Nothing Special   »   [go: up one dir, main page]

WO2008029682A1 - Hydrogen generation device and fuel cell system with the same - Google Patents

Hydrogen generation device and fuel cell system with the same Download PDF

Info

Publication number
WO2008029682A1
WO2008029682A1 PCT/JP2007/066740 JP2007066740W WO2008029682A1 WO 2008029682 A1 WO2008029682 A1 WO 2008029682A1 JP 2007066740 W JP2007066740 W JP 2007066740W WO 2008029682 A1 WO2008029682 A1 WO 2008029682A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
combustion
space
fuel cell
thermal expansion
Prior art date
Application number
PCT/JP2007/066740
Other languages
French (fr)
Japanese (ja)
Inventor
Tomonori Aso
Yoichi Kimura
Yutaka Yoshida
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2008029682A1 publication Critical patent/WO2008029682A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0465Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being concentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generator and a fuel cell system including the same, and more particularly to the structure of a hydrogen generator.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the hydrogen generator disclosed in Patent Document 1.
  • the vertical direction in the hydrogen generator is shown as the vertical direction in the figure.
  • this conventional hydrogen generator has a casing 75, and the casing 75 has first to third cylinders 7 sharing a central axis; ! ⁇ 73 are arranged.
  • a panner 74 is provided in the internal space of the first cylinder 71, and the cylindrical space between the first cylinder 71 and the second cylinder 72 constitutes an exhaust passage 76.
  • a reforming catalyst layer 78 filled with a reforming catalyst 77 is provided below the space between the second cylinder 72 and the third cylinder 73.
  • a shift catalyst layer 80 filled with a shift catalyst 79 is provided in a substantially central portion of the space between the third cylinder 73 and the casing 75, and a selective oxidation catalyst 81 is filled above the shift catalyst layer 80.
  • a selective oxidation catalyst layer 82 is provided.
  • combustion gas and air are supplied to the burner 74, and these gases are burned at the tip of the burner 74 to generate combustion exhaust gas.
  • the generated combustion exhaust gas flows through the exhaust passage 76, whereby the second cylindrical body 72 is heated by heat transfer from the combustion exhaust gas.
  • the fluid flowing in the space between the reforming catalyst layer 78 and the second cylinder 72 and the third cylinder 73 is heated.
  • a raw material for example, methane
  • water is supplied from a raw material supplier 83, and water is supplied.
  • Water is supplied from a supplier 84.
  • the supplied raw material and water are heated while flowing downward from the upper part through the space between the second cylinder 72 and the third cylinder 73, and the supplied water becomes steam.
  • a steam reforming reaction is performed, and a hydrogen-rich reformed gas is generated.
  • the generated reformed gas is reduced in carbon monoxide concentration in the shift catalyst layer 80.
  • the reformed gas that has passed through the shift catalyst layer 80 is mixed with the selective oxidation air supplied from the selective oxidation air supply device 85, and the carbon monoxide concentration is reduced when passing through the selective oxidation catalyst layer 82. Further reduced.
  • the shift reaction is an exothermic reaction
  • heating is not required while power is being generated by the fuel cell, but the shift heater 86 is mounted until the temperature required for the shift reaction is reached at startup. In some cases, heating is performed outside the body 75.
  • the selective oxidation reaction is also an exothermic reaction, but a selective oxidation heater 87 may be provided outside the housing 75 for activation.
  • a spacer 88 for making the width dimension of the exhaust passage 76 uniform may be provided in order to make the temperature of the reforming catalyst layer 78 appropriate and uniform. is there.
  • Patent Document 1 International Publication No. 02/098790 Pamphlet
  • the steam reforming reaction in the reforming catalyst layer 78 is an endothermic reaction, and the raw material and the inflow of the reforming catalyst layer 78 are also included. It is structured to increase the temperature by supplying heat from the surroundings while flowing along the hydraulic cylinder S and the second cylinder 72. For this reason, since the temperature of the first cylinder 71 is higher than that of the second cylinder 72, the deformation of the first cylinder 71 is greater than the deformation of the second cylinder 72 due to thermal expansion. For this reason, the width dimension of the exhaust passage 76 becomes nonuniform, and the combustion exhaust gas does not flow uniformly through the exhaust passage 76, so that the temperature of the reforming catalyst layer 78 becomes nonuniform. At the low temperature portion of the reforming catalyst layer 78, the reaction rate of the water vapor reforming reaction decreased, and at the high temperature portion, the durability of the catalyst decreased.
  • the present invention has been made to solve the above-described problems.
  • a hydrogen generator capable of improving reforming performance and preventing deterioration of a reforming catalyst, and a fuel cell system including the same The purpose is to provide.
  • a hydrogen production apparatus includes a combustor, a first wall that forms a combustion space for gas flowing out of the combustor, and the outside of the combustion space.
  • a second wall disposed opposite the first wall; and a reforming catalyst layer on the outside of the second wall, and containing hydrogen by a reforming reaction of a raw material and steam flowing through the reforming catalyst layer
  • a reformer that generates gas, and a combustion gas flow path through which the combustion gas generated in the combustion space flows is configured in the space between the first wall and the second wall
  • the first wall is made of a metal having a smaller coefficient of thermal expansion than the second wall.
  • the first wall is constituted by a cylindrical first tube member whose internal space forms the combustion space
  • the second wall is It is composed of a cylindrical second cylindrical member arranged coaxially on the outside of the first cylindrical member, and the combustion gas flow path is a cylindrical shape between the first cylindrical member and the second cylindrical member. You may be comprised in space.
  • the difference force of thermal expansion of the metal of the first metal constituting the walls constituting the second wall S, 4 X 10_ 6 / K or 11 X 10 - 6 / ⁇ may be less.
  • the hydrogen generating apparatus is the first coefficient of thermal expansion of the metal constituting the walls force S8 X 10- 6 / ⁇ least 12 X 10- 6 / ⁇ below, the second The heat of the metal that makes up the wall
  • the expansion coefficient may be 14 X 10_ 6 / K or more and 19 X 10_ 6 / ⁇ or less!
  • the dimensional deformation due to thermal expansion of the first wall becomes substantially the same as the dimensional deformation of the second wall provided outside the first wall, so that the first wall and the second wall are in contact with each other. Is prevented from
  • the metal constituting the first wall is ferritic stainless steel and the metal constituting the second wall is austenitic stainless steel. Good.
  • a fuel cell system includes the hydrogen generator and a fuel cell that generates electric power using fuel gas supplied from the hydrogen generator.
  • the temperature of the reforming catalyst layer is kept constant by keeping the width dimension of the combustion gas flow path through which the combustion gas flows uniform. That power S.
  • the temperature of the reforming catalyst layer is kept constant, so that the reforming catalyst can be sufficiently prevented from deteriorating.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a schematic configuration of a hydrogen generator disclosed in Patent Document 1.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a fuel cell system according to Embodiment 1 of the present invention.
  • the fuel cell system 100 includes a hydrogen generation device 101 having a banner 10b, an oxidant gas supply device 102, and a fuel cell 104.
  • a raw material supplier 106 is connected to the hydrogen generator 101 via a raw material supply path 121. Further, the downstream end of the water supply path 122 is connected to the middle of the raw material supply path 121, and the upstream end is connected to the water supply unit 107.
  • the raw material for example, desulfurized city gas
  • the raw material supplier 106 is supplied from the raw material supplier 106 to the hydrogen generator 101 through the raw material supply path 121, and the liquid water is supplied from the water supplier 107. Together with the raw material, it flows through the raw material supply path 121 and is supplied to the hydrogen generator 101.
  • the supplied raw material and water undergo a reforming reaction to generate a reformed gas (hydrogen-containing gas) containing hydrogen, carbon monoxide, and carbon dioxide.
  • a reformed gas hydrogen-containing gas
  • Carbon monoxide in the reformed gas is reduced by a shift reaction and a selective oxidation reaction, and fuel gas is generated.
  • a fuel cell 104 is connected to the hydrogen generator 101 via a fuel gas supply path 123.
  • an oxidant gas supply path 102 is connected to the fuel cell 104 via an oxidant gas supply path 124.
  • the fuel gas generated by the hydrogen generator 101 flows through the fuel gas 1S fuel gas supply path 123 and is supplied to the anode (not shown) of the fuel cell 104.
  • the oxidant gas ( Air) is supplied to a power sword (not shown) of the fuel cell 104 through the oxidant gas supply passage 124.
  • the fuel gas supplied to the anode and the oxidant gas supplied to the power sword react electrochemically to generate electric power and heat.
  • the surplus fuel gas that has not been used in the fuel cell 104 flows through the off-gas flow path 128 as off-gas and is supplied to the burner 10b of the hydrogen generator 101. Also off In the middle of the gas flow path 128, a downstream end of the combustion air supply path 129 is connected, and an upstream end thereof is connected to the combustion air supply unit 108. As a result, combustion air is supplied to the burner 10b through the offgas passage 128 together with the offgas. In the burner 10b, the supplied off gas and combustion air are combusted. Excess oxidant gas that has not been used in the fuel cell 104 flows through the oxidant gas discharge passage 127 and is discharged out of the fuel cell system 100.
  • the fuel cell system 100 is subjected to various controls by a control device 105 configured by a computer such as a microcomputer.
  • the hydrogen generator 101 includes cylindrical first to fourth cylindrical members 1 to 4 that share a central axis.
  • the fourth cylinder member 4 constitutes a casing, and the first to third cylinder members are accommodated in the fourth cylinder member 4.
  • the lower end of the fourth cylinder member 4 is closed by a lid member 5, and the upper end thereof is closed by an annular plate member 6 connected to the third cylinder member 3.
  • the third cylinder member 3 is formed of a stepped cylinder having a step portion 3a, and the lower end thereof is closed by an annular plate member 7 connected to the second cylinder member 2.
  • the lower end of the second cylindrical member 2 is connected to the lid member 5, and the upper end thereof is closed by an annular plate member 8 connected to the first cylindrical member 1.
  • the lower end of the first cylinder member is open, and the upper end thereof is closed by the base 10a of the combustor 10.
  • the combustor 10 has a base 10a and a panner 10b.
  • the panner 10b is disposed so as to extend downward from the base 10a in the first cylindrical member 1.
  • the internal space formed by the inner wall (first wall) of the first tubular member 1 constitutes the combustion space 13.
  • the space between the first cylindrical member 1 and the second cylindrical member 2 (the space formed by the outer wall of the first cylindrical member 1 and the inner wall (second wall) of the second cylindrical member 2) is a combustion gas flow.
  • Configure road 11 The plate member 8 arranged on the downstream side of the combustion gas channel 11 has an outlet of the combustion gas channel 11 formed therein, and an upstream end of the combustion gas discharge channel 130 is connected to the outer outlet. Its downstream end is open to the atmosphere.
  • the combustion gas and combustion air supplied to the burner 10b burn in the combustion space 13 to generate combustion gas, and the generated combustion gas flows out from the lower end of the first cylinder member 1. Then, it comes into contact with the inner surface of the lid member 5, reverses, and flows through the combustion gas passage 11. At this time, the reformer 15 and the evaporation unit 19 described later are heated by heat transfer from the second cylindrical member 2 constituting the combustion gas flow path 11. Then, the combustion gas that has flowed through the combustion gas flow path 11 flows through the combustion gas discharge path 130 and is discharged out of the fuel cell system 100.
  • a spacer 12 made of island-shaped protrusions is formed on the outer surface of the first cylindrical member 1. Thereby, the width dimension of the combustion gas channel 11 can be kept constant. Note that the spacer 12 may be formed on the inner surface of the second cylindrical member 2.
  • the plate member 6 connected to the upper portion of the second cylindrical member 2 is formed with an inlet communicating with a cylindrical space formed between the second cylindrical member 2 and the third cylindrical member 3.
  • the downstream end of the raw material supply path 121 is connected to the inlet.
  • the raw material is supplied from the raw material supply device 106 through the raw material supply path 121 to the cylindrical space between the second cylindrical member 2 and the third cylindrical member 3, and from the water supply device 107, the hydraulic power S, It flows through the water supply path 122 and the raw material supply path 121 and is supplied to the upper part of the cylindrical space between the second cylindrical member 2 and the third cylindrical member 3 (hereinafter referred to as the evaporation section 19).
  • the raw material and water supplied to the evaporation unit 19 are heated by heat transfer from the second cylindrical member 2 while flowing through the evaporation unit 19.
  • a reforming catalyst layer 14 filled with a reforming catalyst is provided in the lower part of the cylindrical space between the second cylindrical member 2 and the third cylindrical member 3.
  • the space in which the reforming catalyst layer 14 in the cylindrical space is provided, the reforming catalyst layer 14, and the reformer 15 are also configured.
  • the reformer 17 undergoes a reforming reaction between the raw material and water vapor, and a reformed gas is generated.
  • the plate member 7 is provided with a large number of through holes in the thickness direction so that the generated reformed gas can flow downstream.
  • a shift catalyst layer 16 filled with a shift catalyst is provided above the step 3a of the cylindrical space formed between the third tube member 3 and the fourth tube member 4.
  • a shifter 17 is composed of the space in which the shift catalyst layer 16 in the cylindrical space is provided and the shift catalyst layer 16. As a result, the reformed gas generated in the reformer 15 is reduced in carbon monoxide by the shift reaction in the shift converter 17.
  • a transformer heater 22 made of, for example, a known sheathed heater. As a result, the transformer 17 can be quickly heated when the fuel cell system 100 is started.
  • the upper portion of the transformer 17 in the cylindrical space between the third cylindrical member 3 and the fourth cylindrical member 4 constitutes a mixing unit 18.
  • the fourth cylinder member 4 is formed with an inlet so as to communicate with the mixing unit 18, and the downstream end of the selective oxidation air supply path 131 is connected to the inlet.
  • the upstream end of the selective oxidation air supply path 131 is connected to the selective oxidation air supply 109.
  • the selective oxidation air is supplied from the selective oxidation air supply 109 through the selective oxidation air supply passage 131 and supplied to the mixing unit 18, where the reformed gas after the shift reaction and the reformed gas are supplied.
  • the selective oxidation air is mixed to form a mixed gas.
  • a selective oxidation catalyst layer 20 filled with a selective oxidation catalyst is provided on the upper portion of the mixing portion 18 in the cylindrical space of the third cylindrical member 3 and the fourth cylindrical member 4.
  • a selective oxidizer 21 is composed of the space provided with the selective oxidation catalyst layer 20 in the cylindrical space and the selective oxidation catalyst layer 20.
  • the fourth cylinder member 4 is formed with an outlet so as to communicate with the upper space of the selective oxidizer 21 in the cylindrical space between the third cylinder member 3 and the fourth cylinder member 4.
  • the upstream end of the fuel gas supply path 123 is connected to the outlet.
  • the fuel gas power generated by the selective oxidizer 21 of the hydrogen generator 101 flows through the fuel gas supply path 123 and is supplied to the fuel cell 104.
  • a selective oxidation heater 23 made of, for example, a known sheathed heater is provided at a portion of the outer surface of the fourth cylindrical member facing the selective oxidizer 21.
  • the selective oxidizer 21 can be quickly heated when the fuel cell system 100 is started.
  • the first cylinder member 1 is disposed so that the inside thereof faces the combustion space 13 of the combustion gas that is a heat source, and the combustion gas flows along the outside thereof.
  • the second cylinder member 2 is in contact with the reforming catalyst layer 15 where the combustion gas flows along the inner side and the outer side is an endothermic body (where endothermic reaction occurs), and at the normal temperature along the outer side. Supplied, It arrange
  • the metal constituting the first cylinder member 1 is made of a metal having a smaller coefficient of thermal expansion than the metal constituting the second cylinder member 2.
  • the first cylindrical member 1 is made of heat-resistant ferritic stainless steel
  • the second cylindrical member 2 is made of austenitic stainless steel.
  • the thermal expansion coefficient of the metal constituting the first tubular member 1 and the second tubular member 2 is, 8 X 10- 6 / K above 19 X 10- 6 / K or less, the difference between the first tubular member 1 the thermal expansion coefficient of the metal constituting the metal and second tubular members 2 constituting the (first wall) (second wall) but it is preferably 4 ⁇ 10_ 6 / ⁇ least 11 ⁇ 10_ 6 / ⁇ or less.
  • the coefficient of thermal expansion of the metal constituting the first cylindrical member 1 (first wall).
  • the thermal expansion coefficient of the metal constituting the second tubular member 2 (the second wall) is 14 X 10- 6 / ⁇ least 19 More preferably, it is X 10 — 6 / ⁇ or less.
  • the raw material is supplied from the raw material supply device 106 to the burner 10b through a raw material supply path (not shown). Further, combustion air is supplied from the combustion air supply unit 108 through the combustion air supply path 129 and the off-gas supply path 128 to the burner 10b. In Pana 10b, the supplied raw material and combustion air are combusted to generate combustion gas. The generated combustion gas flows out from the lower end of the first cylinder member 1, hits the inner surface of the lid member 5, and reverses to burn. The gas flows through the gas channel 11 and flows through the combustion gas discharge channel 130 and is discharged out of the fuel cell system 100.
  • the first cylindrical member 1 and the second cylindrical member 2 are respectively heated by heat transfer from the combustion gas, but the temperature of the first cylindrical member 1 is higher than that of the second cylindrical member 2. Get higher.
  • the first cylinder Deformation due to thermal expansion of member 1 is small. For this reason, the width dimension of the combustion gas flow path 11 formed by the space between the first cylinder member 1 and the second cylinder member 2 can be kept constant.
  • the shift heater 22 is operated to heat the shift converter 17, and similarly, the selective oxidation heater 23 is operated to heat the selective oxidizer 21.
  • the raw material supply device 106 flows through the raw material force S and the raw material supply channel 121 and is supplied to the hydrogen generator 101, and water from the water supply device 107 passes through the water supply channel 122 and the raw material supply channel 121. It is supplied to the evaporation unit 19 of the hydrogen generator 101. The raw material and water supplied to the evaporation unit 19 are heated while flowing through the evaporation unit 19, and the water becomes steam. Then, the heated raw material and water vapor are supplied to the reformer 15.
  • the raw material and steam undergo a reforming reaction in the reforming catalyst layer 14, and a reformed gas (hydrogen-containing gas) composed of hydrogen, carbon monoxide, carbon dioxide, and steam is generated.
  • a reformed gas hydrogen-containing gas
  • the generated reformed gas flows out from the lower end of the reformer 15, hits the inner surface of the lid member 5, reverses, flows through the cylindrical space between the third cylindrical member 3 and the fourth cylindrical member 4. Supplied to the denaturing device 15
  • the selective oxidation catalyst layer 20 performs selective oxidation with carbon monoxide in the mixed gas.
  • a selective oxidation reaction with working air (oxygen) produces fuel gas with carbon monoxide reduced to several ppm.
  • the generated fuel gas flows through the fuel gas supply path 123 and is supplied to an anode (not shown) of the fuel cell 104.
  • the fuel cell 104 is supplied from the oxidant gas supply device 102 through the oxidant gas (air) force oxidant gas supply path 124 and supplied to the power sword (not shown) of the fuel cell 104. .
  • the fuel gas supplied to the anode and the oxidant gas supplied to the power sword react electrochemically to generate electric power and heat.
  • the generated power is supplied to the external load.
  • the power that is not used in the fuel cell 104 and the surplus fuel gas are supplied as an off-gas through the off-gas flow path 128 to the burner 10b of the hydrogen generator 101.
  • the coefficient of thermal expansion of the metal that constitutes the first cylinder member 1 is smaller than the coefficient of thermal expansion of the metal that constitutes the second cylinder member 2. Therefore, deformation due to thermal expansion of the first tubular member 1 is small. For this reason, the width dimension of the combustion gas flow path 11 constituted by the space between the first cylinder member 1 and the second cylinder member 2 can be kept constant.
  • the width dimension of the fuel gas channel 11 can be kept constant, the temperature of the reformer 15 can be kept constant, and the reforming reaction can be performed stably. Furthermore, since the temperature of the reformer 15 can be kept constant, it is possible to suppress the deterioration of the reforming catalyst constituting the reformer 15.
  • Example 1 a fuel cell system 100 according to Embodiment 1 shown in FIG. 1 was constructed.
  • the heat resistance ferritic stainless (NSCC180 (manufactured by Nippon Steel Sumikin Stainless Co.): thermal expansion coefficient 11. 8 X 10- 6 / K ( 0 ⁇ 800 ° C)) and an outer diameter of 100 mm.
  • the metal constituting the second tubular member 2 austenitic stainless: using (SUS310S thermal expansion 17 ⁇ 5 X 10- 6 / K (0 ⁇ 649 ° C)), the inner diameter was 106mm .
  • the first and second cylindrical members 1 and 2 each had a thickness of lmm.
  • Methane was supplied as a raw material to the burner 10b of the hydrogen generator 101 in the fuel cell system 100 constructed as described above to generate combustion gas.
  • the first cylinder member 1 is heated up to 850 ° C by heat transfer from the combustion gas, and the second cylinder member 2 is 650 ° C. Heated to ° C.
  • heat-resistant ferrite stainless steel is used as the metal constituting the first cylindrical member 1
  • austenitic stainless steel is used as the metal constituting the second cylindrical member 2.
  • the hydrogen generator according to the present invention is useful as a fuel cell or the like as a hydrogen generator that can stably supply hydrogen.
  • the fuel cell system according to the present invention is useful as a fuel cell system and the like because it can generate power stably by providing the above-described hydrogen generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Materials Engineering (AREA)

Abstract

A hydrogen generation device having a combustor (10), a first wall for forming a combustion space (13) for gas flowing out of the combustor (11), a second wall placed outside the combustion space (13) so as to face the first wall, a reforming catalyst layer (14) outside the second wall, and a reformer (15) for generating hydrogen by a reforming reaction between a raw material and water vapor flowing in the reforming catalyst layer (14). A combustion gas flow path (11) in which combustion gas created in the combustion space (13) flows is formed in the space between the first and second walls. The first wall is made of metal having a smaller thermal expansion coefficient than the second wall.

Description

明 細 書  Specification
水素生成装置及びそれを備える燃料電池システム  Hydrogen generator and fuel cell system including the same
技術分野  Technical field
[0001] 本発明は、水素生成装置及びそれを備える燃料電池システム、特に、水素生成装 置の構造に関するものである。  [0001] The present invention relates to a hydrogen generator and a fuel cell system including the same, and more particularly to the structure of a hydrogen generator.
背景技術  Background art
[0002] 固体高分子形燃料電池発電システム等において、炭化水素等を原料として使用し 、この原料を触媒により、水蒸気改質反応させることによって、水素を主成分とする改 質ガスを生成する水素生成装置が使用されている。水蒸気改質反応は、 600〜800 °Cの高温で反応させるため、効率的に触媒を加熱する必要があり、熱効率を高め、 起動時間の短縮を図った水素生成装置が知られている(例えば、特許文献 1参照)。  [0002] In a polymer electrolyte fuel cell power generation system or the like, hydrogen or the like is used as a raw material, and the raw material is subjected to a steam reforming reaction using a catalyst to generate a reformed gas mainly composed of hydrogen. A generator is used. Since the steam reforming reaction is carried out at a high temperature of 600 to 800 ° C, it is necessary to efficiently heat the catalyst, and a hydrogen generator that improves the thermal efficiency and shortens the startup time is known (for example, And Patent Document 1).
[0003] 図 2は、特許文献 1に開示されている水素生成装置の概略構成を示す模式図であ る。なお、図 2において、水素生成装置における上下方向を、図における上下方向と して表している。  FIG. 2 is a schematic diagram showing a schematic configuration of the hydrogen generator disclosed in Patent Document 1. In FIG. 2, the vertical direction in the hydrogen generator is shown as the vertical direction in the figure.
[0004] 図 2に示すように、この従来の水素生成装置は、筐体 75を有しており、該筐体 75の 内部には、中心軸を共有する第 1乃至第 3筒体 7;!〜 73が配置されている。第 1筒体 71の内部空間には、パーナ 74が設けられ、第 1筒体 71と第 2筒体 72との間の筒状 空間が、排気通路 76を構成する。また、第 2筒体 72と第 3筒体 73との間の空間の下 部には、改質触媒 77が充填された改質触媒層 78が設けられている。さらに、第 3筒 体 73と筐体 75との間の空間の略中央部には、変成触媒 79が充填された変成触媒 層 80が設けられ、その上方には、選択酸化触媒 81が充填された選択酸化触媒層 8 2が設けられている。  [0004] As shown in FIG. 2, this conventional hydrogen generator has a casing 75, and the casing 75 has first to third cylinders 7 sharing a central axis; ! ~ 73 are arranged. A panner 74 is provided in the internal space of the first cylinder 71, and the cylindrical space between the first cylinder 71 and the second cylinder 72 constitutes an exhaust passage 76. A reforming catalyst layer 78 filled with a reforming catalyst 77 is provided below the space between the second cylinder 72 and the third cylinder 73. Further, a shift catalyst layer 80 filled with a shift catalyst 79 is provided in a substantially central portion of the space between the third cylinder 73 and the casing 75, and a selective oxidation catalyst 81 is filled above the shift catalyst layer 80. A selective oxidation catalyst layer 82 is provided.
[0005] そして、パーナ 74に燃焼用ガスと空気が供給され、パーナ 74の先端でこれらのガ スが燃焼して燃焼排ガスが発生する。この発生した燃焼排ガスが、排気通路 76を流 れることにより、燃焼排ガスからの伝熱で第 2筒体 72が加熱される。これにより、改質 触媒層 78及び第 2筒体 72と第 3筒体 73との間の空間を流れる流体が、加熱される。  [0005] Then, combustion gas and air are supplied to the burner 74, and these gases are burned at the tip of the burner 74 to generate combustion exhaust gas. The generated combustion exhaust gas flows through the exhaust passage 76, whereby the second cylindrical body 72 is heated by heat transfer from the combustion exhaust gas. As a result, the fluid flowing in the space between the reforming catalyst layer 78 and the second cylinder 72 and the third cylinder 73 is heated.
[0006] また、水素生成装置には、原料供給器 83から原料 (例えば、メタン)が供給され、水 供給器 84から水が供給される。供給された原料と水は、第 2筒体 72と第 3筒体 73と の間の空間を上部から下方に通流する間に、加熱され、供給された水が水蒸気にな る。この加熱された原料と水蒸気が、改質触媒層 78を通過するときに、水蒸気改質 反応して、水素リッチな改質ガスが生成される。生成された改質ガスは、変成触媒層 80にて、一酸化炭素濃度が低減される。そして、変成触媒層 80を通過した改質ガス は、選択酸化用空気供給器 85から供給された選択酸化用空気と混合され、選択酸 化触媒層 82を通過するときに、一酸化炭素濃度がさらに低減される。 [0006] In addition, a raw material (for example, methane) is supplied to the hydrogen generator from a raw material supplier 83, and water is supplied. Water is supplied from a supplier 84. The supplied raw material and water are heated while flowing downward from the upper part through the space between the second cylinder 72 and the third cylinder 73, and the supplied water becomes steam. When the heated raw material and steam pass through the reforming catalyst layer 78, a steam reforming reaction is performed, and a hydrogen-rich reformed gas is generated. The generated reformed gas is reduced in carbon monoxide concentration in the shift catalyst layer 80. The reformed gas that has passed through the shift catalyst layer 80 is mixed with the selective oxidation air supplied from the selective oxidation air supply device 85, and the carbon monoxide concentration is reduced when passing through the selective oxidation catalyst layer 82. Further reduced.
[0007] なお、変成反応は発熱反応であるため、燃料電池で発電している間は、加熱は不 要であるが、起動時に、変成反応に必要な温度になるまで、変成ヒータ 86を筐体 75 の外側に設けて加熱を行う場合があり、同様に、選択酸化反応も発熱反応であるが、 起動用に選択酸化ヒータ 87を筐体 75の外側に設ける場合がある。さらに、上記特許 文献 1には記載されていないが、改質触媒層 78の温度を適正、かつ、均一な温度に するため排気通路 76の幅寸法を均一にするスぺーサ 88を設ける場合がある。 [0007] It should be noted that since the shift reaction is an exothermic reaction, heating is not required while power is being generated by the fuel cell, but the shift heater 86 is mounted until the temperature required for the shift reaction is reached at startup. In some cases, heating is performed outside the body 75. Similarly, the selective oxidation reaction is also an exothermic reaction, but a selective oxidation heater 87 may be provided outside the housing 75 for activation. Further, although not described in the above-mentioned Patent Document 1, a spacer 88 for making the width dimension of the exhaust passage 76 uniform may be provided in order to make the temperature of the reforming catalyst layer 78 appropriate and uniform. is there.
特許文献 1:国際公開第 02/098790号パンフレット  Patent Document 1: International Publication No. 02/098790 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、上記特許文献 1に開示されている水素生成装置では、改質触媒層 7 8での水蒸気改質反応は、吸熱反応であり、かつ、改質触媒層 78も流入する原料及 び水力 S、第 2筒体 72に沿って流れる間に周囲から熱を供給されて昇温する構造とな つている。このため、第 1筒体 71の方が、第 2筒体 72よりも温度が高くなるので、第 2 筒体 72の熱膨張による変形よりも第 1筒体 71の変形の方が大きくなる。このため、排 気通路 76の幅寸法が、不均一となり、燃焼排ガスが排気通路 76を均一に通流しな いため、改質触媒層 78の温度が不均一となる。改質触媒層 78の低温部分では、水 蒸気改質反応の反応速度が低下し、高温部分では、触媒の耐久性が低下するという 問題があった。 However, in the hydrogen generator disclosed in Patent Document 1, the steam reforming reaction in the reforming catalyst layer 78 is an endothermic reaction, and the raw material and the inflow of the reforming catalyst layer 78 are also included. It is structured to increase the temperature by supplying heat from the surroundings while flowing along the hydraulic cylinder S and the second cylinder 72. For this reason, since the temperature of the first cylinder 71 is higher than that of the second cylinder 72, the deformation of the first cylinder 71 is greater than the deformation of the second cylinder 72 due to thermal expansion. For this reason, the width dimension of the exhaust passage 76 becomes nonuniform, and the combustion exhaust gas does not flow uniformly through the exhaust passage 76, so that the temperature of the reforming catalyst layer 78 becomes nonuniform. At the low temperature portion of the reforming catalyst layer 78, the reaction rate of the water vapor reforming reaction decreased, and at the high temperature portion, the durability of the catalyst decreased.
[0009] また、上記スぺーサ 88を設けることにより、排気通路 76の幅寸法が小さくなることを 抑制することができる力 熱膨張そのものを抑制することはできず、根本的な対策とは ならない。 [0010] 本発明は、上記課題を解決するためになされたもので、改質性能の向上が図れ、 かつ、改質触媒の劣化を防止することができる水素生成装置及びそれを備える燃料 電池システムを提供することを目的とする。 [0009] In addition, by providing the spacer 88, the force that can suppress the reduction in the width dimension of the exhaust passage 76 cannot suppress the thermal expansion itself, which is not a fundamental measure. . [0010] The present invention has been made to solve the above-described problems. A hydrogen generator capable of improving reforming performance and preventing deterioration of a reforming catalyst, and a fuel cell system including the same The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0011] 上記課題を解決するために、本発明に係る水素製造装置は、燃焼器と、前記燃焼 器から流出するガスの燃焼空間を形成する第 1の壁と、前記燃焼空間の外側に前記 第 1の壁と対向して配置された第 2の壁と、前記第 2の壁の外側に改質触媒層を有し 、該改質触媒層を流れる原料及び水蒸気の改質反応により水素含有ガスを生成す る改質器と、を備え、前記第 1の壁と前記第 2の壁との間の空間で、前記燃焼空間で 生成された燃焼ガスが通流する燃焼ガス流路が構成され、前記第 1の壁は、前記第 2の壁よりも熱膨張率の小さい金属により構成される。  In order to solve the above problems, a hydrogen production apparatus according to the present invention includes a combustor, a first wall that forms a combustion space for gas flowing out of the combustor, and the outside of the combustion space. A second wall disposed opposite the first wall; and a reforming catalyst layer on the outside of the second wall, and containing hydrogen by a reforming reaction of a raw material and steam flowing through the reforming catalyst layer And a reformer that generates gas, and a combustion gas flow path through which the combustion gas generated in the combustion space flows is configured in the space between the first wall and the second wall The first wall is made of a metal having a smaller coefficient of thermal expansion than the second wall.
[0012] これにより、第 1の壁の熱膨張による寸法変形が、その外側に設けられた第 2の壁 の寸法変形より大きくなることを防ぎ、燃焼ガス流路の幅寸法が初期寸法より小さくな ることを抑制すること力 Sできる。また、燃焼ガス流路の幅寸法をほぼ一定にすることが できることから、第 2の壁の外側に配置された改質触媒層の温度分布を均一にするこ とができ、改質触媒の劣化を防止することができる。なお、第 1の壁を金属で構成す ることにより、第 1の壁の加工が容易になり、かつ、水素生成装置のシール性の確保 が容易になる。  [0012] This prevents dimensional deformation due to thermal expansion of the first wall from becoming larger than dimensional deformation of the second wall provided outside the first wall, and the width dimension of the combustion gas flow path is smaller than the initial dimension. It is possible to suppress S. In addition, since the width dimension of the combustion gas channel can be made substantially constant, the temperature distribution of the reforming catalyst layer disposed outside the second wall can be made uniform, and the reforming catalyst is deteriorated. Can be prevented. In addition, when the first wall is made of metal, the processing of the first wall is facilitated and the sealing performance of the hydrogen generator is easily ensured.
[0013] また、本発明に係る水素生成装置では、前記第 1の壁は、その内部空間が前記燃 焼空間を構成する円筒状の第 1筒部材で構成され、前記第 2の壁は、前記第 1筒部 材の外側に同軸状に配置された円筒状の第 2筒部材で構成され、前記燃焼ガス流 路は、前記第 1筒部材と前記第 2筒部材との間の筒状空間で構成されていてもよい。  [0013] Further, in the hydrogen generator according to the present invention, the first wall is constituted by a cylindrical first tube member whose internal space forms the combustion space, and the second wall is It is composed of a cylindrical second cylindrical member arranged coaxially on the outside of the first cylindrical member, and the combustion gas flow path is a cylindrical shape between the first cylindrical member and the second cylindrical member. You may be comprised in space.
[0014] また、本発明に係る水素生成装置では、前記第 1及び第 2の壁を構成する金属の 熱膨張率力 8 X 10— 6/K以上 19 X 10— 6/K以下であり、前記第 1の壁を構成する 金属と前記第 2の壁を構成する金属の熱膨張率の差力 S、 4 X 10_6/K以上 11 X 10 —6/Κ以下であってもよい。 [0014] Further, in the hydrogen generating apparatus according to the present invention is not more than the first and second metal constituting the walls of the thermal expansion coefficient force of 8 X 10- 6 / K or higher 19 X 10- 6 / K, the difference force of thermal expansion of the metal of the first metal constituting the walls constituting the second wall S, 4 X 10_ 6 / K or 11 X 10 - 6 / Κ may be less.
[0015] また、本発明に係る水素生成装置では、前記第 1の壁を構成する金属の熱膨張率 力 S8 X 10— 6/Κ以上 12 X 10— 6/Κ以下であり、前記第 2の壁を構成する金属の熱 膨張率が 14 X 10_6/K以上 19 X 10_6/Κ以下であってもよ!、。 [0015] Further, in the hydrogen generating apparatus according to the present invention is the first coefficient of thermal expansion of the metal constituting the walls force S8 X 10- 6 / Κ least 12 X 10- 6 / Κ below, the second The heat of the metal that makes up the wall The expansion coefficient may be 14 X 10_ 6 / K or more and 19 X 10_ 6 / Κ or less!
[0016] これにより、第 1の壁の熱膨張による寸法変形が、その外側に設けられた第 2の壁 の寸法変形と略同じ程度になるので、第 1の壁と第 2の壁が接触することが防止され[0016] As a result, the dimensional deformation due to thermal expansion of the first wall becomes substantially the same as the dimensional deformation of the second wall provided outside the first wall, so that the first wall and the second wall are in contact with each other. Is prevented from
、第 1及び第 2の壁に不要な応力がかからないため、第 1及び第 2の壁における耐久 性の劣化を抑制することができる。 Since unnecessary stress is not applied to the first and second walls, it is possible to suppress deterioration of durability in the first and second walls.
[0017] さらに、本発明に係る水素生成装置では、前記第 1の壁を構成する金属が、フェラ イト系ステンレスであり、前記第 2の壁を構成する金属が、オーステナイト系ステンレス であってもよい。 [0017] Further, in the hydrogen generator according to the present invention, even if the metal constituting the first wall is ferritic stainless steel and the metal constituting the second wall is austenitic stainless steel. Good.
[0018] また、本発明に係る燃料電池システムは、前記水素生成装置と、前記水素生成装 置より供給される燃料ガスを用いて発電する燃料電池と、を備える。  [0018] Further, a fuel cell system according to the present invention includes the hydrogen generator and a fuel cell that generates electric power using fuel gas supplied from the hydrogen generator.
発明の効果  The invention's effect
[0019] 本発明の水素生成装置及びそれを備える燃料電池システムによれば、燃焼ガスが 通流する燃焼ガス流路の幅寸法を均一に保つことにより、改質触媒層の温度を一定 に保つこと力 Sできる。また、本発明の水素生成装置及びそれを備える燃料電池システ ムによれば、改質触媒層の温度を一定に保つことにより、改質触媒の劣化を充分に 防止すること力でさる。  [0019] According to the hydrogen generator of the present invention and the fuel cell system including the same, the temperature of the reforming catalyst layer is kept constant by keeping the width dimension of the combustion gas flow path through which the combustion gas flows uniform. That power S. In addition, according to the hydrogen generator of the present invention and the fuel cell system equipped with the hydrogen generator, the temperature of the reforming catalyst layer is kept constant, so that the reforming catalyst can be sufficiently prevented from deteriorating.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は、本発明の実施の形態 1に係る燃料電池システムの概略構成を示す模 式図である。  FIG. 1 is a schematic diagram showing a schematic configuration of a fuel cell system according to Embodiment 1 of the present invention.
[図 2]図 2は、特許文献 1に開示されている水素生成装置の概略構成を示す模式図 である。  FIG. 2 is a schematic diagram showing a schematic configuration of a hydrogen generator disclosed in Patent Document 1.
符号の説明  Explanation of symbols
[0021] 1 第 1筒部材 [0021] 1 First cylinder member
2 第 2筒部材  2 Second cylinder member
3 第 3筒部材  3 Third cylinder member
3a 段部  3a Step
4 第 4筒部材 板部材 板部材 板部材 燃焼器a 基部b パーナ 燃焼ガス流路 スぺーサ 燃焼空間 改質触媒層 改質器 変成触媒層 変成器 混合部 蒸発部 選択酸化触媒層 選択酸化器 変成ヒータ 選択酸化ヒータ 第 1筒体 第 2筒体 第 3筒体 パーナ 筐体 4 Fourth cylinder member Plate member Plate member Plate member Combustor a Base b Panaer Combustion gas flow path Spacer Combustion space Reformer catalyst layer Reformer Transformer catalyst layer Transformer Mixing unit Evaporator Selective oxidation catalyst layer Selective oxidizer Transformer heater Selective oxidation heater No. 1 1 cylinder 2nd cylinder 3rd cylinder Pana Case
排気通路 改質触媒 改質触媒層 変成触媒 80 変成触媒層 Exhaust passage Reforming catalyst Reforming catalyst layer Transformation catalyst 80 Metamorphic catalyst layer
81 選択酸化触媒 81 selective oxidation catalyst
82 選択酸化触媒層 82 Selective oxidation catalyst layer
83 原料供給器 83 Raw material feeder
84 水供給器 84 Water supply
85 選択酸化用空気供給器  85 Air supply for selective oxidation
86 変成ヒータ  86 Metamorphic heater
87 選択酸化ヒータ  87 Selective oxidation heater
88 スぺーサ  88 Spacer
100 燃料電池システム  100 Fuel cell system
101 水素生成装置  101 Hydrogen generator
102 酸化剤ガス供給器  102 Oxidant gas supply
104 燃料電池  104 Fuel cell
105 制御装置  105 Control unit
106 原料供給器  106 Raw material feeder
107 水供給器  107 Water supply
108 燃焼用空気供給器  108 Combustion air supply
109 選択酸化用空気供給器  109 Air supply for selective oxidation
121 原料供給路  121 Raw material supply channel
122 水供給路  122 Water supply channel
123 燃料ガス供給路  123 Fuel gas supply path
124 酸化剤ガス供給路  124 Oxidant gas supply path
127 酸化剤ガス排出路  127 Oxidant gas discharge passage
128 オフガス供給路  128 Off-gas supply path
129 燃焼用空気供給路  129 Combustion air supply path
130 燃焼ガス排出路  130 Combustion gas discharge passage
131 選択酸化用空気供給路  131 Air supply path for selective oxidation
発明を実施するための最良の形態 [0022] 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1)  (Embodiment 1)
図 1は、本発明の実施の形態 1に係る燃料電池システムの概略構成を示す模式図 である。  FIG. 1 is a schematic diagram showing a schematic configuration of a fuel cell system according to Embodiment 1 of the present invention.
[燃料電池システムの構成]  [Configuration of fuel cell system]
まず、本実施の形態 1に係る燃料電池システムの構成について説明する。  First, the configuration of the fuel cell system according to Embodiment 1 will be described.
[0023] 本実施の形態 1に係る燃料電池システム 100は、パーナ 10bを有する水素生成装 置 101、酸化剤ガス供給器 102、及び燃料電池 104を備えている。  [0023] The fuel cell system 100 according to the first embodiment includes a hydrogen generation device 101 having a banner 10b, an oxidant gas supply device 102, and a fuel cell 104.
[0024] 水素生成装置 101には、原料供給器 106が、原料供給路 121を介して接続されて いる。また、原料供給路 121の途中には、水供給路 122の下流端が接続されており、 その上流端は、水供給器 107に接続されている。これにより、原料供給器 106から原 料 (例えば、脱硫された都市ガス)が、原料供給路 121を通流して水素生成装置 101 に供給され、また、水供給器 107から液体である水が、原料とともに原料供給路 121 を通流して水素生成装置 101に供給される。  A raw material supplier 106 is connected to the hydrogen generator 101 via a raw material supply path 121. Further, the downstream end of the water supply path 122 is connected to the middle of the raw material supply path 121, and the upstream end is connected to the water supply unit 107. As a result, the raw material (for example, desulfurized city gas) is supplied from the raw material supplier 106 to the hydrogen generator 101 through the raw material supply path 121, and the liquid water is supplied from the water supplier 107. Together with the raw material, it flows through the raw material supply path 121 and is supplied to the hydrogen generator 101.
[0025] そして、水素生成装置 101では、供給された原料と水が、改質反応して、水素、一 酸化炭素、及び二酸化炭素を含む改質ガス (水素含有ガス)が生成される。改質ガス 中の一酸化炭素は、変成反応及び選択酸化反応により、低減され、燃料ガスが生成 される。  [0025] In the hydrogen generator 101, the supplied raw material and water undergo a reforming reaction to generate a reformed gas (hydrogen-containing gas) containing hydrogen, carbon monoxide, and carbon dioxide. Carbon monoxide in the reformed gas is reduced by a shift reaction and a selective oxidation reaction, and fuel gas is generated.
[0026] また、水素生成装置 101には、燃料ガス供給路 123を介して燃料電池 104が接続 されている。一方、燃料電池 104には、酸化剤ガス供給路 124を介して酸化剤ガス 供給路 102が接続されている。これにより、水素生成装置 101で生成された燃料ガス 1S 燃料ガス供給路 123を通流して燃料電池 104のアノード(図示せず)に供給され 、また、酸化剤ガス供給器 102から酸化剤ガス(空気)が、酸化剤ガス供給路 124を 通流して燃料電池 104の力ソード(図示せず)に供給される。  In addition, a fuel cell 104 is connected to the hydrogen generator 101 via a fuel gas supply path 123. On the other hand, an oxidant gas supply path 102 is connected to the fuel cell 104 via an oxidant gas supply path 124. As a result, the fuel gas generated by the hydrogen generator 101 flows through the fuel gas 1S fuel gas supply path 123 and is supplied to the anode (not shown) of the fuel cell 104. Further, the oxidant gas ( Air) is supplied to a power sword (not shown) of the fuel cell 104 through the oxidant gas supply passage 124.
[0027] 燃料電池 104では、アノードに供給された燃料ガスと力ソードに供給された酸化剤 ガスとが、電気化学的に反応して、電力と熱が発生する。  [0027] In the fuel cell 104, the fuel gas supplied to the anode and the oxidant gas supplied to the power sword react electrochemically to generate electric power and heat.
[0028] そして、燃料電池 104で使用されなかった余剰の燃料ガスは、オフガスとしてオフ ガス流路 128を通流して水素生成装置 101のパーナ 10bに供給される。また、オフ ガス流路 128の途中には、燃焼用空気供給路 129の下流端が接続されており、その 上流端は、燃焼用空気供給器 108に接続されている。これにより、パーナ 10bには、 燃焼用空気がオフガスとともにオフガス流路 128を通流して供給される。そして、バー ナ 10bでは、供給されたオフガスと燃焼用空気が燃焼される。また、燃料電池 104で 使用されなかった余剰の酸化剤ガスは、酸化剤ガス排出路 127を通流して、燃料電 池システム 100外に排出される。 [0028] The surplus fuel gas that has not been used in the fuel cell 104 flows through the off-gas flow path 128 as off-gas and is supplied to the burner 10b of the hydrogen generator 101. Also off In the middle of the gas flow path 128, a downstream end of the combustion air supply path 129 is connected, and an upstream end thereof is connected to the combustion air supply unit 108. As a result, combustion air is supplied to the burner 10b through the offgas passage 128 together with the offgas. In the burner 10b, the supplied off gas and combustion air are combusted. Excess oxidant gas that has not been used in the fuel cell 104 flows through the oxidant gas discharge passage 127 and is discharged out of the fuel cell system 100.
[0029] なお、本実施の形態 1に係る燃料電池システム 100は、マイコン等のコンピュータで 構成された制御装置 105により、各種の制御がなされている。  [0029] It should be noted that the fuel cell system 100 according to the first embodiment is subjected to various controls by a control device 105 configured by a computer such as a microcomputer.
[0030] [水素生成装置の構成]  [0030] [Configuration of hydrogen generator]
次に、本実施の形態 1に係る燃料電池システム 100の水素生成装置 101の構成に ついて、詳細な説明をする。  Next, the configuration of the hydrogen generator 101 of the fuel cell system 100 according to Embodiment 1 will be described in detail.
[0031] 図 1に示すように、水素生成装置 101は、中心軸を共有する円筒状の第 1乃至第 4 筒部材 1〜4を有している。第 4筒部材 4は、筐体を構成していて、この第 4筒部材 4 に第 1乃至第 3筒部材が収容されている。第 4筒部材 4の下端は、蓋部材 5により閉 鎖され、その上端は、第 3筒部材 3に接続された環状の板部材 6により閉鎖されてい る。第 3筒部材 3は、段部 3aを有する段付き円筒で構成されており、その下端は、第 2 筒部材 2に接続された環状の板部材 7により閉鎖されている。第 2筒部材 2の下端は 、蓋部材 5と接続され、その上端は、第 1筒部材 1に接続された環状の板部材 8により 閉鎖されている。第 1筒部材の下端は、開放されており、その上端は、燃焼器 10の基 部 10aにより閉鎖されている。  As shown in FIG. 1, the hydrogen generator 101 includes cylindrical first to fourth cylindrical members 1 to 4 that share a central axis. The fourth cylinder member 4 constitutes a casing, and the first to third cylinder members are accommodated in the fourth cylinder member 4. The lower end of the fourth cylinder member 4 is closed by a lid member 5, and the upper end thereof is closed by an annular plate member 6 connected to the third cylinder member 3. The third cylinder member 3 is formed of a stepped cylinder having a step portion 3a, and the lower end thereof is closed by an annular plate member 7 connected to the second cylinder member 2. The lower end of the second cylindrical member 2 is connected to the lid member 5, and the upper end thereof is closed by an annular plate member 8 connected to the first cylindrical member 1. The lower end of the first cylinder member is open, and the upper end thereof is closed by the base 10a of the combustor 10.
[0032] 燃焼器 10は、基部 10aとパーナ; 10bを有している。パーナ; 10bは、基部 10aから、 第 1筒部材 1の内部において、下方に延びるように配設されている。そして、第 1筒部 材 1の内壁(第 1の壁)により形成される内部空間が、燃焼空間 13を構成する。また、 第 1筒部材 1と第 2筒部材 2の間の空間(第 1筒部材 1の外壁と第 2筒部材 2の内壁( 第 2の壁)で形成される空間)が、燃焼ガス流路 11を構成する。燃焼ガス流路 11の下 流側に配置されている板部材 8には、燃焼ガス流路 11の出口が形成されていて、外 出口に燃焼ガス排出路 130の上流端が接続されており、その下流端は、大気に開放 されている。 [0033] これにより、パーナ 10bに供給された燃焼用ガスと燃焼用空気が燃焼空間 13で燃 焼して燃焼ガスが生成され、生成された燃焼ガスは、第 1筒部材 1の下端から流出し 、蓋部材 5の内表面に当たって反転し、燃焼ガス流路 11を通流する。このとき、燃焼 ガス流路 11を構成する第 2筒部材 2からの伝熱により、後述する改質器 15及び蒸発 部 19が加熱される。そして、燃焼ガス流路 11を通流した燃焼ガスは、燃焼ガス排出 路 130を通流して、燃料電池システム 100外に排出される。 [0032] The combustor 10 has a base 10a and a panner 10b. The panner 10b is disposed so as to extend downward from the base 10a in the first cylindrical member 1. The internal space formed by the inner wall (first wall) of the first tubular member 1 constitutes the combustion space 13. Further, the space between the first cylindrical member 1 and the second cylindrical member 2 (the space formed by the outer wall of the first cylindrical member 1 and the inner wall (second wall) of the second cylindrical member 2) is a combustion gas flow. Configure road 11. The plate member 8 arranged on the downstream side of the combustion gas channel 11 has an outlet of the combustion gas channel 11 formed therein, and an upstream end of the combustion gas discharge channel 130 is connected to the outer outlet. Its downstream end is open to the atmosphere. [0033] Thereby, the combustion gas and combustion air supplied to the burner 10b burn in the combustion space 13 to generate combustion gas, and the generated combustion gas flows out from the lower end of the first cylinder member 1. Then, it comes into contact with the inner surface of the lid member 5, reverses, and flows through the combustion gas passage 11. At this time, the reformer 15 and the evaporation unit 19 described later are heated by heat transfer from the second cylindrical member 2 constituting the combustion gas flow path 11. Then, the combustion gas that has flowed through the combustion gas flow path 11 flows through the combustion gas discharge path 130 and is discharged out of the fuel cell system 100.
[0034] また、第 1筒部材 1の外表面には、島状の突起からなるスぺーサ 12が形成されてい る。これにより、燃焼ガス流路 11の幅寸法を一定に維持することができる。なお、スぺ ーサ 12は、第 2筒部材 2の内表面に形成されてもよい。  In addition, a spacer 12 made of island-shaped protrusions is formed on the outer surface of the first cylindrical member 1. Thereby, the width dimension of the combustion gas channel 11 can be kept constant. Note that the spacer 12 may be formed on the inner surface of the second cylindrical member 2.
[0035] 第 2筒部材 2の上部に接続された板部材 6には、第 2筒部材 2と第 3筒部材 3との間 に形成された筒状空間と連通する入口が形成されていて、該入口に原料供給路 12 1の下流端が接続されている。これにより、原料供給器 106から原料が、原料供給路 121を通流して、第 2筒部材 2と第 3筒部材 3との筒状空間に供給され、また、水供給 器 107から水力 S、水供給路 122及び原料供給路 121を通流して、第 2筒部材 2と第 3 筒部材 3との筒状空間の上部(以下、蒸発部 19)に供給される。そして、蒸発部 19に 供給された原料及び水は、蒸発部 19を通流する間に、第 2筒部材 2からの伝熱によ り加熱される。  [0035] The plate member 6 connected to the upper portion of the second cylindrical member 2 is formed with an inlet communicating with a cylindrical space formed between the second cylindrical member 2 and the third cylindrical member 3. The downstream end of the raw material supply path 121 is connected to the inlet. As a result, the raw material is supplied from the raw material supply device 106 through the raw material supply path 121 to the cylindrical space between the second cylindrical member 2 and the third cylindrical member 3, and from the water supply device 107, the hydraulic power S, It flows through the water supply path 122 and the raw material supply path 121 and is supplied to the upper part of the cylindrical space between the second cylindrical member 2 and the third cylindrical member 3 (hereinafter referred to as the evaporation section 19). The raw material and water supplied to the evaporation unit 19 are heated by heat transfer from the second cylindrical member 2 while flowing through the evaporation unit 19.
[0036] また、第 2筒部材 2と第 3筒部材 3との筒状空間の下部には、改質触媒が充填され た改質触媒層 14が設けられている。この筒状空間の改質触媒層 14が設けられた空 間と、改質触媒層 14と、力も改質器 15が構成される。これにより、改質器 17で原料と 水蒸気が改質反応して、改質ガスが生成される。なお、板部材 7には、厚み方向に多 数の貫通孔が設けられており、生成された改質ガスが下流側に通流できるように構成 されている。  In addition, a reforming catalyst layer 14 filled with a reforming catalyst is provided in the lower part of the cylindrical space between the second cylindrical member 2 and the third cylindrical member 3. The space in which the reforming catalyst layer 14 in the cylindrical space is provided, the reforming catalyst layer 14, and the reformer 15 are also configured. As a result, the reformer 17 undergoes a reforming reaction between the raw material and water vapor, and a reformed gas is generated. The plate member 7 is provided with a large number of through holes in the thickness direction so that the generated reformed gas can flow downstream.
[0037] 第 3筒部材 3と第 4筒部材 4との間に形成された筒状空間の段部 3aの上部には、変 成触媒が充填された変成触媒層 16が設けられている。この筒状空間の変成触媒層 16が設けられた空間と、変成触媒層 16と、から変成器 17が構成される。これにより、 改質器 15で生成された改質ガスは、変成器 17で変成反応により一酸化炭素が低減 される。 [0038] また、第 4筒部材の外表面の変成器 17と対向する部分には、例えば、公知のシー ズヒータで構成された変成ヒータ 22が設けられている。これにより、燃料電池システム 100の起動時に、変成器 17を迅速に加熱することができる。 [0037] A shift catalyst layer 16 filled with a shift catalyst is provided above the step 3a of the cylindrical space formed between the third tube member 3 and the fourth tube member 4. A shifter 17 is composed of the space in which the shift catalyst layer 16 in the cylindrical space is provided and the shift catalyst layer 16. As a result, the reformed gas generated in the reformer 15 is reduced in carbon monoxide by the shift reaction in the shift converter 17. [0038] Further, a portion of the outer surface of the fourth cylindrical member facing the transformer 17 is provided with a transformer heater 22 made of, for example, a known sheathed heater. As a result, the transformer 17 can be quickly heated when the fuel cell system 100 is started.
[0039] 第 3筒部材 3と第 4筒部材 4との筒状空間における変成器 17の上方部分は、混合 部 18を構成する。そして、第 4筒部材 4には、混合部 18と連通するように入口が形成 されていて、該入口に選択酸化用空気供給路 131の下流端が接続されている。一方 、選択酸化用空気供給路 131の上流端は、選択酸化用空気供給器 109と接続され ている。これにより、選択酸化用空気供給器 109から選択酸化用空気が、選択酸化 用空気供給路 131を通流して、混合部 18に供給され、該混合部 18では、変成反応 後の改質ガスと選択酸化用空気が混合され、混合ガスが形成される。  [0039] The upper portion of the transformer 17 in the cylindrical space between the third cylindrical member 3 and the fourth cylindrical member 4 constitutes a mixing unit 18. The fourth cylinder member 4 is formed with an inlet so as to communicate with the mixing unit 18, and the downstream end of the selective oxidation air supply path 131 is connected to the inlet. On the other hand, the upstream end of the selective oxidation air supply path 131 is connected to the selective oxidation air supply 109. As a result, the selective oxidation air is supplied from the selective oxidation air supply 109 through the selective oxidation air supply passage 131 and supplied to the mixing unit 18, where the reformed gas after the shift reaction and the reformed gas are supplied. The selective oxidation air is mixed to form a mixed gas.
[0040] 第 3筒部材 3と第 4筒部材 4との筒状空間の混合部 18の上部には、選択酸化触媒 が充填された選択酸化触媒層 20が設けられている。この筒状空間の選択酸化触媒 層 20が設けられた空間と、選択酸化触媒層 20と、から選択酸化器 21が構成される。 これにより、混合ガス中の一酸化炭素が、選択酸化反応により、数 ppm程度にまで低 減され、燃料ガスが生成される。  [0040] A selective oxidation catalyst layer 20 filled with a selective oxidation catalyst is provided on the upper portion of the mixing portion 18 in the cylindrical space of the third cylindrical member 3 and the fourth cylindrical member 4. A selective oxidizer 21 is composed of the space provided with the selective oxidation catalyst layer 20 in the cylindrical space and the selective oxidation catalyst layer 20. As a result, carbon monoxide in the mixed gas is reduced to about several ppm by selective oxidation reaction, and fuel gas is generated.
[0041] また、第 4筒部材 4には、第 3筒部材 3と第 4筒部材 4との筒状空間における選択酸 化器 21の上部空間と連通するように出口が形成されていて、該出口に燃料ガス供給 路 123の上流端が接続されている。これにより、水素生成装置 101の選択酸化器 21 で生成された燃料ガス力 燃料ガス供給路 123を通流して燃料電池 104に供給され  [0041] Further, the fourth cylinder member 4 is formed with an outlet so as to communicate with the upper space of the selective oxidizer 21 in the cylindrical space between the third cylinder member 3 and the fourth cylinder member 4. The upstream end of the fuel gas supply path 123 is connected to the outlet. Thus, the fuel gas power generated by the selective oxidizer 21 of the hydrogen generator 101 flows through the fuel gas supply path 123 and is supplied to the fuel cell 104.
[0042] また、第 4筒部材の外表面の選択酸化器 21と対向する部分には、例えば、公知の シーズヒータで構成された選択酸化ヒータ 23が設けられている。これにより、燃料電 池システム 100の起動時に、選択酸化器 21を迅速に加熱することができる。 [0042] Further, a selective oxidation heater 23 made of, for example, a known sheathed heater is provided at a portion of the outer surface of the fourth cylindrical member facing the selective oxidizer 21. Thus, the selective oxidizer 21 can be quickly heated when the fuel cell system 100 is started.
[0043] 次に、本発明の特徴的構成について説明する。  Next, a characteristic configuration of the present invention will be described.
[0044] 本実施の形態では、第 1筒部材 1は、その内側が熱源である燃焼ガスの燃焼空間 13に面し、その外側に沿って燃焼ガスが流れるように配置されている。一方、第 2筒 部材 2は、その内側に沿って燃焼ガスが流れ、その外側が吸熱体である(吸熱反応 が生じる)改質触媒層 15に接触するとともに、その外側に沿って、常温で供給され、 所定温度まで昇温される原料及び水(水蒸気)が流れるように配置されている。この ため、第 1筒部材 1の方が第 2筒部材 2より高い温度になるので、第 2筒部材 2の熱膨 張による変形よりも、第 1筒部材 1の変形の方が大きくなる。 In the present embodiment, the first cylinder member 1 is disposed so that the inside thereof faces the combustion space 13 of the combustion gas that is a heat source, and the combustion gas flows along the outside thereof. On the other hand, the second cylinder member 2 is in contact with the reforming catalyst layer 15 where the combustion gas flows along the inner side and the outer side is an endothermic body (where endothermic reaction occurs), and at the normal temperature along the outer side. Supplied, It arrange | positions so that the raw material heated up to predetermined temperature and water (water vapor | steam) may flow. For this reason, since the temperature of the first cylindrical member 1 is higher than that of the second cylindrical member 2, the deformation of the first cylindrical member 1 is greater than the deformation of the second cylindrical member 2 due to thermal expansion.
[0045] しかしながら、本発明においては、第 1筒部材 1を構成する金属を、第 2筒部材 2を 構成する金属よりも熱膨張率が小さい金属で構成している。具体的には、本実施の 形態においては、第 1筒部材 1を耐熱性フェライト系ステンレスで構成し、第 2筒部材 2をオーステナイト系ステンレスで構成している。これにより、第 1筒部材 1の熱膨張に よる変形を小さくすることができ、燃料ガス流路 11の幅寸法を一定に保つことができ However, in the present invention, the metal constituting the first cylinder member 1 is made of a metal having a smaller coefficient of thermal expansion than the metal constituting the second cylinder member 2. Specifically, in the present embodiment, the first cylindrical member 1 is made of heat-resistant ferritic stainless steel, and the second cylindrical member 2 is made of austenitic stainless steel. As a result, deformation due to thermal expansion of the first tubular member 1 can be reduced, and the width dimension of the fuel gas passage 11 can be kept constant.
[0046] なお、第 1筒部材 1及び第 2筒部材 2 (第 1の壁及び第 2の壁)の熱膨張による変形 を小さくし、第 1筒部材 1の熱膨張による変形を第 2筒部材 2の熱膨張による変形より も小さくする観点から、第 1筒部材 1及び第 2筒部材 2 (第 1及び第 2の壁)を構成する 金属の熱膨張率が、 8 X 10— 6/K以上 19 X 10— 6/K以下であり、第 1筒部材 1 (第 1 の壁)を構成する金属と第 2筒部材 2 (第 2の壁)を構成する金属の熱膨張率の差が、 4 Χ 10_6/Κ以上 11 Χ 10_6/Κ以下であることが好ましい。また、第 1筒部材 1の熱 膨張による変形を第 2筒部材 2の熱膨張による変形と略同じにする観点から、第 1筒 部材 1 (第 1の壁)を構成する金属の熱膨張率が 8 X 10— 6/Κ以上 12 X 10— 6/Κ以 下であり、第 2筒部材 2 (第 2の壁)を構成する金属の熱膨張率が 14 X 10— 6/Κ以上 19 X 10_6/Κ以下であることがより好ましい。 [0046] The deformation due to thermal expansion of the first cylindrical member 1 and the second cylindrical member 2 (the first wall and the second wall) is reduced, and the deformation due to the thermal expansion of the first cylindrical member 1 is reduced to the second cylinder. from the viewpoint of less than deformation due to thermal expansion of the member 2, the thermal expansion coefficient of the metal constituting the first tubular member 1 and the second tubular member 2 (the first and second wall) is, 8 X 10- 6 / K above 19 X 10- 6 / K or less, the difference between the first tubular member 1 the thermal expansion coefficient of the metal constituting the metal and second tubular members 2 constituting the (first wall) (second wall) but it is preferably 4 Χ 10_ 6 / Κ least 11 Χ 10_ 6 / Κ or less. Further, from the viewpoint of making the deformation due to the thermal expansion of the first cylindrical member 1 substantially the same as the deformation due to the thermal expansion of the second cylindrical member 2, the coefficient of thermal expansion of the metal constituting the first cylindrical member 1 (first wall). There 8 X 10- 6 / Κ least 12 X 10- 6 / Κ is below, the thermal expansion coefficient of the metal constituting the second tubular member 2 (the second wall) is 14 X 10- 6 / Κ least 19 More preferably, it is X 10 — 6 / Κ or less.
[0047] 料電池システムの動作]  [0047] Battery system operation]
次に、図 1を参照しながら、本実施の形態 1に係る燃料電池システム 100の動作に ついて説明する。なお、以下に示す、燃料電池システム 100の動作は、上述したよう に制御装置 105により制御される。  Next, the operation of the fuel cell system 100 according to Embodiment 1 will be described with reference to FIG. The operation of the fuel cell system 100 shown below is controlled by the control device 105 as described above.
[0048] まず、原料供給器 106から原料が、図示されない原料供給路を通流してパーナ 10 bに供給される。また、燃焼用空気供給器 108から燃焼用空気が、燃焼用空気供給 路 129及びオフガス供給路 128を通流してパーナ 10bに供給される。パーナ 10bで は、供給された原料と燃焼用空気が燃焼して、燃焼ガスが生成する。生成した燃焼 ガスは、第 1筒部材 1の下端から流出し、蓋部材 5の内表面に当たって反転し、燃焼 ガス流路 11を通流し、燃焼ガス排出路 130を通流して燃料電池システム 100外に排 出される。 [0048] First, the raw material is supplied from the raw material supply device 106 to the burner 10b through a raw material supply path (not shown). Further, combustion air is supplied from the combustion air supply unit 108 through the combustion air supply path 129 and the off-gas supply path 128 to the burner 10b. In Pana 10b, the supplied raw material and combustion air are combusted to generate combustion gas. The generated combustion gas flows out from the lower end of the first cylinder member 1, hits the inner surface of the lid member 5, and reverses to burn. The gas flows through the gas channel 11 and flows through the combustion gas discharge channel 130 and is discharged out of the fuel cell system 100.
[0049] このとき、第 1筒部材 1及び第 2筒部材 2は、燃焼ガスからの伝熱により、それぞれ加 熱されるが、第 1筒部材 1の方が第 2筒部材 2よりも温度が高くなる。本実施の形態 1 においては、上述したように、第 1筒部材 1を構成する金属の熱膨張率が、第 2筒部 材 2を構成する金属の熱膨張率よりも小さいため、第 1筒部材 1の熱膨張による変形 が小さい。このため、第 1筒部材 1と第 2筒部材 2との間の空間で構成される燃焼ガス 流路 11の幅寸法を一定に保つことができる。  [0049] At this time, the first cylindrical member 1 and the second cylindrical member 2 are respectively heated by heat transfer from the combustion gas, but the temperature of the first cylindrical member 1 is higher than that of the second cylindrical member 2. Get higher. In the first embodiment, as described above, since the coefficient of thermal expansion of the metal constituting the first cylinder member 1 is smaller than the coefficient of thermal expansion of the metal constituting the second cylinder member 2, the first cylinder Deformation due to thermal expansion of member 1 is small. For this reason, the width dimension of the combustion gas flow path 11 formed by the space between the first cylinder member 1 and the second cylinder member 2 can be kept constant.
[0050] また、第 2筒部材 2からの伝熱により、蒸発部 19及び改質器 15が加熱される。さら に、変成ヒータ 22が作動して変成器 17を加熱し、同様に、選択酸化ヒータ 23が作動 して選択酸化器 21が加熱される。  [0050] In addition, due to heat transfer from the second cylindrical member 2, the evaporator 19 and the reformer 15 are heated. Further, the shift heater 22 is operated to heat the shift converter 17, and similarly, the selective oxidation heater 23 is operated to heat the selective oxidizer 21.
[0051] 一方、原料供給器 106から原料力 S、原料供給路 121を通流して水素生成装置 101 に供給され、また、水供給器 107から水が、水供給路 122及び原料供給路 121を通 流して水素生成装置 101の蒸発部 19に供給される。蒸発部 19に供給された原料及 び水は、蒸発部 19を通流する間に加熱され、水は水蒸気になる。そして、この加熱さ れた原料と水蒸気が、改質器 15に供給される。  [0051] On the other hand, the raw material supply device 106 flows through the raw material force S and the raw material supply channel 121 and is supplied to the hydrogen generator 101, and water from the water supply device 107 passes through the water supply channel 122 and the raw material supply channel 121. It is supplied to the evaporation unit 19 of the hydrogen generator 101. The raw material and water supplied to the evaporation unit 19 are heated while flowing through the evaporation unit 19, and the water becomes steam. Then, the heated raw material and water vapor are supplied to the reformer 15.
[0052] 改質器 15では、改質触媒層 14で原料と水蒸気が改質反応して、水素、一酸化炭 素、二酸化炭素、及び水蒸気からなる改質ガス (水素含有ガス)が生成される。生成 された改質ガスは、改質器 15の下端から流出し、蓋部材 5の内表面に当たって反転 し、第 3筒部材 3と第 4筒部材 4との間の筒状空間を通流して、変性器 15に供給され  [0052] In the reformer 15, the raw material and steam undergo a reforming reaction in the reforming catalyst layer 14, and a reformed gas (hydrogen-containing gas) composed of hydrogen, carbon monoxide, carbon dioxide, and steam is generated. The The generated reformed gas flows out from the lower end of the reformer 15, hits the inner surface of the lid member 5, reverses, flows through the cylindrical space between the third cylindrical member 3 and the fourth cylindrical member 4. Supplied to the denaturing device 15
[0053] 変成器 17では、変成触媒層 16で改質ガス中の一酸化炭素と水蒸気が変成反応し て、一酸化炭素が数%程度にまで低減される。変成反応後の改質ガスは、混合部 1 8に供給される。そして、混合部 18では、選択酸化用空気供給部 109から選択酸化 用空気が、選択酸化用空気供給路 131を通流して供給され、変成反応後の改質ガ スと選択酸化用空気とが混合されて、混合ガスが形成される。この混合ガスは、選択 酸化器 21に供給される。 In the converter 17, carbon monoxide and steam in the reformed gas undergo a shift reaction in the shift catalyst layer 16, and the carbon monoxide is reduced to about several percent. The reformed gas after the shift reaction is supplied to the mixing unit 18. Then, in the mixing unit 18, the selective oxidation air is supplied from the selective oxidation air supply unit 109 through the selective oxidation air supply path 131, and the reformed gas after the shift reaction and the selective oxidation air are supplied. Mixed to form a mixed gas. This mixed gas is supplied to the selective oxidizer 21.
[0054] 選択酸化器 21では、選択酸化触媒層 20で、混合ガス中の一酸化炭素と選択酸化 用空気(酸素)とが選択酸化反応して、一酸化炭素が数 ppm程度にまで低減された 燃料ガスが生成される。生成された燃料ガスは、燃料ガス供給路 123を通流して、燃 料電池 104の図示されないアノードに供給される。 In the selective oxidizer 21, the selective oxidation catalyst layer 20 performs selective oxidation with carbon monoxide in the mixed gas. A selective oxidation reaction with working air (oxygen) produces fuel gas with carbon monoxide reduced to several ppm. The generated fuel gas flows through the fuel gas supply path 123 and is supplied to an anode (not shown) of the fuel cell 104.
[0055] また、燃料電池 104には、酸化剤ガス供給器 102から酸化剤ガス(空気)力 酸化 剤ガス供給路 124を通流して燃料電池 104の力ソード(図示せず)に供給される。そ して、燃料電池 104では、アノードに供給された燃料ガスと力ソードに供給された酸 化剤ガスとが、電気化学的に反応して、電力と熱が発生する。発生した電力は、外部 負荷に供給される。なお、燃料電池 104で使用されな力、つた余剰の燃料ガスは、ォ フガスとしてオフガス流路 128を通流して水素生成装置 101のパーナ 10bに供給さ れる。 Further, the fuel cell 104 is supplied from the oxidant gas supply device 102 through the oxidant gas (air) force oxidant gas supply path 124 and supplied to the power sword (not shown) of the fuel cell 104. . In the fuel cell 104, the fuel gas supplied to the anode and the oxidant gas supplied to the power sword react electrochemically to generate electric power and heat. The generated power is supplied to the external load. The power that is not used in the fuel cell 104 and the surplus fuel gas are supplied as an off-gas through the off-gas flow path 128 to the burner 10b of the hydrogen generator 101.
[0056] このように、本実施の形態 1に係る燃料電池システムでは、第 1筒部材 1を構成する 金属の熱膨張率が、第 2筒部材 2を構成する金属の熱膨張率よりも小さいため、第 1 筒部材 1の熱膨張による変形が小さい。このため、第 1筒部材 1と第 2筒部材 2との間 の空間で構成される燃焼ガス流路 11の幅寸法を一定に保つことができる。また、燃 料ガス流路 11の幅寸法を一定に保つことができることから、改質器 15の温度を一定 にすること力 Sでき、安定して改質反応を行うことができる。さらに、改質器 15の温度を 一定にすることができることから、改質器 15を構成する改質触媒の劣化を抑制するこ と力 Sできる。  Thus, in the fuel cell system according to Embodiment 1, the coefficient of thermal expansion of the metal that constitutes the first cylinder member 1 is smaller than the coefficient of thermal expansion of the metal that constitutes the second cylinder member 2. Therefore, deformation due to thermal expansion of the first tubular member 1 is small. For this reason, the width dimension of the combustion gas flow path 11 constituted by the space between the first cylinder member 1 and the second cylinder member 2 can be kept constant. In addition, since the width dimension of the fuel gas channel 11 can be kept constant, the temperature of the reformer 15 can be kept constant, and the reforming reaction can be performed stably. Furthermore, since the temperature of the reformer 15 can be kept constant, it is possible to suppress the deterioration of the reforming catalyst constituting the reformer 15.
実施例  Example
[0057] 以下、本発明の実施例について説明する。  Hereinafter, examples of the present invention will be described.
[実施例 1]  [Example 1]
実施例 1では、図 1に示す実施の形態 1に係る燃料電池システム 100を構築した。 このとき、水素生成装置 101の第 1筒部材 1を構成する金属として、耐熱性フェライト 系ステンレス(NSCC180 (新日鐵住金ステンレス社製):熱膨張率 11. 8 X 10— 6/K (0〜800°C) )を使用し、外径を 100mmとした。また、第 2筒部材 2を構成する金属と して、オーステナイト系ステンレス(SUS310S :熱膨張率 17· 5 X 10— 6/K (0〜649 °C) )を使用し、内径を 106mmとした。なお、第 1及び第 2筒部材 1、 2は、それぞれ 厚みを lmmとした。 [0058] このようにして構築した燃料電池システム 100における水素生成装置 101のパーナ 10bに原料としてメタンを供給して燃焼ガスを生成した。生成した燃焼ガスが燃焼ガ ス流路 11を通流することにより、燃焼ガスからの伝熱で、第 1筒部材 1は、 850°Cにま で加熱され、第 2筒部材 2は、 650°Cにまで加熱された。 In Example 1, a fuel cell system 100 according to Embodiment 1 shown in FIG. 1 was constructed. In this case, as the metal constituting the first tubular member 1 of the hydrogen generator 101, the heat resistance ferritic stainless (NSCC180 (manufactured by Nippon Steel Sumikin Stainless Co.): thermal expansion coefficient 11. 8 X 10- 6 / K ( 0 ˜800 ° C)) and an outer diameter of 100 mm. Further, as the metal constituting the second tubular member 2, austenitic stainless: using (SUS310S thermal expansion 17 · 5 X 10- 6 / K (0~649 ° C)), the inner diameter was 106mm . The first and second cylindrical members 1 and 2 each had a thickness of lmm. [0058] Methane was supplied as a raw material to the burner 10b of the hydrogen generator 101 in the fuel cell system 100 constructed as described above to generate combustion gas. When the generated combustion gas flows through the combustion gas flow path 11, the first cylinder member 1 is heated up to 850 ° C by heat transfer from the combustion gas, and the second cylinder member 2 is 650 ° C. Heated to ° C.
[0059] このとき、第 1筒部材 1の径方向への膨張は、 100X π X850X 11. 8X 10— 6/π =1. 003となり、一方、第 2筒咅 才 1の径方向への S彭張は、 106X π X650X 17. 5 Χ 10_6/π =1. 205となり、第 1筒部材 1と第 2筒部材 2の径方向への膨張は、略 同じであった。 [0059] At this time, the expansion of the first tubular member 1 in the radial direction, 100X π X850X 11. 8X 10- 6 / π = 1. 003 . On the other hand, S of the second cylinder咅old 1 radial彭張is, 106X π X650X 17. 5 Χ 10_ 6 / π = 1. 205 , and the expansion in the first cylindrical member 1 and the second radial direction of the cylindrical member 2 was substantially the same.
[0060] このように、本実施例においては、第 1筒部材 1を構成する金属として、耐熱性フエ ライト系ステンレスを使用し、第 2筒部材 2を構成する金属として、オーステナイト系ス テンレスを使用することにより、第 1筒部材 1と第 2筒部材 2の熱膨張による変形力 略 同じであることが確認され、本発明の作用効果が確認された。  Thus, in this embodiment, heat-resistant ferrite stainless steel is used as the metal constituting the first cylindrical member 1, and austenitic stainless steel is used as the metal constituting the second cylindrical member 2. By using it, it was confirmed that the deformation forces due to thermal expansion of the first cylindrical member 1 and the second cylindrical member 2 were substantially the same, and the effects of the present invention were confirmed.
[0061] なお、上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が 明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を 実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精 神を逸脱することなぐその構造及び/又は機能の詳細を実質的に変更できる。 産業上の利用可能性  [0061] From the above description, many improvements and other embodiments of the present invention are apparent to those skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Details of the structure and / or function thereof can be substantially changed without departing from the spirit of the present invention. Industrial applicability
[0062] 本発明に係る水素生成装置は、安定して水素を供給することができる水素生成装 置として燃料電池等として有用である。また、本発明に係る燃料電池システムは、上 記水素生成装置を備えることにより、安定して発電を行えるため、燃料電池システム 等として有用である。  The hydrogen generator according to the present invention is useful as a fuel cell or the like as a hydrogen generator that can stably supply hydrogen. In addition, the fuel cell system according to the present invention is useful as a fuel cell system and the like because it can generate power stably by providing the above-described hydrogen generator.

Claims

請求の範囲 The scope of the claims
[1] 燃焼器と、  [1] a combustor,
前記燃焼器から流出するガスの燃焼空間を形成する第 1の壁と、  A first wall forming a combustion space for gas flowing out of the combustor;
前記燃焼空間の外側に前記第 1の壁と対向して配置された第 2の壁と、 前記第 2の壁の外側に改質触媒層を有し、該改質触媒層を流れる原料及び水蒸 気の改質反応により水素含有ガスを生成する改質器と、を備え、  A second wall disposed opposite to the first wall outside the combustion space; a reforming catalyst layer outside the second wall; and a raw material and water flowing through the reforming catalyst layer A reformer that generates a hydrogen-containing gas by a steam reforming reaction,
前記第 1の壁と前記第 2の壁との間の空間で、前記燃焼空間で生成された燃焼ガ スが通流する燃焼ガス流路が構成され、  A combustion gas flow path through which combustion gas generated in the combustion space flows is configured in a space between the first wall and the second wall,
前記第 1の壁は、前記第 2の壁よりも熱膨張率の小さい金属により構成される、水素 生成装置。  The hydrogen generation apparatus, wherein the first wall is made of a metal having a smaller coefficient of thermal expansion than the second wall.
[2] 前記第 1の壁は、その内部空間が前記燃焼空間を構成する円筒状の第 1筒部材で 構成され、  [2] The first wall is constituted by a cylindrical first tube member whose internal space forms the combustion space,
前記第 2の壁は、前記第 1筒部材の外側に同軸状に配置された円筒状の第 2筒部 材で構成され、  The second wall is composed of a cylindrical second cylindrical member disposed coaxially on the outer side of the first cylindrical member,
前記燃焼ガス流路は、前記第 1筒部材と前記第 2筒部材との間の筒状空間で構成 されている、請求項 1に記載の水素生成装置。  2. The hydrogen generation apparatus according to claim 1, wherein the combustion gas flow path is configured by a cylindrical space between the first cylinder member and the second cylinder member.
[3] 前記第 1及び第 2の壁を構成する金属の熱膨張率が、 8 X 10— 6/K以上 19 X 10_[3] the thermal expansion coefficient of the metal constituting the first and second walls, 8 X 10- 6 / K or 19 X 10_
6/K以下であり、 6 / K or less,
前記第 1の壁を構成する金属と前記第 2の壁を構成する金属の熱膨張率の差が、 4 X 10— 6/K以上 11 X 10— 6/Κ以下である、請求項 1に記載の水素生成装置。 Difference in the thermal expansion coefficient of the metal constituting the metal and the second wall forming the first wall is no more than 4 X 10- 6 / K or higher 11 X 10- 6 / Κ, in claim 1 The hydrogen generator described.
[4] 前記第 1の壁を構成する金属の熱膨張率が 8 X 10— 6/Κ以上 12 X 10— 6/Κ以下 であり、 [4] the thermal expansion coefficient of the metal constituting the first wall 8 X 10- 6 / Κ least 12 X 10- 6 / Κ or less,
前記第 2の壁を構成する金属の熱膨張率が 14 X 10— 6/Κ以上 19 X 10— 6/Κ以 下である、請求項 1に記載の水素生成装置。 The metal thermal expansion coefficient of which constitutes the second wall is 19 X 10- 6 / Κ hereinafter more 14 X 10- 6 / Κ, hydrogen generator according to claim 1.
[5] 前記第 1の壁を構成する金属が、フェライト系ステンレスであり、 [5] The metal constituting the first wall is ferritic stainless steel,
前記第 2の壁を構成する金属が、オーステナイト系ステンレスである、請求項 1に記 載の水素生成装置。  2. The hydrogen generator according to claim 1, wherein the metal constituting the second wall is austenitic stainless steel.
[6] 請求項 1に記載の水素生成装置と、 前記水素生成装置より供給される水素含有ガスを用いて発電する燃料電池と、を 備える、燃料電池システム。 [6] The hydrogen generator according to claim 1, A fuel cell system comprising: a fuel cell that generates electric power using a hydrogen-containing gas supplied from the hydrogen generator.
PCT/JP2007/066740 2006-09-01 2007-08-29 Hydrogen generation device and fuel cell system with the same WO2008029682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006237333A JP2009280408A (en) 2006-09-01 2006-09-01 Hydrogen generating apparatus and fuel cell system
JP2006-237333 2006-09-01

Publications (1)

Publication Number Publication Date
WO2008029682A1 true WO2008029682A1 (en) 2008-03-13

Family

ID=39157114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066740 WO2008029682A1 (en) 2006-09-01 2007-08-29 Hydrogen generation device and fuel cell system with the same

Country Status (2)

Country Link
JP (1) JP2009280408A (en)
WO (1) WO2008029682A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12021277B2 (en) 2018-11-20 2024-06-25 Blue World Technologies Holding ApS Fuel cell system, and method of its operation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600460B2 (en) 2010-03-30 2014-10-01 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108575A (en) * 1995-10-19 1997-04-28 Calsonic Corp Metal carrier of catalyst converter
WO2002098790A1 (en) * 2001-06-04 2002-12-12 Tokyo Gas Company Limited Cylindrical water vapor reforming unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108575A (en) * 1995-10-19 1997-04-28 Calsonic Corp Metal carrier of catalyst converter
WO2002098790A1 (en) * 2001-06-04 2002-12-12 Tokyo Gas Company Limited Cylindrical water vapor reforming unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12021277B2 (en) 2018-11-20 2024-06-25 Blue World Technologies Holding ApS Fuel cell system, and method of its operation

Also Published As

Publication number Publication date
JP2009280408A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP2244327B1 (en) Solid oxide fuel cell system
JPH10330101A (en) Hydrogen-manufacturing apparatus and method therefor
KR100823515B1 (en) Apparatus for reforming fuel and driving method of the same
JPWO2010010718A1 (en) Hydrogen generator and fuel cell system provided with the same
JP2009096705A (en) Reforming apparatus for fuel cell
JP4979354B2 (en) Hydrogen generator and fuel cell system
WO2008029682A1 (en) Hydrogen generation device and fuel cell system with the same
JP4210912B2 (en) Fuel reformer and fuel cell power generator
WO2005077820A1 (en) Fuel reformer
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP2017048079A (en) Hydrogen generator and fuel cell system using the same
JP2002356309A (en) Operation control method for generation apparatus for gas containing hydrogen
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP2018104232A (en) Hydrogen production apparatus
JP2004175637A (en) Co remover and hydrogen production apparatus
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP2007314419A (en) Operation control method for hydrogen-containing gas production apparatus
JP4617966B2 (en) Hydrogen generator
JP2009543305A (en) Fuel cell system with reformer and afterburner
JP6205581B2 (en) Hydrogen generator and fuel cell system using the same
JP4676819B2 (en) Method for reducing reforming catalyst
JP5111040B2 (en) Fuel cell reformer
JP2007200702A (en) Solid oxide fuel cell and its operating method
JP2013234076A (en) Hydrogen generation device
JP2017100917A (en) Hydrogen gas supply method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP