WO2008025602A1 - Sensor for resistively determining concentrations of conductive particles in gas mixtures - Google Patents
Sensor for resistively determining concentrations of conductive particles in gas mixtures Download PDFInfo
- Publication number
- WO2008025602A1 WO2008025602A1 PCT/EP2007/057053 EP2007057053W WO2008025602A1 WO 2008025602 A1 WO2008025602 A1 WO 2008025602A1 EP 2007057053 W EP2007057053 W EP 2007057053W WO 2008025602 A1 WO2008025602 A1 WO 2008025602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- electrodes
- conductive particles
- sensor according
- gas mixture
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 78
- 239000000203 mixture Substances 0.000 title claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 34
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 27
- 239000004071 soot Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 11
- 238000005325 percolation Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 230000008929 regeneration Effects 0.000 claims description 5
- 238000011069 regeneration method Methods 0.000 claims description 5
- 238000007650 screen-printing Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 239000000567 combustion gas Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000007649 pad printing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/0656—Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0042—Investigating dispersion of solids
- G01N2015/0046—Investigating dispersion of solids in gas, e.g. smoke
Definitions
- the present invention relates to a sensor for the resistive determination of concentrations of conductive particles in gas mixtures according to the preamble of claim 1.
- soot particulate filters have been used recently. In order to monitor the effectiveness of these filters, often sensors are used, the particle content of the filter passing
- a resistive particle sensor is often used as the sensor type, which uses the change in resistance of an interdigital electrode structure as a measured variable by the addition of conductive soot particles. Due to its mode of operation, the resistive particle sensor settles with the collecting principles (cf., for example, DE 10149333 A1, WO 2003006976 A2).
- resistive particle sensors for conductive particles are known, in which two or more metallic electrodes are formed, wherein the adhering particles, in particular soot particles, short-circuit the comb-like interdigitated electrodes and thus with increasing particle concentration on the sensor surface a decreasing resistance (or an increasing resistance) Current at a constant applied voltage) between the electrodes becomes measurable.
- the measured current or resistance can be correlated with the accumulated soot quantity and thus also with the soot particle concentration prevailing in the exhaust gas.
- a threshold is usually defined and the time taken until reaching the threshold as a measure of the accumulated soot amount. The faster this threshold is reached, the higher the soot particle concentration in the exhaust gas.
- the current resistance value of the sensor or the decrease in the resistance value over time can also be utilized as a graduated measure of the soot particle concentration. The more conductive connections are formed between the electrodes, the lower the measured resistance.
- the sensor element For regeneration of the sensor element after particle accumulation, the sensor element must be burned free. During burnout, the sensor can not detect the amount of soot.
- the screen printing technique is suitable for the production of the interdigital electrodes of the particle sensor. This has been retained for economic reasons and provides reliable sensors. The problem with sensors produced in this way is that the minimum electrode spacing that can be produced with this technique amounts to 50 ⁇ m. Even finer structures can only be produced with photolithographic methods. However, photolithography requires considerably more process steps than screen printing technology and is therefore out of the question for economic reasons.
- blind phase Due to the relatively high electrode spacing are therefore relatively large amounts of soot in sensors from the prior art required to reach the above threshold. The respective sensors therefore have a relatively low sensitivity. The period until a conductive connection is established between two electrodes and thus a measurement signal is generated (“blind phase”) is therefore comparatively long.
- the object of the present invention is therefore to provide a sensor for the resistive determination of concentrations of conductive particles in gas mixtures, which has a higher measuring sensitivity and a shorter reactive phase and is nevertheless inexpensive to manufacture and reliable in operation.
- a sensor for the resistive determination of concentrations of conductive particles in gas mixtures, comprising a surface exposed to the gas mixture with at least two electrodes which are spaced from each other on the surface, such that the distance between the electrodes through itself on the surface of the sensor depositing conductive particles from the gas mixture can be bridged and in this way a conductive connection between the electrodes of the sensor can be produced, from which a measured variable for the concentration of the conductive particles in the gas mixture can be derived.
- the sensor is characterized in that at least in the region between the electrodes, a material is arranged, which is selected so that it has conductive portions, the addition of conductive particles from - A -
- measuring time is the time that elapses until a conductive contact between the two electrodes is produced by the deposited conductive particles, ie the resistance at an applied voltage from infinity to a finite value reduced or a measurable current flows.
- the material arranged in the region between the electrodes is an electrically conductive material whose composition is selected such that it fades and / or cracks after being applied to the sensor in such a way that a conductive connection between the electrodes possibly caused by the freshly applied material is interrupted by shrinkage or crack formation.
- This material can be, for example, a conductive lacquer or a conductive paste that is applied, and the after application shrinkage cracks forms, for example by drying or evaporation of a solvent contained in the paint or the paste.
- a material with suitable conductivity, adhesion and shrinkage properties on the basis of the technical teaching according to the invention. Since the shrinkage cracks occurring during drying are randomly arranged, an average distance to be bridged is established in the region between the electrodes that is far below the distance that the electrodes have from one another. In this way, the amount of soot particles required to produce a conductive connection is reduced and the measuring sensitivity of the sensor increases.
- the material arranged in the region between the electrodes may be a material comprising electrically conductive particles whose concentration in the material is selected to be below the percolation threshold.
- This material may be, for example, conductive ceramic or metal particles in an insulating ceramic matrix, such as platinum particles in an alumina matrix. Since the conductive particles in the matrix are randomly arranged, an average distance to be bridged is established in the region between the electrodes that is far below the distance that the electrodes have from one another. Also in this way, the amount of soot particles required to make a conductive connection is reduced, and the measuring sensitivity of the sensor increases.
- percolation is understood in electrical engineering to mean that conductive fillers in a nonconductive matrix can impart conductivity to the composite of filler and matrix by forming a three-dimensional network. From a certain filler concentration, which as
- Percolation threshold is called, the formation of such a network leads directly to a reduction in electrical resistance.
- Such a composite material is e.g. a matrix of insulating ceramic material, e.g. Alumina, with platinum particles embedded therein.
- the relevant material can be applied to the surface of the sensor already provided with electrodes, thus depositing on the electrodes and in the region between the electrodes.
- the material can also be applied to the surface of the sensor not yet provided with the electrodes.
- the electrodes are then printed on the material.
- the material may be chosen to serve as an adhesive layer between the surface and the electrodes.
- the material arranged in the region between the electrodes is electrically conductive particles which form dendritic structures between the electrodes.
- dendritic structures are structures which protrude from the electrodes into the region between the electrodes without establishing a connection (short circuit) between the electrodes.
- You can e.g. finger-shaped, triangular or branched.
- the distances between the electrodes are reduced and thus favors the formation of conductive connections between the electrodes.
- the said electrically conductive particles should have a high thermal stability so that they are not removed during the thermal regeneration of the sensor and / or the soot particle filter.
- Such a sensor may e.g. be prepared in which the
- a DC voltage (so-called suction voltage) is applied between the two electrodes, so that the particles accumulate on the surface in the region of the electrodes by electrostatic attraction.
- suction voltage a DC voltage
- the dendritic structures are fixed on the surface, e.g. by annealing or forming interactions between the surface and the particles.
- the particles may be e.g. to act platinum particles or electrically conductive ceramic particles.
- the electrodes are arranged to one another in the form of interdigital electrodes.
- the electrodes are in maanderformiger arrangement.
- the electrodes are applied to the surface of the sensor by means of screen printing technology.
- suitable methods for applying the electrodes are stencil printing, pad printing, ink jet printing, transfer film. Common to all these methods is that the minimum spacing of the electrodes which can be achieved with one another is not sufficient for a satisfactory improvement in the sensitivity of the sensor, so that the technical teaching of the present invention can be advantageously applied to all sensors produced by one of these methods.
- the conductive particles to be determined are soot particles.
- the sensor is preferred a soot particle sensor.
- the gas mixture is preferably a combustion gas mixture.
- the sensor is arranged in the exhaust gas flow of a diesel engine.
- the senor has a heating device for thermal regeneration of the sensor.
- the soot particles deposited on the sensor surface can be burned off and the conductive connection between the electrodes is interrupted, so that the sensor can be used again.
- a temperature sensor in the form of a resistance mander
- many particles in particular soot have a dependent on the temperature electrical conductivity.
- the senor has at least two sensor sections each having at least two electrodes, wherein the electrodes of the at least two sensor sections each have different distances and / or configurations, the at least two sensor sections are operated with different voltages or the electrodes of the at least two sensor sections have different materials. In this way, different measuring ranges or measuring sensitivities can be achieved at the different sensor sections.
- a method is also provided for the resistive determination of concentrations of conductive particles in gas mixtures, which is characterized in that a sensor according to the invention as described above is used in this method.
- Figure 1 is a plan view of a sensor according to the invention.
- FIG. 2 a cross-sectional view of a first embodiment of a sensor according to the invention
- FIG. 3 shows a first variant of a second embodiment of a sensor according to the invention in cross-sectional view
- FIG. 4 shows a second variant of a second embodiment of a sensor according to the invention in cross-sectional view
- Fig. 5 shows a third embodiment of an inventive sensor in an enlarged view.
- Fig. 1 shows a sensor 10 according to the invention with the electrodes 11, 12 on a surface 13.
- the electrodes 11, 12 acts they are so-called interdigital electrodes, which are arranged comb-like interlocking.
- the sensor is arranged, for example, in the exhaust gas flow of a diesel engine, not shown, so that soot particles are deposited from the exhaust gas flow on the surface of the sensor. When sufficient soot particles have deposited on the surface, the two electrodes are short-circuited and a decreasing resistance (or increasing current at a constant applied voltage) between the electrodes can be measured.
- Figs. 2a, 2b show a sensor 20 according to the invention in two cross-sectional views of different scales. Shown are the electrodes 21, 22 on a surface 23. In the region between the electrodes 21, 22, an electrically conductive material 24 is arranged, the composition of which is selected so that it forms cracks 25 after application to the sensor, such that a through the freshly applied material is interrupted if necessary lead conductive connection between the electrodes.
- this material 24 is a conductive lacquer which forms shrinkage cracks 25 after application. Since the shrinkage cracks occurring during drying are randomly arranged, an average distance to be bridged is established in the region between the electrodes that is far below the distance that the electrodes have from one another. In this way, the amount of soot particles 26 required to produce a conductive connection is reduced and the measuring sensitivity of the sensor increases.
- Figs. 3a, 3b show a first variant of a second embodiment of the inventive sensor 30 in two cross-sectional views of different scales. Shown are the electrodes 31, 32 on a surface 33. In the region between the electrodes 31, 32, a material 34 is arranged, which has electrically conductive particles 35. Their concentration in the material 34 is chosen to be below the percolation threshold. In this way, the amount of soot particles 36 required to produce a conductive connection is reduced and the measuring sensitivity of the sensor increases.
- the material 34 in the present example is an aluminum oxide insulating matrix with platinum particles 35 embedded therein. Since the conductive particles in the matrix are randomly randomized, an average gap to be bridged is established in the region between the electrodes which is wide is below the distance that the electrodes have to each other.
- Figs. 4a, 4b show a second variant of a second embodiment of the inventive sensor 40 in two cross-sectional views of different scales. Shown are the electrodes 41, 42 on a surface 43. In the region between the electrodes 41, 42, a material 44 is arranged, the electrically conductive particles 45 has. In contrast to the variant shown in FIG. 3, in this variant the material 44 was applied to the surface of the sensor not yet provided with the electrodes, and the electrodes were then printed on the material. This embodiment has the same advantages as the previously discussed variant. Moreover, can the material 44 may be chosen so that it serves as an adhesive layer between the surface 43 and the electrodes 41, 42.
- FIG. 5 shows a third embodiment of an inventive sensor 50 in enlarged plan view.
- the sensor has the two interdigital electrodes 51, 52, between which dendritic structures 53 are formed, which consist of conductive particles 54 and with the aid of which the distance between the two interdigital electrodes 51, 52 is shortened. Particles, electrodes and electrode spacing are not shown to scale.
- Such a sensor may e.g. in which the surface of the sensor 50 is exposed to a gas stream containing said electrically conductive particles. These store themselves - similar to the later, to be detected soot particles - on the surface and form the dendritic structures mentioned (see FIG. 5).
- a DC voltage (so-called suction voltage) is applied between the two electrodes 51, 52, so that the particles 54 accumulate on the surface in the region of the electrodes by electrostatic attraction.
- suction voltage a DC voltage
- the particles 54 accumulate on the surface in the region of the electrodes by electrostatic attraction.
- a proper "growth" of the dendritic structures 53 from the electrodes in the direction of the area between the electrodes can be observed, after which the dendritic structures 53 are fixed on the surface of the sensor 50.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
The invention relates to a sensor (20) for resistively determining concentrations of conductive particles (26) in gas mixtures. Said sensor has a surface (23) that is exposed to the gas mixture and is provided with at least two electrodes (21, 22) that are arranged at a distance from each other on said surface. The distance between the electrodes can be bridged by the conductive particles from the gas mixture that are disposed on the surface of the sensor. As a result, a conductive connection can be established between the electrodes of the sensor and a measured variable for the concentration of the conductive particles in the gas mixture can be derived from said connection. Said sensor is characterised in that a material (24) is arranged at least in the region between the electrodes, said material being selected such that it has conductive sections that promote the formation of a conductive connection between the electrodes when conductive particles from the gas mixture are deposited.
Description
Beschreibung TitelDescription title
Sensor zur resistiven Bestimmung von Konzentrationen leitfahiger Partikel in Gasgemischen.Sensor for the resistive determination of concentrations of conductive particles in gas mixtures.
Die vorliegende Erfindung betrifft einen Sensor zur resistiven Bestimmung von Konzentrationen leitfahiger Partikel in Gasgemischen gemäß dem Oberbegriff des Anspruchs 1.The present invention relates to a sensor for the resistive determination of concentrations of conductive particles in gas mixtures according to the preamble of claim 1.
Stand der TechnikState of the art
Um den Partikelausstoß eines Dieselmotors zu reduzieren, kommen seit jüngerer Zeit Russpartikelfilter zu Einsatz. Dabei werden, um die Wirksamkeit dieser Filter zu überwachen, häufig Sensoren eingesetzt, die den Partikelgehalt der den Filter passierendenTo reduce the particulate emissions of a diesel engine, soot particulate filters have been used recently. In order to monitor the effectiveness of these filters, often sensors are used, the particle content of the filter passing
Abgase messen (On Bord Diagnose, OBD) . Zu diesem Zweck kommt als Sensortyp häufig ein resistiver Partikelsensor zum Einsatz, der als Messgroße die Widerstandsanderung einer interdigitalen Elektrodenstruktur durch Anlagerung von leitfahigen Russpartikeln heranzieht. Aufgrund seiner Funktionsweise ordnet sich der resistive Partikelsensor bei den sammelnden Prinzipien ein (vgl. z.B. DE 10149333 Al, WO 2003006976 A2 ) . Derzeit sind resistive Partikelsensoren für leitfahige Partikel bekannt, bei denen zwei oder mehrere metallische Elektroden ausgebildet sind, wobei die sich anlagernden Teilchen, insbesondere Russpartikel, die kammartig ineinander greifenden Elektroden kurzschließen und so mit steigender Partikelkonzentration auf der Sensorflache ein abnehmender Widerstand (bzw. ein zunehmender Strom bei konstanter angelegter Spannung) zwischen den Elektroden messbar wird.
Der gemessene Strom bzw. Widerstand kann mit der angelagerten Russmenge und damit auch mit der im Abgas vorherrschenden Russpartikelkonzentration korreliert werden. Dabei wird üblicherweise ein Schwellwert definiert und die Zeit bis zum Erreichen des Schwellwerts als Maß für die angelagerte Russmenge genommen. Je schneller dieser Schwellwert erreicht wird, desto hoher ist also die Russpartikelkonzentration im Abgas.Measure exhaust gases (on-board diagnostics, OBD). For this purpose, a resistive particle sensor is often used as the sensor type, which uses the change in resistance of an interdigital electrode structure as a measured variable by the addition of conductive soot particles. Due to its mode of operation, the resistive particle sensor settles with the collecting principles (cf., for example, DE 10149333 A1, WO 2003006976 A2). At present, resistive particle sensors for conductive particles are known, in which two or more metallic electrodes are formed, wherein the adhering particles, in particular soot particles, short-circuit the comb-like interdigitated electrodes and thus with increasing particle concentration on the sensor surface a decreasing resistance (or an increasing resistance) Current at a constant applied voltage) between the electrodes becomes measurable. The measured current or resistance can be correlated with the accumulated soot quantity and thus also with the soot particle concentration prevailing in the exhaust gas. In this case, a threshold is usually defined and the time taken until reaching the threshold as a measure of the accumulated soot amount. The faster this threshold is reached, the higher the soot particle concentration in the exhaust gas.
Alternativ kann als graduelles Mass für die Russpartikelkonzentration auch der aktuelle Widerstandswert des Sensors bzw. die Abnahme des Widerstandswertes über die Zeit verwertet werden. Je mehr leitende Verbindungen zwischen den Elektroden ausgebildet sind, desto geringer ist dabei der gemessene Widerstand.Alternatively, the current resistance value of the sensor or the decrease in the resistance value over time can also be utilized as a graduated measure of the soot particle concentration. The more conductive connections are formed between the electrodes, the lower the measured resistance.
Zur Regeneration des Sensorelementes nach der Partikelanlagerung muss das Sensorelement freigebrannt werden. Wahrend des Freibrennens kann der Sensor die Russmenge nicht erfassen.For regeneration of the sensor element after particle accumulation, the sensor element must be burned free. During burnout, the sensor can not detect the amount of soot.
Für die Fertigung der Interdigitalelektroden des Partikelsensors bietet sich die Siebdrucktechnik an. Diese hat sich aus Wirtschaftlichkeitsgrunden bewahrt und liefert zuverlässige Sensoren. Problem bei solchermaßen hergestellten Sensoren ist es, dass der minimal mit dieser Technik herstellbare Elektrodenabstand 50 μm betragt. Noch feinere Strukturen lassen sich nur noch mit photolithographischen Methoden herstellen. Die Photolithographie benotigt aber deutlich mehr Prozessschritte als die Siebdrucktechnik und kommt daher aus Wirtschaftlichkeitsgrunden nicht in Frage.For the production of the interdigital electrodes of the particle sensor, the screen printing technique is suitable. This has been retained for economic reasons and provides reliable sensors. The problem with sensors produced in this way is that the minimum electrode spacing that can be produced with this technique amounts to 50 μm. Even finer structures can only be produced with photolithographic methods. However, photolithography requires considerably more process steps than screen printing technology and is therefore out of the question for economic reasons.
Aufgrund des relativ hohen Elektrodenabstandes sind daher bei Sensoren aus dem Stand der Technik relativ große Russmengen
erforderlich, um den oben genannten Schwellwert zu erreichen. Die betreffenden Sensoren haben daher eine relativ geringe Messempfindlichkeit. Der Zeitraum, bis dass eine leitende Verbindung zwischen zwei Elektroden hergestellt und damit ein Messsignal generiert wird („Blindphase") ist daher vergleichsweise lang.Due to the relatively high electrode spacing are therefore relatively large amounts of soot in sensors from the prior art required to reach the above threshold. The respective sensors therefore have a relatively low sensitivity. The period until a conductive connection is established between two electrodes and thus a measurement signal is generated ("blind phase") is therefore comparatively long.
Offenbarung der ErfindungDisclosure of the invention
Aufgabe der vorliegenden Erfindung ist es daher, einen Sensor zur resistiven Bestimmung von Konzentrationen leitfahiger Partikel in Gasgemischen bereitzustellen, der eine höhere Messempfindlichkeit und eine kürzere Blindphase aufweist und gleichwohl kostengünstig in der Herstellung und zuverlässig im Betrieb ist.The object of the present invention is therefore to provide a sensor for the resistive determination of concentrations of conductive particles in gas mixtures, which has a higher measuring sensitivity and a shorter reactive phase and is nevertheless inexpensive to manufacture and reliable in operation.
Diese Aufgabe wird mit den Merkmalen des vorliegenden Anspruchs 1 gelost. Die Unteranspruche geben bevorzugte Ausfuhrungsformen an.This object is achieved by the features of present claim 1. The dependent claims indicate preferred embodiments.
Demnach ist ein Sensor zur resistiven Bestimmung von Konzentrationen leitfahiger Partikel in Gasgemischen vorgesehen, aufweisend eine dem Gasgemisch ausgesetzte Oberflache mit mindestens zwei Elektroden, die beabstandet zueinander auf der Oberflache angeordnet sind, dergestalt, dass der Abstand zwischen den Elektroden durch sich auf der Oberflache des Sensors ablagernde leitfahige Partikel aus dem Gasgemisch uberbruckbar und auf diese Weise eine leitende Verbindung zwischen den Elektroden des Sensors herstellbar ist, aus der eine Messgroße für die Konzentration der leitfahigen Partikel in dem Gasgemisch ableitbar ist. Der Sensor ist dadurch gekennzeichnet, dass mindestens im Bereich zwischen den Elektroden ein Material angeordnet ist, dass so gewählt ist, dass es leitfahige Abschnitte aufweist, die bei Anlagerung leitfahiger Partikel aus
- A -Accordingly, a sensor is provided for the resistive determination of concentrations of conductive particles in gas mixtures, comprising a surface exposed to the gas mixture with at least two electrodes which are spaced from each other on the surface, such that the distance between the electrodes through itself on the surface of the sensor depositing conductive particles from the gas mixture can be bridged and in this way a conductive connection between the electrodes of the sensor can be produced, from which a measured variable for the concentration of the conductive particles in the gas mixture can be derived. The sensor is characterized in that at least in the region between the electrodes, a material is arranged, which is selected so that it has conductive portions, the addition of conductive particles from - A -
dem Gasgemisch die Ausbildung einer leitfahigen Verbindung zwischen den Elektroden begünstigen, und auf diese Weise die Auslosezeit verkurzen bzw. die Ausloseschwelle erniedrigen.promote the formation of a conductive connection between the electrodes of the gas mixture, and in this way shorten the Auslosezeit or reduce the triggering threshold.
Hierbei ist zu beachten, dass, wie bereits erwähnt, Messgroße die Zeit ist, die vergeht, bis dass durch die angelagerten leitfahigen Partikel ein leitfahiger Kontakt zwischen den beiden Elektroden hergestellt ist, der Widerstand sich bei einer angelegten Spannung also von unendlich auf einen endlichen Wert reduziert bzw. ein messbarer Strom fließt. Das mindestens im Bereich zwischen den Elektroden angeordnete Material, dass so gewählt ist, dass es leitfahige Abschnitte aufweist, die bei Anlagerung leitfahiger Partikel aus dem Gasgemisch die Ausbildung einer leitfahigen Verbindung zwischen den Elektroden begünstigen, verringert also die Abstande, die für die Ausbildung einer leitenden Verbindung zwischen den Elektroden leitend überbrückt werden müssen, reduziert somit die Anzahl der erforderlichen leitfahigen Partikel und erhöht so die Messempfindlichkeit des Sensors .It should be noted that, as already mentioned, measuring time is the time that elapses until a conductive contact between the two electrodes is produced by the deposited conductive particles, ie the resistance at an applied voltage from infinity to a finite value reduced or a measurable current flows. The arranged at least in the region between the electrodes material that is selected so that it has conductive sections, which favor the formation of a conductive connection between the electrodes when attaching conductive particles from the gas mixture, thus reducing the distances that are for the formation of a conductive Connection between the electrodes must be bridged conductive, thus reducing the number of conductive particles required, thus increasing the sensitivity of the sensor.
In einer bevorzugten Ausgestaltung des erfindungsgemaßen Sensors ist vorgesehen, dass es sich bei dem im Bereich zwischen den Elektroden angeordneten Material um ein elektrisch leitendes Material handelt, dessen Zusammensetzung so gewählt ist, dass es nach Aufbringung auf den Sensor schwindet und/oder Risse ausbildet, nämlich dergestalt, dass eine durch das frisch aufgebrachte Material ggf. herbeigeführte leitfahige Verbindung zwischen den Elektroden durch das Schwinden bzw. die Rissbildung unterbrochen wird.In a preferred embodiment of the sensor according to the invention, it is provided that the material arranged in the region between the electrodes is an electrically conductive material whose composition is selected such that it fades and / or cracks after being applied to the sensor in such a way that a conductive connection between the electrodes possibly caused by the freshly applied material is interrupted by shrinkage or crack formation.
Bei diesem Material kann es sich z.B. um einen leitenden Lack oder eine leitende Paste handeln, die aufgetragen wird, und die
nach Auftragung Schwindungsrisse ausbildet, z.B. durch Trocknung bzw. Verdampfung eines im Lack bzw. der Paste enthaltenen Losungsmittels. Für den Fachmann ist es aufgrund der erfindungsgemaßen technischen Lehre ein leichtes, ein Material mit geeigneten Leit-, Haftungs- und Schwindungseigenschaften auszuwählen. Da die bei der Trocknung auftretenden Schwindungsrisse statistisch zufallig angeordnet sind, stellt sich ein mittlerer zu überbrückender Abstand im Bereich zwischen den Elektroden ein, der weit unterhalb des Abstandes liegt, den die Elektroden zueinander aufweisen. Auf diese Weise wird die Menge der erforderlichen Russpartikel zur Herstellung einer leitfahigen Verbindung reduziert und die Messempfindlichkeit des Sensors steigt.This material can be, for example, a conductive lacquer or a conductive paste that is applied, and the after application shrinkage cracks forms, for example by drying or evaporation of a solvent contained in the paint or the paste. For the person skilled in the art, it is an easy matter to select a material with suitable conductivity, adhesion and shrinkage properties on the basis of the technical teaching according to the invention. Since the shrinkage cracks occurring during drying are randomly arranged, an average distance to be bridged is established in the region between the electrodes that is far below the distance that the electrodes have from one another. In this way, the amount of soot particles required to produce a conductive connection is reduced and the measuring sensitivity of the sensor increases.
Ebenso bevorzugt kann es sich bei dem im Bereich zwischen den Elektroden angeordneten Material um ein Material aufweisend elektrisch leitende Partikel handeln, deren Konzentration in dem Material so gewählt ist, dass sie unterhalb der Perkolationsschwelle liegt.Likewise, the material arranged in the region between the electrodes may be a material comprising electrically conductive particles whose concentration in the material is selected to be below the percolation threshold.
Bei diesem Material kann es sich z.B. um leitende Keramik- oder Metallpartikel in einer isolierenden Keramik-Matrix handeln, wie z.B. Platinpartikel in einer Aluminiumoxid-Matrix. Da die leitenden Partikel in der Matrix statistisch zufallig angeordnet sind, stellt sich ein mittlerer zu überbrückender Abstand im Bereich zwischen den Elektroden ein, der weit unterhalb des Abstandes liegt, den die Elektroden zueinander aufweisen. Auch auf diese Weise wird die Menge der erforderlichen Russpartikel zur Herstellung einer leitfahigen Verbindung reduziert, und die Messempfindlichkeit des Sensors steigt.
Unter dem Begriff Perkolation versteht man in der Elektrotechnik, dass leitfahige Füllstoffe in einer nichtleitenden Matrix durch Bildung eines dreidimensionalen Netzwerks dem Verbundwerkstoff aus Füllstoff und Matrix eine Leitfähigkeit verleihen können. Ab einer bestimmten Füllstoffkonzentration, die alsThis material may be, for example, conductive ceramic or metal particles in an insulating ceramic matrix, such as platinum particles in an alumina matrix. Since the conductive particles in the matrix are randomly arranged, an average distance to be bridged is established in the region between the electrodes that is far below the distance that the electrodes have from one another. Also in this way, the amount of soot particles required to make a conductive connection is reduced, and the measuring sensitivity of the sensor increases. The term percolation is understood in electrical engineering to mean that conductive fillers in a nonconductive matrix can impart conductivity to the composite of filler and matrix by forming a three-dimensional network. From a certain filler concentration, which as
Perkolationsschwelle bezeichnet wird, fuhrt die Bildung eines solchen Netzwerks unmittelbar zu einer Reduktion des elektrischen Widerstands .Percolation threshold is called, the formation of such a network leads directly to a reduction in electrical resistance.
Für den Fachmann ist es aufgrund der erfindungsgemaßen technischen Lehre ein leichtes, ein Matrixmaterial mit geeigneten Eigenschaften auszuwählen, und auch die Partikeldichte und -große so zu wählen, dass die Perkolationsschwelle mehr oder weniger stark unterschritten wird, um so die Ausloseempfindlichkeit des Sensors einzustellen.For the skilled person it is an easy to select a matrix material with suitable properties, and also the particle density and size to choose so that the percolation threshold is more or less well below, so as to adjust the triggering sensitivity of the sensor due to the technical teaching of the invention.
Als Beispiel für ein solches Verbundmaterial bietet sich z.B. eine Matrix aus einem isolierenden Keramikmaterial, wie z.B. Aluminiumoxid, mit darin eingebetteten Platinpartikeln an.An example of such a composite material is e.g. a matrix of insulating ceramic material, e.g. Alumina, with platinum particles embedded therein.
Das betreffende Material kann in einer ersten Ausgestaltung auf die bereits mit Elektroden versehene Oberflache des Sensors aufgetragen werden, lagert sich also auf den Elektroden und im Bereich zwischen den Elektroden an.In a first embodiment, the relevant material can be applied to the surface of the sensor already provided with electrodes, thus depositing on the electrodes and in the region between the electrodes.
In einer weiteren Ausgestaltung kann das Material auch auf die noch nicht mit den Elektroden versehene Oberflache des Sensors aufgetragen werden. Die Elektroden werden anschließend auf das Material aufgedruckt. Diese Ausgestaltung weist dieselben Vorteile auf wie die zuvor diskutierte Ausgestaltung. Überdies kann das Material so gewählt sein, dass es als Haftschicht zwischen der Oberflache und den Elektroden dient.
In einer weiteren Ausgestaltung dieser erfindungsgemaßen Idee ist vorgesehen, dass es sich bei dem im Bereich zwischen den Elektroden angeordneten Material um elektrisch leitende Partikel handelt, die dendritische Strukturen zwischen den Elektroden ausbilden.In a further embodiment, the material can also be applied to the surface of the sensor not yet provided with the electrodes. The electrodes are then printed on the material. This embodiment has the same advantages as the previously discussed embodiment. Moreover, the material may be chosen to serve as an adhesive layer between the surface and the electrodes. In a further embodiment of this idea according to the invention, it is provided that the material arranged in the region between the electrodes is electrically conductive particles which form dendritic structures between the electrodes.
Bei diesen dendritischen Strukturen handelt es sich um Strukturen, die von den Elektroden aus in den Bereich zwischen den Elektroden hineinragen, ohne eine Verbindung (Kurzschluß) zwischen den Elektroden herzustellen. Sie können z.B. fingerförmig, dreieckformig oder verästelt sein.These dendritic structures are structures which protrude from the electrodes into the region between the electrodes without establishing a connection (short circuit) between the electrodes. You can e.g. finger-shaped, triangular or branched.
Mittels dieser Strukturen werden die Abstande zwischen den Elektroden verringert und so die Ausbildung von leitfahigen Verbindungen zwischen den Elektroden begünstigt. Die genannten elektrisch leitenden Partikeln sollten eine hohe Thermostabilitat aufweisen, so dass sie bei der thermischen Regeneration des Sensors und/oder des Russpartikelfilters nicht entfernt werden.By means of these structures, the distances between the electrodes are reduced and thus favors the formation of conductive connections between the electrodes. The said electrically conductive particles should have a high thermal stability so that they are not removed during the thermal regeneration of the sensor and / or the soot particle filter.
Ein solcher Sensor kann z.B. hergestellt werden, in dem dieSuch a sensor may e.g. be prepared in which the
Oberflache des Sensors einem Gasstrom ausgesetzt wird, der die genannten elektrisch leitende Partikel enthalt. Diese lagern sich - ahnlich den spateren, zu detektierenden Russpartikeln - auf der Oberflache an und bilden die genannten dendritischen Strukturen aus (siehe Fig. 5) .Surface of the sensor is exposed to a gas stream containing said electrically conductive particles. These store themselves - similar to the later, to be detected soot particles - on the surface and form the dendritic structures mentioned (see FIG. 5).
Um die Anlagerung der Partikel zu unterstutzen, kann vorgesehen sein, dass eine Gleichspannung (sogenannte Saugspannung) zwischen den beiden Elektroden angelegt wird, so dass sich die Partikel durch elektrostatische Anziehung auf der Oberflache im Bereich der Elektroden anlagern. Unter dem Mikroskop lasst sich dabei ein regelrechtes „Wachsen" der dendritischen Strukturen von den
Elektroden aus in Richtung des Bereichs zwischen den Elektroden beobachten .In order to support the deposition of the particles, it can be provided that a DC voltage (so-called suction voltage) is applied between the two electrodes, so that the particles accumulate on the surface in the region of the electrodes by electrostatic attraction. Under the microscope, a proper "growth" of the dendritic structures of the Observe electrodes in the direction of the area between the electrodes.
Anschließend werden die dendritischen Strukturen auf der Oberflache fixiert, z.B. durch Tempern oder das Ausbilden von Wechselwirkungen zwischen der Oberflache und den Partikeln.Subsequently, the dendritic structures are fixed on the surface, e.g. by annealing or forming interactions between the surface and the particles.
Bei den Partikeln kann es sich z.B. um Platinpartikel oder auch um elektrisch leitende Keramikpartikel handeln.The particles may be e.g. to act platinum particles or electrically conductive ceramic particles.
Besonders bevorzugt ist vorgesehen, dass die Elektroden zueinander in Form von Interdigitalelektroden angeordnet sind.Particularly preferably, it is provided that the electrodes are arranged to one another in the form of interdigital electrodes.
Diese Art der Ausgestaltung sowie die sich hieraus ergebendenThis type of embodiment as well as the resulting
Vorteile sind an sich bekannt. Häufig, und auch dies ist bevorzugt, liegen die Elektroden in maanderformiger Anordnung vor .Advantages are known per se. Often, and this is preferred, the electrodes are in maanderformiger arrangement.
In einer ebenfalls bevorzugten Ausgestaltung des erfindungsgemaßen Sensors ist vorgesehen, dass die Elektroden mittels Siebdrucktechnik auf die Oberflache des Sensors aufgebracht sind. Die sich hieraus ergebenden Vorteile sind bereits weiter oben erläutert. Weitere geeignete Verfahren zur Aufbringung der Elektroden sind Schablonendruck, Tampondruck, Tintenstrahldruck, Transferfilm. All diesen Verfahren ist gemein, dass der damit erzielbare Minimalabstand der Elektroden zueinander für eine befriedigende Empfindlichkeitsverbesserung des Sensors nicht ausreicht, so dass die technische Lehre der vorliegenden Erfindung auf alle Sensoren, die mit einem dieser Verfahren hergestellt wurden, vorteilhaft anwendbar ist.In a likewise preferred embodiment of the sensor according to the invention, it is provided that the electrodes are applied to the surface of the sensor by means of screen printing technology. The resulting advantages are already explained above. Other suitable methods for applying the electrodes are stencil printing, pad printing, ink jet printing, transfer film. Common to all these methods is that the minimum spacing of the electrodes which can be achieved with one another is not sufficient for a satisfactory improvement in the sensitivity of the sensor, so that the technical teaching of the present invention can be advantageously applied to all sensors produced by one of these methods.
Bevorzugt handelt es sich bei den zu bestimmenden leitfahigen Partikeln um Russpartikel. Entsprechend ist der Sensor bevorzugt
ein Russpartikelsensor. Bei dem Gasgemisch handelt es sich bevorzugt um ein Verbrennungsgas-Gemisch. Besonders bevorzugt ist der Sensor im Abgasstrom eines Dieselmotors angeordnet.Preferably, the conductive particles to be determined are soot particles. Accordingly, the sensor is preferred a soot particle sensor. The gas mixture is preferably a combustion gas mixture. Particularly preferably, the sensor is arranged in the exhaust gas flow of a diesel engine.
In einer weiteren bevorzugten Ausgestaltung des erfindungsgemaßen Sensors ist vorgesehen, dass der Sensor eine Heizeinrichtung zur thermischen Regeneration des Sensors aufweist. Mit deren Hilfe können die auf der Sensoroberflache angelagerten Russpartikel abgebrannt werden und die leitende Verbindung zwischen den Elektroden wird unterbrochen, so dass der Sensor erneut einsetzbar ist.In a further preferred embodiment of the sensor according to the invention, it is provided that the sensor has a heating device for thermal regeneration of the sensor. With their help, the soot particles deposited on the sensor surface can be burned off and the conductive connection between the electrodes is interrupted, so that the sensor can be used again.
Zur Verbesserung der Korrelation des gemessenen Signals mit der im Gas vorhandenen Partikelkonzentration und/oder zur Steuerung der Regeneration (Temperaturgeregelt / -begrenzt) kann zusatzlich ein Temperaturfühler (etwa in Form eines Widerstandsmaanders) im Sensor integriert werden, da viele Partikel (insbesondere auch Ruß) eine von der Temperatur abhangige elektrische Leitfähigkeit aufweisen .In order to improve the correlation of the measured signal with the particle concentration present in the gas and / or to control the regeneration (temperature-controlled / limited), a temperature sensor (in the form of a resistance mander) can additionally be integrated in the sensor, since many particles (in particular soot) have a dependent on the temperature electrical conductivity.
In einer besonders bevorzugten Ausgestaltung der vorliegenden Erfindung ist vorgesehen, dass der Sensor mindestens zwei Sensorabschnitte mit jeweils mindestens zwei Elektroden aufweist, wobei die Elektroden der mindestens zwei Sensorabschnitte jeweils unterschiedliche Abstande und/oder Konfigurationen aufweisen, die mindestens zwei Sensorabschnitte mit unterschiedlichen Spannungen betrieben werden oder die Elektroden der mindestens zwei Sensorabschnitte unterschiedliche Materialien aufweisen. Auf diese Weise lassen sich verschiedene Messbereiche bzw. Messempfindlichkeiten an den verschiedenen Sensorabschnitten erzielen .
Es ist weiterhin ein Verfahren zur resistiven Bestimmung von Konzentrationen leitfahiger Partikel in Gasgemischen vorgesehen, das dadurch gekennzeichnet ist, dass bei diesem Verfahren ein wie oben beschriebener erfindungsgemaßer Sensor verwendet wird.In a particularly preferred embodiment of the present invention, it is provided that the sensor has at least two sensor sections each having at least two electrodes, wherein the electrodes of the at least two sensor sections each have different distances and / or configurations, the at least two sensor sections are operated with different voltages or the electrodes of the at least two sensor sections have different materials. In this way, different measuring ranges or measuring sensitivities can be achieved at the different sensor sections. A method is also provided for the resistive determination of concentrations of conductive particles in gas mixtures, which is characterized in that a sensor according to the invention as described above is used in this method.
Zeichnungendrawings
Die vorliegende Erfindung wird durch die im Folgenden gezeigten und diskutierten Figuren genauer erläutert. Dabei ist zu beachten, dass die Figuren nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken .The present invention will be explained in more detail by the figures shown and discussed below. It should be noted that the figures have only descriptive character and are not intended to limit the invention in any way.
Es zeigen:Show it:
Fig. 1 die Aufsicht auf einen erfindungsgemaßen Sensor;Figure 1 is a plan view of a sensor according to the invention.
Fig. 2 eine erste Ausfuhrungsform eines erfindungsgemaßen Sensors in Querschnittsansicht;FIG. 2 a cross-sectional view of a first embodiment of a sensor according to the invention; FIG.
Fig. 3 eine erste Variante einer zweiten Ausfuhrungsform eines erfindungsgemaßen Sensors in Querschnittsansicht;3 shows a first variant of a second embodiment of a sensor according to the invention in cross-sectional view;
Fig. 4 eine zweite Variante einer zweiten Ausfuhrungsform eines erfindungsgemaßen Sensors in Querschnittsansicht; und4 shows a second variant of a second embodiment of a sensor according to the invention in cross-sectional view; and
Fig. 5 eine dritte Ausfuhrungsform eines erfindungsgemaßen Sensors in vergrößerter Aufsicht.Fig. 5 shows a third embodiment of an inventive sensor in an enlarged view.
Fig. 1 zeigt einen erfindungsgemaßen Sensor 10 mit den Elektroden 11, 12 auf einer Oberflache 13. Bei den Elektroden 11, 12 handelt
es sich um sogenannte Interdigitalelektroden, die kammartig ineinander greifend angeordnet sind. Der Sensor ist z.B. im Abgasstrom eines nicht dargestellten Dieselmotors angeordnet, so dass sich Russpartikel aus dem Abgasstrom auf der Oberflache des Sensors ablagern. Wenn sich ausreichend Russpartikel auf der Oberflache abgelagert haben, werden die beiden Elektroden kurzgeschlossen, und es kann ein abnehmender Widerstand (bzw. ein zunehmender Strom bei konstanter angelegter Spannung) zwischen den Elektroden gemessen werden.Fig. 1 shows a sensor 10 according to the invention with the electrodes 11, 12 on a surface 13. In the electrodes 11, 12 acts they are so-called interdigital electrodes, which are arranged comb-like interlocking. The sensor is arranged, for example, in the exhaust gas flow of a diesel engine, not shown, so that soot particles are deposited from the exhaust gas flow on the surface of the sensor. When sufficient soot particles have deposited on the surface, the two electrodes are short-circuited and a decreasing resistance (or increasing current at a constant applied voltage) between the electrodes can be measured.
Figs . 2a, 2b zeigen einen erfindungsgemaßen Sensor 20 in zwei Querschnittsansichten unterschiedlichen Maßstabs. Dargestellt sind die Elektroden 21, 22 auf einer Oberflache 23. Im Bereich zwischen den Elektroden 21, 22 ist ein elektrisch leitendes Material 24 angeordnet, dessen Zusammensetzung so gewählt ist, dass es nach Aufbringung auf den Sensor Risse 25 ausbildet, dergestalt, dass eine durch das frisch aufgebrachte Material ggf. herbeigeführte leitfahige Verbindung zwischen den Elektroden unterbrochen wird.Figs. 2a, 2b show a sensor 20 according to the invention in two cross-sectional views of different scales. Shown are the electrodes 21, 22 on a surface 23. In the region between the electrodes 21, 22, an electrically conductive material 24 is arranged, the composition of which is selected so that it forms cracks 25 after application to the sensor, such that a through the freshly applied material is interrupted if necessary lead conductive connection between the electrodes.
Bei diesem Material 24 handelt es sich im vorliegenden Beispiel um einen leitenden Lack, der nach Auftragung Schwindungsrisse 25 ausbildet. Da die bei der Trocknung auftretenden Schwindungsrisse statistisch zufallig angeordnet sind, stellt sich ein mittlerer zu überbrückender Abstand im Bereich zwischen den Elektroden ein, der weit unterhalb des Abstandes liegt, den die Elektroden zueinander aufweisen. Auf diese Weise wird die Menge der erforderlichen Russpartikel 26 zur Herstellung einer leitfahigen Verbindung reduziert und die Messempfindlichkeit des Sensors steigt.
Figs . 3a, 3b zeigen eine erste Variante einer zweiten Ausfuhrungsform des erfindungsgemaßen Sensors 30 in zwei Querschnittsansichten unterschiedlichen Maßstabs. Dargestellt sind die Elektroden 31, 32 auf einer Oberflache 33. Im Bereich zwischen den Elektroden 31, 32 ist ein Material 34 angeordnet, das elektrisch leitende Partikel 35 aufweist. Deren Konzentration in dem Material 34 ist so gewählt, dass sie unterhalb der Perkolationsschwelle liegt. Auf diese Weise wird die Menge der erforderlichen Russpartikel 36 zur Herstellung einer leitfahigen Verbindung reduziert und die Messempfindlichkeit des Sensors steigt .In the present example, this material 24 is a conductive lacquer which forms shrinkage cracks 25 after application. Since the shrinkage cracks occurring during drying are randomly arranged, an average distance to be bridged is established in the region between the electrodes that is far below the distance that the electrodes have from one another. In this way, the amount of soot particles 26 required to produce a conductive connection is reduced and the measuring sensitivity of the sensor increases. Figs. 3a, 3b show a first variant of a second embodiment of the inventive sensor 30 in two cross-sectional views of different scales. Shown are the electrodes 31, 32 on a surface 33. In the region between the electrodes 31, 32, a material 34 is arranged, which has electrically conductive particles 35. Their concentration in the material 34 is chosen to be below the percolation threshold. In this way, the amount of soot particles 36 required to produce a conductive connection is reduced and the measuring sensitivity of the sensor increases.
Bei dem Material 34 handelt es sich im vorliegenden Beispiel um eine isolierende Aluminiumoxid-Matrix mit darin eingebetteten Platinpartikeln 35. Da die leitenden Partikel in der Matrix statistisch zufallig angeordnet sind, stellt sich ein mittlerer zu überbrückender Abstand im Bereich zwischen den Elektroden ein, der weit unterhalb des Abstandes liegt, den die Elektroden zueinander aufweisen.The material 34 in the present example is an aluminum oxide insulating matrix with platinum particles 35 embedded therein. Since the conductive particles in the matrix are randomly randomized, an average gap to be bridged is established in the region between the electrodes which is wide is below the distance that the electrodes have to each other.
Figs . 4a, 4b zeigen eine zweite Variante einer zweiten Ausfuhrungsform des erfindungsgemaßen Sensors 40 in zwei Querschnittsansichten unterschiedlichen Maßstabs. Dargestellt sind die Elektroden 41, 42 auf einer Oberflache 43. Im Bereich zwischen den Elektroden 41, 42 ist ein Material 44 angeordnet, das elektrisch leitende Partikel 45 aufweist. Ebenfalls dargestellt sind Russpartikel 46. Im Unterschied zu der in Fig. 3 gezeigten Variante wurde in dieser Variante das Material 44 auf die noch nicht mit den Elektroden versehene Oberflache des Sensors aufgetragen, und die Elektroden wurden anschließend auf das Material aufgedruckt. Diese Ausgestaltung weist dieselben Vorteile auf wie die zuvor diskutierte Variante. Überdies kann
das Material 44 so gewählt sein, dass es als Haftschicht zwischen der Oberflache 43 und den Elektroden 41, 42 dient.Figs. 4a, 4b show a second variant of a second embodiment of the inventive sensor 40 in two cross-sectional views of different scales. Shown are the electrodes 41, 42 on a surface 43. In the region between the electrodes 41, 42, a material 44 is arranged, the electrically conductive particles 45 has. In contrast to the variant shown in FIG. 3, in this variant the material 44 was applied to the surface of the sensor not yet provided with the electrodes, and the electrodes were then printed on the material. This embodiment has the same advantages as the previously discussed variant. Moreover, can the material 44 may be chosen so that it serves as an adhesive layer between the surface 43 and the electrodes 41, 42.
Fig. 5 zeigt eine dritte Ausfuhrungsform eines erfindungsgemaßen Sensors 50 in vergrößerter Aufsicht. Der Sensor weist die beiden Interdigitalelektroden 51, 52 auf, zwischen denen dendritische Strukturen 53 ausgebildet sind, die aus leitenden Partikeln 54 bestehen und mit deren Hilfe der Abstand zwischen den beiden Interdigitalelektroden 51, 52 verkürzt wird. Partikel, Elektroden und Elektrodenabstand sind nicht massstablich dargestellt.5 shows a third embodiment of an inventive sensor 50 in enlarged plan view. The sensor has the two interdigital electrodes 51, 52, between which dendritic structures 53 are formed, which consist of conductive particles 54 and with the aid of which the distance between the two interdigital electrodes 51, 52 is shortened. Particles, electrodes and electrode spacing are not shown to scale.
Ein solcher Sensor kann z.B. hergestellt werden, in dem die Oberflache des Sensors 50 einem Gasstrom ausgesetzt wird, der die genannten elektrisch leitende Partikel enthalt. Diese lagern sich - ahnlich den spateren, zu detektierenden Russpartikeln - auf der Oberflache an und bilden die genannten dendritischen Strukturen aus (siehe Fig. 5) .Such a sensor may e.g. in which the surface of the sensor 50 is exposed to a gas stream containing said electrically conductive particles. These store themselves - similar to the later, to be detected soot particles - on the surface and form the dendritic structures mentioned (see FIG. 5).
Um die Anlagerung der Partikel zu unterstutzen, kann vorgesehen sein, dass eine Gleichspannung (sogenannte Saugspannung) zwischen den beiden Elektroden 51, 52 angelegt wird, so dass sich die Partikel 54 durch elektrostatische Anziehung auf der Oberflache im Bereich der Elektroden anlagern. Unter dem Mikroskop lasst sich dabei ein regelrechtes „Wachsen" der dendritischen Strukturen 53 von den Elektroden aus in Richtung des Bereichs zwischen den Elektroden beobachten. Anschließend werden die dendritischen Strukturen 53 auf der Oberflache des Sensors 50 fixiert .
In order to support the deposition of the particles, it can be provided that a DC voltage (so-called suction voltage) is applied between the two electrodes 51, 52, so that the particles 54 accumulate on the surface in the region of the electrodes by electrostatic attraction. Under the microscope, a proper "growth" of the dendritic structures 53 from the electrodes in the direction of the area between the electrodes can be observed, after which the dendritic structures 53 are fixed on the surface of the sensor 50.
Claims
1. Sensor zur resistiven Bestimmung von Konzentrationen leitfahiger Partikel in Gasgemischen, aufweisend eine dem Gasgemisch ausgesetzte Oberflache mit mindestens zwei Elektroden, die beabstandet zueinander auf der Oberflache angeordnet sind,1. Sensor for the resistive determination of concentrations of conductive particles in gas mixtures, comprising a surface exposed to the gas mixture with at least two electrodes which are arranged at a distance from each other on the surface,
dergestalt, dass der Abstand zwischen den Elektroden durch sich auf der Oberflache des Sensors ablagernde leitfahige Partikel aus dem Gasgemisch uberbruckbar und auf diese Weise eine leitende Verbindung zwischen den Elektroden des Sensors herstellbar ist, aus der eine Messgroße für die Konzentration der leitfahigen Partikel in dem Gasgemisch ableitbar ist,in such a way that the distance between the electrodes can be bridged by conductive particles depositing on the surface of the sensor from the gas mixture and in this way a conductive connection can be produced between the electrodes of the sensor, from which a measured variable for the concentration of the conductive particles in the gas mixture is derivable
dadurch gekennzeichnet, dass mindestens im Bereich zwischen den Elektroden ein Material angeordnet ist, das so gewählt ist, dass es leitfahige Abschnitte aufweist, die bei Anlagerung leitfahiger Partikel aus dem Gasgemisch die Ausbildung einer leitfahigen Verbindung zwischen den Elektroden begünstigen.characterized in that a material is arranged at least in the region between the electrodes, which is selected such that it has conductive sections which favor the formation of a conductive connection between the electrodes when conductive particles of the gas mixture accumulate.
2. Sensor gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem im Bereich zwischen den Elektroden angeordneten2. Sensor according to claim 1, characterized in that it is arranged in the region between the electrodes
Material um ein elektrisch leitendes Material handelt, dessen Zusammensetzung so gewählt ist, dass es nach Aufbringung auf den Sensor schwindet und/oder Risse ausbildet.Material is an electrically conductive material whose composition is chosen so that it fades after application to the sensor and / or cracks.
3. Sensor gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem im Bereich zwischen den Elektroden angeordneten Material um ein Material aufweisend elektrisch leitende Partikel handelt, deren Konzentration in dem Material so gewählt ist, dass sie unterhalb der Perkolationsschwelle liegt .3. Sensor according to claim 1, characterized in that it is in the region between the electrodes arranged material comprising a material electrically conductive Particles whose concentration in the material is chosen to be below the percolation threshold.
4. Sensor gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem im Bereich zwischen den Elektroden angeordneten Material um elektrisch leitende Partikel handelt, die dendritische Strukturen zwischen den Elektroden ausbilden.4. Sensor according to claim 1, characterized in that the material arranged in the region between the electrodes is electrically conductive particles which form dendritic structures between the electrodes.
5. Sensor gemäß einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Elektroden zueinander in Form von Interdigitalelektroden angeordnet sind.5. Sensor according to one of claims 1 - 4, characterized in that the electrodes are arranged to each other in the form of interdigital electrodes.
6. Sensor gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Elektroden mittels Siebdrucktechnik auf die Oberflache des Sensors aufgebracht sind.6. Sensor according to one of the preceding claims, characterized in that the electrodes are applied by means of screen printing technology on the surface of the sensor.
7. Sensor gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass es sich bei den zu bestimmenden leitfahigen Partikeln um Russpartikel handelt.7. Sensor according to one of the preceding claims, characterized in that it is to be determined conductive particles are soot particles.
8. Sensor gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Sensor um einen Russpartikelsensor handelt.8. Sensor according to one of the preceding claims, characterized in that it is the sensor is a soot particle sensor.
9. Sensor gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Gasgemisch um ein Verbrennungsgas-Gemisch handelt.9. Sensor according to one of the preceding claims, characterized in that it is the gas mixture is a combustion gas mixture.
10. Sensor gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Sensor im Abgassstrom eines Dieselmotors angeordnet ist. 10. Sensor according to one of the preceding claims, characterized in that the sensor is arranged in the exhaust stream of a diesel engine.
11. Sensor gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Sensor eine Heizeinrichtung zur thermischen Regeneration des Sensors aufweist.11. Sensor according to one of the preceding claims, characterized in that the sensor has a heating device for thermal regeneration of the sensor.
12. Sensor gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Sensor einen Temperaturfühler aufweist .12. Sensor according to one of the preceding claims, characterized in that the sensor has a temperature sensor.
13. Sensor gemäß einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Sensor mindestens zwei Sensorabschnitte mit jeweils mindestens zwei Elektroden aufweist, wobei13. Sensor according to one of the preceding claims, characterized in that the sensor has at least two sensor sections, each having at least two electrodes, wherein
(a) die Elektroden der beiden Sensorabschnitte jeweils unterschiedliche Abstande und/oder Konfigurationen aufweisen; (b) die beiden Sensorabschnitte mit unterschiedlichen(A) the electrodes of the two sensor sections each have different spacings and / or configurations; (B) the two sensor sections with different
Spannungen betrieben werden; oder (c) die Elektroden der beiden Sensorabschnitte unterschiedliche Materialien aufweisen.Voltages are operated; or (c) the electrodes of the two sensor sections comprise different materials.
14. Verfahren zur resistiven Bestimmung von Konzentrationen leitfahiger Partikel in Gasgemischen, dadurch gekennzeichnet, dass bei diesem Verfahren ein Sensor gemäß einem der Ansprüche 1 - 12 verwendet wird. 14. A method for the resistive determination of concentrations of conductive particles in gas mixtures, characterized in that in this method, a sensor according to any one of claims 1-12 is used.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610040351 DE102006040351A1 (en) | 2006-08-29 | 2006-08-29 | Sensor for the resistive determination of concentrations of conductive particles in gas mixtures |
DE102006040351.7 | 2006-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008025602A1 true WO2008025602A1 (en) | 2008-03-06 |
Family
ID=38515384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/057053 WO2008025602A1 (en) | 2006-08-29 | 2007-07-10 | Sensor for resistively determining concentrations of conductive particles in gas mixtures |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102006040351A1 (en) |
WO (1) | WO2008025602A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009010389A1 (en) | 2007-07-17 | 2009-01-22 | Robert Bosch Gmbh | Sensor unit for the detection of conductive particles in a flow of gas and method for the production and use thereof |
US8950239B2 (en) | 2012-01-17 | 2015-02-10 | International Business Machines Corporation | Conductive dust detection |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006029214A1 (en) * | 2006-06-26 | 2007-12-27 | Robert Bosch Gmbh | Particle filter arrangement for motor vehicle, has sensor with electrodes arranged on surface, where particle filter and sensor are arranged such that heating device is used for thermal regeneration of particle filter and sensor |
DE102010055478A1 (en) * | 2010-12-22 | 2012-06-28 | Continental Automotive Gmbh | Method for operating a soot sensor |
FR2995689B1 (en) * | 2012-09-20 | 2015-07-03 | Electricfil Automotive | SOOT-DEPOSITION MEASUREMENT PROBE IN THE EXHAUST AND METHOD FOR MANUFACTURING THE SAME |
DE102013206092A1 (en) * | 2013-04-05 | 2014-10-09 | Continental Automotive Gmbh | Method for evaluating the measured values of a soot sensor |
DE102014222844B4 (en) * | 2014-11-10 | 2018-05-09 | Continental Automotive Gmbh | soot sensor |
US10539493B2 (en) * | 2016-07-25 | 2020-01-21 | Denso Corporation | Particulate matter detection sensor and particulate matter detection apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2029028A (en) * | 1978-08-17 | 1980-03-12 | Bosch Gmbh Robert | Sensor for monitoring the freedom of exhaust gases from soot |
DE4137253A1 (en) * | 1991-11-13 | 1993-05-19 | Fraunhofer Ges Forschung | Dust sensor, esp. for metallic or non-metallic fine dust - has electrically conducting filter fleece with conductivity dependent on dust particles in pores, and metal covering layer |
WO2003006976A2 (en) * | 2001-07-10 | 2003-01-23 | Robert Bosch Gmbh | Sensor for detecting particles and method for controlling the function thereof |
DE10149333A1 (en) * | 2001-10-06 | 2003-05-08 | Bosch Gmbh Robert | Sensor arrangement used for measuring moisture content of gases comprises resistance measuring structure arranged on substrate and interacting with soot layer, and temperature measuring device |
WO2004097392A1 (en) * | 2003-05-02 | 2004-11-11 | Robert Bosch Gmbh | Sensor for detecting particles |
DE102004059650A1 (en) * | 2004-12-10 | 2006-06-14 | Robert Bosch Gmbh | Resistive particle sensors with measuring electrodes |
WO2007000446A1 (en) * | 2005-06-28 | 2007-01-04 | Siemens Vdo Automotive Ag | Sensor and operating method for detecting soot |
-
2006
- 2006-08-29 DE DE200610040351 patent/DE102006040351A1/en not_active Ceased
-
2007
- 2007-07-10 WO PCT/EP2007/057053 patent/WO2008025602A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2029028A (en) * | 1978-08-17 | 1980-03-12 | Bosch Gmbh Robert | Sensor for monitoring the freedom of exhaust gases from soot |
DE4137253A1 (en) * | 1991-11-13 | 1993-05-19 | Fraunhofer Ges Forschung | Dust sensor, esp. for metallic or non-metallic fine dust - has electrically conducting filter fleece with conductivity dependent on dust particles in pores, and metal covering layer |
WO2003006976A2 (en) * | 2001-07-10 | 2003-01-23 | Robert Bosch Gmbh | Sensor for detecting particles and method for controlling the function thereof |
DE10149333A1 (en) * | 2001-10-06 | 2003-05-08 | Bosch Gmbh Robert | Sensor arrangement used for measuring moisture content of gases comprises resistance measuring structure arranged on substrate and interacting with soot layer, and temperature measuring device |
WO2004097392A1 (en) * | 2003-05-02 | 2004-11-11 | Robert Bosch Gmbh | Sensor for detecting particles |
DE102004059650A1 (en) * | 2004-12-10 | 2006-06-14 | Robert Bosch Gmbh | Resistive particle sensors with measuring electrodes |
WO2007000446A1 (en) * | 2005-06-28 | 2007-01-04 | Siemens Vdo Automotive Ag | Sensor and operating method for detecting soot |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009010389A1 (en) | 2007-07-17 | 2009-01-22 | Robert Bosch Gmbh | Sensor unit for the detection of conductive particles in a flow of gas and method for the production and use thereof |
US8950239B2 (en) | 2012-01-17 | 2015-02-10 | International Business Machines Corporation | Conductive dust detection |
Also Published As
Publication number | Publication date |
---|---|
DE102006040351A1 (en) | 2008-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1623217B1 (en) | Sensor for detecting particles | |
WO2008025602A1 (en) | Sensor for resistively determining concentrations of conductive particles in gas mixtures | |
EP1792170B1 (en) | Sensor element for particle sensors and method for operating the sensor element | |
WO2008113644A2 (en) | Sensor element of a gas sensor | |
WO2009043711A1 (en) | Method for the self-diagnosis of a particle sensor, particle sensor suited for performing the method, and the use thereof | |
DE102009028239A1 (en) | Method and device for self-diagnosis of a particle sensor | |
DE102006055520A1 (en) | Device and method for checking the functionality or plausibility of a sensor based on an interdigital electrode system sensor and a sensor for detecting particles in a gas stream and its use | |
DE102009028283A1 (en) | Method for on-board-diagnosis of particulate sensor for determining particulate content in gas stream in exhaust channel of diesel engine to e.g. monitor soot emission of engine, involves evaluating changes in output signal of sensor | |
DE112017006342T5 (en) | Device for the detection of fine dust | |
DE10331838B3 (en) | Sensor element for detecting soot particles in an exhaust gas stream comprises a sensor body having a sensor surface, and a resistance structure for heating the sensor body and for acquiring the temperature of the sensor body | |
WO2006027287A1 (en) | Sensor element for particle sensors and method for the production thereof | |
DE102006047927A1 (en) | Sensor i.e. soot particle sensor, for use in exhaust stream of diesel engine for resistive determination of concentrations of conductive particle in gas flows, has longitudinal structures raised to surface in region of sensing section | |
EP2145173B1 (en) | Sensor for detecting particles in a gas flow | |
DE102006029214A1 (en) | Particle filter arrangement for motor vehicle, has sensor with electrodes arranged on surface, where particle filter and sensor are arranged such that heating device is used for thermal regeneration of particle filter and sensor | |
DE102008041809A1 (en) | Particle sensor, particularly resistive particle sensor for detection of conductive particles in gas stream, comprises two electrode systems with primary electrode and secondary electrode, and ceramic base body | |
DE102009000077B4 (en) | Particle sensor with reference measuring cell and method for the detection of conductive particles | |
DE102005029219A1 (en) | Soot deposit measuring method, for use in motor vehicle exhaust area, involves determining separations of soot in inter digital condenser structure or heating conductor by change of electrical or thermal measured value of structure | |
DE102007046097A1 (en) | Self-diagnostic function embedded sensor element for e.g. workshop measuring device for exhaust emission testing, has electrodes with electrode arms, where semiconducting material and/or low conductive material contacts arms in region | |
DE102007039566A1 (en) | Sensor element for detecting particle in gas flow, has electrodes forming interdigital electrode system, where one electrode enlarge range of electrical field within range of electrode system | |
EP3551989A1 (en) | Sensor for use in an exhaust gas stream of an internal combustion engine, and method for producing same | |
WO1998039642A1 (en) | Liquid sensor for liquid and gaseous organic compounds and method for the production thereof | |
DE102010011639A1 (en) | Soot sensor e.g. resistive soot sensor, for use in waste gas system of internal combustion engine of motor vehicle, has additive structure arranged between electrodes so that resistance between electrodes is reduced to specific value | |
EP3140632B1 (en) | Sensor for detecting particles | |
DE102005063641B3 (en) | soot sensor | |
EP3513166B1 (en) | Sensor element for detecting particles of a measuring gas in a measuring gas chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07787327 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07787327 Country of ref document: EP Kind code of ref document: A1 |