit 65 calculates the kurtosis degree Ks from the discrete waveform, and the calculated kurtosis degree Ks by the output unit 66 in the past. At the same time as displaying a trend graph together with the calculation result, an alarm is displayed when the kurtosis Ks reaches a predetermined level.
 演算処理装置65には、あらかじめ状態を監視している軸受ユニット62の回転速度がインプットされており、軸受1回転以上の振動波形を前記記憶装置71に記憶することができる。
 前記波形分割手段72は、離散化された振動波形を512点毎に128個の区間(j=1,2,…,128)に分けている。50kHzで離散化した振動波形を512点毎に1個の分割区間にしており、1個の分割区間は10.24msecの時間長さを持つことになる。従って、128個の分割区間を合わせると、128×10.24msec=1.31s間の振動波形を解析することになり、これは軸受1回転分の振動波形に等しい。
 前記周波数スペクトル演算手段73は、アンチエリアジングフィルタ処理を実施した振動波形に対して、高速フーリエ変換を施して周波数スペクトルFjk(j=1,2,…,128、k=1,2,…,512)を計算する。
 前記周波数スペクトル和演算手段74は、計算したFjkのうち、1kHzから20kHz帯域の周波数スペクトルに相当するスペクトルFjk(k=11,12,…,205)の和Sj(j=1,2,…,128)を計算する。
 前記周波数スペクトル和の波形信号作成手段75でSjを並べて波形信号Sxを作成する。
 前記波形信号の周波数スペクトル演算手段76は波形信号Sxの周波数スペクトルSsを計算し、周波数スペクトルの尖り度演算手段が式(14)の計算を行って尖り度Ksを求める。
The rotational speed of the bearing unit 62 whose state is monitored in advance is input to the arithmetic processing unit 65, and a vibration waveform of one rotation or more of the bearing can be stored in the storage device 71.
The waveform dividing means 72 divides the discretized vibration waveform into 128 sections (j = 1, 2,..., 128) every 512 points. The vibration waveform discretized at 50 kHz is divided into one divided section every 512 points, and one divided section has a time length of 10.24 msec. Therefore, when the 128 divided sections are combined, the vibration waveform between 128 × 10.24 msec = 1.31 s is analyzed, which is equal to the vibration waveform for one rotation of the bearing.
The frequency spectrum calculation means 73 performs a fast Fourier transform on the vibration waveform subjected to the anti-aliasing filter processing to perform frequency spectrum Fjk (j = 1, 2,..., 128, k = 1, 2,. 512).
The frequency spectrum sum calculation means 74 calculates the sum Sj (j = 1, 2,..., 205) of the spectrum Fjk (k = 11, 12,..., 205) corresponding to the frequency spectrum in the 1 kHz to 20 kHz band among the calculated Fjk. 128).
A waveform signal Sx is created by arranging Sj by the waveform signal creation means 75 of the frequency spectrum sum.
The frequency spectrum calculating means 76 of the waveform signal calculates the frequency spectrum Ss of the waveform signal Sx, and the sharpness calculating means of the frequency spectrum calculates Equation (14) to obtain the kurtosis Ks.
Figure JPOXMLDOC01-appb-M000005
 式(14)において、xiは周波数スペクトルSsの各スペクトルを表し、xaはその平均値である。また、nはxiの個数である。
Figure JPOXMLDOC01-appb-M000005
In Expression (14), xi represents each spectrum of the frequency spectrum Ss, and xa is an average value thereof. N 0 is the number of xi.
 前記異常原因の判定手段78は、あらかじめ軸受ユニット12の転がり軸受の転動体数Z、転動体直径d、ピッチ円径D、転動体62と転送面との接触角αが入力されており、回転速度と合わせて損傷発生時の異常発生周期を計算している。さらに、波形信号の周波数スペクトル演算手段76が求めた周波数スペクトルSsのピーク周波数fs1、fs2、fs3、… からそれぞれに対応する周期Ts1、Ts2、Ts3、… が所定の時間幅にて異常発生周期と一致する場合は該異常が軸受ユニット12の転がり軸受に発生していると判断する。 The abnormality cause determination means 78 is inputted in advance with the number of rolling elements Z of the rolling bearing of the bearing unit 12, the diameter d of the rolling elements, the pitch circle diameter D, and the contact angle α between the rolling elements 62 and the transfer surface. Together with the speed, the period of occurrence of anomaly when damage occurs is calculated. Further, from the peak frequencies fs1, fs2, fs3,... Of the frequency spectrum Ss obtained by the frequency spectrum calculating means 76 of the waveform signal, the corresponding periods Ts1, Ts2, Ts3,. If they match, it is determined that the abnormality has occurred in the rolling bearing of the bearing unit 12.
 以下に、前記軸受状態を監視するセンサとして振動センサ61を用いた異常診断作用を説明する。
 軸受の状態を示す振動波形を振動センサ61で検出し、検出した振動波形を採取・記憶し、増幅器63、A/D変換器64を介して演算処理装置65に送信する。
 演算処理装置65において、記憶部71で記憶し、この記憶した振動波形を波形分割手段72で波形をn個の区間に分割する。ここで、例えば、分割区間の時間長さをtmsecとすれば、分割区関数nは軸受の回転数に応じて決めることが望ましい。即ち、分割区関数nを軸受の回転数に応じて設定すれば、軸受の1回転、2回転、3回転、…に相当する時間長の振動波形をほぼn等分に分割することができる。
Hereinafter, an abnormality diagnosis function using the vibration sensor 61 as a sensor for monitoring the bearing state will be described.
A vibration waveform indicating the state of the bearing is detected by the vibration sensor 61, the detected vibration waveform is collected and stored, and transmitted to the arithmetic processing unit 65 via the amplifier 63 and the A / D converter 64.
In the arithmetic processing unit 65, the storage unit 71 stores the vibration waveform, and the waveform dividing means 72 divides the stored waveform into n sections. Here, for example, if the time length of the divided section is tmsec, it is desirable to determine the divided section function n according to the rotational speed of the bearing. That is, if the division function n is set in accordance with the number of rotations of the bearing, a vibration waveform having a length of time corresponding to one rotation, two rotations, three rotations,...
 転がり軸受の内輪、外輪、転動体、保持器に損傷が発生すると、損傷箇所を転動体が通過する時には異常振動が発生し、損傷箇所を通過しない時には損傷がない正常状態とほぼ同じ振動が発生する。さらに、外乱による振動がこれに加わった場合、前記の分割区間は、(1)正常状態に近い振動が発生する区間、(2)正常状態に近い振動に外乱振動が加わる区間、(3)異常振動が発生する区間、(4)異常振動に外乱振動が加わる区間に大別することができる。 When the inner ring, outer ring, rolling element, and cage of a rolling bearing are damaged, abnormal vibration occurs when the rolling element passes through the damaged part, and almost the same vibration as normal state without damage occurs when it does not pass through the damaged part. To do. Further, when vibration due to disturbance is added to this, the divided sections are (1) a section where vibration close to a normal state occurs, (2) a section where disturbance vibration is added to vibration close to a normal state, and (3) abnormalities. It can be roughly divided into a section in which vibration is generated and (4) a section in which disturbance vibration is added to abnormal vibration.
 前記波形分割手段72で分割された振動波形を、周波数スペクトル演算手段73で、分割区間毎に振動波形の周波数スペクトルFjk(j=1,2,…,n、k=1,2,…,m)を求める。
 ついで、周波数スペクトル和演算手段74で周波数スペクトルFjkの和を求める。
 ついで、周波数スペクトル和の波形信号信号手段7で波形信号を作成する。
The frequency waveform Fjk (j = 1, 2,..., N, k = 1, 2,..., M) of the vibration waveform divided by the waveform dividing means 72 is divided by the frequency spectrum calculating means 73 for each divided section. )
Next, the sum of the frequency spectrum Fjk is obtained by the frequency spectrum sum calculating means 74.
Next, a waveform signal is created by the waveform signal signal means 7 having a frequency spectrum sum.
 前記(1)の正常状態に近い振動が発生する区間では周波数スペクトルが最も低く、前記(4)の異常振動に外乱振動が加わる区間では周波数スペクトルが最も高くなる。従って、周波数スペクトルの和を求めると、周波数スペクトルFjkの和の大小によって、その分割区間が異常振動を含むのか、外乱振動を含むのか、両者が混在するのかを判断することができる。
 ここで、周波数スペクトルFjkの和を求める時には、特定の周波数域のスペクトルに限定して和を求めることが望ましい。
 通常、転がり軸受の損傷によって発生する振動は1kHz~40kHzの比較的高周波の振動であり、例えば、数10Hzの振動は低周波数の外乱振動であることが明らかであるから、このような周波数域のスペクトル成分を削除したスペクトル和Sj(j=1,2,…,n)を求めた方が的確に状態を判断することができる。
The frequency spectrum is the lowest in the section where the vibration close to the normal state (1) occurs, and the frequency spectrum is the highest in the section where the disturbance vibration is added to the abnormal vibration (4). Therefore, when the sum of the frequency spectra is obtained, it can be determined whether the divided section includes abnormal vibrations, disturbance vibrations, or both depending on the magnitude of the sum of the frequency spectra Fjk.
Here, when obtaining the sum of the frequency spectrum Fjk, it is desirable to obtain the sum by limiting to a spectrum in a specific frequency range.
Usually, the vibration generated by damage to the rolling bearing is a relatively high frequency vibration of 1 kHz to 40 kHz. For example, it is clear that a vibration of several tens of Hz is a disturbance vibration of a low frequency. The state can be determined more accurately by obtaining the spectral sum Sj (j = 1, 2,..., N) from which the spectral components have been deleted.
 スペクトル和Sj(j=1,2,…,n)はn個の分割区間の代表値であり、これを時系列に並べた波形信号Sxは、異常振動や外乱振動を含むところは高い値を示し、正常に近い振動を含むところは低い値を示す時間波形信号となる。
 軸受のような回転機械の振動は回転に伴って発生するものであるから周期性がある。一方、外乱信号は突発的にランダムに発生するものであるから周期性がない。そのため、波形信号Sxの周波数を解析すると、軸受異常によって発生する振動では特定の周波数にピークを持つスペクトルが得られるに対して、ランダムに発生する外乱振動は周波数スペクトルが分散した形状になる。
The spectrum sum Sj (j = 1, 2,..., N) is a representative value of n divided sections, and the waveform signal Sx in which these are arranged in a time series has a high value in a portion including abnormal vibration or disturbance vibration. As shown, a portion including vibrations close to normal is a time waveform signal indicating a low value.
The vibration of a rotating machine such as a bearing is generated with rotation and thus has periodicity. On the other hand, since the disturbance signal is generated suddenly and randomly, there is no periodicity. For this reason, when the frequency of the waveform signal Sx is analyzed, a spectrum having a peak at a specific frequency is obtained in the vibration generated by the bearing abnormality, whereas the disturbance vibration generated at random has a shape in which the frequency spectrum is dispersed.
 波形信号Sxの周波数スペクトルSsが特定の周波数にピークを有する度合いを表す指標として、本実施形態では尖り度Ksを用いる。
 正規分布では尖り度は3となり、正規分布よりも尖った形を持つ分布であればあるほど尖り度の値は大きくなる。それ故、尖り度Ksが高い場合は、周期性を持った振動が発生していることを示すものであるから、軸受の損傷によって発生した振動が含まれていることになる。逆に、尖り度Ksが低い場合は、その振動は突発的な外乱振動であるから、軸受損傷とは別の要因で発生したものと判断できる。
 よって、尖り度Ksの値や、その経時的な変化を傾向グラフとして表示することで、軸受の状態を判断する情報を得ることができる。
In the present embodiment, the kurtosis degree Ks is used as an index representing the degree to which the frequency spectrum Ss of the waveform signal Sx has a peak at a specific frequency.
In the normal distribution, the kurtosis is 3, and as the distribution has a sharper shape than the normal distribution, the value of the kurtosis increases. Therefore, when the kurtosis Ks is high, it indicates that vibration having periodicity is generated, and therefore vibration generated by damage to the bearing is included. Conversely, when the kurtosis Ks is low, the vibration is a sudden disturbance vibration, so it can be determined that the vibration is caused by a factor other than the bearing damage.
Therefore, information for determining the state of the bearing can be obtained by displaying the value of the kurtosis Ks and its change with time as a trend graph.
 図18に第5実施形態を示す。該第5実施形態は前記第3の発明の実施形態である。
 第4実施形態と同様に、46rpmで回転するロールの片側の転がり軸受ユニット62に振動センサ61を取り付けて軸受の状態を監視している。
 振動センサ61の出力信号は増幅器63にて所定のレベルに増幅された後、通過帯域1kHzから20kHzのバンドパスフィルタ80を通過した後、A/D変換器64に送信している。
 該第5実施形態では、バンドパスフィルタ80としてアナログフィルタを用いているが、A/D変換器64でA/D変換後の振動波形を一旦記憶した後、記憶した振動波形をディジタルフィルタに通過させて1kHzから20kHzの成分を抽出することもできる。
 前記A/D変換器64からの出力信号を演算処理装置67に出力している。
FIG. 18 shows a fifth embodiment. The fifth embodiment is an embodiment of the third invention.
Similar to the fourth embodiment, a vibration sensor 61 is attached to the rolling bearing unit 62 on one side of a roll rotating at 46 rpm to monitor the state of the bearing.
The output signal of the vibration sensor 61 is amplified to a predetermined level by the amplifier 63, passes through a bandpass filter 80 having a passband of 1 kHz to 20 kHz, and is then transmitted to the A / D converter 64.
In the fifth embodiment, an analog filter is used as the bandpass filter 80, but after the A / D converter 64 stores the vibration waveform after A / D conversion, the stored vibration waveform passes through the digital filter. It is possible to extract a component of 1 kHz to 20 kHz.
An output signal from the A / D converter 64 is output to the arithmetic processing unit 67.
 演算処理装置67は、記憶装置71、波形分割手段72を備え、該波形分割手段72に接続するrms値演算手段81、rmsの波形信号作成手段82を備えている。該rmsの波形信号作成手段82を、波形信号の周波数スペクトル演算手段76に接続し、該波形信号の周波数スペクトル演算手段76を周波数スペクトルの尖り度演算手段77と異常原因の判定手段78に接続し、出力手段66へ出力している。
 前記波形信号の周波数スペクトル演算手段76で演算された周波数スペクトルの離散波形から周波数スペクトルの尖り度演算手段77で尖り度を計算し、計算された尖り度が出力装置66によって表示していることは、前記第4実施形態と同様である。
The arithmetic processing unit 67 includes a storage device 71 and a waveform dividing unit 72, an rms value calculating unit 81 connected to the waveform dividing unit 72, and an rms waveform signal generating unit 82. The rms waveform signal creation means 82 is connected to the frequency spectrum calculation means 76 of the waveform signal, and the frequency spectrum calculation means 76 of the waveform signal is connected to the frequency spectrum kurtosis calculation means 77 and the abnormality cause determination means 78. To the output means 66.
The kurtosis is calculated by the frequency spectrum kurtosis calculation means 77 from the discrete waveform of the frequency spectrum calculated by the frequency spectrum calculation means 76 of the waveform signal, and the calculated kurtosis is displayed by the output device 66. The same as in the fourth embodiment.
 演算処理装置67では、波形分割手段72で、512点の離散化された振動波形を一つの分割区間として、計128個の区間(j=1,2,…,128)に振動波形を分割している。
 前記rms値演算手段81は、分割区間毎にRMSj(j=1,2,…,128)を求めている。
 求めたRMSjから波形信号Sy、波形信号Syの周波数スペクトルSi、周波数スペクトルSiの尖り度Kiを求めるプロセスは、第4実施形態と同様である。
 また、rms値演算手段81を等価ピーク演算手段に置き換えれば、全く同じ方法にて等価ピークPjによる尖り度を求めることができる。また、損傷原因も第4実施形態と同様にして診断判定している。
In the arithmetic processing unit 67, the waveform dividing means 72 divides the vibration waveform into a total of 128 sections (j = 1, 2,..., 128), with 512 discrete vibration waveforms as one divided section. ing.
The rms value calculation means 81 obtains RMSj (j = 1, 2,..., 128) for each divided section.
The process for obtaining the waveform signal Sy, the frequency spectrum Si of the waveform signal Sy, and the kurtosis Ki of the frequency spectrum Si from the obtained RMSj is the same as in the fourth embodiment.
Further, if the rms value calculation means 81 is replaced with equivalent peak calculation means, the kurtosis degree due to the equivalent peak Pj can be obtained in exactly the same manner. The cause of damage is also diagnosed and determined in the same manner as in the fourth embodiment.
 前記第5実施形態は、異常診断の手法として、下記の手法を採用している。
 従来より、時間波形信号から周波数スペクトルを計算する方法として高速フーリエ変換が広く使われている。
 離散化した時間波形信号f(n)(n=0,1,…,N-1)と、離散フーリエスペクトルをF(k) (k=0,1,…,N-1)の間には、式(15)に示すParsevalの等式が成立する。
The fifth embodiment employs the following method as a method of abnormality diagnosis.
Conventionally, Fast Fourier Transform has been widely used as a method for calculating a frequency spectrum from a time waveform signal.
A discrete time waveform signal f (n) (n = 0, 1,..., N−1) and a discrete Fourier spectrum between F (k) (k = 0, 1,..., N−1) The Parsval equation shown in equation (15) holds.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 従って、単純な絶対総和と2乗和との間には数学的な違いがあるものの、分割区間における周波数スペクトルの和が大きければ、振動波形の2乗和や単純な絶対総和も大きくなると考えられる。また、振動波形では、釣り合いの位置を基準として振動を測定するから、その平均値はほぼゼロになる。このように考えると、分割区間における振動波形のrms値や等価ピーク値と、周波数スペクトルの和とは相関があると認められる。 Therefore, although there is a mathematical difference between the simple absolute sum and the square sum, if the sum of the frequency spectrum in the divided section is large, the square sum of the vibration waveform and the simple absolute sum are also considered to be large. . In addition, in the vibration waveform, vibration is measured with reference to the balance position, so the average value is almost zero. In this way, it is recognized that the rms value or equivalent peak value of the vibration waveform in the divided section and the sum of the frequency spectrum have a correlation.
 本第4実施形態は、上記の関係を利用するものであり、分割区間における周波数スペクトルの和をrms値や等価ピーク値で代替するものである。ただし、前記のように、rms値や等価ピーク値を特定の周波数域に限定して求めるスペクトル和と対応付けするためには、あらかじめバンドパスフィルタ通過後の振動波形に対してrms値や等価ピーク値を求めなければならない。
 バンドパスフィルタ通過後の振動波形に対して、分割区間j=1,2,…,n毎に求めたrms値をRMSj、等価ピーク値をPjとすると、これを時系列的に並べた波形信号Syを作成し、その周波数スペクトルSiの尖り度Kiを求めれば、前記の周波数スペクトルの和を用いる方法と同様に、軸受の状態を判断することができる。
In the fourth embodiment, the above relationship is used, and the sum of the frequency spectra in the divided sections is replaced with an rms value or an equivalent peak value. However, as described above, in order to associate the rms value or equivalent peak value with the spectrum sum obtained by limiting to a specific frequency range, the rms value or equivalent peak is previously applied to the vibration waveform after passing through the bandpass filter. You must find the value.
A waveform signal in which the rms value obtained for each divided section j = 1, 2,..., N is RMSj and the equivalent peak value is Pj with respect to the vibration waveform after passing through the band-pass filter. If Sy is created and the kurtosis degree Ki of the frequency spectrum Si is obtained, the state of the bearing can be determined in the same manner as the method using the sum of the frequency spectra.
 また、転がり軸受の異常発生の原因として内輪損傷、外輪損傷、転動体損傷が考えられ、これらに損傷が発生した場合、各損傷毎の異常発生周期は転がり軸受の幾何学的寸法により前記第1実施形態で記載した式(11)~式(13)により求められる。
 即ち、転動体数をZ、転動体直径をd、ピッチ円径をD、転動体62と転送面との接触各をαとし、転がり軸受11aが取り付けられた回転機械の回転周波数をfrとすると、内輪損傷時の異常発生周期Tinは式(11)、外輪損傷時の異常発生周期Toutは式(12)、転動体損傷時の異常発生周期Tballは式(13)で表される。なお、回転周波数frは回転計からの回転数(rpm)を60で割ったものである。
Further, the occurrence of abnormalities in the rolling bearing can be considered to be inner ring damage, outer ring damage, and rolling element damage. When these damages occur, the abnormality generation period for each damage depends on the geometric dimensions of the rolling bearing. It is obtained by the equations (11) to (13) described in the embodiment.
That is, if the number of rolling elements is Z, the rolling element diameter is d, the pitch circle diameter is D, each contact between the rolling elements 62 and the transfer surface is α, and the rotational frequency of the rotating machine to which the rolling bearing 11a is attached is fr. The abnormality occurrence period Tin when the inner ring is damaged is expressed by Expression (11), the abnormality generation period Tout when the outer ring is damaged is expressed by Expression (12), and the abnormality generation period Tball when the rolling element is damaged is expressed by Expression (13). The rotation frequency fr is the number of rotations (rpm) from the tachometer divided by 60.
 これらの異常発生周期Tin、Tout、Tballのs倍を計算異常発生周期Txとし、sを1~10まで変化させて計算する。即ち、計算異常発生周期Txは、Tin×sの計算結果時間Tin1~Tin10と、Tout×sの計算結果時間Tout1~Tout10と、Tball×sの計算結果時間Tball1~Tball10である。 The calculation is performed by changing s from 1 to 10 with s times the abnormality occurrence period Tin, Tout, and Tball as the calculation abnormality occurrence period Tx. In other words, the calculation abnormality occurrence period Tx is the calculation result time Tin1 to Tin10 of Tin × s, the calculation result time Tout1 to Tout10 of Tout × s, and the calculation result time Tball1 to Tball10 of Tball × s.
 波形信号Sxの周波数スペクトルSsがピークを示す特定の周波数をfs1、fs2、fs3、…とすると(ピークは複数個発生することがある)、それぞれに対応する周期はTs1=1/fs1、Ts2=1/fs2、Ts3=1/fs3、… として計算される。計算異常発生周期Txの値が、周期Ts1、Ts2、Ts3、… とほぼ一致する場合には、該計算異常発生周期Txに該当する損傷を異常原因として診断し、これらの診断結果を尖り度Ksとともに表示する。具体的には、周期Ts1、Ts2、Ts3、…を中心として所定の時間幅を定め、計算異常発生周期Txの値が時間幅内にある場合に、該計算異常発生周期Txに該当する損傷を異常原因と診断する。
 なお、異常原因は複数存在することもある。例えば、Tin10及びTout8が異常周期Ts1、Ts2を中心とした所定の時間幅にあるときは、内輪及び外輪に損傷が発生していると診断する。
 波形信号Syの周波数スペクトルSiについても、前記同様にして異常原因を診断できる。
Assuming that specific frequencies at which the frequency spectrum Ss of the waveform signal Sx shows a peak are fs1, fs2, fs3,... (A plurality of peaks may occur), the corresponding periods are Ts1 = 1 / fs1, Ts2 = 1 / fs2, Ts3 = 1 / fs3,... When the value of the calculation abnormality occurrence period Tx substantially coincides with the periods Ts1, Ts2, Ts3,..., The damage corresponding to the calculation abnormality occurrence period Tx is diagnosed as an abnormality cause, and these diagnosis results are used as the kurtosis Ks. Display with Specifically, when a predetermined time width is determined around the period Ts1, Ts2, Ts3,... And the value of the calculation abnormality occurrence period Tx is within the time width, damage corresponding to the calculation abnormality occurrence period Tx is determined. Diagnose the cause of the abnormality.
There may be a plurality of abnormal causes. For example, when Tin 10 and Tout 8 are within a predetermined time width centered on the abnormal periods Ts1 and Ts2, it is diagnosed that the inner ring and the outer ring are damaged.
With respect to the frequency spectrum Si of the waveform signal Sy, the cause of the abnormality can be diagnosed in the same manner as described above.
 「実験例」
 図19(A)(B)に従来の手法で得られた振動波形を示し、図20(A)(B)(C)に前記第5実施形態の診断システムで得られた振動波形を示す。
"Experimental example"
FIGS. 19A and 19B show vibration waveforms obtained by the conventional method, and FIGS. 20A, 20B, and 20C show vibration waveforms obtained by the diagnostic system of the fifth embodiment.
 図19(A)は転がり軸受の交換前の振動波形を示し、(B)は交換後の振動波形を示す。交換前の軸受には、外輪と内輪にフレーキングが発生しており、転動体の一部にもフレーキングが発生していた。
 交換後の振動波形は、損傷が発生していない新品の転がり軸受に交換したものである。
 図19(A)(B)の振動波形では、交換前後に顕著な差異が見られず、従来の手法では軸受の良否を判定することができない。
FIG. 19A shows a vibration waveform before replacement of the rolling bearing, and FIG. 19B shows a vibration waveform after replacement. In the bearing before replacement, flaking occurred in the outer ring and the inner ring, and flaking also occurred in some of the rolling elements.
The vibration waveform after replacement is a replacement of a new rolling bearing with no damage.
In the vibration waveforms of FIGS. 19A and 19B, there is no significant difference before and after the replacement, and the conventional method cannot determine the quality of the bearing.
 図20は、図19の振動波形に対して前記第5実施形態を採用した場合の尖り度を示している。振動波形は交換前後で各4回測定し、それぞれの振動波形から尖り度を求めている。交換前では、
(1)スペクトル和による尖り度が26~43
(2)rms値による尖り度が20~39
(3)等価ピーク値による尖り度が20~40
であった。
 これに対して、交換後では、
(1)スペクトル和による尖り度が3~8
(2)rms値による尖り度が3~11
(3)等価ピーク値による尖り度が4~12
と大幅に低くなっており、軸受の状態を的確に判断できることが確認できた。
FIG. 20 shows the degree of kurtosis when the fifth embodiment is adopted for the vibration waveform of FIG. The vibration waveform is measured four times before and after the replacement, and the kurtosis is obtained from each vibration waveform. Before the exchange,
(1) Sharpness by spectral sum is 26 to 43
(2) Sharpness by rms value is 20 to 39
(3) Sharpness by equivalent peak value is 20-40
Met.
In contrast, after replacement,
(1) Sharpness by spectral sum is 3-8
(2) Sharpness by rms value is 3-11
(3) The kurtosis by the equivalent peak value is 4-12
It was confirmed that the bearing condition can be accurately determined.
 図21に、100rpmで回転する転がり軸受に第4実施形態の診断システムを適用した振動波形を示す。
 図21は、波形信号の周波数スペクトル演算手段76によって得られた周波数スペクトルSsの一例であり、fs1=6.5Hz、fs2=13.0Hzにピーク周波数が表れている。すなわち、周期Ts1=0.154s、Ts2=0.077s間隔で異常が現れていることを示唆している。一方、該転がり軸受では、転動体数Z=10、転動体直径d=6.35mm、ピッチ円径D=27.60mm、転動体と転送面との接触角α=9度であるから、外輪損傷時の異常発生周期としてTout=0.155sが得られる。これはTs1およびTs2の2倍とほぼ一致するから、該転がり軸受には外輪に損傷が発生しているものと判断できる。
FIG. 21 shows a vibration waveform in which the diagnosis system of the fourth embodiment is applied to a rolling bearing rotating at 100 rpm.
FIG. 21 is an example of the frequency spectrum Ss obtained by the frequency spectrum calculating means 76 of the waveform signal, and the peak frequencies appear at fs1 = 6.5 Hz and fs2 = 13.0 Hz. That is, it is suggested that an abnormality appears at intervals of the cycle Ts1 = 0.154 s and Ts2 = 0.077 s. On the other hand, in the rolling bearing, since the number of rolling elements Z = 10, the rolling element diameter d = 6.35 mm, the pitch circle diameter D = 27.60 mm, and the contact angle α = 9 degrees between the rolling elements and the transfer surface, Tout = 0.155 s is obtained as an abnormality occurrence period at the time of damage. Since this is almost equal to twice Ts1 and Ts2, it can be determined that the outer ring of the rolling bearing is damaged.

Claims (15)

  1.  回転機械設備における軸受の診断システムであって、
     前記軸受の固定部材に取り付けられる損傷発生検出用のセンサと、
     前記センサと接続した監視診断装置と、
     前記監視診断装置と接続し、異常発生状態を百分率で表示する診断通知手段と、
     を備え、
     前記監視診断装置は、
     前記センサで検出された計測データを記憶する記憶部と、
     前記記憶部で記憶された計測データに基づき、異常判定基準レベルを算出する基準レベル演算部と、
     前記軸受支持された回転軸の1回転時間または間欠動作で1回の該間欠動作時間を複数区間に等分割し、前記異常判定基準レベルと前記各区間の計測データとを比較して、区間毎に異常の有無を判定する判定部とを備えていることを特徴とする軸受の診断システム。
    A bearing diagnosis system for rotating machinery equipment,
    A sensor for detecting the occurrence of damage attached to a fixed member of the bearing;
    A monitoring and diagnosis device connected to the sensor;
    A diagnostic notification means for connecting with the monitoring diagnostic device and displaying an abnormal state in percentage;
    With
    The monitoring and diagnosis apparatus includes:
    A storage unit for storing measurement data detected by the sensor;
    A reference level calculation unit that calculates an abnormality determination reference level based on the measurement data stored in the storage unit;
    One rotation time or intermittent operation time of the rotating shaft supported by the bearing is equally divided into a plurality of sections, and the abnormality determination reference level is compared with the measurement data of each section, for each section. And a determination unit for determining whether there is an abnormality.
  2.  前記軸受支持された回転軸の1回転時間または1回の間欠動作時間は、百分率で表示するために100区間に分割している請求項1または請求項2に記載の軸受の診断システム。 The bearing diagnosis system according to claim 1 or 2, wherein one rotation time or one intermittent operation time of the rotating shaft supported by the bearing is divided into 100 sections in order to display the percentage.
  3.  前記監視診断装置の基準レベル演算部では、前記軸受支持された回転軸の1回転または1間欠動作毎に、前記異常判定基準レベルを前記記憶部で記憶した計測データの平均値の定数倍に設定している請求項1または請求項2に記載の軸受の診断システム。 In the reference level calculation unit of the monitoring and diagnosing device, the abnormality determination reference level is set to a constant multiple of the average value of the measurement data stored in the storage unit for each rotation or one intermittent operation of the rotating shaft supported by the bearing. The bearing diagnostic system according to claim 1 or claim 2.
  4.  前記監視診断装置の判定部は、異常が発生した区間の数である診断判定パラメータを算出する診断パラメータ演算部と、前記診断判定パラメータと予め定めた異常判定基準を比較して、異常の有無を判定する簡易診断判定部を備えている請求項1乃至請求項3のいずれか1項に記載の軸受の診断システム。 The determination unit of the monitoring diagnostic device compares a diagnosis parameter calculation unit that calculates a diagnosis determination parameter, which is the number of sections in which an abnormality has occurred, with the diagnosis determination parameter and a predetermined abnormality determination criterion to determine whether there is an abnormality. The bearing diagnosis system according to any one of claims 1 to 3, further comprising a simple diagnosis determination unit for determining.
  5.  前記監視診断装置の判定部は、異常判定された区間が2~10内の設定個数の連続した隣接区間である場合のみ異常区間とし、前記設定個数未満の区間の異常判定はノイズとして除去する異常発生区間連続判定部を備えている請求項1乃至請求項4のいずれか1項に記載の軸受の診断システム。 The determination unit of the monitoring / diagnostic apparatus sets an abnormal section only when a section in which abnormality is determined is a set number of consecutive adjacent sections within 2 to 10, and abnormality determination for sections less than the set number is an abnormality that is removed as noise. The bearing diagnosis system according to any one of claims 1 to 4, further comprising a generation section continuation determination unit.
  6.  複数回転分または複数間欠動作分の前記診断判定パラメータの平均化を行う平均化処理部を備えている請求項1乃至請求項5のいずれか1項に記載の軸受の診断システム。 The bearing diagnosis system according to any one of claims 1 to 5, further comprising an averaging processing unit that averages the diagnosis determination parameters for a plurality of rotations or a plurality of intermittent operations.
  7.  前記診断判定パラメータと比較する前記異常判定基準は、注意レベル、危険レベル等の複数レベルで設定している請求項1乃至請求項6のいずれか1項に記載の軸受の診断システム。 The bearing diagnosis system according to any one of claims 1 to 6, wherein the abnormality determination criterion to be compared with the diagnosis determination parameter is set at a plurality of levels such as a caution level and a danger level.
  8.  前記監視診断装置の判定部は、複数回転分または複数間欠動作分の異常判定結果テーブルの異常周期基準位置をずらして各区別の異常発生の判定結果の一致度を算出し、最も一致度が高くなる異常周期基準位置を検索して、前記異常周期基準位置から異常周期を自動で算出する同期検索処理部と、
     軸受機器情報及び/または回転数情報から演算され、異常原因毎に値が異なる計算異常発生周期または該計算異常発生周期の整数倍周期と、前記同期検索処理部で算出される異常周期とを比較し、前記計算異常発生周期または前記計算異常発生周期の整数倍周期と、前記異常周期の一致度が高い場合に、該計算異常発生周期に対応する原因による異常が前記軸受に発生していると診断する原因診断判定部を備えた請求項1乃至請求項7のいずれか1項に記載の軸受の診断システム。
    The determination unit of the monitoring / diagnosis device calculates the degree of coincidence of the determination results of occurrence of abnormalities for each distinction by shifting the abnormal cycle reference position of the abnormality determination result table for a plurality of rotations or a plurality of intermittent operations, and the highest degree of coincidence A synchronous search processing unit that searches for an abnormal cycle reference position and automatically calculates an abnormal cycle from the abnormal cycle reference position;
    Comparing a calculation abnormality occurrence cycle or an integer multiple of the calculation abnormality occurrence cycle, which is calculated from bearing device information and / or rotation speed information and has a different value for each cause of abnormality, and the abnormality cycle calculated by the synchronous search processing unit If the degree of coincidence between the calculation abnormality occurrence period or an integer multiple of the calculation abnormality occurrence period and the abnormality period is high, an abnormality caused by the cause corresponding to the calculation abnormality occurrence period occurs in the bearing. The bearing diagnosis system according to claim 1, further comprising a cause diagnosis determination unit for diagnosis.
  9.  回転機械設備における軸受の診断システムであって、
     前記軸受の固定部材に取り付けられる損傷発生検出用のセンサと、
     前記センサと接続した監視診断装置と、
     前記監視診断装置と接続し、診断結果を表示する診断通知手段と、
     を備え、
     前記監視診断装置は、
     前記センサで検出された信号波形を記憶する記憶部と、
     前記記憶部で記憶した信号波形の演算処理部を備え、
     前記演算処理部は、
     前記信号波形を軸受の回転速度に応じてjに分割する手段と、
     前記分割された分割区間毎に周波数スペクトルFjkを求める手段と、
     周波数スペクトルのうち所定の周波数範囲のスペクトル和Sjを求める手段と、
     前記スペクトル和Sjを時系列に並べた波形信号Sxを作成し、その波形信号Sxの周波数スペクトルSsを求める手段と、
     前記スペクトル波形Ssの尖り度Ksを求める手段を備え、
     前記尖り度Ksと前記尖り度Ksを求めたスペクトル波形を前記診断通知手段で表示することを特徴とする軸受の診断システム。
    A bearing diagnosis system for rotating machinery equipment,
    A sensor for detecting the occurrence of damage attached to a fixed member of the bearing;
    A monitoring and diagnosis device connected to the sensor;
    A diagnostic notification means for connecting to the monitoring diagnostic device and displaying a diagnostic result;
    With
    The monitoring and diagnosis apparatus includes:
    A storage unit for storing a signal waveform detected by the sensor;
    An arithmetic processing unit for the signal waveform stored in the storage unit;
    The arithmetic processing unit includes:
    Means for dividing the signal waveform into j according to the rotational speed of the bearing;
    Means for determining a frequency spectrum Fjk for each of the divided sections;
    Means for obtaining a spectrum sum Sj in a predetermined frequency range of the frequency spectrum;
    Creating a waveform signal Sx in which the spectrum sums Sj are arranged in time series, and obtaining a frequency spectrum Ss of the waveform signal Sx;
    Means for obtaining a kurtosis Ks of the spectral waveform Ss;
    A diagnostic system for a bearing, characterized in that the kurtosis Ks and a spectrum waveform obtained from the kurtosis Ks are displayed by the diagnostic notification means.
  10.  回転機械設備における軸受の診断システムであって、
     前記軸受の固定部材に取り付けられる損傷発生検出用のセンサと、
     前記センサと接続した監視診断装置と、
     前記監視診断装置と接続し、診断結果を表示する診断通知手段と、
     を備え、
     前記監視診断装置は、
     前記センサで検出された信号波形を記憶する記憶部と、
     前記記憶部で記憶した信号波形の演算処理部を備え、
     前記演算処理部は、
     前記信号波形にバンドパスフィルタを施す手段と、
     前記バンドパスフィルタ通過後の信号波形を軸受の回転速度に応じてjに分割する手段と、
     前記分割された分割区間毎に信号のrms値RMSj、あるいは等価ピーク値Pjを求める手段と、
     前記rms値RMSj、あるいは等価ピーク値Pjを時系列に並べた波形信号Syを作成し、その波形信号Syの周波数スペクトルSiを求める手段と、
     前記スペクトル波形Siの尖り度Kiを求める手段を備え、
     前記尖り度Kiと前記尖り度Kiを求めたスペクトル波形を前記診断通知手段で表示することを特徴とする軸受の診断システム。
    A bearing diagnosis system for rotating machinery equipment,
    A sensor for detecting the occurrence of damage attached to a fixed member of the bearing;
    A monitoring and diagnosis device connected to the sensor;
    A diagnostic notification means for connecting to the monitoring diagnostic device and displaying a diagnostic result;
    With
    The monitoring and diagnosis apparatus includes:
    A storage unit for storing a signal waveform detected by the sensor;
    An arithmetic processing unit for the signal waveform stored in the storage unit;
    The arithmetic processing unit includes:
    Means for applying a bandpass filter to the signal waveform;
    Means for dividing the signal waveform after passing through the band-pass filter into j according to the rotational speed of the bearing;
    Means for determining the rms value RMSj or equivalent peak value Pj of the signal for each of the divided sections;
    Means for generating a waveform signal Sy in which the rms value RMSj or equivalent peak value Pj is arranged in time series, and obtaining a frequency spectrum Si of the waveform signal Sy;
    Means for obtaining a kurtosis degree Ki of the spectral waveform Si;
    The bearing diagnosis system, wherein the kurtosis degree Ki and the spectrum waveform obtained from the kurtosis degree Ki are displayed by the diagnosis notification means.
  11.  前記監視診断装置は判定部を備え、
     前記判定部は、軸受機器情報及び回転数情報から演算され、異常原因毎に値が異なる計算異常発生周期または該計算異常発生周期の整数倍周期と、前記周波数スペクトルSsを求める手段または前記周波数スペクトルSiを求める手段によって算出されるピーク周期とを比較し、前期計算異常発生周期または前記計算異常発生周期の整数倍周期と、前記ピーク周期の一致度が高い場合に、該計算異常発生周期に対応する原因による異常が前記軸受に発生していると診断している請求項9または請求項10に記載の軸受の診断システム。
    The monitoring and diagnosis apparatus includes a determination unit,
    The determination unit is a unit that calculates a calculation abnormality occurrence period or an integer multiple of the calculation abnormality occurrence period that is calculated from the bearing device information and the rotation speed information and has different values for each abnormality cause, or the frequency spectrum Ss. Compares the peak period calculated by means for obtaining Si, and corresponds to the calculation abnormality occurrence period when the degree of coincidence between the peak calculation period and an integer multiple of the calculation abnormality generation period and the peak period is high The bearing diagnosis system according to claim 9 or 10, wherein an abnormality due to the cause of occurrence is diagnosed in the bearing.
  12.  前記軸受支持された回転機械設備の回転軸の回転数は300rpm以下であり、
     前記軸受は転がり軸受またはすべり軸受である請求項1乃至請求項11に記載の軸受の診断システム。
    The rotational speed of the rotating shaft of the rotating machine supported by the bearing is 300 rpm or less,
    The bearing diagnosis system according to claim 1, wherein the bearing is a rolling bearing or a sliding bearing.
  13.  前記センサは、振動センサ、変位センサ、アコースティックエミッションセンサ、超音波センサ、音検出センサのいずれかである請求項1乃至請求項12のいずれか1項に記載の軸受の診断システム。 The bearing diagnostic system according to any one of claims 1 to 12, wherein the sensor is any one of a vibration sensor, a displacement sensor, an acoustic emission sensor, an ultrasonic sensor, and a sound detection sensor.
  14.  前記異常原因は、転がり軸受の場合、内輪損傷、外輪損傷、転動体損傷の少なくとも一つであり、
     すべり軸受の場合、1回転または1間欠動作に1回または複数回発生する前記回転軸の異常な金属接触である請求項8または請求項11に記載の軸受の診断システム。
    In the case of a rolling bearing, the cause of the abnormality is at least one of inner ring damage, outer ring damage, and rolling element damage,
    The bearing diagnostic system according to claim 8 or 11, wherein in the case of a slide bearing, the abnormal metal contact of the rotating shaft that occurs once or a plurality of times in one rotation or one intermittent operation.
  15.  前記センサと監視診断装置と診断通知手段を組み合わせた可動型、または前記監視診断装置に対して前記診断通知手段は無線接続して携帯型としている請求項1乃至請求項14のいずれか1項に記載の軸受の診断システム。 15. The movable type in which the sensor, the monitoring diagnostic device, and the diagnostic notification unit are combined, or the diagnostic notification unit is wirelessly connected to the monitoring diagnostic device and is portable. The described bearing diagnostic system.
PCT/JP2009/051633 2008-01-30 2009-01-30 Diagnostic system for bearing WO2009096551A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020107018650A KR101429952B1 (en) 2008-01-30 2009-01-30 Diagnostic system for bearing
JP2009551619A JP4874406B2 (en) 2008-01-30 2009-01-30 Bearing diagnosis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008019747 2008-01-30
JP2008-019747 2008-01-30

Publications (1)

Publication Number Publication Date
WO2009096551A1 true WO2009096551A1 (en) 2009-08-06

Family

ID=40912894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051633 WO2009096551A1 (en) 2008-01-30 2009-01-30 Diagnostic system for bearing

Country Status (3)

Country Link
JP (1) JP4874406B2 (en)
KR (1) KR101429952B1 (en)
WO (1) WO2009096551A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819093A (en) * 2010-03-31 2010-09-01 桂林电子科技大学 Fault diagnosis device for spindle bearing of roadheader cutting head and use method thereof
JP2012078288A (en) * 2010-10-05 2012-04-19 Asahi Kasei Engineering Kk Method for diagnosing roller bearing
EP2543977A1 (en) * 2010-03-03 2013-01-09 Asahi Kasei Engineering Corporation Method and apparatus for diagnosing bushing
WO2013053989A1 (en) * 2011-10-13 2013-04-18 Moventas Gears Oy A method and a system for the purpose of condition monitoring of gearboxes
JP2015105913A (en) * 2013-12-02 2015-06-08 上銀科技股▲分▼有限公司 Method of checking smoothness of rolling motion of ball screw
WO2015087732A1 (en) * 2013-12-12 2015-06-18 Ntn株式会社 Method and system for inspecting rotary machine component by using portal terminal
JP2015114214A (en) * 2013-12-12 2015-06-22 Ntn株式会社 Mobile terminal-utilizing checkup system, and checkup method, for rotary machine components
JP2015114224A (en) * 2013-12-12 2015-06-22 Ntn株式会社 Vibration inspection system using portable terminal, and server thereof
WO2017073160A1 (en) * 2015-10-28 2017-05-04 株式会社神戸製鋼所 Rotating machine abnormality detection device, rotating machine abnormality detection method, and rotating machine
JP2017166960A (en) * 2016-03-16 2017-09-21 中国電力株式会社 Measurement diagnostic apparatus and measurement diagnostic method
US20170297199A1 (en) * 2016-04-18 2017-10-19 Toyota Jidosha Kabushiki Kaisha Abnormality determining device and abnormality determining method
JP2018024086A (en) * 2016-07-29 2018-02-15 オークマ株式会社 Information measuring device
WO2018190216A1 (en) * 2017-04-13 2018-10-18 Ntn株式会社 State monitoring device, state monitoring system, and state monitoring method
JP2018179977A (en) * 2017-04-13 2018-11-15 Ntn株式会社 State monitoring device, state monitoring system and state monitoring method
JP2019027860A (en) * 2017-07-27 2019-02-21 日本精工株式会社 System and method for performing abnormality diagnosis on rotary machine facility
DE112017005650T5 (en) 2016-12-15 2019-09-12 Mitsubishi Electric Corporation ANOMALY DIAGNOSIS DEVICE FOR POWER TRANSFER MECHANISM AND ANOMALY DIAGNOSTIC PROCESS FOR POWER TRANSMISSION MECHANISM
JP2020144072A (en) * 2019-03-08 2020-09-10 株式会社日立製作所 State monitoring system and state monitoring method of rolling bearing
JPWO2021070243A1 (en) * 2019-10-08 2021-04-15
CN113092111A (en) * 2020-01-09 2021-07-09 珠海格力电器股份有限公司 Method and system for detecting wear of gas bearing
JP2021173572A (en) * 2020-04-22 2021-11-01 富士通株式会社 Abnormality diagnosis program, information processing device, and abnormality diagnosis method
US11441940B2 (en) 2017-04-13 2022-09-13 Ntn Corporation Condition monitoring apparatus, condition monitoring system, and condition monitoring method
CN115041714A (en) * 2022-06-19 2022-09-13 南京中科煜宸激光技术有限公司 Rotating shaft health monitoring device and method for powder-laying type metal additive manufacturing equipment
WO2023137600A1 (en) * 2022-01-18 2023-07-27 广州工商学院 Variable-speed fault diagnosis apparatus for rolling bearing of high-speed locomotive
JP7552504B2 (en) 2021-05-28 2024-09-18 日本精工株式会社 Bearing abnormality diagnosis device, bearing unit, bearing abnormality diagnosis method, and program

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290928B1 (en) * 2012-04-26 2013-07-29 한양대학교 산학협력단 Equipment and method for diagnosing malfunction using sound quality parameter
KR101543382B1 (en) * 2015-02-03 2015-08-11 엘아이지넥스원 주식회사 apparatus for detecting abnormal status of bearing applied to radar
KR101543383B1 (en) * 2015-02-03 2015-08-11 엘아이지넥스원 주식회사 Method for detecting abnormal status of bearing applied to radar USING SENSOR
KR101667164B1 (en) 2015-10-02 2016-10-17 경북대학교 산학협력단 Rotor speed-based bearing fault diagnosis method
KR101786228B1 (en) * 2015-12-01 2017-10-18 현대자동차주식회사 Failure dignosis method for vehicle
KR101977761B1 (en) * 2017-05-24 2019-05-13 주식회사 엠앤디 The method of monitoring unbalance of a rotating machinery and unbalence monitoring system
TWM552594U (en) * 2017-07-04 2017-12-01 Buffalo Machinery Company Ltd Bearing monitoring device
JP2020041814A (en) 2018-09-06 2020-03-19 株式会社東芝 Detection system, detection method, and server device
WO2020209361A1 (en) * 2019-04-12 2020-10-15 株式会社サタケ Operation monitoring system for sieving device
KR102221051B1 (en) 2020-06-09 2021-02-26 (주)세종오토메이션 Intelligent Smart Motor Diagnosis/Control System Based on Dual Communication Network

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245054A (en) * 1990-02-22 1991-10-31 Koyo Seiko Co Ltd Abnormality diagnosing apparatus for oscillating bearing
JPH0450731A (en) * 1990-06-19 1992-02-19 Toshiba Corp Rotary machine fault diagnostic system
JPH0658849A (en) * 1992-08-07 1994-03-04 Nippon Seiko Kk Vibration inspecting apparatus
JPH06235682A (en) * 1993-02-09 1994-08-23 Hitachi Ltd Method and equipment for detecting abnormality in sliding state
JPH0877683A (en) * 1994-09-07 1996-03-22 Internatl Business Mach Corp <Ibm> Inspecting device for rotating device and method of inspecting rotating device
JPH09113350A (en) * 1995-10-13 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for predicting average level of background noise
JPH1026580A (en) * 1996-05-08 1998-01-27 Nippon Steel Corp Method and device for diagnosing speed-change-type rotary mechanical equipment
JPH11271181A (en) * 1998-01-22 1999-10-05 Nippon Steel Corp Method and device for diagnosing failure in rolling bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245054A (en) * 1990-02-22 1991-10-31 Koyo Seiko Co Ltd Abnormality diagnosing apparatus for oscillating bearing
JPH0450731A (en) * 1990-06-19 1992-02-19 Toshiba Corp Rotary machine fault diagnostic system
JPH0658849A (en) * 1992-08-07 1994-03-04 Nippon Seiko Kk Vibration inspecting apparatus
JPH06235682A (en) * 1993-02-09 1994-08-23 Hitachi Ltd Method and equipment for detecting abnormality in sliding state
JPH0877683A (en) * 1994-09-07 1996-03-22 Internatl Business Mach Corp <Ibm> Inspecting device for rotating device and method of inspecting rotating device
JPH09113350A (en) * 1995-10-13 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for predicting average level of background noise
JPH1026580A (en) * 1996-05-08 1998-01-27 Nippon Steel Corp Method and device for diagnosing speed-change-type rotary mechanical equipment
JPH11271181A (en) * 1998-01-22 1999-10-05 Nippon Steel Corp Method and device for diagnosing failure in rolling bearing

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048267A (en) * 2010-03-03 2016-04-07 旭化成エンジニアリング株式会社 Diagnosing method and diagnosing apparatus for slide bearing
EP2543977A1 (en) * 2010-03-03 2013-01-09 Asahi Kasei Engineering Corporation Method and apparatus for diagnosing bushing
EP2543977A4 (en) * 2010-03-03 2014-08-27 Asahi Kasei Engineering Corp Method and apparatus for diagnosing bushing
KR101497781B1 (en) * 2010-03-03 2015-03-02 아사히 가세이 엔지니어링 가부시키가이샤 Method and apparatus for diagnosing bushing
US9588015B2 (en) 2010-03-03 2017-03-07 Asahi Kasei Engineering Corporation Diagnostic method and diagnostic device for a slide bearing
CN101819093A (en) * 2010-03-31 2010-09-01 桂林电子科技大学 Fault diagnosis device for spindle bearing of roadheader cutting head and use method thereof
JP2012078288A (en) * 2010-10-05 2012-04-19 Asahi Kasei Engineering Kk Method for diagnosing roller bearing
WO2013053989A1 (en) * 2011-10-13 2013-04-18 Moventas Gears Oy A method and a system for the purpose of condition monitoring of gearboxes
US10436672B2 (en) 2011-10-13 2019-10-08 Moventas Gears Oy Method and a system for the purpose of condition monitoring of gearboxes
JP2015105913A (en) * 2013-12-02 2015-06-08 上銀科技股▲分▼有限公司 Method of checking smoothness of rolling motion of ball screw
JP2015114224A (en) * 2013-12-12 2015-06-22 Ntn株式会社 Vibration inspection system using portable terminal, and server thereof
CN105829857A (en) * 2013-12-12 2016-08-03 Ntn株式会社 Method and system for inspecting rotary machine component by using portal terminal
JP2015114214A (en) * 2013-12-12 2015-06-22 Ntn株式会社 Mobile terminal-utilizing checkup system, and checkup method, for rotary machine components
WO2015087732A1 (en) * 2013-12-12 2015-06-18 Ntn株式会社 Method and system for inspecting rotary machine component by using portal terminal
CN108139367A (en) * 2015-10-28 2018-06-08 株式会社神户制钢所 The abnormal detector of whirler, the method for detecting abnormality of whirler and whirler
JP2017083284A (en) * 2015-10-28 2017-05-18 株式会社神戸製鋼所 Abnormality detector for rotary machine, method for detecting abnormality in rotary machine, and rotary machine
WO2017073160A1 (en) * 2015-10-28 2017-05-04 株式会社神戸製鋼所 Rotating machine abnormality detection device, rotating machine abnormality detection method, and rotating machine
CN108139367B (en) * 2015-10-28 2020-11-13 株式会社神户制钢所 Abnormality detection device for rotary machine, abnormality detection method for rotary machine, and rotary machine
JP2017166960A (en) * 2016-03-16 2017-09-21 中国電力株式会社 Measurement diagnostic apparatus and measurement diagnostic method
US20170297199A1 (en) * 2016-04-18 2017-10-19 Toyota Jidosha Kabushiki Kaisha Abnormality determining device and abnormality determining method
JP2017192990A (en) * 2016-04-18 2017-10-26 トヨタ自動車株式会社 Abnormality determination device and abnormality determination method
US10335948B2 (en) 2016-04-18 2019-07-02 Toyota Jidosha Kabushiki Kaisha Abnormality determining device and abnormality determining method
JP2018024086A (en) * 2016-07-29 2018-02-15 オークマ株式会社 Information measuring device
US10883895B2 (en) 2016-12-15 2021-01-05 Mitsubishi Electric Corporation Abnormality diagnostic device for power transmission mechanism and abnormality diagnostic method for power transmission mechanism
DE112017005650T5 (en) 2016-12-15 2019-09-12 Mitsubishi Electric Corporation ANOMALY DIAGNOSIS DEVICE FOR POWER TRANSFER MECHANISM AND ANOMALY DIAGNOSTIC PROCESS FOR POWER TRANSMISSION MECHANISM
WO2018190216A1 (en) * 2017-04-13 2018-10-18 Ntn株式会社 State monitoring device, state monitoring system, and state monitoring method
US11441940B2 (en) 2017-04-13 2022-09-13 Ntn Corporation Condition monitoring apparatus, condition monitoring system, and condition monitoring method
JP2018179977A (en) * 2017-04-13 2018-11-15 Ntn株式会社 State monitoring device, state monitoring system and state monitoring method
JP2019027860A (en) * 2017-07-27 2019-02-21 日本精工株式会社 System and method for performing abnormality diagnosis on rotary machine facility
WO2020183797A1 (en) * 2019-03-08 2020-09-17 株式会社日立製作所 Rolling bearing status monitoring system and status monitoring method
JP2020144072A (en) * 2019-03-08 2020-09-10 株式会社日立製作所 State monitoring system and state monitoring method of rolling bearing
JP7155049B2 (en) 2019-03-08 2022-10-18 株式会社日立製作所 Rolling Bearing Condition Monitoring System and Condition Monitoring Method
JPWO2021070243A1 (en) * 2019-10-08 2021-04-15
CN114174819A (en) * 2019-10-08 2022-03-11 三菱电机工程技术株式会社 State monitoring device, state monitoring system, and state monitoring method
WO2021070243A1 (en) * 2019-10-08 2021-04-15 三菱電機エンジニアリング株式会社 State monitoring device, state monitoring system, and state monitoring method
JP7330283B2 (en) 2019-10-08 2023-08-21 三菱電機エンジニアリング株式会社 Condition monitoring device, condition monitoring system and condition monitoring method
CN114174819B (en) * 2019-10-08 2024-04-16 三菱电机工程技术株式会社 State monitoring device, state monitoring system, and state monitoring method
CN113092111B (en) * 2020-01-09 2022-02-15 珠海格力电器股份有限公司 Method and system for detecting wear of gas bearing
CN113092111A (en) * 2020-01-09 2021-07-09 珠海格力电器股份有限公司 Method and system for detecting wear of gas bearing
JP2021173572A (en) * 2020-04-22 2021-11-01 富士通株式会社 Abnormality diagnosis program, information processing device, and abnormality diagnosis method
JP7552504B2 (en) 2021-05-28 2024-09-18 日本精工株式会社 Bearing abnormality diagnosis device, bearing unit, bearing abnormality diagnosis method, and program
WO2023137600A1 (en) * 2022-01-18 2023-07-27 广州工商学院 Variable-speed fault diagnosis apparatus for rolling bearing of high-speed locomotive
CN115041714A (en) * 2022-06-19 2022-09-13 南京中科煜宸激光技术有限公司 Rotating shaft health monitoring device and method for powder-laying type metal additive manufacturing equipment

Also Published As

Publication number Publication date
JP4874406B2 (en) 2012-02-15
KR101429952B1 (en) 2014-08-13
KR20100113592A (en) 2010-10-21
JPWO2009096551A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP4874406B2 (en) Bearing diagnosis system
JP3609982B2 (en) Fault diagnosis method and apparatus
JP5460160B2 (en) Equipment diagnostic equipment
JP5293300B2 (en) Vibration monitoring device and vibration monitoring method for rotating machine
JP4120099B2 (en) Bearing abnormality diagnosis method and abnormality diagnosis device
WO2002073150A9 (en) System and method for analyzing vibration signals
JP6714806B2 (en) Status monitoring device and status monitoring method
JP2018155494A (en) Bearing abnormality diagnosis system and bearing abnormality diagnosis method
JP2007108189A (en) Method and device for diagnosing abnormality in rotor
JP2009109350A (en) Monitoring and diagnosing system for rotary machine apparatus
JP2012242336A (en) Bearing diagnosis method and system
KR102068077B1 (en) A Diagnosis Apparatus For Rotating Machinery Using Complex Signals
KR20190081933A (en) Method for sensing and diagnosing abnormality of manufacture equipment
KR20110122483A (en) Built-in vibration monitor having order spectrum analysis function and fault diagnosis method of variable rotating speed machine using the monitor
CN116304848B (en) Rolling bearing fault diagnosis system and method
JP2008058191A (en) Method of diagnosing rotary machine, program therefor, and diagnosing device therefor
KR20140072964A (en) State Management System For Machine Equipment
JP6897064B2 (en) Bearing abnormality diagnosis method and diagnosis system
WO2018088564A1 (en) Bearing abnormality diagnostic method and diagnostic system
JP2011180082A (en) Diagnostic method and device of sliding bearing
JP6639266B2 (en) Abnormality diagnosis device and abnormality diagnosis method
JP4312477B2 (en) Diagnosis method, diagnosis apparatus and program for rotating machine
KR20070105288A (en) Bearing fault diagnosis for diesel engine generator using labview
JP3739681B2 (en) Vibration monitoring method and apparatus
JP7533323B2 (en) Lubrication failure determination device, lubrication failure determination method, and program for rolling bearings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551619

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107018650

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09706467

Country of ref document: EP

Kind code of ref document: A1