Nothing Special   »   [go: up one dir, main page]

WO2008001525A1 - Refrigerated container - Google Patents

Refrigerated container Download PDF

Info

Publication number
WO2008001525A1
WO2008001525A1 PCT/JP2007/057589 JP2007057589W WO2008001525A1 WO 2008001525 A1 WO2008001525 A1 WO 2008001525A1 JP 2007057589 W JP2007057589 W JP 2007057589W WO 2008001525 A1 WO2008001525 A1 WO 2008001525A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration unit
container
refrigeration
configuration
evaporator
Prior art date
Application number
PCT/JP2007/057589
Other languages
French (fr)
Japanese (ja)
Inventor
Kouji Matsuoka
Takayasu Satou
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Publication of WO2008001525A1 publication Critical patent/WO2008001525A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/003Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with respect to movable containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/20Refrigerated goods vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery

Definitions

  • the present invention relates to a technique of a refrigerant circuit configuration of a refrigeration container.
  • the technology of a refrigerated container having a refrigeration unit on the open end of the container is known.
  • the refrigeration unit can cool the inside of the container in a wide temperature range depending on the cargo loaded on the container, from freezing to refrigeration.
  • the cooling load differs greatly between the 30 ° C setting (freezing) and the low temperature setting near 0 ° C (refrigeration).
  • the refrigeration unit is equipped with a supercooler to handle a wide range of cooling loads with a single compressor.
  • Supercooling is the action of cooling the high-pressure and high-temperature refrigerant liquid condensed in the condenser. The supercooling effect can reduce the inlet enthalpy of the evaporator and improve the evaporator capacity, that is, the cooling capacity.
  • Patent Document 1 discloses a refrigerant circuit structure that supercools liquid refrigerant by exchanging heat between the compressor suction refrigerant and the liquid refrigerant from the receiver in FIG. 1 (reference numeral 6 is a supercooling heat exchanger). It discloses the composition. Also disclosed is a configuration in which the expansion valve is fully opened to limit the refrigeration capacity of the refrigerant circuit in chilled operation.
  • Patent Document 1 Japanese Patent No. 3239804
  • Patent Document 1 a configuration in which the supercooler is provided as a separate and independent heat exchanger requires a separate device arrangement space.
  • the configuration in which the expansion valve is fully opened to limit the refrigeration capacity of the refrigerant circuit is the same as that during the refrigeration operation, so the amount of reduction in the compressor load is poor.
  • the problem to be solved is to present a refrigerant circuit configuration capable of omitting the supercooler as a heat exchanger and a refrigerant circuit configuration capable of limiting the amount of refrigerant circulation in the refrigeration container.
  • the present invention relates to a refrigeration container in which the temperature in a container is controlled by a refrigeration unit that circulates refrigerant using a compressor.
  • the condenser outlet path is divided into two, and the path is connected to an expansion valve via an on-off valve.
  • the other path is connected to the expansion valve after passing through a part of the expansion section and the evaporator in this order, and the on-off valve is closed during the supercooling operation.
  • the present invention provides a refrigeration container that controls the temperature in a container with a refrigeration unit that circulates a refrigerant in a compressor, wherein the compressor suction path is provided in two paths in parallel, and one path is connected via an on-off valve. Connected to the compressor, the other path is connected to the compressor via an opening adjustment valve, and the on-off valve is opened during refrigeration operation, and the on-off valve is closed during chilled operation. .
  • a part of the evaporator communicating with the container in a low-temperature environment such as a refrigeration operation can be used as a supercooler, and a separate supercooler can be omitted as a heat exchanger.
  • a separate supercooler can be omitted as a heat exchanger.
  • the responsiveness of the refrigerant circulation amount adjustment and the opening degree adjustment accuracy can be improved during the freezing operation and the refrigeration operation.
  • FIG. 1 is a side view and a rear view showing a state in which a refrigerated container according to the present invention is loaded on a truck.
  • FIG. 2 Front view of the refrigeration unit.
  • FIG. 3 Perspective view of the left front force.
  • FIG. 5 Front view with the outer plate removed.
  • FIG. 6 is a rear view with the outer plate removed.
  • [7] AA sectional view in FIG. 5 showing the arrangement of the condenser and the evaporator.
  • ⁇ 8] AA diagram showing a state where the condenser fan bracket in FIG. 7 is rotated.
  • FIG. 5 BB cross-sectional view in FIG. 5 showing the configuration of the exhaust tail pipe.
  • FIG. 12 is a cross-sectional view taken along the line EE in FIG.
  • FIG. 14 is a right side view of the refrigeration unit showing a state where the engine is taken out of the refrigeration unit.
  • FIG. 14 is a right side view of the refrigeration unit showing a state where the engine is taken out of the refrigeration unit.
  • FIG. 15 Right side view of a refrigerated container provided with a ladder and a grip for approaching the operation unit.
  • FIG. 16 is a cross-sectional view taken along the line GG in FIG. 15, showing the configuration of the operation unit.
  • ⁇ 17 A right side view of the refrigeration unit showing a state in which the fuel tank is rotated.
  • FIG. 18 FF sectional view in Fig. 9 showing the bottom structure of the fuel tank.
  • FIG. 19 is a front view showing a power cable storage box.
  • FIG. 21 is a side view of the same as seen from the X direction in FIG.
  • FIG. 23 is a side view showing the configuration of a two-temperature zone container.
  • FIG. 24 A perspective view showing a rear chamber control unit.
  • FIG. 25 is a cross-sectional view of HH in FIG. 24 showing the rear chamber control unit.
  • FIG. 1 is a side view and a rear view showing a state in which a refrigerated container according to the present invention is loaded on a truck
  • FIG. 2 is a front view of the refrigeration unit
  • FIG. 3 is a perspective view as seen from the left front. 4
  • FIG. 5 is a front view of the same with the outer plate removed
  • FIG. 6 is a rear view of the same with the outer plate removed.
  • FIG. 7 is a cross-sectional view taken along line AA in Fig. 5 showing the arrangement of the condenser and the evaporator
  • Fig. 8 is an AA view showing a state in which the condenser fan bracket in Fig. 7 is rotated
  • Fig. 9 is a configuration of the exhaust tail pipe.
  • FIG. 6 is a BB sectional view in FIG.
  • FIG. 10 is a CC sectional view in FIG. 5 showing the outlet structure of the exhaust tail pipe
  • FIG. 11 is a DD sectional view in FIG. 9 showing the support structure of the exhaust tail pipe
  • FIG. 12 is an EE sectional view in FIG.
  • Fig. 13 is a cross-sectional view of the FF in Fig. 9 showing the drainage structure of the exhaust tail pipe
  • Fig. 14 is a right side view of the refrigeration unit showing the engine taken out of the refrigeration unit
  • Fig. 15 is close to the operation unit It is a right view of the freezing container provided with the ladder and the holding part.
  • FIG. 16 is a cross-sectional view taken along the line GG in FIG. 15 showing the configuration of the operation unit
  • FIG. 17 is a right side view of the refrigeration unit showing a state where the fuel tank is rotated
  • FIG. 18 is a cross-sectional view taken along line FF in FIG. FIG.
  • FIG. 19 is a front view showing a power cable storage box
  • FIG. 20 is a perspective view of an evaporator with a defrost heater attached, as viewed from below
  • FIG. 21 is a side view of FIG.
  • FIG. 22 is a refrigerant circuit diagram showing the refrigerant circuit configuration of the refrigeration unit
  • FIG. 23 is a side view showing the configuration of the two-temperature zone container
  • FIG. 24 is a perspective view showing the rear chamber control unit.
  • FIG. 25 is a cross-sectional view taken along the line HH in FIG. 24 showing the rear chamber control unit.
  • Containers are large containers used for freight transportation. Carriers use containers to carry out integrated transportation to and from the door to reduce costs and prevent damage and theft. Also, the refrigeration unit is low A machine that supplies hot air to cool and freeze items. In other words, the refrigeration container is a large container used for freight transportation with the refrigeration unit having a low temperature inside the container.
  • the refrigerated container can be set in various low temperature zones such as freezing or refrigeration. The refrigeration unit controls the operation so that the temperature inside the container reaches the set temperature. In this way, the refrigerated container can transport various cargoes such as frozen food, ice cream, fresh fish or fruits. Also, refrigerated containers are intended for integrated transportation
  • FIG. 1 shows a refrigerated container 1 loaded on a track 2.
  • the refrigerated container 1 is also configured with a container 3 and a refrigeration unit 4 force.
  • Container 3 is made up of members that have heat insulation properties compared to ordinary containers (not refrigerated containers).
  • the container 3 is configured to have an opening on one side of the wife and a door 5 that can be opened and closed on the other side.
  • the refrigeration unit 4 supported by the frame 6 is attached to the opened wife surface.
  • cargo can be taken in and out from the wife's face, which has an openable door 5.
  • the refrigeration unit 4 will be briefly described.
  • the refrigeration unit 4 constitutes a refrigeration cycle in one unit. More specifically, the refrigeration unit 4 includes a compressor 11 that sucks a low-temperature / low-pressure gas refrigerant and compresses it into a high-temperature / high-pressure gas refrigerant, and a condensation that condenses the high-temperature / high-pressure gas refrigerant into a high-temperature / high-pressure liquid refrigerant. , A receiver 19 that retains high-temperature and high-pressure liquid refrigerant, an expansion valve 113 that expands the high-temperature and high-pressure liquid refrigerant into a low-temperature and low-pressure liquid-gas refrigerant (see FIG.
  • the condenser 12 is an air-cooled heat exchanger that uses a condenser fan 16 driven by a condenser fan electric motor 14 to cool the refrigerant with outside air.
  • the evaporator 13 is an air-cooled heat exchanger that cools the internal air by allowing the evaporator fan motor 15 to absorb the heat of evaporation from the internal air to the refrigerant by using the evaporator fan 17.
  • the refrigeration unit 4 includes a generator 21 that supplies power to the compressor 11, an engine 22 that drives the generator 21, a fuel tank 23 that stores the fuel of the engine 22, an intake pipe 32, and An intake system 31 composed of an air cleaner 33 and an exhaust system 41 composed of an exhaust pipe 42 and a muffler 43 are provided. Further, the refrigeration unit 4 includes an electrical component box 51 and a power cable 52.
  • the electrical component box 51 includes an electronic control unit (hereinafter referred to as an ECU) 50 that controls equipment such as the engine 22 and the compressor 11, and an operation panel 94 that sets the internal temperature and the like.
  • the generator 21 is driven by the engine 22, and the compressor 11, the condenser fan motor 14 or the evaporator fan motor 15 is driven by the electricity supplied by the generator 21,
  • the temperature control of the refrigeration unit 4 is performed. Furthermore, it can be driven by electricity supplied from an external commercial power source.
  • the operators handling the refrigeration unit 4 such as those who perform maintenance / inspection of the refrigeration unit 4 and those who operate the temperature setting of the refrigeration unit 4 are all workers.
  • the refrigeration unit 4 is configured by arranging devices in a casing 61.
  • the casing 61 is configured to be largely divided into an upper part 101, a central part 102, and a lower part 103 in the height direction.
  • the central portion 102 is configured to be divided into a right central portion 102a and a left central portion 102b in the width direction.
  • a condenser 12 In the upper part 101, a condenser 12, a condenser fan motor 14 and a condenser fan 16 are arranged on the front side, and an evaporator 13, an evaporator fan motor 15 and an evaporator fan 17 are arranged on the back side.
  • the engine system power is arranged in the right central part 102a, and the refrigerant system is arranged in the left central part 102b. In other words, the engine system and the refrigerant system are arranged in the same level.
  • a fuel tank 23 is disposed in the lower part 103. With this configuration, for example, even when the refrigerated container 1 is loaded on the truck 2, the fuel tank 23 and the oil filler port 36 (see FIG. 3) are easily accessible. There is. That is, the worker can easily perform the refueling operation. In this way, maintainability is improved in the refrigeration unit 4.
  • the mounting base of the generator 21 and the engine 22 can be configured as the common frame 62. Since the number of parts can be reduced by using a common mounting base, it is possible to reduce parts management man-hours and assembly man-hours.
  • the fuel tank 23 is disposed in the lower portion 103 of the casing 61.
  • the fuel tank 23 is formed so that the length in the longitudinal direction is substantially the same as the length in the width direction of the casing 61.
  • the fuel tank 23 can secure a maximum volume in a given space in the casing 61, so that a long-term oil-free operation can be realized.
  • an oil feed pipe 28 engine 22 and a fuel tank 23 are connected via a feed pump 24 and an oil filter 25.
  • the feed pump 24 is a pump that supplies the fuel stored in the fuel tank 23 to the engine 22.
  • the oil filter 25 is a filter that filters the supplied fuel.
  • the feed pump 24 and the oil filter 25 are disposed adjacent to the right side of the fuel tank 23 in the lower part 103 of the casing 61.
  • the feed pump 24 can suppress the height difference from the fuel tank 23, and the fuel oil feeding efficiency of the feed pump 24 is improved.
  • the condenser 12 is placed on the front side and the evaporator 13 is placed on the back side; '63 c.
  • the condenser 12 is formed with a large heat exchange area compared to the evaporator 13.
  • the condenser 12 flows so that the outside air flows in the direction penetrating the wife surface of the container 3 (arrow P in FIG. 7). Placed in. Further, the evaporator 13 is arranged so that the air in the cabinet flows in the vertical direction (arrow Q in FIG. 7).
  • the increase in the number of fans and the fan diameter leads to an increase in storage space, and the compactness of the refrigerator unit 4 cannot be achieved.
  • the power consumption increases as the fan speed increases.
  • the amount of heat generated by the current increases, so that the heat deterioration of the fan motor is accelerated.
  • the heat exchange area of the condenser is made larger than that of the evaporator, the condenser makes the outflow / inflow surface of the outside air face the container wife surface, and the evaporator makes the inflow / outflow surface of the inside air face the horizontal plane.
  • the refrigeration unit 4 can be made compact by suppressing an increase in the fan air volume of the condenser.
  • the condenser fan 16 is disposed below the rear surface of the condenser 12 and below the heat insulating wall 63c with the fan shaft as a vertical direction. With such a configuration, the condenser cooling air is guided downward after passing through the condenser 12 so as to penetrate the end face of the container 3.
  • the height of the refrigeration unit can be suppressed as compared with a configuration in which the condenser fan 16 and the condenser fan electric motor 14 are installed on the top of the refrigeration unit 4. Is discharged to the outside of the unit by the air guide 65 shown in FIG. With such a ventilation structure, for example, even if the refrigeration container 1 is loaded on the truck 2 and the truck engine is positioned in front of and below the refrigeration unit 4, the condenser cooling air is discharged to the truck engine side. As a result, it is possible to reduce the hot air around the truck engine from rising to the refrigeration unit 4 side.
  • the condenser fan electric motor 14 is It is supported.
  • the bracket 60 is configured with the depth side supported by the casing 61 as a support shaft.
  • the bracket 60 is configured to be pivotable downward by providing a pivot shaft at the rear side in the horizontal direction (arrow L in FIG. 8).
  • the operator can easily replace or inspect the condenser fan motor 14 and the condenser fan 16 without removing the condenser 12. In this way, in the refrigeration unit 4, the maintainability of the condenser fan motor 14 and the condenser fan 16 is improved.
  • the evaporator 13 is supported by a mounting base 64.
  • the mounting base 64 is installed on a heat insulating wall 63c constituting the casing 61. Further, the heat insulating wall 63c is formed so that the opening becomes larger toward the lower inside of the container in order to reduce the flow resistance of the internal air passing through the evaporator 13.
  • the mounting base 64 is configured to support the evaporator 13 with the upper part horizontal and to be installed on the heat insulating wall 63c with the lower part inclined according to the inclination of the heat insulating wall 63c! RU
  • the lower engine cover 68 is provided in front of the refrigeration unit 4.
  • the lower engine cover 68 is configured to cover a substantially lower portion and a substantially upper portion of the lower portion 103 in the right center portion 102a where the engine 22 is disposed. In other words, the front side of the engine 22 and the upper front side of the fuel tank 23 are covered.
  • the lower engine cover 68 forms a gap R with the fuel tank 23.
  • the Rajeta fan 26 is provided on the right side surface of the right center portion 102 a of the refrigeration unit 4, that is, the right side surface of the refrigeration unit 4.
  • the cooling air sucked in by the Rajjtafan 26 is introduced into the right center portion 102a through the gap R, passes under the common frame 62 of the engine 22 and the generator 21 and passes through the introduction portion 32a near the partition wall 66 to the right. It flows into the central portion 102a and flows out into the opening 9 (arrow S in FIGS. 2 to 5 and 7).
  • the cooling air can be cooled in the order of low temperature power high temperature of the exhaust heat temperature of the generator 21 and the engine 22. Therefore, the cooling efficiency of the generator 21 is improved.
  • the Raje-tafan 26 is provided in the central portion 102, the height of the refrigeration unit 4 can be suppressed.
  • the intake pipe 32 can suck a part of the cooling air by the Rajeta fan 26 by adopting such a configuration that introduces outside air from the opening facing the introduction portion 32a.
  • the partition wall 66 is provided at the approximate center in the width direction of the central portion 102.
  • the partition wall 66 separates the right center portion 102a where the engine system is disposed and the left center portion 102b where the refrigerant system is disposed.
  • the muffler 43 is attached to the partition wall 66 above the left center portion 102b.
  • the electrical component box 51 is arranged on the right side of the upper part 101.
  • the muffler 43 and the electrical component box 51 can be isolated. In this way, the electrical component box 51 can be prevented from being affected by exhaust heat from the engine due to the muffler 43. That is, heat protection is realized in the electrical component box 51.
  • the panel 67 is provided in front of the left central portion 102b where the refrigerant system is arranged.
  • the left central portion 102b can be naturally ventilated without providing a fan or the like.
  • the cooling efficiency of the refrigerant control device for example, an electromagnetic valve or an electronic expansion valve
  • the exhaust pipe 42 is provided to exhaust the exhaust from the engine 22 to the outside.
  • the exhaust pipe 42 discharges the exhaust from the muffler 43 to the outside through the exhaust tail pipe 44.
  • the exhaust tail pipe 44 is configured between the condenser 12 and the electrical component box 51 in the lead straight direction. Further, as shown in FIG. 9, the exhaust tail pipe 44 has the exhaust direction as the back side of the refrigeration unit 4.
  • the exhaust tail pipe 44 can be stored in the refrigeration unit 4, and the exhaust of the engine 22 can be discharged at the upper end of the refrigeration unit 4.
  • the discharge direction can be opposite to the traveling direction of the truck 2 when loaded on the truck 2, for example. In this way, re-suction of engine exhaust is prevented in the refrigeration unit 4.
  • the outlet portion of the exhaust tail pipe 44 is covered with a cover 70 at the ceiling portion of the refrigeration unit 4.
  • This cover 70 is a cover with a simple structure that opens only in the exhaust direction.
  • the exhaust tail pipe 44 is provided with a waterproof weir 71 on the periphery of the through portion of the casing 61 in the ceiling portion of the refrigeration unit 4. This waterproof weir 71 is provided in close proximity to the exhaust tail pipe 44.
  • the exhaust tail pipe 44 is configured inside the casing 61.
  • the exhaust tail pipe 44 has a vertical portion 44a disposed in the vertical direction between the condenser 12 and the electrical component box 51 (see FIG. 5).
  • the vertical portion 44a is supported by the casing 61 in a vibration-proof manner. More specifically, the exhaust tail pipe 44 is supported on the casing 61 by a bracket 72 via a support material 73 and a coasting material 74.
  • the bracket 72 supports the exhaust tail pipe 44 while absorbing the thermal deformation of the exhaust tail pipe 44 even when the exhaust tail pipe 44 is deformed due to aging or exhaust heat. can do. In this manner, in the refrigeration unit 4, the exhaust pipe 42 can be prevented from being damaged, and the durability is improved.
  • the exhaust tail pipe 44 is arranged in the horizontal direction below the condenser 12. It has a horizontal portion 44b disposed. Furthermore, as shown in FIG. 13, a drain outlet 45 is provided in the horizontal portion 44b. The drain outlet 45 is connected to the drain hose 46. Although not shown, the drain hose 46 is provided so that it can be drained outside the refrigeration unit 4.
  • the drain water drain 45 is provided with a step so that the drain water can be captured.
  • the engine 22 is suspended from the refrigeration unit 4 by being suspended by a chain block 77 attached to the removable bracket 76 during maintenance.
  • the detachable bracket 76 is formed of, for example, H-shaped steel, and is configured to be detachable to the upper end portion of the casing 61 with a bolt or the like. During maintenance, remove the bolts and replace them so that one end of the removable bracket 76 protrudes forward.
  • the common frame 62 is a common frame for the engine 22 and the generator 21.
  • the common frame 62 is formed with a horizontal mounting surface without unevenness.
  • the refrigeration unit 4 is provided with an operation unit 91 on the right side surface.
  • the operation unit 91 is arranged so that the lower side of the operation unit 91 is positioned near the center line of the refrigeration unit 4.
  • the frame 6 is provided with a ladder portion 92 and a grip portion 93 on the right side surface.
  • the lower end force of the frame 6 is also provided up to the operation portion 91.
  • the grip portion 93 is provided on the frame 6 so as to be positioned in the vicinity of the operation portion 91. Note that the ladder part 92 is simple enough to allow an operator to step on the foot.
  • the operation section 91 constitutes an operation panel storage chamber 95.
  • the operation panel storage room 95 has a partially opened depth surface.
  • An operation panel 94 is fitted into the opening surface.
  • the operation panel 94 can be double waterproofed by the waterproof treatment of the operation panel 94 and the waterproof treatment of the operation panel storage chamber 95.
  • the operation unit 91 is designed to prevent rainwater intrusion!
  • the operation panel storage chamber 95 is covered with a door 96 on the surface.
  • the door 96 is configured such that its upper end is pivotally supported with respect to the side plate so that it can be opened and closed upward.
  • the door 96 becomes eaves and can prevent intrusion of rainwater. Also, if the operator releases the hand, it closes with the dead weight of the door 96, thus preventing forgetting to close.
  • the operation panel 94 is installed in the opening portion opened in the depth surface of the operation panel storage chamber 95 via the packing 99 and the grommet 100.
  • packing 99 is provided on the periphery of the mounting surface of the operation panel 94 to the operation panel storage chamber 95, and a grommet is attached to the bolt that fixes the operation panel 94 to the operation panel storage chamber 95.
  • 100 is fitted to support vibration proofing.
  • the door 96 is attached to the periphery of the opening opened on the surface of the operation panel storage chamber 95 via the packing 98.
  • the operation panel 94 can be sealed at both the door 96 and the periphery of the operation panel 94. In this way, rainwater intrusion is prevented in the operation panel 94.
  • the door 96 is provided with a transparent window 97 at a substantially central portion.
  • the operator can confirm only the display on the operation panel 94 without opening and closing the door 96. In this way, the operability is improved in the operation unit 91.
  • the fuel tank 23 is disposed in the lower portion 103 of the casing 61.
  • the lower engine cover 68 covers the lower half surface of the central portion 102 and the substantially upper portion of the lower portion 103 on the surface of the refrigeration unit 4.
  • the lower engine cover 68 can be made lighter than in the case where the entire surface of the lower part 103 is covered. That is, the operator can easily detach the lower engine cover 68. In this way, the maintainability of the refrigeration unit 4 is improved.
  • the upper part of the fuel tank 23 can be blinded with only one lower engine cover 68 as compared with a case where the entire surface of the lower part 103 is divided and covered with a cover. In this way, the number of parts of the refrigeration unit 4 is reduced.
  • the fuel tank 23 is carried by a frame 35 having a frame shape around the fuel tank 23.
  • the frame 35 is configured to be pivotable up and down with respect to the casing 61 by pivotally supporting the depth side at the lower end (the back side of the refrigeration unit 4) with a support shaft (arrow M in FIG. 17).
  • the assembly operator pivots the rear part while holding the fuel tank 23 on the frame 35, and lifts the fuel tank 23 to fix the front part.
  • the fuel tank 23 can be attached to the casing 61 by an easy process. In this way, the assemblability is improved when the refrigeration unit 4 is manufactured.
  • the height of the fuel tank 23 can be made equal to the height of the lower portion 103 of the casing 61 even when the oil filler port 36 is provided in the upper portion of the fuel tank 23. In this way, in the refrigeration unit 4, the volume of the fuel tank 23 is increased. If the common frame 62 is provided with a projecting opening of the oil filler port 36, as shown in FIG. 7 or FIG. 8, the fuel tank 23 even if the common frame 62 overlaps the oil filler port 36 in the height direction. Can be installed. Accordingly, the height of the refrigeration unit 4 can be suppressed as compared with the case where the common frame 62 is raised by the height of the oil filler port 36.
  • the operator releases the fixing of the front portion of the frame 35 and pivots downward so that the upper portion of the fuel tank 23 is directed forward. Can be made. That is, the operator can easily inspect the upper part of the fuel tank 23. In this way, in the refrigeration unit 4, the maintainability of the fuel tank 23 is improved.
  • the fuel tank 23 includes a strainer 27 inside.
  • the strainer 27 is provided at the tip of the oil feed pipe 28 on the fuel tank 23 side.
  • the strainer 27 is recessed through an elastic body 29 in a recess 23 a formed at the bottom of the fuel tank 23. With such a configuration, the feed pump 24 can suck the fuel to the bottom of the fuel tank 23. In this way, the effective volume of the fuel tank 23 is improved.
  • the elastic body 29 causes vibration between the bottom of the fuel tank 23 and the strainer 27. 'I can alleviate the collision. In this way, the reliability of the fuel tank 23 is improved.
  • the refrigeration unit 4 is provided with a power cable 52 so that a commercial power source can also supply power.
  • the refrigeration unit 4 may be driven by the supply of an external commercial power source or the like through the power cable 52 when it is transported by train or ship.
  • the power cable 52 is located at the lower right of the casing 61 when not in use.
  • the storage box 54 is stored in a squeezed state.
  • the power cable 52 has a power plug 53 at the tip.
  • a storage cylinder 55 is provided at the left end.
  • the storage cylinder 55 is provided with its tip inclined upward.
  • a defrost heater 80 is provided for the purpose of preventing frost formation of the evaporator 13.
  • the evaporator 13 is illustrated with the fins and tubes omitted to facilitate the component force.
  • the defrost heater 80 is formed of a round bar-like heating element that generates heat when energized.
  • the evaporator 13 has an evaporator frame 13a at both ends and a notch 13b formed at the lower end of the fin (not shown).
  • the notch 13b has a semi-long hole shape that matches the cross-sectional shape of the defrost heater 80.
  • the defrost heater 80 is attached by being fitted into the notch 13b.
  • the operator when replacing the defrost heater 80, the operator can easily push the defrost heater 80 from the evaporator 13 by simply depressing or fitting the defrost heater 80 from the notch 13b. Detachable. In this way, the maintainability of the defrost heater 80 is improved.
  • the defrost heater 80 has a U-shaped folded configuration on one side.
  • the wiring of the defrost heater 80 can be concentrated on the other side. In this way, workability is improved when the refrigeration unit 4 is manufactured or when the defrost heater 80 is replaced.
  • the defrost heater 80 is fixed at both ends by a pressing member 81 from the lower side of the evaporator frame 13a by V and below.
  • the defrost heater 80 drops from the notch 13b. Is prevented. That is, a plurality of defrost heaters 80 can be fixed and prevented from falling off with a simple configuration. In this way, the safety of the defrost heater 80 is improved.
  • the evaporator 13, the evaporator fan 17, and the evaporator fan motor 15 are arranged inside the container 107, and the rest are arranged outside the container 106.
  • the compressor 11 the condenser 12, the expansion valve 113, the receiver 19, and the evaporator 13, the refrigerant sucked between the evaporator 13 and the compressor 11 is used as a device constituting the refrigerant circuit.
  • An accumulator 117 for storage or gas-liquid separation and an opening adjustment valve 116 for adjusting the refrigerant circulation amount are provided.
  • the evaporator 13 includes two heat exchanges, that is, the evaporator 13m and the supercooling heat exchange 1311.
  • the supercooling bypass path 112 short-circuits the condenser 12 outlet and the receiver 19 inlet via the solenoid valve 111. Further, the suction bypass path 114 is configured in parallel with the opening degree adjustment valve 116 via the electromagnetic valve 115.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the condenser 12 and dissipates heat to the outside air to condense. Then, the liquefied refrigerant flows into the receiver 19 through the path 112 and is rapidly reduced in pressure by the throttle action of the expansion valve 113 and flows into the evaporator 13 as a mist. Then, the inside of the container 3 is frozen and refrigerated by the endothermic action accompanying the evaporation of the refrigerant, and the vaporized refrigerant is sucked into the compressor 11.
  • the supercooling heat exchanger 13 ⁇ is configured as a part of the evaporator 13 disposed in the container interior 107.
  • Supercooling is the action of cooling the high-pressure, high-temperature refrigerant liquid condensed in the condenser 12. The supercooling effect can reduce the inlet enthalpy of the evaporator 13 and increase the evaporator capacity.
  • the opening degree adjustment valve 116 adjusts the refrigerant circulation amount of the entire refrigerant circuit by adjusting the amount of refrigerant sucked by the compressor 11.
  • Refrigeration operation is operated with less refrigeration capacity than refrigeration operation. Therefore, during the refrigeration operation, the solenoid valve 115 is closed and the operation is performed only with the refrigerant amount adjusted by the opening adjustment valve 116.
  • the solenoid valve 115 is opened and the refrigerant circulation amount is secured by using both the bypass path 114 and the opening adjustment valve 116 path.
  • the bypass path 114 is also used, and in the refrigeration operation that requires a small amount of refrigerant circulation, the opening adjustment valve 116 can be adjusted. By doing so, both responsiveness and accuracy of opening adjustment are improved.
  • the refrigeration operation is an operation that keeps the internal air temperature below zero degrees
  • the two-temperature zone container 7 is a container 3 having a room of two different temperature zones, ie, the front chamber 3a and the rear chamber 3b.
  • the front chamber 3a is disposed on the refrigeration unit 4 side of the container 3 for refrigeration.
  • the front chamber 3a is directly cooled by the cooling air of four refrigeration units.
  • the rear chamber 3b is disposed on the door 5 side of the container 3 for refrigeration.
  • the rear chamber 3 b is cooled by cooling air whose temperature is controlled by the rear chamber unit 130.
  • the rear chamber unit 130 is composed of a heating / mixing chamber 126 arranged at the left and right of the front chamber 3a cold air suction chamber 125 in the center in the width direction of the container 3. .
  • the blower fan 122 is provided at the opening of the front chamber 3a of the duct 120 and the cool air suction chamber 125.
  • the blower fan 121 is provided at the suction opening of the heating / mixing chamber 126.
  • the duct 120 and the front chamber 3a cold air suction chamber 125 are configured to surround the entire periphery with a heat insulating material (not shown). With such a configuration, condensation on the duct 120 and the rear chamber 3b side of the front chamber 3a cold air suction chamber 125 can be prevented. In this way, dew condensation on the ceiling of the rear chamber 3b is prevented and the cargo is prevented from getting wet.
  • the heating / mixing chamber 126 has a drain pan 127 at the bottom. This is because in the heating / mixing chamber 126, the frozen air in the front chamber 3a sucked from the duct 120 and the refrigerated air in the rear chamber 3b sucked by the blower fan 121 are mixed, so that condensed water is generated.
  • the drain pan 127 can guide the generated condensed water to the air guide duct 129 and guide the air from the air guide duct 129 to the floor of the container 3. Condensed water guided to the floor is drained outside the container 3 drainage groove (not shown). In this way, cargo wetting is prevented in the rear chamber 3b.
  • each of the blower fans 121, 122, 121 is arranged in a row in the width direction of the container 3 as a total of nine fans by arranging three fans with the same diameter in a row. .
  • each fan can be made small, and thus the height dimension of the rear chamber unit 130 can be suppressed. In this way, the effective height for loading and unloading is increased in the rear chamber 3b.
  • the heater unit 123 shown in FIGS. 24 and 25 has a configuration in which the heating element 140 and the support member 141 are integrated.
  • a shutter 128 is provided in front of the blower fan 122 of the duct 120.
  • the shutter 128 is made of a plate-like elastic body, and its upper part is fixed to the upper side of the duct 120.
  • the shutter 128 is configured so that a weight is attached to the lower part and is in close contact with the lower side.
  • the shutter 128 can rotate to the blower fan 122 side at the lower part. That is, when the refrigeration air in the front chamber 3a is sucked by the blower fan 122, the shirt 128 is blown up and the front chamber 3a communicates with the front chamber 3a cool air suction chamber 125. When the blower fan 122 is stopped, the shutter 128 is released. The front chamber 3a is closed and is shut off from the front chamber 3a cold air suction chamber 125. In this way, in the duct 120, the refrigerated air in the front chamber 3a is prevented from naturally flowing into the rear chamber 3b except for forced suction by the blower fan 122.
  • the present invention can be used for a refrigeration container having a refrigeration unit on the open end of the container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transportation (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigerated container (1) where the temperature in a container (3) is controlled by a refrigeration unit (4) for circulating refrigerant by a compressor (11). The exit path of a condenser (12) is bifurcated into two routes. A bypass route (114), one of the two, is connected to an expansion valve via a solenoid valve (115), and the other route is connected to the expansion valve (113) after passing an expansion section and a supercooling heat exchanger (13n), which is a part of an evaporator (13), in that order. In supercooling operation, the solenoid valve (115) is closed.

Description

明 細 書  Specification
冷凍コンテナ  Refrigeration container
技術分野  Technical field
[0001] 本発明は、冷凍コンテナの冷媒回路構成の技術に関する。  [0001] The present invention relates to a technique of a refrigerant circuit configuration of a refrigeration container.
背景技術  Background art
[0002] 従来、コンテナの開口した一妻面に冷凍ユニットを備えた冷凍コンテナの技術は公 知である。冷凍ユニットは、冷凍から冷蔵まで、コンテナの積載貨物に応じた幅広い 温度域にてコンテナ内部を冷却することができる。しかし、 30°C設定 (冷凍)と 0°C 近傍の低温設定 (冷蔵)とでは、冷却負荷が大きく異なる。そのような場合、例えば、 冷凍ユニットは、 1台の圧縮機で幅広い冷却負荷に対応するため、過冷却器を備え ている。過冷却とは、凝縮器で凝縮した高圧 ·高温の冷媒液を冷却させる作用である 。過冷却効果によって蒸発器の入口ェンタルピーを低下させ、蒸発器能力すなわち 冷却能力を向上することができる。  [0002] Conventionally, the technology of a refrigerated container having a refrigeration unit on the open end of the container is known. The refrigeration unit can cool the inside of the container in a wide temperature range depending on the cargo loaded on the container, from freezing to refrigeration. However, the cooling load differs greatly between the 30 ° C setting (freezing) and the low temperature setting near 0 ° C (refrigeration). In such a case, for example, the refrigeration unit is equipped with a supercooler to handle a wide range of cooling loads with a single compressor. Supercooling is the action of cooling the high-pressure and high-temperature refrigerant liquid condensed in the condenser. The supercooling effect can reduce the inlet enthalpy of the evaporator and improve the evaporator capacity, that is, the cooling capacity.
例えば、特許文献 1は、図 1 (符号 6が過冷却熱交換器)において、圧縮機吸入冷 媒とレシーバからの液冷媒との間で熱交換を行って液冷媒を過冷却する冷媒回路構 成を開示している。また、チルド運転では冷媒回路の冷凍能力を制限するため膨張 弁を全開にする構成も開示して 、る。  For example, Patent Document 1 discloses a refrigerant circuit structure that supercools liquid refrigerant by exchanging heat between the compressor suction refrigerant and the liquid refrigerant from the receiver in FIG. 1 (reference numeral 6 is a supercooling heat exchanger). It discloses the composition. Also disclosed is a configuration in which the expansion valve is fully opened to limit the refrigeration capacity of the refrigerant circuit in chilled operation.
特許文献 1:特許 3239804号公報  Patent Document 1: Japanese Patent No. 3239804
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、特許文献 1のように、過冷却器を、別個独立の熱交^^として設ける構成は 、別途機器配置スペースが必要となる。また、膨張弁を全開にして冷媒回路の冷凍 能力を制限する構成は、冷媒循環量については冷凍運転時と同じであるため、圧縮 機負荷の低減量が乏しい。 However, as in Patent Document 1, a configuration in which the supercooler is provided as a separate and independent heat exchanger requires a separate device arrangement space. In addition, the configuration in which the expansion valve is fully opened to limit the refrigeration capacity of the refrigerant circuit is the same as that during the refrigeration operation, so the amount of reduction in the compressor load is poor.
そこで、解決しょうとする課題は、冷凍コンテナにおいて、熱交^^としての過冷却 器を省略できる冷媒回路構成と、冷媒循環量を制限できる冷媒回路構成を提示する ことである。 課題を解決するための手段 Therefore, the problem to be solved is to present a refrigerant circuit configuration capable of omitting the supercooler as a heat exchanger and a refrigerant circuit configuration capable of limiting the amount of refrigerant circulation in the refrigeration container. Means for solving the problem
[0004] 本発明の解決しょうとする課題は以上の如くであり、次にこの課題を解決するため の手段を説明する。  [0004] The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
[0005] 本発明は、圧縮機で冷媒を循環させる冷凍ユニットでコンテナ内の温度管理を行 なう冷凍コンテナにおいて、凝縮器出口経路を二分割し一方経路は開閉弁を介して 膨張弁と接続し、他方経路は膨張部と蒸発器の一部分の経路をこの順に通過後に 前記膨張弁と接続し、過冷却運転時は前記開閉弁を閉じる構成とするものである。  [0005] The present invention relates to a refrigeration container in which the temperature in a container is controlled by a refrigeration unit that circulates refrigerant using a compressor. The condenser outlet path is divided into two, and the path is connected to an expansion valve via an on-off valve. On the other hand, the other path is connected to the expansion valve after passing through a part of the expansion section and the evaporator in this order, and the on-off valve is closed during the supercooling operation.
[0006] 本発明は、圧縮機で冷媒を循環させる冷凍ユニットでコンテナ内の温度管理を行 なう冷凍コンテナにおいて、前記圧縮機吸入経路を二経路並列に設け、一方経路は 開閉弁を介して前記圧縮機に接続し、他方経路は開度調整弁を介して前記圧縮機 に接続し、冷凍運転時は前記開閉弁を開け、チルド運転時は前記開閉弁を閉じる構 成とするちのである。  [0006] The present invention provides a refrigeration container that controls the temperature in a container with a refrigeration unit that circulates a refrigerant in a compressor, wherein the compressor suction path is provided in two paths in parallel, and one path is connected via an on-off valve. Connected to the compressor, the other path is connected to the compressor via an opening adjustment valve, and the on-off valve is opened during refrigeration operation, and the on-off valve is closed during chilled operation. .
発明の効果  The invention's effect
[0007] 本発明の効果として、以下に示すような効果を奏する。  [0007] As the effects of the present invention, the following effects are obtained.
[0008] 本発明においては、冷凍運転等による低温環境下のコンテナ内に連通する蒸発器 の一部分を過冷却器として利用し、別途熱交^^としての過冷却器の設置を省略で きる。また、循環冷媒の全量をコンテナ内部の低温空気で過冷却するため、過冷却 用の冷媒を分岐する場合と比較して冷凍効率が良 、。  [0008] In the present invention, a part of the evaporator communicating with the container in a low-temperature environment such as a refrigeration operation can be used as a supercooler, and a separate supercooler can be omitted as a heat exchanger. In addition, since the entire amount of circulating refrigerant is supercooled with the low-temperature air inside the container, the refrigeration efficiency is better than when the supercooling refrigerant is branched.
[0009] 本発明にお ヽては、冷凍運転時と冷蔵運転時にお!ヽて、冷媒循環量調整の応答 性及び開度調整精度を向上できる。  In the present invention, the responsiveness of the refrigerant circulation amount adjustment and the opening degree adjustment accuracy can be improved during the freezing operation and the refrigeration operation.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明に係る冷凍コンテナがトラックに積載された状態を示す側面図及び背面 図。  FIG. 1 is a side view and a rear view showing a state in which a refrigerated container according to the present invention is loaded on a truck.
[図 2]冷凍ユニットの正面図。  [Fig. 2] Front view of the refrigeration unit.
[図 3]同じく左前方力 見た斜視図。  [Fig. 3] Perspective view of the left front force.
圆 4]同じく右前方力も見た斜視図。  [4] Perspective view of the right front force.
[図 5]同じく外板を取り外した状態の正面図。  [Fig. 5] Front view with the outer plate removed.
[図 6]同じく外板を取り外した状態の背面図。 圆 7]凝縮器及び蒸発器の配置を示す図 5における AA断面図。 FIG. 6 is a rear view with the outer plate removed. [7] AA sectional view in FIG. 5 showing the arrangement of the condenser and the evaporator.
圆 8]図 7における凝縮器ファンブラケットを回動した状態を示す AA図。 圆 8] AA diagram showing a state where the condenser fan bracket in FIG. 7 is rotated.
圆 9]排気尾管の構成を示す図 5における BB断面図。 9) BB cross-sectional view in FIG. 5 showing the configuration of the exhaust tail pipe.
圆 10]排気尾管の出口構造を示す図 5における CC断面図。 圆 10] CC sectional view in Fig. 5 showing the outlet structure of the exhaust tail pipe.
圆 11]排気尾管の支持構造を示す図 9における DD断面図。 [11] DD sectional view in FIG. 9 showing the support structure of the exhaust tail pipe.
[図 12]同じく図 9における EE断面図。  FIG. 12 is a cross-sectional view taken along the line EE in FIG.
圆 13]排気尾管の排水構造を示す図 9における FF断面図。 圆 13] FF cross section in Fig. 9 showing the drainage structure of the exhaust tailpipe.
[図 14]エンジンを冷凍ユニット外に取出した状態を示す冷凍ユニットの右側面図。 圆 15]操作部に近付くための梯子や把持部が設けられた冷凍コンテナの右側面図。  FIG. 14 is a right side view of the refrigeration unit showing a state where the engine is taken out of the refrigeration unit.圆 15] Right side view of a refrigerated container provided with a ladder and a grip for approaching the operation unit.
[図 16]操作部の構成を示す図 15における GG断面図。  FIG. 16 is a cross-sectional view taken along the line GG in FIG. 15, showing the configuration of the operation unit.
圆 17]燃料タンクが回動した状態を示す冷凍ユニットの右側面図。 圆 17] A right side view of the refrigeration unit showing a state in which the fuel tank is rotated.
[図 18]燃料タンクの底部構造を示す図 9における FF断面図。  [Fig. 18] FF sectional view in Fig. 9 showing the bottom structure of the fuel tank.
[図 19]電源ケーブル収納箱を示す正面図。  FIG. 19 is a front view showing a power cable storage box.
圆 20]デフロストヒータを取り付けた蒸発器を下方力も見た斜視図。 圆 20] Perspective view of the evaporator attached with the defrost heater as well as the downward force.
[図 21]同じく図 20における X方向から見た側面図。  FIG. 21 is a side view of the same as seen from the X direction in FIG.
圆 22]冷凍ュ-ットの冷媒回路構成を示す冷媒回路図。 [22] A refrigerant circuit diagram showing the refrigerant circuit configuration of the refrigerating unit.
[図 23]2温度帯コンテナの構成を示す側面図。  FIG. 23 is a side view showing the configuration of a two-temperature zone container.
圆 24]後室制御ュ-ットを示す斜視図。 [24] A perspective view showing a rear chamber control unit.
[図 25]後室制御ユニットを示す図 24における HH断面図。  FIG. 25 is a cross-sectional view of HH in FIG. 24 showing the rear chamber control unit.
符号の説明 Explanation of symbols
1 冷凍コンテナ  1 Refrigeration container
3 コンテナ  3 container
4 冷凍ユニット  4 Refrigeration unit
12 凝縮器  12 Condenser
13 蒸発器  13 Evaporator
13η 過冷却熱交換器  13η Subcooling heat exchanger
113 膨張弁  113 expansion valve
114 バイパス経路 115 電磁弁 114 Bypass path 115 Solenoid valve
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 次に、発明の実施の形態を説明する。 Next, embodiments of the invention will be described.
図 1は本発明に係る冷凍コンテナがトラックに積載された状態を示す側面図及び背 面図、図 2は冷凍ユニットの正面図、図 3は同じく左前方から見た斜視図である。 図 4は同じく右前方力も見た斜視図、図 5は同じく外板を取り外した状態の正面図、 図 6は同じく外板を取り外した状態の背面図である。  FIG. 1 is a side view and a rear view showing a state in which a refrigerated container according to the present invention is loaded on a truck, FIG. 2 is a front view of the refrigeration unit, and FIG. 3 is a perspective view as seen from the left front. 4 is a perspective view of the right front force as well, FIG. 5 is a front view of the same with the outer plate removed, and FIG. 6 is a rear view of the same with the outer plate removed.
図 7は凝縮器及び蒸発器の配置を示す図 5における AA断面図、図 8は図 7におけ る凝縮器ファンブラケットを回動した状態を示す AA図、図 9は排気尾管の構成を示 す図 5における BB断面図である。  Fig. 7 is a cross-sectional view taken along line AA in Fig. 5 showing the arrangement of the condenser and the evaporator, Fig. 8 is an AA view showing a state in which the condenser fan bracket in Fig. 7 is rotated, and Fig. 9 is a configuration of the exhaust tail pipe. FIG. 6 is a BB sectional view in FIG.
図 10は排気尾管の出口構造を示す図 5における CC断面図、図 11は排気尾管の 支持構造を示す図 9における DD断面図、図 12は同じく図 9における EE断面図であ る。  FIG. 10 is a CC sectional view in FIG. 5 showing the outlet structure of the exhaust tail pipe, FIG. 11 is a DD sectional view in FIG. 9 showing the support structure of the exhaust tail pipe, and FIG. 12 is an EE sectional view in FIG.
図 13は排気尾管の排水構造を示す図 9における FF断面図、図 14はエンジンを冷 凍ユニット外に取出した状態を示す冷凍ユニットの右側面図、図 15は操作部に近付 くための梯子や把持部が設けられた冷凍コンテナの右側面図である。  Fig. 13 is a cross-sectional view of the FF in Fig. 9 showing the drainage structure of the exhaust tail pipe, Fig. 14 is a right side view of the refrigeration unit showing the engine taken out of the refrigeration unit, and Fig. 15 is close to the operation unit It is a right view of the freezing container provided with the ladder and the holding part.
図 16は操作部の構成を示す図 15における GG断面図、図 17は燃料タンクが回動 した状態を示す冷凍ユニットの右側面図、図 18は燃料タンクの底部構造を示す図 9 における FF断面図である。  16 is a cross-sectional view taken along the line GG in FIG. 15 showing the configuration of the operation unit, FIG. 17 is a right side view of the refrigeration unit showing a state where the fuel tank is rotated, and FIG. 18 is a cross-sectional view taken along line FF in FIG. FIG.
図 19は電源ケーブル収納箱を示す正面図、図 20はデフロストヒータを取り付けた 蒸発器を下方から見た斜視図、図 21は同じく図 20における X方向から見た側面図で ある。  FIG. 19 is a front view showing a power cable storage box, FIG. 20 is a perspective view of an evaporator with a defrost heater attached, as viewed from below, and FIG. 21 is a side view of FIG.
図 22は冷凍ユニットの冷媒回路構成を示す冷媒回路図、図 23は 2温度帯コンテナ の構成を示す側面図、図 24は後室制御ユニットを示す斜視図である。  22 is a refrigerant circuit diagram showing the refrigerant circuit configuration of the refrigeration unit, FIG. 23 is a side view showing the configuration of the two-temperature zone container, and FIG. 24 is a perspective view showing the rear chamber control unit.
図 25は後室制御ユニットを示す図 24における HH断面図である。  FIG. 25 is a cross-sectional view taken along the line HH in FIG. 24 showing the rear chamber control unit.
[0013] まず、本発明の実施例に係る冷凍コンテナについて簡単に説明する。コンテナは、 貨物輸送に用いる大型容器である。輸送業者は、コンテナを用いて戸口力も戸口ま で一貫輸送を行い、経費節減と破損 ·盗難の防止を図る。また、冷凍ユニットは、低 温空気を供給して、品物を冷却 ·冷凍させる機械である。すなわち、冷凍コンテナは、 冷凍ユニットでコンテナ内部を低温度にして貨物輸送に用いる大型容器である。冷 凍コンテナは、コンテナ内部を冷凍又は冷蔵等の種々の低温度帯に設定できる。冷 凍ユニットは、コンテナ内部が設定された温度になるように、運転制御を行なう。 このようにして、冷凍コンテナは、冷凍食品、アイスクリーム、鮮魚又は果物等の様 々な貨物を輸送可能である。また、冷凍コンテナは、一貫輸送を目的としているため[0013] First, a refrigerated container according to an embodiment of the present invention will be briefly described. Containers are large containers used for freight transportation. Carriers use containers to carry out integrated transportation to and from the door to reduce costs and prevent damage and theft. Also, the refrigeration unit is low A machine that supplies hot air to cool and freeze items. In other words, the refrigeration container is a large container used for freight transportation with the refrigeration unit having a low temperature inside the container. The refrigerated container can be set in various low temperature zones such as freezing or refrigeration. The refrigeration unit controls the operation so that the temperature inside the container reaches the set temperature. In this way, the refrigerated container can transport various cargoes such as frozen food, ice cream, fresh fish or fruits. Also, refrigerated containers are intended for integrated transportation
、船舶、鉄道又はトラックにての輸送に対応できるようにされている。例えば、図 1はト ラック 2に積載された冷凍コンテナ 1を示して 、る。 It can be adapted for transportation by ship, rail or truck. For example, FIG. 1 shows a refrigerated container 1 loaded on a track 2.
[0014] 図 1に示すように、冷凍コンテナ 1は、コンテナ 3と冷凍ユニット 4力も構成されている 。コンテナ 3は、通常のコンテナ(冷凍コンテナではない)に比較して、断熱性を有す る部材を用いて構成されて 、る。 As shown in FIG. 1, the refrigerated container 1 is also configured with a container 3 and a refrigeration unit 4 force. Container 3 is made up of members that have heat insulation properties compared to ordinary containers (not refrigerated containers).
コンテナ 3は、一側妻面は開口され、他側妻面は開閉可能な扉 5を備えられる構成 とされている。開口された妻面には、フレーム 6に支持された冷凍ユニット 4が取り付 けられる。一方、開閉可能な扉 5が構成される妻面からは、貨物を出し入れできる。 ここで、冷凍ユニット 4について簡単に説明する。以後、説明簡略のために、冷凍ュ ニット 4がコンテナ 3に取り付けられた冷凍コンテナ 1において、外部に露出する面を 冷凍ユニット 4の正面として、背面(=コンテナ内部に露出する面)、左右、幅、奥行き 及び高さを記載する。  The container 3 is configured to have an opening on one side of the wife and a door 5 that can be opened and closed on the other side. The refrigeration unit 4 supported by the frame 6 is attached to the opened wife surface. On the other hand, cargo can be taken in and out from the wife's face, which has an openable door 5. Here, the refrigeration unit 4 will be briefly described. Hereinafter, for the sake of brevity, in the refrigerated container 1 in which the refrigeration unit 4 is attached to the container 3, the surface exposed to the outside is the front of the refrigeration unit 4, and the rear surface (= the surface exposed inside the container), left and right, Enter the width, depth and height.
[0015] 図 5及び図 6に示すように、冷凍ユニット 4は、一つのユニット内において冷凍サイク ルを構成している。より詳しくは、冷凍ユニット 4は、低温'低圧のガス冷媒を吸入して 高温 ·高圧のガス冷媒に圧縮する圧縮機 11と、高温'高圧のガス冷媒を高温 ·高圧 の液冷媒に凝縮させる凝縮器 12と、高温'高圧の液冷媒を滞留させるレシーバ 19と 、高温,高圧の液冷媒を低温 ·低圧の液ガス冷媒に膨張させる膨張弁 113 (図 22参 照)と、低温'低圧の液ガス冷媒を低温'低圧のガス冷媒へ蒸発させる蒸発器 13とを 備えている。凝縮器 12は、凝縮器ファン電動機 14により駆動される凝縮器ファン 16 を用いて庫外空気によって冷媒を冷却する空冷式熱交換器である。蒸発器 13は、 蒸発器ファン電動機 15により蒸発器ファン 17を用いて庫内空気から冷媒に蒸発熱 を吸収させることで庫内空気を冷却する空冷式熱交^^である。 [0016] また、冷凍ユニット 4は、電源を圧縮機 11に供給する発電機 21と、発電機 21を駆 動するエンジン 22と、エンジン 22の燃料を貯蓄する燃料タンク 23と、吸気管 32及び エアクリーナー 33より構成される吸気系統 31と、排気管 42及びマフラー 43より構成 される排気系統 41を備えている。さら〖こ、冷凍ユニット 4は、電気品箱 51及び電源ケ 一ブル 52を備えている。電気品箱 51は、エンジン 22や圧縮機 11等の機器を制御 する Electronic Control Unit (以下、 ECUと称す) 50、庫内温度等を設定する 操作パネル 94を備えて 、る。 As shown in FIGS. 5 and 6, the refrigeration unit 4 constitutes a refrigeration cycle in one unit. More specifically, the refrigeration unit 4 includes a compressor 11 that sucks a low-temperature / low-pressure gas refrigerant and compresses it into a high-temperature / high-pressure gas refrigerant, and a condensation that condenses the high-temperature / high-pressure gas refrigerant into a high-temperature / high-pressure liquid refrigerant. , A receiver 19 that retains high-temperature and high-pressure liquid refrigerant, an expansion valve 113 that expands the high-temperature and high-pressure liquid refrigerant into a low-temperature and low-pressure liquid-gas refrigerant (see FIG. 22), and a low-temperature and low-pressure liquid refrigerant. And an evaporator 13 for evaporating the gas refrigerant into a low-temperature and low-pressure gas refrigerant. The condenser 12 is an air-cooled heat exchanger that uses a condenser fan 16 driven by a condenser fan electric motor 14 to cool the refrigerant with outside air. The evaporator 13 is an air-cooled heat exchanger that cools the internal air by allowing the evaporator fan motor 15 to absorb the heat of evaporation from the internal air to the refrigerant by using the evaporator fan 17. [0016] The refrigeration unit 4 includes a generator 21 that supplies power to the compressor 11, an engine 22 that drives the generator 21, a fuel tank 23 that stores the fuel of the engine 22, an intake pipe 32, and An intake system 31 composed of an air cleaner 33 and an exhaust system 41 composed of an exhaust pipe 42 and a muffler 43 are provided. Further, the refrigeration unit 4 includes an electrical component box 51 and a power cable 52. The electrical component box 51 includes an electronic control unit (hereinafter referred to as an ECU) 50 that controls equipment such as the engine 22 and the compressor 11, and an operation panel 94 that sets the internal temperature and the like.
このような構成とすることで、エンジン 22によって発電機 21が駆動され、発電機 21 により供給される電気にて圧縮機 11、凝縮器ファン電動機 14又は蒸発器ファン電動 機 15等が駆動され、冷凍ユニット 4の温度制御が行なわれる。さらに、外部商用電源 より電気を供給され駆動することも可能である。  With such a configuration, the generator 21 is driven by the engine 22, and the compressor 11, the condenser fan motor 14 or the evaporator fan motor 15 is driven by the electricity supplied by the generator 21, The temperature control of the refrigeration unit 4 is performed. Furthermore, it can be driven by electricity supplied from an external commercial power source.
[0017] 以下に、本実施例の冷凍ユニット 4の各部分の構成について詳細に説明する。次 に、冷凍ユニット 4の蒸発器を利用した過冷却回路を有する冷媒回路構成について 詳細に説明する。さらに、冷凍コンテナ 1のコンテナ 3の 2温度帯制御構造について 詳細に説明する。  [0017] Hereinafter, the configuration of each part of the refrigeration unit 4 of the present embodiment will be described in detail. Next, a refrigerant circuit configuration having a supercooling circuit using the evaporator of the refrigeration unit 4 will be described in detail. Furthermore, the two temperature zone control structure of the container 3 of the refrigeration container 1 will be described in detail.
なお、以下においては、冷凍ユニット 4の保守 ·点検を行なう者、冷凍ユニット 4の温 度設定を操作する者等、冷凍ユニット 4を取り扱う者を総して、作業者としている。  In the following, the operators handling the refrigeration unit 4 such as those who perform maintenance / inspection of the refrigeration unit 4 and those who operate the temperature setting of the refrigeration unit 4 are all workers.
[0018] まず、図 5乃至図 7を用いて、冷凍ユニット 4の全体的なレイアウト構成について説 明する。 First, an overall layout configuration of the refrigeration unit 4 will be described with reference to FIGS.
図 5乃至図 7に示すように、冷凍ユニット 4は、ケーシング 61に機器を配置すること で構成されている。ケーシング 61は、高さ方向において、上部 101、中央部 102及 び下部 103とに大きく 3分割される構成とされている。中央部 102は、幅方向におい て、右中央部 102a及び左中央部 102bと 2分割される構成とされている。  As shown in FIGS. 5 to 7, the refrigeration unit 4 is configured by arranging devices in a casing 61. The casing 61 is configured to be largely divided into an upper part 101, a central part 102, and a lower part 103 in the height direction. The central portion 102 is configured to be divided into a right central portion 102a and a left central portion 102b in the width direction.
上部 101には、正面側に凝縮器 12、凝縮器ファン電動機 14及び凝縮器ファン 16 が配置され、背面側に蒸発器 13、蒸発器ファン電動機 15及び蒸発器ファン 17が配 置されている。中央部 102には、右中央部 102aにエンジン系統力 左中央部 102b に冷媒系統が配置されている。つまり、エンジン系統及び冷媒系統は、同階層に配 置されている。下部 103には、燃料タンク 23が配置されている。 [0019] このような構成とすることで、例えばトラック 2に冷凍コンテナ 1が積載された場合で あっても、燃料タンク 23及び補油口 36 (図 3参照)は、作業者が近付き易い高さにあ る。つまり、作業者は、容易に給油作業が行なえる。このようにして、冷凍ユニット 4に おいて、メンテナンス性を向上している。 In the upper part 101, a condenser 12, a condenser fan motor 14 and a condenser fan 16 are arranged on the front side, and an evaporator 13, an evaporator fan motor 15 and an evaporator fan 17 are arranged on the back side. In the central part 102, the engine system power is arranged in the right central part 102a, and the refrigerant system is arranged in the left central part 102b. In other words, the engine system and the refrigerant system are arranged in the same level. A fuel tank 23 is disposed in the lower part 103. With this configuration, for example, even when the refrigerated container 1 is loaded on the truck 2, the fuel tank 23 and the oil filler port 36 (see FIG. 3) are easily accessible. There is. That is, the worker can easily perform the refueling operation. In this way, maintainability is improved in the refrigeration unit 4.
また、重量物である発電機 21、エンジン 22及び圧縮機 11が同階層に配置される ので、発電機 21やエンジン 22の取り付け台床を共通フレーム 62として構成できる。 取り付け台床の共通化により部品点数を削減できるので部品管理工数や組立工数 の削減が可能となる。  Further, since the generator 21, the engine 22 and the compressor 11 which are heavy objects are arranged in the same hierarchy, the mounting base of the generator 21 and the engine 22 can be configured as the common frame 62. Since the number of parts can be reduced by using a common mounting base, it is possible to reduce parts management man-hours and assembly man-hours.
[0020] また、図 5乃至図 7に示すように、燃料タンク 23は、ケーシング 61の下部 103に配 置されている。燃料タンク 23は、長手方向の長さをケーシング 61の幅方向の長さと 略同一に形成されている。  Further, as shown in FIGS. 5 to 7, the fuel tank 23 is disposed in the lower portion 103 of the casing 61. The fuel tank 23 is formed so that the length in the longitudinal direction is substantially the same as the length in the width direction of the casing 61.
このような構成とすることで、燃料タンク 23は、ケーシング 61内の与えられた空間に ぉ 、て最大容積を確保できるので、長期間の無給油運転を実現して 、る。  By adopting such a configuration, the fuel tank 23 can secure a maximum volume in a given space in the casing 61, so that a long-term oil-free operation can be realized.
[0021] また、図 5に示すように、フィードポンプ 24及びオイルフィルタ 25を介して送油管 28 力 エンジン 22と燃料タンク 23と接続している。ここで、フィードポンプ 24は、燃料タ ンク 23に貯蓄された燃料をエンジン 22に供給するポンプである。また、オイルフィル タ 25は、供給する燃料を濾過するフィルタである。フィードポンプ 24及びオイルフィ ルタ 25は、ケーシング 61の下部 103において、燃料タンク 23の右側に隣接して配置 されている。  In addition, as shown in FIG. 5, an oil feed pipe 28 engine 22 and a fuel tank 23 are connected via a feed pump 24 and an oil filter 25. Here, the feed pump 24 is a pump that supplies the fuel stored in the fuel tank 23 to the engine 22. The oil filter 25 is a filter that filters the supplied fuel. The feed pump 24 and the oil filter 25 are disposed adjacent to the right side of the fuel tank 23 in the lower part 103 of the casing 61.
このような構成とすることで、フィードポンプ 24は、燃料タンク 23との高低差を抑える ことができ、フィードポンプ 24の燃料送油効率を向上している。  By adopting such a configuration, the feed pump 24 can suppress the height difference from the fuel tank 23, and the fuel oil feeding efficiency of the feed pump 24 is improved.
[0022] 次に、図 5乃至図 7を用いて、冷凍ユニット 4の熱交換器レイアウト構成について詳 細に説明する。 Next, the heat exchanger layout configuration of the refrigeration unit 4 will be described in detail with reference to FIGS.
図 5乃至図 7に示すように、ケーシング 61の上部 101において、凝縮器 12を正面 側に、蒸発器 13を背面側にそれぞ; ^立置させて、蒸発器 13を断熱壁 63a ' 63b ' 63 cで側面断面視略「コ」の字状に取り囲んで 、る。  As shown in FIGS. 5 to 7, in the upper part 101 of the casing 61, the condenser 12 is placed on the front side and the evaporator 13 is placed on the back side; '63 c.
凝縮器 12は、蒸発器 13に比較して大きい熱交換面積にて形成されている。凝縮 器 12は、庫外空気がコンテナ 3の妻面を貫通する方向(図 7中の矢印 P)に流れるよう に配置される。また、蒸発器 13は、庫内空気が鉛直方向(図 7中の矢印 Q)に流れる ように配置される。 The condenser 12 is formed with a large heat exchange area compared to the evaporator 13. The condenser 12 flows so that the outside air flows in the direction penetrating the wife surface of the container 3 (arrow P in FIG. 7). Placed in. Further, the evaporator 13 is arranged so that the air in the cabinet flows in the vertical direction (arrow Q in FIG. 7).
[0023] このような構成とすることで、以下の利点が得られる。通常、冷凍サイクルにお 、て、 凝縮能力 =圧縮機能力 +蒸発能力の関係より、凝縮能力は蒸発能力より大きい能 力が必要となる。そこで、凝縮器の熱交換面積を蒸発器よりも大きくする。この場合、 凝縮器を前記の蒸発器のような配置にすれば冷凍ユニット 4の奥行き寸法が大きくな る。一方、熱交換面積を略同一にするのなら凝縮器ファン風量を蒸発器よりも増加す る必要がある。しかし、この場合、ファン個数、ファン径或いはファン回転数が大きくな る。そして、ファン個数やファン径の増大は収納スペースの増加につながり冷凍ュ- ット 4のコンパクトィ匕が図れない。また、ファン回転数増大では消費電力が大きくなる。 さらには電流による発熱量も増加するのでファン電動機の熱劣化も早くなる。  [0023] By adopting such a configuration, the following advantages can be obtained. Usually, in the refrigeration cycle, the condensation capacity needs to be greater than the evaporation capacity because of the relationship of condensation capacity = compression function + evaporation capacity. Therefore, the heat exchange area of the condenser is made larger than that of the evaporator. In this case, the depth dimension of the refrigeration unit 4 increases if the condenser is arranged like the evaporator. On the other hand, if the heat exchange area is made substantially the same, it is necessary to increase the condenser fan air volume more than the evaporator. However, in this case, the number of fans, the fan diameter, or the fan speed increases. And the increase in the number of fans and the fan diameter leads to an increase in storage space, and the compactness of the refrigerator unit 4 cannot be achieved. In addition, the power consumption increases as the fan speed increases. In addition, the amount of heat generated by the current increases, so that the heat deterioration of the fan motor is accelerated.
従って、凝縮器の熱交換面積を蒸発器よりも大きくするとともに、凝縮器は庫外空 気の流出入面をコンテナ妻面と対向させ、蒸発器は庫内空気の流出入面を水平面と 対向させることで、凝縮器のファン風量増加を抑えて冷凍ユニット 4のコンパクト化が 図れる。  Therefore, the heat exchange area of the condenser is made larger than that of the evaporator, the condenser makes the outflow / inflow surface of the outside air face the container wife surface, and the evaporator makes the inflow / outflow surface of the inside air face the horizontal plane. By doing so, the refrigeration unit 4 can be made compact by suppressing an increase in the fan air volume of the condenser.
[0024] また、図 7に示すように、凝縮器ファン 16は、凝縮器 12の背面下方であって断熱壁 63cの下方にファン軸を鉛直方向として配置されている。このような構成とすることで 、凝縮器冷却風は、コンテナ 3の妻面を貫通するように凝縮器 12を通過した後、下方 に導かれる。  Further, as shown in FIG. 7, the condenser fan 16 is disposed below the rear surface of the condenser 12 and below the heat insulating wall 63c with the fan shaft as a vertical direction. With such a configuration, the condenser cooling air is guided downward after passing through the condenser 12 so as to penetrate the end face of the container 3.
また、前述の構成とすることで、例えば冷凍ユニット 4の上部に凝縮器ファン 16及び 凝縮器ファン電動機 14を設置する構成と比較して、冷凍ユニットの高さを抑制できる さらに、凝縮器冷却風は図 2に示す導風部 65によりユニット外の下方に排出される 。このような通風構成とすることで、例えばトラック 2に冷凍コンテナ 1が積載されてトラ ックエンジンが冷凍ユニット 4の前下方に位置することになつても、凝縮器冷却風をト ラックエンジン側に排出できるのでトラックエンジン周囲の熱気が冷凍ユニット 4側へ 上がってくるのを低減できる。  Further, with the above-described configuration, for example, the height of the refrigeration unit can be suppressed as compared with a configuration in which the condenser fan 16 and the condenser fan electric motor 14 are installed on the top of the refrigeration unit 4. Is discharged to the outside of the unit by the air guide 65 shown in FIG. With such a ventilation structure, for example, even if the refrigeration container 1 is loaded on the truck 2 and the truck engine is positioned in front of and below the refrigeration unit 4, the condenser cooling air is discharged to the truck engine side. As a result, it is possible to reduce the hot air around the truck engine from rising to the refrigeration unit 4 side.
[0025] また、図 6乃至図 8に示すように、凝縮器ファン電動機 14は、ブラケット 60によって 支持されている。図 8に示すように、ブラケット 60は、ケーシング 61に支持された奥行 き側を支軸として構成されている。そして、ブラケット 60は、その後部に枢支軸を左右 水平方向に設けて、下向きに回動可能な構成とされて 、る(図 8中矢印 L)。 Further, as shown in FIGS. 6 to 8, the condenser fan electric motor 14 is It is supported. As shown in FIG. 8, the bracket 60 is configured with the depth side supported by the casing 61 as a support shaft. The bracket 60 is configured to be pivotable downward by providing a pivot shaft at the rear side in the horizontal direction (arrow L in FIG. 8).
このような構成とすることで、作業者は、凝縮器 12を取り外すことなぐ容易に凝縮 器ファン電動機 14及び凝縮器ファン 16を交換又は点検できる。このようにして、冷凍 ユニット 4において、凝縮器ファン電動機 14及び凝縮器ファン 16のメンテナンス性を 向上している。  With such a configuration, the operator can easily replace or inspect the condenser fan motor 14 and the condenser fan 16 without removing the condenser 12. In this way, in the refrigeration unit 4, the maintainability of the condenser fan motor 14 and the condenser fan 16 is improved.
[0026] また、図 7に示すように、蒸発器 13は、取り付け台 64によって支持されている。取り 付け台 64は、ケーシング 61を構成する断熱壁 63cに設置されている。また、断熱壁 63cは、蒸発器 13を通過する庫内空気の流れ抵抗を低減するため、コンテナ内部下 方になるほど開口が大きくなるように形成されている。ここで、取り付け台 64は、上部 を水平にして蒸発器 13を支持し、下部は断熱壁 63cの傾斜に合わせて傾斜させて、 断熱壁 63cに設置できるように構成されて!、る。  Further, as shown in FIG. 7, the evaporator 13 is supported by a mounting base 64. The mounting base 64 is installed on a heat insulating wall 63c constituting the casing 61. Further, the heat insulating wall 63c is formed so that the opening becomes larger toward the lower inside of the container in order to reduce the flow resistance of the internal air passing through the evaporator 13. Here, the mounting base 64 is configured to support the evaporator 13 with the upper part horizontal and to be installed on the heat insulating wall 63c with the lower part inclined according to the inclination of the heat insulating wall 63c! RU
このような構成とすることで、例えば、作業者が蒸発器 13を交換又は点検するため に蒸発器 13を取り外すときに、蒸発器 13が滑り落ちることを防止できる。このようにし て、冷凍ユニット 4において、蒸発器 13のメンテナンス性を向上している。  By adopting such a configuration, for example, when the operator removes the evaporator 13 in order to replace or check the evaporator 13, the evaporator 13 can be prevented from slipping down. In this way, the maintainability of the evaporator 13 in the refrigeration unit 4 is improved.
[0027] 次に、図 2乃至図 5又は図 7を用いて、冷凍ユニット 4の凝縮器 12の通風構成につ いて説明する。  Next, the ventilation structure of the condenser 12 of the refrigeration unit 4 will be described with reference to FIG. 2 to FIG. 5 or FIG.
図 2乃至図 4に示すように、下部エンジンカバー 68は、冷凍ユニット 4の正面に設け られている。下部エンジンカバー 68は、エンジン 22が配置された右中央部 102aに おいて略下方と、下部 103の略上方を被装する構成とされている。つまり、エンジン 2 2の前方と燃料タンク 23の上部前方を覆う構成としている。そして、下部エンジンカバ 一 68は、燃料タンク 23との間に隙間 Rを形成している。  As shown in FIGS. 2 to 4, the lower engine cover 68 is provided in front of the refrigeration unit 4. The lower engine cover 68 is configured to cover a substantially lower portion and a substantially upper portion of the lower portion 103 in the right center portion 102a where the engine 22 is disposed. In other words, the front side of the engine 22 and the upper front side of the fuel tank 23 are covered. The lower engine cover 68 forms a gap R with the fuel tank 23.
このような構成とすることで、導風部 65と隙間 Rとは、冷凍ユニット 4の高さ方向にお いて一定の距離が確保されている。他方、導風部 65と隙間 Rとは、冷凍ユニット 4の 幅方向においても一定の距離が確保されている。このようにして、導風部 65から排出 される凝縮器冷却風が、隙間 Rより右中央部 102aへ還流されることを防止することで 、冷凍ユニット 4において、エンジン 22の冷却性能や吸気効率を向上している。 [0028] また、図 5に示すように、ラジェ一タフアン 26は、冷凍ユニット 4の右中央部 102aの 右側面すなわち冷凍ユニット 4の右側面に設けられている。ラジェ一タフアン 26により 吸引された冷却風は、隙間 Rより右中央部 102aへ導入し、エンジン 22と発電機 21 の共通フレーム 62の下を通過して、隔壁 66の近傍の導入部 32aより右中央部 102a へ流入して、開口部 9へ流出する(図 2乃至図 5及び図 7中の矢印 S)。 By adopting such a configuration, a certain distance is secured between the air guide portion 65 and the gap R in the height direction of the refrigeration unit 4. On the other hand, a constant distance is secured between the air guide portion 65 and the gap R in the width direction of the refrigeration unit 4. In this way, by preventing the condenser cooling air discharged from the air guide portion 65 from flowing back to the right central portion 102a through the gap R, the cooling performance and intake efficiency of the engine 22 are reduced in the refrigeration unit 4. Has improved. Further, as shown in FIG. 5, the Rajeta fan 26 is provided on the right side surface of the right center portion 102 a of the refrigeration unit 4, that is, the right side surface of the refrigeration unit 4. The cooling air sucked in by the Rajjtafan 26 is introduced into the right center portion 102a through the gap R, passes under the common frame 62 of the engine 22 and the generator 21 and passes through the introduction portion 32a near the partition wall 66 to the right. It flows into the central portion 102a and flows out into the opening 9 (arrow S in FIGS. 2 to 5 and 7).
このような構成とすることで、冷却風は、発電機 21、エンジン 22の排熱温度の低温 力 高温の順に冷却できる。そのため、発電機 21の冷却効率を向上している。  By adopting such a configuration, the cooling air can be cooled in the order of low temperature power high temperature of the exhaust heat temperature of the generator 21 and the engine 22. Therefore, the cooling efficiency of the generator 21 is improved.
また、ラジェ一タフアン 26を中央部 102に設けるので冷凍ユニット 4の高さを抑える ことができる。  In addition, since the Raje-tafan 26 is provided in the central portion 102, the height of the refrigeration unit 4 can be suppressed.
[0029] 次に、図 2乃至図 6又は図 9乃至図 13を用いて、エンジン 22の吸排気系統の構成 について詳細に説明する。  Next, the configuration of the intake / exhaust system of the engine 22 will be described in detail with reference to FIG. 2 to FIG. 6 or FIG. 9 to FIG.
図 5に示すように、吸気管 32は、導入部 32aに対抗する開口部より外気を導入する このような構成とすることで、ラジェ一タフアン 26による冷却風の一部を吸弓 Iできる。  As shown in FIG. 5, the intake pipe 32 can suck a part of the cooling air by the Rajeta fan 26 by adopting such a configuration that introduces outside air from the opening facing the introduction portion 32a.
[0030] また、図 5又は図 6に示すように、隔壁 66は、中央部 102の幅方向略中央に設けら れている。隔壁 66は、エンジン系統が配置される右中央部 102aと冷媒系統が配置 される左中央部 102bとを隔てている。マフラー 43は、左中央部 102bの上方におい て、隔壁 66に取り付けられている。また、電気品箱 51は、上部 101の右側に配置さ れている。 In addition, as shown in FIG. 5 or FIG. 6, the partition wall 66 is provided at the approximate center in the width direction of the central portion 102. The partition wall 66 separates the right center portion 102a where the engine system is disposed and the left center portion 102b where the refrigerant system is disposed. The muffler 43 is attached to the partition wall 66 above the left center portion 102b. The electrical component box 51 is arranged on the right side of the upper part 101.
このような構成とすることで、マフラー 43と電気品箱 51とを隔離できる。このようにし て、電気品箱 51は、マフラー 43によるエンジン排熱の影響を受けることを防止できる 。つまり、電気品箱 51において、熱保護を実現している。  With such a configuration, the muffler 43 and the electrical component box 51 can be isolated. In this way, the electrical component box 51 can be prevented from being affected by exhaust heat from the engine due to the muffler 43. That is, heat protection is realized in the electrical component box 51.
[0031] また、図 2乃至図 4に示すように、パネル 67は、冷媒系統が配置される左中央部 10 2bの正面に設けられている。ノ ネル 67は、通風可能なメッシュ 67aが形成されている このような構成とすることで、左中央部 102bは、特にファン等を設けることなく自然 換気が可能となる。このようにして、冷凍ユニット 4において、冷媒制御機器 (例えば、 電磁弁又は電子膨張弁等)及びマフラー 43の冷却効率を向上して 、る。 [0032] また、図 5に示すように、排気管 42は、エンジン 22からの排気を外部へ排出するよ うに設けられている。排気管 42は、マフラー 43からは排気尾管 44にて排気を外部へ 排出する。排気尾管 44は、上部 101において、凝縮器 12と電気品箱 51との間を鉛 直方向に構成されている。さらに、図 9に示すように、排気尾管 44は、排気方向を冷 凍ユニット 4の背面側として 、る。 Further, as shown in FIGS. 2 to 4, the panel 67 is provided in front of the left central portion 102b where the refrigerant system is arranged. By adopting such a configuration that the mesh 67a that allows ventilation is formed, the left central portion 102b can be naturally ventilated without providing a fan or the like. In this way, in the refrigeration unit 4, the cooling efficiency of the refrigerant control device (for example, an electromagnetic valve or an electronic expansion valve) and the muffler 43 is improved. Further, as shown in FIG. 5, the exhaust pipe 42 is provided to exhaust the exhaust from the engine 22 to the outside. The exhaust pipe 42 discharges the exhaust from the muffler 43 to the outside through the exhaust tail pipe 44. In the upper part 101, the exhaust tail pipe 44 is configured between the condenser 12 and the electrical component box 51 in the lead straight direction. Further, as shown in FIG. 9, the exhaust tail pipe 44 has the exhaust direction as the back side of the refrigeration unit 4.
このような構成とすることで、排気尾管 44を冷凍ユニット 4内に収納でき、冷凍ュ- ット 4の上端においてエンジン 22の排気を排出することができる。また、排出方向は、 例えばトラック 2に積載された場合は、トラック 2の進行方向逆向きとすることができる。 このようにして、冷凍ユニット 4において、エンジン排気の再吸引を防止している。  With such a configuration, the exhaust tail pipe 44 can be stored in the refrigeration unit 4, and the exhaust of the engine 22 can be discharged at the upper end of the refrigeration unit 4. The discharge direction can be opposite to the traveling direction of the truck 2 when loaded on the truck 2, for example. In this way, re-suction of engine exhaust is prevented in the refrigeration unit 4.
[0033] また、図 9及び図 10に示すように、排気尾管 44の出口部は、冷凍ユニット 4の天井 部において、カバー 70で被装されている。このカバー 70は、排気方向のみを開口し た簡易な構成のカバーである。また、排気尾管 44は、冷凍ユニット 4の天井部におい て、ケーシング 61の貫通部周縁に防水堰 71を設けている。この防水堰 71は、排気 尾管 44に近接して設けられて!/、る。  Further, as shown in FIGS. 9 and 10, the outlet portion of the exhaust tail pipe 44 is covered with a cover 70 at the ceiling portion of the refrigeration unit 4. This cover 70 is a cover with a simple structure that opens only in the exhaust direction. In addition, the exhaust tail pipe 44 is provided with a waterproof weir 71 on the periphery of the through portion of the casing 61 in the ceiling portion of the refrigeration unit 4. This waterproof weir 71 is provided in close proximity to the exhaust tail pipe 44.
このような構成とすることで、雨水の排気尾管 44への侵入を阻止される。また、冷凍 ユニット 4の天井部に溜まった雨水は、排気尾管 44のケーシング 61貫通部周縁より ケーシング 61内部に侵入することができない。このようにして、冷凍ユニット 4におい て、雨水の侵入防止を図っている。  By adopting such a configuration, intrusion of rainwater into the exhaust tail pipe 44 is prevented. Moreover, rainwater collected on the ceiling of the refrigeration unit 4 cannot enter the casing 61 from the periphery of the casing 61 through portion of the exhaust tail pipe 44. In this way, the refrigeration unit 4 prevents rainwater from entering.
[0034] また、図 9乃至図 12に示すように、排気尾管 44は、ケーシング 61内部で構成され ている。排気尾管 44は、凝縮器 12と電気品箱 51との間において、鉛直方向に配設 された鉛直部分 44aを有している(図 5参照)。この鉛直部分 44aは、ケーシング 61に 防振支持されている。より詳しくは、排気尾管 44は、ケーシング 61に対し支持材 73 及び弹性材 74を介してブラケット 72により支持されている。  Further, as shown in FIGS. 9 to 12, the exhaust tail pipe 44 is configured inside the casing 61. The exhaust tail pipe 44 has a vertical portion 44a disposed in the vertical direction between the condenser 12 and the electrical component box 51 (see FIG. 5). The vertical portion 44a is supported by the casing 61 in a vibration-proof manner. More specifically, the exhaust tail pipe 44 is supported on the casing 61 by a bracket 72 via a support material 73 and a coasting material 74.
このような構成とすることで、排気尾管 44が経年劣化により又は排熱により変形した 場合であっても、ブラケット 72は、排気尾管 44の熱変形を吸収しつつ排気尾管 44を 支持することができる。このようにして、冷凍ユニット 4において、排気管 42の破損を 防止でき、耐久性を向上している。  With such a configuration, the bracket 72 supports the exhaust tail pipe 44 while absorbing the thermal deformation of the exhaust tail pipe 44 even when the exhaust tail pipe 44 is deformed due to aging or exhaust heat. can do. In this manner, in the refrigeration unit 4, the exhaust pipe 42 can be prevented from being damaged, and the durability is improved.
[0035] また、図 5に示すように、排気尾管 44は、凝縮器 12の下方において、水平方向に 配設された水平部分 44bを有している。さら〖こ、図 13に示すように、水平部分 44bに は、ドレン排出口 45が設けられている。ドレン排出口 45は、ドレンホース 46と接続さ れている。なお、ドレンホース 46は、図示していないが、冷凍ユニット 4外部に排水で きるように設けられている。 Further, as shown in FIG. 5, the exhaust tail pipe 44 is arranged in the horizontal direction below the condenser 12. It has a horizontal portion 44b disposed. Furthermore, as shown in FIG. 13, a drain outlet 45 is provided in the horizontal portion 44b. The drain outlet 45 is connected to the drain hose 46. Although not shown, the drain hose 46 is provided so that it can be drained outside the refrigeration unit 4.
また、ドレン水排水口 45は段差を設けてドレン水を捕捉できるようにしている。 このような構成とすることで、エンジン 22の停止後に排気尾管 44の管内温度が低 下して、排気尾管 44内部に結露水が発生した場合であっても、ドレン排出口 45は、 速やかに結露水を冷凍ユニット 4外部へ排出できる。このようにして、冷凍ユニット 4に ぉ 、て、結露水のエンジン 22への逆流による不具合の発生を防止して 、る。  Further, the drain water drain 45 is provided with a step so that the drain water can be captured. With such a configuration, even if the temperature of the exhaust tail pipe 44 decreases after the engine 22 is stopped and dew condensation water is generated inside the exhaust tail pipe 44, the drain outlet 45 Condensed water can be discharged to the outside of the refrigeration unit 4 quickly. In this way, the refrigeration unit 4 is prevented from malfunctioning due to the backflow of condensed water to the engine 22.
[0036] 次に、図 14を用いて、エンジン 22のメンテナンス手段について詳細に説明する。 Next, the maintenance means of the engine 22 will be described in detail using FIG.
図 14に示すように、エンジン 22は、メンテナンスの際において、脱着式ブラケット 7 6に取り付けられるチェーンブロック 77に吊下げられて冷凍ユニット 4から取り外され る。脱着式ブラケット 76は、例えば H型鋼で形成され、ケーシング 61の上端部にボル ト等で脱着可能な構成とされている。メンテナンスの際には、脱着式ブラケット 76の一 端が前方へ突出するようにボルトを外して付け替える。  As shown in FIG. 14, the engine 22 is suspended from the refrigeration unit 4 by being suspended by a chain block 77 attached to the removable bracket 76 during maintenance. The detachable bracket 76 is formed of, for example, H-shaped steel, and is configured to be detachable to the upper end portion of the casing 61 with a bolt or the like. During maintenance, remove the bolts and replace them so that one end of the removable bracket 76 protrudes forward.
また、共通フレーム 62は、エンジン 22、発電機 21の共通フレームである。ここで、 共通フレーム 62には凹凸のない水平な取り付け面が形成されている。  The common frame 62 is a common frame for the engine 22 and the generator 21. Here, the common frame 62 is formed with a horizontal mounting surface without unevenness.
このような構成とすることで、作業者は、脱着式ブラケット 76及びチェーンブロック 7 7を用いて、容易にエンジン 22を水平移動できるので、冷凍ユニット 4外へ引っ張り 出したり、冷凍ユニット 4内へ押し入れたりすることができる。この交換手段は、ェンジ ン 22のみならず、発電機 21又は圧縮機 11等の重量物についても同様に可能である 。このようにして、冷凍ユニット 4において、メンテナンス性を向上している。  With this configuration, the operator can easily move the engine 22 horizontally using the detachable bracket 76 and the chain block 7 7, so that the operator can pull it out of the refrigeration unit 4 or into the refrigeration unit 4. Can be pushed in. This exchange means can be applied not only to engine 22 but also to heavy objects such as generator 21 or compressor 11. In this way, maintainability is improved in the refrigeration unit 4.
[0037] 次に、図 15及び図 16を用いて、操作部 91について詳細に説明する。 Next, the operation unit 91 will be described in detail with reference to FIGS. 15 and 16.
図 15に示すように、冷凍ユニット 4は、右側面に操作部 91を設けている。操作部 91 は、操作部 91の下辺が冷凍ユニット 4の中央線付近に位置するように配置されてい る。  As shown in FIG. 15, the refrigeration unit 4 is provided with an operation unit 91 on the right side surface. The operation unit 91 is arranged so that the lower side of the operation unit 91 is positioned near the center line of the refrigeration unit 4.
このような構成とすることで、例えば、冷凍ユニット 4がトラック 2に積載された場合で あっても、作業者は、運転席カゝら降りて側面カゝら容易に操作部 91を操作できる。 また、前述の構成とすることで、例えば、冷凍コンテナ 1が降雪によって埋没した場 合であっても、操作部 91が埋没することはない。つまり、作業者は容易に操作部 91 を操作できる。このようにして、冷凍ユニット 4において、操作性を向上している。 With this configuration, for example, even when the refrigeration unit 4 is loaded on the truck 2, the operator can easily operate the operation unit 91 from the driver's seat and from the side. . Further, with the above-described configuration, for example, even when the refrigerated container 1 is buried by snowfall, the operation unit 91 is not buried. That is, the operator can easily operate the operation unit 91. Thus, the operability of the refrigeration unit 4 is improved.
[0038] また、図 15に示すように、フレーム 6は、右側面に梯子部 92及び把持部 93を設け ている。梯子部 92は、フレーム 6の下端力も操作部 91まで設けられている。また、把 持部 93は、操作部 91の近傍に位置するようにフレーム 6に設けられている。なお、梯 子部 92は、作業者が足を掛けられる程度の簡易なものとしている。  In addition, as shown in FIG. 15, the frame 6 is provided with a ladder portion 92 and a grip portion 93 on the right side surface. In the ladder portion 92, the lower end force of the frame 6 is also provided up to the operation portion 91. In addition, the grip portion 93 is provided on the frame 6 so as to be positioned in the vicinity of the operation portion 91. Note that the ladder part 92 is simple enough to allow an operator to step on the foot.
このような構成とすることで、例えば、冷凍ユニット 4がトラック 2に積載された場合で あっても、作業者は、容易に操作パネル 94まで接近でき操作できる。このようにして、 冷凍ユニット 4において、操作性を向上している。  With this configuration, for example, even when the refrigeration unit 4 is loaded on the truck 2, the operator can easily approach the operation panel 94 and operate it. In this way, the operability of the refrigeration unit 4 is improved.
[0039] また、図 16に示すように、操作部 91は、操作パネル収納室 95を構成している。操 作パネル収納室 95は、奥行き面を一部開口している。この開口面には、操作パネル 94が嵌設されている。このように操作パネル 94を操作パネル収納室内に収納するこ とで、操作パネル 94の表面に日光が反射される又は背後の景色が反映されることを 防止できる。このようにして、操作部 91において、視認性を向上している。  Further, as shown in FIG. 16, the operation section 91 constitutes an operation panel storage chamber 95. The operation panel storage room 95 has a partially opened depth surface. An operation panel 94 is fitted into the opening surface. By storing the operation panel 94 in the operation panel storage chamber in this way, it is possible to prevent sunlight from being reflected on the surface of the operation panel 94 or the scenery behind it from being reflected. In this way, visibility is improved in the operation unit 91.
また、前述の構成とすることで、操作パネル 94は、操作パネル 94の防水処理と操 作パネル収納室 95の防水処理とで二重の防水処理が可能である。このようにして、 操作部 91にお 、て、雨水侵入の防止を図って!/、る。  Further, with the above-described configuration, the operation panel 94 can be double waterproofed by the waterproof treatment of the operation panel 94 and the waterproof treatment of the operation panel storage chamber 95. In this way, the operation unit 91 is designed to prevent rainwater intrusion!
[0040] また、図 16に示すように、操作パネル収納室 95は、表面を扉 96で被装されている 。扉 96は、上端を側板に対して回動自在に枢支して、上開きに開閉可能な構成とし ている。  Further, as shown in FIG. 16, the operation panel storage chamber 95 is covered with a door 96 on the surface. The door 96 is configured such that its upper end is pivotally supported with respect to the side plate so that it can be opened and closed upward.
このような構成とすることで、例えば作業者が扉 96を開けると、扉 96がひさしとなつ て雨水の浸入を防止できる。また、作業者が手を放せば扉 96自重で閉じるため、閉 め忘れを防止できる。  With such a configuration, for example, when an operator opens the door 96, the door 96 becomes eaves and can prevent intrusion of rainwater. Also, if the operator releases the hand, it closes with the dead weight of the door 96, thus preventing forgetting to close.
[0041] また、図 16に示すように、操作パネル 94は、より詳しくは、操作パネル収納室 95の 奥行き面に開口された開口部にパッキン 99及びグロメット 100を介して揷設されてい る。つまり、操作パネル 94の操作パネル収納室 95への取り付け面周縁にはパッキン 99を介装し、操作パネル 94を操作パネル収納室 95に固定するボルトにはグロメット 100を外嵌して、防振支持している。他方、扉 96は、操作パネル収納室 95の表面に 開口された開口部周縁にパッキン 98を介して被装されて 、る。 As shown in FIG. 16, more specifically, the operation panel 94 is installed in the opening portion opened in the depth surface of the operation panel storage chamber 95 via the packing 99 and the grommet 100. In other words, packing 99 is provided on the periphery of the mounting surface of the operation panel 94 to the operation panel storage chamber 95, and a grommet is attached to the bolt that fixes the operation panel 94 to the operation panel storage chamber 95. 100 is fitted to support vibration proofing. On the other hand, the door 96 is attached to the periphery of the opening opened on the surface of the operation panel storage chamber 95 via the packing 98.
このような構成とすることで、操作パネル 94に対して、扉 96及び操作パネル 94周 縁の双方で密閉をおこなうことができる。このようにして、操作パネル 94において、雨 水侵入の防止を図っている。  With this configuration, the operation panel 94 can be sealed at both the door 96 and the periphery of the operation panel 94. In this way, rainwater intrusion is prevented in the operation panel 94.
[0042] また、図 16に示すように、扉 96は略中央部に透明な窓 97を設けている。 In addition, as shown in FIG. 16, the door 96 is provided with a transparent window 97 at a substantially central portion.
このような構成とすることで、作業者は、扉 96を開閉することなぐ操作パネル 94の 表示のみを確認できる。このようにして、操作部 91において、操作性を向上している  With such a configuration, the operator can confirm only the display on the operation panel 94 without opening and closing the door 96. In this way, the operability is improved in the operation unit 91.
[0043] 次に、図 2乃至図 4、図 17及び図 18を用いて、燃料タンク 23の構成について詳細 に説明する。 Next, the configuration of the fuel tank 23 will be described in detail with reference to FIGS. 2 to 4, FIG. 17 and FIG.
図 2乃至図 4に示すように、燃料タンク 23は、ケーシング 61の下部 103に配置され ている。下部エンジンカバー 68は、冷凍ユニット 4の表面において、中央部 102の下 半面及び下部 103の略上部までを被装している。  As shown in FIGS. 2 to 4, the fuel tank 23 is disposed in the lower portion 103 of the casing 61. The lower engine cover 68 covers the lower half surface of the central portion 102 and the substantially upper portion of the lower portion 103 on the surface of the refrigeration unit 4.
このような構成とすることで、下部 103の全面をカバー被装する場合に比較して、下 部エンジンカバー 68を軽量にできる。つまり、作業者は、容易に下部エンジンカバー 68を脱着できる。このようにして、冷凍ユニット 4において、メンテナンス性を向上して いる。  By adopting such a configuration, the lower engine cover 68 can be made lighter than in the case where the entire surface of the lower part 103 is covered. That is, the operator can easily detach the lower engine cover 68. In this way, the maintainability of the refrigeration unit 4 is improved.
また、前述の構成とすることで、下部 103の全面を分割してカバーで被装する場合 に比較して、一枚の下部エンジンカバー 68のみで燃料タンク 23の上部の目隠しが できる。このようにして、冷凍ユニット 4の部品数を削減している。  Further, with the above-described configuration, the upper part of the fuel tank 23 can be blinded with only one lower engine cover 68 as compared with a case where the entire surface of the lower part 103 is divided and covered with a cover. In this way, the number of parts of the refrigeration unit 4 is reduced.
[0044] また、図 17に示すように、燃料タンク 23は、その周囲を枠状に構成したフレーム 35 に担持されている。フレーム 35は、下端の奥行き側(冷凍ユニット 4の背面側)を支軸 により枢支して、ケーシング 61に対し、上下回動自在に構成されている(図 17中の矢 印 M)。 Further, as shown in FIG. 17, the fuel tank 23 is carried by a frame 35 having a frame shape around the fuel tank 23. The frame 35 is configured to be pivotable up and down with respect to the casing 61 by pivotally supporting the depth side at the lower end (the back side of the refrigeration unit 4) with a support shaft (arrow M in FIG. 17).
このような構成とすることで、製造時において、組立作業者は、燃料タンク 23をフレ ーム 35に担持した状態で、後部を枢支し、燃料タンク 23を持ち上げて前部を固定す る、という容易な工程にて、燃料タンク 23をケーシング 61に取り付けることができる。 このようにして、冷凍ユニット 4の製造時において、組立性を向上している。 With such a configuration, during manufacturing, the assembly operator pivots the rear part while holding the fuel tank 23 on the frame 35, and lifts the fuel tank 23 to fix the front part. The fuel tank 23 can be attached to the casing 61 by an easy process. In this way, the assemblability is improved when the refrigeration unit 4 is manufactured.
また、前述の構成とすることで、燃料タンク 23の上部に補油口 36を設けた場合であ つても、燃料タンク 23の高さをケーシング 61の下部 103の高さと同等に形成できる。 このようにして、冷凍ユニット 4において、燃料タンク 23の容積を大きくしている。 そして、共通フレーム 62に補油口 36の突出開口部を設けておけば図 7又は図 8に 図示するように、共通フレーム 62が補油口 36と高さ方向で重なっていても燃料タンク 23を装着できる。従って、補油口 36の高さ分だけ共通フレーム 62を嵩上げする場合 と比較して冷凍ユニット 4の高さを抑えることができる。  Further, with the above-described configuration, the height of the fuel tank 23 can be made equal to the height of the lower portion 103 of the casing 61 even when the oil filler port 36 is provided in the upper portion of the fuel tank 23. In this way, in the refrigeration unit 4, the volume of the fuel tank 23 is increased. If the common frame 62 is provided with a projecting opening of the oil filler port 36, as shown in FIG. 7 or FIG. 8, the fuel tank 23 even if the common frame 62 overlaps the oil filler port 36 in the height direction. Can be installed. Accordingly, the height of the refrigeration unit 4 can be suppressed as compared with the case where the common frame 62 is raised by the height of the oil filler port 36.
また、前述の構成とすることで、燃料タンク 23の点検時に、作業者は、フレーム 35 の前部の固定を解除して下方へ回動させることで、燃料タンク 23の上部を前方へ向 けさせることができる。つまり、作業者は、容易に燃料タンク 23の上部を点検できる。 このようにして、冷凍ユニット 4において、燃料タンク 23のメンテナンス性を向上してい る。  Further, with the above-described configuration, when the fuel tank 23 is inspected, the operator releases the fixing of the front portion of the frame 35 and pivots downward so that the upper portion of the fuel tank 23 is directed forward. Can be made. That is, the operator can easily inspect the upper part of the fuel tank 23. In this way, in the refrigeration unit 4, the maintainability of the fuel tank 23 is improved.
[0045] また、図 18に示すように、燃料タンク 23は、内部にストレーナ 27を備えている。スト レーナ 27は、送油管 28の燃料タンク 23側先端に設けられている。ストレーナ 27は、 燃料タンク 23の底部に形成された凹部 23aに、弾性体 29を介して凹設されている。 このような構成とすることで、フィードポンプ 24は、燃料タンク 23の最底部まで燃料 を吸引することができる。このようにして、燃料タンク 23において、有効容積を向上し ている。  In addition, as shown in FIG. 18, the fuel tank 23 includes a strainer 27 inside. The strainer 27 is provided at the tip of the oil feed pipe 28 on the fuel tank 23 side. The strainer 27 is recessed through an elastic body 29 in a recess 23 a formed at the bottom of the fuel tank 23. With such a configuration, the feed pump 24 can suck the fuel to the bottom of the fuel tank 23. In this way, the effective volume of the fuel tank 23 is improved.
また、前述の構成とすることで、燃料タンク 23に振動が加わった場合又はストレー ナ 27に寸法誤差があった場合においても、弾性体 29によって、燃料タンク 23の底 部とストレーナ 27との振動'衝突を緩和できる。このようにして、燃料タンク 23におい て、信頼性を向上している。  In addition, with the above-described configuration, even when vibration is applied to the fuel tank 23 or when there is a dimensional error in the strainer 27, the elastic body 29 causes vibration between the bottom of the fuel tank 23 and the strainer 27. 'I can alleviate the collision. In this way, the reliability of the fuel tank 23 is improved.
[0046] 次に、図 19を用いて、電源ケーブル 52の収納について詳細に説明する。 Next, the storage of the power cable 52 will be described in detail with reference to FIG.
図 19に示すように、冷凍ユニット 4は商用電源等力も電力を供給できるように電源ケ 一ブル 52を備えている。冷凍ユニット 4は、列車又は船舶で搬送する場合等におい て、この電源ケーブル 52による外部商用電源等の供給により駆動される場合もある。 電源ケーブル 52は、非使用時は、ケーシング 61の右下方に位置する電源ケーブル 収納箱 54にお 、て、捲かれた状態で収納される。 As shown in FIG. 19, the refrigeration unit 4 is provided with a power cable 52 so that a commercial power source can also supply power. The refrigeration unit 4 may be driven by the supply of an external commercial power source or the like through the power cable 52 when it is transported by train or ship. The power cable 52 is located at the lower right of the casing 61 when not in use. The storage box 54 is stored in a squeezed state.
また、電源ケーブル 52は、先端に電源プラグ 53を有している。そして、電源ケープ ル収納箱 54において、左端に収納筒 55が設けられている。収納筒 55は、先端を斜 め上向きに設けられている。電源ケーブル 52が電源ケーブル収納箱 54に収納され る場合には、電源プラグ 53は、収納筒 55に収納される構成としている。  The power cable 52 has a power plug 53 at the tip. In the power cable storage box 54, a storage cylinder 55 is provided at the left end. The storage cylinder 55 is provided with its tip inclined upward. When the power cable 52 is stored in the power cable storage box 54, the power plug 53 is stored in the storage tube 55.
このような構成とすることで、例えば雨天時において、非使用時の電源プラグ 53の 内部に水が溜まることを防止できる。  By adopting such a configuration, it is possible to prevent water from accumulating inside the power plug 53 when not in use, for example, in rainy weather.
[0047] 次に、図 20及び図 21を用いて、デフロストヒータ 80について詳細に説明する。 Next, the defrost heater 80 will be described in detail with reference to FIG. 20 and FIG.
図 20示すように、蒸発器 13の着霜防止の目的として、デフロストヒータ 80を備えて いる。なお、図 20において、蒸発器 13は、分力り易くするために、フィン及びチュー ブを省略して図示している。デフロストヒータ 80は、通電により発熱する丸棒状の発 熱体で形成されている。  As shown in FIG. 20, a defrost heater 80 is provided for the purpose of preventing frost formation of the evaporator 13. In FIG. 20, the evaporator 13 is illustrated with the fins and tubes omitted to facilitate the component force. The defrost heater 80 is formed of a round bar-like heating element that generates heat when energized.
図 21に示すように、蒸発器 13は、両端の蒸発器枠 13a及びフィン(図示なし)の下 端に切り欠き 13bが形成されている。切り欠き 13bはデフロストヒータ 80の断面形状 にあわせた半長穴形状である。デフロストヒータ 80は、切り欠き 13bに嵌設されること で取り付けられている。  As shown in FIG. 21, the evaporator 13 has an evaporator frame 13a at both ends and a notch 13b formed at the lower end of the fin (not shown). The notch 13b has a semi-long hole shape that matches the cross-sectional shape of the defrost heater 80. The defrost heater 80 is attached by being fitted into the notch 13b.
このような構成とすることで、例えばデフロストヒータ 80の交換等の際において、作 業者は、切り欠き 13bからデフロストヒータ 80を押し下げまたは嵌め込みのみの操作 で、容易に蒸発器 13よりデフロストヒータ 80を脱着できる。このようにして、デフロスト ヒータ 80において、メンテナンス性を向上している。  With such a configuration, for example, when replacing the defrost heater 80, the operator can easily push the defrost heater 80 from the evaporator 13 by simply depressing or fitting the defrost heater 80 from the notch 13b. Detachable. In this way, the maintainability of the defrost heater 80 is improved.
[0048] また、図 20及び 21に示すように、デフロストヒータ 80は、一側を U字型の折り返し構 成としている。 Further, as shown in FIGS. 20 and 21, the defrost heater 80 has a U-shaped folded configuration on one side.
このような構成とすることで、デフロストヒータ 80の配線を他側に集約できる。このよ うにして、冷凍ユニット 4の製造時又はデフロストヒータ 80の交換時において、作業性 を向上している。  With such a configuration, the wiring of the defrost heater 80 can be concentrated on the other side. In this way, workability is improved when the refrigeration unit 4 is manufactured or when the defrost heater 80 is replaced.
[0049] また、図 20及び 21に示すように、デフロストヒータ 80は、蒸発器枠 13aの外側にお V、て、下方より押さえ部材 81にて両端部を固定されて 、る。  Further, as shown in FIGS. 20 and 21, the defrost heater 80 is fixed at both ends by a pressing member 81 from the lower side of the evaporator frame 13a by V and below.
このような構成とすることで、取り付け後に、デフロストヒータ 80が切り欠き 13bより落 下することを防止している。つまり、簡易な構成で複数のデフロストヒータ 80を固定し かつ脱落を防止できる。このようにして、デフロストヒータ 80において、安全性を向上 している。 With this configuration, after installation, the defrost heater 80 drops from the notch 13b. Is prevented. That is, a plurality of defrost heaters 80 can be fixed and prevented from falling off with a simple configuration. In this way, the safety of the defrost heater 80 is improved.
[0050] 次に、図 22を用いて、冷凍ユニット 4の冷媒回路構成について詳細に説明する。  Next, the refrigerant circuit configuration of the refrigeration unit 4 will be described in detail with reference to FIG.
図 22に示すように、冷凍ユニット 4の冷媒回路は、蒸発器 13、蒸発器ファン 17、蒸 発器ファン電動機 15はコンテナ内部 107に配置され、それ以外はコンテナ外部 106 に配置される。冷媒回路を構成する機器として、前述した圧縮機 11、凝縮器 12、膨 張弁 113、レシーバ 19及び蒸発器 13の他には、蒸発器 13と圧縮機 11と間において 、圧縮機吸入冷媒を貯留又は気液分離するためのアキュムレータ 117と、冷媒循環 量を調整する開度調整弁 116とを介している。また蒸発器 13は、蒸発器 13mと過冷 却熱交翻1311との二つの熱交翻を含んだ構成としている。さらに、過冷却バイパ ス経路 112は、電磁弁 111を介して、凝縮器 12出口とレシーバ 19入口とを短絡する 。さらに、吸入バイパス経路 114は、電磁弁 115を介して、開度調整弁 116と並列に 構成されている。  As shown in FIG. 22, in the refrigerant circuit of the refrigeration unit 4, the evaporator 13, the evaporator fan 17, and the evaporator fan motor 15 are arranged inside the container 107, and the rest are arranged outside the container 106. In addition to the compressor 11, the condenser 12, the expansion valve 113, the receiver 19, and the evaporator 13, the refrigerant sucked between the evaporator 13 and the compressor 11 is used as a device constituting the refrigerant circuit. An accumulator 117 for storage or gas-liquid separation and an opening adjustment valve 116 for adjusting the refrigerant circulation amount are provided. The evaporator 13 includes two heat exchanges, that is, the evaporator 13m and the supercooling heat exchange 1311. Further, the supercooling bypass path 112 short-circuits the condenser 12 outlet and the receiver 19 inlet via the solenoid valve 111. Further, the suction bypass path 114 is configured in parallel with the opening degree adjustment valve 116 via the electromagnetic valve 115.
このような構成とすることで、圧縮機 11より吐出される高温 ·高圧のガス冷媒は、凝 縮器 12に流れ、外気へ放熱を行い凝縮する。そして、液化した冷媒は、経路 112〖こ よってレシーバ 19内に流入し、膨張弁 113の絞り作用で急激に減圧され霧状となつ て蒸発器 13に流れる。そして、冷媒の蒸発に伴う吸熱作用でコンテナ 3内部を冷凍 · 冷蔵し、気化した冷媒は、圧縮機 11へ吸入される。  With such a configuration, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the condenser 12 and dissipates heat to the outside air to condense. Then, the liquefied refrigerant flows into the receiver 19 through the path 112 and is rapidly reduced in pressure by the throttle action of the expansion valve 113 and flows into the evaporator 13 as a mist. Then, the inside of the container 3 is frozen and refrigerated by the endothermic action accompanying the evaporation of the refrigerant, and the vaporized refrigerant is sucked into the compressor 11.
[0051] 図 22に示すように、過冷却熱交換器 13ηは、コンテナ内部 107に配置される蒸発 器 13の一部分として構成されている。過冷却とは、凝縮器 12で凝縮した高圧 '高温 の冷媒液を冷却する作用である。過冷却効果によって蒸発器 13の入口ェンタルピ 一を低下させ、蒸発器能力を高めることができる。 As shown in FIG. 22, the supercooling heat exchanger 13η is configured as a part of the evaporator 13 disposed in the container interior 107. Supercooling is the action of cooling the high-pressure, high-temperature refrigerant liquid condensed in the condenser 12. The supercooling effect can reduce the inlet enthalpy of the evaporator 13 and increase the evaporator capacity.
また、過冷却を必要としな!ヽ低負荷運転 (例えば冷蔵運転)の場合は、電磁弁 111 を ONとして、過冷却バイパス経路 112にて冷媒を過冷却熱交^^ 13ηに流さない 運転も可能である。  And don't need supercooling!ヽ In the case of low load operation (for example, refrigeration operation), it is possible to perform operation in which the solenoid valve 111 is turned on and the refrigerant is not passed through the supercooling heat exchanger 13η in the supercooling bypass path 112.
このような構成とすることで、別途過冷却熱交 (例えば、庫外側 106に設置する 吸入冷媒と熱交換する過冷却熱交換器)の配置を省略できる。このようにして、冷凍 ユニット 4にお 、て、庫外側 106のスペースを節約して!/、る。 By adopting such a configuration, it is possible to omit the arrangement of a separate supercooling heat exchanger (for example, a supercooling heat exchanger that exchanges heat with the suction refrigerant that is installed on the outside 106). In this way, frozen Unit 4 saves space on the outside 106!
また、循環冷媒の全量をコンテナ内部 107の低温空気で過冷却するため、過冷却 用の冷媒を分岐する場合と比較して冷凍効率が良 、。  In addition, since the entire amount of circulating refrigerant is supercooled with the low-temperature air inside the container 107, refrigeration efficiency is better than when the supercooling refrigerant is branched.
[0052] また、図 22に示すように、開度調整弁 116は、圧縮機 11が吸入する吸入冷媒量を 調整することで、冷媒回路全体の冷媒循環量を調整する。冷蔵運転は、冷凍運転に 比較して少ない冷凍能力で運転する。そこで、冷蔵運転時は、電磁弁 115を閉じて、 開度調整弁 116にて調整される冷媒量のみにて運転する。他方、冷凍運転時は、大 きな冷凍能力が必要なので電磁弁 115を開いてバイパス経路 114と開度調整弁 11 6の経路の双方を使用して冷媒循環量を確保する。 Further, as shown in FIG. 22, the opening degree adjustment valve 116 adjusts the refrigerant circulation amount of the entire refrigerant circuit by adjusting the amount of refrigerant sucked by the compressor 11. Refrigeration operation is operated with less refrigeration capacity than refrigeration operation. Therefore, during the refrigeration operation, the solenoid valve 115 is closed and the operation is performed only with the refrigerant amount adjusted by the opening adjustment valve 116. On the other hand, during the refrigeration operation, since a large refrigeration capacity is required, the solenoid valve 115 is opened and the refrigerant circulation amount is secured by using both the bypass path 114 and the opening adjustment valve 116 path.
このようにして、大流量の冷媒循環量が必要な冷凍運転にぉ 、てはバイパス経路 1 14も併用し、小流量の冷媒循環量で足りる冷蔵運転においては開度調整弁 116の 開度調整を行なうようにして、応答性の向上と開度調整の精度向上の両立を図って いる。  In this way, in the refrigeration operation that requires a large amount of refrigerant circulation, the bypass path 114 is also used, and in the refrigeration operation that requires a small amount of refrigerant circulation, the opening adjustment valve 116 can be adjusted. By doing so, both responsiveness and accuracy of opening adjustment are improved.
なお、ここで、冷凍運転とは庫内空気温度を零度以下に保つ運転であり、冷蔵運転 とは庫内空気温度を零度より高い状態(=水分が凍結しない低温状態)に保つ運転 である。  Here, the refrigeration operation is an operation that keeps the internal air temperature below zero degrees, and the refrigeration operation is an operation that keeps the internal air temperature higher than zero degrees (= a low temperature state where moisture does not freeze).
[0053] 次に、図 23乃至図 25を用いて、 2温度帯コンテナ 7について詳細に説明する。  Next, the two-temperature zone container 7 will be described in detail with reference to FIGS. 23 to 25.
図 23に示すように、 2温度帯コンテナ 7は、前室 3aと後室 3bとの異なる 2温度帯の 部屋を持つコンテナ 3である。前室 3aは、冷凍用としてコンテナ 3の冷凍ユニット 4側 に配置されている。前室 3aは、冷凍ユニット 4力もの冷却風によって直接冷却される。 他方、後室 3bは、冷蔵用としてコンテナ 3の扉 5側に配置されている。後室 3bは、後 室ユニット 130にて温度制御された冷却風によって冷却される。  As shown in FIG. 23, the two-temperature zone container 7 is a container 3 having a room of two different temperature zones, ie, the front chamber 3a and the rear chamber 3b. The front chamber 3a is disposed on the refrigeration unit 4 side of the container 3 for refrigeration. The front chamber 3a is directly cooled by the cooling air of four refrigeration units. On the other hand, the rear chamber 3b is disposed on the door 5 side of the container 3 for refrigeration. The rear chamber 3 b is cooled by cooling air whose temperature is controlled by the rear chamber unit 130.
[0054] また、図 24に示すように、後室ユニット 130は、コンテナ 3の幅方向において、中央 に前室 3a冷気吸引室 125の左右に配置された加熱 ·混合室 126から構成されてい る。送風ファン 122は、ダクト 120の前室 3a冷気吸引室 125の開口部に設けられてい る。また、送風ファン 121は、加熱.混合室 126の吸引開口部に設けられている。 このような構成とすることで、前室 3aからダクト 120を経由して後室 3bへ送られた冷 凍空気と、後室 3bの加熱'混合室 126のヒータユニット 123によって加熱された空気 と力 加熱 ·混合室 126の導風ダクト 129への流出部手前の混合空間で混合されて、 その混合風が導風ダクト 129を経て後室 3bの床面へ供給される。 Further, as shown in FIG. 24, the rear chamber unit 130 is composed of a heating / mixing chamber 126 arranged at the left and right of the front chamber 3a cold air suction chamber 125 in the center in the width direction of the container 3. . The blower fan 122 is provided at the opening of the front chamber 3a of the duct 120 and the cool air suction chamber 125. The blower fan 121 is provided at the suction opening of the heating / mixing chamber 126. With such a configuration, the frozen air sent from the front chamber 3a to the rear chamber 3b via the duct 120 and the air heated by the heater unit 123 of the mixing chamber 126 are heated. Heating · Mixed in the mixing space before the outflow part to the air duct 129 in the mixing chamber 126, and the mixed air is supplied to the floor surface of the rear chamber 3b through the air duct 129.
以下に、後室ユニット 130の構成について、詳細に説明する。  Hereinafter, the configuration of the rear chamber unit 130 will be described in detail.
[0055] 図 24に示すように、ダクト 120及び前室 3a冷気吸引室 125の内部は、後室 3bを循 環する冷蔵空気温度と比較して低い温度の冷凍空気が流れる。そのため、ダクト 12 0及び前室 3a冷気吸引室 125は、全周を断熱材(図示略)で囲む構成としている。 このような構成とすることで、ダクト 120及び前室 3a冷気吸引室 125の後室 3b側で の結露を防止できる。このようにして、後室 3bの天井に結露が発生して貨物が濡れる ことを防止している。 As shown in FIG. 24, inside the duct 120 and the front chamber 3a cold air suction chamber 125, refrigerated air having a temperature lower than that of the refrigerated air circulating in the rear chamber 3b flows. Therefore, the duct 120 and the front chamber 3a cool air suction chamber 125 are configured to surround the entire periphery with a heat insulating material (not shown). With such a configuration, condensation on the duct 120 and the rear chamber 3b side of the front chamber 3a cold air suction chamber 125 can be prevented. In this way, dew condensation on the ceiling of the rear chamber 3b is prevented and the cargo is prevented from getting wet.
[0056] また、図 25に示すように、加熱 ·混合室 126は、底部にドレンパン 127を備えている 。加熱 ·混合室 126においては、ダクト 120から吸引された前室 3aの冷凍空気と送風 ファン 121で吸引される後室 3bの冷蔵空気とが混合するため、結露水が発生するた めである。  Further, as shown in FIG. 25, the heating / mixing chamber 126 has a drain pan 127 at the bottom. This is because in the heating / mixing chamber 126, the frozen air in the front chamber 3a sucked from the duct 120 and the refrigerated air in the rear chamber 3b sucked by the blower fan 121 are mixed, so that condensed water is generated.
このような構成とすることで、ドレンパン 127は、発生した結露水を導風ダクト 129ま で導き、導風ダクト 129からコンテナ 3の床面まで導くことができる。床面に導かれた 結露水は、コンテナ 3の排水溝(図示なし)力 コンテナ外へ排出される。このようにし て、後室 3bにおいて、貨物濡れを防止している。  With such a configuration, the drain pan 127 can guide the generated condensed water to the air guide duct 129 and guide the air from the air guide duct 129 to the floor of the container 3. Condensed water guided to the floor is drained outside the container 3 drainage groove (not shown). In this way, cargo wetting is prevented in the rear chamber 3b.
[0057] また、図 24に示すように、送風ファン 121 · 122 · 121は、それぞれ 3台の同径ファン を一列に並べて計 9台のファンとして、コンテナ 3の幅方向において並べて配置され ている。 [0057] Further, as shown in FIG. 24, each of the blower fans 121, 122, 121 is arranged in a row in the width direction of the container 3 as a total of nine fans by arranging three fans with the same diameter in a row. .
このような構成とすることで、個々のファンを小さくできるため、後室ユニット 130の高 さ寸法を抑制することができる。このようにして、後室 3bにおいて、貨物搬出入のため の有効高さを大きくしている。  With such a configuration, each fan can be made small, and thus the height dimension of the rear chamber unit 130 can be suppressed. In this way, the effective height for loading and unloading is increased in the rear chamber 3b.
[0058] また、図 24及び図 25に示すヒータユニット 123は、発熱体 140及び支持部材 141 が一体化された構成とされて 、る。 In addition, the heater unit 123 shown in FIGS. 24 and 25 has a configuration in which the heating element 140 and the support member 141 are integrated.
このような構成とすることで、製造時又はヒータユニット 123の交換時に、作業者は 容易にヒータユニット 123を脱着できる。このようにして、ヒータユニット 123において、 組立性及びメンテナンス性を向上して ヽる。 [0059] また、図 24及び図 25に示すように、ダクト 120の送風ファン 122手前において、シ ャッター 128が設けられている。シャッター 128は、板状の弾性体より構成され、その 上部がダクト 120の上辺に固定されている。シャッター 128は、下部に錘を付カ卩して 下辺に密着するように構成されて 、る。 With such a configuration, the operator can easily attach and detach the heater unit 123 at the time of manufacturing or replacement of the heater unit 123. In this way, in the heater unit 123, assembly and maintenance are improved. Further, as shown in FIGS. 24 and 25, a shutter 128 is provided in front of the blower fan 122 of the duct 120. The shutter 128 is made of a plate-like elastic body, and its upper part is fixed to the upper side of the duct 120. The shutter 128 is configured so that a weight is attached to the lower part and is in close contact with the lower side.
このような構成とすることで、シャッター 128は、下部が送風ファン 122側へ回動でき る。つまり、送風ファン 122によって前室 3aの冷凍空気が吸引される場合はシャツタ 一 128を吹上げて前室 3aは前室 3a冷気吸引室 125と連通する力 送風ファン 122 の停止時はシャッター 128が閉じて前室 3aは前室 3a冷気吸引室 125と遮断される。 このようにして、ダクト 120において、送風ファン 122による強制吸引以外では前室 3a の冷凍空気が後室 3bに自然流入することを防止している。  By adopting such a configuration, the shutter 128 can rotate to the blower fan 122 side at the lower part. That is, when the refrigeration air in the front chamber 3a is sucked by the blower fan 122, the shirt 128 is blown up and the front chamber 3a communicates with the front chamber 3a cool air suction chamber 125. When the blower fan 122 is stopped, the shutter 128 is released. The front chamber 3a is closed and is shut off from the front chamber 3a cold air suction chamber 125. In this way, in the duct 120, the refrigerated air in the front chamber 3a is prevented from naturally flowing into the rear chamber 3b except for forced suction by the blower fan 122.
[0060] 本発明は、コンテナの開口した一妻面に冷凍ユニットを備えた冷凍コンテナに利用 可能である。  [0060] The present invention can be used for a refrigeration container having a refrigeration unit on the open end of the container.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機で冷媒を循環させる冷凍ユニットでコンテナ内の温度管理を行なう冷凍コン テナにおいて、凝縮器出口経路を二分割し一方経路は開閉弁を介して膨張弁と接 続し、他方経路は膨張部と蒸発器の一部分の経路をこの順に通過後に前記膨張弁 と接続し、過冷却運転時は前記開閉弁を閉じる構成とすることを特徴とする冷凍コン テナ。  [1] In a refrigeration container that controls the temperature inside the container with a refrigeration unit that circulates refrigerant in the compressor, the condenser outlet path is divided into two, and one path is connected to the expansion valve via an on-off valve, and the other path Is connected to the expansion valve after passing through a part of the path of the expansion section and the evaporator in this order, and the open / close valve is closed during the supercooling operation.
[2] 圧縮機で冷媒を循環させる冷凍ユニットでコンテナ内の温度管理を行なう冷凍コン テナにおいて、前記圧縮機吸入経路を二経路並列に設け、一方経路は開閉弁を介 して前記圧縮機に接続し、他方経路は開度調整弁を介して前記圧縮機に接続し、 冷凍運転時は前記開閉弁を開け、チルド運転時は前記開閉弁を閉じる構成とするこ とを特徴とする冷凍コンテナ。  [2] In a refrigeration container that controls the temperature in a container with a refrigeration unit that circulates refrigerant in a compressor, the compressor suction path is provided in two paths in parallel, and one path is connected to the compressor via an on-off valve. The other path is connected to the compressor via an opening adjustment valve, and the open / close valve is opened during a freezing operation, and the open / close valve is closed during a chilled operation. .
PCT/JP2007/057589 2006-06-27 2007-04-04 Refrigerated container WO2008001525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-177183 2006-06-27
JP2006177183A JP2008008517A (en) 2006-06-27 2006-06-27 Refrigerating container

Publications (1)

Publication Number Publication Date
WO2008001525A1 true WO2008001525A1 (en) 2008-01-03

Family

ID=38845298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057589 WO2008001525A1 (en) 2006-06-27 2007-04-04 Refrigerated container

Country Status (3)

Country Link
JP (1) JP2008008517A (en)
CN (1) CN101501414A (en)
WO (1) WO2008001525A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900282A (en) * 2012-12-28 2014-07-02 珠海格力电器股份有限公司 Refrigerating unit and refrigerator car with same
EP2897838A4 (en) * 2012-09-24 2017-04-12 Thermo King Corporation Condenser exhaust fan location within a transport refrigeration unit
EP3244146A1 (en) * 2016-05-13 2017-11-15 Liebherr-Transportation Systems GmbH & Co. KG Transport cooler system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112620A (en) * 2010-11-26 2012-06-14 Yanmar Co Ltd Container refrigeration device
US9719713B2 (en) 2012-06-11 2017-08-01 Carrier Corporation Refrigerated cargo container, method for cooling a cargo, method for heating a cargo
US10101060B2 (en) * 2014-07-31 2018-10-16 Carrier Corporation Cooling system
CN105135768A (en) * 2015-09-30 2015-12-09 海信容声(广东)冷柜有限公司 Refrigeration equipment and control method thereof
US12110171B2 (en) 2016-12-22 2024-10-08 Maersk Container Industry A/S Integrated fan grille for a cooling machine in a reefer container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157857U (en) * 1981-03-31 1982-10-04
JPS6449854A (en) * 1987-08-18 1989-02-27 Daikin Ind Ltd Refrigerator
JP3239804B2 (en) * 1997-07-07 2001-12-17 ダイキン工業株式会社 Refrigeration equipment for refrigeration containers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157857A (en) * 1981-03-20 1982-09-29 Daikin Ind Ltd Hydraulically driven equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157857U (en) * 1981-03-31 1982-10-04
JPS6449854A (en) * 1987-08-18 1989-02-27 Daikin Ind Ltd Refrigerator
JP3239804B2 (en) * 1997-07-07 2001-12-17 ダイキン工業株式会社 Refrigeration equipment for refrigeration containers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2897838A4 (en) * 2012-09-24 2017-04-12 Thermo King Corporation Condenser exhaust fan location within a transport refrigeration unit
US9784493B2 (en) 2012-09-24 2017-10-10 Thermo King Corporation Condenser exhaust fan location within a transport refrigeration unit
CN103900282A (en) * 2012-12-28 2014-07-02 珠海格力电器股份有限公司 Refrigerating unit and refrigerator car with same
CN103900282B (en) * 2012-12-28 2016-10-05 珠海格力电器股份有限公司 Refrigerating unit and refrigerator car with same
EP3244146A1 (en) * 2016-05-13 2017-11-15 Liebherr-Transportation Systems GmbH & Co. KG Transport cooler system

Also Published As

Publication number Publication date
JP2008008517A (en) 2008-01-17
CN101501414A (en) 2009-08-05

Similar Documents

Publication Publication Date Title
WO2008001525A1 (en) Refrigerated container
CN105189159B (en) Refrigerated container with double air curtains
WO2008001527A1 (en) Refrigeration container
JP2008008514A (en) Refrigerating container
JP2008008516A (en) Engine drive-type refrigerating container
WO2008001526A1 (en) Refrigerated container
US11485497B2 (en) Divided refrigeration system for aircraft galley cooling
KR101015951B1 (en) Refrigerator truck having double cooling apparatus
WO2008001528A1 (en) Refrigerating container
JP2002370518A (en) Air-conditioning unit for trunk room, and conveying truck
JP2014115027A (en) Freezer for land transportation
JP5448547B2 (en) Refrigeration equipment for land transportation
JP2008007136A (en) Engine-driven type refrigerated container
JP2008008515A (en) Refrigerating container
JP4916464B2 (en) Refrigeration equipment for vehicles
JP2008037319A (en) Trailer and trailer refrigerator
JP2008008513A (en) Engine drive-type refrigerating container
JP2008008518A (en) Refrigerating container
JP2008007137A (en) Engine-driven type refrigerated container
JP2008008520A (en) Refrigerating container
JP3372348B2 (en) Refrigeration equipment with humidification function for containers
JP2009216292A (en) Transport refrigerating device
JPH1191433A (en) Refrigerated motor-van
JP5915761B2 (en) Air conditioner for vehicles
JP3992431B2 (en) refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029866.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741025

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 243/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07741025

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)