Nothing Special   »   [go: up one dir, main page]

WO2009056034A1 - Procédé, système et équipement pour établir une détection bfd pour un tunnel lsp - Google Patents

Procédé, système et équipement pour établir une détection bfd pour un tunnel lsp Download PDF

Info

Publication number
WO2009056034A1
WO2009056034A1 PCT/CN2008/072768 CN2008072768W WO2009056034A1 WO 2009056034 A1 WO2009056034 A1 WO 2009056034A1 CN 2008072768 W CN2008072768 W CN 2008072768W WO 2009056034 A1 WO2009056034 A1 WO 2009056034A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bfd
lsp tunnel
lsp
module
Prior art date
Application number
PCT/CN2008/072768
Other languages
English (en)
Chinese (zh)
Inventor
Lin Dong
Changbao Liu
Shihai Hu
Xiaoting Cui
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009056034A1 publication Critical patent/WO2009056034A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route

Definitions

  • the present invention relates to the field of network communications, and in particular, to a method, system, and device for establishing BFD detection for an LSP tunnel carrying a pseudowire group. Background technique
  • BFD Bidirectional Forwarding Detection
  • MPLS Multi-Protocol Label Switching
  • IPSec IPSec tunnels
  • BFD can also quickly detect connectivity status with neighboring nodes. Fault detection on any type of channel between systems. These channels include direct physical links, virtual circuits, tunnels, and MPLS (Multiprotocol Label Switch) LSPs ( Label Switch Path). , label switched paths), multi-hop routing channels, and indirect channels.
  • BFD is similar to the "Hello" protocol. It can detect the fault between two nodes in a short time. After a BFD session is established, the two nodes of the BFD session periodically send BFD reports to the other node. If the peer does not receive the BFD packet from the peer, the link is considered to be faulty.
  • An LSP is a path between MPLS nodes.
  • An LSP can be regarded as a cross-section. One-way tunnel of the MPLS network.
  • PS Protection Switching
  • Rerouting does not pre-establish a protection LSP. It only initiates the establishment of a protection LSP when the primary LSP link (node) fails. After the establishment is successful, the traffic is switched to the protection LSP. It can be seen that in general, when the LSP fails, the PS gravity route is reflected more quickly. The real-time performance of the protection switching needs to be ensured by a fast detection mechanism.
  • the detection mechanism can be MPLS OAM detection or BFD detection.
  • the BFD session exchanges BFD specifiers through MPLS ping packets to automatically establish BFD sessions.
  • the MPLS ping is similar to the ping of the IP.
  • MPLS Echo Request can be sent.
  • MPLS Echo Reply After the LSP is forwarded to the egress, the egress of the MPLS domain returns a BFD called MPLS Echo Reply.
  • Negotiation can only be used, so that when reply is returned, you can know whether this LSP can be used for data forwarding correctly.
  • the LSP1 and LSP3 are configured to carry the PW1 and PW2.
  • the LSP1, the LSP2, the LSP3, and the LSP4 are the pair configured on the UPE1 and the NPE1.
  • LSP protection group You need to configure a pair of BFDs on the LSP protection group in the PW group.
  • the inventors have found that at least the following problems exist in the prior art: the prior art requires manual configuration to ensure that the PW group uses the same LSP, which has a large workload and a complicated configuration. After the LSP protection group that carries the PW group is configured, the BFD session cannot be automatically established on the LSP protection group that carries the PW group. You need to manually configure a pair of BFDs on the LSP protection group (LSP1 and LSP2). parameter, BFD specifier, and peer BFD parameters and specifiers. Summary of the invention
  • the embodiment of the invention provides a method, a system and a device for establishing a BFD detection for an LSP tunnel carrying a pseudowire group, so as to solve the problem of manual configuration of the PW group protection in the prior art, which has a large workload and a complicated configuration, and cannot automatically Establish defects in BFD protection.
  • An embodiment of the present invention provides a method for establishing a BFD test for an LSP tunnel carrying a pseudowire group, including:
  • the edge of the source backbone network PE device and the sink PE device selects the same pair of LSP tunnels for a group of PWs.
  • the PW group is configured with the same group ID.
  • the source PE device creates a BFD session on the LSP tunnel, and initiates an MPLS ping packet to the sink PE device by using the LSP tunnel, where the MPLS ping packet carries the Group ID and the BFD specifier;
  • the sinking PE device sends a BFD negotiation packet to the source PE device according to the group ID of the MPLS ping packet, and the BFD session of the LSP tunnel is established. .
  • the embodiment of the present invention further provides a system for establishing BFD detection for an LSP tunnel carrying a pseudowire group, including a source PE device and a sink PE device. Each PW in the PW group has the same source PE device and sink PE. Equipment,
  • the source PE device is configured to select the same pair of LSP tunnels for the PW group, and the PW group is configured with the same group ID; and the BFD session is created on the LSP tunnel, and the LSP tunnel is used to the sink PE.
  • the device initiates an MPLS ping packet, where the MPLS ping packet carries the Group ID and the BFD specifier; the same Group ID
  • the sink PE device is configured to select a corresponding reverse LSP tunnel according to the Group ID carried in the MPLS ping packet sent by the source PE device, and send the reverse LSP tunnel to the source end on the reverse LSP tunnel.
  • the PE device sends a BFD negotiation packet to establish BFD detection on the LSP that carries the PW.
  • the embodiment of the invention further provides a PE device, including a configuration module and an LSP tunnel. Select the module and the ping module,
  • the configuration module is configured to configure the same Group ID for a group of PW groups when establishing a pseudowire PW;
  • the LSP tunnel selection module is configured to allocate the same pair of LSP tunnels to the PW group according to the group ID configured by the configuration module;
  • the ping module is configured to send an MPLS ping packet to the PE device at the opposite end of the PW group according to the LSP tunnel selected by the LSP tunnel selection module, where the MPLS ping packet carries the Group ID and the BFD specifier;
  • the MPLS ping packet sent by the peer PE device of the PW group is parsed, and the group ID carried in the MPLS ping packet is obtained.
  • the embodiment of the present invention has the following advantages:
  • a group of PWs are automatically carried on the same pair of LSP tunnels, and the group IDs are carried by the initiated MPLS ping packets.
  • Automatically establishes BFD detection on a pair of LSPs that carry the PW group, thereby improving the automation level of establishing a BFD session on the LSP tunnel that carries the PW group, and performing BFD detection on the PW group by BFD detection on the LSP tunnel.
  • FIG. 1 is a schematic diagram of a CE device accessing a VPLS through a VLL according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a typical networking for establishing BFD detection for an LSP tunnel carrying a pseudowire group according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of a PE device according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for detecting a BFD of a pseudowire group according to an embodiment of the present invention. detailed description
  • the schematic diagram shown in FIG. 1 is a specific application scenario of the embodiment of the present invention.
  • MPLS L2VPN transparently transmits Layer 2 data of a user on an MPLS network.
  • the MPLS network is a Layer 2 switching network.
  • a Layer 2 connection is established between different sites.
  • the principle of MPLS L2VPN is to use the label stack to transparently transmit user packets in the MPLS network.
  • the outer label (called the tunnel label) is used to transfer packets from one PE to another.
  • MPLS L2VPN it is called a VC label. It is used to distinguish different connections in different VPNs and connect to the edge of the user network.
  • L2VPN is mainly divided into VLL (Virtual Leased Line) and VPLS (Virtual Private LAN Service).
  • VLL is a simulation of traditional leased line services.
  • IP networks By using IP networks to simulate leased lines, From the perspective of users at both ends of the virtual leased line, the virtual leased line approximates the past leased line.
  • VPLS uses the IP public network to interconnect LANs through virtual private network segments, which is an extension of LANs on IP public networks.
  • a PE router is the primary device. The PE is responsible for managing VPN users and establishing LSP connections between PEs.
  • the CE distributes user network routes.
  • the CE can be a router or a switch or a host.
  • the VPLS technology uses the signaling protocol to establish a PW across the backbone network between the PEs.
  • the PW can transmit the Ethernet data units on the backbone network.
  • the PW is established by establishing a pair of unidirectional LSPs between the two PE endpoints.
  • the established LSP tunnel can carry multiple VPLS services, and there are multiple LSPs between PEs.
  • the PE can be layered into an NPE and a UPE according to the implementation function and the location in the network.
  • the NPE and the UPE are exchanged through the MPLS LSP tunnel.
  • VPLS technology use The signaling protocol establishes a PW (Peudo Wire) across the backbone network between the PEs.
  • the PW can transmit the Ethernet data units on the backbone network.
  • the PW establishes a pair of singles between the two PE endpoints.
  • the established LSP tunnel can be used to carry multiple VPLS services. There are multiple LSPs between PEs.
  • the embodiment of the present invention is not limited to the application of the VLL access to the VPLS, and is applicable to the BFD detection and protection of the PW group in any scenario.
  • FIG. 2 it is a set of network diagrams for detecting the BFD of the PW group in the embodiment of the present invention.
  • the same group ID is set for the PW group on the PE device at the source end of the PW group.
  • setting the same group ID for the PW group specifically includes: In this embodiment, the PW includes only PW1 and PW2, and the same Group ID is set to PW group for PW1 and PW2. Set the same group ID for the PW group to enable the source PE device to select the same LSP tunnel for the PW group with the same group ID, and pass the LDP (Label Distribute Protocol) between the source PE device and the sink PE device.
  • LDP Label Distribute Protocol
  • the session can also enable the sink PE device to obtain the group ID of the PW group, that is, the PW group, so that the sink PE device also selects the same LSP tunnel for the same group of PWs on the sink PE.
  • the BFD For MPLS LSPs scheme in the IETF Internet Engineering Task Force is used to add a Group ID to the MPLS ping packet to automatically establish a BFD session on the LSP that carries the PW group. .
  • the system for establishing BFD detection for the LSP tunnel carrying the pseudowire group includes the source PE device and the sink PE device, and the PW in the pseudowire PW group according to the embodiment of the present invention is provided.
  • the source PE device and the sink PE device of the PW are the same.
  • the source PE device and the sink PE device of PW1 and PW2 in the PW group are both UPE1 and NPE1.
  • LSP2 and LSP4, and LSP1 and LSP3 are configured LSP protection groups.
  • the embodiment of the present invention provides that the source PE device and the sink PE device are only for the sake of understanding.
  • the PW is bidirectional, so a PE device may be a source PE device or a sink PE device.
  • PE1 when CE1 traffic is accessed through MPLS L2VPN, PE1 can be considered as the source PE and PE2 is the sink PE. Similarly, when CE2 traffic is accessed through MPLS L2VPN, PE2 can be considered as the source PE. Equipment, PE1 is the sink PE device.
  • the source PE device is configured to configure the same group ID for the same PW group as the source PE device and the sink PE device when the PW is established. For example, the PW group on the PE1 is set to be the same as the group.
  • a group ID in this embodiment, the PW is only PW1 and PW2, and the same group ID is set to the PW group for the PW1 and PW2.
  • the PWs on PE2 are also grouped.
  • the PWs on PE2 are classified into Group IDs as PW groups.
  • the same pair of LSPs are allocated to the PW group according to the group ID.
  • the peer PEs select the same LSP tunnel for the PW group with the same group ID.
  • the source PE creates a BFD session on the LSP tunnel where the PW group resides.
  • the group LSP corresponding to the MPLS ping packet sent by the MPLS ping packet is sent to the source PE device to send a BFD negotiation packet, and the BFD session of the PW group is set up on the reverse LSP tunnel.
  • the following describes the working process of the BFD detection system of the pseudowire group in the embodiment of the present invention, taking PE1 as the source PE and PE2 as the sink PE as an example.
  • a PW When a PW is set up, all the PWs between PE1 and PE2 are set up as one PW group.
  • PW1 and PW2 are grouped into the same PW group. The same group ID is configured for the PW group.
  • an LSP tunnel is selected, only the LSP2 tunnel or the LSP4 tunnel is selected (because LSP2 and LSP4 are LSP protection groups); and PE1 can also know the group ID of the PW group through the LDP session.
  • the corresponding reverse LSP tunnel is selected to feed back to PE1. If the LSP2 is connected to PE2 and the PW1 is carried, the PE2 will select the LSP1 tunnel to feed back to PE1. Therefore, the PW group can be automatically carried in the same pair of LSPs by setting the same group ID for the PW group. On the tunnel.
  • the embodiment of the present invention provides two ways of transmitting a group ID through an LDP session, as shown in the following figure.
  • One method is to directly configure the same group ID in the LDP session of the PW group.
  • the other way is to set the group ID by setting the VC ID in the LDP session of the PW group. That is, the range of a VCID can be used to correspond to a group ID. Both of the above methods can achieve the purpose of transmitting the group ID.
  • PE1 creates a BFD session on the LSP2 tunnel, waits for BFD negotiation packets, and selects the LSP2 tunnel to send MPLS ping packets to the PE2 according to the configured group ID.
  • PE1 adds BFD specifiers to the MPLS ping packets. Group ID of the corresponding PW group.
  • the PE2 selects the LSP1 tunnel as the BFD reverse LSP tunnel according to the group ID in the MPLS ping packet, and sends a BFD negotiation packet to the PE1 through the LSP1, and returns the BFD negotiation report of the MPLS echo reply.
  • the automatic creation of BFD on LSP1 and LSP2 is performed, and the two-way fast detection of LSP1 and LSP2 carrying the PW group is performed.
  • the MPLS ping packet is extended by the TLV domain of the type length of the MPLS ping packet, and the MPLS ping packet extension is as follows:
  • FIG. 3 it is a structural diagram of a PE device according to an embodiment of the present invention.
  • the PE device can be used as a source PE device or a sink PE device.
  • the PE device 1 includes a configuration module 11, an LSP tunnel selection module 12, and a ping module 13.
  • the configuration module 11 is configured to configure the same group ID for the same PW group of the source PE device and the sink PE device when the PW group is established, so that the PW group is automatically carried on a pair of LSP tunnels.
  • the group ID of the same PW group of the source sink PE device is configured to be 100; or the range of one VC ID is specified as 100, so that all VC IDs in the range share a Group ID (100).
  • the LSP tunnel selection module 12 is configured to allocate the same LSP tunnel to the PW group according to the group ID configured by the configuration module 11, as shown in FIG. 2, the PE1 is the PW group (PW1 and PW2), and the LSP2 is used as the LSP tunnel to carry the PW group, and the PE2 is The PW group (PW1 and PW2) selects LSP1 as the LSP tunnel to carry the above PW group.
  • the ping module 13 is configured to send an MPLS ping packet to the PE device at the peer end of the PW group according to the LSP tunnel selected by the LSP tunnel selection module 12, where the MPLS ping packet carries the Group ID and the BFD specifier, and is used as the peer end.
  • the PE device is configured to parse the MPLS ping packet, and obtain the group ID carried in the MPLS ping packet.
  • the PE device 1 further includes a BFD module 15 for waiting for BFD session negotiation on the LSP tunnel, and selecting a corresponding reverse LSP tunnel according to the Group ID obtained by the ping module 13, and transmitting the BFD on the reverse LSP tunnel.
  • the BPDU is negotiated to complete the automatic creation of the BFD on the pair of LSPs that carry the PW group.
  • the ping module 13 includes a ping packet sending sub-module 131 and a ping packet parsing sub-module 132.
  • the ping packet sending sub-module 131 is configured to extend the MPLS ping packet and pass the MPLS Ping packet with the type length value TLV.
  • the domain carries the group ID and the BFD specifier.
  • the ping packet parsing sub-module 132 is configured to parse the MPLS ping packet on the sink PE to obtain the group ID and the BFD specifier.
  • the BFD detection system and the PE device of the pseudowire group in the embodiment of the present invention can automatically carry the PW group on a pair of LSP tunnels by setting the same group ID for the PW group, thereby improving the automation level and initiating the
  • the MPLS ping packet carrying the group ID can automatically establish BFD detection on the pair of LSPs that carry the PW group.
  • the BFD detection of the LSP tunnel reflects the BFD of the PW group. Detection,
  • FIG. 4 it is a flowchart of a BFD detection method for a pseudowire group according to an embodiment of the present invention.
  • PE1 is used as a source device
  • ⁇ 2 For example, in the figure, PW1 and PW2 are the same PWs of the source device and the sink device, and both are UPE1 and NPE1. Therefore, PW1 and PW2 can be regarded as one PW group.
  • LSP2 and LSP4, and LSP1 and LSP3 are configured LSP protection groups. This embodiment includes the following steps:
  • Step S401 When the source-side device establishes the pseudo-wire PW, configure the same group ID for the same PW group as the source-side sink device. For example, PE1 configures the same Group ID as 100 for PW1 and PW2. In this case, PE1 selects only the LSP2 tunnel or the LSP4 tunnel when the LSP tunnel is selected for PW1 or PW2 (because LSP2 and LSP4 are LSP protection groups).
  • the source PE device uses the LDP session to enable the sink PE device to know the group ID of the PW group. This step is not a necessary step, because the peer PE device can also configure the same group ID for the PW group. .
  • the PE device selects the corresponding reverse LSP tunnel to feed back to PE1. For example, PE1 selects LSP2 to carry PW1 to PE2, and PE2. According to the Group ID carried in the LDP session, the LSP1 tunnel is selected to feed back to PE1. Therefore, the PW group can be automatically carried on a pair of LSP tunnels by setting the same Group ID for the PW group.
  • the embodiment of the present invention provides two ways of transmitting a group ID through an LDP session, as shown in the following figure.
  • One method is to directly configure the same group ID in the LDP session of the PW group.
  • Another way is to set the VC ID in the LDP session of the PW group.
  • Group ID that is, a range in which a VCID can be used corresponds to a Group ID. The above two methods can achieve the purpose of delivering a Group ID.
  • Step S403 The source device and the sink PE device respectively allocate the same pair of LSP tunnels according to the group ID.
  • the source PE device allocates an LSP tunnel to the PW, it selects the corresponding LSP tunnel based on the group ID of the PW. For example, when PE1 selects an LSP tunnel for PW1, LSP2 is selected because the group ID of the PW1 is 100, and PE2 selects LSP1 according to the group ID.
  • PW1 and PW2 belong to one PW group, that is, PW1 and PW2. The same group ID, PE1 will also select LSP2 when selecting an LSP tunnel for PW2, and PE2 will also select LSP1.
  • Step S404 The source PE device creates a BFD session on the selected LSP tunnel, waits for the BFD negotiation packet, and sends an MPLS ping packet to the sink PE device.
  • the MPLS ping packet carries the Group ID and the BFD specifier.
  • PE1 sends an MPLS ping request to the PE2 based on the configured LSP2 tunnel.
  • the PE1 adds the BFD specifier and the group ID of the corresponding PW group to the MPLS ping packet.
  • the MPLS ping packet is extended by the MPLS ping packet, and the MPLS ping packet is extended by the TLV domain of the MPLS ping packet.
  • the MPLS ping packet extension is as follows:
  • Step S405 The sink PE device selects the corresponding reverse LSP tunnel to the source PE according to the Group ID carried in the MPLS ping packet sent by the source PE device.
  • the device returns BFD negotiation packets to establish BFD detection for the PW group.
  • Step S406 When the BFD detects that the LSP tunnel is faulty, the switchover of the LSP tunnel protection group is automatically triggered to implement detection and protection on the PW group. For example, if the LSP2 is faulty, the BFD session automatically triggers the switching of the LSP tunnel protection group and switches to LSP4 to carry the PW group to detect and protect the PW group.
  • the PW group is automatically carried on the same pair of LSP tunnels by setting the same group ID for the PW group, thereby improving the automation level of the PW group carried by the LSP tunnel, and
  • the BFD detection of the PW group is performed by the BFD detection of the LSP tunnel by the BFD detection of the LSP tunnel.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

L'invention porte sur un procédé de test BFD pour tunnel LSP avec la série de lignes parasites. Le procédé comprend les étapes suivantes lorsque l'équipement PE de périphérie de réseau d'infrastructure source et l'équipement PE récepteur sont un groupe de PW qui choisit le même couple de tunnel LSP. Le groupe PW se voit attribuer le même identifiant de groupe ; l'équipement PE source crée la conversation BFD sur un tunnel LSP et envoie un message Ping MPLS à l'équipement PE récepteur par le tunnel LSP. Le message Ping MPLS transporte l'identifiant de groupe et les spécifications BFD ; l'équipement PE récepteur choisit son tunnel LSP inverse en fonction de l'identifiant de groupe transporté par le message Ping MPLS, de façon à envoyer le message de protocole BFD à l'équipement PE source. Ainsi, un test BFD peut être établi pour le tunnel LSP. Dans ce cas, le test BFD pour le groupe PW peut être reflété par un test BFD sur tunnel LSP.
PCT/CN2008/072768 2007-10-23 2008-10-21 Procédé, système et équipement pour établir une détection bfd pour un tunnel lsp WO2009056034A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710181733XA CN101141330B (zh) 2007-10-23 2007-10-23 一种为lsp隧道建立bfd检测的方法、系统及设备
CN200710181733.X 2007-10-23

Publications (1)

Publication Number Publication Date
WO2009056034A1 true WO2009056034A1 (fr) 2009-05-07

Family

ID=39193092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072768 WO2009056034A1 (fr) 2007-10-23 2008-10-21 Procédé, système et équipement pour établir une détection bfd pour un tunnel lsp

Country Status (2)

Country Link
CN (1) CN101141330B (fr)
WO (1) WO2009056034A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125001A1 (fr) * 2016-01-21 2017-07-27 中兴通讯股份有限公司 Procédé et dispositif de traitement de groupe de protection
EP4145797A4 (fr) * 2020-06-30 2023-06-21 New H3C Technologies Co., Ltd. Procédé et appareil de détection de défaut, et dispositif pe

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141330B (zh) * 2007-10-23 2010-06-16 华为技术有限公司 一种为lsp隧道建立bfd检测的方法、系统及设备
CN101447900A (zh) * 2008-12-15 2009-06-03 华为技术有限公司 一种建立双向转发检测的方法、系统及设备
CN101771577B (zh) * 2008-12-31 2012-10-17 华为技术有限公司 一种为双向lsp建立双向转发检测的方法、系统及设备
CN101795235B (zh) * 2010-03-18 2014-03-19 中兴通讯股份有限公司 一种路由映射的处理方法及运营商边界设备
WO2012016392A1 (fr) * 2010-08-05 2012-02-09 中兴通讯股份有限公司 Procédé et système pour pseudo fil multi-segment partageant une bande passante et noeud de bord de fournisseur de ce système
CN102487327B (zh) * 2010-12-01 2015-05-20 中兴通讯股份有限公司 业务切换方法及装置
US8553533B2 (en) * 2010-12-10 2013-10-08 Cisco Technology, Inc. System and method for providing improved failover performance for pseudowires
CN102571601B (zh) * 2012-02-13 2018-05-15 中兴通讯股份有限公司 一种保证双向转发检测可靠性的方法及标记交换路径设备
CN102611577A (zh) * 2012-03-02 2012-07-25 中兴通讯股份有限公司 一种基于ldp会话的pw保护方法、装置及系统
WO2014008651A1 (fr) * 2012-07-12 2014-01-16 华为技术有限公司 Procédé et dispositif de routage pour établissement d'une session bfd
CN102769543B (zh) * 2012-07-20 2015-05-20 杭州华三通信技术有限公司 一种基于lsp的bfd检测方法和设备
CN102904816B (zh) * 2012-09-26 2017-04-12 华为技术有限公司 业务流量保护方法和装置
CN103117949B (zh) * 2013-01-24 2016-08-10 杭州华三通信技术有限公司 一种基于lsp隧道的报文传输方法和设备
CN103428067B (zh) * 2013-08-14 2017-03-15 杭州华三通信技术有限公司 一种基于二层虚拟专用网络的报文转发方法和设备
CN103457820B (zh) 2013-08-27 2018-06-26 华为技术有限公司 分层虚拟专用局域网服务的实现方法及装置
WO2015035570A1 (fr) * 2013-09-11 2015-03-19 Telefonaktiebolaget L M Ericsson (Publ) Homologue inter-châssis et procédé utilisé dans celui-ci
US9979515B2 (en) 2014-06-30 2018-05-22 Telefonaktiebolaget Lm Ericsson (Publ) Control for BFD return path
CN105656776B (zh) * 2014-12-01 2020-03-27 中兴通讯股份有限公司 一种伪线双归保护切换系统、方法和装置
CN106506179A (zh) * 2015-09-06 2017-03-15 中兴通讯股份有限公司 一种配置方法、装置及路由器
CN107241206B (zh) * 2016-03-29 2022-02-18 中兴通讯股份有限公司 一种业务服务状态判定的方法、装置及存储介质
CN107317753B (zh) * 2016-04-27 2021-02-05 华为技术有限公司 双向转发检测bfd会话建立的方法、装置和系统
CN107566266B (zh) * 2016-06-30 2019-09-27 中兴通讯股份有限公司 快速重路由的转发方法及装置、网络设备
CN109327390B (zh) * 2018-11-29 2021-06-29 新华三技术有限公司 一种流量调度方法及装置
CN109474495B (zh) * 2018-12-07 2020-08-28 新华三技术有限公司 一种隧道检测方法及装置
CN109768925B (zh) * 2019-03-27 2021-05-25 新华三技术有限公司 一种主备伪线切换方法及装置
CN114650241A (zh) * 2020-12-21 2022-06-21 中国移动通信有限公司研究院 一种隧道路径故障检测方法、控制方法、装置及通信节点

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1829191A (zh) * 2005-02-28 2006-09-06 华为技术有限公司 实现等价转发类双向转发检测的方法
CN1838620A (zh) * 2005-03-25 2006-09-27 华为技术有限公司 检测混合网络中端到端节点间链路故障的方法
CN101141330A (zh) * 2007-10-23 2008-03-12 华为技术有限公司 一种为lsp隧道建立bfd检测的方法、系统及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100531223C (zh) * 2005-04-30 2009-08-19 中兴通讯股份有限公司 一种双向标记交换路径的实现方法
CN100459531C (zh) * 2006-06-28 2009-02-04 华为技术有限公司 一种基于双向转发检测协议通告伪线故障的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1829191A (zh) * 2005-02-28 2006-09-06 华为技术有限公司 实现等价转发类双向转发检测的方法
CN1838620A (zh) * 2005-03-25 2006-09-27 华为技术有限公司 检测混合网络中端到端节点间链路故障的方法
CN101141330A (zh) * 2007-10-23 2008-03-12 华为技术有限公司 一种为lsp隧道建立bfd检测的方法、系统及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017125001A1 (fr) * 2016-01-21 2017-07-27 中兴通讯股份有限公司 Procédé et dispositif de traitement de groupe de protection
EP4145797A4 (fr) * 2020-06-30 2023-06-21 New H3C Technologies Co., Ltd. Procédé et appareil de détection de défaut, et dispositif pe

Also Published As

Publication number Publication date
CN101141330B (zh) 2010-06-16
CN101141330A (zh) 2008-03-12

Similar Documents

Publication Publication Date Title
WO2009056034A1 (fr) Procédé, système et équipement pour établir une détection bfd pour un tunnel lsp
EP2498454B1 (fr) Procédé, dispositif et système de traitement de trafic de service sur la base de pseudofils
US9059902B2 (en) Procedures, apparatuses, systems, and computer-readable media for operating primary and backup network elements
EP2319209B1 (fr) Procédés pour établir une connexion de trafic et une connexion de contrôle associée
WO2009056053A1 (fr) Procédé, dispositif et système de commutateur de capacité de flux à ingénierie de trafic et commutation multiprotocole par étiquette
US7961738B2 (en) Method for accessing virtual private network, virtual private system, virtual private network and provider edge device thereof
WO2010069175A1 (fr) Procédé, système et équipement d'établissement d'une détection de réexpédition bidirectionnelle
WO2008077300A1 (fr) Procédé et système permettant de négocier le discriminateur de session de détection de transmission bidirectionnelle d'un pseudo-fil
WO2006007769A1 (fr) Reflecteur d'etiquette de pseudo-circuit, appareil de peripherie, reseau prive virtuel a deux couches, et procede de fourniture d'un service de pseudo-circuit
EP2601766B1 (fr) Système et procédé de service de réseau local privé virtuel pour utiliser le pseudo-circuit conscient du flux
WO2013182059A1 (fr) Procédé et dispositif pour établir un tunnel d'ingénierie de trafic de commutation multiprotocole par étiquette
CN102282805B (zh) 一种业务保护方法及接入设备
WO2012003743A1 (fr) Procédé et appareil d'acheminement de trafic de diffusion groupée
WO2010051699A1 (fr) Procédé, système et noeud de réseau pour l'établissement d'un trajet à commutation d'étiquettes
WO2008098451A1 (fr) Procédé d'établissement de tunnel, dispositif de noeud de réseau et système de réseau
WO2007016839A1 (fr) Procédé et système de mise en œuvre de services de commutation privés virtuels hiérarchiques
WO2005006670A1 (fr) Procede pour etablir une session dans un reseau a commutation par etiquette et noeud a commutation par etiquette
WO2012146097A1 (fr) Réseau vpls et procédé et dispositif de commutation d'anneau ethernet
EP2239956B1 (fr) Procédé, appareil et système pour convergence IP/optique
WO2008119277A1 (fr) Procédé et dispositif pour mettre en oeuvre mpls-te sur une interface vlan
CN103634210B (zh) 发现vpls实例的对端pe设备的方法及设备
WO2012103729A1 (fr) Procédé et dispositif de configuration de tunnel
WO2012109860A1 (fr) Procédé, dispositif et système pour établir un trajet à commutation d'étiquettes
WO2015062285A1 (fr) Procédé et appareil de synchronisation pour paramètres d'interface
WO2022166302A1 (fr) Procédé et appareil pour effectuer une commutation de protection dans un réseau de routage de segment (sr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08843788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08843788

Country of ref document: EP

Kind code of ref document: A1