Nothing Special   »   [go: up one dir, main page]

WO2008004706A1 - Method of detecting target substance using nucleic acid amplification method available under thermostatic conditions - Google Patents

Method of detecting target substance using nucleic acid amplification method available under thermostatic conditions Download PDF

Info

Publication number
WO2008004706A1
WO2008004706A1 PCT/JP2007/063771 JP2007063771W WO2008004706A1 WO 2008004706 A1 WO2008004706 A1 WO 2008004706A1 JP 2007063771 W JP2007063771 W JP 2007063771W WO 2008004706 A1 WO2008004706 A1 WO 2008004706A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
protein
target substance
substance
antibody
Prior art date
Application number
PCT/JP2007/063771
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichiro Ishikawa
Original Assignee
Synthera Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synthera Technologies Co., Ltd. filed Critical Synthera Technologies Co., Ltd.
Publication of WO2008004706A1 publication Critical patent/WO2008004706A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex

Definitions

  • the present invention relates to a method for detecting a target substance using a reaction (for example, an antigen-antibody reaction) between a target substance and a substance that can specifically bind to the target substance. Specifically, the present invention relates to a method for labeling the binding substance and detecting the label after binding to a target substance.
  • a reaction for example, an antigen-antibody reaction
  • both of these methods detect the amplified oligonucleic acid chain by amplifying it by PCR. Therefore, complicated temperature control (dissociation, annealing, synthesis) must be repeated precisely and repeatedly in the reaction system, making rapid amplification detection difficult.
  • the problem to be solved by the present invention is that the detection of a target substance using a binding substance labeled with an oligonucleic acid chain can be performed more quickly, accurately and easily at a low cost.
  • the present inventor has intensively studied to solve the above problems. As a result, a complex temperature control is required as an amplification method of labeled oligonucleic acid strands: Instead of the PCR method, we focused on nucleic acid amplification methods (eg, LAMP method and ICAN method) that can be reacted under constant temperature conditions. . Then, as an oligonucleic acid chain used for labeling, an oligonucleic acid chain having a region binding to a primer used in such a nucleic acid amplification method is used, and the oligonucleic acid chain is amplified to detect a target substance.
  • the present invention is as follows.
  • a target substance detection method comprising a binding substance labeled with an oligonucleic acid chain having a region that binds to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions, and a target in a test sample
  • the target substance is a plurality of kinds of substances
  • As the binding substance a substance that is labeled so that it can be identified and detected corresponding to the type of the target substance can be used.
  • a plurality of types of target substances can be identified and detected by using at least one primer set as a primer used in the nucleic acid amplification method.
  • nucleic acid amplification method examples include LAMP method and ICAN method.
  • the labeling treatment examples include those in which an oligonucleic acid chain is fixed to the binding substance via at least a portion of the adapter.
  • the adapter may include any protein selected from protein G, protein A and protein L, a fusion protein of at least two proteins selected from protein G, protein A and protein L, protein G and protein. Examples include fusion proteins of at least one protein selected from A and Protein L and other proteins, and combinations thereof.
  • Examples of the target substance include an antigen, and examples of the binding substance include an antibody.
  • a kit for detecting a target substance comprising a binding substance labeled with an oligonucleic acid chain having a region that binds to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions.
  • examples of the primer include a primer for LAMP method and a primer for ICAN method.
  • FIG. 1 is a schematic flow diagram showing an embodiment of the detection method of the present invention.
  • FIG. 2A is a schematic flow diagram showing an embodiment of the detection method of the present invention.
  • FIG. 2B is a schematic flow diagram (a continuation of the flow diagram shown in FIG. 2A) showing an embodiment of the detection method of the present invention.
  • FIG. 3 is a schematic diagram showing an example of an embodiment in which an oligonucleic acid chain is cleaved from a labeled binding substance.
  • FIG. 4 is a schematic diagram showing an example of an embodiment in which an oligonucleic acid chain is cleaved from a labeled binding substance.
  • Figure 5 shows an antibody with an oligopeptide nucleic acid strand complexed through a portion of the adapter. It is the schematic which shows one Example which uses and identifies and detects an antigen.
  • FIG. 6 is a chart showing an example of a result of GeneScan analysis performed by DNA sequencer ABI-3100 (also an enlarged view of the chart shown in FIG. 5 (5)).
  • FIG. 7 is a graph showing the results of DNA amplification obtained by the detection method of the present invention.
  • FIG. 8 is a graph showing the results of DNA amplification when the real-time PCR method is used instead of the LAMP method in the detection method of the present invention.
  • Figure 9 is a graph plotting the mean values (ave) shown in Table 3 (below), where the vertical axis represents the Ct value and the horizontal axis represents the logarithmic antigen concentration (pg / mL).
  • amplified fragment 2 5 amplified fragment 2 6: amplified fragment BEST MODE FOR CARRYING OUT THE INVENTION
  • a binding substance labeled with an oligonucleic acid chain having a region that binds to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions is brought into contact with a target substance in a test sample, and the binding substance and Process of forming a complex with the target substance (complex formation process),
  • the method of the present invention may further include other steps, and these other steps can be performed using known means and methods.
  • nucleic acid amplification method used in the present invention will be described, then, the outline of the entire detection method of the present invention will be exemplarily described, and then the complex formation process, the amplification process, and the detection process will be described. These will be described in order.
  • an amplification product is obtained by using a nucleic acid amplification method in which an oligonucleic acid chain to be labeled is in a saddle shape and can react under a constant temperature condition.
  • the nucleic acid amplification method is not limited as long as it can amplify the oligo-nucleic acid strand that is in the shape of a cage under a certain reaction temperature condition.
  • LAMP Loop-Mediated Isothermal Amplification
  • ICAN like properly preferred Isothermal and Chimeric primer-initiated Amplincation oi Nucleic acids
  • the LAMP method is characterized in that four types of primers are set for the six regions in the cage-shaped oligonucleic acid strand, and the amplification reaction proceeds at a constant temperature using a strand displacement reaction. It is. In other words, the LAMP method does not require denaturation (dissociation) from double strands to single strands or strict temperature control (it does not depend on the so-called PCR cycle) like the PCR method. The reaction can be continued continuously only by premixing the primer, DNA synthase and substrate, etc., and maintaining the temperature at a constant temperature (approximately 60 to 65 ° C) ("K. NAGAMINE et al., Mol. Cell. Probes, vol. 16 (3), 223-229 (2002) "etc.).
  • the LAMP method has higher amplification efficiency than the PCR method, and can amplify the vertical DNA from 10 9 to 10 10 times in 15 minutes to 1 hour.
  • the amplification product by the LAMP method has a repetitive structure having sequences complementary to each other on the same strand, and a variety of sequences having a length almost the same as the target region in the vertical DNA can be used as a repeat unit. This results in the synthesis of unit amplification products.
  • LAMP primer sets are the 6 different regions (5 ′ end side) in the target region of vertical DNA. F3, F2, Fl, Blc, B2c, B3c) and their complementary regions (B3, B2, Bl, Flc, F2c, F3c in this order from the 5 ′ end) It consists of a combination of specific primers designed based on the sequence.
  • the LAMP primer set is a Forward Inner Primer (hereinafter referred to as ⁇ Finer Primer Primer '') formed by linking nucleic acids of the Flc region and F2 region from the 5 ′ end.
  • BIP Backward Inner Primer
  • F3 primer F3 primer
  • B3 plastic consisting of nucleic acids in the B3 region It consists of four types with Imama.
  • loop primers Loop Primer F and Z or Loop Primer B
  • the loop primer is a primer having a sequence complementary to the base sequence of the single-stranded region formed between the B1 region and the B2 region or between the F1 region and the F2 region.
  • Each of the above-mentioned primers for the LAMP method only needs to have a —OH group that serves as a base for complementary strand synthesis at the 3 ′ end, and its backbone is not necessarily limited to that by a phosphodiester bond.
  • a phosphothioate body with S as the backbone instead of P may be composed of peptide nucleic acids based on peptide bonds.
  • Each LAMP primer can be prepared by chemical synthesis using, for example, an automatic DNA synthesizer.
  • the DNA polymerase that can be used in the LAMP method is not particularly limited as long as it has a strand displacement activity.
  • examples of such enzymes include Bst DNA polymerase (large fragment), Bca (exo-) DNA polymerase, Klenow fragment of E. coli DNA polymerase I, Vent (Exo-) DNA polymerase (from Vent DNA polymerase to ethanuclease) Non-active), DeepVent (Exo-) DNA polymerase (Deep Vent DNA polymerase excluding etanuclease activity), KOD DNA polymerase and the like, preferably Bst DNA polymerase (large fragment).
  • Bst DNA polymerase it is desirable to perform the reaction at around 60-65 ° C, which is the optimum temperature for the reaction.
  • amplification products can be detected by observing (visual confirmation) this white turbidity after completion of the reaction, or measuring the turbidity after the reaction and the turbidity change during the reaction with a suitable measuring instrument. In this way, amplification products can be detected.
  • a spectrophotometer or the like may be used as the measuring instrument, and usually the absorbance at a wavelength of 650 nm may be measured.
  • Amplification is performed in an accelerated and efficient manner, so pre-added to the reaction solution are ethimubu bumumide and SYBR (registered trademark) Green I, which are specifically intercalated into the double-stranded DNA molecule. By doing so, the presence or absence of amplification can be checked carefully, and the amount of amplification can be detected in real time if necessary.
  • the detection method using a labeled nucleic acid (DNA, RNA, PNA, etc.) that specifically recognizes the amplified DNA, or the reaction solution after completion of the reaction is directly subjected to agarose gel electrophoresis. It is also possible to adopt a detection method.
  • the ICAN method is a method that does not depend on the so-called PCH cycle, and is premixed with cages, primers, DNA synthase and substrate, and kept at a constant temperature (about 50 to 65 ° C). It is a method that can continuously and continuously advance the reaction (see “Isogai. E et al. Comp. Immunol. Microbiol. Infect. Dis. 2005 (5-6): 363-370" etc.) .
  • the primer for the ICAN method only needs to have a —OH group that serves as a base for complementary strand synthesis at the 3 ′ end, and its backbone is not necessarily limited to that based on a phosphodiester bond.
  • the phosphothioate body with S (sulfur) as the backbone may be composed of peptide nucleic acids based on peptide bonds.
  • Each ICAN primer can be prepared by chemically synthesizing using, for example, an automatic nucleic acid synthesizer.
  • the DNA polymerase that can be used in the ICAN method is not particularly limited as long as it has a strand displacement activity and a cage-type exchange activity.
  • examples of such an enzyme include Bca (exo-) DNA polymerase, BcaBEST TM DNA polymerase and the like, and preferably Bca (exo-) DNA polymerase.
  • the ICAN method specifically cleaves the RNA strand at the DNA-RNA hybrid site.
  • Another feature is the use of RNase H.
  • the reaction intermediate obtained through strand displacement reaction and cage exchange reaction based on the cage DNA has a DNA-RNA hybrid site consisting of the RNA portion derived from the chimeric primer and its complementary DNA.
  • RNase H the strand displacement reaction and the cage-type exchange reaction proceed again, which becomes a mechanism for obtaining a reaction product and a new reaction intermediate.
  • the ICAN method has a higher amplification efficiency than the PCR method, and can amplify DNA-type DNA 10 6 to 10 8 times in 30 minutes to 1 hour. This amplification efficiency is about 10 times the amount of synthesis compared to the normal PCR method.
  • an antigen and an antibody are described as examples of the target substance and the binding substance, but the same description can be applied to cases where the target substance and the binding substance are other than the antigen and the antibody.
  • a case will be described in which multiple types (two types) of substances are used as target substances, and they are identified and detected using the ICA method (individually detected).
  • the following examples can be referred to as needed.
  • a plurality of types (four types) of antigens 1 are immobilized as target substances on a well plate 2 serving as a support (FIG. 1 (a ))
  • Add oligonucleotide conjugate antibodies (labeled antibodies) 3 and 4 as binding substances for these antigens 1 (Fig. 1 (b)).
  • Antibody 3 is a complex antibody that forms a complex with oligonucleotide chain 5
  • antibody 4 is a complex antibody that forms a complex with oligonucleotide chain 6.
  • Each of antibodies 3 and 4 has a sequence capable of binding a common primer for ICAN method (F primer 9, R primer 10) in the oligonucleotide chains 5 and 6.
  • the length of oligonucleotide strands 5 and 6 is The nucleotide sequences are designed (or selected) so that the lengths of the amplified fragments obtained by the ICAN method are different from each other. Specifically, as shown in FIG. 1 (e), (as shown in 0, the sequence between / 3 is amplified from oligonucleotide chain 5 in antibody 3, and ⁇ ⁇ is amplified from oligonucleotide chain 6 in antibody 4. The sequence between is amplified, and the sequence between ⁇ 3 is shorter.
  • antibodies 3 and 4 are each bound to a specific antigen by antigen-antibody reaction to form antigen-antibody complexes 7 and 8 (FIG. 1 (c)). Antigens that did not form the complex are removed by washing (FIG. 1 (d)).
  • the length of the obtained fragment is identified and detected by electrophoresis using an agarose gel or the like (FIG. 1 (g)).
  • Fig. 1 (g) two different bands corresponding to nucleotide fragments 11 and 12 are detected.
  • the test sample containing 4 types of antigens contained 2 types of antigens as target substances.
  • FIG. 2A As shown in the schematic flow chart of ⁇ , first, multiple types (4 types) of antigens 1 were immobilized as target substances on the well plate 2 as a support (Fig. 2A (a)). As a binding substance to the antibody, add the oligonucleotide complex antibody (labeled antibody) 13, 14 (Fig. 2A (b)).
  • the antibody 13 is a composite antibody that forms a complex with the oligonucleotide chain
  • the antibody 14 is a composite antibody that forms a complex with the oligonucleotide chain 16.
  • Antibodies 13 and 14 both have restriction enzyme sites 1 18 (for example, EcoRI, etc.) in their respective oligonucleotide strands 15 and 16, and have a common ICAN primer (Primer 23, R primer) 24) has a sequence to which it can bind.
  • the nucleotide sequences of the oligonucleotide strands 15 and 16 are designed (or selected) such that the lengths of the amplified fragments obtained by the ICAN method are different from each other. Specifically, as shown in FIG.
  • the sequence between the oligonucleotides 15 in the antibody 13 and the oligonucleotide j3 is amplified, and from the oligonucleotide chain 16 in the antibody 14 V ⁇
  • the sequence between is amplified, and the sequence between O ⁇ is shorter.
  • antibodies 13 and 14 are each bound to a specific antigen by antigen-antibody reaction to form antigen-antibody complexes 19 and 20 (FIG. 2A ( C )). Antigens that did not form the complex are removed by washing (Hl2A (d)).
  • nucleotide fragments 21 and 22 were amplified between 3 and 3
  • nucleotide fragments 25 of different lengths were amplified from each of nucleotide fragments 21 and 22 as amplification products.
  • And 26 fragments amplified between ⁇ are obtained (FIG. 2B (g)).
  • the length of the obtained fragment is identified and detected by electrophoresis using an agarose gel or the like (FIG. 2B (h)).
  • FIG. 2B (h) two different bands corresponding to nucleotide fragments 25 and 26 were detected.
  • the test sample containing 4 types of antigens contained 2 types of antigens as target substances.
  • this step is a step in which the target substance in the test sample is brought into contact with the labeled binding substance to form a complex of the target substance and the binding substance.
  • the bound substance a bound substance labeled with an oligonucleic acid chain having a region bound to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions is used.
  • the target substance in the test sample may be fixed to the support, may not be fixed, or may include both.
  • binding substance means a substance that can specifically bind to a specific target substance, and examples thereof include an antibody against an antigen (target substance).
  • the support is not limited as long as it can fix a target substance such as an antigen, and can contact a binding substance (including a solution state) such as an antibody with the target substance.
  • a binding substance including a solution state
  • insoluble materials and shapes are usually used.
  • a support that can be used in an assembly system based on an antigen-antibody reaction is preferable, and specific examples include multi-plastic well plates, plastic beads, latex beads, magnetic beads, plastic tubes, nylon membranes, and nitrocellulose membranes.
  • the target substance to be detected is not limited as long as it is contained in the test sample.
  • various proteins including antibody proteins
  • peptides oligopeptides, polypeptides, etc.
  • polysaccharides oligopeptides, polypeptides, etc.
  • polysaccharides oligopeptides, polypeptides, etc.
  • Glycolipids oligopeptides, polypeptides, etc.
  • nucleic acids DNA and RNA
  • test samples include, but are not limited to, biological components (tissues and blood), foods such as meat and vegetables, soil and river water, and combustion waste.
  • the concentration of the target substance in the test sample is not limited, but according to the method of the present invention, for example, even if the amount of the target substance per test sample is ng order or less, a specific target substance can be clearly detected. It may be less than pg order, or even less than fg order.
  • the substance in the test sample containing the target substance is immobilized on a support and then brought into contact with the labeled binding substance, thereby performing a specific binding reaction between the target substance and the binding substance.
  • the reaction may be performed without being fixed to a support or the like, or a combination thereof may be performed, without limitation.
  • Examples of methods for fixing the target substance to the support include, for example, a method for fixing the target substance on the support surface, a substance that specifically binds to the target substance (such as an antibody) is previously bound to the support surface, and fixed. Then, by binding the target substance to this fixed binding substance, The method of fixing to a support body indirectly etc. are mentioned.
  • the target substance can be selected in advance from among a wide variety of substances in the test sample, so that the detection sensitivity and detection accuracy can be further increased.
  • both the binding substance immobilized on the support and the labeled binding substance used later are antibodies, both antibodies usually recognize the target substance (antigen). Use different epitopes.
  • the target substance When the target substance is immobilized on the support, it is preferable to perform blocking according to a conventional method before contacting with the labeled binding substance. In the case of direct immobilization, it is desirable to perform blocking after immobilization, and in the case of indirect immobilization, after immobilization of the binding substance to the support and before the binding of the target substance.
  • a plurality of types of substances in the test sample may be used as target substances.
  • the number of types of target substances is not particularly limited as long as it is plural (at least two types).
  • a specific target substance is selected. It can be clearly identified and detected, and may be 50 types or more, and may be 100 types or more.
  • the form of the labeled binding substance used in this step is not limited. However, when one kind of substance in the test sample is used as the target substance, one kind of binding substance that can specifically bind to the target substance is used. It is preferable to use the same (same) labeling treatment.
  • a common (one type) labeling process is applied to all of the binding substances that can specifically bind to each of these target substances. Can be used. If there is a binding substance that can specifically bind to all of the multiple types of target substances, one that has been subjected to one type of labeling treatment may be used. As a result, multiple types of target substances can be comprehensively detected.
  • each of the binding substances that can specifically bind to each of these target substances has a different standard for each type. It is also possible to use information that has been subjected to recognition processing (may be a common labeling process among some types). That is, a plurality of types of binding substances labeled so as to be discriminated and detected corresponding to the types of target substances may be used (for example, see FIGS. L (b) to (d)). In this case, multiple types of target substances can be detected comprehensively, and the number of types of detected target substances and the number of types of target substances contained in the test sample can be determined by specifying the types. Identification can be done.
  • “different labeling process” and “labeling process capable of distinguishing and detecting” refer to selection or design of oligonucleic acid chains to be labeled so that the lengths of fragments amplified by a predetermined primer are different from each other.
  • the predetermined primer may be one using one kind of primer set, or may be one using two or more kinds of primer sets, and is not limited.
  • an amplified fragment can be obtained by binding to any type of oligonucleic acid chain to be labeled.
  • the length of the amplified fragment obtained depends on the type of oligonucleic acid chain (label (For example, see Fig. L (e) and (£)).
  • the length of the amplified fragment obtained by using each primer that specifically binds to each type of oligonucleic acid chain to be labeled is It depends on the type of chain.
  • a binding substance to be labeled for example, in addition to an antibody (antibody protein) that can specifically bind to a specific antigen substance, a hybridized substance is used for a specific target gene or nucleic acid molecule.
  • Single-stranded nucleic acids synthetic nucleic acids such as DNA, RNA (mRNA, etc.) and peptide nucleic acids
  • various proteins except antibodies
  • proteins include proteins that can specifically bind to lipids (lectins and the like), antigenic substances that can specifically bind to specific antibodies, and antibodies are preferred.
  • the binding substance is an antibody
  • the labeled antibody may be referred to as “complex antibody”.
  • the binding substance is an antibody
  • monoclonal antibodies having specificity common to a plurality of specific types of antigens can be used. According to the Atsy system using such antibodies, multiple species A class of antigens can be comprehensively detected by a single antibody.
  • “to bring the target substance in the test sample into contact with the labeled binding substance” means that the target substance and the binding substance are brought into direct contact with each other and bonded in a broader sense.
  • the primary binding substance (primary antibody, etc.) is bound to the target substance, and then the labeled binding substance is brought into contact as a binding substance having specificity for the primary binding substance. It also means that the target substance and the labeled binding substance are indirectly bound.
  • the primary binding substance may further be bound with a secondary binding substance, a tertiary binding substance, and a ⁇ -order binding substance. Substances that can specifically bind to ⁇ -order binding substances may be used.
  • is preferably 1 to 11, more preferably 1 or 2.
  • an oligonucleic acid chain having a region that binds to a primer (such as a primer for LAMP method and a primer for ICAN method) that can be reacted under constant temperature conditions is used.
  • the region that binds to the primer for the LAMP method is a primer set composed of the FIP, BIP, F3 primer, and B3 primer (Loop Primer F and Loop Primer B as required) described above.
  • the region that binds to the primer for the ICAN method is a region that includes two regions that serve as a basis for designing a primer set composed of the two chimeric primers (F and R primers) described above, and It means a region that can be amplified using this primer set, and the specific nucleic acid sequence is not limited.
  • the oligonucleic acid chain to be labeled has, for example, a region that can be cleaved by a restriction enzyme (see FIG. 2A (e)), a region that has a region that can be cleaved by light irradiation, or can be cleaved by active oxygen. (See Fig. 3).
  • a restriction enzyme see FIG. 2A (e)
  • a region that has a region that can be cleaved by light irradiation or can be cleaved by active oxygen.
  • Oligonucleic acid strands include oligonucleotide strands (oligo DNA strands and oligos A UNA chain (preferably an oligo DNA chain)), an oligopeptide nucleic acid chain (oligo PNA chain), or a mixed chain thereof is preferably mentioned, and an oligonucleotide chain is more preferable. Further, in the present invention, the oligonucleic acid chain includes those containing a part of the oligopeptide chain. When the oligopeptide chain is contained at one end of the oligonucleic acid chain, for example, to facilitate the labeling of the binding substance, or as a cleavage part for later separation from the complex (Fig. 4). The oligopeptide peptide chain can be used.
  • the oligonucleic acid chain may be a natural product or a synthetic product, but is preferably a synthetic product.
  • the length of the oligonucleic acid chain used as a label is not particularly limited, but is preferably, for example, 100 to 5,000 mer, more preferably 100 to 1,000 mer, and still more preferably 100 to 500 mer.
  • the length of the oligonucleic acid chain satisfies the above range, complexing with a binding substance is facilitated, the state after complexing is stabilized, detection sensitivity can be improved, and detection time can be shortened.
  • the labeled binding substance can be prepared, for example, by covalently binding one end of an oligonucleic acid chain used as a label to the binding substance.
  • the oligonucleic acid chain is obtained by chemical or enzymatic treatment (preferably chemical treatment) of, for example, one or more thiol groups, amino groups (substituents), or thiotin (or avidin). It may be introduced. This facilitates complexation with a binding substance, stabilizes the state after complexation, improves the yield of the resulting complex, and increases detection sensitivity and detection effect.
  • the oligonucleic acid chain is labeled on the binding substance.
  • the oligonucleic acid chain with an amino group or thiol group added to the 5 'end is fixed to the binding substance using a divalent crosslinking agent.
  • a divalent crosslinking agent See “E. Hendrickson et al., Nucl. Acids: Res., Vol 23 (3), p522—529 (1995)”) and (ii) preliminarily both oligonucleic acid strand and binding substance biotin.
  • a method of immobilizing the oligonucleic acid chain to the binding substance via avidin by mixing the binding substance and the oligonucleic acid chain and adding avidin is preferable.
  • aviddin generally includes all avidin proteins having a specific binding ability to piotin protein. For example, avidin, streptavidin, neutravidin and the like are preferable. Avi Gin and -eutravidin are more preferred.
  • the oligonucleic acid chain that becomes the labeling moiety can be complexed with the binding substance via at least a portion of the adapter (see FIG. 5 (1)). Oligo Nucleic acid strands are fixed to the binding substance via a portion of the adapter, which can further enhance the structural stability after conjugation, improve the resulting conjugation rate, and improve detection sensitivity and detection effect. Result.
  • the adapter part may be, for example, any protein selected from protein G, protein A and protein L, or at least two types of proteins selected from protein G, protein A and protein L.
  • fusion protein for example, a protein A and protein G fusion protein
  • at least one protein selected from protein G, protein A and protein L and another protein for example, an anti-IgG antibody.
  • an anti-IgG antibody for example, an anti-IgG antibody
  • the method for preparing the complex containing the adapter part is not limited, but (i) First, the oligonucleic acid strand to be labeled is bound to the adapter part, and (ii) the adapter part is then fixed to the binding substance. The method is preferred.
  • a method can be employed in which an oligonucleic acid chain is bound to an adapter part by avidin-modifying a part of the adapter, biotinylating the oligonucleic acid chain, and mixing both.
  • both the adapter part and the oligonucleic acid chain are biotined in advance, and the adapter part and the oligonucleic acid chain are mixed together, and avidin is added, whereby the oligonucleic acid chain is separated from the adapter partly through avidin.
  • avidin modification of the adapter part may be carried out by first binding a linker compound with the adapter part and then binding avidin to the compound.
  • the adapter part used here is protein A, G, or L
  • a linker compound for example, I Sulfosuccinimidyl 4— (N—maleimidomethyl) cyclohexane— 1 — Carboxylate (Sulfo-SMCC) ”and the like can be preferably used.
  • Sulfo-SMGG Sulfosuccinimidyl 4— (N—maleimidomethyl) cyclohexane— 1 — Carboxylate (Sulfo-SMCC)
  • Sulfo-SMCC PIERCE, # 22322, Molecular Weight: 436.37, Spacer Arm Length: 11.6 A
  • Sulfo-SMCC first add the Sulfo-SMCC solution to the protein G solution, and slowly agitate at room temperature to bind Protein G and Su 0-SMCC. Obtain activated protein G. This bond is a bond between protein G and the Sulfo-NHS ester group of Sulfo-SMCC.
  • One or two or more Sulfo-SMCC (preferably two or more, more preferably two) per protein G molecule ⁇ 3 molecules).
  • a protein G / avidin conjugate via Sulfo-SMCC is obtained by mixing a solution of maleimide activated protein G with a separately prepared solution of maleimide activated avidin.
  • the conjugate is preferably one in which one or two or more avidin molecules (preferably two or more molecules, more preferably two to three molecules) are bound to one protein G molecule. The same applies to the case where a conjugate is obtained using protein A, L, or the like instead of protein G in the above.
  • the adapter part / labeling part conjugate obtained in (i) and the binding substance are mixed to form a complex.
  • the adapter part and the binding substance do not have binding reactivity originally, for example, both of them may be piotinated and mixed in the presence of avidin. Techniques can be used to obtain the complex. (4) Complex formation reaction
  • the method and conditions are appropriately determined in consideration of the type and physical properties of the target substance and binding substance. It can be set and is not limited.
  • a labeled binding substance when brought into contact with a target substance immobilized (coated) on a support, generally, a blocking treatment is performed in advance with a known blocking solution, and the well is washed thoroughly with a known washing solution such as PBS. Keep it. After that, an appropriate amount of a solution containing a plurality of labeled binding substances is added, and the target substance and the binding substance are subjected to a binding reaction while stirring at room temperature for 30 to 60 minutes to form a complex of both substances. It is preferable to wash thoroughly.
  • a labeled binding substance when brought into contact with a target substance that is not immobilized on a support, generally, an appropriate pretreatment is performed on the test sample containing the target substance and impurities other than the target substance are introduced. Is preferably removed or reduced.
  • Such exemplification can be preferably applied particularly to a complex formation reaction (antigen-antibody reaction) when the binding substance is an antibody and the target substance is an antigen.
  • the oligonucleic acid chain in the complex obtained in the complex formation step that is, the oligonucleic acid chain that is the labeling portion in the binding substance that has formed the complex is converted into the above-mentioned 1.
  • This is the step of amplification by the predetermined nucleic acid amplification method (LAMP method, ICAN method, etc.) explained in the item.
  • a system comprising the complex obtained in the complex formation step is mixed with a predetermined primer set, DNA synthase, substrate, etc. in advance, and kept at a constant temperature, whereby an oligo in the complex is obtained. Amplify a predetermined region of the nucleic acid strand.
  • the predetermined amplification region may be a part or all of the oligonucleic acid chain.
  • an amplification product having a repetitive structure having mutually complementary sequences on the same strand in a state where fragments of various units are mixed
  • an amplification product having a repetitive structure having mutually complementary sequences on the same strand in a state where fragments of various units are mixed
  • those with different repeat unit chain lengths should also be present in the amplification product. It becomes. Therefore, it may be difficult to detect the identification in the subsequent detection process.
  • the amplification product by the LAMP method is treated with a restriction enzyme. It is preferable to select or design an oligonucleic acid chain and / or a primer for the LAMP method in advance so that the structure can be cleaved for each repeating unit.
  • the above selection or design is performed so that an appropriate restriction enzyme recognition site is contained around the junction with the adjacent structural unit.
  • an amplified fragment having a substantially uniform chain length is obtained for each type of oligonucleic acid chain to be labeled, and identification and detection are facilitated.
  • the cutting for each repeating structural unit may be cutting for each unit, or cutting for every two units or more.
  • an appropriate restriction enzyme is added in advance to the system containing the complex obtained in the complex forming step, and the portion containing the amplification region in the oligonucleic acid chain is removed from the binding substance. It can also be cleaved and isolated, and the isolated oligonucleic acid strand can be amplified as a saddle (see (d) to (g) of FIGS. 2A and 2B). In this case, it is desirable to select or design an oligonucleic acid chain as appropriate so that it can be cleaved at an appropriate site.
  • the oligonucleic acid chain to be labeled has a region that can be cleaved by light irradiation
  • the oligonucleic acid chain is isolated and amplified as a trapezoid by irradiation with light of a predetermined wavelength. Can do.
  • a reagent that produces and releases free radicals such as HRP (horseradish peroxidase) and Fe complexes is added. By generating active oxygen, the oligonucleic acid strand can be isolated (see Fig. 3) and amplified as a cage.
  • This step is a step for detecting the amplification product obtained in the amplification step, as described above.
  • the amplification product can be easily detected by visual turbidity measurement, or may be performed using other listed means or in combination.
  • a plurality of types of amplified fragments having different chain lengths can be identified and detected by various electrophoresis methods (see, for example, FIG. 1 (g)).
  • a DNA sequencer for example, Applied Biosystems, product name: ABI-3100 was used for the obtained amplified fragment.
  • the length of the amplified fragment can be identified and detected (see Fig. 5 (3) to (5) and Fig. 6). 6. Detection kit
  • the kit of the present invention has, as a constituent component, an oligonucleic acid having a region that binds to a primer (a primer for LAMP method, a primer for ICAN method, etc.) used in a nucleic acid amplification method capable of reacting under constant temperature conditions.
  • a primer for LAMP method, a primer for ICAN method, etc.
  • a kit for detecting a target substance containing a binding substance labeled with a chain is as described in the description of the detection method of the present invention.
  • the kit of the present invention can be used effectively for carrying out the detection method of the present invention and is extremely useful.
  • the kit of the present invention may contain other components in addition to the above components.
  • Other components include, for example, primer set, dNTP, DNA polymerase, RNase H, restriction enzyme, various buffers, sterilized water, various reaction vessels (Eppendorf tube, etc.), blocking agent (Bovine Serum Albumin (BSA), Skim milk , Serum components such as Goat serum), and detergents, surfactants, fluorescent reagents (DNA intercalators, etc.), various plates, preservatives such as sodium azide, and experimental operation manuals (instructions)
  • a thermostatic chamber which can be any liquid, gas or solid medium
  • a turbidity measuring device such as a spectrophotometer
  • the 550mer oligonucleotide was prepared by using the primer of SEQ ID NO: 1 (5-MUSTagBio) with 5 as a primer and 3 linked with biotin as a primer. As a primer, PCR was performed using a primer of SEQ ID NO: 2 (3- MUSTag515).
  • PCRs described above were carried out using pcDNA3.1 (manufactured by In vitro) with Pinl as a vertical DNA and Taq polymerase as a polymerase under the following reaction solution composition and reaction conditions.
  • the following monoclonal antibodies were prepared by a conventional method.
  • Piotinylated 12CA5 was mixed with a 550mer oligonucleotide in a 1: 1 molar ratio. Subsequently, NeutrAvidin (manufactured by Piaerce) was added at a molar ratio of 1: 1 to the piotinated antibody and allowed to react at room temperature for 15 minutes. The reaction solution was passed through a 5 mL desalting column, and the target fraction was collected to obtain an oligonucleotide-conjugated antibody.
  • NeutrAvidin manufactured by Piaerce
  • antibody-bound beads were prepared by binding 9E10 (anti-Myc monoclonal antibody) to magnetic beads (manufactured by BioLabs) having a particle size of ⁇ as a support.
  • 9E10 anti-Myc monoclonal antibody
  • magnetic beads manufactured by BioLabs
  • a synthetic peptide (antigen solution) of HA-GST-Myc was used as the antigen.
  • Amount of antigen 200 pg 40 pg 8 pg 1.6 pg 320 fg 64 fg 12.8 fg 2.4 fg were thoroughly washed with PBST three times, an appropriate amount of a solution containing the oligonucleotide-conjugated antibody was added, and the reaction was carried out with shaking at room temperature for 30 minutes. After that, wash well 3 times with PBST, add the EcoRI enzyme solution prepared with EcoRI buffer solution to the residue obtained by centrifugation, and react at 37 ° C for 2 hours to obtain the oligonucleotide in the oligonucleotide conjugate antibody. The strand was broken. Thereafter, amplification was performed using the supernatant obtained by centrifugation.
  • a primer of SEQ ID NO: 3 (MUSTag FIP), a primer of 4 (MUSTag BIP), a primer of SEQ ID NO: 5 (MUSTag F3) and a primer of 6 (MUSTag B3) are added (ie, SEQ ID NOs: 3 to 6).
  • Amplification reaction was performed by the LAMP method under the following reaction solution composition and reaction conditions.
  • Loopamp DNA amplification kit (Eiken Chemical Co., Ltd.) was used for the reaction solution.
  • Sterilized water appropriate amount (about 2.3 wL)
  • reaction time has been greatly shortened.
  • the reaction time when using the LAMP method can be further reduced to about 1/3 by using a loop primer (Loop-F and Loop-B) as a LAMP primer set.
  • anti-IL-1 ⁇ anti-IL-8
  • anti-EGF monoclonal antibody R & D
  • the antibody binding plate was prepared by mixing and binding.
  • antigen IL-1 protein, IL-8, and EGF recombinant protein (manufactured by R & D) were used.
  • antigen solutions serially diluted to an antigen amount of 200 pg to 2.4 were prepared, and each was added to an antibody-binding plate and incubated at room temperature for 60 minutes.
  • Table 2 shows the amount of antigen in each well (reaction systems A to H).
  • the antigen-sensitized tool is thoroughly washed 3 times with PBST, and an appropriate amount of a solution containing three kinds of oligonucleotide-conjugated antibodies (prepared from anti-IL-1 «, anti-IL-8 and anti-EGF polyclonal antibodies) is added. And reacted at room temperature for 60 minutes. Thereafter, the plate was further washed three times with PBST, added with an EcoRI enzyme solution prepared with an EcoRI buffer solution, and reacted at 37 ° C for 15 minutes to cleave the oligonucleotide chain in the oligonucleotide-conjugated antibody. Thereafter, amplification was performed using the supernatant obtained by centrifugation.
  • the primer of SEQ ID NO: 7 (5- MUSTag- Forw3), the primer of SEQ ID NO: 8 (3- MUSTag_GEX), the probe of SEQ ID NO: 9 (TaqMan Probe # 1), the probe of SEQ ID NO: 10 (TaqMan Probe # 2) and the probe of SEQ ID NO: 11
  • TaqMan Probe # 3 (ie, the primer of SEQ ID NO: 7-8 and the probe of SEQ ID NO: 9-: 11) are added, and the Q- An amplification reaction by the PGR method was performed.
  • As a reaction solution TaqMan Universal PCR master mix (manufactured by ABI) was used.
  • Each of the probes below has a FAM fluorescent dye added to the 5 'side and a BHQ dye added to the 3' side.
  • ATCAGCCTCGACTGTGCCTTC (Distribution U number 10)
  • a g cone on the right side of the table represents the antigen concentration (0 to 200 pg / mL).
  • the detection sensitivity of each antigen was as follows.
  • IL-1 8 pg / ml
  • a target substance contained in a test sample can be detected more quickly, accurately, and at a lower cost than conventional biochemical methods using PCR (such as immuno-PCR).
  • An easy target substance detection method can be provided. According to this detection method, in particular, early diagnosis of stroke and myocardial infarction (which leads to reduction of sequelae), identification of pathogens in infectious diseases, and disseminated intravascular coagulation syndrome (
  • DIG disseminated intravascular coagulation
  • the amplification rate is very high in the LAMP method and the ICAN method as nucleic acid amplification methods that can be reacted under constant temperature conditions. Therefore, when the detection method of the present invention is performed using these methods, the reaction solution becomes turbid. The presence or absence of amplification can be easily discriminated only by measuring the intensity or by visual inspection (confirmation of cloudiness). For this reason, the target substance can be detected without using a special measuring instrument after the reaction or performing a separate operation for confirming the amplification. Therefore, the detection method of the present invention enables rapid detection on the spot where the test sample is collected, and food pollutants (residual agricultural chemicals, bacteria, etc.) or environmental pollution that particularly require such a method. It is extremely useful in the field of substance inspection (dioxin, PCB, etc.).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide a method of detecting a target substance whereby the target substance can be more quickly and accurately and easily detected at a low cost by using a binding substance having been labeled with an oligonucleic acid chain. Namely, a method of detecting a target substance characterized by comprising: the step of contacting a binding substance, which has been labeled with an oligonucleic acid chain having a region capable of binding to a primer to be used in a nucleic acid amplification method available under thermostatic conditions, with the target substance in a test sample to thereby form a complex of the target substance with the binding substance; the step of amplifying the oligonucleic acid chain in the complex by the nucleic acid amplification method as described above; and the step of detecting the amplification product.

Description

明 細 書 恒温条件下で反応可能な核酸増幅法を用いた標的物質の検出方法 技術分野  Description Method of detection of target substance using nucleic acid amplification method capable of reaction under isothermal conditions Technical Field
本発明は、 標的物質とそれに特異的に結合し得る物質との反応 (例えば、抗原 抗体反応) を利用した標的物質の検出方法に関する。 詳しくは、 上記結合物質を 標識化しておき、 標的物質との結合後に当該標識を検出する方法に関する。 背景技術  The present invention relates to a method for detecting a target substance using a reaction (for example, an antigen-antibody reaction) between a target substance and a substance that can specifically bind to the target substance. Specifically, the present invention relates to a method for labeling the binding substance and detecting the label after binding to a target substance. Background art
モノクローナル抗体作製技術の確立により、 特定の抗原に対して特異的に反応 し得る抗体の入手が可能となり、 抗原抗体反応の特異性を利用した抗原検出ァッ セィ系の開発及ぴ改良が、 研究及ぴ臨床等のいずれの分野においても不可欠なも のとなつている。 このようなアツセィ系は、 一般に、 抗原に反応させる抗体に特 定の標識を施しておき、 反応後に当該標識を検出することで抗原の検出に代える というものである。 そして、 検出感度をより高めるため、 新たな標識の種類ゃ検 出方法等の開発を目的として様々な研究が行われてきた。 中でも、 検出感度の高 い方法として、 Immuno— PCR法 (例えば "T. Sano et al., Science, vol. 258, 120-122 (1992)" 等を参照) や、 Double Determinant Immuno- PCR法 (例え ば "今井浩三、 鈴木朝子、 日野田裕治, Imnmno-PCRを用いた微量抗原検出法, 蛋白質核酸酵素, 羊土社, 1996年, Vol.41, No.5, p.614-617" 等を参照) な どがよく知られている。  Establishment of monoclonal antibody production technology makes it possible to obtain antibodies that can react specifically with specific antigens, and research and development of and improvements in antigen detection systems that utilize the specificity of antigen-antibody reactions. It has become indispensable in all fields such as the spread and clinical fields. In general, such an assembly system is one in which a specific label is applied to an antibody to be reacted with an antigen, and the label is detected after the reaction to detect antigen. Various studies have been conducted for the purpose of developing new label types and detection methods in order to further increase detection sensitivity. Among them, immuno-PCR methods (see, for example, “T. Sano et al., Science, vol. 258, 120-122 (1992)”) and Double Determinant Immuno-PCR methods (see, for example) For example, “Kozo Imai, Asako Suzuki, Yuji Hinoda, Detection method of trace antigen using Imnmno-PCR, Protein nucleic acid enzyme, Yodosha, 1996, Vol.41, No.5, p.614-617” etc. Are well known).
しかしながら、 これらの方法はいずれも、 標識としたオリゴ核酸鎖を PCR法 により増幅して検出するものである。 そのため、 反応系において複雑な温度制御 (解離, アニーリング, 合成) を精密に何サイクルも繰り返して行う必要があり、 迅速な増幅検出が困難であった。  However, both of these methods detect the amplified oligonucleic acid chain by amplifying it by PCR. Therefore, complicated temperature control (dissociation, annealing, synthesis) must be repeated precisely and repeatedly in the reaction system, making rapid amplification detection difficult.
特に、 臨床検査の分野、 中でも救急医療の現場においては、 極めて迅速かつ正 確な診断が必要とされる。 例えば、 意識を失った患者が、 心筋梗塞なのか、 脳梗 塞なのか、 あるいは別の疾患なのかの判断は、 迅速性が重要である。 ところが、 先の方法による生化学的な診断では手間と時間がかかりすぎるため実用性に乏し いものであった。 そのため、 迅速な診断は、 CTスキャン等の大がかりで高価な 装置を用いたり、 医師の経験則に基づいて行われたりするのが現状であった。 また、 PCR法により増幅する場合は、 通常、 前記の温度制御を精確に行うた めサーマルサイクラ一等の装置を用いるが、 依然高価なものであり、 しかも容易 に持ち運びできる大きさではない。 そのため、 このような装置を用いた診断は、 検査センタ一や大型病院の検查室に依存せざるを得ず、 小さな診療所や救急車両 内では容易に診断することができなかった。 発明の開示 Especially in the field of clinical testing, especially in the field of emergency medicine, extremely rapid and accurate diagnosis is required. For example, promptness is important in determining whether a patient who has lost consciousness has a myocardial infarction, a cerebral infarction, or another disease. However, The biochemical diagnosis by the previous method is not practical because it takes too much time and time. For this reason, rapid diagnosis is currently performed using large-scale and expensive devices such as CT scans, or based on doctors' rules of thumb. In addition, when amplifying by PCR, an apparatus such as a thermal cycler is usually used to accurately control the temperature, but it is still expensive and is not easily portable. For this reason, diagnosis using such devices has to rely on the inspection center or the examination room of a large hospital, and cannot be easily diagnosed in small clinics or emergency vehicles. Disclosure of the invention
そこで、 本発明が解決しょうとする課題は、 オリゴ核酸鎖で標識化した結合物 質を用いて標的物質を検出するにあたり、 より一層迅速かつ正確に、 しかも低コ ストで容易に行うことができる、 標的物質の検出方法を提供することにある。 さ らに、 このような検出方法に用い得る検出用キットを提供することにある。  Therefore, the problem to be solved by the present invention is that the detection of a target substance using a binding substance labeled with an oligonucleic acid chain can be performed more quickly, accurately and easily at a low cost. To provide a method for detecting a target substance. It is another object of the present invention to provide a detection kit that can be used in such a detection method.
本発明者は、 上記課題を解決するべく鋭意検討を行った。 その結果、 標識とし たオリゴ核酸鎖の増幅方法として、 複雑な温度制御を要する: PCR法に代えて、 恒温条件下で反応可能な核酸増幅法 (例えば、 LAMP法及び ICAN法等) に着目 した。 そして、 標識化に用いるオリゴ核酸鎖として、 このような核酸増幅法に用 いるプライマーと結合する領域を有するオリゴ核酸鎖を用い、 当該オリゴ核酸鎖 を増幅して標的物質の検出を行う方法であれば、 前述した課題を解決できること を見出し、 本発明を完成した。 すなわち、 本発明は以下の通りである。  The present inventor has intensively studied to solve the above problems. As a result, a complex temperature control is required as an amplification method of labeled oligonucleic acid strands: Instead of the PCR method, we focused on nucleic acid amplification methods (eg, LAMP method and ICAN method) that can be reacted under constant temperature conditions. . Then, as an oligonucleic acid chain used for labeling, an oligonucleic acid chain having a region binding to a primer used in such a nucleic acid amplification method is used, and the oligonucleic acid chain is amplified to detect a target substance. Thus, the inventors have found that the above-described problems can be solved and completed the present invention. That is, the present invention is as follows.
( 1 )標的物質の検出方法であって、 恒温条件下で反応可能な核酸増幅法に用い るプライマーと結合する領域を有するオリゴ核酸鎖により標識処理された結合物 質と、 被験試料中の標的物質とを接触させて、 標的物質と結合物質との複合体を 形成させる工程、 複合体中のオリゴ核酸鎖を前記核酸増幅法により増幅する工程、 及び、 増幅産物を検出する工程を含む、 前記方法。  (1) A target substance detection method comprising a binding substance labeled with an oligonucleic acid chain having a region that binds to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions, and a target in a test sample A step of contacting a substance to form a complex of a target substance and a binding substance, a step of amplifying an oligonucleic acid chain in the complex by the nucleic acid amplification method, and a step of detecting an amplification product, Method.
本発明の検出方法においては、 例えば、 前記標的物質が複数種類の物質であり、 前記結合物質として当該標的物質の種類に対応して識別検出可能なように標識処 理されたものを用いることができる。 この場合、 核酸増幅法に用いるプライマー として少なくとも 1種のプライマーセットを用いることで、 複数種類の標的物質 を識別検出することもできる。 In the detection method of the present invention, for example, the target substance is a plurality of kinds of substances, As the binding substance, a substance that is labeled so that it can be identified and detected corresponding to the type of the target substance can be used. In this case, a plurality of types of target substances can be identified and detected by using at least one primer set as a primer used in the nucleic acid amplification method.
前記核酸増幅法としては、 例えば、 LAMP法及ぴ ICAN法が挙げられる。  Examples of the nucleic acid amplification method include LAMP method and ICAN method.
前記標識処理としては、 例えば、 オリゴ核酸鎖が少なくともアダプタ一部分を 介して前記結合物質に固定されたものが挙げられる。 また、 当該アダプタ一部分 としては、 プロテイン G、 プロテイン A及びプロテイン Lから選ばれるいずれか のタンパク質、 プロテイン G、 プロテイン A及びプロテイン Lから選ばれる少な くとも 2種類のタンパク質の融合タンパク質、 プロテイン G、 プロテイン A及ぴ プロテイン Lから選ばれる少なくとも 1種類のタンパク質と他のタンパク質との 融合タンパク質、 並びにこれらの組み合わせが挙げられる。  Examples of the labeling treatment include those in which an oligonucleic acid chain is fixed to the binding substance via at least a portion of the adapter. In addition, the adapter may include any protein selected from protein G, protein A and protein L, a fusion protein of at least two proteins selected from protein G, protein A and protein L, protein G and protein. Examples include fusion proteins of at least one protein selected from A and Protein L and other proteins, and combinations thereof.
前記標的物質としては抗原が、 前記結合物質としては抗体が挙げられる。 ( 2) 恒温条件下で反応可能な核酸増幅法に用いるプライマーと結合する領域を 有するオリゴ核酸鎖により標識処理された結合物質を含む、 標的物質の検出用キ ッ卜。  Examples of the target substance include an antigen, and examples of the binding substance include an antibody. (2) A kit for detecting a target substance, comprising a binding substance labeled with an oligonucleic acid chain having a region that binds to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions.
本発明のキットにおいて、 前記プライマーとしては、 例えば、 LAMP法用プラ イマ一及び ICAN法用プライマーが挙げられる。 図面の簡単な説明  In the kit of the present invention, examples of the primer include a primer for LAMP method and a primer for ICAN method. Brief Description of Drawings
図 1は、 本発明の検出方法の一実施例を示す模式フロー図である。  FIG. 1 is a schematic flow diagram showing an embodiment of the detection method of the present invention.
図 2 Aは、 本発明の検出方法の一実施例を示す模式フロー図である。  FIG. 2A is a schematic flow diagram showing an embodiment of the detection method of the present invention.
図 2 Bは、 本発明の検出方法の一実施例を示す模式フロー図 (図 2 Aに示すフ ロー図の続きを示す図) である。  FIG. 2B is a schematic flow diagram (a continuation of the flow diagram shown in FIG. 2A) showing an embodiment of the detection method of the present invention.
図 3は、 標識化結合物質からオリゴ核酸鎖を切断する態様の一例を示す模式図 である。  FIG. 3 is a schematic diagram showing an example of an embodiment in which an oligonucleic acid chain is cleaved from a labeled binding substance.
図 4は、 標識化結合物質からオリゴ核酸鎖を切断する態様の一例を示す模式図 である。  FIG. 4 is a schematic diagram showing an example of an embodiment in which an oligonucleic acid chain is cleaved from a labeled binding substance.
図 5は、 アダプタ一部分を介してオリゴぺプチド核酸鎖が複合化された抗体を 用いて、 抗原を識別検出する一実施例を示す概略図である。 Figure 5 shows an antibody with an oligopeptide nucleic acid strand complexed through a portion of the adapter. It is the schematic which shows one Example which uses and identifies and detects an antigen.
図 6は、 DNAシークェンサ一 ABI - 3100により GeneScan解析を行った結果の 一例を示すチャートである (図 5 (5)に示すチャートの拡大図でもある) 。  FIG. 6 is a chart showing an example of a result of GeneScan analysis performed by DNA sequencer ABI-3100 (also an enlarged view of the chart shown in FIG. 5 (5)).
図 7は、 本発明の検出方法により得られた DNA増幅の結果を示すグラフであ る。  FIG. 7 is a graph showing the results of DNA amplification obtained by the detection method of the present invention.
図 8は、 本発明の検出方法において LAMP 法の代わりにリアルタイム PCR 法を用いたときの DNA増幅の結果を示すグラフである。  FIG. 8 is a graph showing the results of DNA amplification when the real-time PCR method is used instead of the LAMP method in the detection method of the present invention.
図 9は、 表 3 (下表) 中に示した平均値 (ave) をプロットしたグラフであり、 縦軸は Ct値を、 横軸は対数による抗原濃度 (pg/mL) を表す。 符号の説明  Figure 9 is a graph plotting the mean values (ave) shown in Table 3 (below), where the vertical axis represents the Ct value and the horizontal axis represents the logarithmic antigen concentration (pg / mL). Explanation of symbols
1 :抗原 2 ゥエルプレート  1: Antigen 2 well plate
3 :標識処理抗体 4 標識処理抗体  3: Labeled antibody 4 Labeled antibody
5 :ヌクレオチド鎖 6 ヌクレオチド鎖  5: nucleotide chain 6 nucleotide chain
7 :抗原一抗体複合体 8 抗原一抗体複合体  7: Antigen-antibody complex 8 Antigen-antibody complex
9 : Fプライマー 1 0 : Rプライマー  9: F primer 1 0: R primer
1 1 :増幅断片 1 2 :増幅断片  1 1: Amplified fragment 1 2: Amplified fragment
1 3 :標識処理抗体 1 4 :標識処理抗体  1 3: Labeled antibody 1 4: Labeled antibody
1 5 :ヌクレオチド鎖 1 6 :ヌクレオチド鎖  1 5: Nucleotide chain 1 6: Nucleotide chain
1 7 :制限酵素サイト 1 8 :制限酵素サイト  1 7: Restriction enzyme site 1 8: Restriction enzyme site
1 9 :抗原一抗体複合体 2 0 :抗原一抗体複合体  1 9: antigen-antibody complex 2 0: antigen-antibody complex
2 1 :ヌクレオチド断片 2 2 : クレオチド断片  2 1: nucleotide fragment 2 2: nucleotide fragment
2 3 : Fプライマー 2 4 : Rプライマー  2 3: F primer 2 4: R primer
2 5 :増幅断片 2 6 :増幅断片 発明を実施するための最良の形態  2 5: amplified fragment 2 6: amplified fragment BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。 本発明の範囲はこれらの説明に拘束されるこ とはなく、 以下の例示以外についても、 本発明の趣旨を損なわない範囲で適宜変 更し実施し得る。 なお、 本明細書は、 本願優先権主張の基礎となる特願 2 0 0 6— 1 8 5 8 6 9 号明細書の全体を包含する。 また、 本明細書において引用された全ての刊行物、 例えば先行技術文献、 及び公開公報、 特許公報その他の特許文献は、 参照として 本明細書に組み込まれる。 本発明の方法は、 Hereinafter, the present invention will be described in detail. The scope of the present invention is not limited to these explanations, and modifications other than the following examples can be made as appropriate without departing from the spirit of the present invention. This specification includes the entire specification of Japanese Patent Application No. 2 0 0 6-1 8 5 8 6 9 which is the basis for claiming priority of the present application. In addition, all publications cited in this specification, for example, prior art documents, and publications, patent publications, and other patent documents, are incorporated herein by reference. The method of the present invention comprises:
標的物質の検出方法であって、  A method for detecting a target substance,
(X) 恒温条件下で反応可能な核酸増幅法に用いるプライマーと結合する領域を 有するオリゴ核酸鎖により標識処理された結合物質と、 被験試料中の標的物質 とを接触させて、 当該結合物質と標的物質との複合体を形成させる工程 (複合 体形成工程) 、  (X) A binding substance labeled with an oligonucleic acid chain having a region that binds to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions is brought into contact with a target substance in a test sample, and the binding substance and Process of forming a complex with the target substance (complex formation process),
(ii)複合体中のオリゴ核酸鎖を前記核酸増幅法により増幅する工程 (増幅工程 ) 、 及び、  (ii) a step of amplifying the oligonucleic acid chain in the complex by the nucleic acid amplification method (amplification step), and
(iii)増幅産物を検出する工程 (検出工程)  (iii) Amplification product detection process (detection process)
を含むことを特徴とする。 なお、 本発明の方法は、 さらに他の工程を含んでい てもよく、 これら他の工程は、 公知の手段及び方法を用いて実施することがで きる。 It is characterized by including. The method of the present invention may further include other steps, and these other steps can be performed using known means and methods.
以下では、 まず、 本発明で用いる核酸増幅法について説明し、 続いて、 本発 明の検出方法全体の概要を例示的に説明し、 その後、 複合体形成工程、 增幅ェ 程、 及び検出工程について順に説明する。  In the following, first, the nucleic acid amplification method used in the present invention will be described, then, the outline of the entire detection method of the present invention will be exemplarily described, and then the complex formation process, the amplification process, and the detection process will be described. These will be described in order.
1 . 核酸増幅法 1. Nucleic acid amplification method
本発明においては、 後に詳述するように、 標識となるオリゴ核酸鎖を錶型とし、 恒温条件下で反応可能な核酸増幅法を用レ、て増幅産物を得る。  In the present invention, as will be described in detail later, an amplification product is obtained by using a nucleic acid amplification method in which an oligonucleic acid chain to be labeled is in a saddle shape and can react under a constant temperature condition.
ここで、 上記核酸増幅法としては、 錶型となるオリゴ核酸鎖を一定の反応温度 条件化で増幅させることができる方法であればよく、 限定はされないが、 例えば、 LAMP (Loop-Mediated Isothermal Amplification) 法や ICAN (Isothermal and Chimeric primer-initiated Amplincation oi Nucleic acids) 法など力 s好ま しく挙げられる。 ( 1 ) LAMP法 Here, the nucleic acid amplification method is not limited as long as it can amplify the oligo-nucleic acid strand that is in the shape of a cage under a certain reaction temperature condition. For example, LAMP (Loop-Mediated Isothermal Amplification ) method and ICAN (like properly preferred Isothermal and Chimeric primer-initiated Amplincation oi Nucleic acids) method, such as the power s. (1) LAMP method
LAMP法は、 鍚型となるオリゴ核酸鎖中の 6つの領域に対して 4種類のプライ マーを設定し、 鎖置換反応を利用して一定温度で増幅反応を進行させることを特 徴とする方法である。 つまり、 LAMP法は、 PCR法のように、 2本鎖から 1本鎖 への変性 (解離) や、 厳密な温度制御を必要としない (いわゆる PCRサイクル に依存しない) 方法であり、 铸型、 プライマー、 DNA合成酵素及び基質等を予 め混合し、 一定温度 (約 60〜65°C付近) で保温することのみによって、 連続的 に反応を進めることができる ( "K. NAGAMINE et al., Mol. Cell. Probes, vol. 16(3), 223-229 (2002)" 等を参照) 。  The LAMP method is characterized in that four types of primers are set for the six regions in the cage-shaped oligonucleic acid strand, and the amplification reaction proceeds at a constant temperature using a strand displacement reaction. It is. In other words, the LAMP method does not require denaturation (dissociation) from double strands to single strands or strict temperature control (it does not depend on the so-called PCR cycle) like the PCR method. The reaction can be continued continuously only by premixing the primer, DNA synthase and substrate, etc., and maintaining the temperature at a constant temperature (approximately 60 to 65 ° C) ("K. NAGAMINE et al., Mol. Cell. Probes, vol. 16 (3), 223-229 (2002) "etc.).
また、 LAMP法は、 PCR法に比べて増幅効率が高く、 铸型 DNAを 15分〜 1時 間で 109〜: 1010倍に増幅することができる。 なお、 LAMP法による増幅産物は、 同一鎖上で互いに相補的な配列を持つ繰り返し構造を有するものであり、 铸型 DNA中の標的領域とほぼ同等の長さの配列を繰り返し単位として、 様々な単位 数の増幅産物が合成される結果となる。 In addition, the LAMP method has higher amplification efficiency than the PCR method, and can amplify the vertical DNA from 10 9 to 10 10 times in 15 minutes to 1 hour. The amplification product by the LAMP method has a repetitive structure having sequences complementary to each other on the same strand, and a variety of sequences having a length almost the same as the target region in the vertical DNA can be used as a repeat unit. This results in the synthesis of unit amplification products.
さらに、 先に述べた通り、 铸型 DNA中の 6つの領域を含む 4種類ものプライマ 一を設計して同時に使用するため (ループプライマーを併用する場合は最大 6種 ) 、 铸型 DNAに対する特異性が極めて高く、 非特異増幅が生じる可能性を大き く低減できる。 そのため、 標的物質を正確に検出することができる。  In addition, as mentioned above, because four types of primers including six regions in vertical DNA are designed and used at the same time (up to six when using loop primers), specificity for vertical DNA The possibility of non-specific amplification is greatly reduced. Therefore, the target substance can be detected accurately.
ここで、 上述した 4 種類 (最大 6 種) の LAMP 法用プライマー (以下 「LAMP プライマーセット」 と称することがある。 ) は、 錡型 DNA の標的領 域中の異なる 6領域 (5'末端側から順に、 F3, F2, Fl, Blc, B2c, B3c) 及びこれ に相補的な領域 (5'末端側から順に、 B3, B2, Bl, Flc, F2c, F3c) を厳密に選択 し、 これらの配列に基づいて設計される特定のプライマ一を組み合わせて構成さ れるものである。 具体的には、 LAMP プライマーセットは、 5'末端側から Flc 領域及ぴ F2 領域の核酸を連結してなる Forward Inner Primer (以下、 Here, the above-mentioned 4 types (up to 6 types) of LAMP primers (hereinafter sometimes referred to as “LAMP primer sets”) are the 6 different regions (5 ′ end side) in the target region of vertical DNA. F3, F2, Fl, Blc, B2c, B3c) and their complementary regions (B3, B2, Bl, Flc, F2c, F3c in this order from the 5 ′ end) It consists of a combination of specific primers designed based on the sequence. Specifically, the LAMP primer set is a Forward Inner Primer (hereinafter referred to as `` Finer Primer Primer '') formed by linking nucleic acids of the Flc region and F2 region from the 5 ′ end.
「FIP」 と略すことがある。 ) と、 5'末端側から Blc領域及び B2領域の核酸を 連結してなる Backward Inner Primer (以下、 「: BIP」 と略すことがある。 ) と、 F3領域の核酸からなる: F3プライマーと、 B3領域の核酸からなる B3プラ イマ一との 4種から構成される。 必要により、 ループプライマー (Loop Primer F及ぴ Z又は Loop Primer B) を設計し、 これらを用いて: DNAの増幅を行い、 増幅産物を検出してもよい。 ループプライマーは、 B1 領域と B2領域との間あ るいは F1領域と F2領域との間に形成される 1本鎖領域の塩基配列と相補的な 配列を有するプライマーである。 なお、 上述した各 LAMP法用プライマーは、 3'末端において相補鎖合成の基点となる- OH基を備えたものであればよく、 そ のバックボーンは必ずしもホスホジエステル結合によるものに限定されず、 例え ば Pでなく Sをバックボーンとしたホスホチォエート体ゃぺプチド結合に基づく ペプチド核酸からなるものであってもよい。 また、 各 LAMP法用プライマーは、 例えば DNA自動合成機等を用いて化学的に合成することで調製することができ る。 It may be abbreviated as “FIP”. ), And Backward Inner Primer (hereinafter abbreviated as “: BIP”), which is formed by linking the Blc region and B2 region nucleic acids from the 5 ′ end side, and consisting of the F3 region nucleic acid: F3 primer, B3 plastic consisting of nucleic acids in the B3 region It consists of four types with Imama. If necessary, loop primers (Loop Primer F and Z or Loop Primer B) may be designed and used to: amplify DNA and detect amplification products. The loop primer is a primer having a sequence complementary to the base sequence of the single-stranded region formed between the B1 region and the B2 region or between the F1 region and the F2 region. Each of the above-mentioned primers for the LAMP method only needs to have a —OH group that serves as a base for complementary strand synthesis at the 3 ′ end, and its backbone is not necessarily limited to that by a phosphodiester bond. For example, a phosphothioate body with S as the backbone instead of P may be composed of peptide nucleic acids based on peptide bonds. Each LAMP primer can be prepared by chemical synthesis using, for example, an automatic DNA synthesizer.
LAMP 法に用い得る DNAポリメラーゼとしては、 鎖置換活性を有するもの であれば特に限定はされない。 このような酵素としては、 例えば、 Bst DNAポ リメラーゼ (ラージフラグメント) 、 Bca(exo -) DNA ポリメラーゼ、 大腸菌 DNA ポリメラーゼ Iのクレノゥフラグメント、 Vent(Exo-)DNA ポリメラーゼ (Vent DNA ポリメラーゼからエタソヌクレアーゼ活性を除いたもの) 、 DeepVent(Exo-)DNAポリメラーゼ (Deep Vent DNAポリメラーゼからエタソ ヌクレアーゼ活性を除いたもの) 及び KOD DNAポリメラーゼ等が挙げられ、 好ましくは Bst DNA ポリメラーゼ (ラージフラグメント) が挙げられる。 Bst DNAポリメラーゼを用いる場合は、 その反応至適温度である 60〜65°C付近で 反応を行うのが望ましい。  The DNA polymerase that can be used in the LAMP method is not particularly limited as long as it has a strand displacement activity. Examples of such enzymes include Bst DNA polymerase (large fragment), Bca (exo-) DNA polymerase, Klenow fragment of E. coli DNA polymerase I, Vent (Exo-) DNA polymerase (from Vent DNA polymerase to ethanuclease) Non-active), DeepVent (Exo-) DNA polymerase (Deep Vent DNA polymerase excluding etanuclease activity), KOD DNA polymerase and the like, preferably Bst DNA polymerase (large fragment). When using Bst DNA polymerase, it is desirable to perform the reaction at around 60-65 ° C, which is the optimum temperature for the reaction.
LAMP法による増幅産物の検出には、 公知の技術を適用することができ、 限 定はされない。 LAMP 法では核酸の合成により基質が大量に消費され、 副産物 であるピロリン酸が、 共存するマグネシゥムと反応してピロリン酸マグネシゥム となり、 肉眼でも確認できる程に白濁する。 そのため、 この白濁を反応終了後に 観察 (目視確認) することで増幅産物の検出を行うことができ、 又は、 反応後の 濁度や反応中の濁度の経時変化を適当な測定機器により測定することで増幅産物 の検出を行うことができる。 なお、 当該測定機器としては、 分光光度計等を用い ればよく、 通常、 波長 650nmの吸光度を測定すればよい。 また、 LAMP法によ る増幅は加速度的かつ効率的に行なわれるので、 予め反応液中に 2本鎖 DNAの 分子内に特異的に取り込まれるインター力レーターであるェチジゥムブ口マイド や SYBR (登録商標) Green I等を添加しておくことにより、 増幅の有無を用 意に確認することができ、 必要に応じ、 増幅量をリアルタイムで検出することも できる。 なお、 増幅された DNA を特異的に認識する標識化した核酸 (DNA、 RNA及び PNA等) を用いて検出する方法や、 反応終了後の反応液をそのまま ァガロースゲル電気泳動ゃキャビラリ一電気泳動にかけることにより検出する方 法を採用することもできる。 ( 2) ICAN法 Known techniques can be applied to the detection of amplification products by the LAMP method, and are not limited. In the LAMP method, a large amount of substrate is consumed by nucleic acid synthesis, and pyrophosphate, a by-product, reacts with coexisting magnesium to become pyrophosphoric acid magnesium, which becomes cloudy enough to be confirmed with the naked eye. Therefore, the amplification product can be detected by observing (visual confirmation) this white turbidity after completion of the reaction, or measuring the turbidity after the reaction and the turbidity change during the reaction with a suitable measuring instrument. In this way, amplification products can be detected. Note that a spectrophotometer or the like may be used as the measuring instrument, and usually the absorbance at a wavelength of 650 nm may be measured. In addition, according to the LAMP method Amplification is performed in an accelerated and efficient manner, so pre-added to the reaction solution are ethimubu bumumide and SYBR (registered trademark) Green I, which are specifically intercalated into the double-stranded DNA molecule. By doing so, the presence or absence of amplification can be checked carefully, and the amount of amplification can be detected in real time if necessary. In addition, the detection method using a labeled nucleic acid (DNA, RNA, PNA, etc.) that specifically recognizes the amplified DNA, or the reaction solution after completion of the reaction is directly subjected to agarose gel electrophoresis. It is also possible to adopt a detection method. (2) ICAN method
ICAN法は、 LAMP法と同様に、 いわゆる PCHサイクルに依存しない方法で あり、 铸型、 プライマー、 DNA合成酵素及び基質等を予め混合し、 一定温度 (約 50〜65°C付近) で保温することのみによって、 連続的に反応を進めること 力、できる方法である ( "Isogai. E et al. Comp. Immunol. Microbiol. Infect. Dis. 2005(5- 6):363- 370" 等を参照) 。  Like the LAMP method, the ICAN method is a method that does not depend on the so-called PCH cycle, and is premixed with cages, primers, DNA synthase and substrate, and kept at a constant temperature (about 50 to 65 ° C). It is a method that can continuously and continuously advance the reaction (see "Isogai. E et al. Comp. Immunol. Microbiol. Infect. Dis. 2005 (5-6): 363-370" etc.) .
ICAN法では、 PCR法と同様に 2種類のプライマー (Fプライマー、 Hプラ イマ一) を用いるが、 このプライマーとして、 DNA部分 (5'側) と RNA部分 (3'側) とからなるキメラプライマーを用いる点に特徵がある。 なお、 ICAN法 用プライマーは、 3'末端において相補鎖合成の基点となる- OH 基を備えたもの であればよく、 そのバックボーンは必ずしもホスホジエステル結合によるものに は限定されず、 例えば P (リン) でなく S (硫黄) をバックボーンとしたホスホ チォエート体ゃぺプチド結合に基づくぺプチド核酸からなるものであってもよい。 また、 各 ICAN法用プライマーは、 例えば核酸自動合成機等を用いて化学的に 合成することで調製することができる。  In the ICAN method, two types of primers (F primer and H primer) are used as in the PCR method, but as this primer, a chimeric primer consisting of a DNA part (5 'side) and an RNA part (3' side). There is a special point in using. The primer for the ICAN method only needs to have a —OH group that serves as a base for complementary strand synthesis at the 3 ′ end, and its backbone is not necessarily limited to that based on a phosphodiester bond. The phosphothioate body with S (sulfur) as the backbone may be composed of peptide nucleic acids based on peptide bonds. Each ICAN primer can be prepared by chemically synthesizing using, for example, an automatic nucleic acid synthesizer.
ICAN法に用い得る DNAポリメラーゼとしては、 鎖置換活性及び鎵型交換活 性を有するものであれば特に限定はされない。 このような酵素としては、 例えば、 Bca(exo-)DNAポリメラ一ゼ、 BcaBESTTM DNAポリメラーゼ等が挙げられ、 好ましくは Bca(exo -) DNAポリメラーゼが挙げられる。  The DNA polymerase that can be used in the ICAN method is not particularly limited as long as it has a strand displacement activity and a cage-type exchange activity. Examples of such an enzyme include Bca (exo-) DNA polymerase, BcaBEST ™ DNA polymerase and the like, and preferably Bca (exo-) DNA polymerase.
また ICAN法では、 DNA- RNAハイプリッド部位の RNA鎖を特異的に切断 するリボヌクレアーゼ (RNase H) を用いる点にも特徴がある。 铸型 DNAを基 に鎖置換反応及ぴ铸型交換反応を経て得られた反応中間体は、 前記キメラプライ マーに由来する RNA部分とその相補 DNAからなる DNA-RNAハイブリッド 部位を有する。 ここで、 このハイブリッド部位の RNA鎖が RNase Hにより切 断されることで、 再び、 鎖置換反応及び錶型交換反応が進行し、 反応生成物と新 たな反応中間体が得られるメカニズムとなる。 The ICAN method specifically cleaves the RNA strand at the DNA-RNA hybrid site. Another feature is the use of RNase H. The reaction intermediate obtained through strand displacement reaction and cage exchange reaction based on the cage DNA has a DNA-RNA hybrid site consisting of the RNA portion derived from the chimeric primer and its complementary DNA. Here, when the RNA strand of this hybrid site is cleaved by RNase H, the strand displacement reaction and the cage-type exchange reaction proceed again, which becomes a mechanism for obtaining a reaction product and a new reaction intermediate. .
ICAN法は、 PCR法に比べて増幅効率が高く、 铸型 DNAを 30分〜 1時間で 106〜108倍に増幅することができる。 この増幅効率は、 通常の PCR法と比較し て 10倍ほどの合成量に当たる。 The ICAN method has a higher amplification efficiency than the PCR method, and can amplify DNA-type DNA 10 6 to 10 8 times in 30 minutes to 1 hour. This amplification efficiency is about 10 times the amount of synthesis compared to the normal PCR method.
ICAN法による増幅産物の検出には、 公知の技術を適用することができ、 限定 はされない。 具体的には、 前述した LAMP法と同様の検出方法が採用できる。  Known techniques can be applied to the detection of amplification products by the ICAN method, and there is no limitation. Specifically, a detection method similar to the LAMP method described above can be employed.
2 . 本発明の検出方法の概要 2. Overview of the detection method of the present invention
以下の例示では、 標的物質及び結合物質の一例として抗原及び抗体を用いて説 明するが、 標的物質及び結合物質が抗原及び抗体以外の場合についても同様の説 明を適用することができる。 また、 以下の例示では、 複数種類 (2種類) の物質 を標的物質とし、 ICA 法を用いてそれらを識別検出する (個々区別して検出す る) 場合について説明する。 しかし、 例えば、 1種類の物質を標的物質とする場 合や、 複数種類の物質を標的物質とするが識別せずに包括的に検出する場合、 あ るいは、 LAMP法等を用いて検出する場合など、 本発明に包含される他のすべて の態様についても、 必要に応じ、 以下の例示を適宜参照することができる。  In the following examples, an antigen and an antibody are described as examples of the target substance and the binding substance, but the same description can be applied to cases where the target substance and the binding substance are other than the antigen and the antibody. In the following example, a case will be described in which multiple types (two types) of substances are used as target substances, and they are identified and detected using the ICA method (individually detected). However, for example, when one type of substance is used as a target substance, or when multiple types of substances are used as target substances but are comprehensively detected without being identified, or they are detected using the LAMP method, etc. For all other embodiments included in the present invention, such as cases, the following examples can be referred to as needed.
第 1の実施形態は、 図 1の模式フロー図に示すように、 まず、 支持体となるゥ エルプレート 2に、 標的物質として複数種類 (4種) の抗原 1を固定し (図 1 (a)) 、 これら抗原 1に対する結合物質として、 オリゴヌクレオチド複合抗体 ( 標識処理抗体) 3, 4を添加する (図 1 (b)) 。 抗体 3は、 オリゴヌクレオチド 鎖 5と複合体を形成した複合抗体であり、 抗体 4は、 オリゴヌクレオチド鎖 6と 複合体を形成した複合抗体である。 抗体 3, 4は、 いずれも、 そのオリゴヌクレ ォチド鎖 5, 6中に、 共通の ICAN法用プライマー (Fプライマー 9、 Rプライ マー 1 0 ) が結合し得る配列を有する。 オリゴヌクレオチド鎖 5, 6の長さは、 それぞれ、 ICAN法により得られる増幅断片の長さが互いに異なるように、 ヌク レオチド配列が設計 (又は選択) されている。 具体的には、 図 1(e), (0に示すよ うに、 抗体 3中のオリゴヌクレオチド鎖 5からはひ /3間の配列が増幅され、 抗体 4中のオリゴヌクレオチド鎖 6からは γ δ間の配列が増幅されることになり、 α 3間の配列の方が短い。 In the first embodiment, as shown in the schematic flow diagram of FIG. 1, first, a plurality of types (four types) of antigens 1 are immobilized as target substances on a well plate 2 serving as a support (FIG. 1 (a )) Add oligonucleotide conjugate antibodies (labeled antibodies) 3 and 4 as binding substances for these antigens 1 (Fig. 1 (b)). Antibody 3 is a complex antibody that forms a complex with oligonucleotide chain 5, and antibody 4 is a complex antibody that forms a complex with oligonucleotide chain 6. Each of antibodies 3 and 4 has a sequence capable of binding a common primer for ICAN method (F primer 9, R primer 10) in the oligonucleotide chains 5 and 6. The length of oligonucleotide strands 5 and 6 is The nucleotide sequences are designed (or selected) so that the lengths of the amplified fragments obtained by the ICAN method are different from each other. Specifically, as shown in FIG. 1 (e), (as shown in 0, the sequence between / 3 is amplified from oligonucleotide chain 5 in antibody 3, and γ δ is amplified from oligonucleotide chain 6 in antibody 4. The sequence between is amplified, and the sequence between α3 is shorter.
次いで、 抗原抗体反応により、 抗体 3, 4をそれぞれ特定の抗原に結合させ、 抗原一抗体複合体 7, 8を形成させる (図 1(c)) 。 当該複合体を形成しなかつ た抗原は、 洗浄により除去する (図 1(d)) 。  Next, antibodies 3 and 4 are each bound to a specific antigen by antigen-antibody reaction to form antigen-antibody complexes 7 and 8 (FIG. 1 (c)). Antigens that did not form the complex are removed by washing (FIG. 1 (d)).
その後、 増幅反応を行い (図 1(e)) 、 抗原一抗体複合体 7, 8を形成する抗 体 3, 4中のオリゴヌクレオチド鎖 5, 6のそれぞれから、 増幅産物として、 長 さの異なるヌクレオチド断片 1 1 (ひ 間を増幅した断片) 及び 12 (γ δ間を 増幅した断片) を得る (図 1()) 。  After that, an amplification reaction was performed (Fig. 1 (e)), and each of the oligonucleotide strands 5 and 6 in the antibodies 3 and 4 forming the antigen-antibody complex 7 and 8 was different in length as an amplification product. Nucleotide fragments 1 1 (fragment amplified between the fragments) and 12 (fragment amplified between γδ) are obtained (FIG. 1 ()).
得られた断片の長さを、 ァガロースゲル等を用いた電気泳動法により識別検出 する (図 1(g)) 。 図 1(g)では、 ヌクレオチド断片 1 1, 12に対応する長さの 異なる 2種のバンドが検出されている。 これにより、 4種の抗原を含む被験試料 中に、 標的物質である 2種の抗原が含まれていたことが確認できる。  The length of the obtained fragment is identified and detected by electrophoresis using an agarose gel or the like (FIG. 1 (g)). In Fig. 1 (g), two different bands corresponding to nucleotide fragments 11 and 12 are detected. As a result, it can be confirmed that the test sample containing 4 types of antigens contained 2 types of antigens as target substances.
第 2の実施形態は、 図 2 Α及び図? Βの模式フロー図に示すように、 まず、 支 持体となるゥエルプレート 2に、 標的物質として複数種類 (4種) の抗原 1を固 定し (図 2A(a)) 、 これら抗原 1に対する結合物質として、 オリゴヌクレオチ ド複合抗体 (標識処理抗体) 13, 14を添加する (図 2A(b)) 。 抗体 1 3は、 オリゴヌクレオチド鎖 15と複合体を形成した複合抗体であり、 抗体 14は、 ォ リゴヌクレオチド鎖 16と複合体を形成した複合抗体である。 抗体 13, 14は、 いずれも、 それぞれのオリゴヌクレオチド鎖 15, 16中に制限酵素サイト 1 18 (例えば、 EcoRI等) を有し、 かつ、 共通の ICAN法用プライマー ( プラ イマ一 23、 Rプライマー 24) が結合し得る配列を有する。 オリゴヌクレオチ ド鎖 15, 16の長さは、 それぞれ、 ICAN法により得られる増幅断片の長さが 互いに異なるように、 ヌクレオチド配列が設計 (又は選択) されている。 具体的 には、 図 2B 0, (g)に示すように、 抗体 13中のオリゴヌクレオチド鎖 15から はひ j3間の配列が増幅され、 抗体 14中のオリゴヌクレオチド鎖 16からは V δ 間の配列が増幅されることになり、 O β間の配列の方が短い。 In the second embodiment, FIG. As shown in the schematic flow chart of Β, first, multiple types (4 types) of antigens 1 were immobilized as target substances on the well plate 2 as a support (Fig. 2A (a)). As a binding substance to the antibody, add the oligonucleotide complex antibody (labeled antibody) 13, 14 (Fig. 2A (b)). The antibody 13 is a composite antibody that forms a complex with the oligonucleotide chain 15, and the antibody 14 is a composite antibody that forms a complex with the oligonucleotide chain 16. Antibodies 13 and 14 both have restriction enzyme sites 1 18 (for example, EcoRI, etc.) in their respective oligonucleotide strands 15 and 16, and have a common ICAN primer (Primer 23, R primer) 24) has a sequence to which it can bind. The nucleotide sequences of the oligonucleotide strands 15 and 16 are designed (or selected) such that the lengths of the amplified fragments obtained by the ICAN method are different from each other. Specifically, as shown in FIG. 2B 0, (g), the sequence between the oligonucleotides 15 in the antibody 13 and the oligonucleotide j3 is amplified, and from the oligonucleotide chain 16 in the antibody 14 V δ The sequence between is amplified, and the sequence between Oβ is shorter.
次いで、 抗原抗体反応により、 抗体 13, 14をそれぞれ特定の抗原に結合さ せ、 抗原一抗体複合体 1 9, 20を形成させる (図 2A(C)) 。 当該複合体を形 成しなかった抗原は、 洗浄により除去する (Hl2A(d)) 。 Next, antibodies 13 and 14 are each bound to a specific antigen by antigen-antibody reaction to form antigen-antibody complexes 19 and 20 (FIG. 2A ( C )). Antigens that did not form the complex are removed by washing (Hl2A (d)).
その後、 制限酵素サイト 1 7, 18を切断する制限酵素を添加して反応させ、 抗原一抗体複合体 19, 20を形成する抗体 13, 14中のオリゴヌクレオチド 鎖 15, 16のそれぞれから、 ヌクレオチド断片 21, 22を得る (図 2A(e) ) α Thereafter, a restriction enzyme that cleaves restriction enzyme sites 17 and 18 is added and reacted to form a nucleotide fragment from each of oligonucleotide chains 15 and 16 in antibodies 13 and 14 that form antigen-antibody complex 19, 20 21 and 22 are obtained (Fig. 2A (e)) α
その後、 ヌクレオチド断片 21, 22を錄型として、 増幅反応を行い (図 2Β (£)) 、 ヌクレオチド断片 21, 22のそれぞれから、 増幅産物として、 長さの 異なるヌクレオチド断片 25 (ひ 3間を増幅した断片) 及び 26 (γ δ間を増幅 した断片) を得る (図 2B(g)) 。  After that, amplification reaction was carried out using nucleotide fragments 21 and 22 as the vertical shape (Fig. 2 (£)), and nucleotide fragments 25 of different lengths (amplified between 3 and 3) were amplified from each of nucleotide fragments 21 and 22 as amplification products. And 26 (fragments amplified between γδ) are obtained (FIG. 2B (g)).
得られた断片の長さを、 ァガロースゲル等を用いた電気泳動法により識別検出 する (図 2B(h)) 。 図 2B(h)では、 ヌクレオチド断片 25, 26に対応する長 さの異なる 2種のバンドが検出されている。 これにより、 4種の抗原を含む被験 試料中に、 標的物質である 2種の抗原が含まれていたことが確認できる。  The length of the obtained fragment is identified and detected by electrophoresis using an agarose gel or the like (FIG. 2B (h)). In FIG. 2B (h), two different bands corresponding to nucleotide fragments 25 and 26 were detected. As a result, it can be confirmed that the test sample containing 4 types of antigens contained 2 types of antigens as target substances.
3. 複合体形成工程 3. Complex formation process
本工程は、 先に述べた通り、 被験試料中の標的物質と、 標識処理された結合物 質とを接触させて、 標的物質と結合物質との複合体を形成させる工程であり、 標 識処理された結合物質としては、 恒温条件下で反応可能な核酸増幅法に用いるプ ライマーと結合する領域を有するオリゴ核酸鎖により標識処理された結合物質が 用いられる。 ここで、 被験試料中の標的物質は、 支持体に固定されたものであつ てもよいし、 固定されていないものであってもよく、 あるいは両者を含むもので あってもよい。  As described above, this step is a step in which the target substance in the test sample is brought into contact with the labeled binding substance to form a complex of the target substance and the binding substance. As the bound substance, a bound substance labeled with an oligonucleic acid chain having a region bound to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions is used. Here, the target substance in the test sample may be fixed to the support, may not be fixed, or may include both.
なお、 「結合物質」 とは、 特定の標的物質と特異的に結合し得る物質を意味し、 例えば、 抗原 (標的物質) に対する抗体などが挙げられる。  The “binding substance” means a substance that can specifically bind to a specific target substance, and examples thereof include an antibody against an antigen (target substance).
(1) 支持体 上記支持体としては、 抗原等の標的物質を固定することができ、 この標的物質 に、 抗体等の結合物質 (溶液状態を含む) を接触させることができるものであれ ばよく、 限定はされない。 このような支持体としては、 通常、 不溶性の材質及び 形状等のものが用いられる。 例えば、 抗原抗体反応によるアツセィ系に用い得る 支持体が好ましく、 具体的には、 マルチプラスチックゥエルプレート、 プラスチ ックビーズ、 ラテックスビーズ、 磁性ビーズ、 プラスチックチューブ、 ナイロン 膜、 ニトロセルロース膜などが挙げられる。 (1) Support The support is not limited as long as it can fix a target substance such as an antigen, and can contact a binding substance (including a solution state) such as an antibody with the target substance. As such a support, insoluble materials and shapes are usually used. For example, a support that can be used in an assembly system based on an antigen-antibody reaction is preferable, and specific examples include multi-plastic well plates, plastic beads, latex beads, magnetic beads, plastic tubes, nylon membranes, and nitrocellulose membranes.
( 2 )標的物質 (2) Target substance
検出対象とする標的物質は、 被験試料に含まれるものであればよく、 その種類 は限定されず、 例えば、 各種タンパク質 (抗体タンパク質も含む) 、 ペプチド ( オリゴペプチド、 ポリペプチド等) 、 多糖類、 糖脂質、 各種核酸 (DNAや RNA The target substance to be detected is not limited as long as it is contained in the test sample. For example, various proteins (including antibody proteins), peptides (oligopeptides, polypeptides, etc.), polysaccharides, Glycolipids, various nucleic acids (DNA and RNA
) 、 及びその他低分子の化学合成物や生体成分等が挙げられるが、 免疫原性を有 する物質 (すなわち、 抗体が作製可能なもの又はすでに抗体が存在するもの) が 好ましい。 ), And other low-molecular chemical compounds, biological components, and the like, but substances having immunogenicity (that is, those capable of producing antibodies or those in which antibodies already exist) are preferred.
被験試料としては、 例えば、 生体成分 (組織や血液) 、 食肉や野菜等の食品類、 土壌や河川水、 燃焼廃棄物等を挙げることができるが、 限定はされない。  Examples of test samples include, but are not limited to, biological components (tissues and blood), foods such as meat and vegetables, soil and river water, and combustion waste.
被験試料中の標的物質の濃度は、 限定はされないが、 本発明の方法によれば、 例えば、 被験試料 あたり標的物質量が ngオーダー以下であっても、 特定の 標的物質を明確に検出することができ、 また pgオーダー以下であってもよいし、 さらには fgオーダー以下であってもよい。  The concentration of the target substance in the test sample is not limited, but according to the method of the present invention, for example, even if the amount of the target substance per test sample is ng order or less, a specific target substance can be clearly detected. It may be less than pg order, or even less than fg order.
本工程においては、 標的物質を含む被験試料中の物質を支持体に固定しておい た上で標識処理された結合物質と接触させ、 これにより標的物質と結合物質との 特異的結合反応を行うようにしてもよいし、 支持体等へ固定せずに当該反応を行 うようにしてもよいし、 又はこれらを組み合わせて行うようにしてもよく、 限定 はされなレ、。  In this step, the substance in the test sample containing the target substance is immobilized on a support and then brought into contact with the labeled binding substance, thereby performing a specific binding reaction between the target substance and the binding substance. The reaction may be performed without being fixed to a support or the like, or a combination thereof may be performed, without limitation.
標的物質を支持体へ固定する方法としては、 例えば、 支持体表面に固定する方 法、 標的物質に特異的に結合する物質 (抗体等) を予め支持体表面に結合させて 固定しておき、 その後、 この固定された結合物質に標的物質を結合させることで、 間接的に支持体に固定する方法等が挙げられる。 後者の固定方法の場合、 被験試 料中の多種多様な物質のうち標的物質を予め選抜しておくことができるので、 検 出感度や検出精度をより高めることができる。 なお、 後者の固定方法において、 支持体に固定する結合物質と、 後に用いる標識処理された結合物質とが共に抗体 である場合は、 両抗体は、 通常、 標的物質 (抗原) に対して認識するェピトープ が異なるものを用いる。 Examples of methods for fixing the target substance to the support include, for example, a method for fixing the target substance on the support surface, a substance that specifically binds to the target substance (such as an antibody) is previously bound to the support surface, and fixed. Then, by binding the target substance to this fixed binding substance, The method of fixing to a support body indirectly etc. are mentioned. In the latter fixing method, the target substance can be selected in advance from among a wide variety of substances in the test sample, so that the detection sensitivity and detection accuracy can be further increased. In the latter immobilization method, when both the binding substance immobilized on the support and the labeled binding substance used later are antibodies, both antibodies usually recognize the target substance (antigen). Use different epitopes.
標的物質を支持体へ固定する場合、 標識処理された結合物質と接触させる前に、 常法に従い、 ブロッキングを行うことが好ましい。 直接固定の場合はその固定後 に、 間接固定の場合は支持体への結合物質の固定の後かつ標的物質の結合の前に、 ブロッキングを行うことが望ましい。  When the target substance is immobilized on the support, it is preferable to perform blocking according to a conventional method before contacting with the labeled binding substance. In the case of direct immobilization, it is desirable to perform blocking after immobilization, and in the case of indirect immobilization, after immobilization of the binding substance to the support and before the binding of the target substance.
本発明においては、 被験試料中の複数種類の物質を標的物質としてもよい。 こ の場合、 標的物質の種類数は、 複数 (少なくとも 2種類) であればよく限定はさ れないが、 本発明の方法によれば、 例えば、 10種類以上であっても特定の標的 物質を明確に識別検出することができ、 また 50種類以上であってもよいし、 さ らには 100種類以上であってもよい。  In the present invention, a plurality of types of substances in the test sample may be used as target substances. In this case, the number of types of target substances is not particularly limited as long as it is plural (at least two types). However, according to the method of the present invention, for example, even if there are 10 types or more, a specific target substance is selected. It can be clearly identified and detected, and may be 50 types or more, and may be 100 types or more.
( 3 ) 結合物質 (3) Binding substance
本工程において用いる標識化結合物質の態様は、 限定はされないが、 被験試料 中の 1種類の物質を標的物質とする場合は、 この標的物質に対して特異的に結合 し得る結合物質について 1種類の (同一の) 標識処理を施したものを用いること が好ましい。  The form of the labeled binding substance used in this step is not limited. However, when one kind of substance in the test sample is used as the target substance, one kind of binding substance that can specifically bind to the target substance is used. It is preferable to use the same (same) labeling treatment.
一方、 被験試料中の複数種類の物質を標的物質とする場合は、 これら標的物質 のそれぞれに対して特異的に結合し得る各結合物質の全てについて共通の (1種 類の) 標識処理を施したものを用いることができる。 複数種類の標的物質のすべ てに対して特異的に結合し得る結合物質がある場合は、 当該結合物質に 1種類の 標識処理を施したものを用いてもよい。 これにより、 複数種類の標的物質を包括 的に検出することができる。  On the other hand, when multiple types of substances in the test sample are used as target substances, a common (one type) labeling process is applied to all of the binding substances that can specifically bind to each of these target substances. Can be used. If there is a binding substance that can specifically bind to all of the multiple types of target substances, one that has been subjected to one type of labeling treatment may be used. As a result, multiple types of target substances can be comprehensively detected.
また、 複数種類の物質を標的物質とする場合は、 これら標的物質のそれぞれに 対して特異的に結合し得る各結合物質について、 その種類ごとに互いに異なる標 識処理 (一部の種類間で共通の標識処理としてもよい) を施したものを用いるこ ともできる。 すなわち、 標的物質の種類に対応して識別検出可能なように標識処 理された結合物質を複数種類用いるようにしてもよい (例えば、 図 l (b)〜(d)参 照) 。 この場合、 複数種類の標的物質を包括的に検出することができるとともに、 検出された標識の種類数及びその種類の特定を行うことで被験試料に含まれる標 的物質の種類数及びその種類の特定を行うことができる。 なお、 上記において 「 互いに異なる標識処理」 及び 「識別検出可能な標識処理」 とは、 所定のプライマ 一により増幅される断片の長さが互いに異なるように、 標識となるオリゴ核酸鎖 が選択又は設計されていることを意味する。 この所定のプライマーとしては、 1 種のプライマーセットを用いるものであってもよいし、 2種以上のプライマーセ ットを用いるものであってもよく、 限定はされない。 1種のプライマーセットを 用いる場合は、 標識となるいずれの種類のオリゴ核酸鎖にも結合して増幅断片を 得ることができるが、 得られる増幅断片の長さは、 オリゴ核酸鎖の種類 (標識処 理の違い) に応じて異なるものとなる (例えば、 図 l (e), (£)参照) 。 2種以上の プライマーセットを用いる場合は、 標識となるオリゴ核酸鎖の種類ごとに特異的 に結合する各プライマーを併用して増幅断片を得ることで、 得られる増幅断片の 長さが、 オリゴ核酸鎖の種類に応じて異なるものとなる。 In addition, when multiple types of substances are used as target substances, each of the binding substances that can specifically bind to each of these target substances has a different standard for each type. It is also possible to use information that has been subjected to recognition processing (may be a common labeling process among some types). That is, a plurality of types of binding substances labeled so as to be discriminated and detected corresponding to the types of target substances may be used (for example, see FIGS. L (b) to (d)). In this case, multiple types of target substances can be detected comprehensively, and the number of types of detected target substances and the number of types of target substances contained in the test sample can be determined by specifying the types. Identification can be done. In the above, “different labeling process” and “labeling process capable of distinguishing and detecting” refer to selection or design of oligonucleic acid chains to be labeled so that the lengths of fragments amplified by a predetermined primer are different from each other. Means that The predetermined primer may be one using one kind of primer set, or may be one using two or more kinds of primer sets, and is not limited. When a single primer set is used, an amplified fragment can be obtained by binding to any type of oligonucleic acid chain to be labeled. The length of the amplified fragment obtained depends on the type of oligonucleic acid chain (label (For example, see Fig. L (e) and (£)). When two or more primer sets are used, the length of the amplified fragment obtained by using each primer that specifically binds to each type of oligonucleic acid chain to be labeled is It depends on the type of chain.
ここで、 標識化される結合物質としては、 例えば、 特定の抗原物質に対して特 異的に結合し得る抗体 (抗体タンパク質) のほか、 特定の標的遺伝子又は核酸分 子に対してハイプリダイズし得る一本鎖核酸 (DNA、 RNA(mRNA等) 及びぺプ チド核酸等の合成核酸) 、 特定の標的物質に対して特異的に結合し得る各種タン パク質 (抗体を除く) 、 特定の糖脂質に対して特異的に結合し得るタンパク質 ( レクチン等) 、 及び特定の抗体に対して特異的に結合し得る抗原物質などが挙げ られ、 中でも抗体が好ましい。 なお、 結合物質が抗体の場合、 標識処理された抗 体を 「複合抗体」 と称することがある。  Here, as a binding substance to be labeled, for example, in addition to an antibody (antibody protein) that can specifically bind to a specific antigen substance, a hybridized substance is used for a specific target gene or nucleic acid molecule. Single-stranded nucleic acids (synthetic nucleic acids such as DNA, RNA (mRNA, etc.) and peptide nucleic acids), various proteins (except antibodies) that can specifically bind to specific target substances, specific sugars Examples include proteins that can specifically bind to lipids (lectins and the like), antigenic substances that can specifically bind to specific antibodies, and antibodies are preferred. When the binding substance is an antibody, the labeled antibody may be referred to as “complex antibody”.
結合物質が抗体である場合は、 一般には、 特定の単一種類の抗原 (標的物質) ごとに特異性を有するモノクローナル抗体を用いるようにすることが好ましい。 例えば、 特定の複数種類の抗原に共通した特異性を有するモノクローナル抗体な ども用いることができる。 このような抗体を用いるアツセィ系によれば、 複数種 類の抗原を単一の抗体によって包括的に検出することができる。 When the binding substance is an antibody, it is generally preferable to use a monoclonal antibody having specificity for each specific single type of antigen (target substance). For example, monoclonal antibodies having specificity common to a plurality of specific types of antigens can be used. According to the Atsy system using such antibodies, multiple species A class of antigens can be comprehensively detected by a single antibody.
なお、 本工程において、 「被験試料中の標的物質と、 標識処理された結合物質 とを接触させる」 とは、 標的物質と結合物質とを直接接触させて結合させること を意味するほか、 より広義的に、 標的物質に 1次的な結合物質 (1次抗体など) を結合させ、 次いでこの 1次結合物質に対して特異性を有する結合物質として、 標識処理された結合物質を接触させ、 結果として標的物質と標識処理された結合 物質とを間接的に結合させることも意味するものとする。 この間接的な結合にお いては、 1次結合物質には、 さらに 2次結合物質、 3次結合物質、 · ' · η次結合 物質を結合させてもよく、 その場合、 標識処理された結合物質としては η次結合 物質と特異的に結合し得るものを用いればよい。 なお、 ηは、 1〜1 1であるこ とが好ましく、 より好ましくは 1又は 2である。  In this step, “to bring the target substance in the test sample into contact with the labeled binding substance” means that the target substance and the binding substance are brought into direct contact with each other and bonded in a broader sense. The primary binding substance (primary antibody, etc.) is bound to the target substance, and then the labeled binding substance is brought into contact as a binding substance having specificity for the primary binding substance. It also means that the target substance and the labeled binding substance are indirectly bound. In this indirect binding, the primary binding substance may further be bound with a secondary binding substance, a tertiary binding substance, and a η-order binding substance. Substances that can specifically bind to η-order binding substances may be used. In addition, η is preferably 1 to 11, more preferably 1 or 2.
結合物質の標識処理に用いるオリゴ核酸鎖としては、 恒温条件下で反応可能な 核酸増幅法に用いるプライマー (LAMP法用プライマー 及び ICAN法用プライ マー等) と結合する領域を有するオリゴ核酸鎖を用いる。  As the oligonucleic acid chain used for the labeling treatment of the binding substance, an oligonucleic acid chain having a region that binds to a primer (such as a primer for LAMP method and a primer for ICAN method) that can be reacted under constant temperature conditions is used. .
ここで、 例えば、 LAMP法用プライマーと結合する領域とは、 先に述べた FIP、 BIP、 F3プライマー、 B3プライマー (必要に応じて Loop Primer F及びノ又は Loop Primer B) から構成されるプライマーセットを設計する基となる 6領域を 含む領域であり、 かつ、 このプライマーセットを用いて増幅され得る領域を意味 し、 具体的な核酸配列は限定はされない。 また、 ICAN法用プライマーと結合す る領域とは、 先に述べた 2つのキメラプライマー (F及び Rプライマー) から構成 されるプライマーセットを設計する基となる 2領域を含む領域であり、 かつ、 こ のプライマーセットを用いて増幅され得る領域を意味し、 具体的な核酸配列は限 定はされない。 なお、 標識となるオリゴ核酸鎖は、 例えば、 制限酵素で切断可能 な領域を有するもの (図 2 A(e)参照) 、 光照射により切断可能な領域を有する もの、 あるいは、 活性酸素により切断可能な領域を有するもの (図 3参照) であ つてもよい。 この場合、 増幅反応の前に、 オリゴ核酸鎖を結合物質との複合体か ら分離及ぴ単離して鎵型とすることができ、 より効率的な増幅反応を行うことが できる。  Here, for example, the region that binds to the primer for the LAMP method is a primer set composed of the FIP, BIP, F3 primer, and B3 primer (Loop Primer F and Loop Primer B as required) described above. Means a region that includes 6 regions that serve as a base for designing and can be amplified using this primer set, and the specific nucleic acid sequence is not limited. The region that binds to the primer for the ICAN method is a region that includes two regions that serve as a basis for designing a primer set composed of the two chimeric primers (F and R primers) described above, and It means a region that can be amplified using this primer set, and the specific nucleic acid sequence is not limited. The oligonucleic acid chain to be labeled has, for example, a region that can be cleaved by a restriction enzyme (see FIG. 2A (e)), a region that has a region that can be cleaved by light irradiation, or can be cleaved by active oxygen. (See Fig. 3). In this case, prior to the amplification reaction, the oligonucleic acid chain can be separated and isolated from the complex with the binding substance to form a cage, and a more efficient amplification reaction can be performed.
オリゴ核酸鎖としては、 オリゴヌクレオチド鎖 (オリゴ DNA鎖及ぴオリゴ UNA鎖 (好ましくはオリゴ DNA鎖) ) 、 オリゴぺプチド核酸鎖 (オリゴ PNA鎖 ) 、 又はこれらの混合鎖が好ましく挙げられ、 なかでもオリゴヌクレオチド鎖が より好ましい。 また、 本発明においては、 オリゴ核酸鎖は、 その一部にオリゴぺ プチド鎖を含むものも包含するものとする。 オリゴペプチド鎖がオリゴ核酸鎖の 一端に含有されている場合は、 例えば、 結合物質への標識処理を容易にするため、 あるいは、 後に複合体から分離させるときの切断部分とするために (図 4参照) 、 当該ォリゴぺプチド鎖が利用することができる。 なお、 ォリゴ核酸鎖は、 天然物 であっても合成物であってもよいが、 合成物であることが好ましい。 Oligonucleic acid strands include oligonucleotide strands (oligo DNA strands and oligos A UNA chain (preferably an oligo DNA chain)), an oligopeptide nucleic acid chain (oligo PNA chain), or a mixed chain thereof is preferably mentioned, and an oligonucleotide chain is more preferable. Further, in the present invention, the oligonucleic acid chain includes those containing a part of the oligopeptide chain. When the oligopeptide chain is contained at one end of the oligonucleic acid chain, for example, to facilitate the labeling of the binding substance, or as a cleavage part for later separation from the complex (Fig. 4). The oligopeptide peptide chain can be used. The oligonucleic acid chain may be a natural product or a synthetic product, but is preferably a synthetic product.
標識として用いるオリゴ核酸鎖の鎖長は、 特に限定はされないが、 例えば、 100〜5,000merであることが好ましく、 より好ましくは 100〜l,000mer、 さらに 好ましくは 100〜500merである。 オリゴ核酸鎖の鎖長が上記範囲を満たす場合、 結合物質との複合化が容易となり、 複合化後の状態を安定化させるとともに、 検 出感度の向上や検出時間の短縮を図ることができる。  The length of the oligonucleic acid chain used as a label is not particularly limited, but is preferably, for example, 100 to 5,000 mer, more preferably 100 to 1,000 mer, and still more preferably 100 to 500 mer. When the length of the oligonucleic acid chain satisfies the above range, complexing with a binding substance is facilitated, the state after complexing is stabilized, detection sensitivity can be improved, and detection time can be shortened.
標識処理された結合物質は、 例えば、 標識として用いるオリゴ核酸鎖の一端を、 結合物質に共有結合させることによって調製することができる。 この場合、 オリ ゴ核酸鎖は、 例えば、 1個又は 2個以上のチオール基ゃァミノ基 (置換基) 又は ピオチン (若しくはアビジン) 等が化学的又は酵素的処理 (好ましくは化学的処 理) によって導入されていてもよい。 これにより、 結合物質との複合化が容易と なり、 複合化後の状態が一層安定化し、 得られる複合体の収率を向上させるとと もに、 検出感度や検出効果を高める結果となる。 結合物質にオリゴ核酸鎖を標識 処理する方法としては、 具体的には、 (0 5'末端にアミノ基ゃチオール基を付加 したオリ ゴ核酸鎖を 2価の架橋剤を用いて結合物質に固定する方法 ( "E. Hendrickson et al., Nucl. Acids: Res., Vol 23(3), p522— 529 (1995)" を参照) や、 (ii)予めオリゴ核酸鎖及び結合物質をいずれもビォチン化しておき、 この結合物 質とオリゴ核酸鎖とを混合すると共にアビジンを添加することで、 アビジンを介 してオリゴ核酸鎖を結合物質に固定する方法等が好ましく挙げられる。 なお、 本 明細書中、 「アビジン」 とは、 一般にピオチンタンパク質との特異的結合能を有 するアビジンタンパク質全般を含むものとし、 例えば、 アビジン、 ストレプトァ ビジン及びニュートラアビジン等が好ましく挙げられ、 中でも、 ストレプトアビ ジン及び-ユートラアビジンがより好ましい。 The labeled binding substance can be prepared, for example, by covalently binding one end of an oligonucleic acid chain used as a label to the binding substance. In this case, the oligonucleic acid chain is obtained by chemical or enzymatic treatment (preferably chemical treatment) of, for example, one or more thiol groups, amino groups (substituents), or thiotin (or avidin). It may be introduced. This facilitates complexation with a binding substance, stabilizes the state after complexation, improves the yield of the resulting complex, and increases detection sensitivity and detection effect. Specifically, the oligonucleic acid chain is labeled on the binding substance. Specifically, the oligonucleic acid chain with an amino group or thiol group added to the 5 'end is fixed to the binding substance using a divalent crosslinking agent. (See “E. Hendrickson et al., Nucl. Acids: Res., Vol 23 (3), p522—529 (1995)”) and (ii) preliminarily both oligonucleic acid strand and binding substance biotin. Preferably, a method of immobilizing the oligonucleic acid chain to the binding substance via avidin by mixing the binding substance and the oligonucleic acid chain and adding avidin is preferable. Among them, “avidin” generally includes all avidin proteins having a specific binding ability to piotin protein. For example, avidin, streptavidin, neutravidin and the like are preferable. Avi Gin and -eutravidin are more preferred.
また本発明においては、 標識部分となるオリゴ核酸鎖を、 少なくともアダプタ 一部分を介して結合物質と複合化させることもできる (図 5 (1)参照) 。 オリゴ 核酸鎖がアダプタ一部分を介して結合物質に固定されることにより、 複合化後の 構造安定性を一層高めることができ、 得られる複合化率をより向上させるととも に、 検出感度や検出効果を高める結果となる。 上記アダプタ一部分としては、 例 えば、 プロテイン G、 プロテイン A及ぴプロテイン Lから選ばれるいずれかのタ ンパク質でもよいし、 プロテイン G、 プロテイン A及びプロテイン Lから選ばれ る少なく とも 2種類のタンパク質の融合タンパク質 (例えば、プロテイン Aとプ 口ティン Gとの融合タンパク質など) でもよいし、 プロテイン G、 プロテイン A 及びプロテイン Lから選ばれる少なくとも 1種類のタンパク質と他のタンパク質 (例えば、抗 IgG抗体など) との融合タンパク質でもよいし、 さらにはこれらの 任意の組み合わせでもよい。 これらのアダプタータンパク質は、 特に結合物質が 抗体分子である場合に、 当該抗体と容易にかつ安定して結合することができるた め好ましい。  In the present invention, the oligonucleic acid chain that becomes the labeling moiety can be complexed with the binding substance via at least a portion of the adapter (see FIG. 5 (1)). Oligo Nucleic acid strands are fixed to the binding substance via a portion of the adapter, which can further enhance the structural stability after conjugation, improve the resulting conjugation rate, and improve detection sensitivity and detection effect. Result. The adapter part may be, for example, any protein selected from protein G, protein A and protein L, or at least two types of proteins selected from protein G, protein A and protein L. It may be a fusion protein (for example, a protein A and protein G fusion protein), or at least one protein selected from protein G, protein A and protein L and another protein (for example, an anti-IgG antibody). Or any combination thereof. These adapter proteins are preferred because they can be easily and stably bound to the antibody, particularly when the binding substance is an antibody molecule.
アダプタ一部分を含む複合体の調製方法としては、 限定はされないが、 (i) ま ず、 アダプタ一部分に標識となるオリゴ核酸鎖を結合させ、 (ii) 次いで、 ァダプ ター部分を結合物質に固定する方法が好ましい。  The method for preparing the complex containing the adapter part is not limited, but (i) First, the oligonucleic acid strand to be labeled is bound to the adapter part, and (ii) the adapter part is then fixed to the binding substance. The method is preferred.
具体的には、 (i)では、 アダプタ一部分をアビジン修飾し、 オリゴ核酸鎖をビォ チン化して、 両者を混合することにより、 オリゴ核酸鎖をアダプタ一部分に結合 させる手法が採用できる。 あるいは、 予めアダプタ一部分及ぴオリゴ核酸鎖をい ずれもビォチン化しておき、 当該アダプタ一部分とオリゴ核酸鎖とを混合すると 共にアビジンを添加することで、 アビジンを介してオリゴ核酸鎖をアダプタ一部 分に結合させる手法も採用できる。 なお、 前者の手法の場合、 アダプタ一部分の アビジン修飾は、 まずリンカ一化合物をアダプタ一部分と結合反応させた後、 当 該化合物にァビジンを結合させてもよい。 ここで使用されるアダプタ一部分がプ 口ティン A、 G又は Lなどの場合、 リンカ一化合物としては、 例えば、 以下の構 造式で不さ lる I Sulfosuccinimidyl 4— (N— maleimidomethyl)cyclohexane— 1— carboxylate (Sulfo-SMCC) 」 等を好ましく用いることができる。 Sulfo- SMGGの分子構造 Specifically, in (i), a method can be employed in which an oligonucleic acid chain is bound to an adapter part by avidin-modifying a part of the adapter, biotinylating the oligonucleic acid chain, and mixing both. Alternatively, both the adapter part and the oligonucleic acid chain are biotined in advance, and the adapter part and the oligonucleic acid chain are mixed together, and avidin is added, whereby the oligonucleic acid chain is separated from the adapter partly through avidin. It is also possible to adopt a method of coupling to the In the former method, avidin modification of the adapter part may be carried out by first binding a linker compound with the adapter part and then binding avidin to the compound. When the adapter part used here is protein A, G, or L, as a linker compound, for example, I Sulfosuccinimidyl 4— (N—maleimidomethyl) cyclohexane— 1 — Carboxylate (Sulfo-SMCC) ”and the like can be preferably used. Molecular structure of Sulfo-SMGG
Figure imgf000019_0001
Figure imgf000019_0001
aleimide group  aleimide group
Sulfo- SMCCは、 市販のもの (PIERCE社製, # 22322, Molecular Weight: 436.37, Spacer Arm Length: 11.6 A) を用いることができる。 Sulfo- SMCCを 用いる際は、 まず、 プロテイン Gの溶液に Sulfo- SMCCの溶液を添カ卩し、 室温で ゆっくりと攪拌することにより、 プロテイン Gと Su 0- SMCCとを結合させて、 マレイミ ド活性化プロテイン Gを得る。 この結合は、 プロテイン Gと Sulfo- SMCCの Sulfo- NHSエステル基との結合であり、 プロティン Gの 1分子に対し て Sulfo-SMCCが 1又は 2分子以上 (好ましくは 2分子以上、 さらに好ましくは 2〜3分子) 結合したものである。 その後、 マレイミド活性化プロテイン Gの溶 液と、 別途調製されたマレイミド活性化アビジンの溶液とを混合することにより、 Sulfo-SMC Cを介してなるプロティン G/アビジン結合体が得られる。 当該結合 体は、 プロテイン Gの 1分子に対してアビジンが 1又は 2分子以上 (好ましくは 2分子以上、 さらに好ましくは 2〜3分子) 結合しているものが好ましい。 なお、 上記において、 プロテイン Gの代わりにプロテイン A及び L等を用いて結合体を 得る場合も同様である。 Commercially available Sulfo-SMCC (PIERCE, # 22322, Molecular Weight: 436.37, Spacer Arm Length: 11.6 A) can be used. When using Sulfo-SMCC, first add the Sulfo-SMCC solution to the protein G solution, and slowly agitate at room temperature to bind Protein G and Su 0-SMCC. Obtain activated protein G. This bond is a bond between protein G and the Sulfo-NHS ester group of Sulfo-SMCC. One or two or more Sulfo-SMCC (preferably two or more, more preferably two) per protein G molecule ~ 3 molecules). Thereafter, a protein G / avidin conjugate via Sulfo-SMCC is obtained by mixing a solution of maleimide activated protein G with a separately prepared solution of maleimide activated avidin. The conjugate is preferably one in which one or two or more avidin molecules (preferably two or more molecules, more preferably two to three molecules) are bound to one protein G molecule. The same applies to the case where a conjugate is obtained using protein A, L, or the like instead of protein G in the above.
次に、 前記 (ii)では、 アダプタ一部分と結合物質とが結合反応性を有する場合 は、 (i)で得られたアダプター部分/標識部分結合体と結合物質とを混合すること で、 複合体を得ることができる。 また、 アダプタ一部分と結合物質とが、,もとも と結合反応性を有しない場合は、 例えば、 両者をピオチン化しておきアビジン存 在下で混合するなど、 (i)において採用し得る手法と同様の手法を用いて複合体を 得ることができる。 (4) 複合体形成反応 Next, in the above (ii), when the adapter part and the binding substance have binding reactivity, the adapter part / labeling part conjugate obtained in (i) and the binding substance are mixed to form a complex. Can be obtained. In addition, if the adapter part and the binding substance do not have binding reactivity originally, for example, both of them may be piotinated and mixed in the presence of avidin. Techniques can be used to obtain the complex. (4) Complex formation reaction
上述した結合物質と標的物質とを接触させて結合物質と標的物質との複合体を 形成する反応について、 その方法及び条件等は、 標的物質及び結合物質の種類や 物性等を考慮して、 適宜設定することができ、 限定はされない。  Regarding the reaction of bringing the binding substance and target substance into contact with each other to form a complex of the binding substance and the target substance, the method and conditions are appropriately determined in consideration of the type and physical properties of the target substance and binding substance. It can be set and is not limited.
例えば、 支持体に固定 (コーティング) した標的物質に、 標識処理された結合 物質を接触させる場合は、 一般には、 予め公知のブロッキング液でブロッキング 処理を施し、 PBS等の公知の洗浄液でよく洗浄しておく。 その後、 標識処理さ れた結合物質を複数種含む溶液を適量添加し、 室温で 30〜60分間攪拌しながら、 標的物質と結合物質との結合反応を行い両物質の複合体を形成させ、 再度よく洗 浄することが好ましい。 また、 支持体に固定していない標的物質に、 標識処理さ れた結合物質を接触させる場合は、 一般には、 標的物質を含む被験試料に対して 適当な前処理を行い、 標的物質以外の不純物を除去あるいは低減しておくことが 好ましい。 このような例示は、 特に、 結合物質が抗体であり標的物質が抗原であ る場合の複合体形成反応 (抗原抗体反応) に好ましく適用できる。  For example, when a labeled binding substance is brought into contact with a target substance immobilized (coated) on a support, generally, a blocking treatment is performed in advance with a known blocking solution, and the well is washed thoroughly with a known washing solution such as PBS. Keep it. After that, an appropriate amount of a solution containing a plurality of labeled binding substances is added, and the target substance and the binding substance are subjected to a binding reaction while stirring at room temperature for 30 to 60 minutes to form a complex of both substances. It is preferable to wash thoroughly. In addition, when a labeled binding substance is brought into contact with a target substance that is not immobilized on a support, generally, an appropriate pretreatment is performed on the test sample containing the target substance and impurities other than the target substance are introduced. Is preferably removed or reduced. Such exemplification can be preferably applied particularly to a complex formation reaction (antigen-antibody reaction) when the binding substance is an antibody and the target substance is an antigen.
4 . 増幅工程 4. Amplification process
本工程は、 先に述べた通り、 複合体形成工程で得られた複合体中のオリゴ核酸 鎖、 すなわち複合体を形成した結合物質中の標識部分であるオリゴ核酸鎖を、 前 記 1 .の項目で説明した所定の核酸増幅法 (LAMP法、 ICAN法等) により増幅す る工程である。 具体的には、 複合体形成工程で得られた複合体を含む系に、 所定 のプライマーセット、 DNA合成酵素及ぴ基質等を予め混合し、 一定温度で保温 することにより、 複合体中のオリゴ核酸鎖の所定の領域を増幅する。 所定の増幅 領域は、 オリゴ核酸鎖の一部であってもよいし全部であってもよい。  In this step, as described above, the oligonucleic acid chain in the complex obtained in the complex formation step, that is, the oligonucleic acid chain that is the labeling portion in the binding substance that has formed the complex is converted into the above-mentioned 1. This is the step of amplification by the predetermined nucleic acid amplification method (LAMP method, ICAN method, etc.) explained in the item. Specifically, a system comprising the complex obtained in the complex formation step is mixed with a predetermined primer set, DNA synthase, substrate, etc. in advance, and kept at a constant temperature, whereby an oligo in the complex is obtained. Amplify a predetermined region of the nucleic acid strand. The predetermined amplification region may be a part or all of the oligonucleic acid chain.
特に、 LAMP法で増幅する場合は、 同一鎖上で互いに相補的な配列を持つ繰り 返し構造を有する増幅産物 (様々な単位数の断片が混在した状態のもの) が得ら れる。 前記 3 .(3)の項目で説明したように互いに異なる標識処理を施した複数種 類の結合物質を用いた場合は、 さらに、 繰り返し単位の鎖長が異なるものも増幅 産物中に混在することとなる。 そのため、 後の検出工程における識別検出が困難 となる場合がある。 このような場合は、 LAMP法による増幅産物が制限酵素処理 等により繰り返し構造単位ごとに切断できるように、 予め、 オリゴ核酸鎖及び/ 又は LAMP法用プライマーを適宜選択又は設計しておくことが好ましい。 例えば、 制限酵素処理により切断する場合は、 隣接構造単位との接合部周辺に適当な制限 酵素認識部位が含有されるように、 上記選択又は設計をする。 これにより、 標識 となるオリゴ核酸鎖の種類ごとにほぼ均一鎖長の増幅断片が得られることとなり、 識別検出が容易となる。 なお、 繰り返し構造単位ごとの切断とは、 1単位ごとの 切断でもよいし、 2単位又はそれ以上の単位ごとの切断でもよい。 In particular, when amplification is performed by the LAMP method, an amplification product having a repetitive structure having mutually complementary sequences on the same strand (in a state where fragments of various units are mixed) is obtained. When using multiple types of binding substances that have been subjected to different labeling treatments as described in section 3. (3) above, those with different repeat unit chain lengths should also be present in the amplification product. It becomes. Therefore, it may be difficult to detect the identification in the subsequent detection process. In such a case, the amplification product by the LAMP method is treated with a restriction enzyme. It is preferable to select or design an oligonucleic acid chain and / or a primer for the LAMP method in advance so that the structure can be cleaved for each repeating unit. For example, when cleaving by restriction enzyme treatment, the above selection or design is performed so that an appropriate restriction enzyme recognition site is contained around the junction with the adjacent structural unit. As a result, an amplified fragment having a substantially uniform chain length is obtained for each type of oligonucleic acid chain to be labeled, and identification and detection are facilitated. Note that the cutting for each repeating structural unit may be cutting for each unit, or cutting for every two units or more.
また本発明では、 本工程を行うに当たり、 予め、 前記複合体形成工程で得られ た複合体を含む系に適当な制限酵素を添加し、 オリゴ核酸鎖中の増幅領域を含む 部分を結合物質から切断して単離しておき、 単離後のオリゴ核酸鎖を鎳型として 増幅することもできる (図 2 A, 2 Bの (d)〜(g)参照) 。 この場合、 適当な部位で 切断できるよう、 オリゴ核酸鎖を適宜選択又は設計しておくことが望ましい。 こ れと同様に、 標識となるオリゴ核酸鎖が光照射により切断可能な領域を有するも のである場合は、 所定の波長光を照射することにより、 オリゴ核酸鎖を単離し鎳 型として増幅することができる。 また、 標識となるオリゴ核酸鎖が活性酸素によ り切断可能な領域を有するものである場合は、 HRP (西洋わさびペルォキシダ 一ゼ) や Fe錯体等のフリーラジカルを産生遊離させる試薬を添加して活性酸素 を生じさせることにより、 オリゴ核酸鎖を単離し (図 3参照) 、 錶型として増幅 することができる。  In the present invention, in carrying out this step, an appropriate restriction enzyme is added in advance to the system containing the complex obtained in the complex forming step, and the portion containing the amplification region in the oligonucleic acid chain is removed from the binding substance. It can also be cleaved and isolated, and the isolated oligonucleic acid strand can be amplified as a saddle (see (d) to (g) of FIGS. 2A and 2B). In this case, it is desirable to select or design an oligonucleic acid chain as appropriate so that it can be cleaved at an appropriate site. Similarly, when the oligonucleic acid chain to be labeled has a region that can be cleaved by light irradiation, the oligonucleic acid chain is isolated and amplified as a trapezoid by irradiation with light of a predetermined wavelength. Can do. In addition, if the oligonucleic acid chain to be labeled has a region that can be cleaved by active oxygen, a reagent that produces and releases free radicals such as HRP (horseradish peroxidase) and Fe complexes is added. By generating active oxygen, the oligonucleic acid strand can be isolated (see Fig. 3) and amplified as a cage.
5 . 検出工程 5. Detection process
本工程は、 先に述べた通り、 増幅工程で得られる増幅産物を検出する工程であ る。  This step is a step for detecting the amplification product obtained in the amplification step, as described above.
増幅産物の検出は、 前記 1 .の項目で説明したように、 目視ゃ濁度測定により 容易に行うことができ、 他に列挙した手段を用いて又は併用して行ってもよい。 特に、 鎖長の異なる複数種類の増幅断片をそれぞれ識別して検出する場合は、 各種電気泳動法により行うことができる (例えば、 図 1 (g)参照) 。 あるいは、 蛍光標識したプライマーを用い、 得られた増幅断片について、 DNAシークェン サー (例えば、 Applied Biosystems社製、 製品名 : ABI-3100 ) を用いた GeneScanソフトウエアでの解析によりピーク位置及びその高さを同定すること で、 増幅断片の長さをそれぞれ識別して検出することもできる (図 5 (3)〜(5), 図 6参照) 。 6 . 検出用キット As described in the item 1 above, the amplification product can be easily detected by visual turbidity measurement, or may be performed using other listed means or in combination. In particular, a plurality of types of amplified fragments having different chain lengths can be identified and detected by various electrophoresis methods (see, for example, FIG. 1 (g)). Alternatively, using a fluorescently labeled primer, a DNA sequencer (for example, Applied Biosystems, product name: ABI-3100) was used for the obtained amplified fragment. By identifying the peak position and its height by analysis with GeneScan software, the length of the amplified fragment can be identified and detected (see Fig. 5 (3) to (5) and Fig. 6). 6. Detection kit
本発明のキットは、 先に述べた通り、 構成成分として、 恒温条件下で反応可能 な核酸増幅法に用いるプライマー (LAMP法用プライマー、 ICAN法用プライマ 一等) と結合する領域を有するオリゴ核酸鎖により標識処理された結合物質を含 む、 標的物質の検出用キットである。 ここで、 標識処理された結合物質の詳細に ついては、 本発明の検出方法の説明において説明した通りである。  As described above, the kit of the present invention has, as a constituent component, an oligonucleic acid having a region that binds to a primer (a primer for LAMP method, a primer for ICAN method, etc.) used in a nucleic acid amplification method capable of reacting under constant temperature conditions. A kit for detecting a target substance containing a binding substance labeled with a chain. Here, the details of the labeled binding substance are as described in the description of the detection method of the present invention.
本発明のキットは、 上記本発明の検出方法を行うために有効に用いることがで き極めて有用性が高いものである。  The kit of the present invention can be used effectively for carrying out the detection method of the present invention and is extremely useful.
本発明のキットは、 上記構成成分以外に他の構成成分を含んでいてもよい。 他 の構成成分としては、 例えば、 プライマーセット、 dNTP、 DNAポリメラーゼ、 RNase H、 制限酵素、 各種バッファ、 滅菌水、 各種反応容器 (エツペンドルフ チューブ等) 、 ブロッキング剤 (Bovine Serum Albumin (BSA), Skim milk, Goat血清等の血清成分) 、 及び洗浄剤、 界面活性剤、 蛍光試薬 (DNAインター カレーター等) 、 各種プレート、 アジ化ナトリウム等の防腐剤、 並びに実験操作 マニュアル (説明書) 等のほか、 必要に応じ、 恒温槽 (液体、 気体及び固体のい ずれを媒体とするものでもよい) や、 濁度測定装置 (分光光度計等) 等も挙げら れる。 以下に、 実施例を挙げて本発明をより具体的に説明するが、 本発明はこれらに 限定されるものではない。  The kit of the present invention may contain other components in addition to the above components. Other components include, for example, primer set, dNTP, DNA polymerase, RNase H, restriction enzyme, various buffers, sterilized water, various reaction vessels (Eppendorf tube, etc.), blocking agent (Bovine Serum Albumin (BSA), Skim milk , Serum components such as Goat serum), and detergents, surfactants, fluorescent reagents (DNA intercalators, etc.), various plates, preservatives such as sodium azide, and experimental operation manuals (instructions) Depending on the conditions, a thermostatic chamber (which can be any liquid, gas or solid medium), a turbidity measuring device (such as a spectrophotometer), etc. may be mentioned. Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
〔実施例 1〕  Example 1
くオリゴヌクレオチド複合抗体の調製 > Preparation of oligonucleotide conjugate antibodies>
(1) オリゴヌクレオチド鎖の調製  (1) Preparation of oligonucleotide chain
550merのオリゴヌクレオチドの調製は、 5,プライマーとして、 3,末端にビォ チンが結合した配列番号 1のプライマー (5 - MUSTagBio) を使用し、 3'プライ マーとして、 配列番号 2のプライマー (3- MUSTag515) を使用して、 PCRによ り行った。 The 550mer oligonucleotide was prepared by using the primer of SEQ ID NO: 1 (5-MUSTagBio) with 5 as a primer and 3 linked with biotin as a primer. As a primer, PCR was performed using a primer of SEQ ID NO: 2 (3- MUSTag515).
上記各 PCRは、 Pinlをインサートした pcDNA3.1 (In vitro社製) を铸型 DNA とし、 ポリメラーゼとして Taq polymeraseを使用して、 下記の反応液組成及ぴ 反応条件で行った。  Each of the PCRs described above was carried out using pcDNA3.1 (manufactured by In vitro) with Pinl as a vertical DNA and Taq polymerase as a polymerase under the following reaction solution composition and reaction conditions.
《プライマー》 "Primer"
5- MUSTagBio:  5- MUSTagBio:
Biotin-GGGAATTCGCGGACGAGGAGAAGCTGCCGCCCGGCTGG (配歹幡号 1) 3-MUSTag515:  Biotin-GGGAATTCGCGGACGAGGAGAAGCTGCCGCCCGGCTGG (No. 1) 3-MUSTag515:
AGCTTGACGGGGAAAGCCGG (配歹 lj番号 2)  AGCTTGACGGGGAAAGCCGG (allocation lj number 2)
《反応液組成》 <Reaction solution composition>
铸型 DNA (lOOM /μΙ) : IML  Vertical DNA (lOOM / μ /): IML
Taq polymerase: 2.5unit  Taq polymerase: 2.5unit
5,プライマー (20μΜ): 2μL  5, Primer (20μΜ): 2μL
3'プライマー (20μΜ): 2^L  3 'primer (20μΜ): 2 ^ L
dNTP(2.5mM each): 8 μ L  dNTP (2.5 mM each): 8 μL
10 x Buffer: 10  10 x Buffer: 10
滅菌水: 適量 (約 77wL)  Sterilized water: appropriate amount (about 77wL)
合計: 100 μ L  Total: 100 μL
《反応条件》 <Reaction conditions>
「95°Cで 1分間の熱変性 ·解離→55°Cで 1分間のァニーリング→72°Cで 30秒 間の合成 '伸長」 を 1サイクルとするサイクル条件で、 計 35サイクル。 上記各 PCR後の増幅産物は、 PCR後に遠心して得られた上清を MnElute PCR Purification spin column (キアゲン社製) にてフィルタ一精製することにより 単一なオリゴヌクレオチドに精製した。 (2) ピオチン化抗体の調製 A total of 35 cycles under the cycle conditions of 1 cycle of “thermal denaturation at 95 ° C for 1 minute · dissociation → annealing for 1 minute at 55 ° C → synthesis' extension for 30 seconds at 72 ° C”. The amplification product after each PCR was purified to a single oligonucleotide by purifying the supernatant obtained by centrifugation after PCR with MnElute PCR Purification spin column (Qiagen). (2) Preparation of pyotinylated antibody
常法により、 下記のモノクローナル抗体を作製した。  The following monoclonal antibodies were prepared by a conventional method.
12CA5 (抗 HAモノクローナル抗体)  12CA5 (anti-HA monoclonal antibody)
次に、 12CA5抗体と Sulfo - NHS- LC- Biotin(Pierce社製)とのモル比力 : 20と なるように混合し、 室温で 30分間反応させた。 反応液を 5mLの脱塩カラムに通 し、 目的の抗体画分を回収して、 ビォチン化抗体を得た。  Next, the 12CA5 antibody and Sulfo-NHS-LC-Biotin (manufactured by Pierce) were mixed so that the molar specific power was 20 and reacted at room temperature for 30 minutes. The reaction solution was passed through a 5 mL desalting column, and the target antibody fraction was recovered to obtain a biotinylated antibody.
(3) オリゴヌクレオチド複合抗体の調製 (3) Preparation of oligonucleotide conjugate antibody
ピオチン化 12CA5には 550merのオリゴヌクレオチドを 1: 1のモル比で混合し た。 次いで、 NeutrAvidin(Piaerce社製)を、 ピオチン化抗体に対し 1: 1のモル 比で添加し、 室温で 15分間反応させた。 反応液を 5mLの脱塩カラムに通し、 目 的の画分を回収して、 オリゴヌクレオチド複合抗体を得た。 〔実施例 2〕  Piotinylated 12CA5 was mixed with a 550mer oligonucleotide in a 1: 1 molar ratio. Subsequently, NeutrAvidin (manufactured by Piaerce) was added at a molar ratio of 1: 1 to the piotinated antibody and allowed to react at room temperature for 15 minutes. The reaction solution was passed through a 5 mL desalting column, and the target fraction was collected to obtain an oligonucleotide-conjugated antibody. Example 2
く複合抗体を用いた検出 > Detection using complex antibodies>
実施例 1で得られた複合抗体を用いて、 「抗原抗体反応」 及び 「標識検出」 を 以下のようにして行った。  Using the complex antibody obtained in Example 1, “antigen-antibody reaction” and “label detection” were performed as follows.
抗原一抗体反応サンドウイツチ法の常法に従い、 支持体としての粒径 Ι μ ηιの 磁性ビーズ (BioLabs社製) に、 9E10 (抗 Mycモノクローナル抗体) を結合し た抗体結合ビーズを準備した。 抗原としては HA- GST- Mycの合成べプチド (抗 原溶液) を用いた。  In accordance with a conventional antigen-antibody reaction sandwich method, antibody-bound beads were prepared by binding 9E10 (anti-Myc monoclonal antibody) to magnetic beads (manufactured by BioLabs) having a particle size of Ιμηι as a support. A synthetic peptide (antigen solution) of HA-GST-Myc was used as the antigen.
まず、 マイクロチューブに 9E10結合ビーズを入れ、 これに 1チューブあたり 200pg〜2.4fgの抗原量となるように希釈した抗原溶液をそれぞれ添加して、 室 温で 30分間インキュベーションした。 各チューブ (反応系 A〜: B) における抗原 量を表 1に示す。 反応系 A B C D E F G H First, 9E10-bound beads were placed in a microtube, and each antigen solution diluted to an antigen amount of 200 pg to 2.4 fg per tube was added thereto, followed by incubation at room temperature for 30 minutes. Table 1 shows the amount of antigen in each tube (reaction systems A to B). Reaction system ABCDEFGH
抗原量 200pg 40pg 8pg 1.6pg 320fg 64fg 12.8fg 2.4fg これらを PBSTで 3回よく洗浄し、 オリゴヌクレオチド複合抗体を含む溶液を 適量添加し、 室温で 30分間シ イキングしながら反応させた。 その後、 さらに PBSTで 3回よく洗浄し、 遠心して得られた残渣に、 EcoRI緩衝溶液で調製した EcoRI酵素溶液を添加して、 37°Cで 2時間反応させ、 オリゴヌクレオチド複合抗 体におけるオリゴヌクレオチド鎖を切断した。 その後、 遠心して得た上清を用い て増幅を行った。  Amount of antigen 200 pg 40 pg 8 pg 1.6 pg 320 fg 64 fg 12.8 fg 2.4 fg These were thoroughly washed with PBST three times, an appropriate amount of a solution containing the oligonucleotide-conjugated antibody was added, and the reaction was carried out with shaking at room temperature for 30 minutes. After that, wash well 3 times with PBST, add the EcoRI enzyme solution prepared with EcoRI buffer solution to the residue obtained by centrifugation, and react at 37 ° C for 2 hours to obtain the oligonucleotide in the oligonucleotide conjugate antibody. The strand was broken. Thereafter, amplification was performed using the supernatant obtained by centrifugation.
すなわち、 配列番号 3のプライマー (MUSTag FIP) 、 4のプライマー ( MUSTag BIP) 、 配列番号 5のプライマー (MUSTag F3) 及ぴ 6のプライマー (MUSTag B3) を添加して (すなわち、 配列番号 3〜 6のプライマーを添カロし て) 、 下記の反応液組成及び反応条件で LAMP法による増幅反応を行った。 なお 反応液には Loopamp DNA増幅キット (栄研化学社製) を用いた。  That is, a primer of SEQ ID NO: 3 (MUSTag FIP), a primer of 4 (MUSTag BIP), a primer of SEQ ID NO: 5 (MUSTag F3) and a primer of 6 (MUSTag B3) are added (ie, SEQ ID NOs: 3 to 6). Amplification reaction was performed by the LAMP method under the following reaction solution composition and reaction conditions. In addition, Loopamp DNA amplification kit (Eiken Chemical Co., Ltd.) was used for the reaction solution.
《プライマー》 "Primer"
MUSTagFIP:  MUSTagFIP:
CGCGTGGGGATACCCCCTAA-ATGCGGTGGGCTCTATGG (配歹 (I番号 3) MUSTag BIP:  CGCGTGGGGATACCCCCTAA-ATGCGGTGGGCTCTATGG (Guide (I number 3) MUSTag BIP:
GGTGTGGTGGTTACGCGCAG-AGGGAAGAAAGCGAAAGGAG (配列番号 4) MUSTag F3:  GGTGTGGTGGTTACGCGCAG-AGGGAAGAAAGCGAAAGGAG (SEQ ID NO: 4) MUSTag F3:
TGGGAAGACAATAGCAGGCA (配列番号 5)  TGGGAAGACAATAGCAGGCA (SEQ ID NO: 5)
MUSTag B3:  MUSTag B3:
CGAACGTGGCGAGAAAGG (配列番号 6) 7063771CGAACGTGGCGAGAAAGG (SEQ ID NO: 6) 7063771
《反応液組成》 <Reaction solution composition>
铸型 DNA (遠心後の上清) : 2μL·  Vertical DNA (Supernatant after centrifugation): 2μL
Bst DNA polymerase: lnL  Bst DNA polymerase: lnL
プライマー ϊΊΡ(20μΜ): 2βL  Primer ϊΊΡ (20μΜ): 2βL
プライマー ΒΙΡ(20 ζΜ): 2 zL  Primer ΒΙΡ (20 ζΜ): 2 zL
プライマー F3(5 M): lμ  Primer F3 (5 M): lμ
プライマー F3(5^M): 1/ L  Primer F3 (5 ^ M): 1 / L
2 X Buffer: 12.5 /z L  2 X Buffer: 12.5 / z L
SYBR- Green(x2濃度液): 1.25 ML  SYBR- Green (x2 concentration solution): 1.25 ML
滅菌水: 適量 (約 2.3 wL)  Sterilized water: appropriate amount (about 2.3 wL)
A  A
Πき B+I . · 25  Whisper B + I. 25
《反応条件》 <Reaction conditions>
63°Cで 90分間保温する。 なお、 反応は MX- 3005pリアルタイム PCR装置 (ストラタジーン社製) を用 いて行い、 DNA鎖の合成に伴い変動する SYRR- Green蛍光を反応開始後 1分毎 に計測し、 DNAの増幅を観察した。 その結果を図 7に示す。  Incubate at 63 ° C for 90 minutes. The reaction was performed using an MX-3005p real-time PCR device (Stratagene), and the SYRR-Green fluorescence that fluctuates with the synthesis of the DNA strand was measured every minute after the reaction was started, and DNA amplification was observed. . The results are shown in Fig. 7.
同時に、 反応性の比較のため、 同じ遠心後の上清に配列番号 7のプライマー ( MUSTag-Forw3) 及び配列番号 8のプライマー (MUSTag- GEX) を添加して、 下記の反応液組成及ぴ反応条件で PCRを行った。 なお反応液には Brilliant SYBR green Q-PCR master mixキット (Stratagene社製) を用いた。 その結果 を図 8に示す。 《プライマー》  At the same time, for comparison of reactivity, the primer of SEQ ID NO: 7 (MUSATag-Forw3) and the primer of SEQ ID NO: 8 (MUSTag-GEX) were added to the supernatant after the same centrifugation, and the following reaction solution composition and reaction were performed. PCR was performed under conditions. The reaction solution was Brilliant SYBR green Q-PCR master mix kit (Stratagene). Figure 8 shows the result. "Primer"
5-MUSTag-Forw3:  5-MUSTag-Forw3:
TGCATCTAGAGGGCCCTATTCTATA (配列番号 7)  TGCATCTAGAGGGCCCTATTCTATA (SEQ ID NO: 7)
3 - MUSTag - GEX:  3-MUSTag-GEX:
GGCAAGCCACGTTTGGTG (配列番号 8) 《反応液組成》 GGCAAGCCACGTTTGGTG (SEQ ID NO: 8) <Reaction solution composition>
铸型 DNA (遠心後の上清) : 2 μ  Vertical DNA (Supernatant after centrifugation): 2 μ
2 X Buffer: 12.5  2 X Buffer: 12.5
5'プライマー  5 'primer
5-MUSTag-Forw3 (20 Μ)  5-MUSTag-Forw3 (20 Μ)
3'プライマー  3 'primer
3-MUSTag-GEX (20 μ Μ):  3-MUSTag-GEX (20 μΜ):
Reierence Dye: 0.375 // L  Reierence Dye: 0.375 // L
滅―菌水: 適量 (約 6.3 L)  -Bacteria water: appropriate amount (about 6.3 L)
合計 25 u L  Total 25 u L
《反応条件》 <Reaction conditions>
最初に 95°Cで 10分間の熱変性、 次いで 「95°Cで 30秒間の熱変性 .解離→ 60°Cで 1分間のァニーリング→72°Cで 1分間の合成 .伸長」 を 1サイクルと するサイクル条件で計 40サイクル。 以上の結果、 図 7及び図 8に示すように、 いずれの反応系においても、 EcoRI 処理により得られる、 オリゴヌクレオチド断片の存在を示すピークが、 それぞれ 抗原濃度依存的に認められた。 し力、し、 リアルタイム: PCR法を用いた場合に検 出されていた 64fg以下の抗原量が、 LAMP法を用いた場合では検出することがで きなかった。 一方で、 LAMP法を用いた場合に、 最小検出濃度である 320fgの抗 原の検出に要した反応時間は 76分であり、 1サイクル当たり約 1分程度であった, これは PCRサイクルとして 1サイクル当たり 3分強を要するリアルタイム PCR法 を用いた場合に比べて、 大きく反応時間が短縮されたと言える。 なお、 LAMP法 を用いた場合の反応時間は、 LAMPプライマーセットとしてループプライマー ( Loop - F及ぴ Loop- B) を併用することで、 さらに約 1/3に短縮することができる, 〔実施例 3〕 First heat denaturation at 95 ° C for 10 minutes, then heat denaturation at 95 ° C for 30 seconds. Dissociation → annealing at 60 ° C for 1 minute → synthesis at 72 ° C for 1 minute. 40 cycles in total. As a result of the above, as shown in FIG. 7 and FIG. 8, in both reaction systems, peaks indicating the presence of oligonucleotide fragments obtained by EcoRI treatment were observed depending on the antigen concentration. Real-time: Antigen amounts of 64 fg or less that were detected using the PCR method could not be detected using the LAMP method. On the other hand, when the LAMP method was used, the reaction time required for detection of 320 fg of the minimum detection concentration was 76 minutes, which was about 1 minute per cycle. Compared to the real-time PCR method, which requires more than 3 minutes per cycle, it can be said that the reaction time has been greatly shortened. The reaction time when using the LAMP method can be further reduced to about 1/3 by using a loop primer (Loop-F and Loop-B) as a LAMP primer set. Example 3
く複数の複合抗体を同時に用いた検出 > Detection using multiple complex antibodies simultaneously>
実施例 1で得られた複合抗体を用いて、 「抗原抗体反応」 及び 「標識検出」 を 以下のようにして行った。  Using the complex antibody obtained in Example 1, “antigen-antibody reaction” and “label detection” were performed as follows.
抗原一抗体反応サンドウイツチ法の常法に従い、 支持体としての 96穴ィムノ プレート (nunc社製) に、 3種の抗体 (抗 IL- 1 α、 抗 IL- 8及び抗 EGFモノクロ ーナル抗体: R&D社製) を混合して結合した抗体結合プレートを準備した。 抗 原としては、 サイト力インである IL- 1ひ、 IL- 8及び EGFの組換えタンパクを用 いた (R&D社製) 。  In accordance with the conventional method of antigen-antibody reaction sandwich method, three types of antibodies (anti-IL-1α, anti-IL-8, and anti-EGF monoclonal antibody: R & D) were applied to a 96-well immunoplate (manufactured by nunc) as a support. The antibody binding plate was prepared by mixing and binding. As the antigen, IL-1 protein, IL-8, and EGF recombinant protein (manufactured by R & D) were used.
まず、 200pg〜2.4 の抗原量となるように段階希釈した抗原溶液を調製し、 それぞれを抗体結合プレートに添加して、 室温で 60分間ィンキュベーションし た。 各ゥエル (反応系 A〜H) における抗原量を表 2に示す。 表 2  First, antigen solutions serially diluted to an antigen amount of 200 pg to 2.4 were prepared, and each was added to an antibody-binding plate and incubated at room temperature for 60 minutes. Table 2 shows the amount of antigen in each well (reaction systems A to H). Table 2
Figure imgf000028_0001
抗原を感作したゥヱルを PBSTで 3回よく洗浄し、 3種のオリゴヌクレオチド複 合抗体 (抗 IL- 1 «、 抗 IL- 8及ぴ抗 EGFポリクローナル抗体より作製) を含む溶 液を適量添加し、 室温で 60分間反応させた。 その後、 さらに PBSTで 3回よく洗 浄し、 EcoRI緩衝溶液で調製した EcoRI酵素溶液を添カ卩して、 37°Cで 15分反応さ せ、 オリゴヌクレオチド複合抗体におけるオリゴヌクレオチド鎖を切断した。 そ の後、 遠心して得た上清を用いて増幅を行った。
Figure imgf000028_0001
The antigen-sensitized tool is thoroughly washed 3 times with PBST, and an appropriate amount of a solution containing three kinds of oligonucleotide-conjugated antibodies (prepared from anti-IL-1 «, anti-IL-8 and anti-EGF polyclonal antibodies) is added. And reacted at room temperature for 60 minutes. Thereafter, the plate was further washed three times with PBST, added with an EcoRI enzyme solution prepared with an EcoRI buffer solution, and reacted at 37 ° C for 15 minutes to cleave the oligonucleotide chain in the oligonucleotide-conjugated antibody. Thereafter, amplification was performed using the supernatant obtained by centrifugation.
すなわち、 配列番号 7のプライマー (5- MUSTag- Forw3) 及ぴ配列番号 8のプ ライマー (3- MUSTag_GEX) と、 配列番号 9のプローブ (TaqMan Probe #1) 、 配列番号 10のプローブ (TaqMan Probe #2) 及び配列番号 11のプローブ ( That is, the primer of SEQ ID NO: 7 (5- MUSTag- Forw3), the primer of SEQ ID NO: 8 (3- MUSTag_GEX), the probe of SEQ ID NO: 9 (TaqMan Probe # 1), the probe of SEQ ID NO: 10 (TaqMan Probe # 2) and the probe of SEQ ID NO: 11
TaqMan Probe #3) とを添加して (すなわち、 配列番号 7〜8のプライマー及び 配列番号 9〜: 11のプローブを添加して) 、 下記の反応液組成及ぴ反応条件で Q- PGR法による増幅反応を行った。 なお、 反応液には TaqMan Universal PCR master mix (ABI社製) を用いた。 TaqMan Probe # 3) (ie, the primer of SEQ ID NO: 7-8 and the probe of SEQ ID NO: 9-: 11) are added, and the Q- An amplification reaction by the PGR method was performed. As a reaction solution, TaqMan Universal PCR master mix (manufactured by ABI) was used.
《プライマー》 "Primer"
5-MUSTag-Forw3:  5-MUSTag-Forw3:
TGCATCTAGAGGGCCCTATTCTATA (配列番号 7)  TGCATCTAGAGGGCCCTATTCTATA (SEQ ID NO: 7)
3-MUSTag-GEX:  3-MUSTag-GEX:
GGCAAGCCACGTTTGGTG (配歹 IJ番号 8) 《プローブ》  GGCAAGCCACGTTTGGTG (layout IJ number 8) 《Probe》
下記プローブは、 いずれも、 5 '側に FAM蛍光色素を、 3 '側に BHQ色素を付加 したものである。  Each of the probes below has a FAM fluorescent dye added to the 5 'side and a BHQ dye added to the 3' side.
TaqMan Probe #1:  TaqMan Probe # 1:
CCTTCTAGTTGCCAGCCATCTGTT (配列番号 9)  CCTTCTAGTTGCCAGCCATCTGTT (SEQ ID NO: 9)
TaqMan Probe #2:  TaqMan Probe # 2:
ATCAGCCTCGACTGTGCCTTC (配歹 U番号 10)  ATCAGCCTCGACTGTGCCTTC (Distribution U number 10)
TaqMan Probe #3:  TaqMan Probe # 3:
ACCGACAATTGCATGAAGAACTC (配列番号 11) ACCGACAATTGCATGAAGAACTC (SEQ ID NO: 11)
《反応液組成》 <Reaction solution composition>
铸型 DNA (遠心後の上清) : 2 ^ L  Vertical DNA (Supernatant after centrifugation): 2 ^ L
2xBuffer: 12.5  2xBuffer: 12.5
5'プライマー  5 'primer
5-MUSTag-Forw3 (20 M): 2 ^ L  5-MUSTag-Forw3 (20 M): 2 ^ L
3'プライマー  3 'primer
3-MUSTag-GEX (20 μ Μ): 2 /i t  3-MUSTag-GEX (20 μΜ): 2 / it
Reierence Dye: 0.375 / L  Reierence Dye: 0.375 / L
TaqMan Probe #1 (20 μ M): 1 /i L  TaqMan Probe # 1 (20 μM): 1 / i L
TaqMan Probe #2 (20 μ M): 1 /i L  TaqMan Probe # 2 (20 μM): 1 / i L
TaqMan Probe #3 (20 μ M): 1 μ L  TaqMan Probe # 3 (20 μM): 1 μL
滅菌水:  Sterile water:
合計  total
《反応条件》 <Reaction conditions>
最初に 95°Cで 10分間の熱変性、 次いで 「95°Cで 30秒間の熱変性 ·解離 →60°Cで 1分間のァニーリング→72°Cで 1分間の合成 ·伸長」 を 1サイクル とするサイクル条件で計 40サイクル。 その結果、 表 3及び図 9に示すように、 EcoRI処理により得られるオリゴヌク レオチド断片の存在を示すピークが、 それぞれ、 抗原濃度依存的に認められた。 First cycle of heat denaturation at 95 ° C for 10 minutes, followed by one cycle of "thermal denaturation at 95 ° C for 30 seconds · dissociation → annealing at 60 ° C for 1 minute → synthesis at 72 ° C for 1 minute · extension" 40 cycles in total. As a result, as shown in Table 3 and FIG. 9, peaks indicating the presence of oligonucleotide fragments obtained by EcoRI treatment were observed depending on the antigen concentration.
表 3 Table 3
Ct原値 Ag cone Ct raw value Ag cone
[上表] pg/mL  [Upper table] pg / mL
200 40 8 1.6 0.32 0.064 0.013
Figure imgf000031_0001
0
200 40 8 1.6 0.32 0.064 0.013
Figure imgf000031_0001
0
[下表]  [Table below]
Figure imgf000031_0002
Figure imgf000031_0002
[上表] 表中の数値は、 Gt値(Threshold cycle)を示す。  [Upper table] The numbers in the table indicate Gt values (Threshold cycle).
[下表] 上表に示した Gt値を平均し (ave)、標準誤差(SD) fc%CVとを  [Table below] Gt values shown in the table above are averaged (ave) and standard error (SD) fc% CV is
算出した結果を示す。  The calculated result is shown.
注) 表右側の "Ag cone"は抗原濃度を表す(0~200pg/mL)。 また、 各抗原の検出感度は、 以下の通りであった。 Note) “A g cone” on the right side of the table represents the antigen concentration (0 to 200 pg / mL). The detection sensitivity of each antigen was as follows.
EGF: 1.6 pg/mL  EGF: 1.6 pg / mL
IL-8: 0.32 pg/mL  IL-8: 0.32 pg / mL
IL- 1 : 8 pg/ml  IL-1: 8 pg / ml
以上の結果は、 本実施例の検出方法が、 通常の ELISA と比べて明確に高感度 であり、 かつ常法では不可能な 3種の抗原 (サイト力イン) 検出を同時に達成し 得ることを示している。 産業上の利用可能性  The above results indicate that the detection method of this example is clearly more sensitive than ordinary ELISA and can simultaneously detect three types of antigens (site force-in), which is impossible with conventional methods. Show. Industrial applicability
本発明によれば、 被験試料に含まれる標的物質を検出するにあたり、 PCR法 を用いた従来の生化学的方法 (Immuno- PCR法等) に比べ、 より一層迅速かつ 正確に、 しかも低コストで容易な標的物質の検出方法を提供することができる。 この検出方法によれば、 特に、 脳卒中や心筋梗塞の早期診断 (後遺症の低減に繋 がる) 、 感染症における病原体の特定、 及び播種性血管内凝固症候群 (According to the present invention, a target substance contained in a test sample can be detected more quickly, accurately, and at a lower cost than conventional biochemical methods using PCR (such as immuno-PCR). An easy target substance detection method can be provided. According to this detection method, in particular, early diagnosis of stroke and myocardial infarction (which leads to reduction of sequelae), identification of pathogens in infectious diseases, and disseminated intravascular coagulation syndrome (
Disseminated intravascular coagulation: DIG) の診断などの臨床分野におい て、 検査又は診断効率、 及び評価効率等を飛躍的に高めることができ、 極めて有 用である。 In clinical fields such as diagnosis of disseminated intravascular coagulation (DIG), examination or diagnosis efficiency, evaluation efficiency, etc. can be dramatically improved, which is extremely useful.
また、 恒温条件下で反応可能な核酸増幅法としての LAMP法や ICAN法は、 増 幅率が非常に高いため、 これらの方法を用いて本発明の検出方法を行った場合、 反応液の濁度測定あるいは目視 (白濁の確認) のみにより、 増幅の有無を容易に 判別することができる。 そのため、 反応後に特殊な計測機器を用いたり、 増幅確 認のために手間のかかる操作を別途行わなくても、 標的物質の検出をすることが できる。 よって、 本発明の検出方法は、 被験試料を採取したその場での迅速な検 出が可能であり、 このような方法が特に必要とされる食品汚染物質 (残留農薬や 細菌等) 又は環境汚染物質 (ダイォキシンや PCB等) の検查分野おいて、 極め て有用である。  In addition, the amplification rate is very high in the LAMP method and the ICAN method as nucleic acid amplification methods that can be reacted under constant temperature conditions. Therefore, when the detection method of the present invention is performed using these methods, the reaction solution becomes turbid. The presence or absence of amplification can be easily discriminated only by measuring the intensity or by visual inspection (confirmation of cloudiness). For this reason, the target substance can be detected without using a special measuring instrument after the reaction or performing a separate operation for confirming the amplification. Therefore, the detection method of the present invention enables rapid detection on the spot where the test sample is collected, and food pollutants (residual agricultural chemicals, bacteria, etc.) or environmental pollution that particularly require such a method. It is extremely useful in the field of substance inspection (dioxin, PCB, etc.).
本発明の検出用キットは、 上記本発明の検出方法に用いることができるため、 極めて有用である。 配列表フリーテキスト  Since the detection kit of the present invention can be used in the detection method of the present invention, it is extremely useful. Sequence listing free text
配列番号 1 :合成 DNA  Sequence number 1: Synthetic DNA
配列番号 2 :合成 DNA  Sequence number 2: Synthetic DNA
配列番号 3 :合成 DNA  Sequence number 3: Synthetic DNA
配列番号 4 :合成 DNA  Sequence number 4: Synthetic DNA
配列番号 5 :合成 DNA  Sequence number 5: Synthetic DNA
配列番号 6 :合成 DNA  Sequence number 6: Synthetic DNA
配列番号 7 :合成 DNA  Sequence number 7: Synthetic DNA
配列番号 8 :合成 DNA  Sequence number 8: Synthetic DNA
配列番号 9 :合成 DNA  Sequence number 9: Synthetic DNA
配列番号 1 0 :合成 DNA  Sequence number 10: Synthetic DNA
配列番号 1 1 :合成 DNA  Sequence number 11: Synthetic DNA

Claims

請求 の 範 囲 The scope of the claims
1 . 標的物質の検出方法であって、 1. A method for detecting a target substance,
恒温条件下で反応可能な核酸増幅法に用いるプライマーと結合する領域を有 するオリゴ核酸鎖により標識処理された結合物質と、 被験試料中の標的物質と を接触させて、 標的物質と結合物質との複合体を形成させる工程、  A binding substance labeled with an oligonucleic acid chain having a region that binds to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions is brought into contact with a target substance in a test sample to obtain a target substance and a binding substance. Forming a composite of
複合体中のオリゴ核酸鎖を前記核酸増幅法により増幅する工程、 及び 増幅産物を検出する工程  A step of amplifying the oligonucleic acid chain in the complex by the nucleic acid amplification method, and a step of detecting the amplification product
を含む、 前記方法。  Including the method.
2 . 前記標的物質が複数種類の物質であり、 前記結合物質が当該標的物質の種類 に対応して識別検出可能なように標識処理されたものである、 請求項 1記載の 方法。 2. The method according to claim 1, wherein the target substance is a plurality of types of substances, and the binding substance is labeled so that it can be identified and detected corresponding to the type of the target substance.
3 . 核酸増幅法に用いるプライマーとして少なくとも 1種のプライマーセットを 用いる、 請求項 2記載の方法。  3. The method according to claim 2, wherein at least one primer set is used as a primer used in the nucleic acid amplification method.
4 . 前記核酸増幅法が LAMP法又は ICAN法である、 請求項 1〜 3のいずれか 1 項に記載の方法。 4. The method according to any one of claims 1 to 3, wherein the nucleic acid amplification method is a LAMP method or an ICAN method.
5 . 前記標識処理は、 オリゴ核酸鎖が少なくともアダプタ一部分を介して結合物 質に固定されたものである、 請求項 1〜4のいずれか 1項に記載の方法。 5. The method according to any one of claims 1 to 4, wherein in the labeling treatment, an oligonucleic acid chain is fixed to a binding substance through at least a part of an adapter.
6 . 前記アダプタ一部分が、 プロテイン G、 プロテイン A及びプロテインしから 選ばれるいずれかのタンパク質、 プロテイン G、 プロテイン A及ぴプロテイン6. The adapter part is selected from protein G, protein A and protein, protein G, protein A and protein
Lから選ばれる少なくとも 2種類のタンパク質の融合タンパク質、 プロテイン G、 プロテイン A及びプロテイン Lから選ばれる少なくとも 1種類のタンパク 質と他のタンパク質との融合タンパク質、 又はこれらの組み合わせである、 請 求項 5記載の方法。 Claim 5 which is a fusion protein of at least two types of proteins selected from L, a fusion protein of at least one type of protein selected from Protein G, Protein A and Protein L and other proteins, or a combination thereof. The method described.
7 . 前記標的物質が抗原であり、 前記結合物質が抗体である、 請求項 1〜 6のい ずれか 1項に記載の方法。 7. The method according to any one of claims 1 to 6, wherein the target substance is an antigen and the binding substance is an antibody.
8 . 恒温条件下で反応可能な核酸増幅法に用いるプライマーと結合する領域を有 するオリゴ核酸鎖により標識処理された結合物質を含む、 標的物質の検出用キ ッ卜。 8. A target substance detection kit comprising a binding substance labeled with an oligonucleic acid chain having a region that binds to a primer used in a nucleic acid amplification method capable of reacting under constant temperature conditions.
. 前記プライマーが LAMP法用プライマー又は ICAN法用プライマーである 請求項 8記載のキット。 The kit according to claim 8, wherein the primer is a primer for LAMP method or a primer for ICAN method.
PCT/JP2007/063771 2006-07-05 2007-07-04 Method of detecting target substance using nucleic acid amplification method available under thermostatic conditions WO2008004706A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-185869 2006-07-05
JP2006185869A JP2009219355A (en) 2006-07-05 2006-07-05 Method of detecting target substance

Publications (1)

Publication Number Publication Date
WO2008004706A1 true WO2008004706A1 (en) 2008-01-10

Family

ID=38894662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063771 WO2008004706A1 (en) 2006-07-05 2007-07-04 Method of detecting target substance using nucleic acid amplification method available under thermostatic conditions

Country Status (2)

Country Link
JP (1) JP2009219355A (en)
WO (1) WO2008004706A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267529A (en) * 2021-05-12 2021-08-17 江西师范大学 Temperature type biosensor and method for detecting target aptamer by using temperature type biosensor
CN116699126A (en) * 2023-06-13 2023-09-05 深圳市博卡生物技术有限公司 Blocking agent of antibody-coupled microsphere complex

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056877A1 (en) * 1999-03-19 2000-09-28 Takara Shuzo Co., Ltd. Method for amplifying nucleic acid sequence

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056877A1 (en) * 1999-03-19 2000-09-28 Takara Shuzo Co., Ltd. Method for amplifying nucleic acid sequence

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HENDRICKSON E. ET AL.: "High sensitivity multianalyte immunoassay using covalent DNA-labelled antibodies and polymerase chain reaction", NUCLEIC ACIDS RES., vol. 23, 1995, pages 522 - 529, XP002151883 *
JOERGER R.D. ET AL.: "Analyte detection with DNA-labeled antibodies and polymerase chain reaction", CLIN. CHEM., vol. 41, 1995, pages 1371 - 1377, XP001018334 *
NAGAMINE K. ET AL.: "Accelerated reaction by loop-mediated isothermal amplification using loop primers", MOL. CELL PROBES, vol. 16, 2002, pages 223 - 229, XP004471001 *
NIEMEYER C.M. ET AL.: "Immuno-PCR: High sensitivity detection of proteins by nucleic acid amplification", TRENDS IN BIOTECHNOL., vol. 23, 2005, pages 208 - 216, XP004797082 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267529A (en) * 2021-05-12 2021-08-17 江西师范大学 Temperature type biosensor and method for detecting target aptamer by using temperature type biosensor
CN116699126A (en) * 2023-06-13 2023-09-05 深圳市博卡生物技术有限公司 Blocking agent of antibody-coupled microsphere complex

Also Published As

Publication number Publication date
JP2009219355A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
KR101290034B1 (en) Method of detecting target substances
JP4528885B1 (en) Sample analysis method and assay kit used therefor
US20160041178A1 (en) Array-based proximity ligation association assays
JP3143477B2 (en) Method based on the use of bacteriophage for the detection of biological molecules in biological samples
JP2005501248A (en) Biosensing platform for detecting and quantifying biological molecules
KR102336454B1 (en) A method to detect nucleic acids
CN115011713B (en) Mycobacterium bovis detection probe set based on DNAzyme double-circulation system and detection method thereof
KR20080011308A (en) Method for detection of nucleic acid
EP4269608A1 (en) Proximity detection assays
JP5818587B2 (en) Method for detecting C. perfringens and kit for C. perfringens detection
WO2008004706A1 (en) Method of detecting target substance using nucleic acid amplification method available under thermostatic conditions
CN103882131B (en) Determine the method that whether there is target compound in sample
EP4028545A1 (en) System
JP2011004733A (en) Microarray for detecting target nucleic acid in a plurality of specimens
US20230088664A1 (en) Method of Detecting Analytes in a Sample
US20220025430A1 (en) Sequence based imaging
US20050239078A1 (en) Sequence tag microarray and method for detection of multiple proteins through DNA methods
JPH06113896A (en) Method for measuring nucleic acid
JP2023543659A (en) Multianalyte assay for simultaneous detection of nucleic acids and analytes
WO2023212315A2 (en) Methods for detecting and isolating extracellular vesicles
CN116500273A (en) B7-H3 protein detection method based on signal conversion and nucleic acid multiplex isothermal amplification
US20030003483A1 (en) Amplifiable probe
JP4528889B1 (en) Sample analysis method and assay kit used therein
WO2008053992A1 (en) Efficient method for detecting antigen, virus, cell and microorganism
JP2002181821A (en) Multiple test multiplexing suspension and multiple test multiplexing method using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP