Nothing Special   »   [go: up one dir, main page]

WO2009096347A1 - Ultrasonic wave generating device, and apparatus having the device - Google Patents

Ultrasonic wave generating device, and apparatus having the device Download PDF

Info

Publication number
WO2009096347A1
WO2009096347A1 PCT/JP2009/051153 JP2009051153W WO2009096347A1 WO 2009096347 A1 WO2009096347 A1 WO 2009096347A1 JP 2009051153 W JP2009051153 W JP 2009051153W WO 2009096347 A1 WO2009096347 A1 WO 2009096347A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
ultrasonic
ultrasonic generator
vibration
vibrator
Prior art date
Application number
PCT/JP2009/051153
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Fujiwara
Sota Komae
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2009551503A priority Critical patent/JPWO2009096347A1/en
Publication of WO2009096347A1 publication Critical patent/WO2009096347A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means

Definitions

  • the present invention relates to an ultrasonic generator that generates ultrasonic waves, and more particularly to an ultrasonic generator that can radiate ultrasonic waves having a strong sound pressure level over a wide range and equipment equipped with the ultrasonic generator.
  • ultrasonic generators using piezoelectric elements such as PZT (lead zirconate titanate).
  • PZT lead zirconate titanate
  • such an ultrasonic generator oscillates a piezoelectric element by applying a voltage to the piezoelectric element, and oscillates a specific frequency by using a resonance frequency of vibration in a certain direction. It has become. Therefore, the sound pressure level depends on the input voltage for driving the piezoelectric element.
  • the frequency generated by the piezoelectric element generally has an ultrasonic range of 18 kHz or higher, which is different from the frequency of the audible range, and the sound pressure level is extremely attenuated when radiated in the air. Become.
  • a resonance structure (horn structure) is attached to the surface vibration direction of the piezoelectric element, and means for matching the frequency of the surface vibration of the piezoelectric element with the frequency of the resonance structure is provided.
  • a transducer unit that generates ultrasonic vibrations and a horn that amplifies the vibrations of the transducer unit and the combined length of the transducer unit and the horn are It is an ultrasonic generator that is approximately 1 ⁇ 2, and a plurality of horns are attached in parallel to the transducer part, and the output side of each horn is connected by a resonance plate ”
  • Patent Document 1 Has been proposed (see, for example, Patent Document 1).
  • An electrostatic precipitator that radiates sound waves to at least a discharge space between the discharge electrode and the counter electrode has been proposed (see, for example, Patent Document 2). ).
  • This electric dust collector is adapted to enhance dust collection such as dust by corona discharge by adding application of sound radiation.
  • Japanese Patent Laid-Open No. 2001-70881 page 3, FIG. 1
  • Japanese Patent No. 3700685 5th page, Fig. 2
  • the sound pressure level amplified by the horn structure remains the same as the ultrasonic wave, and the directivity sharpness that is the original characteristic of the ultrasonic wave is not changed.
  • the sound emission to the front surface of the ultrasonic element with a very narrow angle is generated strongly, and when it radiates in the air, it will be extremely attenuated. Therefore, there is a problem that ultrasonic waves having a strong sound pressure level cannot be radiated over a wide range, and such a request cannot be met.
  • the present invention has been made to solve the above-described problems, and an ultrasonic generator capable of radiating an ultrasonic wave having a strong sound pressure level (especially 140 dB or more) over a wide range and an equipment having the same Equipment is provided.
  • An ultrasonic generator according to the present invention is flexibly vibrated by resonating with an ultrasonic vibrator provided with a piezoelectric element, and attached to a tip portion of the ultrasonic vibrator and resonating with the vibration of the ultrasonic vibrator. And a diaphragm that generates ultrasonic waves.
  • the equipment according to the present invention includes the above-described ultrasonic generator and a housing on which the ultrasonic generator is mounted.
  • the ultrasonic generator according to the present invention since the diaphragm that “bends and vibrates” is provided, ultrasonic waves having a strong sound pressure level can be radiated in a wide range. Moreover, since the equipment according to the present invention includes the ultrasonic generator having such an effect, it has the same effect.
  • FIG. 3 is an explanatory diagram for explaining an example of an ultrasonic generator according to the first embodiment.
  • FIG. 6 is an explanatory diagram for explaining another example of the ultrasonic generator according to the first embodiment. It is explanatory drawing for demonstrating the ultrasonic radiation in the state which installed the reflective diaphragm. It is explanatory drawing for demonstrating the ultrasonic radiation in the state which installed the several reflection diaphragm. It is description for demonstrating the ultrasonic radiation in the state which installed the diaphragm (including a reflective diaphragm) which has a curved surface shape. It is explanatory drawing for demonstrating the state which bent the terminal part of the vibrator
  • FIG. 1 is an explanatory diagram for explaining an example of the ultrasonic generator 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the configuration of the ultrasonic generator 100 and “flexural vibration” that is a characteristic item of the ultrasonic generator 100 will be described.
  • FIG. 1A is a plan view showing the state of the ultrasonic generator 100 viewed from above
  • FIG. 1B is a schematic cross-sectional view showing the longitudinal cross-sectional configuration of the ultrasonic generator 100.
  • the relationship of the size of each component may be different from the actual one.
  • the ultrasonic generator 100 applies a pulse voltage to an ultrasonic vibrator composed of a piezoelectric element such as PZT (lead zirconate titanate) and oscillates the vibrator to generate ultrasonic waves.
  • the ultrasonic generator 100 includes a vibrator (ultrasonic vibrator) 10, a horn 11, and a diaphragm 12.
  • the vibrator 10 is provided with a piezoelectric element 10a, and is oscillated by applying a pulse voltage via a positive electrode terminal and a negative electrode terminal (not shown). That is, the vibrator 10 has a function of oscillating a sound wave (ultrasonic wave) in a predetermined frequency range (generally around 40 kHz) when a pulse voltage is applied.
  • the horn 11 is configured such that both end surfaces are opened and an acoustic path (a path for amplifying an ultrasonic band acoustic signal) is formed therein, and is attached between the vibrator 10 and the diaphragm 12. ing.
  • the horn 11 is preferably formed in a truncated cone shape and is gradually reduced in diameter from the vibrator 10 side toward the diaphragm 12 side.
  • the diaphragm 12 is fixed so as to block the other end of the horn 11 (the end opposite to the one end where the vibrator 10 is disposed) and resonates with the oscillation (vibration) of the vibrator 10. It has a function to generate ultrasonic waves that are resonance waves.
  • the ultrasonic waves are generated from both surfaces of the diaphragm 12 (the surface on the horn 11 side (the surface on which the vibrator 10 is installed when the horn 11 is not provided) and the opposite surface thereof).
  • the diaphragm 12 is fixed to an “antinode” portion of an ultrasonic signal (oscillation mode wave line A 1 inside the vibrator 10) transmitted from the vibrator 10.
  • the diaphragm 12 performs “flexural vibration”. That is, the diaphragm 12 vibrates in the “lattice mode” determined by the natural frequency of the plate itself.
  • the diaphragm 12 has a grid-like broken line portion as “node (sparse portion in generated ultrasonic wave)” and a portion other than the broken line as “antinode (generated). "Dense part in the ultrasonic wave”) is "flexible vibration".
  • the vibration frequency of the vibration mode of the diaphragm 12 is used so as to coincide with the oscillation frequency of the vibrator 10.
  • the diaphragm 12 is fixed to the tip of the horn 11, and an ultrasonic signal (wave line A 1 ) transmitted from the vibrator 10 and propagated through the horn 11 propagates. Since the vibration frequency of the vibration mode of the diaphragm 12 coincides with the oscillation frequency of the vibrator 10, it is vibrated (resonated) by the propagated ultrasonic signal (dashed line B 1 ). At this time, when the diaphragm 12 “bends and vibrates”, an ultrasonic wave is generated and radiated to both sides of the diaphragm 12.
  • size of the diaphragm 12 can be determined by the following calculation formula (1), and a desired dimension can be designed.
  • ⁇ 2 ⁇ Cph / f ⁇ * 1/2
  • represents the wavelength
  • Cp represents the intrinsic constant of the plate material constituting the diaphragm 12
  • h represents the thickness of the plate material constituting the diaphragm 12
  • f represents the frequency.
  • Cp is a constant specific to the material constituting the diaphragm 12, and can be calculated using the Young's modulus, Poisson's ratio, or the like of the material.
  • the length L 1 of one side of the diaphragm 12 necessary for generating the “lattice mode” can be determined by the following calculation formula (2).
  • L 1 (N 1 ⁇ 0.5) * ⁇ / 2 Formula (2)
  • N 1 represents the number (even values) of “node” lines appearing on the diaphragm 12. That is, if the length L 1 of one side of the diaphragm 12 is set to the relationship represented by the expression (2), the mode shape at the time of the flexural vibration of the diaphragm 12 can be set to “lattice mode”.
  • the diaphragm 12 can vibrate at a specific frequency equivalent to the ultrasonic signal transmitted from the vibrator 10. Since the frequency of the diaphragm 12 by this specific frequency is radiated from the entire surface of the diaphragm 12, a powerful sound having a frequency in a specific ultrasonic band from a wide area corresponding to the size of the diaphragm 12 is obtained. (140 dB or more) is uniformly emitted in the air (30 cm or more along the central axis of the vibrator 10).
  • FIG. 1 shows an example in which the horn 11 is provided, the diaphragm 12 may be fixed to the tip of the vibrator 10.
  • FIG. 2 is an explanatory diagram for explaining another example of the ultrasonic generator 100a according to Embodiment 1 of the present invention. Based on FIG. 2, the structure of the ultrasonic generator 100a and “flexural vibration” which is a characteristic item of the ultrasonic generator 100a will be described.
  • FIG. 2A is a plan view showing the state of the ultrasonic generator 100a viewed from above
  • FIG. 2B is a schematic cross-sectional view showing the longitudinal cross-sectional configuration of the ultrasonic generator 100a.
  • FIG. 2 differences from the ultrasonic generator 100 according to FIG. 1 will be mainly described, and the same parts as those of the ultrasonic generator 100 will be denoted by the same reference numerals and description thereof will be omitted. .
  • the diaphragm 12a is fixed so as to block the other end of the horn 11 (the end opposite to the end where the vibrator 10 is disposed) and resonates with the oscillation (vibration) of the vibrator 10. It has a function to generate ultrasonic waves that are resonance waves.
  • the ultrasonic waves are generated from both surfaces of the diaphragm 12a (the surface on the horn 11 side (surface on the lower side of the paper) and the opposite surface (surface on the upper side of the paper).
  • the diaphragm 12a is fixed to a portion where an “antinode” of an ultrasonic signal transmitted from the vibrator 10 (oscillation mode inside the vibrator 10: wave line A 2 ) occurs.
  • the diaphragm 12 a performs “flexural vibration” in the same manner as the diaphragm 12. However, the diaphragm 12a does not vibrate in the “lattice mode” but in the “parallel stripe mode” determined by the natural frequency of the plate itself.
  • the diaphragm 12a has a broken line portion that is a parallel stripe as “node (sparse portion in generated ultrasonic wave)” and a portion other than the broken line as “antinode (generated). "Dense part in the ultrasonic wave”) is "flexible vibration".
  • the vibration frequency of the vibration mode of the diaphragm 12a is used so as to coincide with the oscillation frequency of the vibrator 10.
  • the diaphragm 12a is fixed to the tip of the horn 11, and an ultrasonic signal (wave line A 2 ) transmitted from the vibrator 10 and propagated through the horn 11 propagates. Since the vibration frequency of the vibration mode of the vibration plate 12a coincides with the oscillation frequency of the vibrator 10, it is excited (resonated) by the propagated ultrasonic signal (dashed line B 2 ). At this time, when the vibration plate 12a “bends and vibrates”, an ultrasonic wave is generated and radiated to both surfaces of the vibration plate 12a.
  • the diaphragm 12a can vibrate at a specific frequency equivalent to the ultrasonic signal transmitted from the vibrator 10. Since the frequency of the diaphragm 12a with this specific frequency is radiated from the entire surface of the diaphragm 12a, a powerful sound having a frequency in a specific ultrasonic band from a wide area corresponding to the size of the diaphragm 12a. (140 dB or more) is uniformly emitted in the air (30 cm or more along the central axis of the vibrator 10). 2 shows an example in which the horn 11 is provided, but the diaphragm 12a may be fixed to the vibrator 10.
  • FIG. 3 is an explanatory diagram for explaining ultrasonic radiation in a state where the reflection diaphragm 22 is installed. Based on FIG. 3, the radiation of ultrasonic waves in a state where the reflection diaphragm 22 is installed in the ultrasonic generator 100 or the ultrasonic generator 100a will be described. As described above, in the ultrasonic generator 100 and the ultrasonic generator 100a, strong ultrasonic waves are uniformly emitted in the air from both surfaces of the diaphragm 12 and the diaphragm 12a.
  • the reflection diaphragm 22 that performs “flexural vibration” is disposed to face the diaphragm 12 at a predetermined interval (distance K calculated by the calculation formula (3) described below), and the diaphragm 12 and the diaphragm 12a.
  • the ultrasonic wave radiated from is not attenuated.
  • the state where the reflection diaphragm 22 is installed in the ultrasonic generator 100 will be described as an example.
  • the diaphragm 12 is fixed to the portion where the “antinode” of the ultrasonic signal transmitted from the vibrator 10 is generated as described above, and the reflection diaphragm 22 is “node” of the ultrasonic signal transmitted from the vibrator 10. ”Is fixed to the portion where“
  • the diaphragm 12 fixed to the tip of the horn 11 (the part where the “antinode” occurs), which is the place where the resonance frequency is the strongest, and the reflective diaphragm 22 fixed to the other part (the part where the “node” occurs) Is used to repeatedly reflect ultrasonic waves between the two.
  • the reflection diaphragm 22 is installed on the rear surface of the diaphragm 12 as an example. Therefore, the front surface of the diaphragm 12 is an ultrasonic radiation area, and the area between the diaphragm 12 and the reflection diaphragm 22 is an ultrasonic wave generation area.
  • the ultrasonic wave is repeatedly radiated / reflected between the diaphragm 12 and the reflection diaphragm 22, so that the ultrasonic waves having a plurality of sharp directivities are formed between the diaphragm 12 and the reflection diaphragm 22.
  • Signals (arrow C and arrow D) are generated, and it is possible to have a “sound wall” due to ultrasonic waves that repeat dense and dense waves.
  • FIG. 3 shows an example in which the reflection diaphragm 22 is fixed by the fixing member 14. In this case, as long as the fixing member 14 is fixed to the portion where the “node” occurs, the reflection diaphragm 22 may not be fixed to the portion where the “node” occurs.
  • the predetermined interval between the diaphragm 12 and the reflection diaphragm 22 can be determined by a relationship satisfying the following calculation formula (3).
  • K ( ⁇ s / 2) * N 2 Formula (3)
  • K represents a predetermined interval, that is, distance between the diaphragm 12 and the reflection diaphragm 22 and the reflection diaphragm 22
  • ⁇ s represents the wavelength of the frequency generated in the diaphragm 12
  • N 2 represents the order (odd value).
  • the reflection diaphragm 22 is opposed to the diaphragm 12, and the calculation formula It must be installed at a position that satisfies the interval K calculated in (3).
  • the interval K calculated by the calculation formula (3) corresponds to a portion where the “node (sparse portion in the generated ultrasonic wave)” of the ultrasonic signal transmitted from the vibrator 10 occurs. 22 is fixed to the portion where the “node” occurs. Even when a plurality of reflection diaphragms are installed, the reflection diaphragms may be installed at intervals K.
  • FIG. 4 is an explanatory diagram for explaining ultrasonic radiation in a state where a plurality of reflection diaphragms are installed.
  • the radiation of ultrasonic waves in a state where a plurality of reflection diaphragms (reflection diaphragm 23 and reflection diaphragm 24) are installed in the ultrasonic generator 100 and the ultrasonic generator 100a will be described.
  • the state where a reflection diaphragm is installed in the ultrasonic generator 100 will be described as an example.
  • the reflection diaphragm 23 and the reflection diaphragm 24 also vibrate “bend”.
  • the case where the reflection diaphragm 23 installed on the front side of the diaphragm 12 is a case surface of equipment (for example, an air purifier) on which the ultrasonic generator 100 is mounted is shown as an example.
  • the case where one reflection diaphragm 22 is installed has been described as an example.
  • the number of the reflection diaphragms 22 is not limited, and two or more reflection diaphragms (the reflection diaphragm 22 and the reflection vibration) are not limited.
  • a plate 23) can also be installed.
  • the reflection diaphragm 22 is fixed to the interval K calculated by the above formula (3), that is, the “sparse” portion of the ultrasonic signal that is the standing / sparse dense wave transmitted from the vibrator 10.
  • the distance K 2 between the diaphragm 12 and the reflection diaphragm 24 is three times the distance K 1 between the diaphragm 12 and the reflection diaphragm 23.
  • the directivity of the ultrasonic wave generated in the diaphragm 12 is the largest in the central axis direction of the vibrator 10, but a side wave (an arrow C 1 and an arrow having an arbitrary angle) depending on the vibration mode of the diaphragm 12. C 2 ) is also generated. Therefore, by making the surface areas of the reflection diaphragm 23 and the reflection diaphragm 24 larger than the surface area of the diaphragm 12, side waves can be effectively used. Further, the surface areas of the reflection diaphragm 23 and the reflection diaphragm 24 may be the same or different. In addition, although the case where the reflective diaphragm 24 is a housing
  • FIG. 5 is an explanatory diagram for explaining ultrasonic radiation in a state where a diaphragm having a curved surface (including a reflective diaphragm) is installed. Based on FIG. 5, the radiation of ultrasonic waves in a state where a plurality of diaphragms having curved shapes are installed in the ultrasonic generator 100 or the ultrasonic generator 100a will be described. Note that an example in which a diaphragm having a curved surface (the diaphragm 12b, the reflection diaphragm 25, and the reflection diaphragm 26) is installed in the ultrasonic generator 100 will be described.
  • the diaphragm 12b, the reflection diaphragm 25, and the reflection diaphragm 26 are also "flexed". Furthermore, the case where the reflection diaphragm 26 installed on the front side of the diaphragm 12b is the case surface of the equipment of the equipment on which the ultrasonic generator 100 is mounted is shown as an example.
  • FIG. 4 shows a state in which planar diaphragms (diaphragm 12, reflection diaphragm 23, and reflection diaphragm 24) are installed, but in FIG. 5, a diaphragm having a curved surface shape (diaphragm 12b, reflection vibration).
  • the state which installed the board 25 and the reflective diaphragm 26) is shown.
  • a diaphragm having a curved surface for example, a plurality of similar circular arc shapes as shown in FIG. 5.
  • FIG. 6 is an explanatory diagram for explaining a state in which the end portion of the vibrator 10 is bent at a predetermined angle. Based on FIG. 6, description will be given of ultrasonic radiation in a state where a bending step portion 15 bent at a predetermined angle is formed at the end portion of the vibrator 10 (tip portion on the side where the horn 11 is installed: upper side of the paper). To do. As shown in FIG. 6, the bending step portion 15 is formed in the vibrator 10, and a horn 11 for converging the vibration wave on the end surface (tip portion of the vibrator 10) of the bending step portion 15 is provided. It is attached. A diaphragm 12 (which may be the diaphragm 12a or the diaphragm 12b) is fixed to the tip of the horn 11.
  • a diaphragm 12 which may be the diaphragm 12a or the diaphragm 12b
  • the ultrasonic generator 100 and the ultrasonic generator 100a can be mounted even in a narrow space. That is, the shape of the vibrator 10 can be made to correspond to the shape and size of the equipment on which the ultrasonic generator 100 and the ultrasonic generator 100a are mounted.
  • the state in which the end portion of the vibrator 10 is bent at a predetermined angle has been described as an example.
  • the present invention is not limited to this, and the horn 11 may be bent at a predetermined angle.
  • the number of diaphragms is not limited, and a plurality of diaphragms can be provided as long as the interval K calculated by the calculation formula (3) is satisfied.
  • FIG. 7 is a graph showing the resonance characteristics of the ultrasonic generator 100. Based on FIG. 7, the resonance characteristics of the ultrasonic generator 100 will be described. The resonance characteristics of the ultrasonic generator 100 will be described as an example, but the same applies to the ultrasonic generator 100a.
  • the horizontal axis represents frequency (f) and the vertical axis represents sharpness (Q).
  • FIG. 7 shows three types of resonance characteristics.
  • the broken line a represents the resonance characteristics of the vibrator 10 and the horn 11, the broken line i represents the resonance characteristics of the diaphragm 12, and the solid line c represents the resonance characteristics of the vibrator 10, the horn 11 and the diaphragm 12.
  • the sharpness (Q) becomes sharp and the sound pressure level at the resonance frequency can be improved. become.
  • the ultrasonic wave transmitted from the vibrator 10 is generated by causing the diaphragms (the diaphragm 12, the diaphragm 12a, and the diaphragm 12b) to “flexurally vibrate”. It vibrates at a specific frequency equivalent to the signal, and a strong sound (140 dB or more) having a specific ultrasonic band frequency is uniformly emitted from the entire surface of the diaphragm along the central axis of the vibrator 10. 30 cm or more).
  • reflection diaphragms reflection diaphragms 22 to 26
  • the material of the diaphragm and the reflection diaphragm may be any material as long as it can vibrate at the vibration frequency in the ultrasonic region, regardless of metal or resin.
  • FIG. FIG. 8 is a schematic configuration diagram showing a part of the configuration of the air purifier 200 according to Embodiment 2 of the present invention.
  • the air cleaner 200 which is an example of the equipment provided with the ultrasonic generator (the ultrasonic generator 100 or the ultrasonic generator 100a) according to Embodiment 1 will be described.
  • This air purifier 200 expands (aggregates) and removes dust particles contained in air taken inside by ultrasonic waves, and blows out the cleaned air to the outside.
  • the case where the ultrasonic generator shown in FIG. 4 is mounted on the air cleaner 200, that is, the case where the reflection diaphragm 24 constitutes the housing surface of the air cleaner 200 will be described as an example.
  • the reflection diaphragm 24 constitutes the housing surface of the air cleaner 200
  • the air cleaner 200 is provided with a dust collection filter 30 and a blower fan 31 in addition to the ultrasonic generator according to the first embodiment.
  • the dust collection filter 30 collects dust contained in the air, and is preferably provided so as to be substantially orthogonal to the air flow.
  • the blower fan 31 takes in air into the ultrasonic generator and blows out the cleaned air to the outside, and may be provided in any of the air flow paths in the air cleaner 200.
  • the air purifier 200 takes air into the ultrasonic generator by the blower fan 31, aggregates the dust particles with ultrasonic waves (ultrasonic aggregation), collects the dust with the dust collecting filter 30, and cleans the air. Is.
  • the ultrasonic generator according to Embodiment 1 is installed to enable generation of ultrasonic aggregation.
  • an air cleaner such as one that performs large rotation of the blower fan and dust collection by a fine dust collection filter, can always generate ultrasonic agglomeration, the dust agglomeration effect will cause a coarse collection.
  • the dust filter can also collect dust. That is, the necessity rule of a fine dust collection filter and a blower fan having a large rotation is not necessary. Therefore, in the air cleaner 200, since the ultrasonic generator according to the first embodiment is mounted, a large dust collection effect can be obtained even if the dust collection filter 30 is rough, and the blower fan 31 is rotated. It is possible to reduce the noise, and noise generation by a fan motor (not shown) for driving the blower fan 31 and the blower fan 31 can be reduced. Further, the air cleaner 200 can improve the dust collection effect without generating corona discharge.
  • the air cleaner 200 is illustrated and described as an example of the equipment provided with the ultrasonic generator according to the first embodiment.
  • the ultrasonic generator according to the first embodiment is described as air.
  • Equipment other than the cleaner 200 that uses ultrasonic waves such as an air conditioner, an ultrasonic processing device, an ultrasonic atomizer, an ultrasonic bonding device, a distance measuring sensor, an ultrasonic cleaning device, an ultrasonic beauty device, etc. You can also Therefore, these equipments can radiate powerful sound (140 dB or more) evenly in the air, and by installing the reflective diaphragm, the powerful ultrasonic waves radiated from the diaphragm are reflected without being attenuated. It can be repeatedly radiated between the diaphragm and the diaphragm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Provided are an ultrasonic generating device, which can emit ultrasonic waves of a high sound pressure level (especially of 140 dB or higher) over a wide range, and an apparatus equipped with the ultrasonic generating device. The ultrasonic generating device (100) is characterized by comprising a diaphragm (10) (an ultrasonic vibrator) having a piezoelectric element (10a), and a diaphragm (12) mounted at the tip of the diaphragm (10), for resonating with the vibrations of the diaphragm (10) so that it performs the 'flexural oscillations' to generate ultrasonic waves.

Description

超音波発生装置及びそれを備えた設備機器Ultrasonic generator and equipment equipped with the same
 本発明は、超音波を発生する超音波発生装置に関し、特に強力な音圧レベルの超音波を広範囲に放射することが可能な超音波発生装置及びそれを備えた設備機器に関するものである。 The present invention relates to an ultrasonic generator that generates ultrasonic waves, and more particularly to an ultrasonic generator that can radiate ultrasonic waves having a strong sound pressure level over a wide range and equipment equipped with the ultrasonic generator.
 従来から、PZT(チタン酸ジルコン酸鉛)等の圧電素子を利用した超音波発生装置が存在する。このような超音波発生装置は、一般的に、圧電素子に電圧を印加することで圧電素子を発振させ、一定方向の振動の共振周波数を利用することで、特定の周波数を音響発振するようになっている。したがって、その音圧レベルは圧電素子を駆動させる入力電圧に依存していることになる。また、圧電素子で発生した周波数は一般的に可聴域の周波数とは異なる18kHz以上の超音波域を有しており、その音圧レベルは空中に放射すると極端に音圧レベルが減衰することになる。 Conventionally, there are ultrasonic generators using piezoelectric elements such as PZT (lead zirconate titanate). In general, such an ultrasonic generator oscillates a piezoelectric element by applying a voltage to the piezoelectric element, and oscillates a specific frequency by using a resonance frequency of vibration in a certain direction. It has become. Therefore, the sound pressure level depends on the input voltage for driving the piezoelectric element. Further, the frequency generated by the piezoelectric element generally has an ultrasonic range of 18 kHz or higher, which is different from the frequency of the audible range, and the sound pressure level is extremely attenuated when radiated in the air. Become.
 この音圧レベルを増幅させるために、圧電素子の面振動方向に対して共振構造体(ホーン構造)を取り付け、圧電素子の面振動の振動数と共振構造体の振動数とを一致させる手段が一般的に行われている。そのようなものとして、「超音波振動を発生させる振動子部と、振動子部の振動を増幅するホーンとを備えるとともに振動子部とホーンとを合わせた長さが発生する超音波の波長のほぼ1/2となっている超音波発生装置であって、振動子部には複数のホーンが並行して取り付けられており、各ホーンの出力側が共振板で連結されている超音波発生装置」が提案されている(たとえば、特許文献1参照)。 In order to amplify the sound pressure level, a resonance structure (horn structure) is attached to the surface vibration direction of the piezoelectric element, and means for matching the frequency of the surface vibration of the piezoelectric element with the frequency of the resonance structure is provided. Generally done. As such, “a transducer unit that generates ultrasonic vibrations and a horn that amplifies the vibrations of the transducer unit and the combined length of the transducer unit and the horn are It is an ultrasonic generator that is approximately ½, and a plurality of horns are attached in parallel to the transducer part, and the output side of each horn is connected by a resonance plate ” Has been proposed (see, for example, Patent Document 1).
 また、コロナ放電による電気集塵を助長する手段として音放射を組み合わせるようにした技術が開示されている。そのようなものとして、「荷電部と集塵部と、前記荷電部のうちの少なくとも放電部位の一部に対して音波を照射する音波発生手段とを備え、前記荷電部は、放電電極と対向電極とで構成されるとともに、前記音波発生手段は、少なくとも前記放電電極と前記対向電極との間の放電空間に音波を照射する電気集塵装置」が提案されている(たとえば、特許文献2参照)。この電気集塵装置は、コロナ放電による塵埃等の集塵を音放射の印加を付け加えることで増強するようになっている。 Also disclosed is a technique in which sound radiation is combined as a means for promoting electrostatic dust collection by corona discharge. As such, “comprising a charging part, a dust collecting part, and a sound wave generating means for irradiating a sound wave to at least a part of the discharge part of the charging part, wherein the charging part is opposed to the discharge electrode. An electrostatic precipitator that radiates sound waves to at least a discharge space between the discharge electrode and the counter electrode has been proposed (see, for example, Patent Document 2). ). This electric dust collector is adapted to enhance dust collection such as dust by corona discharge by adding application of sound radiation.
特開2001-70881号公報(第3頁、第1図)Japanese Patent Laid-Open No. 2001-70881 (page 3, FIG. 1) 特許第3700685号(第5頁、第2図)Japanese Patent No. 3700685 (5th page, Fig. 2)
 特許文献1に記載の超音波発生装置では、ホーン構造で増幅した音圧レベルは超音波であることに変わり無く、超音波本来の特長である、指向性の鋭さにも変化はないため、非常に狭い角度による超音波素子前面への音放射が強く発生しているだけで、空中に放射すると極端に減衰してしまうことにも変わりがない。したがって、強力な音圧レベルの超音波を広範囲に放射することができず、そのような要請に応えることができないという問題を有している。 In the ultrasonic generator described in Patent Document 1, the sound pressure level amplified by the horn structure remains the same as the ultrasonic wave, and the directivity sharpness that is the original characteristic of the ultrasonic wave is not changed. The sound emission to the front surface of the ultrasonic element with a very narrow angle is generated strongly, and when it radiates in the air, it will be extremely attenuated. Therefore, there is a problem that ultrasonic waves having a strong sound pressure level cannot be radiated over a wide range, and such a request cannot be met.
 特許文献2に記載の電気集塵装置では、コロナ放電が主体であり、音放射を行うデバイスの音圧レベルは不明であるため、音放射による集塵効率向上が望めないという問題が発生している。また、実際の製品形態では、空中超音波素子を1個搭載するものであったが、空中超音波素子からは、集塵効率を上げるだけの音圧レベルは発生しておらず、集塵作用はないことも分かった。したがって、強力な音圧レベルの超音波を広範囲に放射することがきないという問題に加えて、集塵効果も低いという問題を有している。 In the electrostatic precipitator described in Patent Document 2, since corona discharge is the main component and the sound pressure level of the device that emits sound is unknown, there is a problem that improvement in dust collection efficiency due to sound emission cannot be expected. Yes. Moreover, in the actual product form, one aerial ultrasonic element is mounted. However, the aerial ultrasonic element does not generate a sound pressure level that increases the dust collection efficiency, and does not collect dust. I found out that there was no. Therefore, in addition to the problem that ultrasonic waves having a strong sound pressure level cannot be radiated in a wide range, there is a problem that the dust collection effect is low.
 本発明は、以上のような問題を解決するためになされたもので、強力な音圧レベル(特に140dB以上)の超音波を広範囲に放射することができる超音波発生装置及びそれを備えた設備機器を提供するものである。 The present invention has been made to solve the above-described problems, and an ultrasonic generator capable of radiating an ultrasonic wave having a strong sound pressure level (especially 140 dB or more) over a wide range and an equipment having the same Equipment is provided.
 本発明に係る超音波発生装置は、圧電素子が設けられている超音波振動子と、前記超音波振動子の先端部に取り付けられ、前記超音波振動子の振動と共振することでたわみ振動し超音波を発生する振動板とを、備えたことを特徴とする。また、本発明に係る設備機器は、上記の超音波発生装置と、前記超音波発生装置を搭載する筐体とを、備えたことを特徴とする。 An ultrasonic generator according to the present invention is flexibly vibrated by resonating with an ultrasonic vibrator provided with a piezoelectric element, and attached to a tip portion of the ultrasonic vibrator and resonating with the vibration of the ultrasonic vibrator. And a diaphragm that generates ultrasonic waves. Moreover, the equipment according to the present invention includes the above-described ultrasonic generator and a housing on which the ultrasonic generator is mounted.
 本発明に係る超音波発生装置によれば、「たわみ振動」する振動板を備えているので、強力な音圧レベルの超音波を広範囲に放射することができる。また、本発明に係る設備機器は、このような効果を有する超音波発生装置を備えているので、同様の効果を有している。 According to the ultrasonic generator according to the present invention, since the diaphragm that “bends and vibrates” is provided, ultrasonic waves having a strong sound pressure level can be radiated in a wide range. Moreover, since the equipment according to the present invention includes the ultrasonic generator having such an effect, it has the same effect.
実施の形態1に係る超音波発生装置の一例を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining an example of an ultrasonic generator according to the first embodiment. 実施の形態1に係る超音波発生装置の他の一例を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining another example of the ultrasonic generator according to the first embodiment. 反射振動板を設置した状態における超音波放射を説明するための説明図である。It is explanatory drawing for demonstrating the ultrasonic radiation in the state which installed the reflective diaphragm. 複数枚の反射振動板を設置した状態における超音波放射を説明するための説明図である。It is explanatory drawing for demonstrating the ultrasonic radiation in the state which installed the several reflection diaphragm. 曲面形状を有する振動板(反射振動板を含む)を設置した状態における超音波放射を説明するための説明である。It is description for demonstrating the ultrasonic radiation in the state which installed the diaphragm (including a reflective diaphragm) which has a curved surface shape. 振動子の終端部を所定の角度で曲げた状態を説明するための説明図である。It is explanatory drawing for demonstrating the state which bent the terminal part of the vibrator | oscillator by the predetermined angle. 超音波発生装置の共振特性を示すグラフである。It is a graph which shows the resonance characteristic of an ultrasonic generator. 実施の形態2に係る空気清浄機の構成の一部を示す概略構成図である。It is a schematic block diagram which shows a part of structure of the air cleaner which concerns on Embodiment 2. FIG.
符号の説明Explanation of symbols
 10 振動子、10a 圧電素子、11 ホーン、12 振動板、12a 振動板、12b 振動板、14 固定部材、15 曲がり段部、22 反射振動板、23 反射振動板、24 反射振動板、25 反射振動板、26 反射振動板、30 集塵フィルタ、31 送風ファン、100 超音波発生装置、100a 超音波発生装置、200 空気清浄機。 10 vibrators, 10a piezoelectric elements, 11 horns, 12 diaphragms, 12a diaphragms, 12b diaphragms, 14 fixed members, 15 bending stepped parts, 22 reflective diaphragms, 23 reflective diaphragms, 24 reflective diaphragms, 25 reflective vibrations Plate, 26 reflective diaphragm, 30 dust collecting filter, 31 blower fan, 100 ultrasonic generator, 100a ultrasonic generator, 200 air cleaner.
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る超音波発生装置100の一例を説明するための説明図である。図1に基づいて、超音波発生装置100の構成及び超音波発生装置100の特徴事項である「たわみ振動」について説明する。また、図1(a)が超音波発生装置100を上から見た状態を示す平面図を、図1(b)が超音波発生装置100の縦断面構成を示す概略断面図をそれぞれ示している。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram for explaining an example of the ultrasonic generator 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the configuration of the ultrasonic generator 100 and “flexural vibration” that is a characteristic item of the ultrasonic generator 100 will be described. FIG. 1A is a plan view showing the state of the ultrasonic generator 100 viewed from above, and FIG. 1B is a schematic cross-sectional view showing the longitudinal cross-sectional configuration of the ultrasonic generator 100. . In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
 超音波発生装置100は、PZT(チタン酸ジルコン酸鉛)等の圧電素子で構成される超音波振動子にパルス電圧を印加し、振動子を発振させることによって、超音波を発生させるようになっている。図1に示すように、超音波発生装置100は、振動子(超音波振動子)10と、ホーン11と、振動板12とを有している。振動子10には、圧電素子10aが設けられ、図示省略の正電極端子及び負電極端子を介してパルス電圧が印加され、発振するようになっている。つまり、振動子10は、パルス電圧が印加されることによって、所定の周波数範囲(一般的に40kHz前後)の音波(超音波)を発振する機能を有しているのである。 The ultrasonic generator 100 applies a pulse voltage to an ultrasonic vibrator composed of a piezoelectric element such as PZT (lead zirconate titanate) and oscillates the vibrator to generate ultrasonic waves. ing. As shown in FIG. 1, the ultrasonic generator 100 includes a vibrator (ultrasonic vibrator) 10, a horn 11, and a diaphragm 12. The vibrator 10 is provided with a piezoelectric element 10a, and is oscillated by applying a pulse voltage via a positive electrode terminal and a negative electrode terminal (not shown). That is, the vibrator 10 has a function of oscillating a sound wave (ultrasonic wave) in a predetermined frequency range (generally around 40 kHz) when a pulse voltage is applied.
 ホーン11は、両端面が開口され、内部に音響通路(超音波帯域の音響信号を増幅する通路)が形成されるように構成されており、振動子10と振動板12との間に取り付けられている。また、ホーン11は、円錐台形状に構成され、振動子10側から振動板12側に向けて徐々に縮径されているのが好ましい。振動板12は、ホーン11の他端部(振動子10が配置されている一端部の反対側の端部)を塞ぐように固着されており、振動子10の発振(振動)と共振することによって共振波である超音波を作り出す機能を有している。この超音波は、振動板12の両面(ホーン11側の面(ホーン11を設けない場合には振動子10の設置面)及びその対向面)から発生する。 The horn 11 is configured such that both end surfaces are opened and an acoustic path (a path for amplifying an ultrasonic band acoustic signal) is formed therein, and is attached between the vibrator 10 and the diaphragm 12. ing. In addition, the horn 11 is preferably formed in a truncated cone shape and is gradually reduced in diameter from the vibrator 10 side toward the diaphragm 12 side. The diaphragm 12 is fixed so as to block the other end of the horn 11 (the end opposite to the one end where the vibrator 10 is disposed) and resonates with the oscillation (vibration) of the vibrator 10. It has a function to generate ultrasonic waves that are resonance waves. The ultrasonic waves are generated from both surfaces of the diaphragm 12 (the surface on the horn 11 side (the surface on which the vibrator 10 is installed when the horn 11 is not provided) and the opposite surface thereof).
 また、振動板12は、振動子10から発信される超音波信号(振動子10内部の発振モード波線A)の「腹」の部分に固着されている。この振動板12は、「たわみ振動」を行なうようになっている。すなわち、振動板12は、板そのものの固有振動数で決まる「格子モード」での振動を行なうようになっているのである。図1(a)の破線で示すように、振動板12は、格子状になっている破線部分を「節(発生した超音波における疎の部分)」、破線以外の部分を「腹(発生した超音波における密の部分)」として「たわみ振動」するようになっているのである。そして、超音波発生装置100では、振動板12の有する振動モードの振動周波数を、振動子10の発振周波数と一致させて用いるようにしている。 Further, the diaphragm 12 is fixed to an “antinode” portion of an ultrasonic signal (oscillation mode wave line A 1 inside the vibrator 10) transmitted from the vibrator 10. The diaphragm 12 performs “flexural vibration”. That is, the diaphragm 12 vibrates in the “lattice mode” determined by the natural frequency of the plate itself. As shown by a broken line in FIG. 1A, the diaphragm 12 has a grid-like broken line portion as “node (sparse portion in generated ultrasonic wave)” and a portion other than the broken line as “antinode (generated). "Dense part in the ultrasonic wave") is "flexible vibration". In the ultrasonic generator 100, the vibration frequency of the vibration mode of the diaphragm 12 is used so as to coincide with the oscillation frequency of the vibrator 10.
 ここで、「格子モード」の「たわみ振動」について説明する。振動板12は、ホーン11の先端部に固着されており、振動子10から発信され、ホーン11を伝搬した超音波信号(波線A)が伝搬する。振動板12の有する振動モードの振動周波数は、振動子10の発振周波数と一致しているので、伝搬した超音波信号により加振(共振)される(波線B)。このとき、振動板12が「たわみ振動」することで、超音波が発生し、振動板12の両面側に放射されるようになっている。 Here, the “flexural vibration” of the “lattice mode” will be described. The diaphragm 12 is fixed to the tip of the horn 11, and an ultrasonic signal (wave line A 1 ) transmitted from the vibrator 10 and propagated through the horn 11 propagates. Since the vibration frequency of the vibration mode of the diaphragm 12 coincides with the oscillation frequency of the vibrator 10, it is vibrated (resonated) by the propagated ultrasonic signal (dashed line B 1 ). At this time, when the diaphragm 12 “bends and vibrates”, an ultrasonic wave is generated and radiated to both sides of the diaphragm 12.
 振動板12は、以下の計算式(1)で大きさを決定することができ、所望の寸法を設計することができる。
 λ={2πCph/f}*1/2・・・式(1)
 ここで、λが波長を、Cpが振動板12を構成する板材料の固有定数を、hが振動板12を構成する板材料の厚みを、fが周波数をそれぞれ表している。なお、Cpは、振動板12を構成する材料固有の定数であり、その材料のヤング率やポアソン比等を用いて算出することができる。
The magnitude | size of the diaphragm 12 can be determined by the following calculation formula (1), and a desired dimension can be designed.
λ = {2πCph / f} * 1/2 Formula (1)
Here, λ represents the wavelength, Cp represents the intrinsic constant of the plate material constituting the diaphragm 12, h represents the thickness of the plate material constituting the diaphragm 12, and f represents the frequency. Cp is a constant specific to the material constituting the diaphragm 12, and can be calculated using the Young's modulus, Poisson's ratio, or the like of the material.
 また、「格子モード」の発生に必要な振動板12の一辺の長さLは、以下の計算式(2)で決定することができる。
 L=(N-0.5)*λ/2・・・式(2)
 ここで、Nが振動板12に出現する「節」線の数(偶数値)を表している。
 すなわち、振動板12の一辺の長さLを式(2)で示す関係に設定すれば、振動板12のたわみ振動時におけるモード形状を「格子モード」とすることができる。
Further, the length L 1 of one side of the diaphragm 12 necessary for generating the “lattice mode” can be determined by the following calculation formula (2).
L 1 = (N 1 −0.5) * λ / 2 Formula (2)
Here, N 1 represents the number (even values) of “node” lines appearing on the diaphragm 12.
That is, if the length L 1 of one side of the diaphragm 12 is set to the relationship represented by the expression (2), the mode shape at the time of the flexural vibration of the diaphragm 12 can be set to “lattice mode”.
 したがって、振動板12を「格子モード」で「たわみ振動」させることで、振動板12が振動子10から発信された超音波信号と同等の周波数の特定周波数で振動を行なうことができる。この特定の周波数による振動板12の周波数は、振動板12の全面から放射されることになるので、振動板12の大きさに応じた広い面積から特定の超音波帯域の周波数を持つ強力な音(140dB以上)が一様に空中放射(振動子10の中心軸上に沿って30cm以上)されることになる。なお、図1では、ホーン11が設けられている場合を例に示しているが、振動子10の先端部に振動板12を固着するようにしてもよい。 Therefore, by vibrating the diaphragm 12 in the “lattice mode”, the diaphragm 12 can vibrate at a specific frequency equivalent to the ultrasonic signal transmitted from the vibrator 10. Since the frequency of the diaphragm 12 by this specific frequency is radiated from the entire surface of the diaphragm 12, a powerful sound having a frequency in a specific ultrasonic band from a wide area corresponding to the size of the diaphragm 12 is obtained. (140 dB or more) is uniformly emitted in the air (30 cm or more along the central axis of the vibrator 10). Although FIG. 1 shows an example in which the horn 11 is provided, the diaphragm 12 may be fixed to the tip of the vibrator 10.
 図2は、本発明の実施の形態1に係る超音波発生装置100aの他の一例を説明するための説明図である。図2に基づいて、超音波発生装置100aの構成及び超音波発生装置100aの特徴事項である「たわみ振動」について説明する。また、図2(a)が超音波発生装置100aを上から見た状態を示す平面図を、図2(b)が超音波発生装置100aの縦断面構成を示す概略断面図をそれぞれ示している。なお、図2では図1に係る超音波発生装置100との相違点を中心に説明するものとし、超音波発生装置100と同一部分には、同一符号を付して説明を省略するものとする。 FIG. 2 is an explanatory diagram for explaining another example of the ultrasonic generator 100a according to Embodiment 1 of the present invention. Based on FIG. 2, the structure of the ultrasonic generator 100a and “flexural vibration” which is a characteristic item of the ultrasonic generator 100a will be described. FIG. 2A is a plan view showing the state of the ultrasonic generator 100a viewed from above, and FIG. 2B is a schematic cross-sectional view showing the longitudinal cross-sectional configuration of the ultrasonic generator 100a. . In FIG. 2, differences from the ultrasonic generator 100 according to FIG. 1 will be mainly described, and the same parts as those of the ultrasonic generator 100 will be denoted by the same reference numerals and description thereof will be omitted. .
 振動板12aは、ホーン11の他端部(振動子10が配置されている端部の反対側の端部)を塞ぐように固着されており、振動子10の発振(振動)と共振することによって共振波である超音波を作り出す機能を有している。この超音波は、振動板12aの両面(ホーン11側の面(紙面下側の面)とその反対側の面(紙面上側の面))から発生する。また、振動板12aは、振動子10から発信される超音波信号(振動子10内部の発振モード:波線A)の「腹」が生じる部分に固着されている。この振動板12aは、振動板12と同様に「たわみ振動」を行なうようになっている。ただし、振動板12aは、「格子モード」ではなく、板そのものの固有振動数で決まる「平行縞モード」での振動を行なうようになっている。 The diaphragm 12a is fixed so as to block the other end of the horn 11 (the end opposite to the end where the vibrator 10 is disposed) and resonates with the oscillation (vibration) of the vibrator 10. It has a function to generate ultrasonic waves that are resonance waves. The ultrasonic waves are generated from both surfaces of the diaphragm 12a (the surface on the horn 11 side (surface on the lower side of the paper) and the opposite surface (surface on the upper side of the paper). In addition, the diaphragm 12a is fixed to a portion where an “antinode” of an ultrasonic signal transmitted from the vibrator 10 (oscillation mode inside the vibrator 10: wave line A 2 ) occurs. The diaphragm 12 a performs “flexural vibration” in the same manner as the diaphragm 12. However, the diaphragm 12a does not vibrate in the “lattice mode” but in the “parallel stripe mode” determined by the natural frequency of the plate itself.
 図2(a)の破線で示すように、振動板12aは、平行縞になっている破線部分を「節(発生した超音波における疎の部分)」、破線以外の部分を「腹(発生した超音波における密の部分)」として「たわみ振動」するようになっているのである。そして、超音波発生装置100aでは、振動板12aの有する振動モードの振動周波数を、振動子10の発振周波数と一致させて用いるようにしている。なお、上記式(1)で振動板12aの大きさを決定することができ、上記式(2)で「平行縞モード」の発生に必要な振動板12aの一辺の長さL2を決定することができる。 As shown by a broken line in FIG. 2A, the diaphragm 12a has a broken line portion that is a parallel stripe as “node (sparse portion in generated ultrasonic wave)” and a portion other than the broken line as “antinode (generated). "Dense part in the ultrasonic wave") is "flexible vibration". In the ultrasonic generator 100a, the vibration frequency of the vibration mode of the diaphragm 12a is used so as to coincide with the oscillation frequency of the vibrator 10. Incidentally, it is possible to determine the size of the diaphragm 12a by the above formula (1), determines the length L 2 of one side of the diaphragm 12a necessary for generation of "parallel fringe mode" in the above formula (2) be able to.
 ここで、「平行縞モード」の「たわみ振動」について説明する。振動板12aは、ホーン11の先端部に固着されており、振動子10から発信され、ホーン11を伝搬した超音波信号(波線A)が伝搬する。振動板12aの有する振動モードの振動周波数は、振動子10の発振周波数と一致しているので、伝搬した超音波信号により加振(共振)される(波線B)。このとき、振動板12aが「たわみ振動」することで、超音波が発生し、振動板12aの両面側に放射されるようになっている。 Here, “flexural vibration” of the “parallel stripe mode” will be described. The diaphragm 12a is fixed to the tip of the horn 11, and an ultrasonic signal (wave line A 2 ) transmitted from the vibrator 10 and propagated through the horn 11 propagates. Since the vibration frequency of the vibration mode of the vibration plate 12a coincides with the oscillation frequency of the vibrator 10, it is excited (resonated) by the propagated ultrasonic signal (dashed line B 2 ). At this time, when the vibration plate 12a “bends and vibrates”, an ultrasonic wave is generated and radiated to both surfaces of the vibration plate 12a.
 したがって、振動板12aを「平行縞モード」で「たわみ振動」させることで、振動板12aが振動子10から発信された超音波信号と同等の周波数の特定周波数で振動を行なうことができる。この特定の周波数による振動板12aの周波数は、振動板12aの全面から放射されることになるので、振動板12aの大きさに応じた広い面積から特定の超音波帯域の周波数を持つ強力な音(140dB以上)が一様に空中放射(振動子10の中心軸上に沿って30cm以上)されることになる。なお、図2では、ホーン11が設けられている場合を例に示しているが、振動子10に振動板12aを固着するようにしてもよい。 Therefore, by vibrating the diaphragm 12a in the “parallel stripe mode”, the diaphragm 12a can vibrate at a specific frequency equivalent to the ultrasonic signal transmitted from the vibrator 10. Since the frequency of the diaphragm 12a with this specific frequency is radiated from the entire surface of the diaphragm 12a, a powerful sound having a frequency in a specific ultrasonic band from a wide area corresponding to the size of the diaphragm 12a. (140 dB or more) is uniformly emitted in the air (30 cm or more along the central axis of the vibrator 10). 2 shows an example in which the horn 11 is provided, but the diaphragm 12a may be fixed to the vibrator 10.
 図3は、反射振動板22を設置した状態における超音波放射を説明するための説明図である。図3に基づいて、超音波発生装置100や超音波発生装置100aに反射振動板22を設置した状態での超音波の放射について説明する。上述したように、超音波発生装置100及び超音波発生装置100aでは、振動板12及び振動板12aの両面から強力な超音波が一様に空中放射される。そこで、「たわみ振動」する反射振動板22を振動板12に所定の間隔(以下で説明する計算式(3)で算出される距離K)で対向させて設置し、振動板12及び振動板12aから放射された超音波を減衰させないようにしている。なお、超音波発生装置100に反射振動板22を設置した状態を例に説明するものとする。 FIG. 3 is an explanatory diagram for explaining ultrasonic radiation in a state where the reflection diaphragm 22 is installed. Based on FIG. 3, the radiation of ultrasonic waves in a state where the reflection diaphragm 22 is installed in the ultrasonic generator 100 or the ultrasonic generator 100a will be described. As described above, in the ultrasonic generator 100 and the ultrasonic generator 100a, strong ultrasonic waves are uniformly emitted in the air from both surfaces of the diaphragm 12 and the diaphragm 12a. Therefore, the reflection diaphragm 22 that performs “flexural vibration” is disposed to face the diaphragm 12 at a predetermined interval (distance K calculated by the calculation formula (3) described below), and the diaphragm 12 and the diaphragm 12a. The ultrasonic wave radiated from is not attenuated. The state where the reflection diaphragm 22 is installed in the ultrasonic generator 100 will be described as an example.
 すなわち、振動板12の前面(紙面上側の面)及び近傍音場、更に振動板12の前面及び後面(紙面下側の面)となる部分に振動板12からの音放射(超音波放射領域:矢印C)を反射するための反射振動板22を設置することによって、反射振動板22と振動板12との間に常に強力な音圧レベルを持つ音放射が繰り返し、放射(矢印D)させるようになっている。このとき、振動板12は上述したように振動子10から発信される超音波信号の「腹」が生じる部分に固着し、反射振動板22は振動子10から発信される超音波信号の「節」が生じる部分に固着するものとしている。 That is, sound radiation from the diaphragm 12 (ultrasonic radiation region: on the front surface (surface on the upper side of the paper) and the vicinity sound field of the vibration plate 12, and further on the front and rear surfaces (surface on the lower surface of the paper) of the vibration plate 12. By installing the reflection diaphragm 22 for reflecting the arrow C), sound radiation having a strong sound pressure level is always repeatedly emitted between the reflection diaphragm 22 and the diaphragm 12 to be emitted (arrow D). It has become. At this time, the diaphragm 12 is fixed to the portion where the “antinode” of the ultrasonic signal transmitted from the vibrator 10 is generated as described above, and the reflection diaphragm 22 is “node” of the ultrasonic signal transmitted from the vibrator 10. ”Is fixed to the portion where“
 すなわち、共振周波数の最も強い場所であるホーン11の先端部(「腹」が生じる部分)に固着した振動板12と、そのほかの場所(「節」が生じる部分)に固着した反射振動板22とを活用して、両者間で超音波を繰り返し反射させている。図3では、反射振動板22を振動板12の後面となる部分に設置している場合を例に示している。したがって、振動板12の前面が超音波放射領域となり、振動板12と反射振動板22との間が超音波発生領域となっている。 That is, the diaphragm 12 fixed to the tip of the horn 11 (the part where the “antinode” occurs), which is the place where the resonance frequency is the strongest, and the reflective diaphragm 22 fixed to the other part (the part where the “node” occurs) Is used to repeatedly reflect ultrasonic waves between the two. In FIG. 3, a case where the reflection diaphragm 22 is installed on the rear surface of the diaphragm 12 is shown as an example. Therefore, the front surface of the diaphragm 12 is an ultrasonic radiation area, and the area between the diaphragm 12 and the reflection diaphragm 22 is an ultrasonic wave generation area.
 このように、振動板12と反射振動板22との間に超音波信号が放射/反射を繰り返すことによって、振動板12と反射振動板22との間には複数本の鋭い指向性による超音波信号(矢印C及び矢印D)が発生しており、疎密波を繰り返す超音波による「音の壁」を存在させることができるのである。なお、図3では、反射振動板22を固定部材14によって固定している場合を例に示している。この場合、固定部材14を「節」が生じる部分に固着していれば、反射振動板22が「節」が生じる部分に固着されていなくてもよい。 As described above, the ultrasonic wave is repeatedly radiated / reflected between the diaphragm 12 and the reflection diaphragm 22, so that the ultrasonic waves having a plurality of sharp directivities are formed between the diaphragm 12 and the reflection diaphragm 22. Signals (arrow C and arrow D) are generated, and it is possible to have a “sound wall” due to ultrasonic waves that repeat dense and dense waves. FIG. 3 shows an example in which the reflection diaphragm 22 is fixed by the fixing member 14. In this case, as long as the fixing member 14 is fixed to the portion where the “node” occurs, the reflection diaphragm 22 may not be fixed to the portion where the “node” occurs.
 振動板12と反射振動板22との所定の間隔は、以下の計算式(3)を満たす関係で決定することができる。
 K=(λs/2)*N・・・式(3)
 ここで、Kが振動板12と反射振動板22との所定の間隔、つまり距離を、λsが振動板12で発生する周波数の波長を、Nが次数(奇数値)をそれぞれ表している。この計算式(3)で算出された間隔Kの値で反射振動板22を設置すれば、振動板12からの音放射(矢印C)を、減衰させることなく、反射振動板22と振動板12との間で繰り返し、放射(矢印D)させることができる。
The predetermined interval between the diaphragm 12 and the reflection diaphragm 22 can be determined by a relationship satisfying the following calculation formula (3).
K = (λs / 2) * N 2 Formula (3)
Here, K represents a predetermined interval, that is, distance between the diaphragm 12 and the reflection diaphragm 22, λs represents the wavelength of the frequency generated in the diaphragm 12, and N 2 represents the order (odd value). If the reflection diaphragm 22 is installed with the value of the interval K calculated by the calculation formula (3), the sound radiation (arrow C) from the diaphragm 12 is not attenuated, and the reflection diaphragm 22 and the diaphragm 12 are not attenuated. Can be repeatedly emitted (arrow D).
 すなわち、振動板12と反射振動板22との間に複数本の鋭い指向性による超音波による「音の壁」を存在させるためには、反射振動板22を振動板12に対向させ、計算式(3)で算出される間隔Kを満たすような位置に設置しなければならないのである。計算式(3)で算出される間隔Kは、振動子10から発信される超音波信号の「節(発生した超音波における疎の部分)」が生じる部分に対応しているため、反射振動板22が「節」が生じる部分に固着されることになるのである。なお、複数枚の反射振動板を設置する場合でも、反射振動板を間隔Kで設置すればよい。 In other words, in order to have a plurality of “sound walls” by ultrasonic waves having a sharp directivity between the diaphragm 12 and the reflection diaphragm 22, the reflection diaphragm 22 is opposed to the diaphragm 12, and the calculation formula It must be installed at a position that satisfies the interval K calculated in (3). The interval K calculated by the calculation formula (3) corresponds to a portion where the “node (sparse portion in the generated ultrasonic wave)” of the ultrasonic signal transmitted from the vibrator 10 occurs. 22 is fixed to the portion where the “node” occurs. Even when a plurality of reflection diaphragms are installed, the reflection diaphragms may be installed at intervals K.
 図4は、複数枚の反射振動板を設置した状態における超音波放射を説明するための説明図である。図4に基づいて、超音波発生装置100や超音波発生装置100aに複数枚の反射振動板(反射振動板23及び反射振動板24)を設置した状態での超音波の放射について説明する。なお、超音波発生装置100に反射振動板を設置した状態を例に説明するものとする。また、反射振動板23及び反射振動板24も「たわみ」振動するようになっている。さらに、振動板12の前面側に設置される反射振動板23が超音波発生装置100が搭載される設備機器(たとえば、空気清浄機等)の筐体面である場合を例に示している。 FIG. 4 is an explanatory diagram for explaining ultrasonic radiation in a state where a plurality of reflection diaphragms are installed. Based on FIG. 4, the radiation of ultrasonic waves in a state where a plurality of reflection diaphragms (reflection diaphragm 23 and reflection diaphragm 24) are installed in the ultrasonic generator 100 and the ultrasonic generator 100a will be described. The state where a reflection diaphragm is installed in the ultrasonic generator 100 will be described as an example. Further, the reflection diaphragm 23 and the reflection diaphragm 24 also vibrate “bend”. Furthermore, the case where the reflection diaphragm 23 installed on the front side of the diaphragm 12 is a case surface of equipment (for example, an air purifier) on which the ultrasonic generator 100 is mounted is shown as an example.
 図3では、1枚の反射振動板22を設置した場合を例に説明したが、反射振動板22の枚数を限定するものではなく、2枚以上の反射振動板(反射振動板22及び反射振動板23)を設置することもできる。この場合も、上記計算式(3)で算出された間隔K、つまり振動子10から発信される定在波の疎密波である超音波信号の「疎」の部分に反射振動板22を固定する必要がある。図4に示すように、振動板12と反射振動板24との間の間隔Kは、振動板12と反射振動板23との間隔Kの3倍となっている。 In FIG. 3, the case where one reflection diaphragm 22 is installed has been described as an example. However, the number of the reflection diaphragms 22 is not limited, and two or more reflection diaphragms (the reflection diaphragm 22 and the reflection vibration) are not limited. A plate 23) can also be installed. Also in this case, the reflection diaphragm 22 is fixed to the interval K calculated by the above formula (3), that is, the “sparse” portion of the ultrasonic signal that is the standing / sparse dense wave transmitted from the vibrator 10. There is a need. As shown in FIG. 4, the distance K 2 between the diaphragm 12 and the reflection diaphragm 24 is three times the distance K 1 between the diaphragm 12 and the reflection diaphragm 23.
 また、振動板12で発生する超音波の指向性は、振動子10の中心軸方向に最も大きく発生するが、振動板12の振動モードによって任意の角度を持った側面波(矢印C及び矢印C)も発生する。したがって、振動板12の表面積よりも、反射振動板23及び反射振動板24の表面積を大きくすることで、側面波の有効活用を図ることもできる。また、反射振動板23と反射振動板24との表面積を同一としてもよいし、異なるようにしてもよい。なお、反射振動板24が筐体面である場合を例に示しているが、これに限定するものではない。また、図4では、反射振動板23を反射振動板22と同様に固定部材14によって固定している場合を例に示している。 Further, the directivity of the ultrasonic wave generated in the diaphragm 12 is the largest in the central axis direction of the vibrator 10, but a side wave (an arrow C 1 and an arrow having an arbitrary angle) depending on the vibration mode of the diaphragm 12. C 2 ) is also generated. Therefore, by making the surface areas of the reflection diaphragm 23 and the reflection diaphragm 24 larger than the surface area of the diaphragm 12, side waves can be effectively used. Further, the surface areas of the reflection diaphragm 23 and the reflection diaphragm 24 may be the same or different. In addition, although the case where the reflective diaphragm 24 is a housing | casing surface is shown as an example, it is not limited to this. FIG. 4 shows an example in which the reflection diaphragm 23 is fixed by the fixing member 14 in the same manner as the reflection diaphragm 22.
 図5は、曲面形状を有する振動板(反射振動板を含む)を設置した状態における超音波放射を説明するための説明図である。図5に基づいて、超音波発生装置100や超音波発生装置100aに曲面形状を有する複数の振動板を設置した状態での超音波の放射について説明する。なお、超音波発生装置100に曲面を有する振動板(振動板12b、反射振動板25及び反射振動板26)を設置した状態を例に説明するものとする。また、振動板12b、反射振動板25及び反射振動板26も「たわみ」振動するようになっている。さらに、振動板12bの前面側に設置される反射振動板26が超音波発生装置100が搭載される設備機器の筐体面である場合を例に示している。 FIG. 5 is an explanatory diagram for explaining ultrasonic radiation in a state where a diaphragm having a curved surface (including a reflective diaphragm) is installed. Based on FIG. 5, the radiation of ultrasonic waves in a state where a plurality of diaphragms having curved shapes are installed in the ultrasonic generator 100 or the ultrasonic generator 100a will be described. Note that an example in which a diaphragm having a curved surface (the diaphragm 12b, the reflection diaphragm 25, and the reflection diaphragm 26) is installed in the ultrasonic generator 100 will be described. Further, the diaphragm 12b, the reflection diaphragm 25, and the reflection diaphragm 26 are also "flexed". Furthermore, the case where the reflection diaphragm 26 installed on the front side of the diaphragm 12b is the case surface of the equipment of the equipment on which the ultrasonic generator 100 is mounted is shown as an example.
 図4では、平面形状の振動板(振動板12、反射振動板23及び反射振動板24)を設置した状態を示したが、図5では、曲面形状を有する振動板(振動板12b、反射振動板25及び反射振動板26)を設置した状態を示している。この場合も、上記計算式(3)で算出された間隔K、つまり各振動板の間の平行が保たれれば、曲面を有する振動板(たとえば、図5に示すような相似円弧形状の複数枚の振動板)を設置することも可能である。したがって、超音波発生装置100又は超音波発生装置100aを搭載する設備機器の筐体面に応じた形状で振動板を構成することができる。 4 shows a state in which planar diaphragms (diaphragm 12, reflection diaphragm 23, and reflection diaphragm 24) are installed, but in FIG. 5, a diaphragm having a curved surface shape (diaphragm 12b, reflection vibration). The state which installed the board 25 and the reflective diaphragm 26) is shown. Also in this case, if the interval K calculated by the above equation (3), that is, the parallelism between the diaphragms is maintained, a diaphragm having a curved surface (for example, a plurality of similar circular arc shapes as shown in FIG. 5). It is also possible to install a diaphragm. Therefore, it is possible to configure the diaphragm in a shape corresponding to the casing surface of the equipment on which the ultrasonic generator 100 or the ultrasonic generator 100a is mounted.
 図6は、振動子10の終端部を所定の角度で曲げた状態を説明するための説明図である。図6に基づいて、振動子10の終端部(ホーン11が設置される側の先端部:紙面上側)に、所定の角度で曲げた曲がり段部15を形成した状態での超音波放射について説明する。図6に示すように、振動子10には曲がり段部15が形成されており、この曲がり段部15の終端面(振動子10の先端部)面に振動波を収束するためのホーン11を取り付けている。そして、ホーン11の先端部に振動板12(振動板12a又は振動板12bでもよい)を固着している。 FIG. 6 is an explanatory diagram for explaining a state in which the end portion of the vibrator 10 is bent at a predetermined angle. Based on FIG. 6, description will be given of ultrasonic radiation in a state where a bending step portion 15 bent at a predetermined angle is formed at the end portion of the vibrator 10 (tip portion on the side where the horn 11 is installed: upper side of the paper). To do. As shown in FIG. 6, the bending step portion 15 is formed in the vibrator 10, and a horn 11 for converging the vibration wave on the end surface (tip portion of the vibrator 10) of the bending step portion 15 is provided. It is attached. A diaphragm 12 (which may be the diaphragm 12a or the diaphragm 12b) is fixed to the tip of the horn 11.
 このようにすることによって、狭い空間部であっても超音波発生装置100や超音波発生装置100aを搭載することができる。すなわち、超音波発生装置100や超音波発生装置100aを搭載する設備機器の形状や大きさに振動子10の形状を対応させることができるのである。ここでは、振動子10の終端部を所定の角度で曲げた状態を例に説明したが、これに限定するものではなく、ホーン11を所定の角度で曲げるようにしてもよい。また、振動板(反射振動板を含む)の枚数を限定するものではなく、上記計算式(3)で算出された間隔Kを満たすようにすれば複数枚の振動板を設けることもできる。 In this way, the ultrasonic generator 100 and the ultrasonic generator 100a can be mounted even in a narrow space. That is, the shape of the vibrator 10 can be made to correspond to the shape and size of the equipment on which the ultrasonic generator 100 and the ultrasonic generator 100a are mounted. Here, the state in which the end portion of the vibrator 10 is bent at a predetermined angle has been described as an example. However, the present invention is not limited to this, and the horn 11 may be bent at a predetermined angle. Further, the number of diaphragms (including the reflective diaphragm) is not limited, and a plurality of diaphragms can be provided as long as the interval K calculated by the calculation formula (3) is satisfied.
 図7は、超音波発生装置100の共振特性を示すグラフである。図7に基づいて、超音波発生装置100の共振特性について説明する。なお、超音波発生装置100の共振特性を例に説明するが、超音波発生装置100aでも同様である。この図7では、横軸が周波数(f)を、縦軸が尖鋭度(Q)をそれぞれ表している。また、図7には、3種類の共振特性を図示している。破線アが振動子10及びホーン11の共振特性を、破線イが振動板12の共振特性を、実線ウが振動子10、ホーン11及び振動板12の共振特性をそれぞれ表している。図7から理解できるように、各部材(振動子10、ホーン11及び振動板12)の共振特性が一致することにより、尖鋭度(Q)が鋭くなり、共振周波数における音圧レベルの向上が可能になる。 FIG. 7 is a graph showing the resonance characteristics of the ultrasonic generator 100. Based on FIG. 7, the resonance characteristics of the ultrasonic generator 100 will be described. The resonance characteristics of the ultrasonic generator 100 will be described as an example, but the same applies to the ultrasonic generator 100a. In FIG. 7, the horizontal axis represents frequency (f) and the vertical axis represents sharpness (Q). FIG. 7 shows three types of resonance characteristics. The broken line a represents the resonance characteristics of the vibrator 10 and the horn 11, the broken line i represents the resonance characteristics of the diaphragm 12, and the solid line c represents the resonance characteristics of the vibrator 10, the horn 11 and the diaphragm 12. As can be understood from FIG. 7, when the resonance characteristics of the respective members (the vibrator 10, the horn 11 and the diaphragm 12) match, the sharpness (Q) becomes sharp and the sound pressure level at the resonance frequency can be improved. become.
 以上のように、実施の形態1に係る超音波発生装置では、振動板(振動板12、振動板12a及び振動板12b)を「たわみ振動」させることで、振動子10から発信された超音波信号と同等の周波数の特定周波数で振動を行ない、振動板の全面から特定の超音波帯域の周波数を持つ強力な音(140dB以上)が一様に空中放射(振動子10の中心軸上に沿って30cm以上)できる。また、反射振動板(反射振動板22~26)を所定の間隔Kをもって設置することにより、振動板から放射された強力な超音波を、減衰させることなく、反射振動板と振動板との間で繰り返し、放射させることができる。なお、振動板及び反射振動板の材料は、超音波領域の振動周波数で振動することができるものであればよく、金属や樹脂に関わらずどのような材料で構成してもよい。 As described above, in the ultrasonic generator according to the first embodiment, the ultrasonic wave transmitted from the vibrator 10 is generated by causing the diaphragms (the diaphragm 12, the diaphragm 12a, and the diaphragm 12b) to “flexurally vibrate”. It vibrates at a specific frequency equivalent to the signal, and a strong sound (140 dB or more) having a specific ultrasonic band frequency is uniformly emitted from the entire surface of the diaphragm along the central axis of the vibrator 10. 30 cm or more). Further, by installing the reflection diaphragms (reflection diaphragms 22 to 26) with a predetermined interval K, strong ultrasonic waves radiated from the diaphragm are not attenuated between the reflection diaphragm and the diaphragm. Can be emitted repeatedly. The material of the diaphragm and the reflection diaphragm may be any material as long as it can vibrate at the vibration frequency in the ultrasonic region, regardless of metal or resin.
実施の形態2.
 図8は、本発明の実施の形態2に係る空気清浄機200の構成の一部を示す概略構成図である。図8に基づいて、実施の形態1に係る超音波発生装置(超音波発生装置100又は超音波発生装置100a)を備えた設備機器の一例である空気清浄機200について説明する。この空気清浄機200は、内部に取り込んだ空気に含まれている塵埃粒子を超音波により拡大(凝集)、除去し、清浄化した空気を外部に吹き出すものである。なお、空気清浄機200には、図4で示した超音波発生装置が搭載されている場合、つまり反射振動板24が空気清浄機200の筐体面を構成している場合を例に説明するものとする。
Embodiment 2. FIG.
FIG. 8 is a schematic configuration diagram showing a part of the configuration of the air purifier 200 according to Embodiment 2 of the present invention. Based on FIG. 8, the air cleaner 200 which is an example of the equipment provided with the ultrasonic generator (the ultrasonic generator 100 or the ultrasonic generator 100a) according to Embodiment 1 will be described. This air purifier 200 expands (aggregates) and removes dust particles contained in air taken inside by ultrasonic waves, and blows out the cleaned air to the outside. The case where the ultrasonic generator shown in FIG. 4 is mounted on the air cleaner 200, that is, the case where the reflection diaphragm 24 constitutes the housing surface of the air cleaner 200 will be described as an example. And
 図8に示すように、この空気清浄機200には、実施の形態1に係る超音波発生装置に加え、集塵フィルタ30と送風ファン31とが設けられている。集塵フィルタ30は、空気に含まれている塵埃を集塵するものであり、空気の流れに対して略直交するように設けるようにするとよい。送風ファン31は、超音波発生装置内に空気を取り込み、清浄化した空気を外部に吹き出すものであり、空気清浄機200内における空気の流路のいずれかに設けられていればよい。この空気清浄機200は、送風ファン31によって超音波発生装置内に空気を取り込み、塵埃粒子を超音波により凝集(超音波凝集)してから集塵フィルタ30で集塵し、空気を清浄化するものである。 As shown in FIG. 8, the air cleaner 200 is provided with a dust collection filter 30 and a blower fan 31 in addition to the ultrasonic generator according to the first embodiment. The dust collection filter 30 collects dust contained in the air, and is preferably provided so as to be substantially orthogonal to the air flow. The blower fan 31 takes in air into the ultrasonic generator and blows out the cleaned air to the outside, and may be provided in any of the air flow paths in the air cleaner 200. The air purifier 200 takes air into the ultrasonic generator by the blower fan 31, aggregates the dust particles with ultrasonic waves (ultrasonic aggregation), collects the dust with the dust collecting filter 30, and cleans the air. Is.
 超音波凝集の仕組みについて簡単に説明する。疎密波である超音波の「密」の部分では、強い音圧放射によって、空気同士が摩擦を起こして静電効果が発生している。そして、振動板12と反射振動板23との間における超音波発生領域、及び、振動板12と反射振動板24との間における超音波発生領域に存在する「音の壁」を通過する塵埃は、摩擦による静電効果の影響を受け、疎密波の「疎」の部分の塵埃が「密」の部分に移動して粒子が拡大(凝集)する。このようにして超音波凝集が発生するようになっている。また、超音波凝集を発生させるには、強力な音(140dB以上)が空中放射されることが条件となる。そこで、実施の形態1に係る超音波発生装置を搭載し、超音波凝集の発生を可能としているのである。 仕 組 み Briefly explain the mechanism of ultrasonic aggregation. In the “dense” portion of the ultrasonic wave, which is a sparse / dense wave, air is rubbed by strong sound pressure radiation, and an electrostatic effect is generated. The dust passing through the “sound wall” existing in the ultrasonic wave generation region between the vibration plate 12 and the reflection vibration plate 23 and the ultrasonic wave generation region between the vibration plate 12 and the reflection vibration plate 24 is Under the influence of the electrostatic effect due to friction, the dust in the “sparse” part of the dense wave moves to the “dense” part and the particles expand (aggregate). In this way, ultrasonic agglomeration occurs. Moreover, in order to generate ultrasonic aggregation, it is a condition that powerful sound (140 dB or more) is emitted in the air. Therefore, the ultrasonic generator according to Embodiment 1 is installed to enable generation of ultrasonic aggregation.
 送風ファンの大きな回転と目の細かい集塵フィルタによる塵埃の集塵とを行なっていたような空気清浄機が、超音波凝集を常時発生させることができれば、塵埃の凝集効果により、目の粗い集塵フィルタも集塵が行なえるようになる。つまり、目の細かい集塵フィルタと大きな回転を有する送風ファンとの必要性のルールが必要なくなる。したがって、空気清浄機200では、実施の形態1に係る超音波発生装置を搭載しているので、集塵フィルタ30の目を粗いものとしても大きな集塵効果が得られ、送風ファン31の回転を遅くでき、送風ファン31及び送風ファン31を駆動するための図示省略のファンモータによる騒音発生を低減できる。また、空気清浄機200は、コロナ放電を発生させなくても、集塵効果を向上することができる。 If an air cleaner, such as one that performs large rotation of the blower fan and dust collection by a fine dust collection filter, can always generate ultrasonic agglomeration, the dust agglomeration effect will cause a coarse collection. The dust filter can also collect dust. That is, the necessity rule of a fine dust collection filter and a blower fan having a large rotation is not necessary. Therefore, in the air cleaner 200, since the ultrasonic generator according to the first embodiment is mounted, a large dust collection effect can be obtained even if the dust collection filter 30 is rough, and the blower fan 31 is rotated. It is possible to reduce the noise, and noise generation by a fan motor (not shown) for driving the blower fan 31 and the blower fan 31 can be reduced. Further, the air cleaner 200 can improve the dust collection effect without generating corona discharge.
 なお、実施の形態2では、実施の形態1に係る超音波発生装置を備えた設備機器の一例として空気清浄機200を図示して説明したが、実施の形態1に係る超音波発生装置を空気清浄機200以外の超音波を利用する設備機器、たとえば空気調和装置や超音波加工装置、超音波霧化装置、超音波接合装置、測距センサ、超音波洗浄装置、超音波美容装置等に備えることもできる。したがって、それらの設備機器も、強力な音(140dB以上)が一様に空中放射でき、反射振動板を設置することにより、振動板から放射された強力な超音波を、減衰させることなく、反射振動板と振動板との間で繰り返し、放射させることができるのである。
 
In the second embodiment, the air cleaner 200 is illustrated and described as an example of the equipment provided with the ultrasonic generator according to the first embodiment. However, the ultrasonic generator according to the first embodiment is described as air. Equipment other than the cleaner 200 that uses ultrasonic waves, such as an air conditioner, an ultrasonic processing device, an ultrasonic atomizer, an ultrasonic bonding device, a distance measuring sensor, an ultrasonic cleaning device, an ultrasonic beauty device, etc. You can also Therefore, these equipments can radiate powerful sound (140 dB or more) evenly in the air, and by installing the reflective diaphragm, the powerful ultrasonic waves radiated from the diaphragm are reflected without being attenuated. It can be repeatedly radiated between the diaphragm and the diaphragm.

Claims (11)

  1.  圧電素子が設けられている超音波振動子と、
     前記超音波振動子の先端部に取り付けられ、前記超音波振動子の振動と共振することでたわみ振動し超音波を発生する振動板とを、備えた
     ことを特徴とする超音波発生装置。
    An ultrasonic transducer provided with a piezoelectric element;
    An ultrasonic generator, comprising: a vibration plate that is attached to a tip portion of the ultrasonic vibrator and generates a ultrasonic wave by flexural vibration by resonating with vibration of the ultrasonic vibrator.
  2.  前記振動板は、
     格子モード又は平行縞モードの振動で共振する固有振動数を有している
     ことを特徴とする請求項1に記載の超音波発生装置。
    The diaphragm is
    The ultrasonic generator according to claim 1, wherein the ultrasonic generator has a natural frequency that resonates due to vibration in a lattice mode or a parallel stripe mode.
  3.  前記振動板に所定の間隔で対向して配置され、前記振動板からの音放射を反射する反射振動板を備えた
     ことを特徴とする請求項1又は2に記載の超音波発生装置。
    The ultrasonic generator according to claim 1, further comprising a reflective diaphragm that is disposed to face the diaphragm at a predetermined interval and reflects sound radiation from the diaphragm.
  4.  前記反射振動板は、
     前記超音波振動子から発信される超音波信号の節が生じる部分に固着される
     ことを特徴とする請求項3に記載の超音波発生装置。
    The reflective diaphragm is
    The ultrasonic generator according to claim 3, wherein the ultrasonic generator is fixed to a portion where a node of an ultrasonic signal transmitted from the ultrasonic transducer is generated.
  5.  前記反射振動板を固着するための固定部材を備え、
     前記固定部材は、
     前記超音波振動子から発信される超音波信号の節が生じる部分に設置される
     ことを特徴とする請求項3に記載の超音波発生装置。
    A fixing member for fixing the reflection diaphragm;
    The fixing member is
    The ultrasonic generator according to claim 3, wherein the ultrasonic generator is installed in a portion where a node of an ultrasonic signal transmitted from the ultrasonic transducer is generated.
  6.  前記所定の間隔は、
     前記振動板で発生する周波数の(波長/2)*(奇数値からなる次数)で算出された距離である
     ことを特徴とする請求項3~5のいずれかに記載の超音波発生装置。
    The predetermined interval is
    6. The ultrasonic generator according to claim 3, wherein the distance is calculated by (wavelength / 2) * (order consisting of odd values) of the frequency generated by the diaphragm.
  7.  前記振動板及び前記反射振動板がそれぞれ曲面形状を有している
     ことを特徴とする請求項3~6のいずれかに記載の超音波発生装置。
    The ultrasonic generator according to any one of claims 3 to 6, wherein each of the diaphragm and the reflection diaphragm has a curved shape.
  8.  両端面が開口され、内部に音響通路が形成されているホーンを備え、
     前記ホーンは、
     前記超音波振動子と前記振動板との間に取り付けられる
     ことを特徴とする請求項1~7のいずれかに記載の超音波発生装置。
    It has a horn that is open at both end faces and has an acoustic passage inside.
    The horn is
    The ultrasonic generator according to any one of claims 1 to 7, wherein the ultrasonic generator is attached between the ultrasonic transducer and the diaphragm.
  9.  圧電素子が設けられている超音波振動子と、
     前記超音波振動子の先端部に取り付けられ、前記超音波振動子の振動と共振することでたわみ振動し超音波を発生する振動板とを備え、
     前記超音波振動子の先端部側を所定角度に曲げて音響通路を形成した
     ことを特徴とする超音波発生装置。
    An ultrasonic transducer provided with a piezoelectric element;
    A vibration plate that is attached to the tip of the ultrasonic transducer and that flexibly vibrates by resonating with the vibration of the ultrasonic transducer and generates ultrasonic waves;
    An ultrasonic wave generating apparatus, wherein an acoustic path is formed by bending the tip end side of the ultrasonic transducer at a predetermined angle.
  10.  前記請求項1~9のいずれかに記載の超音波発生装置と、
     前記超音波発生装置を搭載する筐体とを、備えた
     ことを特徴とする設備機器。
    The ultrasonic generator according to any one of claims 1 to 9,
    An equipment having a housing on which the ultrasonic generator is mounted.
  11.  前記反射振動板が前記筐体面を構成している
     ことを特徴とする請求項10に記載の設備機器。
     
    The equipment according to claim 10, wherein the reflective diaphragm constitutes the housing surface.
PCT/JP2009/051153 2008-01-31 2009-01-26 Ultrasonic wave generating device, and apparatus having the device WO2009096347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551503A JPWO2009096347A1 (en) 2008-01-31 2009-01-26 Ultrasonic generator and equipment equipped with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-021532 2008-01-31
JP2008021532 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096347A1 true WO2009096347A1 (en) 2009-08-06

Family

ID=40912700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051153 WO2009096347A1 (en) 2008-01-31 2009-01-26 Ultrasonic wave generating device, and apparatus having the device

Country Status (2)

Country Link
JP (1) JPWO2009096347A1 (en)
WO (1) WO2009096347A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101392862B1 (en) 2012-07-02 2014-05-08 광주과학기술원 Device for sorting cells
CN103877824A (en) * 2014-04-10 2014-06-25 中国人民解放军国防科学技术大学 Fine particle emission reduction device of burning energy system based on acoustic agglomeration principle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212894A (en) * 1994-01-14 1995-08-11 Hiroyuki Yamane Ultrasonic wave source and suspended particle collector using same
JP2000070852A (en) * 1998-08-26 2000-03-07 Mitsubishi Heavy Ind Ltd Ultrasonic generator
JP2002128259A (en) * 2000-10-26 2002-05-09 Toyota Industries Corp Object levitation device
JP2006150329A (en) * 2004-11-29 2006-06-15 Uwave:Kk Ultrasonic vibration table
JP2007089953A (en) * 2005-09-30 2007-04-12 Aloka Co Ltd Ultrasonic surgical instrument

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262600A (en) * 1992-03-18 1993-10-12 Fujitsu Ltd Sound wave floating device
JP3506845B2 (en) * 1996-05-17 2004-03-15 アマノ株式会社 Ultrasonic sound source using fringe mode diaphragm
JP3256173B2 (en) * 1997-11-27 2002-02-12 株式会社カイジョー Ultrasonic cleaning equipment
JP2005254043A (en) * 2004-03-09 2005-09-22 Univ Nihon Removal method and apparatus for gaseous substance contained in gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07212894A (en) * 1994-01-14 1995-08-11 Hiroyuki Yamane Ultrasonic wave source and suspended particle collector using same
JP2000070852A (en) * 1998-08-26 2000-03-07 Mitsubishi Heavy Ind Ltd Ultrasonic generator
JP2002128259A (en) * 2000-10-26 2002-05-09 Toyota Industries Corp Object levitation device
JP2006150329A (en) * 2004-11-29 2006-06-15 Uwave:Kk Ultrasonic vibration table
JP2007089953A (en) * 2005-09-30 2007-04-12 Aloka Co Ltd Ultrasonic surgical instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101392862B1 (en) 2012-07-02 2014-05-08 광주과학기술원 Device for sorting cells
CN103877824A (en) * 2014-04-10 2014-06-25 中国人民解放军国防科学技术大学 Fine particle emission reduction device of burning energy system based on acoustic agglomeration principle
CN103877824B (en) * 2014-04-10 2015-12-09 中国人民解放军国防科学技术大学 Based on the Combustion Energy origin system fine particle emission reduction device of acoustic agglomerator principle

Also Published As

Publication number Publication date
JPWO2009096347A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP2010063961A (en) Ultrasonic wave generating device and machinery having the same
JP5444670B2 (en) Sound playback device
JP2018134612A (en) Particle separating device
WO2009096347A1 (en) Ultrasonic wave generating device, and apparatus having the device
WO2012090433A1 (en) Electroacoustic transducer
JP6432069B2 (en) Focused ultrasonic generator
JP2017140588A (en) Dust collector
JP6156387B2 (en) Electroacoustic transducer, manufacturing method thereof, and electronic apparatus using the electroacoustic transducer
JP2021532369A (en) 1D ultrasonic transducer unit for hazard identification for vehicles
JP5790864B2 (en) Ultrasonic generator
JP2021532691A (en) 1D ultrasonic transducer unit for area monitoring
JP5693304B2 (en) Aerial ultrasonic sensor
JP6488513B2 (en) Focused sound field generator
JP6729861B2 (en) Standing wave field generator
JP5083970B2 (en) Ultrasonic sound source using striped mode diaphragm
JP6107940B2 (en) Ultrasonic generator
JP6248290B2 (en) Focused ultrasonic generator
JP2019097052A (en) Supersonic wave projection device
JPH10174829A (en) Method for collecting suspended particle and device therefor
JP2024055757A (en) Ultrasonic generation device
WO2024116460A1 (en) Ultrasonic transducer and parametric speaker provided with same
JPH09327095A (en) Ultrasonic wave transmitter
WO2023007811A1 (en) Oscillating wave radiator
JP2017140590A (en) Dust collector
KR102159856B1 (en) Ultrasonic device having large radiating area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009551503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705554

Country of ref document: EP

Kind code of ref document: A1