Nothing Special   »   [go: up one dir, main page]

WO2009091058A1 - 酸素吸収性樹脂組成物及びそれを用いた酸素吸収性容器 - Google Patents

酸素吸収性樹脂組成物及びそれを用いた酸素吸収性容器 Download PDF

Info

Publication number
WO2009091058A1
WO2009091058A1 PCT/JP2009/050624 JP2009050624W WO2009091058A1 WO 2009091058 A1 WO2009091058 A1 WO 2009091058A1 JP 2009050624 W JP2009050624 W JP 2009050624W WO 2009091058 A1 WO2009091058 A1 WO 2009091058A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
absorbing
resin composition
ethylene
group
Prior art date
Application number
PCT/JP2009/050624
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Ohta
Yui Yamaguchi
Yoichi Ishizaki
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to JP2009550074A priority Critical patent/JP5483256B2/ja
Priority to EP09703034.0A priority patent/EP2241599B1/en
Priority to KR1020107017827A priority patent/KR101239310B1/ko
Priority to CN2009801096367A priority patent/CN101977986B/zh
Priority to US12/812,931 priority patent/US8236727B2/en
Publication of WO2009091058A1 publication Critical patent/WO2009091058A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
    • C08L23/0869Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with unsaturated acids, e.g. [meth]acrylic acid; with unsaturated esters, e.g. [meth]acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
    • C08L23/0853Ethene vinyl acetate copolymers
    • C08L23/0861Saponified copolymers, e.g. ethene vinyl alcohol copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
    • C08L23/0892Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with monomers containing atoms other than carbon, hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention relates to an oxygen-absorbing resin composition and an oxygen-absorbing container using the same.
  • plastic containers have been used as packaging containers because they have advantages such as light weight, transparency and easy moldability. Since plastic containers have poor oxygen barrier properties compared to metal containers and glass containers, there is a problem in that the contents filled in the containers are chemically oxidized and deteriorated due to aerobic bacteria. In order to prevent this, some plastic containers have a multi-layered container wall and at least one layer is provided with a resin having an excellent oxygen barrier property, for example, an ethylene-vinyl alcohol copolymer layer. . Furthermore, there is a container provided with an oxygen absorption layer containing an oxygen-absorbing polyester in order to remove oxygen remaining inside the container and oxygen entering from the outside of the container (see Patent Document 1).
  • polyolefin may be blended as a diluent in order to suppress the generation of gel at the time of molding and suppress the decrease in strength after oxygen absorption. Since the compatibility with polyolefin is not good, appearance defects such as a decrease in cohesive force of the oxygen absorbing layer and unevenness on the film surface are likely to occur.
  • the present invention improves the compatibility between oxygen-absorbing polyester and polyolefin, suppresses the occurrence of poor appearance such as a decrease in cohesive force and unevenness of the oxygen-absorbing layer, and has an excellent performance. The purpose is to provide goods.
  • the present invention provides an oxygen-absorbing resin composition characterized by being melt-kneaded using the component (C) as a compatibilizer together with the following components (A) and (B): (A) component: oxygen-absorbing polyester, (B) component: polyolefin, Component (C): A copolymer of ethylene and a vinyl monomer having a hydroxyl group or an ester bond, wherein the ethylene ratio is 70 to 99 mol%.
  • the compatibility between the oxygen-absorbing polyester and the polyolefin is increased. It was possible to provide an oxygen-absorbing resin composition that suppresses the occurrence of poor appearance such as a decrease in cohesive strength and unevenness of the oxygen-absorbing layer and has excellent performance.
  • the oxygen-absorbing polyester is not particularly limited as long as it is an oxygen-absorbing polyester.
  • the oxygen-absorbing polyester is obtained by polymerizing a raw material containing a monomer selected from the group consisting of the following monomer (i) and monomer (ii): Monomer (i) a monomer that is bonded to both groups of the following structures (a) and (b) and that contains a carbon atom bonded to one or two hydrogen atoms in the alicyclic structure; (A) a carbon-carbon double bond group, (B) a group selected from the group consisting of a functional group containing a hetero atom, a bonding group derived from the functional group, a carbon-carbon double bond group, and an aromatic ring; (Ii) A carbon atom adjacent to the carbon-carbon double bond in the unsaturated alicyclic structure is bonded to an electron donating substituent and a hydrogen atom, and another carbon atom adjacent to the carbon
  • the alicyclic structure of the monomer (i) may be a heterocyclic structure containing a hetero atom in the ring. Further, it may be either monocyclic or polycyclic, and in the case of polycyclic, the ring not containing carbon may be an aromatic ring.
  • the alicyclic structure is preferably a 3- to 12-membered monocyclic or polycyclic structure, more preferably a 5- or 6-membered monocyclic structure, and still more preferably a 6-membered monocyclic structure.
  • Three- and four-membered ring structures have large strain energy and are easily opened to form chain structures. Moreover, since it becomes difficult to synthesize a 7-membered ring or more as the ring becomes larger, it is disadvantageous for industrial use.
  • a 6-membered ring structure is preferable because it is energetically stable and can be easily synthesized.
  • the alicyclic structure contains carbon atoms bonded to both structure (a) and structure (b) and bonded to one or two hydrogen atoms.
  • the alicyclic structure includes a carbon-carbon double bond group of the structure (a) in the alicyclic structure.
  • Examples of the functional group containing a hetero atom of the structure (b) of the monomer (i) and a linking group derived from the functional group include a hydroxyl group, a carboxyl group, a formyl group, an amide group, a carbonyl group, an amino group, an ether bond, Examples include an ester bond, an amide bond, a urethane bond, and a urea bond.
  • the hetero atom is a functional group containing oxygen and a bonding group derived from the functional group, such as a hydroxyl group, a carboxyl group, a formyl group, an amide group, a carbonyl group, an ether bond, an ester bond, an amide bond, Urethane bond and urea bond. More preferred are a carboxyl group, a carbonyl group, an amide group, an ester bond and an amide bond. Since the monomer (i) having these functional groups and bonding groups can be prepared by a relatively simple synthesis reaction, it is advantageous for industrial use.
  • Examples of the aromatic ring of the structure (b) of the monomer (i) include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a diphenyl ring. Preferred are a benzene ring and a naphthalene ring, and more preferred is a benzene ring. Moreover, it is preferable that the carbon atom which couple
  • One of the two hydrogen atoms bonded to the carbon atom is substituted with, for example, an alkyl group, and as a result, the number of hydrogen atoms becomes one, so that the oxygen absorption performance is further improved.
  • Derivatives include esters, acid anhydrides, acid halides, substituents, oligomers, and the like.
  • the unsaturated alicyclic structure of monomer (ii) may be a heterocyclic structure containing a hetero atom in the ring. Further, it may be monocyclic or polycyclic, and in the case of polycyclic, the ring not containing a carbon atom bonded to the electron donating substituent may be an aromatic ring.
  • the unsaturated alicyclic structure is preferably a 3- to 12-membered monocyclic or polycyclic structure, more preferably a 5- or 6-membered monocyclic structure, and further preferably a 6-membered monocyclic structure.
  • a 6-membered ring structure is preferable as the resin structure of the present invention because it is stable in terms of energy and can be easily synthesized.
  • Examples of the electron donating substituent of the monomer (ii) include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group butyl group, sec-butyl group and tert-butyl group, hydroxyl group, methoxy group, ethoxy group, Examples thereof include amino groups and derivatives thereof. Preferably, they are a methyl group, an ethyl group, a methoxy group, and an ethoxy group. More preferred are a methyl group and an ethyl group.
  • Examples of the functional group containing a hetero atom of the monomer (ii) or a linking group derived from the functional group include a hydroxyl group, a carboxyl group, an acid anhydride group, a formyl group, an amide group, a carbonyl group, an amino group, an ether bond, Examples include an ester bond, an amide bond, a urethane bond, and a urea bond.
  • the hetero atom is a functional group containing an oxygen atom or a linking group derived from the functional group, such as a hydroxyl group, a carboxyl group, an acid anhydride group, a formyl group, an amide group, a carbonyl group, an ether bond, An ester bond, an amide bond, a urethane bond and a urea bond. More preferred are a hydroxyl group, a carboxyl group, an acid anhydride group, a carbonyl group, an ether bond, an ester bond and an amide bond. Since the monomer (ii) having these functional groups and bonding groups can be prepared by a relatively simple synthesis reaction, it is advantageous for industrial use.
  • the aforementioned monomer (i) and monomer (ii) can be used alone or in combination of two or more.
  • the monomer (i) and the monomer (ii) unit are 5 to 50 of all the monomer units contained in the resin. It is preferably a mol%, more preferably 7.5 to 40 mol%, still more preferably 10 to 30 mol%. When it is within the above range, a resin having excellent oxygen absorption performance and suppressing gel during polymerization or molding can be obtained.
  • the oxygen-absorbing polyester obtained by polymerizing the raw material containing the monomer (i) and the monomer (ii) may be added with an oxygen-absorbing reaction catalyst (oxidation catalyst) in order to accelerate the reaction. Since the reactivity with oxygen is extremely high, practical oxygen absorption performance can be expressed in the absence of an oxygen absorption reaction catalyst. Further, when molding using the oxygen-absorbing resin composition of the present invention, a catalyst amount of oxygen-absorbing reaction catalyst may not be included in order to prevent excessive resin deterioration caused by the oxygen-absorbing reaction catalyst. desirable.
  • the oxygen absorption reaction catalyst include transition metal salts composed of a transition metal of manganese, iron, cobalt, nickel, and copper and an organic acid. Further, “not containing a catalytic amount of an oxygen-absorbing reaction catalyst” generally means that the oxygen-absorbing reaction catalyst is less than 10 ppm in terms of the amount of transition metal, and preferably less than 1 ppm.
  • the oxygen-absorbing polyester is preferably obtained by polymerizing a raw material containing a monomer having a tetrahydrophthalic acid or tetrahydrophthalic anhydride structure.
  • the monomer having a tetrahydrophthalic acid or tetrahydrophthalic anhydride structure is preferably selected from the group consisting of ⁇ 3 -tetrahydrophthalic acid and derivatives thereof corresponding to monomer (i) and ⁇ 3 -tetrahydrophthalic anhydride and derivatives thereof.
  • the monomer having a tetrahydrophthalic acid or tetrahydrophthalic anhydride structure is selected from the group consisting of 4-methyl- ⁇ 3 -tetrahydrophthalic acid and derivatives thereof, and 4-methyl- ⁇ 3 -tetrahydrophthalic anhydride and derivatives thereof. To be elected. Also preferred are monomers selected from the group consisting of cis-3-methyl- ⁇ 4 -tetrahydrophthalic acid and its derivatives, cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride and its derivatives corresponding to monomer (ii). .
  • Tetrahydrophthalic anhydride derivatives can be synthesized very easily by Diels-Alder reaction of maleic anhydride with dienes such as butadiene, isoprene and piperylene.
  • dienes such as butadiene, isoprene and piperylene.
  • cis-3-methyl- ⁇ 4 -tetrahydrophthalic anhydride and 4-methyl- ⁇ 4 -tetrahydroanhydride obtained by reacting a naphtha C 5 fraction mainly composed of trans-piperylene and isoprene with maleic anhydride.
  • a mixture of phthalic acid is produced by stereoisomerization or structural isomerization.
  • Component (A) used in the oxygen-absorbing resin composition of the present invention can be polymerized by a reaction between a monomer having a tetrahydrophthalic acid or tetrahydrophthalic anhydride structure and a diol component.
  • diol component examples include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 3-methyl- 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 2-phenyl Propanediol, 2- (4-hydroxyphenyl) ethyl alcohol, ⁇ , ⁇ -dihydroxy-1,3-diisopropylbenzene, o-xylene glycol, m-xylene glycol, p-xylene glycol, ⁇ ⁇ - dihydroxy-1,4-diisopropy
  • aliphatic diols such as diethylene glycol, triethylene glycol, 1,4-butanediol, and 1,6-hexanediol, and more preferred is 1,4-butanediol.
  • 1,4-butanediol When 1,4-butanediol is used, the oxygen absorption performance of the resin is high, and the amount of decomposition products generated during the auto-oxidation process is also small. These can be used alone or in combination of two or more.
  • a small amount of a polyhydric alcohol having three or more hydroxyl groups such as glycerin, trimethylolpropane, pentaerythritol may be added.
  • component (A) used in the oxygen-absorbing resin composition of the present invention in the polymerization of oxygen-absorbing polyester, other dicarboxylic acid components can also be used as monomers.
  • Dicarboxylic acid components include succinic acid, oxalic acid, malonic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, 3,3-dimethylpentanedioic acid, etc.
  • aliphatic dicarboxylic acids such as alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, and aromatic dicarboxylic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • aromatic dicarboxylic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • it is a dicarboxylic acid in which a carboxyl group is directly bonded to an aromatic ring or a derivative thereof, and examples thereof include phthalic anhydride, isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, and derivatives thereof.
  • the derivatives include esters, acid anhydrides, acid halides, substituted products, oligomers, and the like. These can be used alone or in combination of two or more.
  • the case containing terephthalic acid is preferable, and the case containing terephthalic acid and isophthalic acid is more preferable.
  • a small amount of a polyvalent carboxylic acid having three or more carboxyl groups such as trimellitic acid or 1,2,3,4-butanetetracarboxylic acid or an acid anhydride thereof may be added.
  • These acid components may be esterified, for example, methyl ester.
  • Component (A) used in the oxygen-absorbing resin composition of the present invention As the oxygen-absorbing polyester, a raw material containing tetrahydrophthalic acid or a monomer having a tetrahydrophthalic anhydride structure, 1,4-butanediol and terephthalic acid is polymerized Polyester formed as described above is preferable.
  • component (A) used in the oxygen-absorbing resin composition of the present invention in the polymerization of oxygen-absorbing polyester, monomer components include hydroxycarboxylic acids such as glycolic acid, lactic acid, hydroxypivalic acid, hydroxycaproic acid, and hydroxyhexanoic acid. Acids and hydroxycarboxylic acid esters thereof, cyclic esters such as glycolide and lactide, or lactones such as ⁇ -caprolactone can also be added.
  • hydroxycarboxylic acids such as glycolic acid, lactic acid, hydroxypivalic acid, hydroxycaproic acid, and hydroxyhexanoic acid.
  • Acids and hydroxycarboxylic acid esters thereof, cyclic esters such as glycolide and lactide, or lactones such as ⁇ -caprolactone can also be added.
  • Component (A) used in the oxygen-absorbing resin composition of the present invention In the polymerization of oxygen-absorbing polyester, a polymerization catalyst is not necessarily required, but titanium-based, germanium-based, antimony-based, tin-based, aluminum-based, etc. A normal polyester polymerization catalyst can be used. Further, known polymerization catalysts such as nitrogen-containing basic compounds, boric acid and boric acid esters, and organic sulfonic acid compounds can also be used.
  • Component (A) used in the oxygen-absorbing resin composition of the present invention The number-average molecular weight of the oxygen-absorbing polyester is preferably 1,000 to 1,000,000, more preferably 2,000 to 200,000.
  • the component (A) used in the oxygen-absorbing resin composition of the present invention an oxygen-absorbing polyester, a copolymer obtained by a transesterification reaction between the polyester and a saturated polyester resin may be used.
  • a copolymer obtained by a transesterification reaction between the polyester and a saturated polyester resin may be used.
  • the polyester In the polymerization of the polyester, it is difficult to increase the molecular weight, and a resin having a practically sufficient strength may not be obtained.
  • the resin can have a high molecular weight, and the strength that can withstand practical use can be ensured.
  • Saturated polyester resins include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), glycol-modified polyethylene terephthalate (PETG), polyethylene succinate (PES), poly Examples include butylene succinate (PBS), polylactic acid, polyglycolic acid, polycaprolactone, and polyhydroxyalkanoate.
  • the number average molecular weight of the oxygen-absorbing polyester after copolymerization is preferably 1,000 to 1,000,000, more preferably 2,000 to 200,000.
  • the copolymerization by the transesterification is preferable because it can be easily achieved by, for example, a reactive extrusion method.
  • the polyester can be copolymerized by reaction with a resin having a reactive functional group at the terminal or side chain, such as polyether such as polyethylene glycol, polyamide, acid-modified polyolefin, and the like.
  • Component (B) used in the oxygen-absorbing resin composition of the present invention for example, polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, and linear ultra low density polyethylene, polypropylene , Poly-1-butene, poly-4-methyl-1-pentene, or random or block copolymers of ⁇ -olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and cyclic polyolefin polymers And polyolefins such as (COP) and cyclic olefin copolymer (COC).
  • the component (B): polyolefin is polyethylene, and particularly low density polyethylene is preferred.
  • the weight ratio of the component (A) to the component (B) is preferably 4: 1 to 3: 7, more preferably 7: 3 to 2: 3. .
  • the ratio of the component (B) is high, the gel during the molding process is suppressed and the moldability is good, and when the ratio of the component (A) is increased, the oxygen absorption performance is improved, so the thickness of the oxygen absorbing layer is reduced. can do.
  • Component (C) used in the oxygen-absorbing resin composition of the present invention In a copolymer of ethylene and a vinyl monomer having a hydroxyl group or an ester bond, the ethylene ratio in the copolymer is preferably 70 to 99 mol%. More preferably 75 to 99 mol%, most preferably 80 to 99 mol%. In the case of the above range, it is excellent as a compatibilizer for the component (A) and the component (B).
  • Examples of the copolymer of ethylene and a vinyl monomer having a hydroxyl group or an ester bond include, for example, a copolymer of ethylene and a vinyl ester monomer, a copolymer of ethylene and an alkenyl alcohol monomer, and ethylene and (meth) acrylic acid. Examples include copolymers with ester monomers. Copolymers of ethylene and vinyl ester monomers include ethylene-vinyl formate copolymer, ethylene-vinyl acetate copolymer, ethylene-allyl acetate copolymer, ethylene propionate vinyl copolymer, ethylene-vinyl butyrate.
  • Copolymers examples include copolymers, ethylene-vinyl isobutyrate copolymers, ethylene-2-ethylhexanoic acid vinyl copolymers, and ethylene-vinyl benzoate copolymers.
  • Copolymers of ethylene and alkenyl alcohol monomers include ethylene-vinyl alcohol copolymer, ethylene-allyl alcohol copolymer, ethylene-3-buten-1-ol copolymer, ethylene-4-pentene-1 -All copolymer, ethylene-5-hexen-1-ol copolymer and the like.
  • an ethylene-vinyl alcohol copolymer is advantageous for industrial use because it can be easily obtained by saponification of an ethylene-vinyl acetate copolymer.
  • copolymers of ethylene and (meth) acrylic acid ester monomers include ethylene-methyl (meth) acrylate copolymers, ethylene-ethyl (meth) acrylate copolymers, and ethylene-butyl (meth) acrylate copolymers.
  • Ethylene such as ethylene-isobutyl (meth) acrylate copolymer, ethylene-cyclohexyl (meth) acrylate copolymer, ethylene-2-ethylhexyl (meth) acrylate copolymer, tert-butylcyclohexyl (meth) acrylate copolymer -Alkyl (meth) acrylate copolymer, ethylene-glycidyl (meth) acrylate copolymer, ethylene-glycerin mono (meth) acrylate copolymer, ethylene-2-hydroxyethyl (meth) acrylate copolymer, ethylene-hydroxy Professional (Meth) acrylate copolymer, ethylene-polyethylene glycol mono (meth) acrylate copolymer, ethylene-polypropylene glycol mono (meth) acrylate copolymer, ethylene-methoxypolyethylene glycol (meth) acrylate cop
  • the copolymer of ethylene and a vinyl monomer having a hydroxyl group or an ester bond is preferably an ethylene-vinyl acetate copolymer, an ethylene-vinyl alcohol copolymer, an ethylene-allyl alcohol copolymer, an ethylene-alkyl ( It is a (meth) acrylate copolymer.
  • an ethylene-vinyl alcohol copolymer and an ethylene-alkyl (meth) acrylate copolymer are more preferable, and an ethylene-vinyl alcohol copolymer and an ethylene-methyl acrylate copolymer are more preferable.
  • the use of an ethylene-vinyl alcohol copolymer is preferable because oxygen absorption performance is improved.
  • the saponification degree of the ethylene-vinyl alcohol copolymer is preferably 90 mol% or more, and more preferably complete saponification. These can be used alone or in combination of two or more.
  • the oxygen-absorbing resin composition of the present invention is obtained by melting and kneading the component (C) together with the component (A) and the component (B) while heating them using an extruder or the like.
  • component (C) when an ethylene-vinyl alcohol copolymer is used as component (C), a transesterification reaction with component (A) is likely to occur, and a segment derived from component (A) is added to the side chain of component (C).
  • the resulting graft polymer is produced, and as a result, the melt tension of the resulting resin composition becomes high and the extrusion laminate suitability is improved, which is preferable.
  • the component (C) is preferably 1 to 50% by weight, more preferably 2 to 25% by weight based on the total weight of the components (A) and (B). Used in the amount of%.
  • the amount is within the above range, a film having a good appearance in which compatibility is increased, the cohesive force of the oxygen absorbing layer is improved, and unevenness on the surface is suppressed is obtained.
  • resins having a number of carboxyl groups in the structure such as maleic anhydride graft-modified polyethylene, ethylene-maleic anhydride copolymer, ethylene- (meth) acrylic acid copolymer, or ring-opening reaction
  • a resin that generates a carboxyl group it is not preferable as a compatibilizing agent of the present invention because the oxygen absorption reaction may be inhibited and the performance may be significantly reduced.
  • the reactivity of the oxygen-absorbing resin composition of the present invention is activated by the thermal history received by the resin during resin synthesis and molding. It is also possible to increase the reactivity by positively applying heat, or to suppress the reaction by suppressing the heat history. For example, when the reactivity is suppressed, the reactivity can be increased by performing a radiation irradiation treatment.
  • the radiation used in the oxygen-absorbing resin composition used in the present invention is a particle beam such as an electron beam, a proton beam and a neutron beam, or an electromagnetic wave such as a gamma ray, an X-ray, a visible ray and an ultraviolet ray. Among these, low energy radiation such as visible light and ultraviolet light is particularly preferable, and ultraviolet light is more preferable.
  • UV-A As the ultraviolet irradiation condition, for example, UV-A with an integrated light quantity of 100 to 10,000 mJ / cm 2 is preferable.
  • the timing of ultraviolet irradiation is not particularly limited, but when used as an oxygen-absorbing container, in order to effectively utilize the oxygen-absorbing performance, the container is preferably molded and immediately before being filled and sealed.
  • the oxygen-absorbing resin composition of the present invention may further contain a thermoplastic resin other than the component (B) and the component (C).
  • a thermoplastic resin other than the component (B) and the component (C) any thermoplastic resin can be used.
  • acid-modified polyolefin such as maleic anhydride grafted polyethylene and maleic anhydride grafted polypropylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-vinyl chloride copolymer, ethylene- (meth) acrylic acid Copolymers, ionic cross-linked products thereof (ionomers), ethylene-vinyl compound copolymers such as ethylene-methyl methacrylate copolymers, polystyrene, acrylonitrile-styrene copolymers, ⁇ -methylstyrene-styrene copolymers, etc.
  • Polystyrene compounds such as styrene resin, polymethyl acrylate, polymethyl methacrylate, nylon 6, nylon 66, nylon 610, nylon 12, polymetaxylylene adipamide (MXD6), polyethylene terephthalate (PET) Polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), glycol-modified polyethylene terephthalate (PETG), polyethylene succinate (PES), polybutylene succinate (PBS), polylactic acid, polyglycol Examples thereof include polyesters such as acid, polycaprolactone and polyhydroxyalkanoate, polyethers such as polycarbonate and polyethylene oxide, and mixtures thereof.
  • the oxygen-absorbing resin composition of the present invention may further contain various additives such as a radical initiator and a photosensitizer.
  • radical initiators and photosensitizers include benzoin such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether and alkyl ethers thereof; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2- Diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propane-1 -Acetophenones such as ON; anthraquinones such as 2-methylanthraquinone and 2-amylanthraquinone; 2,4-dimethylthioxanthone,
  • additives include fillers, colorants, heat stabilizers, weathering stabilizers, antioxidants, anti-aging agents, light stabilizers, UV absorbers, antistatic agents, lubricants such as metal soap and wax,
  • lubricants such as metal soap and wax
  • An additive such as a quality resin or rubber may be mentioned, and it can be added according to a formulation known per se. For example, by incorporating a lubricant, the bite of the resin into the screw is improved.
  • Lubricants include metal soaps such as magnesium stearate and calcium stearate, hydrocarbons such as fluid, natural or synthetic paraffin, micro wax, polyethylene wax and chlorinated polyethylene wax, and fatty acids such as stearic acid and lauric acid.
  • the oxygen-absorbing resin composition of the present invention can be used for oxygen absorption in a sealed package in the form of powder, granules or sheets. Moreover, it can mix
  • the oxygen-absorbing resin and the oxygen-absorbing resin composition of the present invention are preferably used as an oxygen-absorbing container in the form of a laminate composed of at least one layer containing the same and another resin layer.
  • the oxygen-absorbing container of the present invention has at least one layer composed of the above-described oxygen-absorbing resin composition (hereinafter referred to as an oxygen-absorbing layer).
  • the layers other than the oxygen absorbing layer constituting the oxygen-absorbing container of the present invention can be appropriately selected from thermoplastic resins, thermosetting resins, inorganic materials such as metals, paper, and the like depending on the use mode and required functions.
  • An oxygen barrier resin can be used for the oxygen barrier layer.
  • An example of the oxygen barrier resin is an ethylene-vinyl alcohol copolymer (EVOH).
  • EVOH ethylene-vinyl alcohol copolymer
  • a saponified copolymer obtained by saponification is used.
  • oxygen barrier resin examples include polymetaxylylene adipamide (MXD6), polyglycolic acid and the like.
  • MXD6 polymetaxylylene adipamide
  • blended inorganic layered compounds, such as montmorillonite, etc. with said oxygen barrier resin, another polyamide resin, etc. can be used conveniently.
  • the oxygen-absorbing container of the present invention is a film container such as a pouch
  • a metal foil such as a light metal foil such as aluminum, an iron foil, a tin foil, a surface-treated steel foil, a biaxially stretched PET film by a vapor deposition method
  • a metal thin film, a metal oxide thin film, or a diamond-like carbon thin film formed on a substrate such as the above can be used as the oxygen barrier layer.
  • a barrier coating film obtained by applying an oxygen barrier coating to a base film such as a biaxially stretched PET film can also be used.
  • the material constituting the metal thin film include iron, aluminum, zinc, titanium, magnesium, tin, copper, and silicon. Aluminum is particularly preferable.
  • Examples of the material constituting the metal oxide thin film include silica, alumina, zirconium oxide, titanium oxide, magnesium oxide and the like, and silica and alumina are particularly preferable. Note that two or more materials may be used in combination, and the same or different materials may be laminated.
  • Such a thin film can be deposited by, for example, vacuum vapor deposition, sputtering, ion plating, physical vapor deposition (PVD) such as laser ablation, plasma chemical vapor deposition, thermal chemical vapor deposition, or the like. Further, it is performed by a known method such as a chemical vapor deposition method (CVD method) such as a photochemical vapor deposition method.
  • CVD method chemical vapor deposition method
  • Materials constituting the oxygen barrier coating include high hydrogen bonding resins such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer, poly (meth) acrylic acid, polyallylamine, polyacrylamide, polysaccharides, vinylidene chloride resins, An epoxyamine etc. are mentioned. It is also preferable to blend an inorganic layered compound such as montmorillonite with these materials. Moreover, what has an oxygen absorptive barrier layer which mix
  • a molding method known per se can be used for the production of the oxygen-absorbing container.
  • a multilayer film, a multilayer sheet, a multilayer parison, a multilayer pipe, or the like can be formed by performing extrusion molding using a multilayer multiple die using the number of extruders corresponding to the type of resin.
  • a multilayer preform for bottle molding can be manufactured by co-injection molding such as a simultaneous injection method or a sequential injection method using the number of injection molding machines corresponding to the type of resin.
  • an extrusion coating method or sandwich lamination can be used.
  • the single layer and multilayer film which were formed previously can also be laminated
  • a biaxially stretched PET film / aluminum foil laminated by dry lamination is laminated by dry lamination on a three-layer coextruded film composed of a thermoplastic resin layer / oxygen absorbing layer / thermoplastic resin (sealant) layer.
  • Examples of the method include sandwich lamination via a resin composition, but are not limited thereto.
  • Packaging materials such as films can be used as pouches in various forms and as lid materials for tray cups.
  • Examples of the pouch include three- or four-side sealed flat pouches, gusseted pouches, standing pouches, pillow packaging bags, and the like. Bag making can be performed by a known bag making method.
  • a cup or tray-shaped packaging container can be obtained by subjecting the film or sheet to means such as vacuum forming, pressure forming, bulging forming, or plug assist forming.
  • a parison, a pipe, or a preform is pinched off by a pair of split molds, and a bottle or a tube can be easily formed by blowing a fluid into the inside.
  • a pipe and a preform after cooling a pipe and a preform, it is heated to a stretching temperature, stretched in the axial direction, and blow stretched in the circumferential direction by fluid pressure to obtain a stretch blow bottle or the like.
  • the oxygen-absorbing container of the present invention effectively blocks oxygen permeating from the outside through the container wall and absorbs oxygen remaining in the container. Therefore, it is useful as a container that keeps the oxygen concentration in the container at a low level for a long period of time, prevents the quality deterioration related to the oxygen in the contents, and improves the shelf life.
  • content that easily deteriorates in the presence of oxygen such as coffee beans, tea leaves, snacks, rice crackers, raw and half-baked confectionery, fruits, nuts, vegetables, fish and meat products, kneaded products, dried fish, smoked and boiled ,
  • Raw rice, cooked rice, infant food, jam, mayonnaise, ketchup, cooking oil, dressing, sauces, dairy products, beverages such as beer, wine, fruit juice, green tea, coffee, etc., pharmaceuticals, cosmetics, electronic parts in others
  • composition ratio of polyester resin The composition ratio of the acid component contained in the resin was calculated by 1 H-NMR (manufactured by JEOL Datum; EX270). Specifically, benzene ring proton derived from terephthalic acid (8.1 ppm), methylene proton adjacent to an ester group derived from methyltetrahydrophthalic anhydride (4.1-4.2 ppm), derived from terephthalic acid The composition ratio of the acid component in the resin was calculated from the area ratio of signals of methylene protons (4.3 to 4.4 ppm) adjacent to the ester group. The solvent used was deuterated chloroform containing tetramethylsilane as a reference substance. The composition ratio of the following polyester resin A was substantially equal to the charged amount (molar ratio) of each monomer used for the polymerization.
  • MI Melt viscosity
  • Oxygen absorption performance (oxygen absorption)
  • the cut laminated film was charged into an oxygen-impermeable steel foil laminated cup having an internal volume of 85 cm 3 , heat-sealed with an aluminum foil laminated film lid, and stored in an atmosphere at 22 ° C.
  • the oxygen concentration in the cup after storage for a fixed time was measured with a micro gas chromatograph (manufactured by Agilent Technologies; M200), and the amount of oxygen absorbed per 1 cm 2 of the laminated film was calculated.
  • Example 1 50 parts by weight of oxygen-absorbing polyester A, 47.5 parts by weight of LDPE resin (manufactured by Ube Maruzen Polyethylene; L719), and ethylene-vinyl alcohol copolymer (EVOH) having an ethylene ratio of 89 mol% as a compatibilizer (EVOH) ( Tosoh Co., Ltd .; Mersen H-6051K, fully saponified product) is dry blended into 2.5 parts by weight, and supplied to a twin screw extruder (ULT Nano05-20AG, manufactured by Technobel) equipped with a strand die at the outlet. While pulling a high vacuum vent at a rotation speed of 300 rpm, the mixture was kneaded at a molding temperature of 180 ° C.
  • oxygen-absorbing resin compositions shown in Table 1 were subjected to an aluminum oxide vapor-deposited biaxially stretched polyethylene terephthalate (PET) film (manufactured by Toppan Printing Co., Ltd .; GL-ARH-F) under an extrusion temperature condition of 200 ° C.
  • PET aluminum oxide vapor-deposited biaxially stretched polyethylene terephthalate
  • GL-ARH-F polyethylene terephthalate
  • Extrusion lamination suitability of the oxygen-absorbing layer of the laminated film, the appearance of the obtained laminated film, and 20 cm 2 of the laminated film were cut out to evaluate the oxygen absorption performance. The results are shown in Table 2.
  • Example 2 The oxygen-absorbing resin shown in Table 1 was the same as in Example 1 except that 50 parts by weight of oxygen-absorbing polyester A, 45 parts by weight of LDPE, and 5 parts by weight of EVOH having an ethylene ratio of 89 mol% as a compatibilizer were used. A composition was prepared. Subsequently, the laminated film was produced similarly to Example 1 and evaluated. The results are shown in Table 2.
  • Example 3 The oxygen-absorbing resin shown in Table 1 was the same as in Example 1 except that 50 parts by weight of oxygen-absorbing polyester A, 40 parts by weight of LDPE, and 10 parts by weight of EVOH having an ethylene ratio of 89 mol% as a compatibilizer were used. A composition was prepared. Subsequently, the laminated film was produced similarly to Example 1 and evaluated. The results are shown in Table 2.
  • Example 4 The oxygen-absorbing resin shown in Table 1 was the same as in Example 1 except that 50 parts by weight of oxygen-absorbing polyester A, 30 parts by weight of LDPE, and 20 parts by weight of EVOH having an ethylene ratio of 89 mol% as a compatibilizer were used. A composition was prepared. Subsequently, the laminated film was produced similarly to Example 1 and evaluated. The results are shown in Table 2.
  • Example 5 The oxygen-absorbing resin shown in Table 1 is the same as in Example 1 except that 40 parts by weight of oxygen-absorbing polyester A, 55 parts by weight of LDPE, and 5 parts by weight of EVOH having an ethylene ratio of 89 mol% as a compatibilizer are used. A composition was prepared. Subsequently, the laminated film was produced similarly to Example 1 and evaluated. The results are shown in Table 2.
  • Example 6 The oxygen-absorbing resin shown in Table 1 was the same as in Example 1 except that 60 parts by weight of oxygen-absorbing polyester A, 35 parts by weight of LDPE, and 5 parts by weight of EVOH having an ethylene ratio of 89 mol% as a compatibilizer were used. A composition was prepared. Next, a laminated film was prepared and evaluated in the same manner as in Example 1 except that a transparent vapor-deposited PET film (manufactured by Tosero Corp .; Max Barrier R) was used as the oxygen barrier layer. The results are shown in Table 2.
  • Example 7 50 parts by weight of oxygen-absorbing polyester A, 45 parts by weight of LDPE, and EVOH having an ethylene ratio of 81 mol% as a compatibilizer (produced by Tosoh Corporation; an additive contained in Mersen H6960 extracted with chloroform, saponification degree 90
  • the oxygen-absorbing resin composition shown in Table 1 was prepared in the same manner as in Example 1 except that 5 parts by weight of (mol%) was used. Subsequently, the laminated film was produced similarly to Example 1 and evaluated. The results are shown in Table 2.
  • Example 8 50 parts by weight of oxygen-absorbing polyester A, 45 parts by weight of LDPE, and 5 parts by weight of ethylene-methyl acrylate copolymer (EMA) (manufactured by Nippon Polyethylene Co., Ltd .; EB330H) having an ethylene ratio of 96 mol% as a compatibilizer
  • EMA ethylene-methyl acrylate copolymer
  • Table 1 An oxygen-absorbing resin composition shown in Table 1 was prepared in the same manner as in Example 1 except that the above-described components were used. Subsequently, the laminated film was produced similarly to Example 1 and evaluated. The results are shown in Table 2.
  • Example 1 An oxygen-absorbing resin composition shown in Table 1 was prepared in the same manner as in Example 1 except that 50 parts by weight of oxygen-absorbing polyester A and 50 parts by weight of LDPE were used. Subsequently, the laminated film was produced similarly to Example 1 and evaluated. The results are shown in Table 2.
  • Comparative Example 2 50 parts by weight of oxygen-absorbing polyester A, 45 parts by weight of LDPE, 5 parts by weight of maleic anhydride graft-modified polyethylene wax (Mitsui Chemicals; 2203A, maleic anhydride graft amount: 3% by weight) as a compatibilizer
  • An oxygen-absorbing resin composition shown in Table 1 was produced in the same manner as in Example 1 except that it was used. Subsequently, the laminated film was produced similarly to Example 1 and evaluated. The results are shown in Table 2.
  • Example 4 Table 1 shows the same as in Example 1 except that 50 parts by weight of oxygen-absorbing polyester A, 45 parts by weight of LDPE, and 5 parts by weight of EVOH (Nihon Gosei Co., Ltd .; Soarnol H4815) with an ethylene ratio of 48 mol% were used. An oxygen-absorbing resin composition was produced. Subsequently, the laminated film was produced similarly to Example 1 and evaluated. The results are shown in Table 2.
  • Example 9 The LDPE layers of the laminated film produced in Example 2 were overlapped so as to face each other and four sides were heat-sealed to produce a flat pouch having an effective area of 48 cm 2 and an internal volume of 5 ml.
  • the flat pouch was stored at 22 ° C., and the oxygen concentration in the container was traced with a micro gas chromatograph (manufactured by Agilent Technologies; M200). The results are shown in Table 3.
  • Example 10 A flat pouch was prepared in the same manner as in Example 9 except that the laminated film prepared in Example 6 was used, and the oxygen concentration in the container was traced. The results are shown in Table 3.
  • Example 11 A flat pouch was prepared in the same manner as in Example 9 except that the laminated film prepared in Example 8 was used, and the oxygen concentration in the container was traced. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Packages (AREA)

Abstract

 本発明は、酸素吸収性ポリエステルとポリオレフィンとの相容性を高め、酸素吸収層の凝集力の低下や凹凸ムラなどの外観不良の発生を抑制し、かつ、優れた性能を有する酸素吸収性樹脂組成物を提供することを目的とする。本発明は、下記(A)成分と(B)成分とともに、相容化剤として(C)成分を用いて溶融混錬してなることを特徴とする酸素吸収性樹脂組成物を提供する: (A)成分:酸素吸収性ポリエステル、 (B)成分:ポリオレフィン、 (C)成分:エチレン比率が70~99モル%である、エチレンと水酸基又はエステル結合を有するビニルモノマーとの共重合体。

Description

酸素吸収性樹脂組成物及びそれを用いた酸素吸収性容器
 本発明は酸素吸収性樹脂組成物及びそれを用いた酸素吸収性容器に関する。
 近年、包装容器としては、軽量で透明且つ易成形性等の利点を有するため、各種プラスチック容器が使用されている。
 プラスチック容器は、金属容器やガラス容器と比べると、酸素バリア性が劣るため、容器内に充填された内容物の化学的酸化や好気性菌による品質低下が問題になる。
 これを防止するために、プラスチック容器の中には容器壁を多層構造とし、少なくとも一層を酸素バリア性に優れている樹脂、例えば、エチレン-ビニルアルコール共重合体の層を設けているものがある。さらには、容器内部に残存する酸素及び容器外部から侵入してくる酸素を除去するために、酸素吸収性ポリエステルを含む酸素吸収層を設けた容器がある(特許文献1参照)。
国際公開第2005/023911号パンフレット 国際公開第2005/030854号パンフレット 国際公開第2005/105887号パンフレット 国際公開第2007/058313号パンフレット 特開2007-302874号公報
 前記酸素吸収性ポリエステルを含む酸素吸収層においては、成形加工時のゲルの発生を抑制し酸素吸収後の強度低下を抑えるために希釈剤としてポリオレフィンをブレンドすることがあるが、酸素吸収性ポリエステルとポリオレフィンとの相容性が良くないために、酸素吸収層の凝集力の低下やフィルム表面の凹凸ムラなどの外観不良を生じやすい。本発明は、酸素吸収性ポリエステルとポリオレフィンとの相容性を高め、酸素吸収層の凝集力の低下や凹凸ムラなどの外観不良の発生を抑制し、かつ、優れた性能を有する酸素吸収性組成物を提供することを目的とする。
 本発明は、下記(A)成分と(B)成分とともに、相容化剤として(C)成分を用いて溶融混錬してなることを特徴とする酸素吸収性樹脂組成物を提供する:
(A)成分:酸素吸収性ポリエステル、
(B)成分:ポリオレフィン、
(C)成分:エチレン比率が70~99モル%である、エチレンと水酸基又はエステル結合を有するビニルモノマーとの共重合体。
 相容化剤として、エチレン比率が70~99モル%である、エチレンと水酸基又はエステル結合を有するビニルモノマーとの共重合体を用いることにより、酸素吸収性ポリエステルとポリオレフィンとの相容性を高めることができ、酸素吸収層の凝集力の低下や凹凸ムラなどの外観不良の発生を抑制し、かつ、優れた性能を有する酸素吸収性樹脂組成物を提供することができた。
 本発明の酸素吸収性樹脂組成物で用いる(A)成分:酸素吸収性ポリエステルとしては、酸素吸収性のポリエステルである限り、特に制限されない。好ましくは、酸素吸収性ポリエステルは、下記モノマー(i)及びモノマー(ii)からなる群より選ばれるモノマーを含む原料を重合してなる:
モノマー(i)下記構造(a)及び(b)の両方の基に結合し、かつ、1個又は2個の水素原子と結合した炭素原子が脂環構造に含まれているモノマー;
(a)炭素-炭素二重結合基、
(b)複素原子を含む官能基、該官能基から誘導される結合基、炭素-炭素二重結合基及び芳香環からなる群より選ばれる基;
(ii)不飽和脂環構造内の炭素-炭素二重結合に隣接する炭素原子が電子供与性置換基及び水素原子と結合し、かつ、該炭素原子に隣接する別の炭素原子が複素原子を含む官能基又は該官能基から誘導される結合基と結合しており、該電子供与性置換基と複素原子を含む官能基又は該官能基から誘導される結合基とがシス位に位置しているモノマー。
 前記モノマー(i)の脂環構造は、環内に複素原子を含む複素環構造であってもよい。また、単環式又は多環式のいずれであってもよく、多環式の場合、該炭素を含まない環は芳香環であってもよい。脂環構造は、好ましくは3~12員単環又は多環構造であり、より好ましくは5又は6員単環構造であり、さらに好ましくは6員単環構造である。3及び4員環構造はひずみエネルギーが大きく容易に開環して鎖状構造となり易い。また、7員環以上では環が大きくなるにつれて合成が困難となるため、工業的に使用するには不利である。特に6員環構造はエネルギー的に安定であり、合成も容易であることから好ましい。さらに、前記脂環構造は構造(a)及び構造(b)の両方に結合し、かつ、1個又は2個の水素原子と結合した炭素原子を含む。好ましくは、前記脂環構造は構造(a)の炭素-炭素二重結合基を脂環構造に含む。
 モノマー(i)の構造(b)の複素原子を含む官能基及び該官能基から誘導される結合基としては、例えば水酸基、カルボキシル基、ホルミル基、アミド基、カルボニル基、アミノ基、エーテル結合、エステル結合、アミド結合、ウレタン結合及びウレア結合等が挙げられる。好ましくは、複素原子が酸素を含んでいる官能基及び該官能基から誘導される結合基であり、例えば水酸基、カルボキシル基、ホルミル基、アミド基、カルボニル基、エーテル結合、エステル結合、アミド結合、ウレタン結合及びウレア結合である。さらに好ましくは、カルボキシル基、カルボニル基、アミド基、エステル結合及びアミド結合である。これらの官能基及び結合基を有するモノマー(i)は、比較的簡単な合成反応により調製できるため、工業的に使用する際に有利である。
 モノマー(i)の構造(b)の芳香環としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ジフェニル環等が挙げられる。好ましくは、ベンゼン環、ナフタレン環であり、さらに好ましくは、ベンゼン環である。
 また、構造(a)及び(b)の両方に結合し脂環構造に含まれている炭素原子は、1個の水素原子と結合していることが好ましい。炭素原子に結合している2個の水素原子のうちの1つが例えばアルキル基で置換され、その結果水素原子が1個となることにより、酸素吸収性能はさらに向上する。なお、誘導体には、エステル、酸無水物、酸ハロゲン化物、置換体、オリゴマー等が含まれる。
 モノマー(ii)の不飽和脂環構造は、環内に複素原子を含む複素環構造であってもよい。また、単環式又は多環式のいずれであってもよく、多環式の場合、電子供与性置換基と結合している炭素原子を含まない環は芳香環であってもよい。不飽和脂環構造は、好ましくは3~12員単環又は多環構造であり、より好ましくは5又は6員単環構造であり、さらに好ましくは6員単環構造である。特に、6員環構造はエネルギー的に安定であり、合成も容易であることから本発明の樹脂構造として好ましい。
 モノマー(ii)の電子供与性置換基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基ブチル基、sec-ブチル基、tert-ブチル基等のアルキル基、水酸基、メトキシ基、エトキシ基、アミノ基、及びこれらの誘導体等が挙げられる。好ましくは、メチル基、エチル基、メトキシ基、エトキシ基である。さらに好ましくはメチル基、エチル基である。
 モノマー(ii)の複素原子を含む官能基又は該官能基から誘導される結合基としては、例えば水酸基、カルボキシル基、酸無水物基、ホルミル基、アミド基、カルボニル基、アミノ基、エーテル結合、エステル結合、アミド結合、ウレタン結合及びウレア結合等が挙げられる。好ましくは、複素原子が酸素原子を含んでいる官能基又は該官能基から誘導される結合基であり、例えば水酸基、カルボキシル基、酸無水物基、ホルミル基、アミド基、カルボニル基、エーテル結合、エステル結合、アミド結合、ウレタン結合及びウレア結合である。さらに好ましくは水酸基、カルボキシル基、酸無水物基、カルボニル基、エーテル結合、エステル結合及びアミド結合である。これらの官能基及び結合基を有するモノマー(ii)は、比較的簡単な合成反応により調製できるため、工業的に使用する際に有利である。
 前述のモノマー(i)及びモノマー(ii)は、単独、又は、2種類以上を組み合わせて使用できる。
 モノマー(i)及びモノマー(ii)を含む原料を重合することにより得られる酸素吸収性ポリエステルにおいて、モノマー(i)及びモノマー(ii)単位は、樹脂中に含まれる全てのモノマー単位の5~50モル%である場合が好ましく、より好ましくは7.5~40モル%、さらに好ましくは10~30モル%である。上記範囲内の場合には、優れた酸素吸収性能を有し、且つ重合中や成形中のゲルが抑制された樹脂が得られる。
前述のモノマー(i)及びモノマー(ii)を含む原料を重合して得ることができる酸素吸収性ポリエステルは、反応を促進させるために酸素吸収反応触媒(酸化触媒)を添加しても良いが、酸素との反応性が極めて高いことから、酸素吸収反応触媒の不在下において、実用的な酸素吸収性能を発現することができる。また、本発明の酸素吸収性樹脂組成物を用いて成形する際に、酸素吸収反応触媒が原因となる過度の樹脂劣化を防止するためにも、触媒量の酸素吸収反応触媒を含まないことが望ましい。ここで、酸素吸収反応触媒としては、マンガン、鉄、コバルト、ニッケル、銅の遷移金属と有機酸からなる遷移金属塩が挙げられる。また、「触媒量の酸素吸収反応触媒を含まない」とは、一般に酸素吸収反応触媒が遷移金属量で10ppm未満であることを意味し、好ましくは1ppm未満である。
 本発明の酸素吸収性樹脂組成物で用いる(A)成分:酸素吸収性ポリエステルは、好ましくはテトラヒドロフタル酸又はテトラヒドロ無水フタル酸構造を有するモノマーを含む原料を重合してなる。
 テトラヒドロフタル酸又はテトラヒドロ無水フタル酸構造を有するモノマーは、好ましくはモノマー(i)に対応するΔ3-テトラヒドロフタル酸及びその誘導体並びにΔ3-テトラヒドロ無水フタル酸及びその誘導体からなる群より選ばれる。より好ましくは、テトラヒドロフタル酸又はテトラヒドロ無水フタル酸構造を有するモノマーは、4-メチル-Δ3-テトラヒドロフタル酸及びその誘導体、4-メチル-Δ3-テトラヒドロ無水フタル酸及びその誘導体からなる群より選ばれる。また、モノマー(ii)に対応するcis-3-メチル-Δ4-テトラヒドロフタル酸及びその誘導体、cis-3-メチル-Δ4-テトラヒドロ無水フタル酸及びその誘導体からなる群より選ばれるモノマーも好ましい。テトラヒドロ無水フタル酸誘導体は無水マレイン酸とブタジエン、イソプレン及びピペリレン等のジエンとのディールス・アルダー反応によって非常に容易に合成することができる。例えば、トランス-ピペリレン及びイソプレンを主成分とするナフサのC5留分を無水マレイン酸と反応させた、cis-3-メチル-Δ4-テトラヒドロ無水フタル酸と4-メチル-Δ4-テトラヒドロ無水フタル酸の混合物を、立体異性化或いは構造異性化したものが製造されている。
 本発明の酸素吸収性樹脂組成物で用いる(A)成分:酸素吸収性ポリエステルは、テトラヒドロフタル酸又はテトラヒドロ無水フタル酸構造を有するモノマーとジオール成分との反応により重合することができる。ジオール成分としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、2-フェニルプロパンジオール、2-(4―ヒドロキシフェニル)エチルアルコール、α,α―ジヒドロキシ-1,3-ジイソプロピルベンゼン、o-キシレングリコール、m-キシレングリコール、p-キシレングリコール、α,α―ジヒドロキシ-1,4-ジイソプロピルベンゼン、ヒドロキノン、4,4-ジヒドロキシジフェニル、ナフタレンジオール、又はこれらの誘導体等が挙げられる。好ましくは、脂肪族ジオール、例えばジエチレングリコール、トリエチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールであり、さらに好ましくは、1,4-ブタンジオールである。1,4-ブタンジオールを用いた場合は、樹脂の酸素吸収性能が高く、更に自動酸化の過程で生じる分解物の量も少ない。これらは、単独、又は、2種類以上を組み合わせて使用できる。また、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3個以上の水酸基を有する多価アルコールを少量添加しても良い。
 また、本発明の酸素吸収性樹脂組成物で用いる(A)成分:酸素吸収性ポリエステルの重合において、他のジカルボン酸成分をモノマーとして用いることもできる。ジカルボン酸成分としては、コハク酸、シュウ酸、マロン酸、グルタン酸、アジピン酸、ピメリン酸、ズベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、3,3-ジメチルペンタン二酸等の脂肪族ジカルボン酸やそれらの酸無水物、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、無水フタル酸、イソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。好ましくは、カルボキシル基が芳香環に直接結合しているジカルボン酸又はその誘導体であり、無水フタル酸、イソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、又はこれらの誘導体が挙げられる。ここで、誘導体には、エステル、酸無水物、酸ハロゲン化物、置換体、オリゴマー等が含まれる。これらは単独、又は、2種類以上を組み合わせて使用できる。特に、テレフタル酸を含む場合が好ましく、テレフタル酸とイソフタル酸を含む場合がさらに好ましい。また、トリメリット酸や1,2,3,4-ブタンテトラカルボン酸等の3個以上のカルボキシル基を有する多価カルボン酸やその酸無水物を少量添加しても良い。これらの酸成分は、例えばメチルエステル等、エステル化されていても良い。
 本発明の酸素吸収性樹脂組成物で用いる(A)成分:酸素吸収性ポリエステルとしては、テトラヒドロフタル酸又はテトラヒドロ無水フタル酸構造を有するモノマー、1,4-ブタンジオール及びテレフタル酸を含む原料を重合してなるポリエステルが好ましい。
 また、本発明の酸素吸収性樹脂組成物で用いる(A)成分:酸素吸収性ポリエステルの重合において、モノマー成分として、グリコール酸、乳酸、ヒドロキシピバリン酸、ヒドロキシカプロン酸、ヒドロキシヘキサン酸等のヒドロキシカルボン酸及びこれらのヒドロキシカルボン酸エステルや、グリコリド、ラクチド等の環状エステル、又はε-カプロラクトン等のラクトン類を加えることもできる。
 本発明の酸素吸収性樹脂組成物で用いる(A)成分:酸素吸収性ポリエステルの重合において、重合触媒は必ずとも必要としないが、チタン系、ゲルマニウム系、アンチモン系、スズ系、アルミニウム系等の通常のポリエステル重合触媒が使用可能である。また、含窒素塩基性化合物、ホウ酸及びホウ酸エステル、有機スルホン酸系化合物等の公知の重合触媒を使用することもできる。
 本発明の酸素吸収性樹脂組成物で用いる(A)成分:酸素吸収性ポリエステルの数平均分子量は、好ましくは1000~1000000であり、より好ましくは2000~200000である。上記範囲内の数平均分子量の場合には、加工性及び耐久性に優れたフィルムを成形することができる。また、重合の際にはリン化合物等の着色防止剤や酸化防止剤等の各種添加剤を添加することもできる。酸化防止剤を添加することにより、重合中やその後の成形加工中の酸素吸収を抑制できるため、酸素吸収性樹脂の性能低下を抑えることができる。
 さらに、本発明の酸素吸収性樹脂組成物で用いる(A)成分:酸素吸収性ポリエステルとして、前記ポリエステルと飽和ポリエステル樹脂とのエステル交換反応によりコポリマーとしたものを用いることもできる。前記ポリエステルの重合では、高分子量化することが困難で、実用上十分な強度を有する樹脂が得られない場合がある。しかしながらこのようにコポリマー化することで、樹脂を高分子量化し、実用に耐え得る強度を確保することができる。飽和ポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、グリコール変性ポリエチレンテレフタレート(PETG)、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシアルカノエート等が挙げられる。また、コポリマー化後の酸素吸収性ポリエステルの数平均分子量は、好ましくは1000~1000000であり、より好ましくは2000~200000である。
 前記のエステル交換反応によるコポリマー化は、例えば反応押出法により容易に達成することができるため好ましい。
 他にも、前記ポリエステルはポリエチレングリコール等のポリエーテルやポリアミド、酸変性ポリオレフィン等、末端や側鎖に反応性官能基を有する樹脂との反応により、コポリマー化することもできる。
 本発明の酸素吸収性樹脂組成物で用いる(B)成分:ポリオレフィンとしては、例えば低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン等のポリエチレン、ポリプロピレン、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン、或いはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダム又はブロック共重合体、環状ポリオレフィンポリマー(COP)、環状オレフィンコポリマー(COC)等のポリオレフィン等が挙げられる。
 好ましくは、(B)成分:ポリオレフィンはポリエチレンであり、特に低密度ポリエチレンが好ましい。
 これらのポリオレフィンは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明の酸素吸収性樹脂組成物において、(A)成分と(B)成分との重量比は、好ましくは4:1~3:7であり、より好ましくは7:3~2:3である。(B)成分の比率が高い場合には、成形加工時のゲルが抑制され成形性も良く、また(A)成分の比率を高くすれば酸素吸収性能が向上するため酸素吸収層の厚みを薄くすることができる。
 本発明の酸素吸収性樹脂組成物で用いる(C)成分:エチレンと水酸基又はエステル結合を有するビニルモノマーとの共重合体において、共重合体中のエチレン比率は、好ましくは70~99モル%であり、さらに好ましくは75~99モル%であり、80~99モル%である場合が最も好ましい。上記範囲内の場合には、(A)成分と(B)成分の相容化剤として優れている。
 エチレンと水酸基又はエステル結合を有するビニルモノマーとの共重合体としては、例えばエチレンとビニルエステル系モノマーとの共重合体、エチレンとアルケニルアルコール系モノマーとの共重合体、エチレンと(メタ)アクリル酸エステル系モノマーとの共重合体等が挙げられる。
 エチレンとビニルエステル系モノマーとの共重合体としては、エチレン-ギ酸ビニル共重合体、エチレン-酢酸ビニル共重合体、エチレン-酢酸アリル共重合体、エチレンプロピオン酸ビニル共重合体、エチレン-酪酸ビニル共重合体、エチレン-イソ酪酸ビニル共重合体、エチレン-2-エチルヘキサン酸ビニル共重合体、エチレン-安息香酸ビニル共重合体等が挙げられる。
 エチレンとアルケニルアルコール系モノマーとの共重合体としては、エチレン-ビニルアルコール共重合体、エチレン-アリルアルコール共重合体、エチレン-3-ブテン-1-オール共重合体、エチレン-4-ペンテン-1-オール共重合体、エチレン-5-ヘキセン-1-オール共重合体等が挙げられる。
 特に、エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体のけん化により容易に得られるため工業的に使用する際に有利である。
 エチレンと(メタ)アクリル酸エステル系モノマーとの共重合体としては、エチレン-メチル(メタ)アクリレート共重合体、エチレン-エチル(メタ)アクリレート共重合体、エチレン-ブチル(メタ)アクリレート共重合体、エチレン-イソブチル(メタ)アクリレート共重合体、エチレン-シクロヘキシル(メタ)アクリレート共重合体、エチレン-2-エチルヘキシル(メタ)アクリレート共重合体、tert-ブチルシクロヘキシル(メタ)アクリレート共重合体等のエチレン-アルキル(メタ)アクリレート共重合体、エチレン-グリシジル(メタ)アクリレート共重合体、エチレン-グリセリンモノ(メタ)アクリレート共重合体、エチレン-2-ヒドロキシエチル(メタ)アクリレート共重合体、エチレン-ヒドロキシプロピル(メタ)アクリレート共重合体、エチレン-ポリエチレングリコールモノ(メタ)アクリレート共重合体、エチレン-ポリプロピレングリコールモノ(メタ)アクリレート共重合体、エチレン-メトキシポリエチレングリコール(メタ)アクリレート共重合体等が挙げられる。
 さらに、これら共重合モノマーを用いたエチレンとの3元共重合体等も本発明の(C)成分として用いることができる。前記エチレンと水酸基又はエステル結合を有するビニルモノマーとの共重合体としては、好ましくは、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アリルアルコール共重合体、エチレン-アルキル(メタ)アクリレート共重合体である。これらの中でも、エチレン-ビニルアルコール共重合体、エチレン-アルキル(メタ)アクリレート共重合体がより好ましく、さらに好ましくは、エチレン-ビニルアルコール共重合体、エチレン-メチルアクリレート共重合体である。特に、エチレン-ビニルアルコール共重合体を用いた場合には酸素吸収性能が向上するため好ましい。
 さらに、前記エチレン-ビニルアルコール共重合体のけん化度は、90モル%以上であるのが好ましく、完全けん化である場合がより好ましい。
 これらは、単独、又は、2種類以上を組み合わせて使用できる。
 本発明の酸素吸収性樹脂組成物は、(A)成分と(B)成分とともに(C)成分を押出機等を用いて加熱しながら溶融混錬することにより得られる。特に、(C)成分としてエチレン-ビニルアルコール共重合体を用いた場合には、(A)成分とのエステル交換反応が起こり易く、(C)成分の側鎖に(A)成分由来のセグメントを有するグラフトポリマーが生成し、その結果、得られる樹脂組成物の溶融張力が高くなり押出ラミネート適正が向上するため好ましい。
 その他のブレンド方法として、良溶媒中に(A)成分と(B)成分と(C)成分を溶解させ混合した後に溶媒を除去する方法が挙げられる。
 本発明の酸素吸収性樹脂組成物において、(C)成分は、好ましくは(A)成分と(B)成分の合計重量に対して1~50重量%の量で、より好ましくは2~25重量%の量で用いられる。上記範囲内の場合には、相容性が高くなり酸素吸収層の凝集力が向上し、さらに表面の凹凸ムラが抑制された外観の良好なフィルムが得られる。
 相容性を高めるために無水マレイン酸グラフト変性ポリエチレン、エチレン-無水マレイン酸共重合体、エチレン-(メタ)アクリル酸共重合体等の構造中に多数のカルボキシル基を有する樹脂、又は開環反応によりカルボキシル基を生成するような樹脂を用いた場合には、酸素吸収反応が阻害されて性能が著しく低下する恐れがあるため本発明の相容化剤として好ましくない。
 本発明の酸素吸収性樹脂組成物の反応性は、樹脂合成時や成形加工時等、樹脂の受ける熱履歴により活性化される。積極的に熱を与えて反応性を高めたり、逆に熱履歴を抑えることにより反応を抑制したりすることも可能である。例えば、反応性を抑えた場合には、放射線照射処理を施して反応性を高めることもできる。
 本発明で用いる酸素吸収性樹脂組成物に使用される放射線は、電子線、陽子線及び中性子線等の粒子線や、ガンマ線、X線、可視光線及び紫外線等の電磁波である。この中でも特に、低エネルギー放射線である可視光線、紫外線等の光が好ましく、より好ましくは紫外線である。紫外線の照射条件としては、例えば積算光量100~10000mJ/cm2のUV-Aが好ましい。紫外線照射のタイミングは、特に限定されないが、酸素吸収性容器として使用する場合は、酸素吸収性能を効果的に活用するために、容器成形後、内容品を充填して密封する直前が好ましい。
 本発明の酸素吸収性樹脂組成物は、さらに(B)成分及び(C)成分以外の熱可塑性樹脂を含んでもよい。前記(B)成分及び(C)成分以外の熱可塑性樹脂としては、任意の熱可塑性樹脂を用いることができる。例えば、無水マレイン酸グラフトポリエチレンや無水マレイン酸グラフトポリプロピレン等の酸変性ポリオレフィン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-塩化ビニル共重合体、エチレン-(メタ)アクリル酸共重合体やそのイオン架橋物(アイオノマー)、エチレン-メタクリル酸メチル共重合体等のエチレン-ビニル化合物共重合体、ポリスチレン、アクリロニトリル-スチレン共重合体、α-メチルスチレン-スチレン共重合体等のスチレン系樹脂、ポリアクリル酸メチル、ポリメタクリル酸メチル等のポリビニル化合物、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ポリメタキシリレンアジパミド(MXD6)等のポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、グリコール変性ポリエチレンテレフタレート(PETG)、ポリエチレンサクシネート(PES)、ポリブチレンサクシネート(PBS)、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシアルカノエート等のポリエステル、ポリカーボネート、ポリエチレンオキサイド等のポリエーテル等或いはこれらの混合物等が挙げられる。
 本発明の酸素吸収性樹脂組成物には、さらにラジカル開始剤や光増感剤等の種々の添加剤を配合することができる。
 ラジカル開始剤及び光増感剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン及びそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン等のアセトフェノン類;2-メチルアントラキノン、2-アミルアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類、アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン等のベンゾフェノン類又はキサントン類等の一般に光開始剤として知られているものが使用される。かかる光ラジカル開始剤は、安息香酸系又は第三級アミン系等、公知慣用の光重合促進剤の1種又は2種以上と組み合わせて用いることができる。
 その他の添加剤としては、充填剤、着色剤、耐熱安定剤、耐候安定剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、帯電防止剤、金属セッケンやワックス等の滑剤、改質用樹脂又はゴム等の添加剤が挙げられ、それ自体公知の処方に従って添加することができる。例えば、滑剤を配合することにより、スクリューへの樹脂の食い込みが改善される。滑剤としてはステアリン酸マグネシウム、ステアリン酸カルシウム等の金属石ケン、流動、天然又は合成パラフィン、マイクロワックス、ポリエチレンワックス、塩素化ポリエチレンワックス等の炭化水素系のもの、ステアリン酸、ラウリン酸等脂肪酸系のもの、ステアリン酸アミド、バルミチン酸アミド、オレイン酸アミド、エシル酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド等の脂肪酸モノアミド系又はビスアミド系のもの、ブチルステアレート、硬化ヒマシ油、エチレングリコールモノステアレート等のエステル系のもの、及びそれらの混合系が一般的に用いられる。
 本発明の酸素吸収性樹脂組成物は、粉末、粒状又はシート等の形状で、密封包装体内の酸素吸収に使用することができる。また、ライナー、ガスケット用又は被覆形成用の樹脂やゴム中に配合して、包装体内の残留酸素吸収に用いることができる。特に、本発明の酸素吸収性樹脂及び酸素吸収性樹脂組成物は、これを含む少なくとも一層と、他の樹脂の層からなる積層体の形で酸素吸収性容器として使用することが好ましい。
 本発明の酸素吸収性容器は、上記の酸素吸収性樹脂組成物からなる層(以下、酸素吸収層という)を少なくとも1層有している。
 本発明の酸素吸収性容器を構成する酸素吸収層以外の層は、熱可塑性樹脂、熱硬化性樹脂、金属等の無機材料或いは紙等から、その使用態様や要求される機能により適宜選択できる。
 本発明の酸素吸収性容器においては、酸素吸収性樹脂或いは酸素吸収性樹脂組成物の効果をより高めるために、少なくとも酸素吸収層の外側には酸素バリア層を設けることが好ましい。このような構成にすることにより、外部から容器内に透過する酸素及び容器内に残存した酸素を効果的に吸収し、容器内の酸素濃度を長期間にわたって低く抑えることができる。
 酸素バリア層には酸素バリア性樹脂を使用することができる。酸素バリア性樹脂としては、エチレン-ビニルアルコール共重合体(EVOH)を挙げることができる。例えば、エチレン含有量が20~60モル%、好ましくは、25~50モル%であるエチレン-酢酸ビニル共重合体を、ケン化度が96モル%以上、好ましくは、99モル%以上となるようにケン化して得られる共重合体ケン化物が使用される。酸素バリア性樹脂の他の例としては、ポリメタキシリレンアジパミド(MXD6)、ポリグリコール酸等を挙げることができる。また、上記の酸素バリア性樹脂や他のポリアミド樹脂等に、モンモリロナイト等の無機層状化合物等を配合したナノコンポジット材も好適に使用できる。
 また、特に本発明の酸素吸収性容器がパウチ等のフィルム容器の場合には、アルミニウム等の軽金属箔、鉄箔、ブリキ箔、表面処理鋼箔等の金属箔、蒸着法により二軸延伸PETフィルム等の基材に形成された金属薄膜や金属酸化物薄膜、又はダイヤモンドライクカーボン薄膜を酸素バリア層として用いることができる。また、二軸延伸PETフィルム等の基材フィルムに酸素バリアコーティングを施したバリアコーティングフィルムを使用することもできる。
 金属薄膜を構成する材料としては、鉄、アルミニウム、亜鉛、チタン、マグネシウム、錫、銅、珪素等が挙げられ、特にアルミニウムが好ましい。
 金属酸化物薄膜を構成する材料としては、シリカ、アルミナ、酸化ジルコニウム、酸化チタン、酸化マグネシウム等が挙げられ、特にシリカとアルミナが好ましい。なお、用いられる材料は2種以上を併用してもよく、同種或いは異種材料で積層されていてもよい。
 このような薄膜の蒸着は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザーアブレーション等の物理気相成長法(PVD法)、或いはプラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(CVD法)等の公知の方法によって行われる。
 酸素バリアコーティングを構成する材料としては、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリ(メタ)アクリル酸、ポリアリルアミン、ポリアクリルアミド、多糖類等の高水素結合性樹脂や、塩化ビニリデン系樹脂、エポキシアミン等が挙げられる。またこれらの材料に、モンモリロナイト等の無機層状化合物等を配合することも好ましい。
 また、本発明の酸素吸収性容器として、上述の酸素バリア性樹脂に酸素吸収性樹脂組成物を配合した酸素吸収性バリア層を有するものも好ましい。この場合、必ずしも他に酸素バリア単独層および酸素吸収単独層を設ける必要が無いため、層構造を単純化できる。
 酸素吸収性容器の製造には、それ自体公知の成型法を用いることができる。
 例えば、樹脂の種類に応じた数の押出機を用いて、多層多重ダイを用いて押出成形を行うことで多層フィルム、多層シート、多層パリソン又は多層パイプ等が成形できる。また、樹脂の種類に応じた数の射出成形機を用いて、同時射出法や逐次射出法等の共射出成形によりボトル成型用の多層プリフォームを製造することができる。このような多層フィルム、パリソン、プリフォームをさらに加工することにより、酸素吸収性多層容器を得ることができる。
 多層フィルムや多層シートの製造には、押出コート法や、サンドイッチラミネーションを用いることができる。また、予め形成された単層及び多層フィルムをドライラミネーションによって積層することもできる。例えば、熱可塑性樹脂層/酸素吸収層/熱可塑性樹脂(シーラント)層から成る3層共押出フィルムに透明蒸着フィルムをドライラミネーションにより積層する、ドライラミネートにより積層した2軸延伸PETフィルム/アルミ箔の2層フィルムに酸素吸収層/シーラント層の2層をアンカー剤を介して押出コートする、又はドライラミネートにより積層したバリアコーティングフィルム/ポリエチレンの2層フィルムにポリエチレン単層フィルムをポリエチレンベースの酸素吸収性樹脂組成物を介してサンドイッチラミネーションする方法等が挙げられるが、これらに限定されるものではない。
 フィルム等の包装材料は、種々の形態のパウチや、トレイ・カップの蓋材として用いることができる。パウチとしては、例えば、三方又は四方シールの平パウチ類、ガセット付パウチ類、スタンディングパウチ類、ピロー包装袋等が挙げられる。製袋は公知の製袋法で行うことができる。また、フィルム又はシートを、真空成形、圧空成形、張出成形、プラグアシスト成形等の手段に付することにより、カップ状、トレイ状等の包装容器が得られる。
 また、パリソン、パイプ又はプリフォームを一対の割型でピンチオフし、その内部に流体を吹込むことにより容易にボトルやチューブを成形できる。また、パイプ、プリフォームを冷却した後、延伸温度に加熱し、軸方向に延伸すると共に、流体圧によって周方向にブロー延伸することにより、延伸ブローボトル等が得られる。
 本発明の酸素吸収性容器は、容器壁を介して外部から透過してくる酸素を有効に遮断し、容器内に残存した酸素を吸収する。そのため、容器内の酸素濃度を長期間低いレベルに保ち、内容物の酸素が係わる品質低下を防止し、シェルフライフを向上させる容器として有用である。
 特に、酸素存在下で劣化しやすい内容品、例えば、食品ではコーヒー豆、茶葉、スナック類、米菓、生・半生菓子、果物、ナッツ、野菜、魚・肉製品、練り製品、干物、薫製、佃煮、生米、米飯類、幼児食品、ジャム、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類、乳製品等、飲料ではビール、ワイン、フルーツジュース、緑茶、コーヒー等、その他では医薬品、化粧品、電子部品等が挙げられるが、これらの例に限定されない。
 以下、本発明を実施例により具体的に説明する。各値は以下の方法により測定した。
(1)数平均分子量(Mn)及び分子量分布指数(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー(GPC、東ソー社製;HLC-8120型GPC)により、ポリスチレン換算で測定した。溶媒にはクロロホルムを使用した。
(2)ポリエステル樹脂の組成比
 1H-NMR(日本電子データム社製;EX270)により、樹脂中に含まれる酸成分の組成比を算出した。具体的には、テレフタル酸由来のベンゼン環プロトン(8.1ppm)、メチルテトラヒドロ無水フタル酸から誘導されたエステル基に隣接するメチレンプロトン(4.1~4.2ppm)、テレフタル酸から誘導されたエステル基に隣接するメチレンプロトン(4.3~4.4ppm)のシグナルの面積比から樹脂中の酸成分の組成比をそれぞれ算出した。溶媒には基準物質としてテトラメチルシランを含む重クロロホルムを使用した。
 下記ポリエステル樹脂Aの組成比は、重合に使用した各モノマーの仕込み量(モル比)とほぼ同等であった。
(3)溶融粘度(MI)
 JIS K7210に規定されている試験方法に従い、試験温度190℃、荷重2.16kgの条件下でMI(g/10min)を測定した。
(4)溶融張力(MT)
 1mm径、8.0mm長のキャピラリーを備えた東洋精機社製キャピログラフ1Bを用いて、内径9.55mmのバレル内に樹脂を充填し、200℃に加熱溶融した樹脂を50mm/minの速度で大気中に押出してストランドとし、引取り速度20m/minでのMT(mN)を測定した。
[評価]
(1)酸素吸収性能(酸素吸収量)
 切り出した積層フィルムを、内容積85cm3の酸素不透過性のスチール箔積層カップに仕込んでアルミ箔積層フィルム蓋でヒートシール密封し、22℃雰囲気下にて保存した。一定時間保存後のカップ内酸素濃度をマイクロガスクロマトグラフ装置(アジレント・テクノロジー社製;M200)にて測定して積層フィルム1cm2当たりの酸素吸収量を算出した。
(2)押出ラミネート適正
 積層フィルムを作製する際の酸素吸収層の状態を、ネックイン及びドローダウンが生じ難い場合を○、ネックイン及びドローダウンが大きく偏肉の激しい場合を×、その中間を△として評価した。
(3)フィルムの外観
 酸素吸収層のLDPEドメインが微分散化されて積層フィルムの外観に優れる場合を○、酸素吸収層のLDPEドメインの分散不良により積層フィルム表面に凹凸ムラが見られる場合×として目視で評価した。
[酸素吸収性ポリエステルAの作製]
 攪拌装置、窒素導入管及びDean-Stark型水分離器を備えたセパラブルフラスコに、4-メチル-Δ3-テトラヒドロ無水フタル酸を45重量%含有するメチルテトラヒドロ無水フタル酸(日立化成社製;HN-2200)を100重量部、テレフタル酸(和光純薬社製)を100重量部、1,4-ブタンジオール(和光純薬社製)を220重量部それぞれ仕込み、重合触媒としてイソプロピルチタナート(300ppm、キシダ化学社製)を用いて窒素雰囲気中150℃~200℃で生成する水を除きながら約6時間反応させた。引き続いて、0.1kPaの減圧下、220℃で約2時間重合を行いゴム状の酸素吸収性ポリエステルAを得た。このときMnは約7100で、Mw/Mnは11.3であった。
 得られた樹脂は、窒素雰囲気中50℃で8時間放置して結晶化させ、さらに樹脂を冷却しながらペレット化した後、真空乾燥器内で乾燥させた。
(実施例1)
 酸素吸収性ポリエステルAを50重量部、LDPE樹脂(宇部丸善ポリエチレン社製;L719)を47.5重量部、相容化剤としてエチレン比率89モル%のエチレン-ビニルアルコール共重合体(EVOH)(東ソー社製;メルセンH-6051K、完全けん化物)を2.5重量部ドライブレンドし、出口部分にストランドダイを装着した二軸押出機(ULT Nano05-20AG、テクノベル社製)に供給し、スクリュー回転数300rpmで高真空ベントを引きながら成形温度180℃で混練し、表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、前記酸素吸収性樹脂組成物とLDPE樹脂を、200℃の押出温度条件で、酸化アルミニウム蒸着二軸延伸ポリエチレンテレフタレート(PET)フィルム(凸版印刷社製;GL-ARH-F)の蒸着面上に共押出ラミネートし、透明蒸着PET層(12μm)/酸素吸収層(60μm)/LDPE層(20μm)からなる積層フィルムを作製した。
 前記積層フィルムの酸素吸収層の押出ラミネート適性、得られた積層フィルムの外観、及び積層フィルムから20cm2切り出して酸素吸収性能の評価を行った。その結果を表2に示す。
(実施例2)
 酸素吸収性ポリエステルAを50重量部、LDPEを45重量部、相容化剤としてエチレン比率89モル%のEVOHを5重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(実施例3)
 酸素吸収性ポリエステルAを50重量部、LDPEを40重量部、相容化剤としてエチレン比率89モル%のEVOHを10重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(実施例4)
 酸素吸収性ポリエステルAを50重量部、LDPEを30重量部、相容化剤としてエチレン比率89モル%のEVOHを20重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(実施例5)
 酸素吸収性ポリエステルAを40重量部、LDPEを55重量部、相容化剤としてエチレン比率89モル%のEVOHを5重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(実施例6)
 酸素吸収性ポリエステルAを60重量部、LDPEを35重量部、相容化剤としてエチレン比率89モル%のEVOHを5重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、酸素バリア層として透明蒸着PETフィルム(東セロ社製;マックスバリアR)を用いた以外は実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(実施例7)
 酸素吸収性ポリエステルAを50重量部、LDPEを45重量部、相容化剤としてエチレン比率81モル%のEVOH(東ソー社製;メルセンH6960に含まれる添加剤をクロロホルムで抽出したもの、けん化度90モル%)を5重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(実施例8)
 酸素吸収性ポリエステルAを50重量部、LDPEを45重量部、相容化剤としてエチレン比率96モル%のエチレン-メチルアクリレート共重合体(EMA)(日本ポリエチレン社製;EB330H)を5重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(比較例1)
 酸素吸収性ポリエステルAを50重量部、LDPEを50重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(比較例2)
 酸素吸収性ポリエステルAを50重量部、LDPEを45重量部、相容化剤として無水マレイン酸グラフト変性ポリエチレンワックス(三井化学社製;2203A、無水マレイン酸グラフト量;3重量%)を5重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(比較例3)
 酸素吸収性ポリエステルAを50重量部、LDPEを45重量部、相容化剤としてエチレン比率97モル%のエチレン-メタクリル酸共重合体(EMAA)(三井・デュポンポリケミカル社製;N0908C)を5重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
(比較例4)
 酸素吸収性ポリエステルAを50重量部、LDPEを45重量部、エチレン比率48モル%のEVOH(日本合成社製;ソアノールH4815)を5重量部用いた以外は実施例1と同様に表1に示す酸素吸収性樹脂組成物を作製した。
 次いで、実施例1と同様に積層フィルムを作製し、評価を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例9)
 実施例2で作製した積層フィルムのLDPE層を対向するように重ね合わせて4辺をヒートシールし、有効面積48cm2、内容積5mlの平パウチを作製した。
 この平パウチを22℃で保存し、容器内酸素濃度をマイクロガスクロマトグラフ装置(アジレント・テクノロジー社製;M200)にて追跡した。その結果を表3に示す。
(実施例10)
 実施例6で作製した積層フィルムを用いた以外は実施例9と同様に平パウチを作製し、容器内酸素濃度を追跡した。その結果を表3に示す。
(実施例11)
 実施例8で作製した積層フィルムを用いた以外は実施例9と同様に平パウチを作製し、容器内酸素濃度を追跡した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003

Claims (14)

  1.  下記(A)成分と(B)成分とともに、相容化剤として(C)成分を用いて溶融混錬してなることを特徴とする酸素吸収性樹脂組成物:
    (A)成分:酸素吸収性ポリエステル、
    (B)成分:ポリオレフィン、
    (C)成分:エチレン比率が70~99モル%である、エチレンと水酸基又はエステル結合を有するビニルモノマーとの共重合体。
  2.  エチレンと水酸基を有するビニルモノマーとの共重合体がエチレン-ビニルアルコール共重合体である、請求項1に記載の酸素吸収性樹脂組成物。
  3.  エチレン-ビニルアルコール共重合体のけん化度が90モル%以上である、請求項2に記載の酸素吸収性樹脂組成物。
  4.  エチレンとエステル結合を有するビニルモノマーとの共重合体がエチレン-アルキル(メタ)アクリレート共重合体である、請求項1に記載の酸素吸収性樹脂組成物。
  5.  酸素吸収性ポリエステルが下記モノマー(i)及びモノマー(ii)からなる群より選ばれるモノマーを含む原料を重合してなる、請求項1~4のいずれか1項に記載の酸素吸収性樹脂組成物:
    (i)下記構造(a)及び(b)の両方の基に結合し、かつ、1個又は2個の水素原子と結合した炭素原子が脂環構造に含まれているモノマー;
    (a)炭素-炭素二重結合基、
    (b)複素原子を含む官能基、該官能基から誘導される結合基、炭素-炭素二重結合基及び芳香環からなる群より選ばれる基;
    (ii)不飽和脂環構造内の炭素-炭素二重結合に隣接する炭素原子が電子供与性置換基及び水素原子と結合し、かつ、該炭素原子に隣接する別の炭素原子が複素原子を含む官能基又は該官能基から誘導される結合基と結合しており、該電子供与性置換基と複素原子を含む官能基又は該官能基から誘導される結合基とがシス位に位置しているモノマー。
  6.  酸素吸収性ポリエステルがテトラヒドロフタル酸又はテトラヒドロ無水フタル酸構造を有するモノマーを含む原料を重合してなる、請求項1~5のいずれか1項に記載の酸素吸収性樹脂組成物。
  7.  酸素吸収性ポリエステルがテトラヒドロフタル酸又はテトラヒドロ無水フタル酸構造を有するモノマー、1,4-ブタンジオール及びテレフタル酸を含む原料を重合してなる、請求項1~6のいずれか1項に記載の酸素吸収性樹脂組成物。
  8.  テトラヒドロフタル酸又はテトラヒドロ無水フタル酸構造を有するモノマーが4-メチル-Δ3-テトラヒドロフタル酸及びその誘導体、4-メチル-Δ3-テトラヒドロ無水フタル酸及びその誘導体、cis-3-メチル-Δ4-テトラヒドロフタル酸及びその誘導体、並びにcis-3-メチル-Δ4-テトラヒドロ無水フタル酸及びその誘導体からなる群より選ばれる、請求項6又は7に記載の酸素吸収性樹脂組成物。
  9.  ポリオレフィンがポリエチレンである、請求項1~8のいずれか1項に記載の酸素吸収性樹脂組成物。
  10.  ポリエチレンが低密度ポリエチレンである、請求項9に記載の酸素吸収性樹脂組成物。
  11.  (A)成分と(B)成分との重量比が4:1~3:7である、請求項1~10のいずれか1項に記載の酸素吸収性樹脂組成物。
  12.  (A)成分と(B)成分の合計重量に対して、(C)成分を1~50重量%用いる、請求項1~11のいずれか1項に記載の酸素吸収性樹脂組成物。
  13.  請求項1~12のいずれか1項に記載の酸素吸収性樹脂組成物からなる酸素吸収層を有する酸素吸収性容器。
  14.  酸素吸収層の外側に酸素バリア層を有する請求項13に記載の酸素吸収性容器。
PCT/JP2009/050624 2008-01-18 2009-01-19 酸素吸収性樹脂組成物及びそれを用いた酸素吸収性容器 WO2009091058A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009550074A JP5483256B2 (ja) 2008-01-18 2009-01-19 酸素吸収性樹脂組成物及びそれを用いた酸素吸収性容器
EP09703034.0A EP2241599B1 (en) 2008-01-18 2009-01-19 Oxygen-absorbing resin composition and oxygen-absorbing container comprising the same
KR1020107017827A KR101239310B1 (ko) 2008-01-18 2009-01-19 산소 흡수성 수지 조성물 및 그것을 사용한 산소 흡수성 용기
CN2009801096367A CN101977986B (zh) 2008-01-18 2009-01-19 氧吸收性树脂组合物及使用其的氧吸收性容器
US12/812,931 US8236727B2 (en) 2008-01-18 2009-01-19 Oxygen-absorbing resin composition and oxygen-absorbing container comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008009186 2008-01-18
JP2008-009186 2008-01-18

Publications (1)

Publication Number Publication Date
WO2009091058A1 true WO2009091058A1 (ja) 2009-07-23

Family

ID=40885438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050624 WO2009091058A1 (ja) 2008-01-18 2009-01-19 酸素吸収性樹脂組成物及びそれを用いた酸素吸収性容器

Country Status (6)

Country Link
US (1) US8236727B2 (ja)
EP (1) EP2241599B1 (ja)
JP (1) JP5483256B2 (ja)
KR (1) KR101239310B1 (ja)
CN (1) CN101977986B (ja)
WO (1) WO2009091058A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382429A (zh) * 2011-10-24 2012-03-21 广州市信联智通实业有限公司 一种聚对苯二甲酸乙二醇酯阻隔性复合材料及其制备工艺
JP2012126785A (ja) * 2010-12-14 2012-07-05 Tosoh Corp フィルム及び包装袋
WO2012147845A1 (ja) * 2011-04-28 2012-11-01 ウィンテックポリマー株式会社 無機充填材強化ポリブチレンテレフタレート樹脂組成物及び当該樹脂組成物を成形してなる射出成形品
WO2012147847A1 (ja) * 2011-04-28 2012-11-01 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物、及び当該樹脂組成物から構成される射出成形品
US20130123380A1 (en) * 2010-05-17 2013-05-16 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition and method for manufacturing packaging body using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG173485A1 (en) * 2009-02-19 2011-09-29 Mitsubishi Gas Chemical Co Storage method
JP5870936B2 (ja) * 2011-01-27 2016-03-01 東洋製罐株式会社 酸素吸収性樹脂組成物
EP2660372A1 (de) * 2012-05-04 2013-11-06 LANXESS Deutschland GmbH Thermoplastfasern mit reduzierter Oberflächenspannung
US9515276B2 (en) 2014-09-02 2016-12-06 General Electric Company Organic X-ray detector and X-ray systems
US9535173B2 (en) 2014-09-11 2017-01-03 General Electric Company Organic x-ray detector and x-ray systems
CN106832809B (zh) * 2017-01-06 2019-06-11 晋江市中辉印刷包装有限公司 高阻隔抗紫外线环保pet复合软包装材料及其制备方法
EP3608240A4 (en) 2017-04-05 2021-01-27 Kikkoman Corporation DISPOSAL BIN
CN115916538A (zh) * 2020-09-28 2023-04-04 东洋制罐集团控股株式会社 氧吸收性膜
US11124642B1 (en) * 2021-03-18 2021-09-21 Chang Chun Petrochemical Co., Ltd. Ethylene-vinyl alcohol copolymer composition with improved oxygen barrier properties
CN114160107B (zh) * 2021-12-15 2023-07-18 中国人民解放军96901部队23分队 肼类废水吸附剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810149A (ja) * 1971-06-18 1973-02-03
JPH05105784A (ja) * 1991-10-16 1993-04-27 Sumitomo Bakelite Co Ltd 熱可塑性樹脂組成物
JP2003342426A (ja) * 2002-05-24 2003-12-03 Okura Ind Co Ltd フィルム
JP2007070522A (ja) * 2005-09-08 2007-03-22 Mitsui Chemicals Inc ポリエステル組成物及びフィルム
WO2007058313A1 (ja) * 2005-11-21 2007-05-24 Toyo Seikan Kaisha, Ltd. 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
WO2007119657A1 (ja) * 2006-04-12 2007-10-25 Toyo Seikan Kaisha, Ltd. 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857754A (en) * 1971-06-18 1974-12-31 Toyo Seikan Kaisha Ltd Resinous compositions having improved processability and gas permeation resistance and molded structures thereof
US3975463A (en) * 1971-06-18 1976-08-17 Toyo Seikan Kaisha Limited Molded structures containing crystalling polyolefin saponified ethylene vinyl acetate copolymer and carbonyl containing copolymers
US7078100B2 (en) 2003-08-28 2006-07-18 Cryovac, Inc. Oxygen scavenger compositions derived from isophthalic acid and/or terephthalic acid monomer or derivatives thereof
US7754798B2 (en) 2003-08-28 2010-07-13 Cryovac, Inc. Oxygen scavenger block copolymers and compositions
CA2488485C (en) * 2003-12-03 2010-02-23 Kuraray Co., Ltd. Oxygen absorption resin composition
JP4978884B2 (ja) * 2004-04-30 2012-07-18 東洋製罐株式会社 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP5212883B2 (ja) 2006-04-12 2013-06-19 東洋製罐株式会社 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810149A (ja) * 1971-06-18 1973-02-03
JPH05105784A (ja) * 1991-10-16 1993-04-27 Sumitomo Bakelite Co Ltd 熱可塑性樹脂組成物
JP2003342426A (ja) * 2002-05-24 2003-12-03 Okura Ind Co Ltd フィルム
JP2007070522A (ja) * 2005-09-08 2007-03-22 Mitsui Chemicals Inc ポリエステル組成物及びフィルム
WO2007058313A1 (ja) * 2005-11-21 2007-05-24 Toyo Seikan Kaisha, Ltd. 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
WO2007119657A1 (ja) * 2006-04-12 2007-10-25 Toyo Seikan Kaisha, Ltd. 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2241599A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130123380A1 (en) * 2010-05-17 2013-05-16 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition and method for manufacturing packaging body using the same
JP2012126785A (ja) * 2010-12-14 2012-07-05 Tosoh Corp フィルム及び包装袋
WO2012147845A1 (ja) * 2011-04-28 2012-11-01 ウィンテックポリマー株式会社 無機充填材強化ポリブチレンテレフタレート樹脂組成物及び当該樹脂組成物を成形してなる射出成形品
WO2012147847A1 (ja) * 2011-04-28 2012-11-01 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物、及び当該樹脂組成物から構成される射出成形品
CN102382429A (zh) * 2011-10-24 2012-03-21 广州市信联智通实业有限公司 一种聚对苯二甲酸乙二醇酯阻隔性复合材料及其制备工艺
CN102382429B (zh) * 2011-10-24 2013-11-06 广州信联智通实业股份有限公司 一种聚对苯二甲酸乙二醇酯阻隔性复合材料及其制备工艺

Also Published As

Publication number Publication date
EP2241599A1 (en) 2010-10-20
JPWO2009091058A1 (ja) 2011-05-26
JP5483256B2 (ja) 2014-05-07
US20100317514A1 (en) 2010-12-16
EP2241599B1 (en) 2013-06-05
EP2241599A4 (en) 2011-11-30
KR101239310B1 (ko) 2013-03-05
CN101977986A (zh) 2011-02-16
KR20100126682A (ko) 2010-12-02
CN101977986B (zh) 2013-08-21
US8236727B2 (en) 2012-08-07

Similar Documents

Publication Publication Date Title
JP5483256B2 (ja) 酸素吸収性樹脂組成物及びそれを用いた酸素吸収性容器
JP4978884B2 (ja) 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP5212883B2 (ja) 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
US7842361B2 (en) Oxygen-absorbing resin, oxygen-absorbing resin compositions and oxygen-absorbing containers
US7696300B2 (en) Oxygen-absorbing resin, oxygen-absorbing resin composition and oxygen-absorbing container
JP5505852B2 (ja) 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP5376108B2 (ja) 酸素吸収性多層体及びその多層体から成る包装体
KR100633272B1 (ko) 에틸렌-비닐 알콜 공중합체를 함유하는 수지 조성물, 및 이를 포함하는 다층 구조체 및 다층 용기
JP2001106866A (ja) 酸素吸収性樹脂組成物
JP5266602B2 (ja) 酸素吸収性樹脂、酸素吸収性樹脂組成物及び酸素吸収性容器
JP2008213840A (ja) 酸素吸収性包装材および包装体
JPH04279336A (ja) 積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109636.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009550074

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009703034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107017827

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12812931

Country of ref document: US