Nothing Special   »   [go: up one dir, main page]

WO2008150035A1 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
WO2008150035A1
WO2008150035A1 PCT/JP2008/060815 JP2008060815W WO2008150035A1 WO 2008150035 A1 WO2008150035 A1 WO 2008150035A1 JP 2008060815 W JP2008060815 W JP 2008060815W WO 2008150035 A1 WO2008150035 A1 WO 2008150035A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating electrical
rotor
electrical machine
degrees
magnet
Prior art date
Application number
PCT/JP2008/060815
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Hisamatsu
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008150035A1 publication Critical patent/WO2008150035A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a rotating electrical machine, and more particularly, to a rotating electrical machine in which noise is reduced.
  • motors have been designed to reduce noise, reduce size, and improve drive efficiency.
  • the angle (polar arc degree) of two points on the outer peripheral side of each permanent magnet of the rotor is electrically Driving efficiency is improved by setting the angle to 96 degrees.
  • permanent magnets are not arranged at equally divided positions, but are shifted back and forth by 30 degrees in electrical angle. It is arranged at the position. By arranging the permanent magnets in this way, the back electromotive force generated in the coil is brought close to a sine wave, and control characteristics and efficiency are improved.
  • the angle formed by the circumferential width of the outer peripheral surface of the stator side of each permanent magnet and the axis of the rotor is determined. The cogging torque is reduced by setting the angle to a predetermined value.
  • the circumferential length on the stator side of the permanent magnet is set to a predetermined length to induce The peak value of the induced voltage is suppressed by approximating the voltage waveform to a sine wave.
  • the magnet shaft center opening is set to a predetermined angle in terms of electrical angle, and the width of the slot opening is set to a predetermined value. Within the range, the motor efficiency is improved.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a rotating electrical machine in which noise is reduced by reducing a counter electromotive voltage of a specific order. It is.
  • a rotating electrical machine includes a stator tooth formed at an interval and projecting radially inward, a stator defined between the stator teeth, and a slot in which a coil is housed.
  • a plurality of magnetic poles arranged at equal intervals, and a rotor facing the stator.
  • each said magnetic pole is prescribed
  • the virtual straight line which connects the circumferential direction edge part of each said magnet group, and the center of the said rotor, The centerline of the said magnetic pole of the said magnet group
  • the crossing angle defined by a virtual reference line that is orthogonal to the rotor and passes through the center of the rotor is set to be not less than 70.0 degrees and not more than 72.5 degrees. Further, when the center line of the magnetic pole coincides with the center line of the stator teeth, the virtual straight line passes through the slot. Preferably, the crossing angle is set to 71.0 ° or more and 71.5 ° or less.
  • the crossing angle is set to 7 1.2 5 degrees.
  • the magnet group includes a first permanent magnet located on a center line of the magnetic pole, and second and third permanent magnets arranged symmetrically across the center line of the magnetic pole.
  • the second and third permanent magnets are inclined so that a distance between the second permanent magnet and the third permanent magnet becomes smaller inward in the radial direction of the rotor. Arranged.
  • the rotating electrical machine of the present invention it is possible to reduce noise by reducing the back electromotive voltage of a specific order.
  • FIG. 1 is a partial cross-sectional view of a rotating electrical machine according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a part of the rotating electrical machine shown in FIG.
  • Fig. 3 is a plan view of the stator.
  • Fig. 4 is a graph showing the rotation angle of the rotor (unit: electrical angle) on the horizontal axis and the back electromotive force (V) generated on each coil on the vertical axis.
  • Fig. 5 shows the frequency components of the counter electromotive voltage generated in the rotating electrical machine set to various crossing angles ⁇ 1 shown in Fig. 2, and the 5th, 7th, 1 1st, 1 3rd order components of the back electromotive voltage. It is a graph which shows.
  • FIG. 6 is a cross-sectional view of the rotating electrical machine when the crossing angle 01 is 70.0 degrees.
  • FIG. 7 is a cross-sectional view of the rotating electrical machine when the intersection angle ⁇ 1 is 72.5 °.
  • the horizontal axis shows the crossing angle ⁇ 1 of the rotating electrical machine, and the vertical axis shows the fifth-order component of the back electromotive voltage.
  • the horizontal axis represents the crossing angle ⁇ 1 of the rotating electrical machine, and the vertical axis represents the seventh-order component of the back electromotive voltage.
  • the horizontal axis represents the crossing angle ⁇ 1 of the rotating electrical machine, and the horizontal axis is a graph illustrating the 11th-order component of the back electromotive voltage.
  • FIG. 1 is a cross-sectional view of a part of a rotating electrical machine 100 according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of a part of the rotating electrical machine 100 0 shown in FIG. is there.
  • the rotating electrical machine 1 00 0 has a U-phase coil (coiled phase) 1 1 0 U formed by distributed winding, a V-phase coil 1 1 0 V, Peripheral surface having a stator 1 0 0 having a W-phase coil 1 1 0 W and a plurality of magnet groups 30 A to 30 C defining a plurality of magnetic poles and facing the stator 1 0 0 A rotor 10 having 1 3.
  • the stator 100 has an annular core body 103, for example, a plurality of magnetic steel plates. It is composed of layers. A plurality of stator teeth 101 projecting inward in the radial direction is formed on the inner peripheral surface of the core body 103. Slots (concave portions) 102 are formed between the stator teeth 101, and each slot 102 opens toward the inner peripheral side of the core body 103.
  • Stator teeth 101 are wound with U-phase coil 1 10 U, V-phase coil 1 10 V, and W-phase coil 1 10 W as winding phases by distributed winding.
  • the U-phase coil 110U is located closest to the outer periphery of the core body 103, and the V-phase coil 110V is located radially inward from the U-phase coil 110U.
  • the W-phase coil 1 1 OW is located radially inward with respect to the V-phase coil 1 1 OV.
  • each coil is wound directly around the stator teeth 101.
  • each coil may be mounted using an insulator. '
  • Each U-phase coil 1 10U, V-phase coil 1 10 V, and W-phase coil 1 10W wound in this way is supplied with AC power having a phase shift. This generates a magnetic flux that passes through each coinore 1 10U, 1 10V, 1 1 OW.
  • the rotor 10 includes an annular core body 20 formed by laminating electromagnetic steel plates made of iron or iron metal.
  • the inside of the annular core body 20 is fixed to a cylindrical rotary shaft 130.
  • the rotor 10 includes a group of magnets 30 A, 30 B, 30 C each having a plurality of permanent magnets 3 1A, 32 A, 33 A, 3 1 B, 32 B, 33 B, 3 1 C, 32 C, 33 C. Is provided.
  • a plurality of magnetic poles are formed on the rotor 10 by the magnet groups 30A, 30B, and 30C.
  • the magnet groups 3 OA, 30 B, and 30 C are arranged at equal intervals in the circumferential direction of the rotor 10. For example, in Fig. 1, the smaller one of the crossing angles defined by the virtual straight line P 2 C and the virtual straight line P 2 A in the magnet group 3 OA is an electrical angle of 180 degrees. The machine angle is 45 degrees.
  • the other magnet groups 30 B and 30 C are similarly arranged.
  • the center lines P 1 A, P 1 B, and P 1 C of the adjacent magnet groups 3 OA, 30 B, and 30 C are arranged so as to be shifted from each other by 45 degrees in mechanical angle.
  • the magnetic poles on the surface of the 33C stator 100 side are the same.
  • the magnetic poles on the surface on the stator 100 side of the permanent magnets 31 A, 32 A, 33 A constituting the magnet group 3 OA are N magnetic poles.
  • the magnetic poles on the stator 100 side of the magnet groups 3 OA, 30 B, and 30 C adjacent to each other in the circumferential direction of the rotor 10 are arranged to be different from each other, and are arranged so that the magnetic poles are alternately different in the circumferential direction.
  • the magnetic pole on the stator 100 side of the magnet group 3 OA is an N pole
  • the magnetic pole on the stator 100 side of the magnet group 30 B is an S pole.
  • magnetic poles having different polarities are formed at equal intervals in the circumferential direction on the surface of the rotor 10.
  • each magnetic pole (magnet group 30A, 30B, 30C) is pulled when being sequentially pulled by the magnetic poles generated in the coils of the stator 100. Variations in the suction force applied to the rotor 10 can be suppressed, and vibrations in the rotor 10 can be suppressed.
  • Each magnet group 3 OA, 30 B, 30C includes three permanent magnets. For this reason, the amount of magnetic flux generated from each magnet group 30A, 30B, 3OC is sufficiently secured, and a large torque can be generated.
  • center lines P 1A, P 1 B, and P 1 C passing through the centers of the magnetic poles are shown.
  • the center line P 1A passes through the center of the magnetic pole defined by the magnet group 3 OA and the center O of the rotor 10.
  • the permanent magnet (first permanent magnet) 33 A is accommodated in a magnet accommodation hole 43 A formed on the outer peripheral edge side of the rotor 10 and is located on the center line P 1 A. Yes.
  • Permanent magnets (second and third permanent magnets) 3 1A and 32A are housed in magnet housing holes 41 A and 4 2 A ⁇ formed at positions adjacent to the permanent magnet 33 A in the circumferential direction of the rotor 10 Has been.
  • the permanent magnets 31 A and 32 A are provided apart from each other in the circumferential direction of the rotor 10, and the permanent magnet 31 A and the permanent magnet 32 A are arranged in the radial direction of the rotor 10. It is inclined so as to approach each other. For this reason, in FIG. 1, the distance between the adjacent magnet groups 30A to 30C can be secured even on the radially inner side of the rotor 10, and the strength can be secured. Further, the distance between the permanent magnets 31A and 32A is secured on the outer peripheral side of the rotor 10, and even if the permanent magnet 33A is accommodated between the permanent magnets 31A and 32A, each permanent magnet 31A , 32 A, 33 A can be secured, and the rigidity of the rotor 10 can be secured.
  • the permanent magnet 33 A is located on the magnetic pole center line P 1 A of the magnet group 3 OA.
  • the other two permanent magnets 32 A and 33 A are arranged symmetrically with respect to the center line P I A.
  • the virtual straight line P 3 A is a straight line passing through the circumferential end QA of the magnet group 3 OA located in the circumferential direction of the rotor 10 and the center O of the rotor 10.
  • the virtual reference line L of the magnet group 3 OA is a straight line passing through the center 0 of the rotor 10 and extending so as to be orthogonal to the center line PIA.
  • the virtual reference line L passes through the center of the magnetic pole of the magnet group located on the opposite side of the magnet group 3 OA with respect to the magnet group 3 OB.
  • the smaller crossing angle ⁇ 1 is set to a mechanical angle of 70.00 degrees or more and 72.50 degrees or less. .
  • the intersection angle 03 between the extending direction of each permanent magnet 3 1 A, 31 B and the parallel reference line LA parallel to the virtual reference line L is, for example, a machine The angle ranges from 30 degrees to 40 degrees, and preferably 35 degrees. In the rotating electrical machine 1000 shown in FIGS. 1 and 2, the intersection angle S 3 is set to 35 degrees.
  • Fig. 3 is a plan view of the stator.
  • coils 510 to 5 1 7 constitute a U-phase coil 1 10U of stator coil 22
  • coils 520 to 527 constitute a V-phase coil 1 10 V of stator coil 22
  • a coil 530 to 537 constitute a W phase coil 110W of the stator coil 22.
  • Each of 520 to 527 and 530 to 537 has a substantially arc shape.
  • the coils 510 to 517 are arranged on the outermost periphery.
  • the coils 520 to 527 are disposed inside the coils 510 to 517, and are disposed at positions shifted by a certain distance in the circumferential direction with respect to the coils 510 to 517, respectively.
  • the coils 530 to 537 are disposed inside the coils 520 to 527 and are respectively displaced from the coils 520 to 527 by a certain distance in the circumferential direction.
  • Each of the coils 5 10 to 51 7, 520 to 527, 530 to 537 is wound around each of a plurality of corresponding teeth.
  • the coin 510 corresponds to the teeth 1 to 5 and is formed by being wound around the entire teeth 1 to 5 a predetermined number of times from the outer periphery.
  • Coils 5 1 1 to 51 7, 520 to 527, and 530 to 537 are also formed on the corresponding teeth in the same manner as coil 510.
  • Coils 510 to 513 are connected in series, one end is a terminal U1, and the other end is a neutral point UN1.
  • Coils 5 14 to 5 17 are connected in series, and one end is a terminal U 2 and the other end is a neutral point UN 2.
  • Coils 520 to 523 are connected in series, one end is a terminal V I and the other end is a neutral point VN 1.
  • Coils 524 to 527 are connected in series, and one end is a terminal V 2 and the other end is a neutral point VN 2.
  • Coils 530 to 533 are connected in series, with one end being a terminal W1 and the other end being a neutral point WN1.
  • Coils 534 to 537 are connected in series, and one end is a terminal W2 and the other end is a neutral point WN2.
  • an alternating current with a phase shift is supplied to the coils 510 to 5 1 7, 520 to 527, and 530 to 537, thereby rotating the rotor 10 in a predetermined direction.
  • permanent magnets 31 A, 32 A, 33 A, 3 1 B, 32 B, 33 B passing through the coils 510 to 51 7, 520 to 52 7, 530 to 537, 3
  • the amount of magnetic flux from 1 C, 32 C, and 33 C fluctuates.
  • Fig. 4 the horizontal axis shows the rotation angle (unit: electrical angle) of the rotor 10, and the vertical axis 6 is a graph showing the counter electromotive voltage (V) generated in each coil 5 10 to 5 1 7, 5 2 0 to 5 2 7, and 5 3 0 to 5 3 7.
  • Fig. 5 shows the frequency components of the counter electromotive voltage generated in the rotating electrical machine set at various crossing angles ⁇ 1 shown in Fig. 2, and the 5th, 7th, 1 1st, 1 3rd order components of the back electromotive voltage are shown. It is a graph to show.
  • the characteristics of the counter electromotive voltage shown at the right end of the graph are the characteristics of the rotating electrical machine as a comparative example.
  • each magnet group is composed of permanent magnets in which two permanent magnets are arranged in a V shape.
  • the rotating electrical machine of the comparative example has a permanent magnet 3 3 shown in FIG. It is a rotating electric machine with A, 3 3 B and 3 3 C removed.
  • the waveforms indicating the counter electromotive voltages generated in the respective coins 5 1 0 to 5 1 7, 5 2 0 to 5 2 7, 5 3 0 to 5 3 7 are overlapped with each other.
  • the shape approximates a sine wave.
  • the fifth component of the back electromotive voltage obtained by frequency decomposition of the back electromotive voltage wave shown in FIG. 4 has a frequency five times the frequency of the back electromotive voltage wave shown in FIG. It is a wave.
  • the 7th, 1 1st and 1 3rd order components are waves having frequencies 7 times, 11 times and 13 times the frequency of the back electromotive force wave shown in FIG.
  • the order component of the least common multiple of the number of poles and the number of phases of the coil and the order component of the number of slots are large evaluation items.
  • the rotating electrical machine 100 according to the present embodiment is an 8-pole 3-phase motor and has a number of openings of 48. Therefore, noise generated by driving the rotating electrical machine 100 Among them, the main evaluation item is to reduce the 2nd and 4th order components and the 48th order components.
  • the 5th and 7th order components of the back electromotive voltage affect the 2nd and 4th order components of the noise
  • the 1st and 1st order components of the back electromotive force and the 1st and 3rd order components affect the 4th and 8th order components of the noise. Sounds.
  • the angle in the width direction (circumferential direction of the rotor 10) of each slot 10 2 around the center O is 2.5 degrees (mechanical angle).
  • the angle in the width direction of the stator teeth 100 around O is set to 5.0 degrees (mechanical angle).
  • the total of the 5th, 7th, 1st, 1st, 3rd order components is smaller than the total of the rotating electrical machine of the comparative example I understand that. That is, it can be seen that the waveform of the counter electromotive voltage generated in the rotating electrical machine can be approximated to a sine wave, and noise generated in the rotating electrical machine can be reduced.
  • the crossing angle is larger than 72.5 °, the sum of the order components of the counter electromotive voltage becomes larger than the total of the rotating electrical machines of the comparative example.
  • FIG. 6 is a cross-sectional view of the rotating electrical machine when the crossing angle is 0 1 force 70.0 degrees.
  • FIG. 6 when the center line P 1 A of the magnetic poles of the magnet group 3 OA is aligned with the center line of the stator teeth 10 0 1 A extending in the radial direction, Two teeth adjacent to each other in the circumferential direction 1 0 1 C, and the stator teeth 1 0 1 D located on the opposite side of the stator teeth 1 0 1 A with respect to this stator teeth 1 0 1 C
  • the virtual straight line P 3 A passes through the slot 1 0 2 C.
  • the virtual straight line! 5 3 A extends along the side surface of the stator teeth 1 0 1 D defining the slot 1 0 2 C.
  • FIG. 7 is a cross-sectional view of the rotating electric machine when the crossing angle ⁇ 1 is 72.5 °.
  • the virtual straight line P 3 A extends along the side surface of the stator teeth 1 0 1 C that defines the slot 1 0 2 C.
  • the crossing angle 0 1 is not less than 70.0 ° and not more than 72.5 °
  • the virtual straight line P 3 A passes through the slot 1 0 2 C, and the generated noise is removed from the magnet.
  • the motor noise is smaller than that of a rotating electrical machine with a V-shaped arrangement that defines the magnetic pole.
  • the horizontal axis shows the crossing angle 0 1 of the rotating electrical machine
  • the vertical axis is a graph showing the fifth-order component of the back electromotive force
  • FIG. 9 shows the crossing angle 0 1 of the rotating electrical machine
  • the vertical axis is a graph showing the 7th-order component of the back electromotive force
  • FIG. 10 is a graph in which the horizontal axis indicates the crossing angle 0 1 of the rotating electrical machine, and the horizontal axis indicates the first-order component of the back electromotive voltage.
  • the solid lines indicate the fifth-order component, seventh-order component, and first-order component of the back electromotive voltage of the rotating electrical machine as the comparative example.
  • the rotating electrical machine 1 00 0 0 is a comparative example at any crossing angle ⁇ 1 of not less than 70.0 degrees and not more than 73.0 degrees. It can be seen that the fifth-order component of the back electromotive voltage is smaller than that of
  • the crossing angle 0 1 when the crossing angle 0 1 is in the range of 70.0 to 0.degree. It can be seen that the 7th-order component of the back electromotive force is smaller than that of the electric machine.
  • the rotating electrical machine 1000 according to the present embodiment when the crossing angle ⁇ 1 is within the range of 70.00 degrees or more and 72.00 degrees or less, the rotating electrical machine 1000 according to the present embodiment has a counter electromotive voltage higher than that of the rotating electrical machine of the comparative example. It can be seen that the first-order component of is small.
  • the 13th-order component of the counter electromotive voltage generated in the rotating electrical machine 1000 according to the present embodiment is sufficiently smaller than the 13th-order component of the counter electromotive voltage 13 generated in the rotating electrical machine of the comparative example.
  • the rotating electrical machine 1000 when the crossing angle 0 1 is within the range of 70.00 degrees or more and 71.50 degrees or less, the rotating electrical machine 1000 is more reverse than the rotating electrical machine of the comparative example. It can be seen that the fifth-order, 1 1st-order, and 1 3rd-order components of the electromotive voltage are small, and the 7th-order component of the rotating electrical machine 1000 approximates the rotating electrical machine of the comparative example. For this reason, in the rotating electrical machine 1000 according to the present embodiment set to the intersection angle 61 as described above, any of the 24th-order component and 48th-order component of the generated noise occurs in the rotating electrical machine of the comparative example. It can be seen that it can be reduced from the 24th and 48th components. When the crossing angle 0 1 is larger than 71.50 degrees, the seventh-order component of the back electromotive voltage becomes larger than that of the rotating electric machine of the comparative example.
  • the first-order component of the back electromotive voltage is particularly small, and the 48th-order component of noise generated in rotating machine 1000 Can be particularly reduced.
  • the crossing angle 0 1 is smaller than 71.00 degrees, the 1st-order component of the back electromotive voltage increases, and when the crossing angle 0 1 is greater than 71.50 degrees, the 1st-order of the back electromotive voltage is increased. Ingredients become larger. Furthermore, as shown in Fig.
  • the crossing angle 6 1 by setting the crossing angle 6 1 to 71.25 degrees, the first-order component of the back electromotive voltage can be minimized, and the 48th-order noise generated in the rotating electrical machine 1000 can be minimized.
  • the component can be reduced.
  • the crossing angle 0 1 is 71.25 degrees
  • the virtual straight line P 3 A coincides with the center line of the slot 102 C extending in the radial direction as shown in FIG.
  • the sum of the components of each back electromotive voltage generated in the rotating electrical machine 1000 can be reduced, and the motor noise generated in the rotating electrical machine 1000 can be reduced.
  • the results shown in FIGS. 4 to 10 are calculated by electromagnetic field simulation such as J1 MAG (manufactured by Japan Research Institute, Ltd.).
  • the present invention can be applied to a rotating electrical machine, and is particularly suitable for a rotating electrical machine in which noise is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A rotating electric machine (1000) includes a stator (100) having coil phases (110U, 110V, 110W) and also includes a rotor (10) having magnetic poles that are arranged at equal intervals and facing the stator (100). Each magnetic pole is defined by magnet groups (30A, 30B, 30C) including permanent magnets (31A, 31B, 31C). The crossing angle between an imaginary line that interconnects an circumferential end of a magnet group (30A) located in the circumferential direction of the rotor (10) and the center (O) of the rotor (10) and an imaginary reference line (L) that is perpendicular to the center line (P1A) of the magnetic pole of the magnet group (30A) and passes through the center (O) of the rotor (10) is not less than 70.00 degrees but not more than 72.50 degrees.

Description

明細書 回転電機 技術分野  Technical specification
本発明は、 回転電機に関し、 特に、 ノイズの低減が図られた回転電機に関する。 背景技術  The present invention relates to a rotating electrical machine, and more particularly, to a rotating electrical machine in which noise is reduced. Background art
従来からモータについて、 生じるノイズの低減や小型化、 駆動効率の向上が図 られている。  Conventionally, motors have been designed to reduce noise, reduce size, and improve drive efficiency.
たとえば、 特開 2 0 0 2— 3 6 9 4 2 2号公報に記載された永久磁石式回転電 機においては、 回転子の各永久磁石の外周側の二点の角度 (極弧度) を電気角度 で 9 6度とすることで、 駆動効率の向上が図られている。  For example, in the permanent magnet type rotating electric machine described in Japanese Patent Application Laid-Open No. 2 00 3-6 9 4 2 2, the angle (polar arc degree) of two points on the outer peripheral side of each permanent magnet of the rotor is electrically Driving efficiency is improved by setting the angle to 96 degrees.
また、 特開平 7— 2 5 5 1 5 9号公報に記載された同期電動機においては、 永 久磁石を均等割とされた位置に配置するのではなく、 電気角で 3 0度ずつ前後に ずらした位置に配置している。 このように各永久磁石を配置することで、 コイル に発生する逆起電圧を正弦波に近づけて、 制御特性や効率の向上が図られている。 特開平 1 1一 2 9 9 1 9 9号公報に記載された永久磁石式回転電機においては、 各永久磁石の固定子側の外周面の周方向幅と回転子の軸芯とのなす角度を所定の 角度とすることで、 コギングトルクの低減が図られている。  Further, in the synchronous motor described in Japanese Patent Application Laid-Open No. 7-255551A, permanent magnets are not arranged at equally divided positions, but are shifted back and forth by 30 degrees in electrical angle. It is arranged at the position. By arranging the permanent magnets in this way, the back electromotive force generated in the coil is brought close to a sine wave, and control characteristics and efficiency are improved. In the permanent magnet type rotating electrical machine described in Japanese Patent Application Laid-Open No. 1 1 1 2 9 9 1 99, the angle formed by the circumferential width of the outer peripheral surface of the stator side of each permanent magnet and the axis of the rotor is determined. The cogging torque is reduced by setting the angle to a predetermined value.
特開 2 0 0 1— 1 1 2 2 0 2号公報に記載された永久磁石回転電機においては、 永久磁石の固定子側の周方向の長さを所定の長さに設定することで、 誘起電圧の 波形を正弦波に近似させて、 誘起電圧のピーク値を抑えている。 特開 2 0 0 1— 2 5 1 8 2 5号公報に記載された永久磁石式同期電動機においては、 磁石軸心開 度を電気角度で所定角度とすると共に、 スロット開口部の幅を所定の範囲内とす ることで、 電動機効率の向上が図られている。  In the permanent magnet rotating electrical machine described in Japanese Patent Laid-Open No. 2 0 1-1 1 2 2 0 2, the circumferential length on the stator side of the permanent magnet is set to a predetermined length to induce The peak value of the induced voltage is suppressed by approximating the voltage waveform to a sine wave. In the permanent magnet type synchronous motor described in Japanese Patent Laid-Open No. 2 0 1-2 5 1 8 2 5, the magnet shaft center opening is set to a predetermined angle in terms of electrical angle, and the width of the slot opening is set to a predetermined value. Within the range, the motor efficiency is improved.
しかし、 コイルに生じる逆起電圧を正確に正弦波に近づけることは、 非常に困 難である。 上記従来の回転電機においては、 逆起電圧を周波数分解したときの特 定次数の周波数成分と、 回転電機に生じるノイズとの関係に着目したものはない。 すなわち、 ノィズの低減に大きく寄与する特定次数のノィズを低減するために、 この特定次数のノイズと相関関係にある特定次数の逆起電圧を低減することにつ いては、 いずれの先行文献に記載も示唆もされていない。 However, it is very difficult to accurately approximate the back electromotive force generated in the coil to a sine wave. None of the above conventional rotating electrical machines pay attention to the relationship between the frequency components of a specific order when the counter electromotive voltage is frequency-resolved and the noise generated in the rotating electrical machines. In other words, in order to reduce noise of a specific order that greatly contributes to noise reduction, There is no mention or suggestion in any prior literature of reducing the back electromotive force of a specific order that is correlated with this specific order of noise.
このため、 上記先行文献に提案された手法においては、 十分に回転電機に生じ るノィズを低減することができない場合があった。  For this reason, in the method proposed in the above prior art document, there are cases where noise generated in the rotating electrical machine cannot be sufficiently reduced.
発明の開示 Disclosure of the invention
本発明は、 上記のような課題に鑑みてなされたものであって、 その目的は、 特 定次数の逆起電圧を低減することで、 ノィズの低減が図られた回転電機を提供す ることである。  The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a rotating electrical machine in which noise is reduced by reducing a counter electromotive voltage of a specific order. It is.
本発明に係る回転電機は、 間隔を隔てて形成され、 径方向内方に向けて突出す るステータティースと、 該ステータティース間に規定され、 コイルが収容される スロットとを有する固定子と、 等間隔に配置された複数の磁極を有し、 前記固定 子と向かい合う回転子とを備える。 そして、 上記各磁極は、 複数の永久磁石を含 む磁石群によって規定され、 前記各磁石群の周方向端部および前記回転子の中心 を結ぶ仮想直線と、 前記磁石群の前記磁極の中心線に直交し、 前記回転子の中心 を通る仮想基準線とによって規定される交差角度は、 7 0 . 0 0度以上 7 2 . 5 0度以下とされる。 さらに、 上記磁極の中心線を前記ステ一タティースの中心線 と一致させると、 前記仮想直線は、 前記スロッ トを通る。 好ましくは、 上記前記 交差角度は、 7 1 . 0 0度以上 7 1 . 5 0度以下とされる。  A rotating electrical machine according to the present invention includes a stator tooth formed at an interval and projecting radially inward, a stator defined between the stator teeth, and a slot in which a coil is housed. A plurality of magnetic poles arranged at equal intervals, and a rotor facing the stator. And each said magnetic pole is prescribed | regulated by the magnet group containing a some permanent magnet, The virtual straight line which connects the circumferential direction edge part of each said magnet group, and the center of the said rotor, The centerline of the said magnetic pole of the said magnet group The crossing angle defined by a virtual reference line that is orthogonal to the rotor and passes through the center of the rotor is set to be not less than 70.0 degrees and not more than 72.5 degrees. Further, when the center line of the magnetic pole coincides with the center line of the stator teeth, the virtual straight line passes through the slot. Preferably, the crossing angle is set to 71.0 ° or more and 71.5 ° or less.
好ましくは、 上記交差角度は、 7 1 . 2 5度とされる。 好ましくは、 上記磁石 群は、 前記磁極の中心線上に位置する第 1永久磁石と、 前記磁極の中心線を挟ん で対称に配置された第 2および第 3永久磁石とを含む。  Preferably, the crossing angle is set to 7 1.2 5 degrees. Preferably, the magnet group includes a first permanent magnet located on a center line of the magnetic pole, and second and third permanent magnets arranged symmetrically across the center line of the magnetic pole.
好ましくは、 上記第 2永久磁石と前記第 3永久磁石との間の距離が、 前記回転 子の径方向内方に向けて、 小さくなるように、 前記第 2および前記第 3永久磁石 が傾斜して配置される。  Preferably, the second and third permanent magnets are inclined so that a distance between the second permanent magnet and the third permanent magnet becomes smaller inward in the radial direction of the rotor. Arranged.
なお、 上記に示された構成を互いに適宜組み合わせることは、 出願当初から予 定されている。  It is planned from the beginning of the application to combine the above-mentioned configurations appropriately.
本発明に係る回転電機によれば、 特定次数の逆起電圧を低減することで、 ノィ ズの低減を図ることができる。  According to the rotating electrical machine of the present invention, it is possible to reduce noise by reducing the back electromotive voltage of a specific order.
図面の簡単な説明 図 1は、 本発明の実施の形態に係る回転電機の一部の断面図である。 Brief Description of Drawings FIG. 1 is a partial cross-sectional view of a rotating electrical machine according to an embodiment of the present invention.
図 2は、 図 1に示された回転電機の一部の拡大図である。  FIG. 2 is an enlarged view of a part of the rotating electrical machine shown in FIG.
図 3は、 固定子の平面図である。  Fig. 3 is a plan view of the stator.
図 4は、 横軸に回転子の回転角度 (単位は、 電気角度) を示し、 縦軸に、 各コ ィルに生じる逆起電圧 (V) を示すグラフである。  Fig. 4 is a graph showing the rotation angle of the rotor (unit: electrical angle) on the horizontal axis and the back electromotive force (V) generated on each coil on the vertical axis.
図 5は、 図 2に示す各種の交差角度 θ 1に設定された回転電機において、 生じ る逆起電圧を周波数分解し、 逆起電圧の 5次、 7次、 1 1次、 1 3次成分を示す グラフである。  Fig. 5 shows the frequency components of the counter electromotive voltage generated in the rotating electrical machine set to various crossing angles θ 1 shown in Fig. 2, and the 5th, 7th, 1 1st, 1 3rd order components of the back electromotive voltage. It is a graph which shows.
図 6は、 交差角度 0 1が、 7 0 . 0 0度としたときの回転電機の断面図である。 図 7は、 交差角度 Θ 1が、 7 2 . 5 0度としたときの回転電機の断面図である。 図 8は、 横軸は回転電機の交差角度 θ 1を示し、 縦軸は逆起電圧の 5次成分を 示すグラフである。  FIG. 6 is a cross-sectional view of the rotating electrical machine when the crossing angle 01 is 70.0 degrees. FIG. 7 is a cross-sectional view of the rotating electrical machine when the intersection angle Θ 1 is 72.5 °. In FIG. 8, the horizontal axis shows the crossing angle θ 1 of the rotating electrical machine, and the vertical axis shows the fifth-order component of the back electromotive voltage.
図 9は、 横軸は回転電機の交差角度 θ 1を示し、 縦軸は逆起電圧の 7次成分を 示すグラフである。  In FIG. 9, the horizontal axis represents the crossing angle θ 1 of the rotating electrical machine, and the vertical axis represents the seventh-order component of the back electromotive voltage.
図 1 0は、 横軸は回転電機の交差角度 θ 1を示し、 横軸は逆起電圧の 1 1次成 分を示すグラフである。  In FIG. 10, the horizontal axis represents the crossing angle θ 1 of the rotating electrical machine, and the horizontal axis is a graph illustrating the 11th-order component of the back electromotive voltage.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本実施の形態に係る回転電機について、 図 1から図 1 0を用いて説明する。 なお、.以下に説明する実施の形態において、 個数、 量などに言及する場合、 特 に記載がある場合を除き、 本発明の範囲は必ずしもその個数、 量などに限定され ない。 また、 以下の実施の形態において、 各々の構成要素は、 特に記載がある場 合を除き、 本発明にとって必ずしも必須のものではない。  A rotating electrical machine according to the present embodiment will be described with reference to FIGS. In the embodiment described below, when referring to the number, amount, etc., the scope of the present invention is not necessarily limited to the number, amount, etc., unless otherwise specified. In the following embodiments, each component is not necessarily essential to the present invention unless otherwise specified.
図 1は、 本発明の実施の形態に係る回転電機 1 0 0 0の一部の断面図であり、 図 2は、 図 1に示された回転電機 1 0 0 0の一部の拡大図である。 この図 1およ び図 2に示すように、 回転電機 1 0 0 0は、 分布巻により形成された U相コイル (卷線相) 1 1 0 Uと、 V相コイル 1 1 0 Vと、 W相コイル 1 1 0 Wとを有する 固定子 1 0 0と、 複数の磁極を規定する複数の磁石群 3 0 A〜 3 0 Cを有し、 固 定子 1 0 0に向い合う外周面 (外周) 1 3を有する回転子 1 0とを備えている。 固定子 1 0 0は、 環状のコア体 1 0 3を有し、 たとえば、 複数の磁性鋼板を積 層して構成されている。 このコア体 103の内周面には、 径方向内方に向けて突 出する複数のステ—タティース 101が形成されている。 このステータティース 101間には、 スロッ ト (凹部) 102が形成されており、 各スロッ ト 102は、 コア体 103の内周側に向けて開口している。 FIG. 1 is a cross-sectional view of a part of a rotating electrical machine 100 according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a part of the rotating electrical machine 100 0 shown in FIG. is there. As shown in FIG. 1 and FIG. 2, the rotating electrical machine 1 00 0 has a U-phase coil (coiled phase) 1 1 0 U formed by distributed winding, a V-phase coil 1 1 0 V, Peripheral surface having a stator 1 0 0 having a W-phase coil 1 1 0 W and a plurality of magnet groups 30 A to 30 C defining a plurality of magnetic poles and facing the stator 1 0 0 A rotor 10 having 1 3. The stator 100 has an annular core body 103, for example, a plurality of magnetic steel plates. It is composed of layers. A plurality of stator teeth 101 projecting inward in the radial direction is formed on the inner peripheral surface of the core body 103. Slots (concave portions) 102 are formed between the stator teeth 101, and each slot 102 opens toward the inner peripheral side of the core body 103.
ステータティース 101には、 分布巻により巻線相としての U相コイル 1 10 U、 V相コイル 1 10V、 W相コイル 1 10Wが卷回されている。 なお、 U相コ ィル 1 10Uが最もコア体 103の外周側に位置しており、 この U相コイル 1 1 0Uより径方向内方側に V相コイル 1 10Vが位置している。 そして、 この V相 コイル 1 1 OVに対して径方向内方側に W相コイル 1 1 OWが位置している。 なお、 この図 1に示す例においては、 ステータティース 101に各コイルを直 接巻回しているが、 他にも、 たとえば、 インシユレータを用いて各コイルを装着 するようにしてもよい。 '  Stator teeth 101 are wound with U-phase coil 1 10 U, V-phase coil 1 10 V, and W-phase coil 1 10 W as winding phases by distributed winding. The U-phase coil 110U is located closest to the outer periphery of the core body 103, and the V-phase coil 110V is located radially inward from the U-phase coil 110U. The W-phase coil 1 1 OW is located radially inward with respect to the V-phase coil 1 1 OV. In the example shown in FIG. 1, each coil is wound directly around the stator teeth 101. Alternatively, for example, each coil may be mounted using an insulator. '
このように巻回された各 U相コイル 1 10U、 V相コイル 1 10 V、 W相コィ ノレ 1 10Wには、 それぞれ位相がずれた交流電力が供給される。 これにより、 各 コィノレ 1 10U、 1 10V、 1 1 OWを通るような磁束が発生する。  Each U-phase coil 1 10U, V-phase coil 1 10 V, and W-phase coil 1 10W wound in this way is supplied with AC power having a phase shift. This generates a magnetic flux that passes through each coinore 1 10U, 1 10V, 1 1 OW.
回転子 10は、 鉄または鉄金属などから構成された電磁鋼板を積層することで 形成された円環状のコア体 20を備えている。 そして、 この円環状のコア体 20 内は、 円柱状の回転シャフト 130に固設されている。  The rotor 10 includes an annular core body 20 formed by laminating electromagnetic steel plates made of iron or iron metal. The inside of the annular core body 20 is fixed to a cylindrical rotary shaft 130.
回転子 10には、 それぞれ複数の永久磁石 3 1A, 32 A, 33 A, 3 1 B, 32 B, 33B, 3 1 C, 32 C, 33 Cを有する磁石群 30 A, 30 B, 30 Cが設けられている。 この磁石群 30A, 30 B, 30 Cによって、 回転子 10 には、 複数の磁極が形成されている。 各磁石群 3 OA, 30 B, 30Cは、 回転 子 10の周方向に等間隔に間隔を隔てて配置されている。 たとえば、 図 1におい て、 磁石群 3 OAのうち、 仮想直線 P 2 Cと仮想直線 P 2 Aとによって規定され る交差角度のうち、 小さい方の交差角度は、 電気角度で、 180度を示しており、 機械角度で 45度にあたる。 そして、 他の磁石群 30 B, 30Cにおいても、 同 様に配置されている。 換言すれば、 隣り合う磁石群 3 OA, 30 B, 30Cの中 心線 P 1 A, P 1 B, P 1 C同士は、 機械角度で 45度ずつずれて配置されてい る。 各磁石群 3 OA, 30 B, 30 Cを構成するネオジム(Nd2Fe14B)製の永久磁石 31 A, 32 A, 33 A, 3 1 B, 32 B, 33 B, 31 C, 32 C, 33Cの 固定子 100側の表面の磁極は、 いずれも、 同一の磁極とされている。 たとえば、 図 1において、 磁石群 3 OAを構成する永久磁石 31 A, 32A, 33 Aの固定 子 100側の表面の磁極は、 N磁極とされている。 The rotor 10 includes a group of magnets 30 A, 30 B, 30 C each having a plurality of permanent magnets 3 1A, 32 A, 33 A, 3 1 B, 32 B, 33 B, 3 1 C, 32 C, 33 C. Is provided. A plurality of magnetic poles are formed on the rotor 10 by the magnet groups 30A, 30B, and 30C. The magnet groups 3 OA, 30 B, and 30 C are arranged at equal intervals in the circumferential direction of the rotor 10. For example, in Fig. 1, the smaller one of the crossing angles defined by the virtual straight line P 2 C and the virtual straight line P 2 A in the magnet group 3 OA is an electrical angle of 180 degrees. The machine angle is 45 degrees. The other magnet groups 30 B and 30 C are similarly arranged. In other words, the center lines P 1 A, P 1 B, and P 1 C of the adjacent magnet groups 3 OA, 30 B, and 30 C are arranged so as to be shifted from each other by 45 degrees in mechanical angle. Permanent magnets made of neodymium (Nd 2 Fe 14 B) constituting each magnet group 3 OA, 30 B, 30 C 31 A, 32 A, 33 A, 3 1 B, 32 B, 33 B, 31 C, 32 C The magnetic poles on the surface of the 33C stator 100 side are the same. For example, in FIG. 1, the magnetic poles on the surface on the stator 100 side of the permanent magnets 31 A, 32 A, 33 A constituting the magnet group 3 OA are N magnetic poles.
また、 回転子 10の周方向に隣り合う磁石群 3 OA, 30 B, 30Cの固定子 100側の磁極は、 互いに異なるように配置されており、 周方向に交互に磁極が 異なるように配置されている。 たとえば、 磁石群 3 OAの固定子 100側の磁極 は、 N極とされており、 磁石群 30 Bの固定子 100側の磁極は、 S極とされて いる。 このため、 回転子 10の表面には、 極性の異なる磁極が周方向に等間隔に 形成されることになる。 このように、 磁極が回転子 10の周面に等間隔に配列し ているので、 固定子 100のコイルに生じる磁極によって順次引っ張られる際に、 各磁極 (磁石群 30A, 30 B, 30 C) に加えられる吸引力にばらつきが生じ ることを抑制することができ、 回転子 10に振動が生じることを抑制することが できる。  In addition, the magnetic poles on the stator 100 side of the magnet groups 3 OA, 30 B, and 30 C adjacent to each other in the circumferential direction of the rotor 10 are arranged to be different from each other, and are arranged so that the magnetic poles are alternately different in the circumferential direction. ing. For example, the magnetic pole on the stator 100 side of the magnet group 3 OA is an N pole, and the magnetic pole on the stator 100 side of the magnet group 30 B is an S pole. For this reason, magnetic poles having different polarities are formed at equal intervals in the circumferential direction on the surface of the rotor 10. Thus, since the magnetic poles are arranged on the circumferential surface of the rotor 10 at equal intervals, each magnetic pole (magnet group 30A, 30B, 30C) is pulled when being sequentially pulled by the magnetic poles generated in the coils of the stator 100. Variations in the suction force applied to the rotor 10 can be suppressed, and vibrations in the rotor 10 can be suppressed.
各磁石群 3 OA, 30 B, 30Cは、 3つの永久磁石を備えている。 このため、 各磁石群 30A, 30 B, 3 OCから生じる磁束量は十分に確保されており、 大 きなトルクを発生させることができる。  Each magnet group 3 OA, 30 B, 30C includes three permanent magnets. For this reason, the amount of magnetic flux generated from each magnet group 30A, 30B, 3OC is sufficiently secured, and a large torque can be generated.
図 1および図 2において、 各磁極の中心を通る中心線 P 1A, P 1 B, P 1 C が示されている。 ここで、 中心線 P 1Aは、 磁石群 3 OAによって規定される磁 極の中心と、 回転子 10の中心 Oとを通る。  1 and 2, center lines P 1A, P 1 B, and P 1 C passing through the centers of the magnetic poles are shown. Here, the center line P 1A passes through the center of the magnetic pole defined by the magnet group 3 OA and the center O of the rotor 10.
図 2において、 永久磁石 (第 1永久磁石) 33 Aは、 回転子 10の外周縁部側 に形成された磁石収容孔 43 A内に収容されており、 中心線 P 1 A上に位置して いる。 永久磁石 (第 2および第 3永久磁石) 3 1A, 32Aは、 永久磁石 33 A に対して回転子 10の周方向に隣り合う位置に形成された磁石収容孔 41 A, 4 2 A內に収容されている。  In FIG. 2, the permanent magnet (first permanent magnet) 33 A is accommodated in a magnet accommodation hole 43 A formed on the outer peripheral edge side of the rotor 10 and is located on the center line P 1 A. Yes. Permanent magnets (second and third permanent magnets) 3 1A and 32A are housed in magnet housing holes 41 A and 4 2 A 內 formed at positions adjacent to the permanent magnet 33 A in the circumferential direction of the rotor 10 Has been.
ここで、 永久磁石 31 A, 32Aは、 回転子 10の周方向に互いに離れて設け られており、 永久磁石 3 1 Aと永久磁石 32 Aとは、 互いに、 回転子 10の径方 向に内方に向かうにつれて、 近接するように傾斜している。 このため、 図 1において、 回転子 10の径方向内方側においても、 隣り合う磁 石郡 30 A〜30 C間の距離を確保することができ、 強度を確保することができ る。 さらに、 回転子 10の外周側では、 各永久磁石 31A, 32A間の距離が確 保されており、 永久磁石 31 A, 32 A間に永久磁石 33 Aを収容したとしても、 各永久磁石 3 1A, 32 A, 33 A間の距離を確保することができ、 回転子 10 の剛性を確保することができる。 Here, the permanent magnets 31 A and 32 A are provided apart from each other in the circumferential direction of the rotor 10, and the permanent magnet 31 A and the permanent magnet 32 A are arranged in the radial direction of the rotor 10. It is inclined so as to approach each other. For this reason, in FIG. 1, the distance between the adjacent magnet groups 30A to 30C can be secured even on the radially inner side of the rotor 10, and the strength can be secured. Further, the distance between the permanent magnets 31A and 32A is secured on the outer peripheral side of the rotor 10, and even if the permanent magnet 33A is accommodated between the permanent magnets 31A and 32A, each permanent magnet 31A , 32 A, 33 A can be secured, and the rigidity of the rotor 10 can be secured.
さらに、 永久磁石 33 Aは、 磁石群 3 OAの磁極の中心線 P 1 A上に位置して いる。 そして、 他の 2つの永久磁石 32 A, 33 Aは、 この中心線 P I Aに対し て対称配置されている。 このように、 各永久磁石 3 1 A, 32 A, 33Aを配置 することで、 回転子 10の重量バランスが確保され、 回転子 10が回転した際に おいても、 回転子 10に生じる振動を低減することができる。  Further, the permanent magnet 33 A is located on the magnetic pole center line P 1 A of the magnet group 3 OA. The other two permanent magnets 32 A and 33 A are arranged symmetrically with respect to the center line P I A. Thus, by arranging the permanent magnets 3 1 A, 32 A, and 33 A, the weight balance of the rotor 10 is ensured, and even when the rotor 10 rotates, vibrations generated in the rotor 10 are prevented. Can be reduced.
ここで、 仮想直線 P 3 Aを、 磁石群 3 OAのうち、 回転子 10の周方向に位置 する周方向端部 QAと、 回転子 10の中心 Oとを通る直線とする。 そして、 この 磁石群 3 OAの仮想基準線 Lは、 回転子 10の中心〇を通り、 中心線 P I Aと直 交するように延びる直線とする。 なお、 この仮想基準線 Lは、 磁石群 3 OBに対 して磁石群 3 OAと反対側に位置する磁石群の磁極の中心を通ると共に、 磁石群 Here, the virtual straight line P 3 A is a straight line passing through the circumferential end QA of the magnet group 3 OA located in the circumferential direction of the rotor 10 and the center O of the rotor 10. The virtual reference line L of the magnet group 3 OA is a straight line passing through the center 0 of the rotor 10 and extending so as to be orthogonal to the center line PIA. The virtual reference line L passes through the center of the magnetic pole of the magnet group located on the opposite side of the magnet group 3 OA with respect to the magnet group 3 OB.
30Cに対して磁石群 3 OAと反対側に位置する磁石群の磁極の中心を通る。 そして、 仮想直線 P 3 Aと、 仮想基準線 Lとによって規定される交差角度のう ち、 小さい方の交差角度 Θ 1は、 機械角度で 70. 00度以上 72. 50度以下 とされている。 Passes through the center of the magnetic pole of the magnet group located on the opposite side of the magnet group 3 OA with respect to 30C. Of the crossing angles defined by the virtual straight line P 3 A and the virtual reference line L, the smaller crossing angle Θ 1 is set to a mechanical angle of 70.00 degrees or more and 72.50 degrees or less. .
なお、 本実施の形態に係る回転電機 1000においては、 各永久磁石 3 1 A, 31 Bの延在方向と、 仮想基準線 Lと平行な平行基準線 L Aとの交差角度 03は、 たとえば、 機械角度で 30度以上 40度以下の範囲とされ、 好ましくは 35度と される。 なお、 図 1および図 2に示す回転電機 1000においては、 交差角度 S 3は、 35度とされている。  In the rotating electrical machine 1000 according to the present embodiment, the intersection angle 03 between the extending direction of each permanent magnet 3 1 A, 31 B and the parallel reference line LA parallel to the virtual reference line L is, for example, a machine The angle ranges from 30 degrees to 40 degrees, and preferably 35 degrees. In the rotating electrical machine 1000 shown in FIGS. 1 and 2, the intersection angle S 3 is set to 35 degrees.
図 3は、 固定子の平面図である。 図 3を参照して、 コイル 510〜5 1 7は、 ステータコイル 22の U相コイル 1 10Uを構成し、 コイル 520〜527は、 ステ一タコイル 22の V相コイル 1 10 Vを構成し、 コイル 530〜537は、 ステータコイル 22の W相コイル 1 10Wを構成する。 コィノレ 5 10〜5 17, 520〜 527, 530〜 537の各々は、 略円弧形状から成る。 Fig. 3 is a plan view of the stator. Referring to FIG. 3, coils 510 to 5 1 7 constitute a U-phase coil 1 10U of stator coil 22, coils 520 to 527 constitute a V-phase coil 1 10 V of stator coil 22, and a coil 530 to 537 constitute a W phase coil 110W of the stator coil 22. Coinole 5 10 ~ 5 17, Each of 520 to 527 and 530 to 537 has a substantially arc shape.
コイル 510~51 7は、 最外周に配置される。 コイル 520〜527は、 コ ィル 510〜517の内側であって、 それぞれ、 コィノレ 510〜51 7に対して 円周方向に一定距離だけずれた位置に配置される。 コイル 530〜537は、 コ ィル 520〜527の内側であって、 それぞれ、 コイル 520〜527に対して 円周方向に一定距離だけずれた位置に配置される。  The coils 510 to 517 are arranged on the outermost periphery. The coils 520 to 527 are disposed inside the coils 510 to 517, and are disposed at positions shifted by a certain distance in the circumferential direction with respect to the coils 510 to 517, respectively. The coils 530 to 537 are disposed inside the coils 520 to 527 and are respectively displaced from the coils 520 to 527 by a certain distance in the circumferential direction.
コイル 5 10〜 51 7, 520〜 527, 530〜 537の各々は、 対応する 複数のティースの各々に直列に巻回される。 たとえば、 コィノレ 5 10は、 ティ一 ス 1〜5に対応し、 ティース 1〜5の全体に外周から所定回数巻回されて形成さ れる。  Each of the coils 5 10 to 51 7, 520 to 527, 530 to 537 is wound around each of a plurality of corresponding teeth. For example, the coin 510 corresponds to the teeth 1 to 5 and is formed by being wound around the entire teeth 1 to 5 a predetermined number of times from the outer periphery.
コイル 5 1 1〜51 7, 520〜527, 530〜 537についても、 それぞ れ対応するティースにコイル 510と同じようにして形成される。  Coils 5 1 1 to 51 7, 520 to 527, and 530 to 537 are also formed on the corresponding teeth in the same manner as coil 510.
コイル 510〜5 13は、 直列に接続され、 一方端が端子 U 1であり、 他方端 が中性点 UN 1である。 コイル 5 14〜5 1 7は、 直列に接続され、 一方端が端 子 U 2であり、 他方端が中性点 UN 2である。  Coils 510 to 513 are connected in series, one end is a terminal U1, and the other end is a neutral point UN1. Coils 5 14 to 5 17 are connected in series, and one end is a terminal U 2 and the other end is a neutral point UN 2.
コイル 520〜523は、. 直列に接続され、 一方端が端子 V Iであり、 他方端 が中性点 VN 1である。 コイル 524〜527は、 直列に接続され、 一方端が端 子 V 2であり、 他方端が中性点 VN 2である。  Coils 520 to 523 are connected in series, one end is a terminal V I and the other end is a neutral point VN 1. Coils 524 to 527 are connected in series, and one end is a terminal V 2 and the other end is a neutral point VN 2.
コイル 530〜533は、 直列に接続され、 一方端が端子 W1であり、 他 端 が中性点 WN 1である。 コイル 534〜537は、 直列に接続され、 一方端が端 子 W 2であり、 他方端が中性点 WN 2である。  Coils 530 to 533 are connected in series, with one end being a terminal W1 and the other end being a neutral point WN1. Coils 534 to 537 are connected in series, and one end is a terminal W2 and the other end is a neutral point WN2.
ここで、 コイル 510〜 5 1 7, 520〜 527, 530〜537に位相がず れた交流電流が供給されることで、 回転子 10を所定方向に向けて回転させる。 この際、 回転子 10が回転することで、 各コイル 510〜 51 7, 520〜 52 7, 530~537を通る永久磁石 31 A, 32 A, 33 A, 3 1 B, 32 B, 33 B, 3 1 C, 32 C, 33 Cからの磁束量が変動する。  Here, an alternating current with a phase shift is supplied to the coils 510 to 5 1 7, 520 to 527, and 530 to 537, thereby rotating the rotor 10 in a predetermined direction. At this time, by rotating the rotor 10, permanent magnets 31 A, 32 A, 33 A, 3 1 B, 32 B, 33 B, passing through the coils 510 to 51 7, 520 to 52 7, 530 to 537, 3 The amount of magnetic flux from 1 C, 32 C, and 33 C fluctuates.
このため、 各コイル 5 10〜5 1 7, 520〜527, 530〜537には、 回転子 10が回転することにより、 逆起電圧が生じる。  For this reason, a counter electromotive voltage is generated in each of the coils 5 10 to 5 17, 520 to 527, and 530 to 537 by the rotation of the rotor 10.
図 4は、 横軸に回転子 10の回転角度 (単位は、 電気角度) を示し、 縦軸に、 各コイル 5 1 0〜 5 1 7 , 5 2 0〜5 2 7 , 5 3 0 ~ 5 3 7に生じる逆起電圧 (V) を示すグラフである。 図 5は、 図 2に示す各種の交差角度 θ 1に設定され た回転電機において、 生じる逆起電圧を周波数分解し、 逆起電圧の 5次、 7次、 1 1次、 1 3次成分を示すグラフである。 なお、 図 5において、 グラフの右端に 示す逆起電圧圧の特性は、 比較例としての回転電機の特性である。 この比較例の 回転電機においては、 各磁石群は、 2つの永久磁石を V型に配置した永久磁石に よって構成されており、 たとえば、 比較例の回転電機は、 図 1に示す永久磁石 3 3 A, 3 3 B , 3 3 Cを取り除いたような回転電機である。 In Fig. 4, the horizontal axis shows the rotation angle (unit: electrical angle) of the rotor 10, and the vertical axis 6 is a graph showing the counter electromotive voltage (V) generated in each coil 5 10 to 5 1 7, 5 2 0 to 5 2 7, and 5 3 0 to 5 3 7. Fig. 5 shows the frequency components of the counter electromotive voltage generated in the rotating electrical machine set at various crossing angles θ 1 shown in Fig. 2, and the 5th, 7th, 1 1st, 1 3rd order components of the back electromotive voltage are shown. It is a graph to show. In FIG. 5, the characteristics of the counter electromotive voltage shown at the right end of the graph are the characteristics of the rotating electrical machine as a comparative example. In the rotating electrical machine of this comparative example, each magnet group is composed of permanent magnets in which two permanent magnets are arranged in a V shape. For example, the rotating electrical machine of the comparative example has a permanent magnet 3 3 shown in FIG. It is a rotating electric machine with A, 3 3 B and 3 3 C removed.
ここで、 図 4に示すように、 各コィノレ 5 1 0〜5 1 7, 5 2 0〜 5 2 7 , 5 3 0〜5 3 7に生じる逆起電圧を示す波形は、 複数の波が重なり合って、 正弦波に 近似する形状となっている。  Here, as shown in FIG. 4, the waveforms indicating the counter electromotive voltages generated in the respective coins 5 1 0 to 5 1 7, 5 2 0 to 5 2 7, 5 3 0 to 5 3 7 are overlapped with each other. Thus, the shape approximates a sine wave.
そして、 たとえば、 図 4に示される逆起電圧の波の周波数分解して得られる逆 起電圧の 5次成分とは、 図 4に示す逆起電圧の波の周波数の 5倍の周波数を有す る波である。 同様に、 7次、 1 1次、 1 3次成分とは、 図 4に示す逆起電圧の波 の周波数の 7倍、 1 1倍、 1 3倍の周波数を有する波である。  For example, the fifth component of the back electromotive voltage obtained by frequency decomposition of the back electromotive voltage wave shown in FIG. 4 has a frequency five times the frequency of the back electromotive voltage wave shown in FIG. It is a wave. Similarly, the 7th, 1 1st and 1 3rd order components are waves having frequencies 7 times, 11 times and 13 times the frequency of the back electromotive force wave shown in FIG.
ここで、 回転電機 1 0 0 0に生じるノイズのうち、 極数とコイルの相数との最 小公倍数の次数成分と、 スロット数の次数成分とが大きな評価項目となっている。 本実施の形態に係る回転電機 1 0 0 0においては、 8極 3相モータであって、 ス 口ット数 4 8とされているので、 回転電機 1 0 0 0が駆動することで生じるノィ ズのうち、 2 4次成分と 4 8次成分の低減を図ることが主要な評価項目とされて いる。 そして、 逆起電圧の 5次および 7次成分が、 ノイズの 2 4次成分に影響し、 さらに、 逆起電圧の 1 1次成分および 1 3次成分とが、 ノイズの 4 8次成分に影 響する。 なお、 本実施の形態においては、 中心 Oを中心とする各スロット 1 0 2 の幅方向 (回転子 1 0の周方向) の角度は、 2 . 5度 (機械角度) とされており、 中心 Oを中心とするステータティ一ス 1 0 1の幅方向の角度は、 5 . 0度 (機械 角度) とされている。  Here, out of the noise generated in the rotating electrical machine 100, the order component of the least common multiple of the number of poles and the number of phases of the coil and the order component of the number of slots are large evaluation items. The rotating electrical machine 100 according to the present embodiment is an 8-pole 3-phase motor and has a number of openings of 48. Therefore, noise generated by driving the rotating electrical machine 100 Among them, the main evaluation item is to reduce the 2nd and 4th order components and the 48th order components. The 5th and 7th order components of the back electromotive voltage affect the 2nd and 4th order components of the noise, and the 1st and 1st order components of the back electromotive force and the 1st and 3rd order components affect the 4th and 8th order components of the noise. Sounds. In this embodiment, the angle in the width direction (circumferential direction of the rotor 10) of each slot 10 2 around the center O is 2.5 degrees (mechanical angle). The angle in the width direction of the stator teeth 100 around O is set to 5.0 degrees (mechanical angle).
そして、 図 5において、 図 2に示す交差角度 θ 1が、 7 0 . 0 0度 (機械角 度) 以上 7 2 . 5 0度以下とされた本実施の形態に係る回転電機の逆起電圧の 5 次、 7次、 1 1次、 1 3次成分の合計は、 比較例の回転電機の合計よりも小さい ことが分かる。 すなわち、 回転電機に生じる逆起電圧の波形を正弦波に近似させ ることができ、 回転電機に生じるノィズの低減を図ることができることが分かる。 なお、 交差角度が 7 2 . 5 0度よりも大きくなると、 逆起電圧の各次数成分の合 計が比較例の回転電機の合計よりも大きくなる。 ここで、 図 6は、 交差角度 0 1 力 7 0 . 0 0度としたときの回転電機の断面図である。 この図 6に示すように、 磁石群 3 O Aの磁極の中心線 P 1 Aを、 径方向に延びるステータティース 1 0 1 Aの中心線に一致させると、 ステータティース 1 0 1 Aに対して、 2つ周方向に 隣り合うステータティース 1 0 1 Cと、 このステ一タティース 1 0 1 Cに対して ステータティース 1 0 1 Aと反対側に位置するステータティース 1 0 1 Dとによ つて規定されたスロット 1 0 2 Cを仮想直線 P 3 Aが通る。 具体的には、 仮想直 線!5 3 Aは、 スロッ ト 1 0 2 Cを規定するステータティース 1 0 1 Dの側面に沿 つて延びる。 また、 図 7は、 交差角度 Θ 1が、 7 2 . 5 0度としたときの回転電 機の断面図である。 この図 7に示すように、 仮想直線 P 3 Aは、 スロッ ト 1 0 2 Cを規定するステータティース 1 0 1 Cの側面に沿って延びる。 このように、 交 差角度 0 1が 7 0 . 0 0度以上 7 2 . 5 0度以下のときには、 仮想直線 P 3 Aは、 スロッ ト 1 0 2 C内を通り、 生じるノイズを、 磁石を V字配置して磁極を規定し た回転電機よりも、 モータノイズが小さくなつている。 Then, in FIG. 5, the counter electromotive voltage of the rotating electrical machine according to the present embodiment in which the crossing angle θ 1 shown in FIG. 2 is set to be not less than 70.0 ° (mechanical angle) and not more than 72.5 °. The total of the 5th, 7th, 1st, 1st, 3rd order components is smaller than the total of the rotating electrical machine of the comparative example I understand that. That is, it can be seen that the waveform of the counter electromotive voltage generated in the rotating electrical machine can be approximated to a sine wave, and noise generated in the rotating electrical machine can be reduced. When the crossing angle is larger than 72.5 °, the sum of the order components of the counter electromotive voltage becomes larger than the total of the rotating electrical machines of the comparative example. Here, FIG. 6 is a cross-sectional view of the rotating electrical machine when the crossing angle is 0 1 force 70.0 degrees. As shown in FIG. 6, when the center line P 1 A of the magnetic poles of the magnet group 3 OA is aligned with the center line of the stator teeth 10 0 1 A extending in the radial direction, Two teeth adjacent to each other in the circumferential direction 1 0 1 C, and the stator teeth 1 0 1 D located on the opposite side of the stator teeth 1 0 1 A with respect to this stator teeth 1 0 1 C The virtual straight line P 3 A passes through the slot 1 0 2 C. Specifically, the virtual straight line! 5 3 A extends along the side surface of the stator teeth 1 0 1 D defining the slot 1 0 2 C. FIG. 7 is a cross-sectional view of the rotating electric machine when the crossing angle Θ1 is 72.5 °. As shown in FIG. 7, the virtual straight line P 3 A extends along the side surface of the stator teeth 1 0 1 C that defines the slot 1 0 2 C. In this way, when the crossing angle 0 1 is not less than 70.0 ° and not more than 72.5 °, the virtual straight line P 3 A passes through the slot 1 0 2 C, and the generated noise is removed from the magnet. The motor noise is smaller than that of a rotating electrical machine with a V-shaped arrangement that defines the magnetic pole.
図 8は、 横軸は回転電機の交差角度 0 1を示し、 縦軸は逆起電圧の 5次成分を 示すグラフであり、 図 9は、 横軸は回転電機の交差角度 0 1を示し、 縦軸は逆起 電圧の 7次成分を示すグラフである。 そして、 図 1 0は、 横軸は回転電機の交差 角度 0 1を示し、 横軸は逆起電圧の 1 1次成分を示すグラフである。  In FIG. 8, the horizontal axis shows the crossing angle 0 1 of the rotating electrical machine, the vertical axis is a graph showing the fifth-order component of the back electromotive force, and FIG. 9 shows the crossing angle 0 1 of the rotating electrical machine, The vertical axis is a graph showing the 7th-order component of the back electromotive force. FIG. 10 is a graph in which the horizontal axis indicates the crossing angle 0 1 of the rotating electrical machine, and the horizontal axis indicates the first-order component of the back electromotive voltage.
ここで、 図 8から図 1 0において、 実線は、 上記比較例としての回転電機の逆 起電圧の 5次成分、 7次成分、 1 1次成分を示す。  Here, in FIGS. 8 to 10, the solid lines indicate the fifth-order component, seventh-order component, and first-order component of the back electromotive voltage of the rotating electrical machine as the comparative example.
そして、 図 8に示すように、 7 0 . 0 0度以上 7 3 . 0 0度以下のいずれの交 差角度 θ 1においても、 本実施の形態に係る回転電機 1 0 0 0は、 比較例の回転 電機よりも、 逆起電圧の 5次成分が小さいことが分かる。  Then, as shown in FIG. 8, the rotating electrical machine 1 00 0 0 according to the present embodiment is a comparative example at any crossing angle θ 1 of not less than 70.0 degrees and not more than 73.0 degrees. It can be seen that the fifth-order component of the back electromotive voltage is smaller than that of
図 9に示すように、 交差角度 0 1が 7 0 . 0 0度以上 7 1 . 2 5度以下の範囲 内においては、 本実施の形態に係る回転電機 1 0 0 0は、 比較例の回転電機より も逆起電圧の 7次成分が小さいことが分かる。 図 10に示すように、 交差角度 Θ 1が 70. 00度以上 72. 00度以下の範 囲内においては、 本実施の形態に係る回転電機 1000は、 比較例の回転電機よ りも逆起電圧の 1 1次成分が小さいことが分かる。 As shown in FIG. 9, when the crossing angle 0 1 is in the range of 70.0 to 0.degree. It can be seen that the 7th-order component of the back electromotive force is smaller than that of the electric machine. As shown in FIG. 10, when the crossing angle Θ 1 is within the range of 70.00 degrees or more and 72.00 degrees or less, the rotating electrical machine 1000 according to the present embodiment has a counter electromotive voltage higher than that of the rotating electrical machine of the comparative example. It can be seen that the first-order component of is small.
そして、 本実施の形態に係る回転電機 1000に生じる逆起電圧の 13次成分 は、 比較例の回転電機に生じる逆起電圧 1 3次成分よりも、 十分に小さい。  The 13th-order component of the counter electromotive voltage generated in the rotating electrical machine 1000 according to the present embodiment is sufficiently smaller than the 13th-order component of the counter electromotive voltage 13 generated in the rotating electrical machine of the comparative example.
ここで、 上記図 8から図 10に示されるように、 交差角度 0 1が 70. 00度 以上 71. 50度以下の範囲内においては、 回転電機 1000は、 比較例の回転 電機よりも、 逆起電圧の 5次、 1 1次および 1 3次成分のいずれもが小さいく、 回転電機 1000の 7次成分は、 比較例の回転電機に近似していることが分かる。 このため、 上記のような交差角度 6 1に設定された本実施の形態に係る回転電機 1000においては、 生じるノイズの 24次成分および 48次成分のいずれにつ いても比較例の回転電機に生じる 24次成分および 48次成分より低減すること ができることが分かる。 なお、 交差角度 0 1が、 71. 50度よりも大ききなる と、 逆起電圧の 7次成分が比較例の回転電機よりも大きくなる。  Here, as shown in FIGS. 8 to 10 above, when the crossing angle 0 1 is within the range of 70.00 degrees or more and 71.50 degrees or less, the rotating electrical machine 1000 is more reverse than the rotating electrical machine of the comparative example. It can be seen that the fifth-order, 1 1st-order, and 1 3rd-order components of the electromotive voltage are small, and the 7th-order component of the rotating electrical machine 1000 approximates the rotating electrical machine of the comparative example. For this reason, in the rotating electrical machine 1000 according to the present embodiment set to the intersection angle 61 as described above, any of the 24th-order component and 48th-order component of the generated noise occurs in the rotating electrical machine of the comparative example. It can be seen that it can be reduced from the 24th and 48th components. When the crossing angle 0 1 is larger than 71.50 degrees, the seventh-order component of the back electromotive voltage becomes larger than that of the rotating electric machine of the comparative example.
また、 7 1. 00度 (機械角度) 以上 71. 50度以下とされた回転電機 10 00においては、 逆起電圧の 1 1次成分が特に小さく、 回転電機 1000に生じ るノイズの 48次成分の低減を特に図ることができる。 そして、 交差角度 0 1が 71. 00度よりも小さくなると、 逆起電圧の 1 1次成分が大きくなり、 交差角 度 0 1が 71. 50度よりも大きくなると、 逆起電圧の 1 1次成分が大きくなる。 さらに、 図 10に示されるように、 交差角度 6 1を 71. 25度とすることで、 逆起電圧の 1 1次成分を最小とすることができ、 回転電機 1000に生じるノィ ズの 48次成分の低減を図ることができる。 なお、 交差角度 0 1が 71. 25度 の時には、 図 2に示すように仮想直線 P 3 Aは、 径方向に延びるスロット 102 Cの中心線と一致する。 この際、 図 5にも示されるように、 回転電機 1000に 生じる各逆起電圧の各成分を合計を小さくすることができ、 回転電機 1000に 生じるモータノイズを低減することができる。 なお、 図 4から図 10に示された 結果は、 J一 MAG (株式会社 日本総研ソリユーシヨンズ製) 等の電磁界シミ ユレーシヨンにより算出されている。  In addition, in rotating electrical machine 100 00 that is set to 7 1.00 degrees (mechanical angle) or more and 71.50 degrees or less, the first-order component of the back electromotive voltage is particularly small, and the 48th-order component of noise generated in rotating machine 1000 Can be particularly reduced. When the crossing angle 0 1 is smaller than 71.00 degrees, the 1st-order component of the back electromotive voltage increases, and when the crossing angle 0 1 is greater than 71.50 degrees, the 1st-order of the back electromotive voltage is increased. Ingredients become larger. Furthermore, as shown in Fig. 10, by setting the crossing angle 6 1 to 71.25 degrees, the first-order component of the back electromotive voltage can be minimized, and the 48th-order noise generated in the rotating electrical machine 1000 can be minimized. The component can be reduced. When the crossing angle 0 1 is 71.25 degrees, the virtual straight line P 3 A coincides with the center line of the slot 102 C extending in the radial direction as shown in FIG. At this time, as shown in FIG. 5, the sum of the components of each back electromotive voltage generated in the rotating electrical machine 1000 can be reduced, and the motor noise generated in the rotating electrical machine 1000 can be reduced. The results shown in FIGS. 4 to 10 are calculated by electromagnetic field simulation such as J1 MAG (manufactured by Japan Research Institute, Ltd.).
以上のように本発明の実施の形態について説明を行なったが、 今回開示された 実施の形態はすべての点で例示であって制限的なものではないと考えられるべき である。 本発明の範囲は請求の範囲によって示され、 請求の範囲と均等の意味お よび範囲内でのすべての変更が含まれることが意図される。 さらに、 上記数値な どは、 例示であり、 上記数値および範囲にかぎられない。 As described above, the embodiment of the present invention has been described. The embodiments should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. Furthermore, the above numerical values are examples, and are not limited to the above numerical values and ranges.
産業上の利用可能性 Industrial applicability
本発明は、 回転電機に適用することができ、 特にノイズの低減が図られた回転 電機に好適である。  The present invention can be applied to a rotating electrical machine, and is particularly suitable for a rotating electrical machine in which noise is reduced.

Claims

請求の範囲 The scope of the claims
1. 間隔を隔てて形成され、 痉方向内方に向けて突出するステ一タティース (1 01) と、 該ステータティース (101) 間に規定され、 コイルが収容されるス ロット (102) とを有する固定子と、 1. A stator teeth (101) formed at an interval and projecting inward in the heel direction and a slot (102) defined between the stator teeth (101) and accommodating the coil A stator having,
等間隔に配置された複数の磁極を有し、 前記固定子 (100) と向かい合う回 転子 (10) とを備え、  A plurality of magnetic poles arranged at equal intervals, the rotor (10) facing the stator (100),
前記各磁極は、 複数の永久磁石 (31A, 32 A, 33 A) を含む磁石群 (3 OA) によって規定され、  Each of the magnetic poles is defined by a magnet group (3 OA) including a plurality of permanent magnets (31A, 32 A, 33 A),
前記各磁石群 (3 OA) の周方向端部 (QA) および前記回転子 (10) の中 心 (O) を結ぶ仮想直線 (P 3A) と、 前記磁石群 (3 OA) の前記磁極の中心 線 (P 1A) に直交し、 前記回転子 (10) の中心を通る仮想基準線 (L) とに よって規定される交差角度 (θ 1) は、 70. 00度以上 72. 50度以下とさ れると共に、 前記磁極の中心線 (P 1A) を前記ステ一タティース (101) の 中心線と一致させると、 前記仮想直線は、 前記スロッ ト (102) を通る、 回転 電機。  A virtual straight line (P 3A) connecting the circumferential end (QA) of each magnet group (3 OA) and the center (O) of the rotor (10), and the magnetic poles of the magnet group (3 OA) The crossing angle (θ 1) defined by the virtual reference line (L) perpendicular to the center line (P 1A) and passing through the center of the rotor (10) is 70.00 degrees or more and 72.50 degrees or less. When the center line (P 1A) of the magnetic pole coincides with the center line of the stator teeth (101), the virtual straight line passes through the slot (102).
2. 前記交差角度 (θ 1) は、 71. 00度以上 7 1. 50度以下とされた、 請 求の範囲第 1項に記載の回転電機。  2. The rotating electrical machine according to claim 1, wherein the intersection angle (θ1) is set to be not less than 71.00 degrees and not more than 7 1.50 degrees.
3. 前記交差角度 (0 1) は、 71. 25度とされた、 請求の範囲第 1項に記載 の回転電機。  3. The rotating electrical machine according to claim 1, wherein the crossing angle (0 1) is 71.25 degrees.
4. 前記磁石群 (3 OA) は、 前記磁極の中心線 (P 1A) 上に位置する第 1永 久磁石 (33A) と、 前記磁極の中心線 (P 1A) を挟んで対称に配置された第 2および第 3永久磁石 (31A, 32 A) とを含む、 請求の範囲第 1項に記載の 回転電機。  4. The magnet group (3 OA) is arranged symmetrically across the first permanent magnet (33A) located on the magnetic pole center line (P 1A) and the magnetic pole center line (P 1A). The rotating electrical machine according to claim 1, further comprising second and third permanent magnets (31A, 32A).
5. 前記第 2永久磁石 (31A) と前記第 3永久磁石 (32A) との間の距離が、 前記回転子 (10) の径方向内方に向けて、 小さくなるように、 前記第 2および 前記第 3永久磁石 (3.1A, 32 A) が傾斜して配置された、 請求の範囲第 4項 に記載の回転電機。  5. The second and the second permanent magnets (31A) and the third permanent magnet (32A) are arranged such that a distance between the second permanent magnet (31A) and the third permanent magnet (32A) decreases toward the radially inner side of the rotor (10). The rotating electrical machine according to claim 4, wherein the third permanent magnet (3.1A, 32A) is disposed at an inclination.
PCT/JP2008/060815 2007-06-07 2008-06-06 Rotating electric machine WO2008150035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007151725A JP2008306849A (en) 2007-06-07 2007-06-07 Rotating electrical machine
JP2007-151725 2007-06-07

Publications (1)

Publication Number Publication Date
WO2008150035A1 true WO2008150035A1 (en) 2008-12-11

Family

ID=40093831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060815 WO2008150035A1 (en) 2007-06-07 2008-06-06 Rotating electric machine

Country Status (2)

Country Link
JP (1) JP2008306849A (en)
WO (1) WO2008150035A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214963A (en) * 2010-04-01 2011-10-12 天津市松正电动科技有限公司 Novel multi-layer structure of rotor core
WO2012014728A1 (en) * 2010-07-27 2012-02-02 日産自動車株式会社 Rotor for electric motor
US20120200187A1 (en) * 2011-02-03 2012-08-09 Aisin Seiki Kabushiki Kaisha Rotor for rotary electric machine
GB2551537A (en) * 2016-06-21 2017-12-27 Jaguar Land Rover Ltd Electrical machine
CN113809849A (en) * 2020-06-12 2021-12-17 日本电产株式会社 Rotating electrical machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2595281B1 (en) * 2010-07-14 2019-01-23 Kabushiki Kaisha Toyota Jidoshokki Rotating element with embedded permanent magnet and rotating electrical machine
JP5643127B2 (en) 2011-02-03 2014-12-17 トヨタ自動車株式会社 Rotating machine rotor
DE102016222398A1 (en) * 2016-11-15 2018-05-17 Robert Bosch Gmbh Optimized electric machine
WO2018190103A1 (en) 2017-04-13 2018-10-18 株式会社 東芝 Rotor for dynamo-electric machine
CN108429375B (en) 2018-05-08 2020-06-16 珠海格力电器股份有限公司 Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric automobile
CN116458035A (en) * 2020-11-09 2023-07-18 尼得科株式会社 Rotary electric machine
CN116806407A (en) * 2021-02-10 2023-09-26 尼得科株式会社 Rotary electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014457A (en) * 2004-06-24 2006-01-12 Fanuc Ltd Synchronous motor
JP2006187189A (en) * 2004-11-30 2006-07-13 Hitachi Ltd Permanent magnet type rotary electric machine and apparatus
JP2006254629A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Rotor of rotating electric machine, rotating electric machine, and vehicle driving apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014457A (en) * 2004-06-24 2006-01-12 Fanuc Ltd Synchronous motor
JP2006187189A (en) * 2004-11-30 2006-07-13 Hitachi Ltd Permanent magnet type rotary electric machine and apparatus
JP2006254629A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Rotor of rotating electric machine, rotating electric machine, and vehicle driving apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214963A (en) * 2010-04-01 2011-10-12 天津市松正电动科技有限公司 Novel multi-layer structure of rotor core
US9083217B2 (en) 2010-07-27 2015-07-14 Nissan Motor Co., Ltd. Rotor for electric motor
CN103026586A (en) * 2010-07-27 2013-04-03 日产自动车株式会社 Rotor for electric motor
RU2533190C2 (en) * 2010-07-27 2014-11-20 Ниссан Мотор Ко., Лтд. Rotor for electric motor
WO2012014728A1 (en) * 2010-07-27 2012-02-02 日産自動車株式会社 Rotor for electric motor
EP2600498A4 (en) * 2010-07-27 2018-03-28 Nissan Motor Co., Ltd Rotor for electric motor
US20120200187A1 (en) * 2011-02-03 2012-08-09 Aisin Seiki Kabushiki Kaisha Rotor for rotary electric machine
US8890385B2 (en) * 2011-02-03 2014-11-18 Toyota Jidosha Kabushiki Kaisha Rotor for rotary electric machine
GB2552741A (en) * 2016-06-21 2018-02-07 Jaguar Land Rover Ltd Electrical machine
GB2551537A (en) * 2016-06-21 2017-12-27 Jaguar Land Rover Ltd Electrical machine
GB2552741B (en) * 2016-06-21 2019-10-09 Jaguar Land Rover Ltd Electrical machine
US11223250B2 (en) 2016-06-21 2022-01-11 Jaguar Land Rover Limited Electrical machine
US11757316B2 (en) 2016-06-21 2023-09-12 Jaguar Land Rover Limited Electrical machine
CN113809849A (en) * 2020-06-12 2021-12-17 日本电产株式会社 Rotating electrical machine
CN113809849B (en) * 2020-06-12 2024-07-02 日本电产株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP2008306849A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
WO2008150035A1 (en) Rotating electric machine
US9041269B2 (en) Motor
US7960886B2 (en) Rotating electric machine
JP4714305B2 (en) Synchronous motor
KR101730525B1 (en) Brushless synchronous motor
JP3415406B2 (en) Magnet-embedded AC motor and its design method
JP5620759B2 (en) Electric machine
JP4828666B2 (en) Synchronous motor and synchronous motor drive system
JP5751794B2 (en) Traction motor for electric vehicles
JP6161707B2 (en) Synchronous motor
JP4626405B2 (en) Brushless motor
JP2000512840A (en) Brushless polyphase electrical equipment, especially automotive alternators
US20100277027A1 (en) Skew pattern for a permanent magnet rotor
WO2005029678A1 (en) Permanent magnet motor
WO2007043506A1 (en) Motor with two rotors
US20150326084A1 (en) Rotary electric machine
CN111555504A (en) Rotating electrical machine
EP1217713B1 (en) Permanent magnet type rotor and permanent magnet type rotary electrical machine
JP2010517506A (en) 18/8 synchronous motor
JP5546224B2 (en) Magnet generator
JP2011223676A (en) Permanent magnet type motor
JP2003088078A (en) Brushless dc motor
JP4062269B2 (en) Synchronous rotating electrical machine
US6236133B1 (en) Three-phase brushless motor
JP2012100497A (en) Stator core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08765556

Country of ref document: EP

Kind code of ref document: A1