Nothing Special   »   [go: up one dir, main page]

WO2009086782A1 - 等离子体处理装置 - Google Patents

等离子体处理装置 Download PDF

Info

Publication number
WO2009086782A1
WO2009086782A1 PCT/CN2008/073884 CN2008073884W WO2009086782A1 WO 2009086782 A1 WO2009086782 A1 WO 2009086782A1 CN 2008073884 W CN2008073884 W CN 2008073884W WO 2009086782 A1 WO2009086782 A1 WO 2009086782A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing apparatus
power source
plasma processing
plasma
series
Prior art date
Application number
PCT/CN2008/073884
Other languages
English (en)
French (fr)
Inventor
Jianhui Nan
Original Assignee
Beijing Nmc Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Nmc Co., Ltd. filed Critical Beijing Nmc Co., Ltd.
Priority to US12/811,628 priority Critical patent/US20100294433A1/en
Publication of WO2009086782A1 publication Critical patent/WO2009086782A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings

Definitions

  • the present invention relates to the field of microelectronics, and in particular to a plasma processing apparatus. Background technique
  • a plasma processing apparatus is a processing apparatus widely used in the field of semiconductor manufacturing.
  • FIG. 1 is a schematic structural view of a conventional plasma processing apparatus.
  • the plasma processing apparatus generally includes a housing (without reference numerals in the figure) having a reaction chamber 11 therein.
  • the top of the reaction chamber 11 is provided with a passive electrode 12, and an upper grounding ring 13 surrounding the passive electrode 12; the two are separated by a first insulating ring 141.
  • the bottom of the reaction chamber 11 is provided with a radio frequency driving electrode 15, and a lower grounding ring 16 surrounding the radio frequency driving electrode 15, which is separated by a second insulating ring 142.
  • the RF drive electrodes 15 are respectively connected to the first RF power source 171 and the second RF power source 172; the first RF power source 171 has a lower frequency, such as 2 MHz, and the second RF power source 172 has a higher frequency, such as 60 MHz.
  • the passive electrode 12 is grounded, and an adjustment switch 121 is connected in series with the ground. By adjusting the switch 121, the passive electrode 12 can select and serially connect one of the low pass filter 181, the high pass filter 182, and the ultra low pass filter 183; or it can be directly grounded through the bypass 184.
  • the workpiece (generally including the wafer and other workpieces having the same processing principle; the same meaning of the workpiece described below) is disposed at the bottom of the reaction chamber 11 and passes through a molecular pump or the like.
  • a vacuum obtaining device (not shown) is manufactured in the reaction chamber 11 and maintained in a state close to a vacuum.
  • the process gas is input into the reaction chamber 11 through a gas input device (not shown), and the first RF power source 171 and the second RF power source 172 are at the passive electrode 12 and the RF drive electrode 15. Inputting an appropriate RF voltage to activate the process gas to produce and maintain an appropriate density and energy at the surface of the workpiece Plasma environment.
  • the plasma can undergo physical or chemical reactions such as etching or deposition with the workpiece to obtain a desired etch pattern or deposited layer.
  • the by-product of the above physical chemical reaction is withdrawn from the reaction chamber 11 by the vacuum obtaining means.
  • the arrowed curve in Figure 1 schematically shows the various flow paths of the RF current.
  • higher frequency RF currents primarily affect the density of the plasma in the reaction chamber; lower frequency RF currents primarily affect the energy of the plasma in the reaction chamber. Therefore, the adjustment of the plasma energy can be realized by the first RF power source 171; the adjustment of the plasma density can be realized by the second RF power source 172.
  • the specific frequencies of the two RF power supplies are determined according to the existing technologies, and are not described here.
  • a different filter circuit is generally selected by the adjustment switch 121, thereby limiting the RF current of at least one of the first RF power source 171 and the second RF power source 172 through the passive electrode 12; the upper grounding ring 13 and the lower grounding ring 16 may provide a return path for the RF current limited by the filter circuit.
  • the plasma processing apparatus can initially adjust the energy of the plasma in its reaction chamber.
  • the energy of the plasma in the reaction chamber 11 can be changed by changing the bias voltage at the RF drive electrode 15; by changing the effective area ratio of the passive electrode 12 to the RF drive electrode 15, the above bias voltage can be significantly changed; This can be achieved by adjusting the current flowing through the passive electrode 12.
  • the adjustment switch 121 in the above technology can select four different paths, so that it can be adapted to four Different processes.
  • the RF current of the first RF power source 171 or the second RF power source 172 either passes through the passive electrode 12 or does not pass through the passive electrode 12. Therefore, the adjustment switch 121 can change the radio frequency current flowing through the passive electrode 12, thereby changing the effective area ratio of the passive electrode 12 and the radio frequency driving electrode 15, and the bias voltage at the radio frequency driving electrode 15 is changed, so that the adjustment can be adjusted.
  • Switch 121 effects the adjustment of the energy of the plasma.
  • the upper grounding ring 13 and the lower grounding ring 16 are directly grounded, the upper grounding ring 13 and the lower grounding ring 16 can be the RF currents of the first RF power source 171 and the second RF power source 172, regardless of the filter circuit selected by the adjustment switch 121.
  • a return path is provided to form a common RF path; therefore, the decoupling effect of the plasma processing apparatus is not ideal.
  • the plasma processing apparatus of the above technique is difficult to effectively adjust the energy of the plasma, so that it is difficult to adapt to the requirements of different processing techniques.
  • the RF current through the passive electrode 12. Obviously, this way of changing the RF current determines that a certain RF current can only pass through the passive electrode 12 at a certain value or not through the passive electrode 12; therefore, this method can only make the RF current at zero and Adjust between a specific value, and thus only passive electrodes
  • the effective area ratio of 12 to RF drive electrode 15 varies between a larger value and a smaller value, i.e., this manner can only be adjusted between the two isolated points.
  • the ion processing apparatus of the above technology can only meet the requirements of a few processing processes, and cannot achieve adjustment of the plasma density in a wide range; thus, the adaptability is poor, and it is unable to satisfy various processing techniques. demand.
  • the present invention provides a plasma processing apparatus including a corresponding radio frequency driving electrode and a passive electrode; a first grounding ring surrounds the passive electrode and is insulated from each other, and the second grounding ring surrounds the The RF driving electrodes are insulated from each other; the RF driving electrodes are respectively connected to the first RF power source and the second RF power source; and the first impedance adjusting component is connected in series between the passive electrode and the ground.
  • the impedance of the first impedance adjusting element is continuously adjustable.
  • the first impedance adjusting component is a first variable resistor R1; a first filter circuit is connected between the passive electrode and the ground line in series with the first variable resistor R1; The passband of the filter circuit is adjustable to select the RF current of at least one of the first RF power source and the second RF power source to pass, or both.
  • the first filter circuit includes a first branch formed by connecting the first variable capacitor C1 and the first inductor L1 in series, and a second branch formed by connecting the second variable capacitor C2 and the second inductor L2. a branch; the first branch and the second branch are connected in parallel.
  • At least one of the first grounding ring and the second grounding ring is connected in series with the second impedance adjusting component.
  • the impedance of the second impedance adjusting element is continuously adjustable.
  • the second impedance adjusting component is a second variable resistor R2; a second filter circuit is disposed between the first ground ring and/or the second ground ring and the ground; the second filter circuit and The second variable resistor R2 is connected in series, and the passband thereof is adjustable, so that the RF current of at least one of the first RF power source and the second RF power source is selected to pass, or neither of them passes.
  • the second filter circuit includes a third branch formed by connecting a third variable capacitor C3 and a third inductor L3 in series, and a fourth series formed by connecting the fourth variable capacitor C4 and the fourth inductor L4 in series. a branch; the third branch is connected in parallel with the fourth branch.
  • the plasma processing apparatus is a plasma etching apparatus.
  • the plasma processing apparatus is a plasma deposition apparatus.
  • the technique described in the prior art is to turn on or prevent radio frequency current flowing through the passive electrode by a change in the pass band of the filter circuit, thereby converting between different plasma energies.
  • the plasma processing apparatus uses a completely different approach to adjusting the energy of the plasma in its reaction chamber. That is, the present invention changes the current flowing through the impedance of the loop in which the passive electrode is located (by adjusting the resistance of the impedance adjusting element), thereby changing the energy of the plasma in the reaction chamber.
  • the new idea provided by the present invention can adjust the magnitude of the radio frequency current in the passive electrode in a larger range; therefore, the plasma processing apparatus provided by the present invention overcomes the aforementioned plasma energy only in a number of specific isolated values. This defect is switched between, but more processes with different plasma density requirements can be realized in the same reaction chamber, and the adaptability is significantly improved.
  • FIG. 1 is a schematic structural view of a conventional plasma processing apparatus
  • FIG. 2 is a schematic structural view of a first embodiment of a plasma processing apparatus according to the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of the third filter circuit of FIG. 2;
  • FIG. 4 is a schematic structural view of a second embodiment of the plasma processing apparatus provided by the present invention;
  • Figure 5 is a schematic view showing the structure of a third embodiment of the plasma processing apparatus provided by the present invention.
  • Fig. 6 is a schematic view showing the configuration of a fourth embodiment of the plasma processing apparatus of the present invention.
  • the present invention will be further described in detail below in conjunction with the drawings and embodiments.
  • a radio frequency driving electrode disposed at the bottom of the reaction chamber, and a passive electrode is disposed at the top of the reaction chamber; of course, the position of both can be adjusted, that is, the RF driving electrode is disposed at The top of the reaction chamber is placed with the passive electrode at the bottom of the reaction chamber.
  • the technical solution provided by the present invention will be described by taking the case where the RF driving electrode is disposed at the bottom of the reaction chamber as an example.
  • the protection scope of the present invention should include the setting of the RF driving electrode on the top of the reaction chamber. A specific situation. Based on the disclosure herein, those skilled in the art will be able to obtain a technical solution when the RF drive electrodes are placed on top of the reaction chamber without any inventive effort.
  • FIG. 2 is a schematic structural view of a first embodiment of a plasma processing apparatus according to the present invention.
  • the plasma processing apparatus of the present invention includes a housing (without reference numerals in the figures) having a reaction chamber 21 therein.
  • the top of the reaction chamber 21 is provided with a passive electrode 22, and the passive electrode 22 is grounded through a first variable resistor R1 as a first impedance adjusting element.
  • the first ground ring 23 surrounds the passive electrode 22 and is isolated by a first insulating ring 241 therebetween. Obviously, the first ground ring 23 should also be grounded.
  • the first variable resistor R1 can also be replaced by other impedance adjusting components.
  • the resistor can be connected in series with the capacitor, and both can be used as the first impedance adjusting component.
  • the bottom of the reaction chamber 21 is provided with a radio frequency driving electrode 25, and the radio frequency driving electrode 25 is electrically connected to the first radio frequency power source 271 and the second radio frequency power source 272, respectively.
  • the difference between the two RF power sources is large; the first RF power source 271 can have a lower frequency, such as 2 MHz, and the second RF power source 272 has a higher frequency, such as 60 MHz.
  • a second ground ring 26 surrounds the RF drive electrode 25 and is isolated by a second insulating ring 242 therebetween. The second grounding ring 26 should also be grounded.
  • the first RF power source 271 and the second RF power source 272 should be connected in series with the first matcher 291 and the second matcher 292, respectively, to achieve impedance matching, so that the efficiency of the two power sources reaches a high level.
  • FIG. 3 is a schematic structural diagram of a specific implementation manner of the third filter circuit in FIG.
  • a third filter circuit 283 should be connected between the two and the RF drive electrode 25.
  • the third filter circuit 283 includes three ports, the port A is connected to the radio frequency driving electrode 25, the port B is connected to the first radio frequency power source 271 through the first matching unit 291, and the port C is connected to the second radio frequency power source through the second matching unit 292. 272.
  • a capacitor C511 and an inductor L51 are connected in series between port A and port B. One end of the capacitor C512 is grounded, and the other end is connected between the capacitor C511 and the inductor L51.
  • the capacitor C521 and the inductor L52 are connected in series between the port A and the port C. One end is grounded, and the other end is connected between capacitor C521 and inductor L52.
  • the passbands of the left and right portions of FIG. 3 can be adapted to the first RF power source 271 and the second RF power source 272, respectively, so that the current of the first RF power source 271 cannot pass through the port.
  • the current of the second RF power source 272 cannot pass through the port B, thereby avoiding interference between the two.
  • the gist of the present invention is to effectively adjust the energy of the plasma in the reaction chamber 21, and changing the bias voltage at the RF drive electrode 25 can change the plasma energy accordingly.
  • the specific relationship between the two is:
  • V bias represents the bias voltage at the RF drive electrode 25, indicating the effective area of the passive electrode 22
  • a 2 represents the effective area of the RF drive electrode 25, and the parameter n is determined by the geometry of the plasma processing apparatus, and its value range Usually 1 to 4.
  • the above-described change in the effective area ratio (Ai / A 2 ) can be adjusted by adjusting the flow through the passive electrode 22 Frequency current is achieved.
  • the currents of the first RF power source 271 and the second RF power source 272 can traverse the reaction chamber 21 from the RF drive electrode 25 along different paths.
  • the above path includes three, that is, from the RF driving electrode 25 to the passive electrode 22, from the RF driving electrode 25 to the first grounding ring 23, and from the RF driving electrode 25 to the second grounding ring 26.
  • the initial distribution ratio of the RF current in each of the above paths is determined by the specific size of the reaction chamber 21.
  • the impedance of each of the above paths can be adjusted, and the RF current will be redistributed based on the initial distribution ratio.
  • the resistance of the first variable resistor R1 can be reduced.
  • the impedance of the RF current loop in which the passive electrode 22 is located is lowered, so its current will increase, so the ratio of the effective area of the passive electrode 22 to the RF drive electrode 25 (A / A 2 ) and the bias voltage at the RF drive electrode 25 As a result, the energy of the plasma in the reaction chamber 21 is increased.
  • the resistance of the first variable resistor R1 is zero, the energy of the plasma in the reaction chamber 21 can reach a maximum value (regardless of other influencing factors; the influence of other factors on the plasma energy is not considered below) .
  • the resistance of the first variable resistor R1 can be increased, and the RF of the passive electrode 22 is located.
  • the impedance of the current loop increases, so its current will decrease, the ratio of the effective area of the passive electrode 22 to the RF drive electrode 25 (A / A 2 ) and the bias voltage at the RF drive electrode 25 will also decrease, so the reaction The energy of the plasma in the chamber 21 is reduced.
  • the resistance of the first variable resistor R1 when the resistance of the first variable resistor R1 is maximum, the energy of the plasma in the reaction chamber 21 can reach a minimum value; changing the maximum resistance of the first variable resistor R1 can change the plasma energy can be achieved. The lowest value.
  • the correspondence between the plasma energy in the reaction chamber 21 and the resistance of the first variable resistor R1 can be established in advance.
  • the resistance of the first variable resistor R1 can be accurately selected according to the above correspondence, thereby obtaining a plasma having a desired energy in the reaction chamber 21.
  • the plasma processing apparatus uses a completely different approach to adjusting the energy of the plasma in its reaction chamber 21. That is, the present invention changes the impedance of the loop in which the passive electrode 22 is located by adjusting the resistance of the first variable resistor R1, thereby changing the current flowing through the passive electrode 22, thereby changing the energy of the plasma in the reaction chamber 21.
  • the novel idea provided by the present invention can adjust the magnitude of the radio frequency current in the passive electrode 22 in a larger range; therefore, the plasma processing apparatus provided by the present invention overcomes the aforementioned plasma energy and can only be isolated in several specific ways.
  • the defect between the values is converted, but more processes having different plasma density requirements can be realized in the same reaction chamber 21, the adaptability is remarkably improved, and the matching of the reaction chamber 21 is also easier to realize. .
  • a resistor whose resistance can be continuously adjusted can be further selected as the first variable resistor R1.
  • the current of the RF current loop in which the passive electrode 22 is located can be continuously changed, so that the plasma in the reaction chamber 21 can be realized.
  • the continuous change of energy further enhances the adaptability of the plasma processing apparatus.
  • FIG. 4 is a schematic structural view of a second embodiment of a plasma processing apparatus according to the present invention.
  • the plasma processing apparatus provided in this embodiment is further improved on the basis of the first embodiment described above.
  • the relevant parameters of the plasma in 21 are adjusted, and the relevant parameters usually relate to density, energy, flow, and the like.
  • the adjustment of the plasma energy is typically achieved by the first RF power source 271; the adjustment of the plasma density is achieved by the second RF power source 272.
  • the passband of the first filter circuit 281 should be adjustable, and the passband adjustment range should cover at least the frequencies of the first RF power source 271 and the second RF power source 272; so that the RF current of at least one of the two can be selected to pass the passive The electrodes 22, or both, prevent both from passing through the passive electrode 22.
  • the pass band of the first filter circuit 281 can be adjusted to be a low pass filter, at which time the low frequency current of the first RF power source 271 can pass through the passive electrode 22, while the high frequency current of the second RF power source 272 is blocked. At this time, the first ground ring 23 and the second ground ring 26 provide a loop for the high frequency current of the second RF power source 272.
  • the pass band of the first filter circuit 281 can be adjusted to become a high pass filter, at which time the high frequency current of the second RF power source 272 can pass through the passive electrode 22, and the low frequency current of the first RF power source 271 is blocked. At this time, the first grounding ring 23 and the second grounding ring 26 provide a loop for the low frequency current of the first RF power source 271.
  • the first filter circuit 281 provided by the present invention may include a first branch and a second branch connected in parallel with each other.
  • the first branch of the first variable capacitor C1 is connected in series with the first inductor L1; the second branch is formed by connecting the second variable capacitor C2 and the second inductor L2 in series.
  • the resonant frequency f ( 2 ⁇ ) - 1 of the circuit, therefore, the values of the first variable L1 and the second variable L2 are respectively determined, and the range of variation of the first variable capacitor C1 and the second variable capacitor C2 can be determined.
  • the first branch is a low frequency path; when it is required to select a low frequency current in the first RF power source 271 to pass through the passive electrode 22, the first variable capacitor C1 can be adjusted such that the resonant frequency of the first branch is equal to The frequency of an RF power source 271.
  • the second branch is a high frequency path; when it is required to select a low frequency current in the second RF power source 272 to pass through the passive electrode 22, the first variable capacitor C1 can be adjusted such that the resonant frequency of the second branch is equal to The frequency of the second RF power source 272.
  • FIG. 5 is a schematic structural view of a third embodiment of a plasma processing apparatus according to the present invention.
  • the plasma processing apparatus provided in the present embodiment is improved on the basis of the first or second embodiment described above.
  • first ground ring 23 and the second ground ring 26 are both directly grounded.
  • a second variable resistor R2 as a second impedance adjusting element may be connected in series between the first grounding ring 23 and the ground and/or between the second grounding ring 26 and the ground.
  • the second variable resistor R2 may be replaced by other impedance adjusting components.
  • the resistor may be connected in series with the capacitor, and both may serve as the second impedance adjusting component.
  • the second variable resistor R2 is provided to adjust the impedance of the current path where the first grounding ring 23 and the second grounding ring 26 are located; thus the impedance of each current path can be changed. Therefore, the proportion of the current flowing through the source electrode 22 can be adjusted within a larger range, and the energy of the ion chamber of the reaction chamber 21 can be adjusted in a larger range.
  • the above technical effect can be achieved only by providing the second variable resistor R2 between the first ground ring 23 and the ground line or only between the second ground ring 26 and the ground line; A better technical effect can be obtained by providing the second variable resistor R2 between the ring 23 and the ground, and between the second ground ring 26 and the ground. Further, a resistor whose resistance can be continuously changed can be further selected as the second variable resistor R2, whereby the energy of the plasma can be adjusted over a wider range.
  • FIG. 6 is a schematic structural view of a fourth embodiment of a plasma processing apparatus according to the present invention.
  • the plasma processing apparatus provided in the present embodiment is improved on the basis of the first to third embodiments described above.
  • the passive electrode 22 and the first variable resistor R1 Or the first filter circuit 281 is connected in series between the first variable resistor R1 and the ground.
  • This approach can achieve the purpose of decoupling the first RF power source 271 from the second RF power source 272; however, the decoupling effect of the two is not complete.
  • the reason for this is that the first grounding ring 23 and the second grounding ring 26 are directly grounded or grounded through a resistor, so that a part of the high frequency current and the low frequency current can always pass through the first grounding ring 23 and the second grounding ring 26 at the same time.
  • the decoupling between the first RF power source 271 and the second RF power source 272 is more thorough, and may be between the first ground ring 23 and the ground, and the second ground ring 26 and the ground.
  • the second filter circuit 282 is connected in series.
  • the passband of the second filter circuit 282 should also be adjustable, and the passband adjustment range should cover at least the frequencies of the first RF power source 271 and the second RF power source 272; One of the RF currents passes through the first ground ring 23 and the second ground ring 26, or both, through both the first ground ring 23 and the second ground ring 26.
  • the pass band of the first filter circuit 281 can be adjusted to be a low pass filter while the pass band of the second filter circuit 282 is adjusted to become a high pass filter.
  • the low frequency current of the first RF power source 271 can pass through the passive electrode 22, and the high frequency current of the second RF power source 272 is blocked; the high frequency current of the second RF power source 272 can pass through the first grounding ring 23 and the second The grounding ring 26, while the low frequency current of the first RF power source 271 is blocked.
  • the density of the plasma in the reaction chamber 21 is low and the energy is high; the above-mentioned low-frequency current and high-frequency current can be completely decoupled.
  • the pass band of the first filter circuit 281 can be adjusted to be a high pass filter
  • the pass band of the second filter circuit 282 can be adjusted to become a low pass filter.
  • the low frequency current of the first RF power source 271 can pass through the first grounding ring 23 and the second grounding ring 26, and the high frequency current of the second RF power source 272 is blocked; the high frequency current of the second RF power source 272 can pass through The source electrode 22, while the low frequency current of the first RF power source 271 is blocked.
  • the density of the plasma in the reaction chamber 21 is high and the energy is low.
  • the above low frequency current and high frequency current can also be completely decoupled.
  • the second filter circuit 282 may be connected in series only between one of the first ground ring 23 and the second ground ring 26 and the ground. However, this only improves the decoupling effect to a certain extent, and does not achieve complete decoupling.
  • the second filter circuit 282 provided by the present invention may include a third branch and a fourth branch connected in parallel with each other.
  • the third branch of the third variable capacitor C3 is connected in series with the third inductor L3; the fourth branch is formed by connecting the fourth variable capacitor C4 and the fourth inductor L4 in series.
  • the reason why the second filter circuit 282 uses two branches is the same as the reason why the first filter circuit 281 uses two branches, and details are not described herein again.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

等离子体处理装置 技术领域
本发明涉及微电子技术领域, 特别涉及一种等离子体处理装置。 背景技术
等离子体处理装置是在半导体制造领域得到广泛应用的加工设备。
请参考图 1 , 图 1为目前常见的一种等离子体处理装置的结构示意图。 等离子体处理装置通常包括壳体(图中未添加附图标记), 其中具有反 应腔室 11。反应腔室 11的顶部设有无源电极 12, 以及围绕无源电极 12的上 接地环 13; 两者之间由第一绝缘环 141隔离。 反应腔室 11的底部设有射频 驱动电极 15, 以及围绕射频驱动电极 15的下接地环 16, 两者之间由第二绝 缘环 142隔离。射频驱动电极 15分别连接第一射频电源 171和第二射频电源 172; 第一射频电源 171具有较低的频率, 比如 2MHz, 第二射频电源 172具 有较高的频率, 比如 60MHz。
无源电极 12接地, 且其与地线之间串接调整开关 121。 通过调整开关 121 , 无源电极 12可以选择并串接低通滤波器 181、 高通滤波器 182、超低通 滤波器 183三者之一; 也可以选择通过旁路 184直接接地。
等离子体处理装置工作时, 将加工件(通常包括晶片以及与其具有相同 加工原理的其他加工件; 下文所述加工件的含义与此相同)设置于反应腔室 11的底部, 并通过分子泵等真空获得装置 (图中未示出)在反应腔室 11 中 制造并维持接近真空的状态。在此状态下, 通过气体输入装置(图中未示出 ) 向反应腔室 11 中输入工艺气体, 并由第一射频电源 171 以及第二射频电源 172在无源电极 12与射频驱动电极 15之间输入适当的射频电压, 以激活所 述工艺气体, 进而在所述加工件的表面产生并维持具有适当密度以及能量的 等离子体环境。 由于具有强烈的刻蚀以及淀积能力, 所述等离子体可以与所 述加工件发生刻蚀或者淀积等物理化学反应, 以获得所需要的刻蚀图形或者 淀积层。上述物理化学反应的副产物由所述真空获得装置从反应腔室 11中抽 出。 图 1中带箭头的曲线示意性地表示出了射频电流的各个流通路径。
众所周知, 不同的具体工艺过程对反应腔室中等离子体的能量以及密度 的要求各不相同。 为了提高等离子体处理装置的适应性, 即为了在同一等离 子体处理装置中实现不同的具体工艺过程, 应当能够方便、 有效地对等离子 体的能量以及密度进行调整, 最好能够分别对两者进行调整。
双射频系统中, 较高频率的射频电流主要影响反应腔室中等离子体的密 度; 较低频率的射频电流主要影响反应腔室中等离子体的能量。 因此, 通过 上述第一射频电源 171可以实现对等离子体能量的调整; 通过上述第二射频 电源 172可以实现对等离子体密度的调整。 上述两射频电源的具体频率依据 现有的技术确定, 此处不再赘述。
然而,由于上述第一射频电源 171与第二射频电源 172之间的耦合作用, 艮难对等离子体能量以及密度进行单独控制。
为了解决上述问题, 通常通过调整开关 121选择不同的滤波电路, 进而 限制第一射频电源 171与第二射频电源 172中至少一者的射频电流通过无源 电极 12; 上接地环 13以及下接地环 16可以为被滤波电路限制的射频电流提 供返回路径。 由此, 即可初步实现第一射频电源 171与第二射频电源 172之 间的解耦合, 进而在一定程度上实现等离子体能量以及密度的单独控制。
此外, 等离子体处理装置可以初步调整其反应腔室中等离子体的能量。 通过改变射频驱动电极 15处的偏压可以改变反应腔室 11中等离子体的 能量; 通过改变无源电极 12与射频驱动电极 15的有效面积比, 可以显著改 变上述偏压;而上述有效面积比则可以通过调整流经无源电极 12的电流来实 现。
上述技术中的调整开关 121能够选择四种不同的通路, 从而可以适应四 种不同的工艺过程。 在某一特定的通路中, 第一射频电源 171或者第二射频 电源 172的射频电流要么通过无源电极 12, 要么不通过无源电极 12。 因此, 调整开关 121可以改变流经无源电极 12的射频电流, 进而改变无源电极 12 与射频驱动电极 15的有效面积比, 射频驱动电极 15处的偏压随之改变, 这 样即可通过调整开关 121实现对等离子体的能量的调整。
但是, 上述技术中的等离子体处理装置存在以下不足:
由于上接地环 13、 下接地环 16直接接地, 无论调整开关 121具体选择 何种滤波电路, 上接地环 13、 下接地环 16均可以为第一射频电源 171和第 二射频电源 172的射频电流提供返回路径, 形成共同的射频通路; 因此, 等 离子体处理装置解耦合的效果并不理想。
更为重要的是, 上述技术的等离子体处理装置很难有效地调整等离子体 的能量, 从而难以适应不同加工工艺的要求。 经无源电极 12的射频电流。显然, 这种改变射频电流的方式, 决定了某种射 频电流只能以某一特定值通过无源电极 12, 或者不通过无源电极 12; 因此, 这种方式只能将射频电流在零与某一特定值之间调整, 进而只能将无源电极
12与射频驱动电极 15的有效面积比在一个较大值和一个较小值之间改变, 即, 这种方式仅可以将上述有效面积比在两个孤立点之间调整。
所以, 上述技术的离子体处理装置只能满足较少的几种加工工艺的要 求, 而不能实现等离子体密度在较大范围内的调整; 因而其适应性较差, 无 法满足多种加工工艺的需求。
因此, 如何有效地调整等离子体处理装置中等离子体的密度, 以满足多 种加工工艺的要求; 以及如何实现不同射频电流之间较为彻底的解耦合, 是 本领域的技术人员目前需要解决的技术问题。 发明内容 本发明的目的是提供一种等离子体处理装置, 其反应腔室中等离子体的 能量可以在较大的范围内调整, 从而能够满足多种不同工艺过程的要求。
为解决上述技术问题, 本发明提供一种等离子体处理装置, 包括相对应 设置的射频驱动电极和无源电极; 第一接地环围绕所述无源电极并与其相互 绝缘, 第二接地环围绕所述射频驱动电极并与其相互绝缘; 所述射频驱动电 极分别连接第一射频电源和第二射频电源; 所述无源电极与地线之间串接第 一阻抗调节元件。
优选地, 所述第一阻抗调节元件的阻抗连续可调。
优选地, 所述第一阻抗调节元件为第一可变电阻 R1 ; 所述无源电极和 地线之间设有与所述第一可变电阻 R1 串联的第一滤波电路; 所述第一滤波 电路的通频带可调, 以便选择所述第一射频电源和第二射频电源中至少一者 的射频电流通过, 或者两者都不通过。
优选地, 所述第一滤波电路包括由第一可变电容 Cl、 第一电感 L1串联 而成的第一支路, 以及由第二可变电容 C2、 第二电感 L2串联而成的第二支 路; 所述第一支路和第二支路相并联。
优选地, 所述第一接地环和第二接地环中至少一者与地线之间串接第二 阻抗调节元件。
优选地, 所述第二阻抗调节元件的阻抗连续可调。
优选地, 所述第二阻抗调节元件为第二可变电阻 R2; 所述第一接地环 和 /或第二接地环与地线之间设有第二滤波电路;所述第二滤波电路与所述第 二可变电阻 R2 串接, 且其通频带可调, 以便选择所述第一射频电源和第二 射频电源中至少一者的射频电流通过, 或者两者都不通过。
优选地, 所述第二滤波电路包括由第三可变电容 C3、 第三电感 L3串联 而成的第三支路, 以及由第四可变电容 C4、 第四电感 L4串联而成的第四支 路; 所述第三支路与第四支路相并联。
优选地, 所述等离子体处理装置为等离子体刻蚀装置。 优选地, 所述等离子体处理装置为等离子体淀积装置。
如前所述, 背景技术中所述技术是通过滤波电路通频带的改变来导通或 者阻止流经无源电极的射频电流, 从而在不同等离子体能量之间进行转换。
与此不同, 本发明所提供的等离子体处理装置釆用了完全不同的思路来 调整其反应腔室中等离子体的能量。 即, 本发明通过调整无源电极所在回路 的阻抗(通过调整阻抗调节元件的阻值实现)来改变流经的电流, 从而改变 反应腔室中等离子体的能量。
本发明所提供的新思路, 能够在更大的范围内调整无源电极中射频电流 的大小; 因此, 本发明所提供的等离子体处理装置克服了前述等离子体能量 只能在若干特定的孤立值之间转换这一缺陷, 而是可以在同一反应腔室中实 现更多具有不同等离子体密度要求的工艺过程, 其适应性得到显著提高。
附图说明 图 1为目前常见的一种等离子体处理装置的结构示意图;
图 2为本发明所提供的等离子体处理装置第一种具体实施方式的结构示 意图;
图 3为图 2中第三滤波电路一种具体实施方式的结构示意图; 图 4为本发明所提供的等离子体处理装置第二种具体实施方式的结构示 意图;
图 5为本发明所提供的等离子体处理装置第三种具体实施方式的结构示 意图; 以及
图 6为本发明所提供的等离子体处理装置第四种具体实施方式的结构示 意图。
具体实施方式
本发明的目的是提供一种等离子体处理装置, 其反应腔室中等离子体的 能量可以在较大的范围内调整, 从而能够满足多种不同工艺过程的要求。 为了使本技术领域的人员更好地理解本发明方案, 下面结合附图和具体 实施方式对本发明作进一步的详细说明。
目前常见的等离子体处理装置大多将射频驱动电极设置于其反应腔室 的底部, 并将无源电极设置于反应腔室的顶部; 当然, 也可以对调两者的位 置, 即将射频驱动电极设置于反应腔室的顶部, 而将无源电极设置于反应腔 室的底部。
鉴于此, 本文仅以射频驱动电极设置于反应腔室底部的情形为例, 对本 发明的所提供的技术方案进行说明; 但是, 本发明的保护范围应当包括射频 驱动电极设置于反应腔室顶部这一具体情形。 根据本文所公开的内容, 本领 域的技术人员不需要付出任何创造性劳动即可以得到射频驱动电极设置于反 应腔室顶部时的技术方案。
请参考图 2, 图 2为本发明所提供的等离子体处理装置第一种具体实施 方式的结构示意图。
在第一种具体实施方式中, 本发明所提供的等离子体处理装置包括壳体 (图中未添加附图标记), 其中具有反应腔室 21。
反应腔室 21的顶部设有无源电极 22,无源电极 22通过作为第一阻抗调 节元件的第一可变电阻 R1接地。 第一接地环 23围绕无源电极 22, 两者之间 通过第一绝缘环 241相隔离。 显然, 第一接地环 23也应当接地。
显然, 第一可变电阻 R1也可以由其他阻抗调节元件代替, 比如, 可以 将电阻与电容串联, 两者即可作为上述第一阻抗调节元件。
反应腔室 21的底部设有射频驱动电极 25 ,射频驱动电极 25分别与第一 射频电源 271和第二射频电源 272电连接。上述两射频电源频率的差异较大; 第一射频电源 271可以具有较低的频率, 比如 2MHz, 第二射频电源 272具 有较高的频率, 比如 60MHz。 第二接地环 26围绕射频驱动电极 25 , 两者之 间由第二绝缘环 242相隔离。 第二接地环 26同样也应当接地。
应当理解,上述频率数值仅为具体示例,并不能用来限制本发明的范围。 第一射频电源 271和第二射频电源 272应当分别串接第一匹配器 291、 第二匹配器 292, 以便实现阻抗匹配, 使上述两电源的效率达到较高水平。
请同时参考图 3 , 图 3为图 2中第三滤波电路一种具体实施方式的结构 示意图。
为了避免第一射频电源 271和第二射频电源 272产生相互干扰, 应当在 两者与射频驱动电极 25之间连接第三滤波电路 283。
具体地, 第三滤波电路 283 包括三个端口, 端口 A连接射频驱动电极 25 , 端口 B通过第一匹配器 291连接第一射频电源 271 , 而端口 C通过第二 匹配器 292连接第二射频电源 272。
端口 A和端口 B之间串接电容 C511和电感 L51 , 电容 C512的一端接 地, 另一端连接于电容 C511和电感 L51之间; 端口 A和端口 C之间串接电 容 C521和电感 L52, 电容 C522的一端接地, 另一端连接于电容 C521和电 感 L52之间。
恰当地选择上述各元件的参数, 可以使图 3中左、 右两部分的通频带分 别与第一射频电源 271和第二射频电源 272相适应,因此,第一射频电源 271 的电流无法通过端口 C, 同时第二射频电源 272的电流无法通过端口 B, 从 而避免两者产生干扰。
如前所述, 本发明的主旨是有效地调整反应腔室 21中等离子体的能量, 而改变射频驱动电极 25处的偏压可以相应地改变上述等离子体能量。众所周 两者的具体关系为:
V bias- ( A! /A2 ) n
其中, V bias表示射频驱动电极 25处的偏压, 表示无源电极 22的有 效面积, A2表示射频驱动电极 25的有效面积, 参数 n决定于等离子体处理 装置的几何结构, 其取值范围通常为 1至 4。
上述有效面积比(Ai /A2 )的改变, 可以通过调整流经无源电极 22的射 频电流来实现。
请参考图 2, 第一射频电源 271和第二射频电源 272的电流可以自射频 驱动电极 25沿着不同的路径穿越反应腔室 21。 上述路径包括三条, 即自射 频驱动电极 25至无源电极 22 , 自射频驱动电极 25至第一接地环 23 , 以及自 射频驱动电极 25至第二接地环 26。 上述各个路径中射频电流的初始分配比 例由反应腔室 21的具体尺寸决定。
改变第一可变电阻 R1的阻值, 可以调整上述各个路径的阻抗, 射频电 流将在初始分配比例的基础上重新分配。
当反应腔室 21 中需要较高能量的等离子体时, 比如当需要在加工件表 面刻蚀通孔或者其他具有较高深宽比的图形时, 可以减小第一可变电阻 R1 的阻值, 无源电极 22所在的射频电流回路的阻抗降低, 因此其电流将增大, 因此无源电极 22与射频驱动电极 25的有效面积之比 (A /A2 ) 以及射频驱 动电极 25处的偏压随之增大,因此反应腔室 21中等离子体的能量得到提高。
显然, 当第一可变电阻 R1的阻值为零时, 反应腔室 21中等离子体的能 量可以达到最大值(不考虑其他影响因素时; 下文均没有考虑其他因素对等 离子体能量的影响)。
当反应腔室 21 中需要较低能量的等离子体时, 比如当需要在加工件表 面形成多孔低介电常数膜时, 可以增大第一可变电阻 R1 的阻值, 无源电极 22所在射频电流回路的阻抗增加, 因此其电流将减小, 无源电极 22与射频 驱动电极 25的有效面积之比 ( A /A2 ) 以及射频驱动电极 25处的偏压也随 之减小, 所以反应腔室 21中等离子体的能量得到降低。
显然, 当第一可变电阻 R1的阻值最大时, 反应腔室 21中等离子体的能 量可以达到最低值; 改变第一可变电阻 R1 的最大阻值, 可以改变等离子体 能量所能达到的最低值。
可以事先建立反应腔室 21中等离子体能量与第一可变电阻 R1阻值的对 应关系。 当反应腔室 21中等离子体的能量根据加工工艺的不同需要改变时, 可以根据上述对应关系准确地选取第一可变电阻 Rl 的阻值, 从而在反应腔 室 21中得到具有预期能量的等离子体。
本发明所提供的等离子体处理装置釆用了完全不同的思路来调整其反 应腔室 21中等离子体的能量。 即, 本发明通过调整第一可变电阻 R1的阻值 来改变无源电极 22所在回路的阻抗, 从而改变流经无源电极 22的电流, 进 而改变反应腔室 21中等离子体的能量。
本发明所提供的新思路, 能够在更大的范围内调整无源电极 22 中射频 电流的大小; 因此, 本发明所提供的等离子体处理装置克服了前述等离子体 能量只能在若干特定的孤立值之间转换这一缺陷, 而是可以在同一反应腔室 21中实现更多具有不同等离子体密度要求的工艺过程,其适应性得到了显著 地提高, 反应腔室 21的匹配也更易于实现。
此外, 可以进一步选取阻值可以连续调整的电阻作为第一可变电阻 R1 , 此时,无源电极 22所在的射频电流回路的电流可以连续地改变, 因此可以实 现对反应腔室 21中等离子体能量的连续改变,等离子体处理装置的适应性进 一步增强。
请参考图 4, 图 4为本发明所提供的等离子体处理装置第二种具体实施 方式的结构示意图。
在第二种具体实施方式中, 本实施例所提供的等离子体处理装置在上述 第一种具体实施方式的基础上做了进一步的改进。
如前所述, 为了拓宽等离子体处理装置的适应性, 应当能够对反应腔室
21中等离子体的相关参数进行调整, 所述相关参数通常涉及密度、 能量、 流 量等。 通常是通过第一射频电源 271实现对等离子体能量的调整; 通过第二 射频电源 272实现对等离子体密度的调整。
在为了适应不同工艺过程而调整上述参数时, 最好能够对等离子体的密 度、 能量分别单独地进行控制; 但是, 由于第一射频电源 271与第二射频电 源 272之间的耦合作用, 对等离子体密度和能量的单独控制是很难实现的。 为了实现第一射频电源 271与第二射频电源 272之间的解耦合, 以便单 独控制等离子体密度和能量, 可以在无源电极 22与第一可变电阻 R1之间, 或者第一可变电阻 R1与地线之间串接第一滤波电路 281。 第一滤波电路 281 的通频带应当可以调整, 且其通频带的调整范围至少应当覆盖第一射频电源 271和第二射频电源 272的频率; 以便选择两者中至少一者的射频电流通过 无源电极 22 , 或者同时阻止两者通过无源电极 22。
可以调整第一滤波电路 281的通频带使其成为低通滤波器, 此时第一射 频电源 271的低频电流可以通过无源电极 22 , 而第二射频电源 272的高频电 流则被阻止。 此时, 第一接地环 23以及第二接地环 26为第二射频电源 272 的高频电流提供回路。
同样, 可以调整第一滤波电路 281的通频带使其成为高通滤波器, 此时 第二射频电源 272的高频电流可以通过无源电极 22 , 而第一射频电源 271的 低频电流则被阻止。 此时, 第一接地环 23以及第二接地环 26为第一射频电 源 271的低频电流提供回路。
由此, 可以实现第一射频电源 271与第二射频电源 272之间的解耦合, 高频电流和低频电流可以不再相互干扰, 因此能够实现对等离子体密度和能 量的单独控制。
如图 4所示,在一种具体实施方式中,本发明所提供的第一滤波电路 281 可以包括相互并联的第一支路和第二支路。所述第一支路由第一可变电容 C1 与第一电感 L1 串联而成; 所述第二支路由第二可变电容 C2与第二电感 L2 串联而成。
电路的谐振频率 f= ( 2 π ) -1 , 因此, 分别给定第一电感 Ll、 第二 电感 L2的值, 即可确定第一可变电容 Cl、 第二可变电容 C2的变化范围。
所述第一支路为低频通路; 当需要选择第一射频电源 271中的低频电流 通过无源电极 22时, 可以调节第一可变电容 C1 , 使得所述第一支路的谐振 频率等于第一射频电源 271的频率。 所述第二支路为高频通路; 当需要选择第二射频电源 272中的低频电流 通过无源电极 22时, 可以调节第一可变电容 C1 , 使得所述第二支路的谐振 频率等于第二射频电源 272的频率。
本具体实施方式中第一滤波电路 281釆用两条支路的原因在于, 第一射 频电源 271与第二射频电源 272的频率相差较大(在本具体实施方式中后者 是前者的 30倍)。 如上所述, 谐振频率 f= ( 27r ) -ι, 如果第一滤波电路 281 仅包括一个支路, 则电容和电感的变化范围过宽, 因此其最好釆用两条 支路。
请参考图 5 , 图 5为本发明所提供的等离子体处理装置第三种具体实施 方式的结构示意图。
在第三种具体实施方式中, 本实施例所提供的等离子体处理装置在上述 第一或者第二种具体实施方式的基础上做了改进。
在上述第一以及第二种具体实施方式中, 第一接地环 23和第二接地环 26均直接接地。 本具体实施方式中, 可以在第一接地环 23与地线之间和 /或 第二接地环 26与地线之间串接作为第二阻抗调节元件的第二可变电阻 R2。
如同上述第一可变电阻 R1 ,第二可变电阻 R2也可以由其他阻抗调节元 件代替, 比如, 可以将电阻与电容串联, 两者即可作为上述第二阻抗调节元 件。
进一步设置第二可变电阻 R2,可以调整第一接地环 23和第二接地环 26 所在电流路径的阻抗; 这样各个电流路径的阻抗均可以改变。 因此, 流经无 源电极 22的电流所占的比例可以在更大的范围内调整, 反应腔室 21中等离 子体的能量进而也可以在更大的范围内调整。
需要指出的是, 仅在第一接地环 23与地线之间或者仅在第二接地环 26 与地线之间设置第二可变电阻 R2 即可以实现上述技术效果; 当然同时在第 一接地环 23与地线之间、 第二接地环 26与地线之间设置第二可变电阻 R2 可以取得更好的技术效果。 此外 , 可以进一步选用阻值可以连续变化的电阻作为第二可变电阻 R2 , 由此等离子体的能量可以在更宽的范围内调整。
请参考图 6, 图 6为本发明所提供的等离子体处理装置第四种具体实施 方式的结构示意图。
在第四种具体实施方式中, 本实施例所提供的等离子体处理装置在上述 第一至第三种具体实施方式的基础上做了改进。
如前所述, 为了实现第一射频电源 271与第二射频电源 272之间的解耦 合进而实现对等离子体密度和能量的单独控制,可以在无源电极 22与第一可 变电阻 R1之间, 或者第一可变电阻 R1与地线之间串接第一滤波电路 281。 这种做法可以实现第一射频电源 271与第二射频电源 272解耦合目的;但是, 两者解耦合的效果并不彻底。 其原因在于, 第一接地环 23和第二接地环 26 直接接地或者通过电阻接地, 因此总有一部分高频电流和低频电流能够同时 通过第一接地环 23和第二接地环 26。
为了取得进一步的技术效果, 使第一射频电源 271与第二射频电源 272 之间的解耦合更为彻底,可以在第一接地环 23与地线之间, 以及第二接地环 26与地线之间串接第二滤波电路 282。
如同第一滤波电路 281 , 第二滤波电路 282的通频带也应当可以调整, 且其通频带的调整范围至少应当覆盖第一射频电源 271和第二射频电源 272 的频率;以便选择两者中至少一者的射频电流通过第一接地环 23和第二接地 环 26 , 或者同时阻止两者通过第一接地环 23和第二接地环 26。
可以调整第一滤波电路 281的通频带使其成为低通滤波器, 同时调整第 二滤波电路 282的通频带使其成为高通滤波器。 此时第一射频电源 271的低 频电流可以通过无源电极 22, 而第二射频电源 272的高频电流则被阻止; 第 二射频电源 272的高频电流可以通过第一接地环 23和第二接地环 26 , 而第 一射频电源 271的低频电流则被阻止。这种情况下,反应腔室 21中等离子体 的密度较低、 能量较高; 上述低频电流和高频电流可以实现彻底地解耦合。 同样, 还可以调整第一滤波电路 281的通频带使其成为高通滤波器, 同 时调整第二滤波电路 282的通频带使其成为低通滤波器。 此时第一射频电源 271 的低频电流可以通过第一接地环 23和第二接地环 26, 而第二射频电源 272的高频电流则被阻止; 第二射频电源 272的高频电流可以通过无源电极 22 , 而第一射频电源 271 的低频电流则被阻止。 这种情况下, 反应腔室 21 中等离子体的密度较高、 能量较低。 上述低频电流和高频电流同样可以实现 彻底地解耦合。
当然, 也可以仅在第一接地环 23和第二接地环 26两者之一与地线之间 串接第二滤波电路 282。 但是, 这样仅能在一定程度上提高解耦合的效果, 而不能实现彻底地解耦合。
在一种具体实施方式中, 本发明所提供的第二滤波电路 282可以包括相 互并联的第三支路和第四支路。 所述第三支路由第三可变电容 C3与第三电 感 L3串联而成;所述第四支路由第四可变电容 C4与第四电感 L4串联而成。
第二滤波电路 282釆用两条支路的原因与第一滤波电路 281釆用两条支 路的原因相同, 此处不再赘述。
为了进一步提高离子分解率、 提高等离子体的密度, 近来出现了在上述 第一、 第二射频电源之外增加第三射频电源(其频率通常大于 60MHZ )的做 法。 应当指出, 本发明所提供的构思以及技术方案也可以适用于以上情形。
以上对本发明所提供的等离子体处理装置进行了详细介绍。 本文中应用 用于帮助理解本发明的方法及其核心思想。 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以对本发明进行若干 改进和修饰, 这些改进和修饰也落入本发明权利要求的保护范围内。

Claims

利 要 求 书
1、 一种等离子体处理装置, 包括相对应设置的射频驱动电极(25)和 无源电极(22); 第一接地环(23)围绕所述无源电极(22)并与其相互绝缘, 第二接地环(26) 围绕所述射频驱动电极(25)并与其相互绝缘; 所述射频 驱动电极(25)分别连接第一射频电源(271 )和第二射频电源(272); 其特 征在于, 所述无源电极(22)与地线之间串接第一阻抗调节元件。
2、 如权利要求 1 所述的等离子体处理装置, 其特征在于, 所述第一阻 抗调节元件的阻抗连续可调。
3、 如权利要求 2所述的等离子体处理装置, 其特征在于, 所述第一阻 抗调节元件为第一可变电阻 R1; 所述无源电极( 22 )和地线之间设有与所述 第一可变电阻 R1串联的第一滤波电路(281 ); 所述第一滤波电路(281 )的 通频带可调, 以便选择所述第一射频电源 (271 )和第二射频电源 (272) 中 至少一者的射频电流通过, 或者两者都不通过。
4、 如权利要求 3 所述的等离子体处理装置, 其特征在于, 所述第一滤 波电路(281 ) 包括由第一可变电容 Cl、 第一电感 L1串联而成的第一支路, 以及由第二可变电容 C2、 第二电感 L2串联而成的第二支路; 所述第一支路 和第二支路相并联。
5、 如权利要求 1至 4中任一项所述的等离子体处理装置, 其特征在于, 所述第一接地环(23)和第二接地环(26) 中至少一者与地线之间串接第二 阻抗调节元件。
6、 如权利要求 5所述的等离子体处理装置, 其特征在于, 所述第二阻 抗调节元件的阻抗连续可调。
7、 如权利要求 6所述的等离子体处理装置, 其特征在于, 所述第二阻 抗调节元件为第二可变电阻 R2;所述第一接地环( 23 )和 /或第二接地环( 26 ) 与地线之间设有第二滤波电路(282 ); 所述第二滤波电路(282 )与所述第二 可变电阻 R2串接, 且其通频带可调, 以便选择所述第一射频电源 (271 )和 第二射频电源 (272 ) 中至少一者的射频电流通过, 或者两者都不通过。
8、 如权利要求 7所述的等离子体处理装置, 其特征在于, 所述第二滤 波电路(282 ) 包括由第三可变电容 C3、 第三电感 L3串联而成的第三支路, 以及由第四可变电容 C4、 第四电感 L4串联而成的第四支路; 所述第三支路 与第四支路相并联。
9、 如权利要求 1至 8任一项所述的等离子体处理装置, 其特征在于, 该等离子体处理装置具体为等离子体刻蚀装置。
10、 如权利要求 1至 8任一项所述的等离子体处理装置, 其特征在于, 该等离子体处理装置具体为等离子体淀积装置。
PCT/CN2008/073884 2008-01-04 2008-12-31 等离子体处理装置 WO2009086782A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/811,628 US20100294433A1 (en) 2008-01-04 2008-12-31 Plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810055657.2 2008-01-04
CNA2008100556572A CN101478857A (zh) 2008-01-04 2008-01-04 等离子体处理装置

Publications (1)

Publication Number Publication Date
WO2009086782A1 true WO2009086782A1 (zh) 2009-07-16

Family

ID=40839474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073884 WO2009086782A1 (zh) 2008-01-04 2008-12-31 等离子体处理装置

Country Status (3)

Country Link
US (1) US20100294433A1 (zh)
CN (1) CN101478857A (zh)
WO (1) WO2009086782A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469675A (zh) * 2010-11-05 2012-05-23 北京北方微电子基地设备工艺研究中心有限责任公司 功率匹配装置和半导体设备
CN102647845B (zh) * 2011-02-22 2016-04-20 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体点火的装置、方法和半导体设备
JP5710318B2 (ja) * 2011-03-03 2015-04-30 東京エレクトロン株式会社 プラズマ処理装置
CN102686004B (zh) * 2011-03-17 2015-05-13 中微半导体设备(上海)有限公司 用于等离子体发生器的可控制谐波的射频系统
US10586686B2 (en) 2011-11-22 2020-03-10 Law Research Corporation Peripheral RF feed and symmetric RF return for symmetric RF delivery
CN102543641B (zh) * 2012-01-20 2015-07-08 中微半导体设备(上海)有限公司 实现等离子体刻蚀腔体弹性接触的连接器件
US9881772B2 (en) * 2012-03-28 2018-01-30 Lam Research Corporation Multi-radiofrequency impedance control for plasma uniformity tuning
US9673069B2 (en) * 2012-07-20 2017-06-06 Applied Materials, Inc. High frequency filter for improved RF bias signal stability
KR20150131095A (ko) * 2013-03-15 2015-11-24 어플라이드 머티어리얼스, 인코포레이티드 프로세싱 챔버에서 튜닝 링을 사용하여 플라즈마 프로파일을 튜닝하기 위한 장치 및 방법
CN103433261B (zh) * 2013-08-22 2016-06-29 华东光电集成器件研究所 一种元器件等离子清洗辅助装置
CN104299881B (zh) * 2014-09-01 2017-04-12 上海华力微电子有限公司 等离子刻蚀设备
CN107295738B (zh) * 2016-04-11 2020-02-14 北京北方华创微电子装备有限公司 一种等离子体处理装置
CN107305830B (zh) * 2016-04-20 2020-02-11 中微半导体设备(上海)股份有限公司 电容耦合等离子体处理装置与等离子体处理方法
CN108269728A (zh) * 2016-12-30 2018-07-10 中微半导体设备(上海)有限公司 电容耦合等离子体处理装置与等离子体处理方法
CN108269727A (zh) * 2016-12-30 2018-07-10 中微半导体设备(上海)有限公司 电容耦合等离子体处理装置与等离子体处理方法
US11404249B2 (en) 2017-03-22 2022-08-02 Tokyo Electron Limited Substrate processing apparatus
WO2019004188A1 (ja) 2017-06-27 2019-01-03 キヤノンアネルバ株式会社 プラズマ処理装置
EP3648550B1 (en) 2017-06-27 2021-06-02 Canon Anelva Corporation Plasma treatment device
SG11201912567RA (en) 2017-06-27 2020-01-30 Canon Anelva Corp Plasma processing apparatus
KR102280323B1 (ko) 2017-06-27 2021-07-20 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
CN110323117B (zh) * 2018-03-28 2024-06-21 三星电子株式会社 等离子体处理设备
JP7061918B2 (ja) * 2018-04-23 2022-05-02 東京エレクトロン株式会社 プラズマエッチング方法及びプラズマ処理装置
JP6995008B2 (ja) 2018-04-27 2022-01-14 東京エレクトロン株式会社 基板処理装置
EP4425529A2 (en) 2018-06-26 2024-09-04 Canon Anelva Corporation Plasma processing apparatus, plasma processing method, program, and memory medium
CN111326391B (zh) * 2018-12-17 2023-01-24 中微半导体设备(上海)股份有限公司 等离子体处理装置
CN112530776B (zh) * 2019-09-18 2024-02-09 中微半导体设备(上海)股份有限公司 一种等离子体处理装置
CN113745083B (zh) * 2020-05-28 2023-09-29 中微半导体设备(上海)股份有限公司 一种等离子体处理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468440A (zh) * 2000-10-06 2004-01-14 兰姆研究有限公司 利用等离子体处理室中的单频率rf功率处理晶片的系统、设备和方法
US20040194709A1 (en) * 2003-04-04 2004-10-07 Asm Japan K.K. Plasma treatment apparatus
CN1575089A (zh) * 2003-06-12 2005-02-02 三星电子株式会社 等离子箱体
CN1726584A (zh) * 2002-12-20 2006-01-25 朗姆研究公司 使用可调耦合接地电路控制等离子体的装置及方法
CN1734712A (zh) * 2004-07-30 2006-02-15 东京毅力科创株式会社 等离子体处理装置以及等离子体处理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579618A (en) * 1984-01-06 1986-04-01 Tegal Corporation Plasma reactor apparatus
JP2960466B2 (ja) * 1990-03-19 1999-10-06 株式会社日立製作所 半導体デバイスの配線絶縁膜の形成方法及びその装置
JP2001185542A (ja) * 1999-12-27 2001-07-06 Hitachi Ltd プラズマ処理装置及びそれを用いたプラズマ処理方法
US6677711B2 (en) * 2001-06-07 2004-01-13 Lam Research Corporation Plasma processor method and apparatus
US6706138B2 (en) * 2001-08-16 2004-03-16 Applied Materials Inc. Adjustable dual frequency voltage dividing plasma reactor
US7879185B2 (en) * 2003-12-18 2011-02-01 Applied Materials, Inc. Dual frequency RF match
US20060021580A1 (en) * 2004-06-02 2006-02-02 Tokyo Electron Limited Plasma processing apparatus and impedance adjustment method
CN100362619C (zh) * 2005-08-05 2008-01-16 中微半导体设备(上海)有限公司 真空反应室的射频匹配耦合网络及其配置方法
US7611603B2 (en) * 2006-03-31 2009-11-03 Tokyo Electron Limited Plasma processing apparatus having impedance varying electrodes
US8450635B2 (en) * 2007-03-30 2013-05-28 Lam Research Corporation Method and apparatus for inducing DC voltage on wafer-facing electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468440A (zh) * 2000-10-06 2004-01-14 兰姆研究有限公司 利用等离子体处理室中的单频率rf功率处理晶片的系统、设备和方法
CN1726584A (zh) * 2002-12-20 2006-01-25 朗姆研究公司 使用可调耦合接地电路控制等离子体的装置及方法
US20040194709A1 (en) * 2003-04-04 2004-10-07 Asm Japan K.K. Plasma treatment apparatus
CN1575089A (zh) * 2003-06-12 2005-02-02 三星电子株式会社 等离子箱体
CN1734712A (zh) * 2004-07-30 2006-02-15 东京毅力科创株式会社 等离子体处理装置以及等离子体处理方法

Also Published As

Publication number Publication date
CN101478857A (zh) 2009-07-08
US20100294433A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2009086782A1 (zh) 等离子体处理装置
CN111837231B (zh) 具有多个射频网孔以控制等离子体均匀性的静电卡盘
JP6623256B2 (ja) プラズマ均一性調整のためのマルチ高周波インピーダンス制御
US20210111000A1 (en) Method and apparatus of achieving high input impedance without using ferrite materials for rf filter applications in plasma
KR101700981B1 (ko) 멀티주파수 용량적으로 커플링된 플라즈마 에칭 챔버
JP5031252B2 (ja) プラズマ処理装置
US6288493B1 (en) Antenna device for generating inductively coupled plasma
JP5129433B2 (ja) プラズマ処理チャンバ
CN1961402B (zh) 具有响应多个rf频率的等离子体处理器
KR101007822B1 (ko) 혼합형 플라즈마 발생 장치
US10128118B2 (en) Bottom and side plasma tuning having closed loop control
CN107710378A (zh) 多电极基板支撑组件与相位控制系统
KR20140098179A (ko) 플라즈마 에지 영역을 제어하기 위한 시스템들 및 방법들
KR20200044686A (ko) 필터 유닛의 조정 방법 및 플라즈마 처리 장치
KR20160117213A (ko) 복수의 출력부 rf 매칭 네트워크의 일 출력부에서 rf 전류 극성을 반전시키기 위한 시스템들 및 방법들
JPH0661185A (ja) プラズマ処理装置
CN104754851B (zh) 多频匹配器及等离子体装置
KR20200056200A (ko) 기판 처리 장치
CN209218441U (zh) 一种电感耦合等离子体处理器
CN107305830A (zh) 电容耦合等离子体处理装置与等离子体处理方法
KR102298032B1 (ko) 고 주파수 무선 주파수에 대한 전극 임피던스를 튜닝하고 저 주파수 무선 주파수를 접지로 종단하기 위한 장치 및 방법
US20240321552A1 (en) Impedance Matching Network and Control Method
US20240355583A1 (en) Plasma processing apparatus
KR102694259B1 (ko) 박막의 형성 방법 및 기판 처리 장치
KR20210059444A (ko) 적층 박막 형성 방법 및 기판 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08870127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12811628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08870127

Country of ref document: EP

Kind code of ref document: A1