WO2008004399A1 - Bonding resin composition for fluororesin substrates and metal-clad laminates made by using the composition - Google Patents
Bonding resin composition for fluororesin substrates and metal-clad laminates made by using the composition Download PDFInfo
- Publication number
- WO2008004399A1 WO2008004399A1 PCT/JP2007/061562 JP2007061562W WO2008004399A1 WO 2008004399 A1 WO2008004399 A1 WO 2008004399A1 JP 2007061562 W JP2007061562 W JP 2007061562W WO 2008004399 A1 WO2008004399 A1 WO 2008004399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluororesin
- metal
- foil
- metal foil
- adhesive layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/386—Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/034—Organic insulating material consisting of one material containing halogen
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/015—Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
Definitions
- Fluororesin substrate adhesive resin composition and metal-clad laminate obtained using the fluororesin substrate adhesive resin composition are fluororesin substrate adhesive resin composition and metal-clad laminate obtained using the fluororesin substrate adhesive resin composition
- the present invention relates to a fluororesin substrate adhesive resin composition, a fluororesin substrate adhesive using the fluororesin substrate adhesive resin, and the fluororesin substrate adhesive.
- the present invention relates to a metal-clad laminate, a printed wiring board, and a method for producing the metal-clad laminate.
- a fluororesin substrate-adhesive resin composition which is an adhesive raw material having excellent adhesion to a fluororesin substrate, which is said to be difficult to obtain good adhesion even when bonded to a metal foil
- the present invention relates to an adhesive for a fluororesin substrate using the fluororesin substrate-adhesive resin composition.
- Patent Document 1 describes a dielectric obtained by combining a glass cloth having a low dielectric constant and a low dielectric loss tangent and a fluororesin, and an electrolytic copper foil formed on at least one principal surface of the dielectric.
- a fluororesin copper-clad laminate having a characteristic of 1 (12 GHz) or less is disclosed. From this document, it can be understood that the fluororesin base material has excellent dielectric properties and is extremely useful as a material for constituting an insulating layer of a printed wiring board in a high frequency region.
- Patent Document 2 In order to improve the adhesion between the fluororesin substrate and the metal foil, Patent Document 2 describes that a fluororesin adhesive impregnation is performed between the fluororesin-impregnated layer in which the fluororesin is impregnated and held in a glass cloth and the metal foil. A printed wiring board provided with a layer is disclosed. The fluororesin adhesion impregnated layer at this time is used to improve the adhesion between the metal foil and the fluororesin impregnated layer immediately below the metal foil by the anchor effect due to the resin characteristics, and to enhance the peel strength. .
- the fluororesin adhesion impregnation layer preferably uses PTFE as the fluororesin of the fluororesin impregnation layer and PFA as the fluororesin of the fluororesin adhesion impregnation layer. That is, the fluororesin is combined with both the base material and the adhesive layer.
- Patent Document 3 any one selected from polyallylsulfone, aromatic polysulfide, and aromatic polyether is used for the purpose of providing a wiring board that can be used with high reliability even under high-temperature and high-humidity conditions. Also disclosed is the use of a fluororesin composition comprising at least one thermoplastic resin and a fluororesin as an insulating layer constituting material of a printed wiring board.
- Patent Document 4 does not improve the adhesion between the fluororesin substrate and the metal foil, but improves the adhesion between the fluororesin substrate and the conductor formed by the screen printing method.
- the surface of the substrate on which the conductor wiring is to be formed is subjected to a roughening treatment, a plasma treatment, a roughening treatment, a plasma treatment, or a roughening treatment followed by a metal film coating by sputtering.
- a printed wiring board characterized in that one of the treatments is subjected to one surface treatment.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2002-307611
- Patent Document 2 WO01 / 003478
- Patent Document 3 Japanese Patent Laid-Open No. 11 199738
- Patent Document 4 WO2003 / 103352 Disclosure of the invention
- copper foils manufactured by an electrolytic method or a rolling method have been widely used for the circuit formation.
- This copper foil is usually subjected to a roughening treatment, an antifungal treatment, and a silane coupling agent treatment on the bonding surface.
- a roughening treatment an antifungal treatment, and a silane coupling agent treatment on the bonding surface.
- the adhesion between the fluororesin substrate and the copper foil is low, the chemical resistance and moisture absorption resistance against the etching solution and the like are remarkably deteriorated, making it impossible to form a fine pitch circuit.
- the inventors of the present invention as a result of earnest research, formed an adhesive interface between the fluororesin base material and the metal foil using the resin composition described below, thereby producing a fluororesin-based printed wiring board. This greatly improved the peel strength of the circuit and made it possible to use a non-roughened metal foil. Therefore, the metal foil described below mainly means a non-roughened metal foil. The present invention will be described below.
- Fluororesin substrate adhesive resin composition Fluororesin substrate adhesive resin according to the present invention
- the composition is a resin composition for forming an adhesive layer for laminating a metal foil to a fluororesin substrate.
- the resin composition is soluble in a solvent and has a hydroxyl group as a functional group in the molecule. 2 to 50 parts by weight of a polymer component having one or more of a carboxyl group and an amino group, and an epoxy resin having a boiling point of 200 ° C or higher and an amine epoxy resin curing agent having a boiling point of 200 ° C or higher. It is characterized by containing 50 parts by weight or more of an epoxy resin compound.
- the polymer component is selected from the group consisting of a polybulassal resin, a phenoxy resin, an aromatic polyamide resin, a polyether sulfone resin, and a polyamideimide resin. It is preferable to use one or a mixture of two or more.
- the epoxy resin having a boiling point of 200 ° C or higher is bisphenol A type epoxy resin, bisphenol F type epoxy resin, rubber-modified bis. It is preferable to use one or a mixture of two or more selected from the group of phenol A type epoxy resins and biphenyl type epoxy resins.
- the amine-based epoxy resin curing agent may be an aromatic polyamine, a polyamide, or an epoxy resin or polyvalent rubonic acid that is polymerized or condensed. It is preferable to use one or more selected from the group of amine adducts obtained by the above method.
- Adhesive for fluororesin base material is a resin adhesive used for bonding a metal foil to a fluororesin substrate, and the fluororesin base material It is obtained by adding an organic solvent to the adhesive resin composition and mixing it.
- the adhesive for a fluororesin substrate according to the present invention is one solvent selected from the group consisting of methyl ethyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, and N-methylbivinylidone. Alternatively, it is preferable to use a mixed solvent thereof.
- Metal foil with adhesive layer is a metal foil with an adhesive layer provided on the surface of the metal foil with an adhesive layer to the substrate, the adhesive layer comprising the fluororesin. It is formed using a resin adhesive for substrates.
- the adhesive layer has a thickness of 0. ⁇ ⁇ ⁇ ⁇
- the adhesive layer of the metal foil with an adhesive layer has a resin flow when measured according to MIL-P-13949G in the MIL standard.
- the metal foil is copper foil, nickel foil, tin foil, gold foil, silver foil, platinum foil, iron foil, cobalt foil, copper alloy foil, nickel alloy foil. It is preferable to use any of the following strengths: a soot alloy foil, a gold alloy foil, a silver alloy foil, a platinum alloy foil, an iron alloy foil, and a cobalt alloy foil.
- Metal-clad laminate is a metal-clad laminate obtained by adhering a metal layer to the surface of a fluororesin substrate via an adhesive layer, and the adhesive layer includes: It contains the said resin composition, It is characterized by the above-mentioned.
- the metal-clad laminate according to the present invention is a metal-clad laminate obtained by attaching a metal layer to the surface of a fluororesin substrate via an adhesive layer, and the adhesive layer includes the fluororesin It is formed using the adhesive agent for base materials.
- the printed wiring board according to the present invention is obtained by etching and etching the metal foil of the metal-clad laminate.
- Method for producing metal-clad laminate The method for producing a metal-clad laminate according to the present invention is characterized by the following steps A-1 to C1, and for convenience of explanation, Hereinafter referred to as “first manufacturing method”.
- Step A1 A step of applying an activation treatment to the bonding surface of the fluororesin base material to the metal foil.
- Process C 1 A process for forming a metal-clad laminate by hot-pressing the adhesive layer surface of the metal foil with an adhesive layer in contact with the laminated surface subjected to the activation treatment of the fluororesin base material .
- the method for producing a metal-clad laminate according to the present invention includes the following steps A-2 to C: It is also possible to adopt one characterized by going through 2. For convenience of explanation, it is hereinafter referred to as “second manufacturing method”.
- Step A-2 A step of applying an activation treatment to the bonding surface of the fluororesin base material to the metal foil.
- Step B-2 Prepare a fluororesin substrate adhesive, apply this fluororesin substrate adhesive to the surface of the releasable plastic film, and dry it.
- Step C2 The semi-cured resin layer of the adhesive layer with a releaseable plastic film is brought into contact with the laminated surface subjected to the activation treatment of the fluororesin base material, and is temporarily bonded to each other, and the releaseable plastic film The step of peeling off and leaving the semi-cured resin layer on the surface of the fluororesin substrate.
- Step D-2 A step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C2 and hot pressing it.
- the method for producing a metal-clad laminate according to the present invention includes the following steps A-3 to C:
- Step A—3 A step of applying an activation treatment to the bonding surface of the metal foil of the fluororesin substrate.
- Step B-3 Step of preparing an adhesive for a fluororesin substrate.
- Step C3 Applying the adhesive for the fluororesin base material prepared in Step B-3 to the activated surface of the fluororesin base material and drying it, 0.5 111 to 3111 half thickness A step of forming a cured resin layer.
- Step D-3 A step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C3 and hot pressing it.
- the fluororesin substrate-adhesive resin composition according to the present invention has no roughening relative to the fluororesin substrate. It is suitable for forming an adhesive layer when laminating metal foil, and it significantly improves the adhesion between the fluororesin base material and non-roughened metal foil, and the circuit when subjected to a heat shock. The delamination phenomenon can be effectively prevented.
- an adhesive layer is to be formed with this fluororesin substrate adhesive resin composition
- an organic solvent is added to the fluororesin substrate resin composition to provide an optimal resin flow suitable for layer formation.
- the resin solid content can be obtained and can be used as an adhesive for a fluororesin substrate.
- the metal foil it is easy to form an adhesive layer on the surface of the metal foil using the resin adhesive for a fluororesin substrate, and it is possible to provide a metal foil with an adhesive layer for a fluororesin substrate.
- the best adhesion to the fluororesin substrate can be obtained by setting the thickness of the adhesive layer to a semi-cured resin layer of 0.5 m to 3 m.
- various non-roughened metal foils can be used as the metal foil, and the metal foil can be widely used without being limited to printed wiring board applications.
- the adhesive layer is interposed, the press temperature during hot pressing can be lowered, and the production cost can be reduced.
- the adhesion between the fluororesin base material and the metal layer can be more stably improved by applying an activation treatment to the bonded surface of the metal foil of the fluororesin base material in advance.
- the resin composition for adhesion of a fluororesin substrate according to the present invention is (1) soluble in a solvent and has a hydroxyl group or a carboxyl group in the molecule as a functional group. 2 to 50 parts by weight of a polymer component having one or more amino groups, (2) an epoxy resin having a boiling point of 200 ° C or higher and an amine epoxy resin curing agent having a boiling point of 200 ° C or higher It contains 50 parts by weight or more of a resin blend. here Then, it is a case where the sum total of the said polymer component and an epoxy resin compound is 100 weight part.
- a polymer component that is soluble in a solvent and has one or more of a hydroxyl group, a carboxyl group, and an amino group in a molecule as a functional group (hereinafter simply referred to as “polymer component”). Is preferably a mixture of one or two or more selected from the group consisting of a polybulacetal resin, a phenoxy resin, an aromatic polyamide resin, a polyethersulfone resin, and a polyamideimide resin.
- the polymer component here is required to have the property of being soluble in a solvent. If not possible, it will be difficult to adjust the solid content using a solvent.
- the polymer component strength is less than 3 parts by weight, the hardness after press molding of the copper clad laminate becomes high and brittle, so that toughness cannot be obtained.
- the polymer component exceeds 50 parts by weight, the heat resistance is lowered, and it becomes impossible to withstand the press molding temperature of the copper clad laminate, thereby causing resin deterioration. More preferably, the polymer component is 2 to 30 parts by weight. The heat resistance and flexibility as the cured resin are the best.
- Epoxy resin having a boiling point of 200 ° C or higher is selected from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin, rubber-modified bisphenol A type epoxy resin, and biphenyl type epoxy resin. It is preferable to use one kind or a mixture of two or more kinds.
- a linear (bifunctional) epoxy resin By using a linear (bifunctional) epoxy resin, the adhesion between the fluororesin substrate and the metal foil can be increased. Therefore, the total of the “epoxy resin having a boiling point of 200 ° C or higher” and the “amine-based epoxy resin curing agent having a boiling point of 200 ° C or higher”, which is the main component of this resin composition, is called an epoxy resin compound, and this is 50 weight.
- epoxy resin curing agent if it is only intended to be cured, amines such as dicyandiamide, imidazoles and aromatic amines, phenols such as bisphenol A and bisphenol A bromide A, etc. All kinds of curing agents such as phenols, phenolic nopolac resins and cresol novolac resins, etc. and acid anhydrides such as phthalic anhydride That power S. However, it is most preferable to use an amine epoxy resin curing agent having a boiling point of 200 ° C. or higher from the viewpoint of significantly improving the adhesion between the fluororesin substrate and the metal foil.
- the epoxy resin curing agent will boil due to the press molding, and bubbles are likely to be generated in the cured insulating resin layer. .
- the most stable adhesion can be obtained when an amine epoxy resin curing agent is used to form an adhesive layer between the fluororesin substrate and the metal foil. That is, the “amine-based epoxy resin curing agent having a boiling point of 200 ° C. or higher” is selected from the group of aromatic polyamines, polyamides, and amine adducts obtained by polymerizing or condensing these with epoxy resins or polyvalent carboxylic acids. The case where one kind or two or more kinds are used.
- the curing accelerator is a tertiary amine, imidazole, urea curing accelerator or the like.
- the mixing ratio of the curing accelerator is not particularly limited. This is because the curing accelerator is a good one that the manufacturer arbitrarily determines the amount of addition in consideration of the heating conditions during the press working.
- a rubbery resin to the resin composition referred to in the present invention.
- the rubbery resin mentioned here is described as a concept including natural rubber and synthetic rubber, and the latter synthetic rubber includes styrene butadiene rubber, butadiene rubber, butyl rubber, ethylene propylene rubber and the like.
- heat resistance it is also useful to selectively use heat-resistant synthetic rubbers such as nitrile rubber, chloroprene rubber, silicon rubber and urethane rubber.
- the above-mentioned polymer polymer crosslinking agent is added as necessary.
- the urethane resin is used as a cross-linking material.
- the epoxy resin is 50 parts by weight to 80 parts by weight
- the curing agent is 1 part by weight.
- curing accelerator 0.01 parts by weight 1.0 parts by weight
- cross-linking agent 1 part by weight to 5 parts by weight rubber resin 1 part by weight
- Form of Fluororesin Substrate Adhesive Generally, it is difficult to use the resin composition for adhering a fluororesin base as it is to form an adhesive layer. Therefore, an organic solvent is added to and mixed with the fluororesin substrate adhesive resin composition and used as an adhesive for a fluororesin substrate.
- the resin solid content is preferably adjusted to 10 wt% to 40 wt%. When the resin solid content is less than 10 wt%, the viscosity is too low, and even if a resin film for forming an adhesive layer is formed, it flows immediately after coating and it is difficult to ensure film thickness uniformity. On the other hand, when the resin solid content exceeds 40 wt%, it becomes difficult to form a thin resin film with high viscosity.
- any one of methyl ethyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, one solvent or a mixed solvent thereof should be used.
- a solvent that can dissolve the resin composition is selected.
- methyl ethyl ketone and / or cyclopentanone is used as a solvent, it is easy to efficiently volatilize and remove by heat at the time of press working in the production of a metal laminate, and also easy to purify volatile gas.
- the mixing ratio is not particularly limited. However, when methyl ethyl ketone is used as a co-solvent for cyclopentanone, the rate of volatilization removal is preferred. Les.
- the resin solid content of the resin solution is preferably 10 wt% to 40 wt% for the same reason.
- the metal foil with an adhesive layer according to the present invention has a metal foil 4 with an adhesive layer provided with an adhesive layer 3 for a substrate on the surface of the metal foil 2.
- the adhesive layer is formed by using the resin adhesive for a fluororesin substrate. This forming method will be described later.
- the adhesive layer is a semi-cured resin layer having a thickness of 0.
- it if it is not a semi-cured resin layer, it will not be reflowed by hot pressing, so that the fluororesin substrate and the metal foil cannot be bonded together.
- the reason why the thin resin layer is formed in this way is to reliably create a state in which the resin flow described below hardly occurs at the time of pressing.
- the thickness of this adhesive layer is less than 0. ⁇ ⁇ , it is difficult to make the thickness uniform, and it is difficult to leave a resin layer having a uniform thickness between the fluororesin substrate and the metal foil.
- the peel strength varies greatly.
- the thickness of the adhesive layer exceeds, the good electrical properties of the fluororesin substrate are deteriorated. Note that the thickness of the adhesive layer is a converted thickness when it is assumed that the resin is applied to a completely flat surface per lm 2 .
- the adhesive layer of the metal foil with an adhesive layer has a resin flow of 5% or less when measured according to MIL-P-13949G in the MIL standard. It is preferable to have characteristics. Unless the resin flow force is within this range, good adhesion between the fluororesin substrate and the metal foil cannot be obtained. The lower limit is not specified, but it is about 1%. Regarding the resin flow, the thickness of the adhesive layer and the resin solid content of the resin adhesive for the fluororesin substrate used when forming the adhesive layer are factors that determine the characteristics. Of course, resin flow is important. Usually, when laminating a metal foil and a fluororesin substrate, air stagnation may occur at the interface.
- the copper clad laminate Taking the case of manufacturing as an example, a resin flow of about 5mm to 5mm from the end is intentionally caused by an lm 2 size copper clad laminate that also serves as an air vent.
- the fact that this resin flow hardly occurs is an important factor for ensuring good adhesion between the fluororesin base material and the metal foil.
- the resin flow is determined by the value measured according to MIL-P-13949G of the MIL standard.
- the adhesive layer is intentionally formed on the surface of the electrolytic copper foil with a thickness of 40 m, and four 10 cm square samples are manufactured.
- the four 10cm square samples are stacked and bonded together under the conditions of a press temperature of 171 ° C, a press pressure of 14kgf / cm 2 and a press time of 10 minutes, and the resin flow at that time is calculated and calculated according to Equation 1. It was. Note that the resin flow of a normal resin-prepared copper foil (40 11 m thick resin layer) is about 20% when using a normal pre-preda.
- the metal foil is a copper foil, a nickel foil, a tin foil, a gold foil, a silver foil, a platinum foil, an iron foil, a cobalt foil, a copper alloy foil, or a nickel alloy foil. It is preferable to use any of the following strengths: a soot alloy foil, a gold alloy foil, a silver alloy foil, a platinum alloy foil, an iron alloy foil, and a cobalt alloy foil. That is, it is described with the concept of all metal foils that can be used for electronic materials. All of the metal foils may be obtained by an electrolytic method, obtained by a rolling method, or obtained by a physical vapor deposition method, regardless of the production method. Moreover, there is no special limitation regarding the thickness.
- adhesion can be further improved by subjecting the surface of the metal foil to an antifouling treatment, a silane coupling agent treatment, or the like.
- the metal foil used in the present invention is intended for the one that omits the roughening treatment.
- the roughening treatment means that the surface of the metal foil is fine.
- the generally known roughening treatment is a roughening treatment performed by depositing and forming fine copper grains applied to the electrolytic copper foil and the rolled copper foil.
- the antifungal treatment referred to here is appropriately selected according to the type of the fluororesin substrate and is not particularly limited.
- As the antifouling treatment either an organic antifouling using benzotriazole, imidazole or the like, or an inorganic fender using zinc, chromate, zinc alloy, nickel alloy or the like may be adopted.
- organic fenders techniques such as dip coating, showering and electrodeposition of organic fenders can be employed.
- an inorganic barrier it is possible to use a method in which the barrier element is deposited on the surface of the copper foil by electrolysis, or a so-called substitution deposition method.
- the anti-bacterial treatment layer is not particularly described and omitted.
- the silane coupling agent treatment is carried out using one or two or more of amino-based silane coupling agent, epoxy-based silane coupling agent, and mercapto-based silane coupling agent. It is common.
- various types such as the most common epoxy functional silane coupling agent, olefin functional silane, acrylic functional silane, etc. can be used as the silane coupling agent.
- an amino functional silane coupling agent or a mercapto functional silane coupling agent because the adhesion between the fluorine resin substrate and the metal foil can be further improved. It has been said that the higher the peel strength of printed circuit boards, the better.
- silane coupling agents will be described more specifically. Mainly coupling agents similar to those used for prepreda glass cloth for printed wiring boards, buttrimethoxysilane, butenyltrimethoxylane, ⁇ -methacryloxyprovir trimethoxy Silane, ⁇ -Aminopropyltriethoxysilane, ⁇ — ⁇ (aminoethyl) ⁇ —Aminopropyltrimethoxysilane, ⁇ —3— (4- (3-Aminopropoxy) ptoxy) propyl 3-aminopropyl trimethoxy Silane, imidazole silane, triazine silane, ⁇ mercaptopropyltrimethoxysilane, and the like can be used.
- the method for treating the silane coupling agent is not particularly limited, such as a commonly used dipping method, showering method, spraying method or the like.
- a method that allows the metal foil and the solution containing the silane coupling agent to be brought into contact and adsorbed most uniformly can be arbitrarily adopted.
- the silane coupling agent is used at a temperature of room temperature by dissolving 0.5 to 10 g / l in water as a solvent.
- the silane coupling agent concentration is less than 0.5 g / l, the adsorption rate of the silane coupling agent is not suitable for the general commercial basis, and the adsorption is not uniform. Even if the concentration exceeds lOg / 1, the adsorption rate is not particularly high, which is uneconomical.
- the silane coupling agent-treated layer is not particularly described and is omitted.
- the metal-clad laminate according to the present invention is a metal-clad laminate obtained by attaching a metal layer to the surface of a fluororesin substrate via an adhesive layer, and the adhesive layer Includes the above resin composition. Further, the adhesive layer is formed using the fluororesin substrate adhesive.
- Fig. 2 shows the cross-sectional configuration of the metal-clad laminate according to the present invention.
- Fig. 2 (a) shows a single-sided metal-clad laminate la
- Fig. 2 (b) shows a double-sided metal-clad laminate lb
- Fig. 2 (c) shows a 4-layer metal-clad laminate with an inner circuit 9 inside. lc is shown.
- the metal-clad laminate according to the present invention is a state in which the metal foil 2 is bonded to the outer layer that is not related to the layer structure, and the inner layer includes the fluororesin base layer 5 and includes the metal foil.
- a laminate having an adhesive layer 3 between 2 and a fluororesin substrate layer 5 is referred to.
- FIG. 2 (c) briefly describes a method of manufacturing the four-layer metal-clad laminate lc provided with the inner layer circuit 9 therein.
- the double-sided printed wiring board 21 is formed by etching the metal layers on both sides of the double-sided metal-clad laminate lb shown in FIG. Then, using a double-sided printed wiring board 21 and a pre-preda 22 such as FR-4, etc., the four-layer metal-clad laminate lc is obtained by laminating as shown in FIG. 3 and hot pressing.
- the fluororesin base material referred to here is PTFE (polytetrafluoroethylene (tetrafluoride)), PFA (tetrafluoroethylene 'perfluoroalkyl butyl ether copolymer), FEP (tetrafluoroethylene.hexafluoropropylene copolymer (4.6 hexafluoride)), ETFE (tetrafluoroethylene.ethylene copolymer), PVDF (polyvinylidene fluoride (2 fluorine)) )), PCTFE (polychlorinated trifluoroethylene (trifluoride)), and at least any one selected from polyallylsulfone, aromatic polysulfide and aromatic polyether as disclosed in Patent Document 3.
- PTFE polytetrafluoroethylene
- PFA tetrafluoroethylene 'perfluoroalkyl butyl ether copolymer
- FEP tetrafluoroethylene.hexafluoropropylene
- the printed wiring board according to the present invention is obtained by etching the metal foil of the metal-clad laminate.
- the etching process at this time is not particularly limited, an etching resist layer is provided on the surface of the metal foil, the etching pattern is exposed and developed, the resist pattern is formed, and an etching solution capable of dissolving the constituent metal components of the metal foil.
- the circuit etching is performed.
- Step A-1 In this step, an activation treatment is applied to the bonding surface of the metal foil of the fluororesin substrate.
- the activation treatment referred to here is performed to improve the adhesion between the fluororesin substrate and the adhesive layer, and as a result, improve the adhesion of the metal foil to the surface of the fluororesin substrate.
- this activation treatment is roughening treatment, plasma treatment, or a combination treatment combining them.
- a wet or dry blast method, a wet etching method, a dry etching method, or the like can be used.
- a wet etching roughening process using a chemical technique often employs a technique called sodium etching.
- the roughened surface formed by this roughening treatment preferably has an average roughness (Ra) of 20 nm to 100 nm! /.
- This average roughness (Ra) is less than 20nm In this case, the adhesion between the fluororesin substrate and the adhesive layer cannot be improved.
- the average roughness (Ra) exceeds lOOnm, the effect of improving the adhesion between the fluororesin substrate and the adhesive layer due to the roughening does not increase further.
- the plasma treatment is a treatment in which a plasma stream is generated with an inert gas such as nitrogen gas or argon gas, and the surface of the fluororesin substrate is brought into contact with the plasma stream.
- the inert gas is decompressed and introduced into the atmosphere, a pair of flat plate electrodes are arranged in parallel, a voltage is applied between the electrodes to generate a plasma stream, and a fluororesin substrate is placed in the plasma stream. Put in and process for a certain time.
- a plasma stream is generated between the high-frequency electrodes and the like, and a fluororesin substrate is placed in the plasma stream and processed for a certain period of time.
- the input power (W) and the electrode area (cm 2) power density is calculated from the (W / cm 2) is 0. 05W / cm 2 ⁇ ; IW / If cm 2 is used, a processing time of 30 seconds to 1 minute is adopted. This plasma treatment time does not significantly improve the adhesion between the fluororesin substrate and the metal foil even if it is unnecessarily long.
- FIG. 5 (a) conceptually shows the activated fluororesin substrate 5.
- Step B-1 In this step, an adhesive for a fluororesin substrate is prepared, and this adhesive for a fluororesin substrate is applied to the surface of the metal foil and dried, so that the surface of the metal foil is coated.
- a metal foil with an adhesive layer is produced by forming a semi-cured resin layer having a thickness of 0.5 to 111 m. The preparation of the fluororesin substrate adhesive is as described above.
- the adhesive for a fluororesin base material is applied to the surface of the metal foil 2 and dried, so that a 0.5 m to 3 m thick semi-cured resin layer (drawing) is formed on the surface of the metal foil 2.
- the metal foil 4 with an adhesive layer shown in FIG. 5 (b) is manufactured by forming the “simply shown as“ adhesive layer 3 ””.
- Step C 1 In this step, as shown in FIG. 5 (c), the bonded surface subjected to the activation treatment of the fluororesin substrate in Step A-1 is obtained in Step B-1.
- the metal-laminated laminate la shown in FIG. 5 (d) is obtained by laminating the adhesive layer 3 of the metal foil 4 with the adhesive layer in contact with each other and performing hot press molding. There is no particular limitation on the hot pressing conditions at this time. However, in the case of the manufacturing method according to the present invention, in the press working using a conventional fluororesin substrate
- Pressing force of 260 ° C to 400 ° C or so has been adopted, and press working at a low temperature of around 200 ° C (190 ° C to 220 ° C) is possible. Therefore, there is an advantage that the manufacturing cost can be reduced because the heat energy required for press working is low. The same applies hereinafter.
- the second method for producing a metal-clad laminate according to the present invention is characterized by going through the following steps A-2 to C2.
- Step IV-2 In this step, activation treatment is performed on the bonding surface of the metal foil of the fluororesin substrate, which is the same as in the case of the first manufacturing method. Therefore, the description is omitted.
- FIG. 6 (a) conceptually shows the activated fluororesin substrate 5.
- Step B-2 In this step, the fluororesin base material adhesive is prepared by the above-described method, and the fluororesin base material adhesive is applied to the surface of the releasable plastic film 7 and dried.
- the releasable plastic film and a semi-cured resin layer having a thickness of 0 ⁇ 5 111 to 3 111 shown simply as “adhesive layer 3” in the drawing)
- An adhesive layer 8 with a releasable plastic film is produced in a laminated state.
- the releasable plastic film is used in the sense of selectively using a film having releasability, and there is no particular limitation on the material, thickness, and the like. Specifically, it is preferable to use a PET film, a thermoplastic fluororesin film, a polyimide resin film, or the like. At this time, with respect to the method of applying the adhesive for the fluororesin base material to the releasable plastic film, an edge coater, a comma coater, a Daravia coater, etc. that are not particularly limited can be used.
- Step C 2 In this step, as shown in FIG. 6 (c), the semi-cured resin of the adhesive layer 8 with the releasable plastic film is applied to the bonded surface on which the fluororesin substrate 5 has been activated.
- the layers shown simply as “adhesive layer 3” in the drawing) are brought into contact with each other and are temporarily bonded together, and the releasable plastic film 7 is peeled and removed.
- Step D-2 In this step, the metal foil 2 is laminated on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C2, as shown in FIG.
- the metal-clad laminate la shown in Fig. 6 (e) is formed by press forming.
- the third method for producing a metal-clad laminate according to the present invention includes the following steps A-3 to It is characterized by passing C3.
- Step A-3 In this step, an activation treatment is performed on the bonding surface of the metal foil of the fluororesin substrate, which is the same as in the case of the first manufacturing method. Therefore, the description is omitted.
- FIG. 7 (a) conceptually shows the activated fluororesin substrate 5.
- Step B-3 In this step, an adhesive for a fluororesin substrate is prepared. Therefore, since the explanation about this adjustment is as described above, the duplicate explanation here is omitted.
- Step C 3 In this step, the fluororesin base material adhesive prepared in Step B is applied to the activated surface of the fluororesin base material 5 and dried, so that FIG. )
- a semi-cured resin layer (shown simply as “adhesive layer 3” in the drawing) having a thickness of 0.5 m to 3 m is formed.
- an edge coater, a comma coater, a gravure coater, or the like that has special limitations can be used.
- Step D-3 In this step, a metal foil is formed on the surface of the semi-cured resin layer (shown as "adhesive layer 3" in the drawing) provided on the surface of the fluororesin substrate 5 in Step C3.
- the metal-clad laminate la shown in Fig. 7 (c) is obtained.
- Step A1 In this step, an activation treatment was performed on the laminated surface of the metal foil of a PTFE fluororesin base material (manufactured by Yodogawa Hitec Co., Ltd.) having a thickness of 0.6 mm.
- a PTFE fluororesin base material manufactured by Yodogawa Hitec Co., Ltd.
- the metal sodium treatment at this time is performed by extracting fluorine atoms from the surface of the fluororesin substrate by the action of metal sodium or a sodium complex, and generating hydroxyl groups, carbonyl groups, or force loxyl groups on the surface. This is intended to activate the surface of the material.
- a tetra-etch treatment solution manufactured by Junye Co., Ltd. was used.
- Step B-1 Here, 69 parts by weight of epoxy resin, 11 parts by weight of curing agent, 0.2 part by weight of curing accelerator, 15 parts by weight of polymer component, 3 parts by weight of crosslinking agent, 3 parts by weight of rubbery resin A resin composition for adhering a part of the fluorine resin substrate was prepared. Specifically, it is shown in Table 1 below.
- the resin composition shown in Table 1 was adjusted to a resin solid content of 30% by weight using methyl ethyl ketone and dimethylacetamide to obtain an adhesive for a fluororesin substrate. Then, using a gravure coater, this non-roughened electrolytic copper foil (thickness: 18 m, flaw-proofing treatment layer: zinc-nickel alloy layer, silane-bonding agent treatment: ( ⁇ -aminopropyltriethoxysilane) was applied to the bonding surface. Then air-dry for 5 minutes and then dry for 3 minutes in a heated atmosphere at 140 ° C to form a semi-cured 1.5 ⁇ 111 thick semi-cured resin layer (adhesive layer).
- a metal foil 4 with an adhesive layer shown in FIG. 5 (b) was produced.
- the resin flow of the semi-cured resin layer (adhesive layer) obtained at this time was measured with the above-mentioned adhesive for a fluororesin base material.
- a copper foil provided on one side was manufactured and used as a resin flow measurement sample.
- four 10 cm square samples were collected from the resin flow measurement sample, and the resin flow was measured in accordance with the above-mentioned MIL-P-13949G. As a result, the resin flow was 1.5%.
- Step C 1 In this step, as shown in FIG. 5 (c), the three samples obtained in Step A-1
- the adhesive layer 3 of the metal foil 4 with the adhesive layer obtained in Step B-1 is brought into contact with the bonded surface of the fluororesin base material (Sample 1, Sample 2, Sample 3) that has been activated.
- the peel strength between the fluororesin substrate and the copper foil circuit was measured.
- Table 2 shows the results.
- the peel strength referred to in this specification is the strength when the copper foil circuit is peeled from the base material in the 90 ° direction (perpendicular to the substrate).
- the normal peel strength is the peel strength measured without any treatment immediately after manufacturing the circuit by etching as described above.
- the peel strength after heating is the peel strength measured after floating in a solder bath at 260 ° C for 20 seconds and then cooled to room temperature.
- Step A-2 Since this step is the same as that of Example 1, it is omitted. Therefore, three types of fluororesin base material, sample: [, sample 2 and sample 3 were also produced here.
- Fig. 6 (a) conceptually shows the activated fluororesin base material 5.
- Step B-2 This step uses the same fluororesin substrate adhesive prepared in Example 1, and uses this fluororesin substrate adhesive as a releasable plastic film 7.
- Fig. 6 (b) shows that the coating is applied to the surface using a nolem using a gravure coater, air-dried for 5 minutes, and then dried in a heated atmosphere at 140 ° C for 3 minutes.
- an adhesive layer 8 with a release plastic film in which the release plastic film and a 1.5 ⁇ semi-cured resin layer (in the drawing, simply indicated as “adhesion layer 3”) are laminated is manufactured. did.
- Step C 2 In this step, the semi-cured resin of the adhesive layer 8 with a releasable plastic film as shown in FIG. 6 (c) is applied to the bonded surface of the fluororesin substrate 5 that has been activated. layer (In the drawing, it is simply indicated as “adhesive layer 3”). The layers were brought into contact with each other and temporarily bonded by applying moderate pressure, and the releasable plastic film 7 was peeled and removed.
- Step D-2 In this step, the same roughened copper foil (metal foil) as used in Example 1 was formed on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C2. As shown in Fig. 6 (d), two layers are laminated and hot press-molded at 200 ° CX for 60 minutes at a pressure of 32 kgf / cm 2 , resulting in three types of layer structure (Fig. 6 (e)) ( CL2-1, CL2 2, CL2 3) metal-clad laminate la.
- Step A-3 Since this step is the same as that of Example 1, it is omitted. Therefore, three types of fluororesin base material, sample: [, sample 2 and sample 3 were also produced here.
- FIG. 7 (a) conceptually shows the fluororesin substrate 5 that has been activated.
- Step B-3 In this step, the same adhesive for a fluororesin substrate as that prepared in Example 1 was prepared.
- Step C 3 In this step, the fluororesin substrate adhesive prepared in Step B 3 is applied to the activated surface of the fluororesin substrate 5, air-dried for 5 minutes, and then 140 By drying for 3 minutes in a heated atmosphere at ° C, as shown in Fig. 7 (b), a 1.5-thickness semi-cured resin layer (shown as "adhesive layer 3" in the drawing) .) was formed. Application of the adhesive for the fluororesin substrate at this time was performed using an edge coater.
- Step D-3 Here, on the surface of the semi-cured resin layer (shown simply as "adhesive layer 3" in the drawing) provided on the surface of the fluororesin substrate 5 in Step C3, 18 111 By laminating the same copper foil (metal foil) 2 as used in Example 1 of thickness and hot press forming at a pressure of 32 kgf / cm 2 at 200 ° C for 60 minutes, Fig. 7 (c) Three types (CL3-1, CL3-2, CL3-3) of metal-clad laminate la having the layer structure shown were used.
- the hydrochloric acid resistance deterioration rate is within 5%, and the moisture resistance deterioration rate is within 10%.
- the hydrochloric acid resistance deterioration rate is around 10% and the moisture resistance deterioration rate is 15% or more, even if unroughened metal foil is used, In addition, it can be said that the adhesion between the fluororesin substrate and the metal foil is improved.
- the non-roughened metal foil and the fluororesin base material show very high adhesion, and the circuit delamination phenomenon when subjected to heat shock, etc. It can be effectively prevented and a fluororesin copper-clad laminate and a fluororesin printed wiring board can be provided.
- a non-roughened metal foil can be used, a fine pitch pattern can be easily formed even when a circuit is formed by an etching method. Therefore, low dielectric loss It has excellent high frequency characteristics related to dielectric properties such as loss and low dielectric constant, crosstalk characteristics, etc., other heat resistance and durability, excellent adhesion between the circuit and the substrate, and high fine pitch pattern.
- the method for producing a metal-clad laminate according to the present invention does not require a new device, can use conventional equipment, and can be pressed at a low temperature. Inexpensive.
- FIG. 1 is a schematic cross-sectional view showing a layer structure of a metal foil with an adhesive layer according to the present invention.
- FIG. 2 is a schematic cross-sectional view showing an example of a layered composition of a metal-clad laminate according to the present invention.
- FIG. 3 is a schematic diagram showing an image of manufacturing a multilayer printed wiring board.
- FIG. 4 is a schematic view showing an image of manufacturing a multilayer printed wiring board.
- FIG. 5 is a flowchart for explaining a manufacturing process of a metal-clad laminate according to the present invention.
- FIG. 6 is a flowchart for explaining a manufacturing process of a metal-clad laminate according to the present invention.
- FIG. 7 is a flowchart for explaining a manufacturing process of a metal-clad laminate according to the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Laminated Bodies (AREA)
Abstract
The invention aims at providing a technique which brings about a remarkable improvement in the close adhesion of a fluororesin substrate and a non-coarsened metal foil through easier means and enables the formation of fine-pitch circuits. The aim can be attained by using, as the resin composition for forming the bonding layer for adhesive-bonding a metal foil to a fluororesin substrate, a bonding resin composition for fluororesin substrates which is characterized by comprising 2 to 20 parts by weight of a solvent-soluble polymer component bearing one or more kinds of functional groups selected from among hydroxyl, carboxyl and amino in the molecule and at least 50 parts by weight of an epoxy resin compound consisting of an epoxy resin having a boiling point of 200°C or above and an amine-type curing agent for epoxy resins which has a boiling point of 200°C or above. The invention also provides adhesives for fluororesin substrates which contain the resin composition; an adhesive-covered metal foil (4) which is a laminate constituted of a metal foil (2) and a bonding layer (3); copper-clad laminates made by using the composition; and a process for the production of the laminates.
Description
明 細 書 Specification
フッ素樹脂基材接着用樹脂組成物及びそのフッ素樹脂基材接着用樹脂 組成物を用いて得られる金属張積層板 Fluororesin substrate adhesive resin composition and metal-clad laminate obtained using the fluororesin substrate adhesive resin composition
技術分野 Technical field
[0001] 本件出願に係る発明は、フッ素樹脂基材接着用樹脂組成物、そのフッ素樹脂基材 接着用樹脂組成物を用いたフッ素樹脂基材用接着剤、そのフッ素樹脂基材用接着 剤を用いて得られる金属張積層板及びプリント配線板、そして、その金属張積層板 の製造方法に関する。特に、金属箔との張り合わせを行っても、良好な密着性を得る ことが困難と言われるフッ素樹脂基材との密着性に優れた接着剤原料であるフッ素 樹脂基材接着用樹脂組成物、そのフッ素樹脂基材接着用樹脂組成物を用いたフッ 素樹脂基材用接着剤等に関する。 [0001] The present invention relates to a fluororesin substrate adhesive resin composition, a fluororesin substrate adhesive using the fluororesin substrate adhesive resin, and the fluororesin substrate adhesive. The present invention relates to a metal-clad laminate, a printed wiring board, and a method for producing the metal-clad laminate. In particular, a fluororesin substrate-adhesive resin composition, which is an adhesive raw material having excellent adhesion to a fluororesin substrate, which is said to be difficult to obtain good adhesion even when bonded to a metal foil, The present invention relates to an adhesive for a fluororesin substrate using the fluororesin substrate-adhesive resin composition.
背景技術 Background art
[0002] 近年のパーソナルコンピュータ、携帯電話等の電子機器は、高速通信及び高速演 算を可能とするためクロック周波数を GHzレベルで高くする傾向にある。これに対応 して、プリント配線板にも低誘電損失且つ低誘電率であるという誘電特性、クロストー ク特性等の高周波特性、その他耐熱性、耐久性を備えることが要求されている。 [0002] Electronic devices such as personal computers and mobile phones in recent years tend to increase the clock frequency at the GHz level in order to enable high-speed communication and high-speed computation. Correspondingly, printed circuit boards are also required to have dielectric properties such as low dielectric loss and low dielectric constant, high-frequency properties such as crosstalk properties, and other heat resistance and durability.
[0003] また、衛星通信機器等の電子機器では、衛星放送、衛星通信の発達から、アンテ ナ、 BSコンバータ等では、マイクロ波(30GHz以下)の周波数帯、より高速情報伝達 に使用するミリ波(30GHz〜300GHz)の周波数帯での使用を考え、高周波回路対 応のクロストーク特性等に優れたプリント配線板が開発されている。 [0003] Also, in electronic devices such as satellite communication devices, due to the development of satellite broadcasting and satellite communication, in antennas and BS converters, etc., the microwave (30 GHz or lower) frequency band, millimeter waves used for higher-speed information transmission. Considering use in the frequency band (30 GHz to 300 GHz), printed wiring boards with excellent crosstalk characteristics for high frequency circuits have been developed.
[0004] 以上のような用途において、今後、使用する周波数帯域が更に高周波帯域に移行 していくことが予想できる。このように周波数帯域が上がっていくにつれ、プリント配線 板に関しては、特に誘電特性が重要となる。このような用途において、フッ素樹脂基 材をプリント配線板の絶縁層に用レ、たものが使用されてきた。 In the applications as described above, it can be expected that the frequency band to be used will further shift to the high frequency band in the future. As the frequency band increases in this way, dielectric properties are particularly important for printed wiring boards. In such applications, fluororesin substrates have been used for insulating layers of printed wiring boards.
[0005] 例えば、特許文献 1には、低誘電率で低誘電正接のガラスクロスとフッ素樹脂の複 合化により得られる誘電体と、この誘電体の少なくとも一主面に形成された電解銅箔 とを具備する銅張積層板であり、誘電率が 2. 3 (12GHz)以下で、誘電正接が 0. 00
1 (12GHz)以下の特性をもつことを特徴とするフッ素樹脂銅張積層板が開示されて いる。この文献から、フッ素樹脂基材が誘電特性に優れ、高周波領域でのプリント配 線板の絶縁層構成材料として極めて有用なものと理解できる。 [0005] For example, Patent Document 1 describes a dielectric obtained by combining a glass cloth having a low dielectric constant and a low dielectric loss tangent and a fluororesin, and an electrolytic copper foil formed on at least one principal surface of the dielectric. A copper-clad laminate with a dielectric constant of 2.3 (12 GHz) or less and a dielectric loss tangent of 0.00. A fluororesin copper-clad laminate having a characteristic of 1 (12 GHz) or less is disclosed. From this document, it can be understood that the fluororesin base material has excellent dielectric properties and is extremely useful as a material for constituting an insulating layer of a printed wiring board in a high frequency region.
[0006] ところ力 フッ素樹脂基材を用いた場合、フッ素樹脂基材と金属箔との密着性が弱 いことが欠点としてあった。特に、吸湿後の当該密着性が弱くなる傾向があった。 [0006] However, when a fluororesin base material is used, there is a drawback that the adhesion between the fluororesin base material and the metal foil is weak. In particular, the adhesion after moisture absorption tended to be weakened.
[0007] フッ素樹脂基材と金属箔との密着性を改善するため、特許文献 2には、ガラスクロス にフッ素樹脂を含浸保持させたフッ素樹脂含浸層と金属箔との間にフッ素樹脂接着 含浸層を設けたプリント配線板が開示されている。このときのフッ素樹脂接着含浸層 は、樹脂特性に起因するアンカー効果によって金属箔と金属箔直下のフッ素樹脂含 浸層との間の密着性を改善し、剥離強度を増強するために用いている。そして、この フッ素樹脂接着含浸層は、フッ素樹脂含浸層のフッ素樹脂として PTFEを使用し、フ ッ素樹脂接着含浸層のフッ素樹脂として PFAを使用することが好ましいとしている。 即ち、基材にも接着層にもフッ素系樹脂を組み合わせている。 [0007] In order to improve the adhesion between the fluororesin substrate and the metal foil, Patent Document 2 describes that a fluororesin adhesive impregnation is performed between the fluororesin-impregnated layer in which the fluororesin is impregnated and held in a glass cloth and the metal foil. A printed wiring board provided with a layer is disclosed. The fluororesin adhesion impregnated layer at this time is used to improve the adhesion between the metal foil and the fluororesin impregnated layer immediately below the metal foil by the anchor effect due to the resin characteristics, and to enhance the peel strength. . The fluororesin adhesion impregnation layer preferably uses PTFE as the fluororesin of the fluororesin impregnation layer and PFA as the fluororesin of the fluororesin adhesion impregnation layer. That is, the fluororesin is combined with both the base material and the adhesive layer.
[0008] そして、特許文献 3には、高温多湿条件下でも高い信頼性をもって使用できる配線 板を提供することを目的に、ポリアリルスルフォン、芳香族ポリスルフイドおよび芳香族 ポリエーテルの中から選ばれるいずれか少なくとも 1種以上の熱可塑性樹脂とフッ素 樹脂からなることを特徴とするフッ素樹脂組成物をプリント配線板の絶縁層構成材料 として用いることが開示されて!/、る。 [0008] In Patent Document 3, any one selected from polyallylsulfone, aromatic polysulfide, and aromatic polyether is used for the purpose of providing a wiring board that can be used with high reliability even under high-temperature and high-humidity conditions. Also disclosed is the use of a fluororesin composition comprising at least one thermoplastic resin and a fluororesin as an insulating layer constituting material of a printed wiring board.
[0009] 更に、特許文献 4には、フッ素樹脂基材と金属箔との密着性を改善するものではな いが、フッ素樹脂基材とスクリーン印刷法により形成した導体との密着性を改善する ために、基板の、導体配線を形成するための表面に、粗面化処理、プラズマ処理、 粗面化処理をしたのちプラズマ処理、または粗面化処理をしたのちスパッタリング法 による金属膜の被覆形成処理、のうちいずれ力、 1つの表面処理を施したことを特徴と するプリント配線用基板が開示されている。 [0009] Furthermore, Patent Document 4 does not improve the adhesion between the fluororesin substrate and the metal foil, but improves the adhesion between the fluororesin substrate and the conductor formed by the screen printing method. For this purpose, the surface of the substrate on which the conductor wiring is to be formed is subjected to a roughening treatment, a plasma treatment, a roughening treatment, a plasma treatment, or a roughening treatment followed by a metal film coating by sputtering. There is disclosed a printed wiring board characterized in that one of the treatments is subjected to one surface treatment.
[0010] 特許文献 1 :特開 2002— 307611号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2002-307611
特許文献 2 :WO01/003478号公報 Patent Document 2: WO01 / 003478
特許文献 3:特開平 11 199738号公報 Patent Document 3: Japanese Patent Laid-Open No. 11 199738
特許文献 4 :WO2003/103352号公報
発明の開示 Patent Document 4: WO2003 / 103352 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0011] しかしながら、フッ素樹脂銅張積層板から得られるプリント配線板にも、その用途を 苦慮すれば、電子機器の多機能化、小型化を達成するため、より一層のファインピッ チ回路化が要求されてきた。 [0011] However, if the use of printed wiring boards obtained from fluororesin copper-clad laminates is difficult, electronic devices can be made more multifunctional and smaller. It has been requested.
[0012] そして、その回路形成には広く電解法若しくは圧延法で製造された銅箔が使用さ れてきた。この銅箔は、その接着面に粗化処理、防鯖処理、シランカップリング剤処 理が施されるのが通常である。このときの粗化処理のレベルによっては、要求される レベルのファインピッチ回路をエッチング法で形成することは困難である。し力、も、フッ 素樹脂基材と銅箔との密着性が低いと、エッチング液等に対する耐薬品性能及び耐 吸湿特性が著しく劣化するため、ファインピッチ回路の形成は不可能となる。近年で は、 FR— 4基材を用いた銅張積層板では、無粗化の銅箔を使用して、従来不可能 であったファインピッチ回路の形成が試みられている。これに対し、従来のフッ素樹 脂基板ではフッ素樹脂基材と金属箔との密着性が低!/、ため、無粗化の金属箔を使 用すると密着力は殆ど得られず、無粗化箔の使用は検討すら出来なかった。 [0012] And, copper foils manufactured by an electrolytic method or a rolling method have been widely used for the circuit formation. This copper foil is usually subjected to a roughening treatment, an antifungal treatment, and a silane coupling agent treatment on the bonding surface. Depending on the level of the roughening treatment at this time, it is difficult to form a required fine pitch circuit by an etching method. However, if the adhesion between the fluororesin substrate and the copper foil is low, the chemical resistance and moisture absorption resistance against the etching solution and the like are remarkably deteriorated, making it impossible to form a fine pitch circuit. In recent years, copper-clad laminates using FR-4 substrates have been attempted to form fine-pitch circuits, which were previously impossible, using unroughened copper foil. In contrast, conventional fluororesin substrates have poor adhesion between the fluororesin substrate and the metal foil, so when using a non-roughened metal foil, almost no adhesion is obtained, and no roughening occurs. The use of foil was not even considered.
[0013] 上記特許文献 2及び特許文献 3に開示の方法では、フッ素樹脂基材と無粗化の銅 箔との密着性を十分に得ることは出来ず、一定の限界がある。その結果、ヒートショッ クが負荷されると、フッ素樹脂基材と無粗化の銅箔で形成した回路との剥離 (デラミネ ーシヨン現象)が起きて!/、た。 [0013] In the methods disclosed in Patent Document 2 and Patent Document 3, sufficient adhesion between the fluororesin substrate and the non-roughened copper foil cannot be obtained, and there is a certain limit. As a result, when a heat shock was applied, peeling (delamination phenomenon) occurred between the fluororesin substrate and the circuit formed of the non-roughened copper foil!
[0014] 従って、市場では、より簡便な方法で、フッ素樹脂基材と無粗化の金属箔との密着 性を顕著に向上させ、ファインピッチ回路形成の可能な技術が望まれてきた。 [0014] Therefore, in the market, there has been a demand for a technique capable of remarkably improving the adhesion between the fluororesin substrate and the non-roughened metal foil and forming a fine pitch circuit by a simpler method.
課題を解決するための手段 Means for solving the problem
[0015] そこで、本件発明者等は、鋭意研究の結果、以下に述べる樹脂組成物等を用いて 、フッ素樹脂基材と金属箔との接着界面を形成することで、フッ素樹脂系プリント配線 板の回路の引き剥がし強さを飛躍的に向上させ、無粗化の金属箔を用いることを可 能としたのである。従って、以下の述べる金属箔とは、主に無粗化の金属箔を意味す るものである。以下、本件発明を説明する。 [0015] Therefore, the inventors of the present invention, as a result of earnest research, formed an adhesive interface between the fluororesin base material and the metal foil using the resin composition described below, thereby producing a fluororesin-based printed wiring board. This greatly improved the peel strength of the circuit and made it possible to use a non-roughened metal foil. Therefore, the metal foil described below mainly means a non-roughened metal foil. The present invention will be described below.
[0016] フッ素樹脂基材接着用樹脂組成物: 本件発明に係るフッ素樹脂基材接着用樹脂
組成物は、フッ素樹脂基材に対し金属箔を張り合わせるための接着層を形成するた めの樹脂組成物において、当該樹脂組成物は、溶剤に可溶で且つ官能基として分 子内に水酸基、カルボキシル基、ァミノ基の 1種又は 2種以上を有するポリマー成分 を 2重量部〜 50重量部、沸点 200°C以上のエポキシ樹脂及び沸点 200°C以上のァ ミン系エポキシ樹脂硬化剤からなるエポキシ樹脂配合物を 50重量部以上、を含有す ることを特 ί毁とするものである。 [0016] Fluororesin substrate adhesive resin composition: Fluororesin substrate adhesive resin according to the present invention The composition is a resin composition for forming an adhesive layer for laminating a metal foil to a fluororesin substrate. The resin composition is soluble in a solvent and has a hydroxyl group as a functional group in the molecule. 2 to 50 parts by weight of a polymer component having one or more of a carboxyl group and an amino group, and an epoxy resin having a boiling point of 200 ° C or higher and an amine epoxy resin curing agent having a boiling point of 200 ° C or higher. It is characterized by containing 50 parts by weight or more of an epoxy resin compound.
[0017] 本件発明に係るフッ素樹脂基材接着用樹脂組成物において、前記ポリマー成分は 、ポリビュルァセタール樹脂、フエノキシ樹脂、芳香族ポリアミド樹脂、ポリエーテルサ ルホン樹脂、ポリアミドイミド樹脂の群から選ばれた 1種又は 2種以上を混合したもの であることが好ましい。 [0017] In the resin composition for adhering a fluororesin substrate according to the present invention, the polymer component is selected from the group consisting of a polybulassal resin, a phenoxy resin, an aromatic polyamide resin, a polyether sulfone resin, and a polyamideimide resin. It is preferable to use one or a mixture of two or more.
[0018] そして、本件発明に係るフッ素樹脂基材接着用樹脂組成物において、前記沸点 20 0°C以上のエポキシ樹脂は、ビスフエノール A型エポキシ樹脂、ビスフエノール F型ェ ポキシ樹脂、ゴム変性ビスフエノール A型エポキシ樹脂、ビフエニル型エポキシ樹脂 の群から選ばれる 1種又は 2種以上を混合したものであることが好ましい。 [0018] In the resin composition for bonding a fluororesin substrate according to the present invention, the epoxy resin having a boiling point of 200 ° C or higher is bisphenol A type epoxy resin, bisphenol F type epoxy resin, rubber-modified bis. It is preferable to use one or a mixture of two or more selected from the group of phenol A type epoxy resins and biphenyl type epoxy resins.
[0019] また、本件発明に係るフッ素樹脂基材接着用樹脂組成物において、アミン系ェポキ シ樹脂硬化剤は、芳香族ポリアミン、ポリアミド類及びこれらをエポキシ樹脂や多価力 ルボン酸と重合或いは縮合させて得られるアミンァダクト体の群から選ばれた 1種又 は 2種以上を用いることが好ましレ、。 [0019] In the fluororesin substrate adhesive resin composition according to the present invention, the amine-based epoxy resin curing agent may be an aromatic polyamine, a polyamide, or an epoxy resin or polyvalent rubonic acid that is polymerized or condensed. It is preferable to use one or more selected from the group of amine adducts obtained by the above method.
[0020] フッ素樹脂基材用接着剤: 本件発明に係るフッ素樹脂基材用接着剤は、フッ素樹 脂基板に対し金属箔を張り合わせるために用いる樹脂接着剤であって、上記フッ素 樹脂基材接着用樹脂組成物に有機溶剤を添加して混合して得られることを特徴とし たものである。 [0020] Adhesive for fluororesin base material: The adhesive for a fluororesin base material according to the present invention is a resin adhesive used for bonding a metal foil to a fluororesin substrate, and the fluororesin base material It is obtained by adding an organic solvent to the adhesive resin composition and mixing it.
[0021] そして、本件発明に係るフッ素樹脂基材用接着剤は、前記有機溶剤にメチルェチ ルケトン、シクロペンタノン、ジメチルホルムアミド、ジメチルァセトアミド、 N—メチルビ 口リドンのいずれ力、 1種の溶剤又はこれらの混合溶剤を用いることが好ましい。 [0021] The adhesive for a fluororesin substrate according to the present invention is one solvent selected from the group consisting of methyl ethyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, and N-methylbivinylidone. Alternatively, it is preferable to use a mixed solvent thereof.
[0022] 接着層付金属箔: 本件発明に係る接着層付金属箔は、金属箔の表面に基材に対 する接着層を備えた接着層付金属箔において、当該接着層は、上記フッ素樹脂基 板用樹脂接着剤を用いて形成したものであることを特徴とする。
[0023] そして、本件発明に係る接着層付金属箔において、前記接着層は、厚さ 0. δ μ ΐη[0022] Metal foil with adhesive layer: The metal foil with adhesive layer according to the present invention is a metal foil with an adhesive layer provided on the surface of the metal foil with an adhesive layer to the substrate, the adhesive layer comprising the fluororesin. It is formed using a resin adhesive for substrates. [0023] In the metal foil with an adhesive layer according to the present invention, the adhesive layer has a thickness of 0. δ μ μ η
〜3 mの半硬化樹脂層であることが好まし!/、。 Preferable to be ~ 3 m semi-cured resin layer!
[0024] また、本件発明に係る接着層付金属箔において、前記接着層付金属箔の接着層 は、 MIL規格における MIL— P— 13949Gに準拠して測定したときのレジンフローが[0024] Further, in the metal foil with an adhesive layer according to the present invention, the adhesive layer of the metal foil with an adhesive layer has a resin flow when measured according to MIL-P-13949G in the MIL standard.
5%以内と!/、う特性を備えることが好まし!/、。 Within 5%! /, It is preferable to have the characteristics!
[0025] 更に、本件発明に係る接着層付金属箔において、前記金属箔は、銅箔、ニッケル 箔、スズ箔、金箔、銀箔、白金箔、鉄箔、コバルト箔、銅合金箔、ニッケル合金箔、ス ズ合金箔、金合金箔、銀合金箔、白金合金箔、鉄合金箔、コバルト合金箔のいずれ 力、を用いることが好ましい。 [0025] Further, in the metal foil with an adhesive layer according to the present invention, the metal foil is copper foil, nickel foil, tin foil, gold foil, silver foil, platinum foil, iron foil, cobalt foil, copper alloy foil, nickel alloy foil. It is preferable to use any of the following strengths: a soot alloy foil, a gold alloy foil, a silver alloy foil, a platinum alloy foil, an iron alloy foil, and a cobalt alloy foil.
[0026] 金属張積層板: 本件発明に係る金属張積層板は、フッ素樹脂基材の表面に接着 層を介して金属層を張り合わせて得られる金属張積層板であって、前記接着層は、 上記樹脂組成物を含むことを特徴としたものである。 [0026] Metal-clad laminate: The metal-clad laminate according to the present invention is a metal-clad laminate obtained by adhering a metal layer to the surface of a fluororesin substrate via an adhesive layer, and the adhesive layer includes: It contains the said resin composition, It is characterized by the above-mentioned.
[0027] また、本件発明に係る金属張積層板は、フッ素樹脂基材の表面に接着層を介して 金属層を張り合わせて得られる金属張積層板であって、前記接着層は、前記フッ素 樹脂基材用接着剤を用いて形成したことを特徴としたものである。 [0027] Further, the metal-clad laminate according to the present invention is a metal-clad laminate obtained by attaching a metal layer to the surface of a fluororesin substrate via an adhesive layer, and the adhesive layer includes the fluororesin It is formed using the adhesive agent for base materials.
[0028] プリント配線板: 本件発明に係るプリント配線板は、上記金属張積層板の金属箔を エッチングカロェすることにより得られるものである。 Printed wiring board: The printed wiring board according to the present invention is obtained by etching and etching the metal foil of the metal-clad laminate.
[0029] 金属張積層板の製造方法: 本件発明に係る金属張積層板の製造方法は、以下の 工程 A— 1〜工程 C 1を経ることを特徴とするものであり、説明の都合上、以下「第 1 製造方法」と称する。 [0029] Method for producing metal-clad laminate: The method for producing a metal-clad laminate according to the present invention is characterized by the following steps A-1 to C1, and for convenience of explanation, Hereinafter referred to as “first manufacturing method”.
[0030] 工程 A 1 : フッ素樹脂基材の金属箔との張り合わせ面に活性化処理を施す工程。 [0030] Step A1: A step of applying an activation treatment to the bonding surface of the fluororesin base material to the metal foil.
工程 B— 1: フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を金 属箔の表面に塗布して乾燥することで、金属箔の表面に 0· 5 111〜3 111厚さの半 硬化樹脂層を形成することで接着層付金属箔を製造する工程。 Step B—1: Prepare a fluororesin substrate adhesive, apply this fluororesin substrate adhesive to the surface of the metal foil, and dry it. A process for producing a metal foil with an adhesive layer by forming a 111-thick semi-cured resin layer.
工程 C 1: フッ素樹脂基材の活性化処理を施した張り合わせ面に対し、接着層付 金属箔の接着層面を当接させて積層して熱間プレス成形することで金属張積層板と する工程。 Process C 1: A process for forming a metal-clad laminate by hot-pressing the adhesive layer surface of the metal foil with an adhesive layer in contact with the laminated surface subjected to the activation treatment of the fluororesin base material .
[0031] また、本件発明に係る金属張積層板の製造方法は、以下の工程 A— 2〜工程 C
2を経ることを特徴とするものを採用することも出来る。そして、説明の都合上、以下「 第 2製造方法」と称する。 [0031] The method for producing a metal-clad laminate according to the present invention includes the following steps A-2 to C: It is also possible to adopt one characterized by going through 2. For convenience of explanation, it is hereinafter referred to as “second manufacturing method”.
[0032] 工程 A— 2 : フッ素樹脂基材の金属箔との張り合わせ面に活性化処理を施す工程。 [0032] Step A-2: A step of applying an activation treatment to the bonding surface of the fluororesin base material to the metal foil.
工程 B— 2 : フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を離 型性プラスチックフィルムの表面に塗布して乾燥することで、当該離型性プラスチック フィルムと厚さ 0. 5 a m〜3 a mの半硬化樹脂層が積層状態にある離型性プラスチッ クフィルム付接着層を製造する工程。 Step B-2: Prepare a fluororesin substrate adhesive, apply this fluororesin substrate adhesive to the surface of the releasable plastic film, and dry it. A process for producing an adhesive layer with a releasable plastic film in which a 0.5 to 3 am semi-cured resin layer is in a laminated state.
工程 C 2 : フッ素樹脂基材の活性化処理を施した張り合わせ面に対し、離型性プ ラスチックフィルム付接着層の半硬化樹脂層を当接させ重ね合わせて仮接着し、離 型性プラスチックフィルムを剥離除去して、当該半硬化樹脂層をフッ素樹脂基材の表 面に残す工程。 Step C2: The semi-cured resin layer of the adhesive layer with a releaseable plastic film is brought into contact with the laminated surface subjected to the activation treatment of the fluororesin base material, and is temporarily bonded to each other, and the releaseable plastic film The step of peeling off and leaving the semi-cured resin layer on the surface of the fluororesin substrate.
工程 D— 2 : 工程 C 2でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に金 属箔を積層して熱間プレス成形することで金属張積層板とする工程。 Step D-2: A step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C2 and hot pressing it.
[0033] 更に、本件発明に係る金属張積層板の製造方法は、以下の工程 A— 3〜工程 C[0033] Furthermore, the method for producing a metal-clad laminate according to the present invention includes the following steps A-3 to C:
3を経ることを特徴とするものを採用することも出来る。そして、説明の都合上、以下「 第 3製造方法」と称する。 It is also possible to adopt one characterized by going through 3. For convenience of explanation, it is hereinafter referred to as “third manufacturing method”.
[0034] 工程 A— 3 : フッ素樹脂基材の金属箔の張り合わせ面に活性化処理を施す工程。 [0034] Step A—3: A step of applying an activation treatment to the bonding surface of the metal foil of the fluororesin substrate.
工程 B— 3 : フッ素樹脂基材用接着剤を調製する工程。 Step B-3: Step of preparing an adhesive for a fluororesin substrate.
工程 C 3 : フッ素樹脂基材の活性化処理した表面に、工程 B— 3で調製したフッ素 樹脂基材用接着剤を塗布して乾燥させることで、 0. 5 111〜3 111厚さの半硬化樹 脂層を形成する工程。 Step C3: Applying the adhesive for the fluororesin base material prepared in Step B-3 to the activated surface of the fluororesin base material and drying it, 0.5 111 to 3111 half thickness A step of forming a cured resin layer.
工程 D— 3 : 工程 C 3でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に金 属箔を積層して熱間プレス成形することで金属張積層板とする工程。 Step D-3: A step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C3 and hot pressing it.
[0035] 以上に述べてきた金属張積層板の製造方法にお!/、て、前記活性化処理は、粗化 処理、プラズマ処理、又はこれらを組み合わせた複合処理のいずれかを用いることが 好ましい。 [0035] In the above-described method for producing a metal-clad laminate, it is preferable to use any one of a roughening treatment, a plasma treatment, or a combination treatment combining these as the activation treatment. .
発明の効果 The invention's effect
[0036] 本件発明に係るフッ素樹脂基材接着用樹脂組成物は、フッ素樹脂基材に対し無粗
化の金属箔を張り合わせる場合の接着層の形成に適したものであり、フッ素樹脂基 材と無粗化の金属箔との密着性を顕著に向上させ、ヒートショックを受けたときの回路 のデラミネーシヨン現象等を効果的に防止できる。そして、このフッ素樹脂基材接着 用樹脂組成物で接着層を形成しょうとする場合には、当該フッ素樹脂基板用樹脂組 成物に有機溶剤を添加して、層形成に適し且つ最適なレジンフローを得ることのでき る樹脂固形分量に調製しフッ素樹脂基材用接着剤として使用できる。 [0036] The fluororesin substrate-adhesive resin composition according to the present invention has no roughening relative to the fluororesin substrate. It is suitable for forming an adhesive layer when laminating metal foil, and it significantly improves the adhesion between the fluororesin base material and non-roughened metal foil, and the circuit when subjected to a heat shock. The delamination phenomenon can be effectively prevented. When an adhesive layer is to be formed with this fluororesin substrate adhesive resin composition, an organic solvent is added to the fluororesin substrate resin composition to provide an optimal resin flow suitable for layer formation. The resin solid content can be obtained and can be used as an adhesive for a fluororesin substrate.
[0037] そして、上記フッ素樹脂基板用樹脂接着剤を用いて金属箔の表面に接着層を形 成することも容易であり、フッ素樹脂基材用の接着層付金属箔の提供が可能となる。 このとき、当該接着層の厚さを 0· 5 m〜3 mの半硬化樹脂層とすることで、フッ素 樹脂基材に対し最も良好な密着性を得ることが出来る。そして、このときの金属箔に は、種々の無粗化の金属箔の使用が可能であり、プリント配線板用途に限らず、広く 使用可能である。 [0037] Then, it is easy to form an adhesive layer on the surface of the metal foil using the resin adhesive for a fluororesin substrate, and it is possible to provide a metal foil with an adhesive layer for a fluororesin substrate. . At this time, the best adhesion to the fluororesin substrate can be obtained by setting the thickness of the adhesive layer to a semi-cured resin layer of 0.5 m to 3 m. In this case, various non-roughened metal foils can be used as the metal foil, and the metal foil can be widely used without being limited to printed wiring board applications.
[0038] 以上のフッ素樹脂基材接着用樹脂組成物、フッ素樹脂基板用樹脂接着剤、フッ素 樹脂基材用の接着層付金属箔を用いることで、フッ素樹脂基材と金属層との密着性 に優れた金属張積層板の提供が可能となる。従って、この金属張積層板を用いるこ とで、高品質のプリント配線板の提供が可能となる。 [0038] By using the above resin composition for bonding a fluororesin substrate, a resin adhesive for a fluororesin substrate, and a metal foil with an adhesive layer for a fluororesin substrate, adhesion between the fluororesin substrate and the metal layer is achieved. It is possible to provide a metal-clad laminate excellent in the above. Therefore, by using this metal-clad laminate, it is possible to provide a high-quality printed wiring board.
[0039] 更に、本件発明に係る金属張積層板の製造方法は、上記接着層が介在するため に、熱間プレス加工する際のプレス温度が低温化でき、製造コストを安価に出来る。 しかも、予めフッ素樹脂基材の金属箔の張り合わせ面に活性化処理を施すことで、フ ッ素樹脂基材と金属層との密着性をより安定的に向上させることができる。 [0039] Furthermore, in the method for producing a metal-clad laminate according to the present invention, since the adhesive layer is interposed, the press temperature during hot pressing can be lowered, and the production cost can be reduced. In addition, the adhesion between the fluororesin base material and the metal layer can be more stably improved by applying an activation treatment to the bonded surface of the metal foil of the fluororesin base material in advance.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 以下、本件発明に関する実施の形態に関して説明する。説明にあたっては、各項 目に分別して説明する。 [0040] Hereinafter, embodiments related to the present invention will be described. In the explanation, each item is explained separately.
[0041] フッ素樹脂基材接着用樹脂組成物の形態: 本件発明に係るフッ素樹脂基材接着 用樹脂組成物は、(1)溶剤に可溶で且つ官能基として分子内に水酸基、カルボキシ ル基、ァミノ基の 1種又は 2種以上を有するポリマー成分を 2重量部〜 50重量部、(2 )沸点 200°C以上のエポキシ樹脂及び沸点 200°C以上のアミン系エポキシ樹脂硬化 剤からなるエポキシ樹脂配合物を 50重量部以上、を含有することを特徴とする。ここ
では、前記ポリマー成分とエポキシ樹脂配合物との合計を 100重量部とした場合で ある。 [0041] Form of Resin Composition for Adhesion of Fluororesin Base Material: The resin composition for adhesion of a fluororesin substrate according to the present invention is (1) soluble in a solvent and has a hydroxyl group or a carboxyl group in the molecule as a functional group. 2 to 50 parts by weight of a polymer component having one or more amino groups, (2) an epoxy resin having a boiling point of 200 ° C or higher and an amine epoxy resin curing agent having a boiling point of 200 ° C or higher It contains 50 parts by weight or more of a resin blend. here Then, it is a case where the sum total of the said polymer component and an epoxy resin compound is 100 weight part.
[0042] ここで「溶剤に可溶であり官能基として分子内に水酸基、カルボキシル基、アミノ基 の 1種又は 2種以上を有するポリマー成分」(以下、単に「ポリマー成分」と称する。)と は、ポリビュルァセタール樹脂、フエノキシ樹脂、芳香族ポリアミド樹脂、ポリエーテノレ サルホン樹脂、ポリアミドイミド樹脂の群から選ばれた 1種又は 2種以上を混合したも のであることが好ましい。ここで言うポリマー成分には、まず溶剤に可溶であるという性 質が求められる。可能でなければ、溶剤を用いての固形分調整等が困難となる。そし て、このポリマー成分力 ¾重量部未満の場合には、銅張積層板のプレス成形後の硬 度が高ぐ脆くなるため靱性が得られない。一方、このポリマー成分が 50重量部を超 える場合には、耐熱性が低くなり、銅張積層板のプレス成形温度に耐えられなくなり 、樹脂劣化を引き起こす。そして、より好ましくは、当該ポリマー成分は 2重量部〜 30 重量部とする。硬化後の樹脂としての耐熱性及びフレキシビリティが最も良好となる。 Here, “a polymer component that is soluble in a solvent and has one or more of a hydroxyl group, a carboxyl group, and an amino group in a molecule as a functional group” (hereinafter simply referred to as “polymer component”). Is preferably a mixture of one or two or more selected from the group consisting of a polybulacetal resin, a phenoxy resin, an aromatic polyamide resin, a polyethersulfone resin, and a polyamideimide resin. The polymer component here is required to have the property of being soluble in a solvent. If not possible, it will be difficult to adjust the solid content using a solvent. And when this polymer component strength is less than 3 parts by weight, the hardness after press molding of the copper clad laminate becomes high and brittle, so that toughness cannot be obtained. On the other hand, when the polymer component exceeds 50 parts by weight, the heat resistance is lowered, and it becomes impossible to withstand the press molding temperature of the copper clad laminate, thereby causing resin deterioration. More preferably, the polymer component is 2 to 30 parts by weight. The heat resistance and flexibility as the cured resin are the best.
[0043] 「沸点 200°C以上のエポキシ樹脂」とは、ビスフエノール A型エポキシ樹脂、ビスフエ ノール F型エポキシ樹脂、ゴム変性ビスフエノール A型エポキシ樹脂、ビフエ二ル型ェ ポキシ樹脂の群から選ばれる一種又は 2種以上を混合して用いることが好ましい。線 形 (2官能)のエポキシ樹脂を用いることでフッ素樹脂基材と金属箔との間での密着 性を高くする事が出来る。従って、この樹脂組成物の主体をなす「沸点 200°C以上の エポキシ樹脂」と「沸点 200°C以上のアミン系エポキシ樹脂硬化剤」との合計をェポキ シ樹脂配合物といい、これが 50重量部以上となる事が好ましい。そして、より好ましく は 50重量部〜 80重量部の配合割合で用いられる。従って、当該エポキシ樹脂配合 物が 50重量部未満の場合には、フッ素樹脂基材と金属箔との密着性を十分に向上 させ得ず、 80重量部を越えると樹脂溶液としたとき流動性が高くなり、後述するレジ ンフローの範囲を維持できなくなる。 [0043] “Epoxy resin having a boiling point of 200 ° C or higher” is selected from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin, rubber-modified bisphenol A type epoxy resin, and biphenyl type epoxy resin. It is preferable to use one kind or a mixture of two or more kinds. By using a linear (bifunctional) epoxy resin, the adhesion between the fluororesin substrate and the metal foil can be increased. Therefore, the total of the “epoxy resin having a boiling point of 200 ° C or higher” and the “amine-based epoxy resin curing agent having a boiling point of 200 ° C or higher”, which is the main component of this resin composition, is called an epoxy resin compound, and this is 50 weight. It is preferable that it becomes more than part. More preferably, it is used in a blending ratio of 50 to 80 parts by weight. Therefore, when the epoxy resin compound is less than 50 parts by weight, the adhesion between the fluororesin substrate and the metal foil cannot be sufficiently improved, and when it exceeds 80 parts by weight, the fluidity is obtained when a resin solution is obtained. As a result, the range of the resin flow described later cannot be maintained.
[0044] そして、エポキシ樹脂硬化剤としては、単に硬化させることのみを目的とすれば、ジ シアンジアミド、イミダゾール類、芳香族ァミン等のアミン類、ビスフエノール A、ブロム 化ビスフエノール A等のフエノール類、フエノールノポラック樹脂及びクレゾールノボラ ック樹脂等のノポラック類、無水フタル酸等の酸無水物等のあらゆる硬化剤を用いる
こと力 Sできる。し力もながら、沸点 200°C以上のアミン系エポキシ樹脂硬化剤を用いる ことが、フッ素樹脂基材と金属箔との密着性を顕著に向上させるという観点から最も 好ましい。プレス成形温度が 180°C付近であり、このプレス成形温度付近に硬化剤の 沸点があると、プレス成形によりエポキシ樹脂硬化剤が沸騰するため硬化した絶縁樹 脂層内に気泡が発生しやすくなる。そして、フッ素樹脂基材と金属箔との間に接着層 を構成するのにアミン系エポキシ樹脂硬化剤を用いると最も安定した密着性が得ら れる。即ち、「沸点 200°C以上のアミン系エポキシ樹脂硬化剤」とは、芳香族ポリアミ ン、ポリアミド類及びこれらをエポキシ樹脂や多価カルボン酸と重合或いは縮合させ て得られるアミンァダクト体の群から選ばれた一種又は二種以上を用いる場合を言う 。そして、これをより具体的に言えば、 4, 4,ージアミノジフエ二レンサルフォン、 3, 3, —ジアミノジフエ二レンサルフォン、 4, 4 ジァミノジフエ二レル、 2, 2 ビス [4— (4 —アミノフエノキシ)フエ二ノレ]プロパン、ビス [4— (4—アミノフエノキシ)フエ二ノレ]サル フォンのいずれかを用いることが好ましい。また、当該アミン系エポキシ樹脂硬化剤の エポキシ樹脂に対する添加量は、それぞれの当量から自ずと導き出されるものである ため、本来厳密にその配合割合を明記する必要性はないものと考える。従って、本 件発明では、硬化剤の添加量を特に限定して!/、なレ、。 [0044] And, as an epoxy resin curing agent, if it is only intended to be cured, amines such as dicyandiamide, imidazoles and aromatic amines, phenols such as bisphenol A and bisphenol A bromide A, etc. All kinds of curing agents such as phenols, phenolic nopolac resins and cresol novolac resins, etc. and acid anhydrides such as phthalic anhydride That power S. However, it is most preferable to use an amine epoxy resin curing agent having a boiling point of 200 ° C. or higher from the viewpoint of significantly improving the adhesion between the fluororesin substrate and the metal foil. If the press molding temperature is around 180 ° C, and the boiling point of the curing agent is around this press molding temperature, the epoxy resin curing agent will boil due to the press molding, and bubbles are likely to be generated in the cured insulating resin layer. . The most stable adhesion can be obtained when an amine epoxy resin curing agent is used to form an adhesive layer between the fluororesin substrate and the metal foil. That is, the “amine-based epoxy resin curing agent having a boiling point of 200 ° C. or higher” is selected from the group of aromatic polyamines, polyamides, and amine adducts obtained by polymerizing or condensing these with epoxy resins or polyvalent carboxylic acids. The case where one kind or two or more kinds are used. More specifically, 4, 4, -diaminodiphenylsulfone, 3, 3, —diaminodiphensulfone, 4,4 diaminodiphenylsulfone, 2,2 bis [4- (4-aminophenoxy) It is preferable to use any one of [Ninole] propane and bis [4- (4-aminophenoxy) phenol] sulfone. In addition, since the amount of the amine-based epoxy resin curing agent added to the epoxy resin is naturally derived from the equivalents, it is not considered necessary to specify the mixing ratio strictly strictly. Therefore, in the present invention, the addition amount of the curing agent is particularly limited!
[0045] また、必要に応じて適宜量添加する硬化促進剤を用いることも好ましい。ここで言う 硬化促進剤とは、 3級ァミン、イミダゾール、尿素系硬化促進剤等である。本件発明 では、この硬化促進剤の配合割合は、特に限定を設けていない。なぜなら、硬化促 進剤は、プレス加工時の加熱条件等を考慮して、製造者が任意に選択的に添加量 を定めて良レ、ものであるからである。 [0045] It is also preferable to use a curing accelerator added in an appropriate amount as necessary. Here, the curing accelerator is a tertiary amine, imidazole, urea curing accelerator or the like. In the present invention, the mixing ratio of the curing accelerator is not particularly limited. This is because the curing accelerator is a good one that the manufacturer arbitrarily determines the amount of addition in consideration of the heating conditions during the press working.
[0046] そして、本件発明に言う樹脂組成物にはゴム性樹脂を添加することも好ましい。ここ で言うゴム性樹脂とは、天然ゴム及び合成ゴムを含む概念として記載しており、後者 の合成ゴムにはスチレン ブタジエンゴム、ブタジエンゴム、ブチルゴム、エチレン プロピレンゴム等がある。更に、耐熱性を要求される場合には、二トリルゴム、クロロプ レンゴム、シリコンゴム、ウレタンゴム等の耐熱性合成ゴムを選択使用することも有用 である。これらのゴム性樹脂に関しては、上記ポリマー成分と反応して共重合体を形 成するように、両末端に種々の官能基を備えるものであることが望ましい。
[0047] 更に、上記高分子ポリマーの架橋剤を必要に応じて添加して用いることも好ましい 。例えば、上記高分子ポリマーとして、ポリビュルァセタール樹脂を用いる場合には、 ウレタン樹脂を架橋材として用いる等である。 [0046] It is also preferable to add a rubbery resin to the resin composition referred to in the present invention. The rubbery resin mentioned here is described as a concept including natural rubber and synthetic rubber, and the latter synthetic rubber includes styrene butadiene rubber, butadiene rubber, butyl rubber, ethylene propylene rubber and the like. Furthermore, when heat resistance is required, it is also useful to selectively use heat-resistant synthetic rubbers such as nitrile rubber, chloroprene rubber, silicon rubber and urethane rubber. Regarding these rubber resins, it is desirable to have various functional groups at both ends so as to react with the polymer component to form a copolymer. [0047] Furthermore, it is also preferable to add the above-mentioned polymer polymer crosslinking agent as necessary. For example, in the case of using a polybulacetal resin as the polymer, the urethane resin is used as a cross-linking material.
[0048] 以上に述べてきた樹脂組成物の構成成分を全て含むとすれば、樹脂組成物を 10 0重量部としたとき、エポキシ樹脂が 50重量部〜 80重量部、硬化剤が 1重量部〜 15 重量部、硬化促進剤が 0. 01重量部〜 1. 0重量部、ポリマー成分が 2重量部〜 50 重量部、架橋剤が 1重量部〜 5重量部、ゴム性樹脂が 1重量部〜 10重量部の範囲の 組成を採用することが好ましい。この組成範囲に含まれる限り、フッ素樹脂基材と金 属箔との良好な密着性を維持し、且つ、製品の密着性のバラツキが少なくなる。 [0048] Assuming that all the components of the resin composition described above are included, when the resin composition is 100 parts by weight, the epoxy resin is 50 parts by weight to 80 parts by weight, and the curing agent is 1 part by weight. -15 parts by weight, curing accelerator 0.01 parts by weight 1.0 parts by weight, polymer component 2 parts by weight to 50 parts by weight, cross-linking agent 1 part by weight to 5 parts by weight, rubber resin 1 part by weight It is preferred to employ a composition in the range of ~ 10 parts by weight. As long as it is included in this composition range, good adhesion between the fluororesin substrate and the metal foil is maintained, and variation in product adhesion is reduced.
[0049] フッ素樹脂基材用接着剤の形態: 一般的に、上記フッ素樹脂基材接着用樹脂組成 物は、そのままの状態で接着層の形成に用いることは困難である。そこで、上記フッ 素樹脂基材接着用樹脂組成物に有機溶剤を添加して混合するしてフッ素樹脂基材 用接着剤として用いる。かかる場合、樹脂固形分 10wt%〜40wt%に調製する事が 好ましい。樹脂固形分が 10wt%未満の場合には、粘度が低すぎて、接着層を形成 するための樹脂膜を形成しても塗布直後に流れて膜厚均一性を確保しにくい。これ に対し、樹脂固形分が 40wt%を越えると、粘度が高ぐ薄い樹脂膜の形成が困難と なる。 [0049] Form of Fluororesin Substrate Adhesive: Generally, it is difficult to use the resin composition for adhering a fluororesin base as it is to form an adhesive layer. Therefore, an organic solvent is added to and mixed with the fluororesin substrate adhesive resin composition and used as an adhesive for a fluororesin substrate. In such a case, the resin solid content is preferably adjusted to 10 wt% to 40 wt%. When the resin solid content is less than 10 wt%, the viscosity is too low, and even if a resin film for forming an adhesive layer is formed, it flows immediately after coating and it is difficult to ensure film thickness uniformity. On the other hand, when the resin solid content exceeds 40 wt%, it becomes difficult to form a thin resin film with high viscosity.
[0050] このときの有機溶剤として、メチルェチルケトン、シクロペンタノン、ジメチルホルムァ ミド、ジメチルァセトアミド、 N—メチルピロリドンのいずれ力、 1種の溶剤又はこれらの混 合溶剤を用いることが好ましい。ここで言う溶剤は、上記樹脂組成物の溶解可能なも のを選択している。しかし、溶剤としてメチルェチルケトン及び/又はシクロペンタノン を用いると、金属積層板の製造のプレス加工時の熱により効率よく揮発除去すること が容易であり、且つ、揮発ガスの浄化処理も容易で、しかも、樹脂膜形成に適した樹 脂溶液粘度の調節が容易である。そして、メチルェチルケトンとシクロペンタノンとの 混合溶剤の場合、その混合割合にも特に限定はないが、シクロペンタノンに対しメチ ルェチルケトンを共存溶媒とすると、揮発除去の速度が速くなり好ましレ、。 [0050] As the organic solvent at this time, any one of methyl ethyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, one solvent or a mixed solvent thereof should be used. Is preferred. As the solvent here, a solvent that can dissolve the resin composition is selected. However, when methyl ethyl ketone and / or cyclopentanone is used as a solvent, it is easy to efficiently volatilize and remove by heat at the time of press working in the production of a metal laminate, and also easy to purify volatile gas. In addition, it is easy to adjust the resin solution viscosity suitable for resin film formation. In the case of a mixed solvent of methyl ethyl ketone and cyclopentanone, the mixing ratio is not particularly limited. However, when methyl ethyl ketone is used as a co-solvent for cyclopentanone, the rate of volatilization removal is preferred. Les.
[0051] し力、し、上記メチルェチルケトンゃシクロペンタノン等での溶解が困難なポリマー成 分の場合には、ジメチルホルムアミド、ジメチルァセトアミド、 N—メチルピロリドン等を
溶媒として用いる。特に、これらの溶媒を複数種混合した溶媒を用いると、得られる樹 脂溶液の品質安定性の長期確保が可能となる傾向にある。力、かる溶媒を用いる場合 も、樹脂溶液の樹脂固形分は、同様の理由で上記 10wt%〜40wt%とする事が好 ましい。 [0051] In the case of a polymer component that is difficult to dissolve in the above methyl ethyl ketone or cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. Used as a solvent. In particular, when a solvent obtained by mixing a plurality of these solvents is used, the quality stability of the obtained resin solution tends to be ensured for a long period of time. Even when using a strong or solvent, the resin solid content of the resin solution is preferably 10 wt% to 40 wt% for the same reason.
[0052] 接着層付金属箔の形態: 本件発明に係る接着層付金属箔は、図 1に示すように、 金属箔 2の表面に基材に対する接着層 3を備えた接着層付金属箔 4であって、当該 接着層を上記フッ素樹脂基板用樹脂接着剤を用いて形成したものである。この形成 方法に関しては、後述する。 [0052] Form of Metal Foil with Adhesive Layer: As shown in FIG. 1, the metal foil with an adhesive layer according to the present invention has a metal foil 4 with an adhesive layer provided with an adhesive layer 3 for a substrate on the surface of the metal foil 2. The adhesive layer is formed by using the resin adhesive for a fluororesin substrate. This forming method will be described later.
[0053] そして、本件発明に係る接着層付金属箔において、前記接着層は、厚さ 0. δ μ ΐη 〜3 111の半硬化樹脂層である。ここで、半硬化樹脂層でなければ、熱間プレス加工 により再流動化しないため、フッ素樹脂基材と金属箔との張り合わせが出来ないこと になる。このように薄樹脂層を形成することとしたのは、プレス加工時に以下に述べる レジンフローが殆ど起こらない状態を確実に作り出すためである。この接着層の厚さ が 0. δ πι未満となると、厚さを均一に作り込むことも困難で、フッ素樹脂基材と金属 箔との間で均一な厚さの樹脂層として残すことが困難で、ワークサイズの 1枚の金属 張積層板の面内において、引き剥がし強さのバラツキが大きくなる。これに対し、当 該接着層の厚さが を超えると、フッ素樹脂基材の持つ良好な電気特性を劣化 させる。なお、この接着層の厚さは、 lm2あたりの完全平面に樹脂を塗布したと考え たときの換算厚さである。 [0053] In the metal foil with an adhesive layer according to the present invention, the adhesive layer is a semi-cured resin layer having a thickness of 0. Here, if it is not a semi-cured resin layer, it will not be reflowed by hot pressing, so that the fluororesin substrate and the metal foil cannot be bonded together. The reason why the thin resin layer is formed in this way is to reliably create a state in which the resin flow described below hardly occurs at the time of pressing. When the thickness of this adhesive layer is less than 0. δ πι, it is difficult to make the thickness uniform, and it is difficult to leave a resin layer having a uniform thickness between the fluororesin substrate and the metal foil. Thus, in the surface of a single metal-clad laminate with a workpiece size, the peel strength varies greatly. On the other hand, if the thickness of the adhesive layer exceeds, the good electrical properties of the fluororesin substrate are deteriorated. Note that the thickness of the adhesive layer is a converted thickness when it is assumed that the resin is applied to a completely flat surface per lm 2 .
[0054] また、本件発明に係る接着層付金属箔において、前記接着層付金属箔の接着層 は、 MIL規格における MIL— P— 13949Gに準拠して測定したときのレジンフローが 5 %以内という特性を備えることが好ましい。このレジンフロー力 以内でなければ 、フッ素樹脂基材と金属箔との良好な密着性を得ることが出来ないのである。なお、 下限に関して特に規定していないが、 1 %程度である。レジンフローに関しては、接 着層の厚さ、接着層を形成する際に用いたフッ素樹脂基板用樹脂接着剤の樹脂固 形分量等が特性を決める要因となるが、上記樹脂組成物の本来持つレジンフローが 重要であることは当然である。通常、金属箔とフッ素樹脂基材との張り合わせを行う 場合、その界面にエアーの嚙み混み等を起こす場合もある。そこで、銅張積層板を
製造する場合を例にとれば、このエアー抜きを兼ねて lm2サイズの銅張積層板で端 部から 5mm〜l 5mm程度のレジンフローを意図的に起こさせる。ところ力 本件発明 で用いる接着層の場合には、このレジンフローが殆ど起こらないことが、フッ素樹脂基 材と金属箔との良好な密着性を確保する上で重要な要因となる。 [0054] In the metal foil with an adhesive layer according to the present invention, the adhesive layer of the metal foil with an adhesive layer has a resin flow of 5% or less when measured according to MIL-P-13949G in the MIL standard. It is preferable to have characteristics. Unless the resin flow force is within this range, good adhesion between the fluororesin substrate and the metal foil cannot be obtained. The lower limit is not specified, but it is about 1%. Regarding the resin flow, the thickness of the adhesive layer and the resin solid content of the resin adhesive for the fluororesin substrate used when forming the adhesive layer are factors that determine the characteristics. Of course, resin flow is important. Usually, when laminating a metal foil and a fluororesin substrate, air stagnation may occur at the interface. So, the copper clad laminate Taking the case of manufacturing as an example, a resin flow of about 5mm to 5mm from the end is intentionally caused by an lm 2 size copper clad laminate that also serves as an air vent. However, in the case of the adhesive layer used in the present invention, the fact that this resin flow hardly occurs is an important factor for ensuring good adhesion between the fluororesin base material and the metal foil.
[0055] 本件明細書において、レジンフローは MIL規格の MIL— P— 13949Gに準拠して 測定したときの値で判断している。即ち、レジンフローの測定精度を確保するため、 上記接着層を 40 m厚さで電解銅箔の表面に意図的に形成し、 10cm角試料を 4 枚製造する。そして、この 4枚の 10cm角試料を重ねた状態でプレス温度 171°C、プ レス圧 14kgf/cm2、プレス時間 10分の条件で張り合わせ、そのときのレジンフロー を数 1に従って計算して求めた。なお、通常のプリプレダを用いたとき及び通常の樹 脂付銅箔 (40 11 m厚さ樹脂層)のレジンフローは、 20%前後である。 [0055] In this specification, the resin flow is determined by the value measured according to MIL-P-13949G of the MIL standard. In other words, in order to ensure the accuracy of resin flow measurement, the adhesive layer is intentionally formed on the surface of the electrolytic copper foil with a thickness of 40 m, and four 10 cm square samples are manufactured. The four 10cm square samples are stacked and bonded together under the conditions of a press temperature of 171 ° C, a press pressure of 14kgf / cm 2 and a press time of 10 minutes, and the resin flow at that time is calculated and calculated according to Equation 1. It was. Note that the resin flow of a normal resin-prepared copper foil (40 11 m thick resin layer) is about 20% when using a normal pre-preda.
[0056] [数 1] [0056] [Equation 1]
, 、 流出樹脂重量 ¾ Λ . レジンフロー (%) = 1 0 0 ,, Outflow resin weight ¾ Λ . Resin flow (%) = 1 0 0
(積層体重量) (銅箔重量) (Layer weight) (Copper foil weight)
[0057] 更に、本件発明に係る接着層付金属箔において、前記金属箔は、銅箔、ニッケノレ 箔、スズ箔、金箔、銀箔、白金箔、鉄箔、コバルト箔、銅合金箔、ニッケル合金箔、ス ズ合金箔、金合金箔、銀合金箔、白金合金箔、鉄合金箔、コバルト合金箔のいずれ 力、を用いることが好ましい。即ち、電子材料用途に使用可能な全ての金属箔という概 念で記載している。そして、前記金属箔の全ては、その製造方法を問わず、電解法 で得られたものでも、圧延法で得られたものでも、物理蒸着法で得られたものでも構 わない。また、その厚さに関しても特段の限定はない。 [0057] Further, in the metal foil with an adhesive layer according to the present invention, the metal foil is a copper foil, a nickel foil, a tin foil, a gold foil, a silver foil, a platinum foil, an iron foil, a cobalt foil, a copper alloy foil, or a nickel alloy foil. It is preferable to use any of the following strengths: a soot alloy foil, a gold alloy foil, a silver alloy foil, a platinum alloy foil, an iron alloy foil, and a cobalt alloy foil. That is, it is described with the concept of all metal foils that can be used for electronic materials. All of the metal foils may be obtained by an electrolytic method, obtained by a rolling method, or obtained by a physical vapor deposition method, regardless of the production method. Moreover, there is no special limitation regarding the thickness.
[0058] しかし、上記金属箔の表面に対し、防鯖処理、シランカップリング剤処理等を施すこ とで、より密着性を向上させることも可能である。従って、本件発明で用いる金属箔と は、粗化処理を省略したものを対象にしている。しかし、仮に粗化処理を施した金属 箔を使用することに、何ら問題はない。なお、粗化処理とは、金属箔の表面に微細な
金属粒を付着形成したり、金属箔表面を化学的に処理して凹凸形状を形成したりす るものであり、その手法に関しては問わない。特に、一般的に広く知られた粗化処理 は、電解銅箔及び圧延銅箔に施す微細銅粒を付着形成させて行う粗化処理である [0058] However, adhesion can be further improved by subjecting the surface of the metal foil to an antifouling treatment, a silane coupling agent treatment, or the like. Accordingly, the metal foil used in the present invention is intended for the one that omits the roughening treatment. However, there is no problem in using a metal foil that has been roughened. Note that the roughening treatment means that the surface of the metal foil is fine. There are no particular restrictions on the method used to deposit metal particles or to chemically treat the surface of the metal foil to form irregularities. In particular, the generally known roughening treatment is a roughening treatment performed by depositing and forming fine copper grains applied to the electrolytic copper foil and the rolled copper foil.
[0059] ここで言う防鯖処理とは、フッ素樹脂基材の種類に応じて適宜選択して用いるもの であり特段の限定はない。防鯖処理としては、ベンゾトリァゾール、イミダゾール等を 用いる有機防鯖、若しくは亜鉛、クロメート、亜鉛合金、ニッケル合金等を用いる無機 防鯖のいずれを採用しても良い。有機防鯖の場合は、有機防鯖剤を浸漬塗布、シャ ワーリング塗布、電着する等の手法を採用できる。無機防鯖の場合は、電解で防鯖 元素を銅箔の表面上に析出させる方法、その他いわゆる置換析出法等を用いること が可能である。なお、図面中では、防鯖処理層は特に記載せず省略している。 [0059] The antifungal treatment referred to here is appropriately selected according to the type of the fluororesin substrate and is not particularly limited. As the antifouling treatment, either an organic antifouling using benzotriazole, imidazole or the like, or an inorganic fender using zinc, chromate, zinc alloy, nickel alloy or the like may be adopted. In the case of organic fenders, techniques such as dip coating, showering and electrodeposition of organic fenders can be employed. In the case of an inorganic barrier, it is possible to use a method in which the barrier element is deposited on the surface of the copper foil by electrolysis, or a so-called substitution deposition method. In the drawing, the anti-bacterial treatment layer is not particularly described and omitted.
[0060] そして、シランカップリング剤処理は、アミノ系シランカップリング剤、エポキシ系シラ ンカップリング剤、メルカプト系シランカップリング剤の!/、ずれか一種又は二種以上を 用いて行うものが一般的である。シランカップリング剤処理は、シランカップリング剤と して最も一般的なエポキシ官能性シランカップリング剤を始めォレフィン官能性シラン 、アクリル官能性シラン等種々のものを用いるのが可能である。しかし、ァミノ官能性 シランカップリング剤又はメルカプト官能性シランカップリング剤を用いると、フッ素樹 脂基材と金属箔との密着性をより高めることが可能で特に好ましい。プリント配線板の 回路の引き剥がし強度は、従来から高いほどよいと言われた。ところ力 近年は、エツ チング技術の精度の向上によりエッチング時の回路剥離は無くなり、プリント配線板 業界におけるプリント配線板の取り扱い方法が確立され、回路を誤って引っかけて起 こる断線剥離の問題も解消されてきた。そのため、近年は少なくとも 0. 8kgf/cm以 上の引き剥がし強度があれば、現実の使用が可能といわれ、 1. Okgf/cm以上あれ ば何ら問題ないと言われる。 [0060] The silane coupling agent treatment is carried out using one or two or more of amino-based silane coupling agent, epoxy-based silane coupling agent, and mercapto-based silane coupling agent. It is common. In the silane coupling agent treatment, various types such as the most common epoxy functional silane coupling agent, olefin functional silane, acrylic functional silane, etc. can be used as the silane coupling agent. However, it is particularly preferable to use an amino functional silane coupling agent or a mercapto functional silane coupling agent because the adhesion between the fluorine resin substrate and the metal foil can be further improved. It has been said that the higher the peel strength of printed circuit boards, the better. However, in recent years, circuit peeling during etching has been eliminated by improving the accuracy of the etching technology, and a method for handling printed wiring boards in the printed wiring board industry has been established, eliminating the problem of disconnection peeling caused by accidental circuit catching. It has been. Therefore, in recent years, it is said that if it has a peel strength of at least 0.8 kgf / cm, it can be used practically. 1. If it is at least Okgf / cm, it is said that there is no problem.
[0061] これらシランカップリング剤を、より具体的に明示しておくことにする。プリント配線板 用にプリプレダのガラスクロスに用いられると同様のカップリング剤を中心にビュルトリ メトキシシラン、ビュルフエニルトリメトキシラン、 γ—メタクリロキシプロビルトリメトキシ
シラン、 γ—ァミノプロピルトリエトキシシラン、 Ν— β (アミノエチル) γ—ァミノプロピ ルトリメトキシシラン、 Ν—3— (4—(3—ァミノプロポキシ)プトキシ)プロピル 3—アミ ノプロビルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、 γ メルカプトプロ ピルトリメトキシシラン等を用いることが可能である。 [0061] These silane coupling agents will be described more specifically. Mainly coupling agents similar to those used for prepreda glass cloth for printed wiring boards, buttrimethoxysilane, butenyltrimethoxylane, γ-methacryloxyprovir trimethoxy Silane, γ-Aminopropyltriethoxysilane, Ν—β (aminoethyl) γ —Aminopropyltrimethoxysilane, Ν—3— (4- (3-Aminopropoxy) ptoxy) propyl 3-aminopropyl trimethoxy Silane, imidazole silane, triazine silane, γ mercaptopropyltrimethoxysilane, and the like can be used.
[0062] そして、シランカップリング剤処理の方法は、一般的に用いられる浸漬法、シャワー リング法、噴霧法等、特に方法は限定されない。工程設計に合わせて、最も均一に 金属箔とシランカップリング剤を含んだ溶液とを接触させ吸着させることのできる方法 を任意に採用すれば良い。シランカップリング剤は、溶媒としての水に 0. 5〜10g/l 溶解させて、室温レベルの温度で用いるものである。シランカップリング剤濃度が 0. 5g/lを下回る場合は、シランカップリング剤の吸着速度が遅ぐ一般的な商業べ一 スの採算に合わず、吸着も不均一なものとなる。また、 lOg/1を超える濃度であって も、特に吸着速度が速くなることもなく不経済となる。なお、図面中では、シランカップ リング剤処理層は特に記載せず省略している。 [0062] The method for treating the silane coupling agent is not particularly limited, such as a commonly used dipping method, showering method, spraying method or the like. In accordance with the process design, a method that allows the metal foil and the solution containing the silane coupling agent to be brought into contact and adsorbed most uniformly can be arbitrarily adopted. The silane coupling agent is used at a temperature of room temperature by dissolving 0.5 to 10 g / l in water as a solvent. When the silane coupling agent concentration is less than 0.5 g / l, the adsorption rate of the silane coupling agent is not suitable for the general commercial basis, and the adsorption is not uniform. Even if the concentration exceeds lOg / 1, the adsorption rate is not particularly high, which is uneconomical. In the drawings, the silane coupling agent-treated layer is not particularly described and is omitted.
[0063] 金属張積層板の形態: 本件発明に係る金属張積層板は、フッ素樹脂基材の表面 に接着層を介して金属層を張り合わせて得られる金属張積層板であって、前記接着 層が上記樹脂組成物を含むことを特徴としたものである。また、前記接着層が前記フ ッ素樹脂基材用接着剤を用いて形成したことを特徴としたものである。本件発明に係 る金属張積層板の断面構成を図 2に示す。図 2 (a)には片面金属張積層板 laを、図 2 (b)には両面金属張積層板 lbを、図 2 (c)には内層回路 9を内部に備える 4層金属 張積層板 lcを示している。従って、本件発明に係る金属張積層板とは、その層構成 には関係なぐ外層に金属箔 2が張り合わせられた状態のものであって、その内層に フッ素樹脂基材層 5を備え、金属箔 2とフッ素樹脂基材層 5との間に接着層 3を備え た構成の積層体を言う。 [0063] Form of metal-clad laminate: The metal-clad laminate according to the present invention is a metal-clad laminate obtained by attaching a metal layer to the surface of a fluororesin substrate via an adhesive layer, and the adhesive layer Includes the above resin composition. Further, the adhesive layer is formed using the fluororesin substrate adhesive. Fig. 2 shows the cross-sectional configuration of the metal-clad laminate according to the present invention. Fig. 2 (a) shows a single-sided metal-clad laminate la, Fig. 2 (b) shows a double-sided metal-clad laminate lb, and Fig. 2 (c) shows a 4-layer metal-clad laminate with an inner circuit 9 inside. lc is shown. Therefore, the metal-clad laminate according to the present invention is a state in which the metal foil 2 is bonded to the outer layer that is not related to the layer structure, and the inner layer includes the fluororesin base layer 5 and includes the metal foil. A laminate having an adhesive layer 3 between 2 and a fluororesin substrate layer 5 is referred to.
[0064] ここで、図 2 (c)には内層回路 9を内部に備える 4層金属張積層板 lcの製造方法に 関して簡単に述べておく。例えば、図 2 (b)に示す両面金属張積層板 lbの両面の金 属層をエッチング加工して回路 20を形成して両面プリント配線板 21とする。そして、 2枚の両面プリント配線板 21、 FR— 4等のプリプレダ 22等を用いて、図 3に示すよう に積層し、熱間プレス加工することで 4層金属張積層板 lcが得られる。また、 2枚の
両面プリント配線板 21と、両面に本件発明に係るフッ素樹脂材料接着剤を用いた接 着層 3を備えるフッ素樹脂基材 5とを用いて、図 4に示すように積層し、熱間プレス加 ェすることで 4層金属張積層板 lcが得られる。 [0064] Here, FIG. 2 (c) briefly describes a method of manufacturing the four-layer metal-clad laminate lc provided with the inner layer circuit 9 therein. For example, the double-sided printed wiring board 21 is formed by etching the metal layers on both sides of the double-sided metal-clad laminate lb shown in FIG. Then, using a double-sided printed wiring board 21 and a pre-preda 22 such as FR-4, etc., the four-layer metal-clad laminate lc is obtained by laminating as shown in FIG. 3 and hot pressing. Also two pieces Using a double-sided printed wiring board 21 and a fluororesin base material 5 provided on both sides with an adhesive layer 3 using the fluororesin material adhesive according to the present invention, lamination is performed as shown in FIG. By doing so, a four-layer metal-clad laminate lc can be obtained.
[0065] そして、ここで言うフッ素樹脂基材とは、 PTFE (ポリテトラフルォロエチレン (4フッ化 ) )、 PFA (テトラフルォロエチレン 'パーフルォロアルキルビュルエーテル共重合体) 、 FEP (テトラフルォロエチレン.へキサフルォロプロピレン共重合体(4. 6フッ化))、 ETFE (テトラフルォロエチレン.エチレン共重合体)、 PVDF (ポリビニリデンフルオラ イド(2フッ化))、 PCTFE (ポリクロ口トリフルォロエチレン(3フッ化))、その他特許文 献 3に開示されたようなポリアリルスルフォン、芳香族ポリスルフイドおよび芳香族ポリ エーテルの中から選ばれるいずれか少なくとも 1種の熱可塑性樹脂とフッ素樹脂とか らなるフッ素系樹脂等を用いた基材であり、ガラスクロス等の骨格材を含んでも含まな くとも構わない。また、このフッ素樹脂基材の厚さに関しても、特段の限定はない。 [0065] The fluororesin base material referred to here is PTFE (polytetrafluoroethylene (tetrafluoride)), PFA (tetrafluoroethylene 'perfluoroalkyl butyl ether copolymer), FEP (tetrafluoroethylene.hexafluoropropylene copolymer (4.6 hexafluoride)), ETFE (tetrafluoroethylene.ethylene copolymer), PVDF (polyvinylidene fluoride (2 fluorine)) )), PCTFE (polychlorinated trifluoroethylene (trifluoride)), and at least any one selected from polyallylsulfone, aromatic polysulfide and aromatic polyether as disclosed in Patent Document 3. It is a base material using a fluororesin composed of one kind of thermoplastic resin and fluororesin, and may or may not include a skeleton material such as glass cloth. Moreover, there is no special limitation also about the thickness of this fluororesin base material.
[0066] プリント配線板の形態: 本件発明に係るプリント配線板は、上記金属張積層板の金 属箔をエッチング加工することにより得られるものである。このときのエッチングプロセ スは、特に限定されないが、金属箔の表面にエッチングレジスト層を設け、エッチング パターンを露光、現像し、レジストパターンを形成し、金属箔の構成金属成分を溶解 可能なエッチング液で回路エッチングを行うのが一般的である。 [0066] Form of Printed Wiring Board: The printed wiring board according to the present invention is obtained by etching the metal foil of the metal-clad laminate. Although the etching process at this time is not particularly limited, an etching resist layer is provided on the surface of the metal foil, the etching pattern is exposed and developed, the resist pattern is formed, and an etching solution capable of dissolving the constituent metal components of the metal foil. In general, the circuit etching is performed.
[0067] 金属張積層板の製造方法の形態: 本件発明に係る金属張積層板の第 1製造方法 に関して説明する。以下、工程 A— 1〜工程 C 1を順次説明する。 [0067] Form of Method for Producing Metal-Clad Laminate: A first method for producing a metal-clad laminate according to the present invention will be described. Hereinafter, step A-1 to step C1 will be sequentially described.
[0068] 工程 A— 1 : この工程では、フッ素樹脂基材の金属箔の張り合わせ面に活性化処理 を施す。ここで言う活性化処理とは、フッ素樹脂基材と接着層との密着性を向上させ 、結果としてフッ素樹脂基材表面に対する金属箔の密着性を向上させるために行うも のである。この活性化処理を具体的に言えば、粗化処理、プラズマ処理、又はこれら を組み合わせた複合処理の事である。このフッ素樹脂基材の粗化処理とは、湿式又 は乾式のブラスト法、湿式エッチング法、ドライエッチング法等を使用できる。特に、 化学的手法を用いて行う湿式エッチング粗化処理で、ナトリウムエッチングと称される 手法が多く採用される。そして、この粗化処理によって形成される粗化面は、平均粗 さ(Ra)が 20nm〜100nmとする事が好まし!/、。この平均粗さ(Ra)が 20nm未満の
場合には、フッ素樹脂基材と接着層との密着性を向上させ得ない。一方、平均粗さ( Ra)が lOOnmを超えても、粗化によるフッ素樹脂基材と接着層との密着性向上効果 は、それ以上に上昇しない。 [0068] Step A-1: In this step, an activation treatment is applied to the bonding surface of the metal foil of the fluororesin substrate. The activation treatment referred to here is performed to improve the adhesion between the fluororesin substrate and the adhesive layer, and as a result, improve the adhesion of the metal foil to the surface of the fluororesin substrate. Specifically, this activation treatment is roughening treatment, plasma treatment, or a combination treatment combining them. For the roughening treatment of the fluororesin substrate, a wet or dry blast method, a wet etching method, a dry etching method, or the like can be used. In particular, a wet etching roughening process using a chemical technique often employs a technique called sodium etching. The roughened surface formed by this roughening treatment preferably has an average roughness (Ra) of 20 nm to 100 nm! /. This average roughness (Ra) is less than 20nm In this case, the adhesion between the fluororesin substrate and the adhesive layer cannot be improved. On the other hand, even if the average roughness (Ra) exceeds lOOnm, the effect of improving the adhesion between the fluororesin substrate and the adhesive layer due to the roughening does not increase further.
[0069] そして、プラズマ処理とは、窒素ガス、アルゴンガス等の不活性ガスでプラズマ気流 を生成し、そのプラズマ気流に、フッ素樹脂基材の表面を接触させる処理のことであ る。前記不活性ガスを、減圧し雰囲気に導入し、平板型の一対の電極を平行に配置 して、その電極間に電圧を印加してプラズマ気流を発生させ、そのプラズマ気流中に フッ素樹脂基板を入れて一定時間処理する。または、高周波電極等の間にプラズマ 気流を発生させ、そのプラズマ気流中にフッ素樹脂基板を入れて一定時間処理する 。このときのプラズマ処理条件に特段の限定はないが、投入電力(W)と電極面積 (c m2)とから算出される電力密度(W/cm2)が 0. 05W/cm2〜; IW/cm2とすると 30 秒〜 1分程度の処理時間を採用する。このプラズマ処理時間は、いたずらに長くして もフッ素樹脂基材と金属箔との密着性を顕著に向上させることにはならないからであ [0069] The plasma treatment is a treatment in which a plasma stream is generated with an inert gas such as nitrogen gas or argon gas, and the surface of the fluororesin substrate is brought into contact with the plasma stream. The inert gas is decompressed and introduced into the atmosphere, a pair of flat plate electrodes are arranged in parallel, a voltage is applied between the electrodes to generate a plasma stream, and a fluororesin substrate is placed in the plasma stream. Put in and process for a certain time. Alternatively, a plasma stream is generated between the high-frequency electrodes and the like, and a fluororesin substrate is placed in the plasma stream and processed for a certain period of time. Is no particular limitation to the plasma treatment conditions in this case, but the input power (W) and the electrode area (cm 2) power density is calculated from the (W / cm 2) is 0. 05W / cm 2 ~; IW / If cm 2 is used, a processing time of 30 seconds to 1 minute is adopted. This plasma treatment time does not significantly improve the adhesion between the fluororesin substrate and the metal foil even if it is unnecessarily long.
[0070] また、上記粗化処理とプラズマ処理とを組み合わせた複合処理を行う場合には、い ずれの処理を最初に行っても構わない。図 5 (a)に、活性化処理したフッ素樹脂基材 5を概念的に示した。 [0070] Further, in the case of performing a combined process in which the roughening process and the plasma process are combined, either process may be performed first. FIG. 5 (a) conceptually shows the activated fluororesin substrate 5.
[0071] 工程 B— 1 : この工程では、フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材 用接着剤を金属箔の表面に塗布して乾燥することで、金属箔の表面に 0. 5 111〜3 11 m厚さの半硬化樹脂層を形成することで接着層付金属箔を製造する。フッ素樹脂 基材用接着剤の調製に関しては上述のとおりである。 [0071] Step B-1: In this step, an adhesive for a fluororesin substrate is prepared, and this adhesive for a fluororesin substrate is applied to the surface of the metal foil and dried, so that the surface of the metal foil is coated. A metal foil with an adhesive layer is produced by forming a semi-cured resin layer having a thickness of 0.5 to 111 m. The preparation of the fluororesin substrate adhesive is as described above.
[0072] そして、このフッ素樹脂基材用接着剤を金属箔 2の表面に塗布して乾燥することで 、金属箔 2の表面に 0. 5 m〜3 m厚さの半硬化樹脂層(図面中は、単に「接着層 3」として示す。)を形成することで、図 5 (b)に示す接着層付金属箔 4を製造する。 [0072] Then, the adhesive for a fluororesin base material is applied to the surface of the metal foil 2 and dried, so that a 0.5 m to 3 m thick semi-cured resin layer (drawing) is formed on the surface of the metal foil 2. The metal foil 4 with an adhesive layer shown in FIG. 5 (b) is manufactured by forming the “simply shown as“ adhesive layer 3 ””.
[0073] 工程 C 1 : この工程では、図 5 (c)に示すように、工程 A— 1でフッ素樹脂基材の活 性化処理を施した張り合わせ面に対し、工程 B— 1で得られた接着層付金属箔 4の 接着層 3を当接させて積層し、熱間プレス成形することで図 5 (d)に示す金属張積層 板 laを得る。このときの熱間プレス加工条件に関しては、特段の限定はない。しかし
、本件発明に係る製造方法の場合、従来のフッ素樹脂基材を用いたプレス加工には[0073] Step C 1: In this step, as shown in FIG. 5 (c), the bonded surface subjected to the activation treatment of the fluororesin substrate in Step A-1 is obtained in Step B-1. The metal-laminated laminate la shown in FIG. 5 (d) is obtained by laminating the adhesive layer 3 of the metal foil 4 with the adhesive layer in contact with each other and performing hot press molding. There is no particular limitation on the hot pressing conditions at this time. However In the case of the manufacturing method according to the present invention, in the press working using a conventional fluororesin substrate
260°C〜400°C程度のプレス温度が採用されてきた力 S、 200°C前後(190°C〜220 °C)の低温でのプレス加工が可能である。従って、プレス加工に要する熱エネルギー が低ぐ製造コストを安価にすることが可能となる利点がある。以下、同様である。 Pressing force of 260 ° C to 400 ° C or so has been adopted, and press working at a low temperature of around 200 ° C (190 ° C to 220 ° C) is possible. Therefore, there is an advantage that the manufacturing cost can be reduced because the heat energy required for press working is low. The same applies hereinafter.
[0074] また、本件発明に係る金属張積層板の第 2製造方法は、以下の工程 A— 2〜工程 C 2を経ることを特 ί毁とするものである。 [0074] Further, the second method for producing a metal-clad laminate according to the present invention is characterized by going through the following steps A-2 to C2.
[0075] 工程 Α— 2 : この工程では、フッ素樹脂基材の金属箔の張り合わせ面に活性化処理 を施すのであり、上記第 1製造方法の場合と同様である。従って、説明を省略する。 図 6 (a)に、活性化処理したフッ素樹脂基材 5を概念的に示した。 [0075] Step IV-2: In this step, activation treatment is performed on the bonding surface of the metal foil of the fluororesin substrate, which is the same as in the case of the first manufacturing method. Therefore, the description is omitted. FIG. 6 (a) conceptually shows the activated fluororesin substrate 5.
[0076] 工程 B— 2 : この工程は、上述の方法でフッ素樹脂基材用接着剤を調製し、このフッ 素樹脂基材用接着剤を離型性プラスチックフィルム 7の表面に塗布して乾燥すること で、図 6 (b)に示すように、当該離型性プラスチックフィルムと厚さ 0· 5 111〜3 111の 半硬化樹脂層(図面中は、単に「接着層 3」として示す。)が積層状態にある離型性プ ラスチックフィルム付接着層 8を製造する。 [0076] Step B-2: In this step, the fluororesin base material adhesive is prepared by the above-described method, and the fluororesin base material adhesive is applied to the surface of the releasable plastic film 7 and dried. Thus, as shown in FIG. 6B, the releasable plastic film and a semi-cured resin layer having a thickness of 0 · 5 111 to 3 111 (shown simply as “adhesive layer 3” in the drawing) An adhesive layer 8 with a releasable plastic film is produced in a laminated state.
[0077] ここで、離型性プラスチックフィルムとは、剥離性を備えるフィルムを選択的に用いる 意味で使用しており、その材質及び厚さ等に関しての特段の限定はない。具体的に は、 PETフィルム、熱可塑性フッ素樹脂フィルム、ポリイミド樹脂フィルム等を用いるこ とが好ましい。そして、このときの離型性プラスチックフィルムへのフッ素樹脂基材用 接着剤の塗布方法に関しては、特段の限定はなぐエッジコータ、コンマコータ、ダラ ビアコータ等を使用できる。 Here, the releasable plastic film is used in the sense of selectively using a film having releasability, and there is no particular limitation on the material, thickness, and the like. Specifically, it is preferable to use a PET film, a thermoplastic fluororesin film, a polyimide resin film, or the like. At this time, with respect to the method of applying the adhesive for the fluororesin base material to the releasable plastic film, an edge coater, a comma coater, a Daravia coater, etc. that are not particularly limited can be used.
[0078] 工程 C 2 : この工程では、フッ素樹脂基材 5の活性化処理を施した張り合わせ面 に対し、図 6 (c)に示すように離型性プラスチックフィルム付接着層 8の半硬化樹脂層 (図面中は、単に「接着層 3」として示す。)を当接させ重ね合わせて仮接着し、離型 性プラスチックフィルム 7を剥離除去する。 Step C 2: In this step, as shown in FIG. 6 (c), the semi-cured resin of the adhesive layer 8 with the releasable plastic film is applied to the bonded surface on which the fluororesin substrate 5 has been activated. The layers (shown simply as “adhesive layer 3” in the drawing) are brought into contact with each other and are temporarily bonded together, and the releasable plastic film 7 is peeled and removed.
[0079] 工程 D— 2 : この工程では、工程 C 2でフッ素樹脂基材表面に設けた半硬化樹脂 層の表面に、図 6 (d)に示すように金属箔 2を積層して熱間プレス成形することで、図 6 (e)に示す金属張積層板 laとする。 [0079] Step D-2: In this step, the metal foil 2 is laminated on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C2, as shown in FIG. The metal-clad laminate la shown in Fig. 6 (e) is formed by press forming.
[0080] そして、本件発明に係る金属張積層板の第 3製造方法は、以下の工程 A— 3〜ェ
程 C 3を経ることを特徴とする。 [0080] Then, the third method for producing a metal-clad laminate according to the present invention includes the following steps A-3 to It is characterized by passing C3.
[0081] 工程 A— 3 : この工程では、フッ素樹脂基材の金属箔の張り合わせ面に活性化処理 を施すのであり、上記第 1製造方法の場合と同様である。従って、説明を省略する。 図 7 (a)に、活性化処理したフッ素樹脂基材 5を概念的に示した。 [0081] Step A-3: In this step, an activation treatment is performed on the bonding surface of the metal foil of the fluororesin substrate, which is the same as in the case of the first manufacturing method. Therefore, the description is omitted. FIG. 7 (a) conceptually shows the activated fluororesin substrate 5.
[0082] 工程 B— 3 : この工程では、フッ素樹脂基材用接着剤を調製する。従って、この調整 に関しての説明は上述したとおりであるので、ここでの重複した説明は省略する。 Step B-3: In this step, an adhesive for a fluororesin substrate is prepared. Therefore, since the explanation about this adjustment is as described above, the duplicate explanation here is omitted.
[0083] 工程 C 3 : この工程では、フッ素樹脂基材 5の活性化処理した表面に、工程 Bで調 製したフッ素樹脂基材用接着剤を塗布して乾燥させることで、図 7 (b)に示すように、Step C 3: In this step, the fluororesin base material adhesive prepared in Step B is applied to the activated surface of the fluororesin base material 5 and dried, so that FIG. )
0. 5 m〜3 m厚さの半硬化樹脂層(図面中は、単に「接着層 3」として示す。)を 形成する。このときのフッ素樹脂基材用接着剤の塗布方法に関しては、特段の限定 はなぐエッジコータ、コンマコータ、グラビアコータ等を使用できる。 A semi-cured resin layer (shown simply as “adhesive layer 3” in the drawing) having a thickness of 0.5 m to 3 m is formed. With respect to the method for applying the adhesive for the fluororesin base material at this time, an edge coater, a comma coater, a gravure coater, or the like that has special limitations can be used.
[0084] 工程 D— 3 : この工程では、工程 C 3でフッ素樹脂基材 5の表面に設けた半硬化 樹脂層(図面中は、単に「接着層 3」として示す。)の表面に金属箔 2を積層して熱間 プレス成形することで図 7 (c)に示す金属張積層板 laとする。 [0084] Step D-3: In this step, a metal foil is formed on the surface of the semi-cured resin layer (shown as "adhesive layer 3" in the drawing) provided on the surface of the fluororesin substrate 5 in Step C3. By laminating 2 and hot press forming, the metal-clad laminate la shown in Fig. 7 (c) is obtained.
[0085] 以上に述べてきた金属張積層板の製造方法の説明では、片面金属張積層板のみ を例示して説明してきたが、当業者であれば同じ技術的思想の基、容易に両面銅張 積層板、多層銅張積層板を製造することが可能である。 In the above description of the method for producing a metal-clad laminate, only a single-sided metal-clad laminate has been described as an example. However, those skilled in the art can easily perform double-sided copper based on the same technical idea. It is possible to manufacture stretched laminates and multilayer copper clad laminates.
実施例 1 Example 1
[0086] 本実施例においては、第 1製造方法を用いて、銅張積層板を製造し、銅箔の引き 剥がし強さの測定を行った。以下、工程毎に説明する。 [0086] In this example, a copper clad laminate was produced using the first production method, and the peel strength of the copper foil was measured. Hereinafter, it demonstrates for every process.
[0087] 工程 A 1 : この工程では、 0. 6mm厚さの PTFEフッ素樹脂基材(淀川ヒユーテック 株式会社製)の金属箔の張り合わせ面に活性化処理を施した。この活性化処理は、 金属ナトリウム処理、プラズマ処理、金属ナトリウム処理とプラズマ処理とを順次行つ た複合処理の 3種類を行い。 3種類のフッ素樹脂基材、試料 1、試料 2、試料 3を製造 した。 [0087] Step A1: In this step, an activation treatment was performed on the laminated surface of the metal foil of a PTFE fluororesin base material (manufactured by Yodogawa Hitec Co., Ltd.) having a thickness of 0.6 mm. There are three types of activation treatments: metallic sodium treatment, plasma treatment, and combined treatment that sequentially performs metallic sodium treatment and plasma treatment. Three types of fluoropolymer substrates, Sample 1, Sample 2, and Sample 3, were manufactured.
[0088] このときの金属ナトリウム処理は、金属ナトリウムやナトリウム錯体の作用によりフッ素 樹脂基材の表面からフッ素原子を引き抜き、その表面に水酸基やカルボニル基、力 ルポキシル基を生成させることでフッ素樹脂基材表面の活性化を図るものであり、こ
こでは株式会社潤ェ社製のテトラエッチ処理液を用いて行った。 [0088] The metal sodium treatment at this time is performed by extracting fluorine atoms from the surface of the fluororesin substrate by the action of metal sodium or a sodium complex, and generating hydroxyl groups, carbonyl groups, or force loxyl groups on the surface. This is intended to activate the surface of the material. Here, a tetra-etch treatment solution manufactured by Junye Co., Ltd. was used.
[0089] そして、プラズマ処理は、真空チャンバ一内に、一対の板状電極を平行に離間配 置し、真空度が 1 X 10— 3Paオーダーまで排気して、真空チャンバ一内に窒素ガスを スローリークし、真空度が 0· 2Paになるように調整し、電力密度 0· 12W/cm2で低 温プラズマ気流を発生させた。そして、この低温プラズマ気流中に、フッ素樹脂基材 を 1分間入れることでプラズマ処理を行った。 [0089] Then, plasma treatment, a vacuum chamber in one, spaced placed parallel to the pair of plate-shaped electrodes, the degree of vacuum was evacuated to 1 X 10- 3 Pa order, a nitrogen gas into the vacuum chamber within a Was adjusted so that the degree of vacuum was 0 · 2 Pa, and a low-temperature plasma stream was generated at a power density of 0 · 12 W / cm 2 . Then, plasma treatment was performed by placing the fluororesin base material in this low-temperature plasma stream for 1 minute.
[0090] また、金属ナトリウム処理とプラズマ処理とを順次行った複合処理は、上記条件の 金属ナトリウム処理とプラズマ処理とを順次行った。 [0090] In the combined treatment in which the metal sodium treatment and the plasma treatment were sequentially performed, the metal sodium treatment and the plasma treatment under the above conditions were sequentially performed.
[0091] 以上の活性化処理を行って、図 5 (a)に模式的に示す活性化処理したフッ素樹脂 基材 5を得た。 [0091] The activation treatment described above was performed to obtain the activated fluororesin substrate 5 schematically shown in Fig. 5 (a).
[0092] 工程 B— 1: ここでは、エポキシ樹脂 69重量部、硬化剤 11重量部、硬化促進剤 0. 2 5重量部、ポリマー成分 15重量部、架橋剤 3重量部、ゴム性樹脂 3重量部のフッ素樹 脂基材接着用樹脂組成物を調整した。具体的には、以下の表 1に示している。 [0092] Step B-1: Here, 69 parts by weight of epoxy resin, 11 parts by weight of curing agent, 0.2 part by weight of curing accelerator, 15 parts by weight of polymer component, 3 parts by weight of crosslinking agent, 3 parts by weight of rubbery resin A resin composition for adhering a part of the fluorine resin substrate was prepared. Specifically, it is shown in Table 1 below.
[0093] [表 1] [0093] [Table 1]
[0094] そして、表 1に示す樹脂組成物を、メチルェチルケトンとジメチルァセトアミドとを用 いて樹脂固形分を 30重量%に調整ですることでフッ素樹脂基材用接着剤とした。そ して、このフッ素樹脂基材用接着剤を、グラビアコーターを用いて、無粗化の電解銅 箔(厚さ: 18 m、防鯖処理層:亜鉛 ニッケル合金層、シラン力ップリング剤処理: γ—ァミノプロピルトリエトキシシラン)の張り合わせ面に塗布した。そして、 5分間の 風乾を行い、その後 140°Cの加熱雰囲気中で 3分間の乾燥処理を行い、半硬化状 態の 1. 5 ^ 111厚さの半硬化樹脂層 (接着層)を形成し、図 5 (b)に示す接着層付金属 箔 4を製造した。
[0095] このときに得られた半硬化樹脂層(接着層)のレジンフローの測定は、上記フッ素樹 脂基材用接着剤で 40 ,i m厚さの半硬化樹脂層を 18 m厚さの銅箔の片面に設け たものを製造し、これをレジンフロー測定用試料とした。そして、このレジンフロー測 定用試料から 10cm角試料を 4枚採取し、上述した MIL— P— 13949Gに準拠して レジンフローの測定を行った。その結果、レジンフローは 1 · 5%であった。 [0094] Then, the resin composition shown in Table 1 was adjusted to a resin solid content of 30% by weight using methyl ethyl ketone and dimethylacetamide to obtain an adhesive for a fluororesin substrate. Then, using a gravure coater, this non-roughened electrolytic copper foil (thickness: 18 m, flaw-proofing treatment layer: zinc-nickel alloy layer, silane-bonding agent treatment: (γ-aminopropyltriethoxysilane) was applied to the bonding surface. Then air-dry for 5 minutes and then dry for 3 minutes in a heated atmosphere at 140 ° C to form a semi-cured 1.5 ^ 111 thick semi-cured resin layer (adhesive layer). Thus, a metal foil 4 with an adhesive layer shown in FIG. 5 (b) was produced. [0095] The resin flow of the semi-cured resin layer (adhesive layer) obtained at this time was measured with the above-mentioned adhesive for a fluororesin base material. A copper foil provided on one side was manufactured and used as a resin flow measurement sample. Then, four 10 cm square samples were collected from the resin flow measurement sample, and the resin flow was measured in accordance with the above-mentioned MIL-P-13949G. As a result, the resin flow was 1.5%.
[0096] 工程 C 1 : この工程では、図 5 (c)に示すように、工程 A— 1で得られた 3つの試料 [0096] Step C 1: In this step, as shown in FIG. 5 (c), the three samples obtained in Step A-1
(試料 1、試料 2、試料 3)のフッ素樹脂基材の活性化処理を施した張り合わせ面に対 し、工程 B—1で得られた接着層付金属箔 4の接着層 3を当接させて積層し、 200°C X 60分、 32kgf/cm2の圧力で熱間プレス成形することで、図 5 (d)に示す 3種(CL 1 1、 CL1 2、 CL1— 3)の金属張積層板 laを得た。 The adhesive layer 3 of the metal foil 4 with the adhesive layer obtained in Step B-1 is brought into contact with the bonded surface of the fluororesin base material (Sample 1, Sample 2, Sample 3) that has been activated. 3 layers (CL 1 1, CL1 2, CL1-3) shown in Fig. 5 (d) by hot press molding at 200 ° CX for 60 minutes at a pressure of 32 kgf / cm 2 I got a board la.
[0097] 引き剥がし強さ測定用試料の製造: 上記金属張積層板 la (CLl— 1、 CL1— 2、 C LI— 3)の銅箔層に、ドライフィルムを用いてエッチングレジスト層形成し、このエッチ ングレジスト層に引き剥がし強さ測定用の直線回路を形成するためのエッチングバタ ーンを露光、現像し、レジストパターンを形成し、金属箔の構成金属成分を銅エッチ ング液で回路エッチングを行い、レジスト剥離することにより、引き剥がし強さ測定用 回路の形成を行った。なお、 0. 2mm幅の直線回路を常態及び耐塩酸性測定用とし て用い、 0. 8mm幅の直線回路を耐湿性測定用として用いる。 [0097] Manufacture of a sample for peel strength measurement: An etching resist layer was formed on a copper foil layer of the metal-clad laminate la (CLl-1, CL1-2, CLI-3) using a dry film, The etching pattern for forming a linear circuit for measuring the peel strength on this etching resist layer is exposed and developed, a resist pattern is formed, and the metal components of the metal foil are etched with a copper etching solution. The circuit for measuring the peel strength was formed by removing the resist. A 0.2 mm wide linear circuit is used for normal and hydrochloric acid resistance measurement, and a 0.8 mm wide linear circuit is used for moisture resistance measurement.
[0098] そして、フッ素樹脂基材と銅箔回路との引き剥がし強さ測定を行った。この結果に 関しては表 2に示す。本件明細書に言う引き剥がし強さとは、基材から銅箔回路を 90 ° 方向(基板に対して垂直方向)に引き剥がしたときの強度のことである。その中で、 常態の引き剥がし強さとは、上述のエッチングして回路を製造した直後、何ら処理を 行うことなく測定した引き剥がし強さである。そして、加熱後の引き剥がし強さとは、 26 0°Cの半田バスに 20秒間フローティングさせた後に、室温まで冷まして、測定した引 き剥がし強さである。 [0098] Then, the peel strength between the fluororesin substrate and the copper foil circuit was measured. Table 2 shows the results. The peel strength referred to in this specification is the strength when the copper foil circuit is peeled from the base material in the 90 ° direction (perpendicular to the substrate). Among them, the normal peel strength is the peel strength measured without any treatment immediately after manufacturing the circuit by etching as described above. The peel strength after heating is the peel strength measured after floating in a solder bath at 260 ° C for 20 seconds and then cooled to room temperature.
[0099] そして、耐塩酸性劣化率は、試験用回路を作成し、直ぐに測定した常態引き剥がし 強さ力、ら、各表中に記載した塩酸処理後 (塩酸:水 = 1 : 1に室温で 60分間浸漬後。 ) にどの程度の引き剥がし強さの劣化が生じているかを示すものであり、 [耐塩酸性劣 化率(%) ] = ( [常態引き剥がし強さ] [塩酸処理後の引き剥がし強さ] ) / [常態
引き剥がし強さ] X 100の計算式で算出したものである。 [0099] Then, the hydrochloric acid resistance deterioration rate was measured after preparing the test circuit and measuring the normal peeling strength force immediately after the hydrochloric acid treatment described in each table (hydrochloric acid: water = 1: 1 at room temperature). ) Shows how much the peel strength has deteriorated after immersing for 60 minutes. [Degradation rate of hydrochloric acid resistance (%)] = ([Normal peel strength] [After hydrochloric acid treatment] Peel strength]) / [Normal The peel strength] is calculated by the formula of X100.
[0100] また、耐湿性劣化率は、試験用回路を作成し、直ぐに測定した常態引き剥がし強さ から、各表中に記載した吸湿処理後(沸騰したイオン交換水中で 2時間保持後)にど の程度の引き剥がし強さの劣化が生じているかを示すものであり、 [耐湿性劣化率( %) ] = ( [常態引き剥がし強さ] [吸湿処理後の引き剥がし強さ] ) / [常態引き剥 力 Sし強さ] X 100の計算式で算出したものである。従って、これらの劣化率が小さな値 であるほど、フッ素樹脂基材と銅箔回路との優れた密着性を有することになる。 [0100] In addition, the moisture resistance deterioration rate was determined after the moisture absorption treatment described in each table (after 2 hours in boiling ion exchange water) from the normal peel strength measured immediately after creating a test circuit. This indicates how much the peel strength has deteriorated. [Moisture resistance deterioration rate (%)] = ([normal peel strength] [peeling strength after moisture absorption]) / [Normal peel force S strength] Calculated by the formula of X100. Therefore, the smaller the deterioration rate, the better the adhesion between the fluororesin substrate and the copper foil circuit.
[0101] [表 2] [0101] [Table 2]
[0102] 本実施例においては、第 2製造方法を用いて、銅張積層板を製造し、銅箔の引き 剥がし強さの測定を行った。以下、工程毎に説明する。 [0102] In this example, a copper clad laminate was manufactured using the second manufacturing method, and the peel strength of the copper foil was measured. Hereinafter, it demonstrates for every process.
[0103] 工程 A— 2 : この工程は、実施例 1と同様であるため省略する。従って、ここでも 3種 類のフッ素樹脂基材、試料:[、試料 2、試料 3を製造した。図 6 (a)に、活性化処理し たフッ素樹脂基材 5を概念的に示した。 Step A-2: Since this step is the same as that of Example 1, it is omitted. Therefore, three types of fluororesin base material, sample: [, sample 2 and sample 3 were also produced here. Fig. 6 (a) conceptually shows the activated fluororesin base material 5.
[0104] 工程 B— 2 : この工程は、実施例 1で調整したと同様のフッ素樹脂基材用接着剤を 用いて、このフッ素樹脂基材用接着剤を離型性プラスチックフィルム 7として PETフィ ノレムを用いて、その表面にグラビアコータを用いて塗布し、 5分間の風乾を行い、そ の後 140°Cの加熱雰囲気中で 3分間の乾燥処理することで、図 6 (b)に示すように、 当該離型性プラスチックフィルムと 1. 5 πιの半硬化樹脂層(図面中は、単に「接着 層 3」として示す。 )が積層状態にある離型性プラスチックフィルム付接着層 8を製造し た。 [0104] Step B-2: This step uses the same fluororesin substrate adhesive prepared in Example 1, and uses this fluororesin substrate adhesive as a releasable plastic film 7. Fig. 6 (b) shows that the coating is applied to the surface using a nolem using a gravure coater, air-dried for 5 minutes, and then dried in a heated atmosphere at 140 ° C for 3 minutes. As described above, an adhesive layer 8 with a release plastic film in which the release plastic film and a 1.5 πι semi-cured resin layer (in the drawing, simply indicated as “adhesion layer 3”) are laminated is manufactured. did.
[0105] 工程 C 2 : この工程では、フッ素樹脂基材 5の活性化処理を施した張り合わせ面 に対し、図 6 (c)に示すように離型性プラスチックフィルム付接着層 8の半硬化樹脂層
(図面中は、単に「接着層 3」として示す。)を当接させ重ね合わせ、緩やかな加圧を 行うことで仮接着し、離型性プラスチックフィルム 7を剥離除去した。 Step C 2: In this step, the semi-cured resin of the adhesive layer 8 with a releasable plastic film as shown in FIG. 6 (c) is applied to the bonded surface of the fluororesin substrate 5 that has been activated. layer (In the drawing, it is simply indicated as “adhesive layer 3”). The layers were brought into contact with each other and temporarily bonded by applying moderate pressure, and the releasable plastic film 7 was peeled and removed.
[0106] 工程 D— 2 : この工程では、工程 C 2でフッ素樹脂基材表面に設けた半硬化樹脂 層の表面に、実施例 1で用いたと同様の無粗化の銅箔 (金属箔) 2を、図 6 (d)に示す ように積層して、 200°C X 60分、 32kgf/cm2の圧力で熱間プレス成形することで、 図 6 (e)に示す層構成の 3種(CL2— 1、 CL2 2、 CL2 3)の金属張積層板 laとし た。 [0106] Step D-2: In this step, the same roughened copper foil (metal foil) as used in Example 1 was formed on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C2. As shown in Fig. 6 (d), two layers are laminated and hot press-molded at 200 ° CX for 60 minutes at a pressure of 32 kgf / cm 2 , resulting in three types of layer structure (Fig. 6 (e)) ( CL2-1, CL2 2, CL2 3) metal-clad laminate la.
[0107] 以下、実施例 1と同様にして引き剥がし強さ測定用試料を製造し、フッ素樹脂基材 と銅箔回路との引き剥がし強さ測定を行った。この結果に関しては表 3に示す。 [0107] Hereinafter, a sample for measuring the peel strength was produced in the same manner as in Example 1, and the peel strength between the fluororesin substrate and the copper foil circuit was measured. The results are shown in Table 3.
[0108] [表 3] [0108] [Table 3]
実施例 3 Example 3
[0109] 本実施例においては、第 3製造方法を用いて、銅張積層板を製造し、銅箔の引き 剥がし強さの測定を行った。以下、工程毎に説明する。 In this example, a copper clad laminate was produced using the third production method, and the peel strength of the copper foil was measured. Hereinafter, it demonstrates for every process.
[0110] 工程 A— 3 : この工程は、実施例 1と同様であるため省略する。従って、ここでも 3種 類のフッ素樹脂基材、試料:[、試料 2、試料 3を製造した。図 7 (a)に、活性化処理し たフッ素樹脂基材 5を概念的に示した。 [0110] Step A-3: Since this step is the same as that of Example 1, it is omitted. Therefore, three types of fluororesin base material, sample: [, sample 2 and sample 3 were also produced here. FIG. 7 (a) conceptually shows the fluororesin substrate 5 that has been activated.
[0111] 工程 B— 3 : この工程では、実施例 1で調整したと同様のフッ素樹脂基材用接着剤 を調整した。 [0111] Step B-3: In this step, the same adhesive for a fluororesin substrate as that prepared in Example 1 was prepared.
[0112] 工程 C 3 : この工程では、フッ素樹脂基材 5の活性化処理した表面に、工程 B 3 で調製したフッ素樹脂基材用接着剤を塗布し、 5分間の風乾を行い、その後 140°C の加熱雰囲気中で 3分間の乾燥処理することで、図 7 (b)に示すように、 1. 5 111厚 さの半硬化樹脂層(図面中は、単に「接着層 3」として示す。)を形成した。このときの フッ素樹脂基材用接着剤の塗布は、エッジコータを用いて行った。
[0113] 工程 D— 3 : ここでは、工程 C 3でフッ素樹脂基材 5の表面に設けた半硬化樹脂層 (図面中は、単に「接着層 3」として示す。)の表面に、 18 111厚さの実施例 1で用い たと同じ銅箔(金属箔) 2を積層して、 200°C X 60分、 32kgf/cm2の圧力で熱間プ レス成形することで、図 7 (c)に示す層構成の 3種(CL3— 1、 CL3— 2、 CL3— 3)の 金属張積層板 laとした。 [0112] Step C 3: In this step, the fluororesin substrate adhesive prepared in Step B 3 is applied to the activated surface of the fluororesin substrate 5, air-dried for 5 minutes, and then 140 By drying for 3 minutes in a heated atmosphere at ° C, as shown in Fig. 7 (b), a 1.5-thickness semi-cured resin layer (shown as "adhesive layer 3" in the drawing) .) Was formed. Application of the adhesive for the fluororesin substrate at this time was performed using an edge coater. [0113] Step D-3: Here, on the surface of the semi-cured resin layer (shown simply as "adhesive layer 3" in the drawing) provided on the surface of the fluororesin substrate 5 in Step C3, 18 111 By laminating the same copper foil (metal foil) 2 as used in Example 1 of thickness and hot press forming at a pressure of 32 kgf / cm 2 at 200 ° C for 60 minutes, Fig. 7 (c) Three types (CL3-1, CL3-2, CL3-3) of metal-clad laminate la having the layer structure shown were used.
[0114] 以下、実施例 1と同様にして引き剥がし強さ測定用試料を製造し、フッ素樹脂基材 と銅箔回路との引き剥がし強さ測定を行った。この結果に関しては表 4に示す。 [0114] A sample for measuring the peel strength was produced in the same manner as in Example 1, and the peel strength between the fluororesin substrate and the copper foil circuit was measured. The results are shown in Table 4.
[0115] [表 4] [0115] [Table 4]
[0116] 以上に述べてきた実施例を見るに、全ての実施態様において、無粗化の金属箔を 用いているが常態引き剥がし強さ及び加熱後引き剥がし強さの全て力 1. Okgf/c mを超えている。これは、従来のフッ素樹脂基材と金属箔との引き剥がし強さ力 0. 8kgf/cm前後であることを考えれば、飛躍的に高くなつていると言える。 [0116] Looking at the examples described above, in all embodiments, unroughened metal foil is used, but all strengths of normal peel strength and peel strength after heating are 1. Okgf / It is over cm. This can be said to be drastically higher considering that the peel strength between the conventional fluororesin substrate and the metal foil is about 0.8 kgf / cm.
[0117] そして、全ての実施態様において、耐塩酸性劣化率は 5%以内であり、耐湿性劣 化率は 10%以内に収まっている。これは、従来のフッ素樹脂プリント配線板の場合、 耐塩酸性劣化率が 10 %前後、耐湿性劣化率は 15 %以上であることを考えれば、無 粗化の金属箔を用いた場合でも飛躍的にフッ素樹脂基材と金属箔との密着性が向 上していると言える。 [0117] In all the embodiments, the hydrochloric acid resistance deterioration rate is within 5%, and the moisture resistance deterioration rate is within 10%. In the case of conventional fluororesin printed wiring boards, considering that the hydrochloric acid resistance deterioration rate is around 10% and the moisture resistance deterioration rate is 15% or more, even if unroughened metal foil is used, In addition, it can be said that the adhesion between the fluororesin substrate and the metal foil is improved.
産業上の利用可能性 Industrial applicability
[0118] 以上述べてきた本件発明に係る内容をもってすると、無粗化の金属箔とフッ素樹脂 基材とが非常に高い密着性示し、ヒートショックを受けたときの回路のデラミネーシヨン 現象等を効果的に防止できフッ素樹脂銅張積層板及びフッ素樹脂プリント配線板の 提供が可能となる。しかも、無粗化の金属箔を使用できるため、エッチング法で回路 形成を行う場合にも、ファインピッチパターンの形成が容易となる。従って、低誘電損
失且つ低誘電率であるという誘電特性、クロストーク特性等に関する良好な高周波特 性、その他耐熱性、耐久性を備え、回路と基材との密着性に優れ、且つ、ファインピ ツチパターンを備える高品質のフッ素樹脂プリント配線板を市場に安価に供給できる ようになる。また、本件発明に係る金属張積層板の製造方法は、新たな装置を必要と するものでもなく、従来の設備の使用が可能であり、低温でのプレス加工が可能であ るため製造コストが安価である。 [0118] With the contents of the present invention described above, the non-roughened metal foil and the fluororesin base material show very high adhesion, and the circuit delamination phenomenon when subjected to heat shock, etc. It can be effectively prevented and a fluororesin copper-clad laminate and a fluororesin printed wiring board can be provided. In addition, since a non-roughened metal foil can be used, a fine pitch pattern can be easily formed even when a circuit is formed by an etching method. Therefore, low dielectric loss It has excellent high frequency characteristics related to dielectric properties such as loss and low dielectric constant, crosstalk characteristics, etc., other heat resistance and durability, excellent adhesion between the circuit and the substrate, and high fine pitch pattern. It will be possible to supply quality fluororesin printed wiring boards to the market at low cost. In addition, the method for producing a metal-clad laminate according to the present invention does not require a new device, can use conventional equipment, and can be pressed at a low temperature. Inexpensive.
図面の簡単な説明 Brief Description of Drawings
[0119] [図 1]本件発明に係る接着層付金属箔の層構成を示す模式断面図である。 FIG. 1 is a schematic cross-sectional view showing a layer structure of a metal foil with an adhesive layer according to the present invention.
[図 2]本件発明に係る金属張積層板の層構成のノ リエーシヨンの一例を示す模式断 面図である。 FIG. 2 is a schematic cross-sectional view showing an example of a layered composition of a metal-clad laminate according to the present invention.
[図 3]多層プリント配線板製造のイメージを示す模式図である。 FIG. 3 is a schematic diagram showing an image of manufacturing a multilayer printed wiring board.
[図 4]多層プリント配線板製造のイメージを示す模式図である。 FIG. 4 is a schematic view showing an image of manufacturing a multilayer printed wiring board.
[図 5]本件発明に係る金属張積層板の製造プロセスを説明するためのフロー図であ FIG. 5 is a flowchart for explaining a manufacturing process of a metal-clad laminate according to the present invention.
[図 6]本件発明に係る金属張積層板の製造プロセスを説明するためのフロー図であ FIG. 6 is a flowchart for explaining a manufacturing process of a metal-clad laminate according to the present invention.
[図 7]本件発明に係る金属張積層板の製造プロセスを説明するためのフロー図であ 符号の説明 FIG. 7 is a flowchart for explaining a manufacturing process of a metal-clad laminate according to the present invention.
[0120] la, lb, lc 金属張積層板 [0120] la, lb, lc metal-clad laminate
2 金属箔 2 Metal foil
3 接着層 3 Adhesive layer
4 接着層付金属箔 4 Metal foil with adhesive layer
5 フッ素樹脂基材層 5 Fluororesin substrate layer
7 離型性プラスチックフィルム 7 Releasable plastic film
8 離型性プラスチックフィルム付接着層 8 Adhesive layer with releasable plastic film
9 内層回路 9 Inner layer circuit
20 回路
両面プリント配線板 プリプレダ
20 circuits Double-sided printed wiring board
Claims
[1] フッ素樹脂基材に対し金属箔を張り合わせるための接着層を形成するための樹脂組 成物において、 [1] In a resin composition for forming an adhesive layer for bonding a metal foil to a fluororesin substrate,
当該樹脂組成物は、溶剤に可溶で且つ官能基として分子内に水酸基、カルボキシ ル基、ァミノ基の 1種又は 2種以上を有するポリマー成分を 2重量部〜 50重量部、 沸点 200°C以上のエポキシ樹脂及び沸点 200°C以上のアミン系エポキシ樹脂硬化 剤からなるエポキシ樹脂配合物を 50重量部以上、 The resin composition is soluble in a solvent and contains 2 to 50 parts by weight of a polymer component having one or more of hydroxyl group, carboxyl group, and amino group in the molecule as a functional group, and a boiling point of 200 ° C. 50 parts by weight or more of an epoxy resin composition comprising the above epoxy resin and an amine epoxy resin curing agent having a boiling point of 200 ° C or higher,
を含有することを特徴とするフッ素樹脂基材接着用樹脂組成物。 A resin composition for adhering a fluororesin base material, comprising:
[2] 前記ポリマー成分は、ポリビュルァセタール樹脂、フエノキシ樹脂、芳香族ポリアミド 樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂の群から選ばれた 1種又は 2種 以上を混合したものである請求項 1に記載のフッ素樹脂基材接着用樹脂組成物。 [2] The polymer component may be one or a mixture of two or more selected from the group consisting of a polybulacetal resin, a phenoxy resin, an aromatic polyamide resin, a polyether sulfone resin, and a polyamideimide resin. Item 2. The resin composition for bonding a fluororesin substrate according to Item 1.
[3] 前記沸点 200°C以上のエポキシ樹脂は、ビスフエノール A型エポキシ樹脂、ビスフエ ノール F型エポキシ樹脂、ゴム変性ビスフエノール A型エポキシ樹脂、ビフエ二ル型ェ ポキシ樹脂の群から選ばれる 1種又は 2種以上を混合したものである請求項 1又は請 求項 2に記載のフッ素樹脂基材接着用樹脂組成物。 [3] The epoxy resin having a boiling point of 200 ° C or higher is selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, rubber-modified bisphenol A type epoxy resin, and biphenyl type epoxy resin 1 3. The resin composition for adhering a fluororesin substrate according to claim 1 or claim 2, wherein the resin composition is a seed or a mixture of two or more.
[4] アミン系エポキシ樹脂硬化剤は、芳香族ポリアミン、ポリアミド類及びこれらをエポキシ 樹脂や多価カルボン酸と重合或いは縮合させて得られるアミンァダクト体の群から選 ばれた 1種又は 2種以上を用いる請求項 1〜請求項 3のいずれかに記載のフッ素樹 脂基材接着用樹脂組成物。 [4] The amine-based epoxy resin curing agent comprises at least one selected from the group of aromatic polyamines, polyamides, and amine adducts obtained by polymerizing or condensing these with epoxy resins or polyvalent carboxylic acids. 4. The resin composition for bonding a fluororesin substrate according to any one of claims 1 to 3.
[5] フッ素樹脂基板に対し金属箔を張り合わせるために用いる樹脂接着剤であって、 請求項 1〜請求項 4のいずれかに記載のフッ素樹脂基板用樹脂組成物に有機溶 剤を添加して混合して得られることを特徴としたフッ素樹脂基材用接着剤。 [5] A resin adhesive used for laminating a metal foil to a fluororesin substrate, wherein an organic solvent is added to the resin composition for a fluororesin substrate according to any one of claims 1 to 4. An adhesive for a fluororesin substrate, characterized by being obtained by mixing them together.
[6] 前記有機溶剤は、メチルェチルケトン、シクロペンタノン、ジメチルホルムアミド、ジメ チルァセトアミド、 N—メチルピロリドンのいずれ力、 1種の溶剤又はこれらの混合溶剤 である請求項 5に記載のフッ素樹脂基材用接着剤。 [6] The fluororesin according to claim 5, wherein the organic solvent is methylethyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, one solvent, or a mixed solvent thereof. Adhesive for substrate.
[7] 金属箔の表面に基材に対する接着層を備えた接着層付金属箔において、 [7] In the metal foil with an adhesive layer provided with an adhesive layer on the surface of the metal foil,
当該接着層は、前記請求項 5又は請求項 6に記載のフッ素樹脂基板用樹脂接着 剤を用いて形成したものであることを特徴としたフッ素樹脂基材用の接着層付金属箔
〇 The adhesive layer is formed using the resin adhesive for a fluororesin substrate according to claim 5 or 6, wherein the metal foil with an adhesive layer for a fluororesin substrate is provided. Yes
[8] 前記接着層付金属箔の接着層は、厚さ 0. 511 m〜311 mの半硬化樹脂層である請 求項 7に記載のフッ素樹脂基材用の接着層付金属箔。 [8] The metal foil with an adhesive layer for a fluororesin substrate according to claim 7, wherein the adhesive layer of the metal foil with an adhesive layer is a semi-cured resin layer having a thickness of 0.511 to 311 m.
[9] 前記接着層付金属箔の接着層は、 MIL規格における MIL— P— 13949Gに準拠し て測定したときのレジンフローが 5%以内という特性を備えるものである請求項 7又は 請求項 8に記載のフッ素樹脂基材用の接着層付金属箔。 [9] The adhesive layer of the metal foil with an adhesive layer has a characteristic that the resin flow is within 5% when measured according to MIL-P-13949G in MIL standard. 2. Metal foil with an adhesive layer for a fluororesin substrate as described in 1.
[10] 前記金属箔は、銅箔、ニッケル箔、スズ箔、金箔、銀箔、白金箔、鉄箔、コバルト箔、 銅合金箔、ニッケル合金箔、スズ合金箔、金合金箔、銀合金箔、白金合金箔、鉄合 金箔、コバルト合金箔の!/、ずれかを用いる請求項 7〜請求項 9の!/、ずれかに記載の フッ素樹脂基材用の接着層付金属箔。 [10] The metal foil is copper foil, nickel foil, tin foil, gold foil, silver foil, platinum foil, iron foil, cobalt foil, copper alloy foil, nickel alloy foil, tin alloy foil, gold alloy foil, silver alloy foil, The metal foil with an adhesive layer for a fluororesin substrate according to any one of claims 7 to 9, wherein platinum alloy foil, iron alloy foil, or cobalt alloy foil is used.
[11] フッ素樹脂基材の表面に接着層を介して金属層を張り合わせて得られる金属張積層 板 Cめって、 [11] A metal-clad laminate C obtained by bonding a metal layer to the surface of a fluororesin substrate via an adhesive layer,
前記接着層は、請求項 1〜請求項 4のいずれかに記載の樹脂組成物を含むことを 特徴とした金属張積層板。 5. The metal-clad laminate, wherein the adhesive layer includes the resin composition according to any one of claims 1 to 4.
[12] フッ素樹脂基材の表面に接着層を介して金属層を張り合わせて得られる金属張積層 板 Cめって、 [12] Metal-clad laminate C obtained by bonding a metal layer to the surface of a fluororesin substrate via an adhesive layer
前記接着層は、請求項 5又は請求項 6に記載のフッ素樹脂基材用接着剤を用いて 形成したことを特徴とした金属張積層板。 7. The metal-clad laminate, wherein the adhesive layer is formed using the fluororesin substrate adhesive according to claim 5 or 6.
[13] 請求項 11又は請求項 12の金属張積層板の金属箔をエッチング加工することにより 得られることを特徴としたプリント配線板。 [13] A printed wiring board obtained by etching a metal foil of the metal-clad laminate according to claim 11 or 12.
[14] 請求項 11又は請求項 12に記載の金属張積層板の製造方法であって、以下の工程 A— 1〜工程 C 1を経ることを特徴とする金属張積層板の製造方法。 14. A method for producing a metal-clad laminate according to claim 11 or claim 12, wherein the method comprises the following steps A-1 to C1.
工程 A— 1: フッ素樹脂基材の金属箔との張り合わせ面に活性化処理を施す工程。 工程 B— 1: フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を金 属箔の表面に塗布して乾燥することで、金属箔の表面に 0· 5 111〜3 111厚さの半 硬化樹脂層を形成することで接着層付金属箔を製造する工程。 Step A— 1: A step of applying an activation treatment to the bonding surface of the fluororesin substrate to the metal foil. Step B—1: Prepare a fluororesin substrate adhesive, apply this fluororesin substrate adhesive to the surface of the metal foil, and dry it. A process for producing a metal foil with an adhesive layer by forming a 111-thick semi-cured resin layer.
工程 C 1: フッ素樹脂基材の活性化処理を施した張り合わせ面に対し、接着層付 金属箔の接着層面を当接させて積層して熱間プレス成形することで金属張積層板と
する工程。 Step C 1: A metal-clad laminate is obtained by hot pressing and laminating the adhesive layer surface of the metal foil with an adhesive layer against the laminated surface subjected to the activation treatment of the fluororesin base material. Process.
[15] 請求項 11又は請求項 12に記載の金属張積層板の製造方法であって、以下の工程 A— 2〜工程 C 2を経ることを特徴とする金属張積層板の製造方法。 15. A method for producing a metal-clad laminate according to claim 11 or claim 12, wherein the method comprises the following steps A-2 to C2.
工程 A— 2: フッ素樹脂基材の金属箔との張り合わせ面に活性化処理を施す工程。 工程 B— 2 : フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を離 型性プラスチックフィルムの表面に塗布して乾燥することで、当該離型性プラスチック フィルムと厚さ 0. 5 a m〜3 a mの半硬化樹脂層が積層状態にある離型性プラスチッ クフィルム付接着層を製造する工程。 Step A-2: A step of applying an activation treatment to the bonding surface of the fluororesin substrate to the metal foil. Step B-2: Prepare a fluororesin substrate adhesive, apply this fluororesin substrate adhesive to the surface of the releasable plastic film, and dry it. A process for producing an adhesive layer with a releasable plastic film in which a 0.5 to 3 am semi-cured resin layer is in a laminated state.
工程 C 2 : フッ素樹脂基材の活性化処理を施した張り合わせ面に対し、離型性プ ラスチックフィルム付接着層の半硬化樹脂層を当接させ重ね合わせて仮接着し、離 型性プラスチックフィルムを剥離除去して、当該半硬化樹脂層をフッ素樹脂基材の表 面に残す工程。 Step C2: The semi-cured resin layer of the adhesive layer with a releaseable plastic film is brought into contact with the laminated surface subjected to the activation treatment of the fluororesin base material, and is temporarily bonded to each other, and the releaseable plastic film The step of peeling off and leaving the semi-cured resin layer on the surface of the fluororesin substrate.
工程 D— 2 : 工程 C 2でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に金 属箔を積層して熱間プレス成形することで金属張積層板とする工程。 Step D-2: A step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C2 and hot pressing it.
[16] 請求項 11又は請求項 12に記載の金属張積層板の製造方法であって、以下の工程 A— 3〜工程 D— 3を経ることを特徴とする金属張積層板の製造方法。 16. A method for producing a metal-clad laminate according to claim 11 or claim 12, wherein the method comprises the following steps A-3 to D-3.
工程 A— 3: フッ素樹脂基材の金属箔の張り合わせ面に活性化処理を施す工程。 工程 B— 3 : フッ素樹脂基材用接着剤を調製する工程。 Step A—3: Step of activating the bonded surface of the metal foil of the fluororesin substrate. Step B-3: Step of preparing an adhesive for a fluororesin substrate.
工程 C 3 : フッ素樹脂基材の活性化処理した表面に、工程 B— 3で調製したフッ素 樹脂基材用接着剤を塗布して乾燥させることで、 0. 5 111〜3 111厚さの半硬化樹 脂層を形成する工程。 Step C3: Applying the adhesive for the fluororesin base material prepared in Step B-3 to the activated surface of the fluororesin base material and drying it, 0.5 111 to 3111 half thickness A step of forming a cured resin layer.
工程 D— 3 : 工程 C 3でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に金 属箔を積層して熱間プレス成形することで金属張積層板とする工程。 Step D-3: A step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C3 and hot pressing it.
[17] 前記活性化処理は、粗化処理、プラズマ処理、又はこれらを組み合わせた複合処理 のいずれかである請求項 14又は請求項 15のいずれかに記載の金属張積層板の製 造方法。
[17] The method for producing a metal-clad laminate according to any one of [14] and [15], wherein the activation treatment is any one of a roughening treatment, a plasma treatment, and a composite treatment combining these.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006158092A JP2007326923A (en) | 2006-06-07 | 2006-06-07 | Resin composition for adhering fluorine resin substrate and metal-clad laminate obtained by using the resin composition for adhering fluorine resin substrate |
JP2006-158092 | 2006-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008004399A1 true WO2008004399A1 (en) | 2008-01-10 |
Family
ID=38894372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/061562 WO2008004399A1 (en) | 2006-06-07 | 2007-06-07 | Bonding resin composition for fluororesin substrates and metal-clad laminates made by using the composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007326923A (en) |
WO (1) | WO2008004399A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010194930A (en) * | 2009-02-26 | 2010-09-09 | Sumitomo Bakelite Co Ltd | Method of manufacturing supporting material with insulating layer, supporting material with insulating layer, printed wiring board, and method of manufacturing supporting material with insulating layer |
WO2015012376A1 (en) | 2013-07-24 | 2015-01-29 | Jx日鉱日石金属株式会社 | Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board |
WO2015012327A1 (en) | 2013-07-23 | 2015-01-29 | Jx日鉱日石金属株式会社 | Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method |
EP3046400A2 (en) | 2015-01-16 | 2016-07-20 | JX Nippon Mining & Metals Corporation | Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board |
EP3048864A2 (en) | 2015-01-21 | 2016-07-27 | JX Nippon Mining & Metals Corporation | Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board |
EP3054751A2 (en) | 2015-02-06 | 2016-08-10 | JX Nippon Mining & Metals Corporation | Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board |
EP3232747A1 (en) | 2016-04-15 | 2017-10-18 | JX Nippon Mining & Metals Corp. | Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device |
EP3339016A4 (en) * | 2015-08-20 | 2019-05-01 | AGC Inc. | Multilayer base and method for producing molded body of same |
CN112048249A (en) * | 2020-09-02 | 2020-12-08 | 江西省信合新材料科技有限公司 | Multilayer protective film for flexible circuit board |
US11549035B2 (en) | 2020-12-16 | 2023-01-10 | Saint-Gobain Performance Plastics Corporation | Dielectric substrate and method of forming the same |
US11596064B2 (en) | 2020-07-28 | 2023-02-28 | Saint-Gobain Performance Plastics Corporation | Dielectric substrate and method of forming the same |
WO2023100499A1 (en) * | 2021-12-03 | 2023-06-08 | ニッカン工業株式会社 | Resin composition, coverlay film using same, adhesive sheet, resin-attached metal foil, metal clad laminate, or printed wiring board |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105339166B (en) * | 2013-05-31 | 2018-06-22 | 住友电气工业株式会社 | The manufacturing method of metal-resin complex, wiring material and metal-resin complex |
JP6332787B2 (en) * | 2014-02-17 | 2018-05-30 | 住友電工プリントサーキット株式会社 | Coverlay and printed wiring board |
KR102122938B1 (en) * | 2019-12-30 | 2020-06-15 | (주)아이피아이테크 | Bond ply layer for flexible copper clad laminated film and method for manufacturing the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07286155A (en) * | 1994-02-22 | 1995-10-31 | Japan Energy Corp | Adhesive for metal foil-coated laminate and metal foil-coated laminate produced by using the same |
WO2001003478A1 (en) * | 1999-07-05 | 2001-01-11 | Nippon Pillar Packing Co., Ltd. | Printed wiring board and prepreg for printed wiring board |
JP2001089734A (en) * | 1999-09-24 | 2001-04-03 | Sumitomo Bakelite Co Ltd | Interlayer insulating adhesive for multilayer printed circuit board |
JP2001098027A (en) * | 1999-07-29 | 2001-04-10 | Mitsubishi Chemicals Corp | Modified polyvinyl acetal resin |
JP2002307611A (en) * | 2001-04-12 | 2002-10-23 | Chuko Kasei Kogyo Kk | Fluoroplastic copper-clad laminated sheet |
JP2003342350A (en) * | 2002-05-30 | 2003-12-03 | Japan Epoxy Resin Kk | High-molecular weight epoxy resin, resin composition for electrical laminate, and electrical laminate |
JP2005029710A (en) * | 2003-07-08 | 2005-02-03 | Nippon Kayaku Co Ltd | Adhesive composition |
JP2006052318A (en) * | 2004-08-11 | 2006-02-23 | Hitachi Chem Co Ltd | Thermosetting resin composition and resin varnish using the same |
-
2006
- 2006-06-07 JP JP2006158092A patent/JP2007326923A/en active Pending
-
2007
- 2007-06-07 WO PCT/JP2007/061562 patent/WO2008004399A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07286155A (en) * | 1994-02-22 | 1995-10-31 | Japan Energy Corp | Adhesive for metal foil-coated laminate and metal foil-coated laminate produced by using the same |
WO2001003478A1 (en) * | 1999-07-05 | 2001-01-11 | Nippon Pillar Packing Co., Ltd. | Printed wiring board and prepreg for printed wiring board |
JP2001098027A (en) * | 1999-07-29 | 2001-04-10 | Mitsubishi Chemicals Corp | Modified polyvinyl acetal resin |
JP2001089734A (en) * | 1999-09-24 | 2001-04-03 | Sumitomo Bakelite Co Ltd | Interlayer insulating adhesive for multilayer printed circuit board |
JP2002307611A (en) * | 2001-04-12 | 2002-10-23 | Chuko Kasei Kogyo Kk | Fluoroplastic copper-clad laminated sheet |
JP2003342350A (en) * | 2002-05-30 | 2003-12-03 | Japan Epoxy Resin Kk | High-molecular weight epoxy resin, resin composition for electrical laminate, and electrical laminate |
JP2005029710A (en) * | 2003-07-08 | 2005-02-03 | Nippon Kayaku Co Ltd | Adhesive composition |
JP2006052318A (en) * | 2004-08-11 | 2006-02-23 | Hitachi Chem Co Ltd | Thermosetting resin composition and resin varnish using the same |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010194930A (en) * | 2009-02-26 | 2010-09-09 | Sumitomo Bakelite Co Ltd | Method of manufacturing supporting material with insulating layer, supporting material with insulating layer, printed wiring board, and method of manufacturing supporting material with insulating layer |
WO2015012327A1 (en) | 2013-07-23 | 2015-01-29 | Jx日鉱日石金属株式会社 | Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method |
WO2015012376A1 (en) | 2013-07-24 | 2015-01-29 | Jx日鉱日石金属株式会社 | Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board |
EP3046400A2 (en) | 2015-01-16 | 2016-07-20 | JX Nippon Mining & Metals Corporation | Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board |
EP3048864A2 (en) | 2015-01-21 | 2016-07-27 | JX Nippon Mining & Metals Corporation | Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board |
US9839124B2 (en) | 2015-02-06 | 2017-12-05 | Jx Nippon Mining & Metals Corporation | Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board |
EP3054751A2 (en) | 2015-02-06 | 2016-08-10 | JX Nippon Mining & Metals Corporation | Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board |
EP3339016A4 (en) * | 2015-08-20 | 2019-05-01 | AGC Inc. | Multilayer base and method for producing molded body of same |
EP3232747A1 (en) | 2016-04-15 | 2017-10-18 | JX Nippon Mining & Metals Corp. | Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device |
US11596064B2 (en) | 2020-07-28 | 2023-02-28 | Saint-Gobain Performance Plastics Corporation | Dielectric substrate and method of forming the same |
US11805600B2 (en) | 2020-07-28 | 2023-10-31 | Saint-Gobain Performance Plastics Corporation | Dielectric substrate and method of forming the same |
CN112048249A (en) * | 2020-09-02 | 2020-12-08 | 江西省信合新材料科技有限公司 | Multilayer protective film for flexible circuit board |
US11549035B2 (en) | 2020-12-16 | 2023-01-10 | Saint-Gobain Performance Plastics Corporation | Dielectric substrate and method of forming the same |
US12049577B2 (en) | 2020-12-16 | 2024-07-30 | Versiv Composites Limited | Dielectric substrate and method of forming the same |
WO2023100499A1 (en) * | 2021-12-03 | 2023-06-08 | ニッカン工業株式会社 | Resin composition, coverlay film using same, adhesive sheet, resin-attached metal foil, metal clad laminate, or printed wiring board |
JP2023083121A (en) * | 2021-12-03 | 2023-06-15 | ニッカン工業株式会社 | Resin composition, and coverlay film, adhesive sheet, metallic foil with resin, metal-clad laminated plate or printed wiring board using the same |
JP7348673B2 (en) | 2021-12-03 | 2023-09-21 | ニッカン工業株式会社 | Resin composition, and coverlay film, adhesive sheet, resin-coated metal foil, metal-clad laminate, or printed wiring board using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2007326923A (en) | 2007-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008004399A1 (en) | Bonding resin composition for fluororesin substrates and metal-clad laminates made by using the composition | |
CN111836716B (en) | Copper-clad laminated board | |
TWI466970B (en) | Cyanate esters based adhesive resin composition for manufacturing circuit board and flexible metal clad laminate comprising the same | |
KR101014517B1 (en) | Manufacturing process for a prepreg with a carrier, prepreg with a carrier, manufacturing process for a thin double-sided plate, thin double-sided plate and manufacturing process for a multilayer-printed circuit board | |
TWI609043B (en) | Resin copper foil, copper-clad laminate and printed wiring board | |
JP5636159B2 (en) | Copper foil with resin and method for producing copper foil with resin | |
TWI490266B (en) | A resin composition for forming a bonding layer of a multilayer flexible printed circuit board, a resin varnish, a porous flexible printed circuit board, and a multilayer flexible printed circuit board | |
JP5430563B2 (en) | Resin composition for forming an adhesive layer of a multilayer flexible printed wiring board | |
KR101464140B1 (en) | Resin composition | |
WO2005009093A1 (en) | Copper foil with extremely thin adhesive layer and method for producing the copper foil with extremely thin adhesive layer | |
TWI498408B (en) | Attached film with copper foil | |
TWI678396B (en) | Resin composition for printed wiring board, copper foil with resin, copper clad laminate, and printed wiring board | |
TWI713610B (en) | Manufacturing method of wiring board, wiring board and antenna | |
WO2009084533A1 (en) | Copper foil with resin and process for producing copper foil with resin | |
TWI821399B (en) | Laminated body, printed circuit board and manufacturing method thereof | |
Noh et al. | Effect of laminating parameters on the adhesion property of flexible copper clad laminate with adhesive layer | |
JP4992514B2 (en) | Method for manufacturing printed wiring board | |
JP5074882B2 (en) | Multilayer printed wiring board manufacturing method and multilayer printed wiring board obtained by the manufacturing method | |
KR101362288B1 (en) | Copper foil with primer resin layer, copper-clad laminate comprising the copper foil for a printed circuit board, preparation method of the copper foil, and primer resin composition used for the copper foil | |
EP1218178B1 (en) | An adhesion promoting layer for use with epoxy prepregs | |
JP6816566B2 (en) | Resin compositions, adhesive films, prepregs, multilayer printed wiring boards and semiconductor devices | |
CN113801537B (en) | Copper foil with primer and copper foil laminated board | |
JP4370926B2 (en) | Thin-leaf wiring board material and manufacturing method thereof | |
EP4431539A1 (en) | Resin composition and printed circuit board comprising same | |
TW202037488A (en) | Laminate, method for producing same, method for producing composite laminate, and method for producing polymer film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07828132 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07828132 Country of ref document: EP Kind code of ref document: A1 |