明細書 高張力冷延鋼板およびその製造方法 技術分野 Technical field
本発明は、 主として電機、 建材、 自動車分野で部品用として好適な、 引張強 さ(tensile strength)が 340MPa以上概ね 500MPa以下の 340MPa級〜 440MPa級高 張力冷延鋼板に係り、 とくに成形性の向上に関する。 なお、 ここでいう 「銅板」 (steel sheet)とは銅帯(steel band)を含むものとする。 The present invention relates to a 340 MPa class to 440 MPa class high-tensile cold-rolled steel sheet having a tensile strength of 340 MPa or more and approximately 500 MPa or less, which is suitable mainly for parts in the electrical machinery, building materials, and automobile fields, and in particular, improved formability. About. The “steel sheet” herein includes a steel band.
一般に、 電機分野や自動車分野では、 引張強さが 270MPa級の軟質銅板 (raild steel) が多用されている。 しかし、 近年、 この分野においても、 素材として高 張力鋼板の利用が増加する傾向となっている。 例えば、 自動車分野では、 地球環 境の保全 (environment protection of the earth) とレヽぅ観,^;力 ら、 自動車の燃 費改善が強く要求されており、 部材の軽量化を図るため、 高張力鋼板を適用し薄 肉化を図ることが有効であるとして、 高張力銅板の適用が増加している。 また、 さらに、 車両衝突時の乗員保護という観点から、 自動車車体の安全性向上が要求 されており、 部材 の高強度化を図るため、 使用材料として高張力鋼板の適用が 増加している。 また、 最近では、 家電分野(consumer- electronics industry) で も、 販売競争の激化に伴い、 素材の低コスト化要求が高まると共に、 さらに運送 コスト(freight cost)の低減要求があり、 部材の軽量化が指向され、 素材として、 高張力鋼板を適用する傾向が強くなつている。 また、 電池缶、 ドラム缶などの缶 分野においても、 電池容量の増加、 耐圧強度の増加や軽量化等が期待され、 素材 として高張力鋼板を利用することが考えられている。
し力 ^し、 鋼板を素材とする部品の多くが、 プレス加工により成形されるため、 使用される高張力鋼板には、 優れたプレス成形性を具備することが要求される。 成形性に優れた鋼板としては、 すでに各種の複合組織鋼板 (multi-phase steel)が 開発されている。 複合組織鋼板の代表としては、 軟質のフェライトと硬質のマル テンサイ トの複合組織を有する鋼板が例示できる。 この鋼板は、 降伏比(yield ra tio)が低く、 強度一延性バランスに優れるうえ、 優れた焼付き硬化性 (bake- harde nable)を有する鋼板であるとされている。 また、 同時に降伏点伸びも低値となる ため、 不均一模様状 (non-uniform pattern) の表面欠陥の発生も防止できる。 この種の鋼板の製造方法として、 例えば特開 2000— 109966号公報には、 C : 0. 005〜0. 15%、 Mn: 0. 3〜3. 0%、 Mo: 0. 05〜1. 0%、 あるいはさらに Cr: 0. 05〜 1. 0%を含有するめつき用母板を、 ACl変態点以上 Ac3変態点以下の温度で少なく とも 1回焼鈍し、 冷却後、 ついで ACl変態点〜 Ac3変態点の温度範囲に加熱し、 こ の加熱温度から少なくともめつき浴温度までの温度域を、 合金元素の含有量に応 じた臨界冷却速度以上で冷却し、 ついで溶融亜鉛めつきを施し、 めっき後 300°C までの温度域を合金元素の含有量に応じた臨界冷却速度以上で冷却する、 加工性- に優れた溶 亜鉛めつき高張力鋼板の製造方法が提案されている。 特開 2000— 109966号公報に記載された技術によれば、 フェライト +マルテンサイ卜の複合組 織が形成され、 降伏比 55%以下の低降伏比を有し優れた加工性が発現し、 さらに めっき性、 耐パウダリング性 (resistance to powdering) に優れた溶融亜 10めつ き高張力鋼板の製造が可能になるとしている。 しかし、 特開 2000— 109966号公報に記載された技術では、 安定して複合組織を 得るために、 焼入れ性(hardenability)向上への寄与が大きい、 Mo、 Mn、 さらには Cr 等の合金元素を多量添加する必要があり、 この種の鋼板の製造コストが高騰し、 経済的に不利となるという問題があつた。
このような問題に対し、 特開 2002— 20834号公報には、 N: 0. 03〜2. 0%を含有 し、 マルテンサイ 卜の体積率が 3〜30%である、 形状凍結性(shape fixability) に優れた低降伏比高強度鋼板が提案されている。 特開 2002— 20834号公報に記載 された技術では、 熱間圧延後に 550〜800°Cの温度域でアンモニアを 2 %以上含む 雰囲気中で処理 (焼鈍) することにより、 上記した N含有量を確保できるとして いる。 Nはオーステナイ ト相の安定化に効果があり、 特開 2002— 20834号公報に 記載された技術では、 Mo、 Mn、 さらには Cr等の合金元素を多量添加することなく、 銅板組織をマルテンサイ ト相を含む複合組織とすることができるとしている。 また、 特開 2002— 146478号公報には、 C : 0. 025〜0. 15%、 Si: 1. 0%以下、 M n: 2. 0%以下、 P : 0. 08%以下、 S : 0. 02%以下、 A1: 0. 02%以下、 N: 0. 0050 〜0. 0250%を含み、 かつ NZA1が 0. 30以上、 固溶状態としての Nを 0. 0010%以 上含み、 フェライト相を面積率で 80%以上、 第 2相として面積率で 5 %以上のマ ルテンサイト相を含む組織を有する高張力冷延鋼板が提案されている。 特開 2002 . — 146478号公報に記載された鋼板は、 引張強さが 440MPa以上で、 高 r値(r値 = ランクフォード値 (Lankford value) ) と優れた歪時効硬化性および常温非時効性 を有するとしている。 しかしながら、 特開 2002— 20834号公報に記載された技術では、 アンモニアを 含む雰囲気中での焼鈍が高価であり、 また、 アンモニアを含む雰囲気中での焼鈍 を行うためには、 既存の焼鈍設備の大規模な改造を必要とするなど、 経済性に問 題を残していた。 さらに、 特開 2002— 146478号公報に記載された技術では、 実施 例からも明らかなように、 概ね引張強度が 500MPaを超える領域を対象としており、 電機用、 缶用としては、 強度が高すぎて所望の加工性 (特に延性 (ductility) ) の確保が困難であるという問題があった。 また、 冷間圧延後箱焼鈍を施し、 つい で連続焼鈍を行うための製造コストに問題があつた。
発明の開示 In general, in the electrical and automotive fields, soft copper (railed steel) with a tensile strength of 270 MPa is widely used. However, in recent years, the use of high-strength steel sheets as raw materials has also been increasing in this field. For example, in the automotive field, there is a strong demand for improvement in the fuel consumption of automobiles due to the environmental protection of the earth and review, ^; force. The application of high-strength copper plates is increasing because it is effective to reduce the thickness by applying steel plates. Furthermore, from the viewpoint of occupant protection in the event of a vehicle collision, there is a demand for improving the safety of automobile bodies, and in order to increase the strength of members, the application of high-tensile steel sheets as materials used is increasing. Recently, in the consumer electronics industry, as the competition for sales has intensified, there has been an increasing demand for lower material costs and a further reduction in freight cost. As a material, there is a strong tendency to apply high-strength steel sheets. In addition, in the can field such as battery cans and drum cans, an increase in battery capacity, an increase in pressure strength and a reduction in weight are expected, and it is considered to use high-tensile steel sheets as materials. Since many parts made of steel sheets are formed by press working, the high-tensile steel sheets used are required to have excellent press formability. Various types of multi-phase steel have already been developed as steel sheets with excellent formability. A representative example of the steel sheet having a composite structure is a steel sheet having a composite structure of soft ferrite and hard martensite. This steel sheet is said to be a steel sheet having a low yield ratio, an excellent balance of strength and ductility, and an excellent bake-hardenability. At the same time, the yield point elongation is also low, so that the occurrence of non-uniform pattern surface defects can be prevented. As a method for producing this type of steel sheet, for example, JP 2000-109966 A discloses that C: 0.005 to 0.15%, Mn: 0.3 to 3.0%, Mo: 0.05 to 1. 0%, or even Cr: 0. 05~ 1. the plated for mother board containing 0%, a Cl transformation point or higher Ac 3 transformation point of at least once at a temperature annealed, cooled, then a Cl was heated to a temperature range of transformation point ~ Ac 3 transformation point, the temperature range from the heating temperature of this to at least plated bath temperature, then cooled in response Ji was critical cooling rate or higher on the content of alloying elements, and then the molten zinc A manufacturing method for hot-dip zinc-plated high-tensile strength steel sheets with excellent workability is proposed in which plating is performed and the temperature range up to 300 ° C after plating is cooled at a critical cooling rate or higher according to the alloy element content. ing. According to the technique described in Japanese Unexamined Patent Publication No. 2000-109966, a composite structure of ferrite and martensite is formed, has a low yield ratio of 55% or less, and exhibits excellent workability. It is said that it will be possible to produce high-tensile strength steel sheets with excellent melting and resistance to powdering. However, in the technique described in Japanese Patent Application Laid-Open No. 2000-109966, in order to obtain a stable composite structure, an alloy element such as Mo, Mn, or Cr that greatly contributes to improving hardenability is used. There was a problem that it was necessary to add a large amount, and the production cost of this type of steel sheet increased, which was economically disadvantageous. In order to solve this problem, Japanese Patent Application Laid-Open No. 2002-20834 contains N: 0.03 to 2.0%, and the volume fraction of martensi potato is 3 to 30%. A low-yield-ratio high-strength steel sheet with excellent strength is proposed. In the technique described in Japanese Patent Application Laid-Open No. 2002-20834, the above-described N content is reduced by treating (annealing) in an atmosphere containing 2% or more of ammonia in a temperature range of 550 to 800 ° C. after hot rolling. It can be secured. N is effective in stabilizing the austenite phase. With the technique described in Japanese Patent Application Laid-Open No. 2002-20834, the copper plate structure can be martensite without adding a large amount of alloy elements such as Mo, Mn, and Cr. It is said that it can be a composite structure containing phases. JP 2002-146478 A discloses that C: 0.025 to 0.15%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.08% or less, S: 0.02% or less, A1: 0.02% or less, N: 0.0050 to 0.0250%, NZA1 is 0.30 or more, and N as a solid solution state is more than 0.0010%, A high-tensile cold-rolled steel sheet having a structure containing a martensite phase with an area ratio of 80% or more in the ferrite phase and an area ratio of 5% or more as the second phase has been proposed. The steel sheet described in Japanese Patent Application Laid-Open No. 2002-146478 has a tensile strength of 440 MPa or higher, a high r value (r value = Lankford value), excellent strain age hardening, and non-aging at room temperature. It is going to have. However, in the technique described in Japanese Patent Application Laid-Open No. 2002-20834, annealing in an atmosphere containing ammonia is expensive, and in order to perform annealing in an atmosphere containing ammonia, the existing annealing equipment There was a problem with the economy, such as requiring large-scale remodeling. Furthermore, as is clear from the examples, the technique described in Japanese Patent Application Laid-Open No. 2002-146478 is generally intended for the region where the tensile strength exceeds 500 MPa, and the strength is too high for electric machines and cans. Therefore, there is a problem that it is difficult to secure desired workability (particularly ductility). In addition, there was a problem in the manufacturing cost for carrying out box annealing after cold rolling and then continuous annealing. Disclosure of the invention
本 ¾明は、 かかる従来技術の問題を有利に解決し、 高価な合金元素の含有量 を可能な限り低減した軟鋼並みの組成で、 プレス成形性に優れた 340MPa級〜 440M Pa級高張力冷延鋼板およびその製造方法を提供することを目的とする。 本発明者らは、 上記した目的を達成するためには、 Cr、 Mo等の高価な合金元素 を多量に含有させることなく、 鋼板組織を軟質なフェライト相と硬質なマルテン サイト相等とからなる複合組織を安定して確保する必要があることに鑑み、 この ような複合組織の形成に影響する各種要因について、 鋭意研究した。 その結果、 従来あまり積極的に利用されることがなかった Nに着目し、 N含有量を適正範囲 に調整することにより、 Cr、 Mo 等の高価な合金元素を多量に含有させることなく、 焼鈍後の冷却速度が低く複合組織が得にくレ、条件下においても、 上記したような 複合組織を安定して形成でき、 55%以下の低降伏比を安定して確保して、 成形性 に優れた高張力冷延銅板とできることを見いだした。 まず、 本発明の基礎となった実験結果について説明する。 The present invention advantageously solves the problems of the prior art, has a composition equivalent to that of mild steel with the content of expensive alloy elements reduced as much as possible, and has excellent press-formability. 340 MPa class to 440 MPa class high-tensile cooling It aims at providing a rolled steel plate and its manufacturing method. In order to achieve the above-mentioned object, the present inventors have made a steel sheet structure composed of a soft ferrite phase and a hard martensite phase without containing a large amount of expensive alloy elements such as Cr and Mo. In view of the need to secure a stable organization, we conducted extensive research on various factors that influence the formation of such a composite tissue. As a result, focusing on N, which has not been actively used so far, by adjusting the N content to an appropriate range, annealing can be performed without containing a large amount of expensive alloy elements such as Cr and Mo. Even when the cooling rate is low and the composite structure is difficult to obtain, the composite structure as described above can be stably formed, and a low yield ratio of 55% or less can be stably secured to improve the moldability. We have found that we can make an excellent high-tensile cold-rolled copper sheet. First, the experimental results on which the present invention is based will be described.
質量0 /0で、 0. 011% C— 0. 001% N— 1. 5%Mn系 (C系) 組成、 および 0. 001% C 一 0· 013% Ν— 1. 5%Mn系 (N系) 組成の 2種の銅を溶製し、 シートバー(sheet b ar)とした。 これらシートバーを、 1200°Cに加熱し、 均熱したのち、 仕上圧延終了 温度が 900°Cとなるように調整した 3パスの熱間圧延により板厚が 4. 0mmの熱延 板とした。 なお、 得られた熱延板には、 仕上圧延終了後、 コイル卷取り処理に相 当する熱処理 (600^ X 1 11 ) を施した。 ついで、 圧下率 75%の冷間圧延を施し て、 板厚が 1. 0mmの冷延板とした。 ついで、 これら冷延板に、 二相域である、 80 0°Cまで加熱し 60 s間保持したのち、 300°Cまでの平均で、 8〜500°CZ sの範囲 内の各種冷却速度で冷却する焼鈍処理(anneal treatment)を施し、 ついで酸洗 (pi ckling treatment)した。 なお、 この実験では調質圧延(skin pass mill)は行わな かった。
得られた鋼板から、 圧延方向に直交する方向を試験片の長さ方向として、 JIS (Japanese Industrial Standards) 13号 B試験片の平行部長さを 1 Z 2としたハ —フサイズの引張試験片を採取し、 JIS Z 2241の規定に準拠して引張試験を実施 し、.引張特性を求めた。 得られた結果を図 1に示す。 なお、 降伏比 (%) は、 (降伏強さ Z引張強さ) X 100 (%) で定義される値とした。 なお、 降伏強さは、 降伏点が認められる場合は下降伏点とし、 降伏点が定かでない場合は 0. 2%耐カ ΓΟΟΙ stress;とした。 図 1から、 N系組成は、 C系組成に比べて琮鈍後の広い冷却速度範囲にわたり 降伏強さ (下降伏点) 、 降伏伸びが低くなりやすく、 低い降伏比を確保しやすい' ことを知見した。 すなわち、 N系組成とすることにより、 C系組成に比べて冷却 速度が遅くなっても、 安定して鋼板組織を軟質なフェライ ト相と適正量の硬質な 相と力 らなる複合組織とすることができ、 優れた成形性を安定して確保すること ができる。 この原因については、 現在までのところ詳細は不明であるが、 本発明 者らは次のように考えている。 冷延板を二相域 (フェライト +オーステナイト) もしくはオーステナイ ト域の 低温領域に加熱し冷却する焼鈍処理の冷却時に、 C系組成では、 オーステナイト 相がフェライ ト相と粗大なセメンタイ トに分解しやすく、 べィニティックフェラ ィ ト(bainitic ferrite)やマノレテンサイト等の低温生成相(low- temperature tran sformation phase)が形成しにくい。 一方、 N系組成では、 焼鈍処理の冷却時に、 窒化物が生成し難いため、 オーステナイト相が低温まで安定となり、 べィニティ ックフェライ トゃマルテンサイ ト等の低温生成相が形成されやすくなつたものと 推定される。 このような Nによるオーステナイ ト相の安定化は、 その後の更なる 実験により、 NZ C値が 0. 40以上となる範囲で、 顕著となるという知見を得た。
本発明は、 上記した知見に基づき、 さらに検討を加えて完成されたものである。 すなわち、 本発明の要旨は次のとおりである。 Mass 0/0, 0. 011% C- 0. 001% N- 1. 5% Mn system (C system) composition, and 0. 001% C one 0 · 013% Ν- 1. 5% Mn -based ( N type) Two types of copper were melted to form a sheet bar. These sheet bars were heated to 1200 ° C, soaked, and finished into a hot rolled sheet with a thickness of 4.0 mm by hot rolling of 3 passes adjusted to a finish rolling finish temperature of 900 ° C. . The obtained hot-rolled sheet was subjected to heat treatment (600 ^ X11) corresponding to coil cutting after finishing rolling. Next, cold rolling with a rolling reduction of 75% was performed to obtain a cold rolled sheet having a thickness of 1.0 mm. Next, these cold-rolled plates were heated to 800 ° C, which is a two-phase region, and held for 60 s, and then averaged up to 300 ° C at various cooling rates in the range of 8 to 500 ° CZ s. A cooling annealing treatment was performed, followed by pickling treatment. In this experiment, temper rolling (skin pass mill) was not performed. From the obtained steel plate, a half-size tensile test piece with a parallel part length of JIS (Japanese Industrial Standards) No. 13 B test piece as 1 Z 2 with the direction perpendicular to the rolling direction as the length direction of the test piece. The samples were collected and subjected to a tensile test in accordance with the provisions of JIS Z 2241 to determine the tensile properties. Figure 1 shows the results obtained. The yield ratio (%) was defined as (yield strength Z tensile strength) X 100 (%). Yield strength was defined as the falling yield point when a yield point was observed, and 0.2% resistance ΓΟΟΙ stress; when the yield point was not known. From Fig. 1, it can be seen that the N-based composition tends to have a lower yield strength (yield point), yield elongation, and lower yield ratio over a wider range of cooling rates after annealing than the C-based composition. I found out. In other words, by adopting an N-based composition, even if the cooling rate is slower than that of a C-based composition, the steel sheet structure is stably made into a composite structure composed of a soft ferrite phase and an appropriate amount of hard phase. And excellent moldability can be stably secured. The details of this cause are not known so far, but the present inventors consider as follows. When cooling a cold-rolled sheet in an annealing process that heats and cools a cold-rolled sheet in a two-phase region (ferrite + austenite) or a low-temperature region in the austenite region, the austenite phase easily decomposes into a ferrite phase and coarse cementite. Low-temperature tran sformation phase such as bainitic ferrite and manoletite is difficult to form. On the other hand, with the N-based composition, it is presumed that the austenite phase is stable up to low temperatures because it is difficult to form nitrides during cooling of the annealing treatment, and that low-temperature-generated phases such as marineite are more likely to be formed. Is done. Such stabilization of the austenite phase by N was found to become remarkable in the range where the NZC value was 0.40 or more by further experiments. The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
( 1 ) 質量0 /0で、 C : 0. 001〜0. 05%、 Si: 0. 4%以下、 Mn: 0. 5〜2. 0%、 P : 0. 08%以下、 S : 0. 005%以下、 A1: 0. 05%以下、 N: 0. 0080〜0. 0250%を含み、 力 つ固溶状態の Nが 0. 0050%以上、 NZA1が 0. 30以上、 N,Cが 0. 40以上であり、 残部が Feおよび不可避的不純物からなる組成を有し、 組織が、 体積率で 95. 0〜9 9. 5%のフェライト相と、 体積率で 0. 5〜5. 0%の低温生成相を有する複合組織で あることを特徴とする引張強さが 340MPa以上の高張力冷延鋼板。 (1) the mass 0/0, C:. 0. 001~0 05%, Si: 0. 4% or less, Mn:. 0. 5~2 0% , P: 0. 08% or less, S: 0 005% or less, A1: 0. 05% or less, N: 0. 0080 ~ 0.0 250% included, N in a solid solution state is 0.0050% or more, NZA1 is 0.30 or more, N, C Is 0.44 or more, the balance is composed of Fe and inevitable impurities, and the structure is 95.0 to 99.5% ferrite phase by volume and 0.5 to 5 by volume A high-tensile cold-rolled steel sheet having a tensile strength of 340 MPa or more, characterized by being a composite structure having a low-temperature generation phase of 0%.
( 2 ) ( 1 ) において、 鋼板表面にめっき層として、 溶融亜鉛めつき層、 合金 化溶融亜鉛めつき層、 および電気亜鉛めつき層のうちのいずれかを有することを 特徴とする高張力冷延鋼板。 (2) In (1), the steel sheet has a high tension cooling layer characterized by having any one of a hot-dip zinc plating layer, an alloyed hot-dip zinc plating layer, and an electrogalvanizing layer as a plating layer. Rolled steel sheet.
( 3 ) 鋼素材に、 熱間圧延工程と、 冷間圧延工程と、 焼鈍工程とを順次施して 冷延鋼板を製造するに当り、 前記鋼素材を、 質量%で、 C : 0. 001〜0. 05%、 Si : 0. 4%以下、 Mn: 0. 5—2. 0%、 P : 0. 08%以下、 S : 0. 005%以下、 A1: 0. 05%以 下、 N: 0. 0080〜0. 0250ο/οを含み、 かつ が 0. 30以上、 NZCが 0. 40以上 であり、 残部が Feおよび不可避的不純物からなる組成を有する鋼素材とし、 前記 熱間圧延工程が、 前記鋼素材を、 1000 以上の加熱温度に加熱し、 粗圧延してシ 一トバーとしたのち、 該シートバーに仕上圧延出側温度を 800°C以上とする仕上 圧延を施し、 卷取り温度を 750°C以下で巻き取り熱延板とする工程であり、 前記 冷間圧延工程が、 該熱延板に酸洗および冷間圧延を施し冷延板とする工程であり、 前記焼鈍工程が、 該冷延板を ACl変態点〜 (Ac3変態点 + 50°C) の範囲の温度に加 熱したのち、 平均冷却速度 5 °C/ s以上の冷却速度で 350で以下の温度域まで冷 却する工程であることを特徴とする引張強さが 340MPa以上の高張力冷延鋼板の製 造方法。
( 4 ) ( 3 ) において、 前記焼鈍工程に引続いて、 鋼板表面に電気亜鉛めつき 層を形成する電気亜鈴めつき処理工程を施すことを特徴とする高張力冷延鋼板の 製造方法。 (3) In manufacturing a cold-rolled steel sheet by sequentially performing a hot rolling process, a cold rolling process, and an annealing process on a steel material, the steel material is, in mass%, C: 0.001 to 0.05%, Si: 0.4% or less, Mn: 0.5—2.0%, P: 0.08% or less, S: 0.005% or less, A1: 0.05% or less, N A steel material having a composition comprising 0.0.0080 to 0.0250 ο / ο , ≧ 30.30, NZC ≧ 0.40, and the balance consisting of Fe and inevitable impurities. In the process, the steel material is heated to a heating temperature of 1000 or more and roughly rolled into a sheet bar, and then the sheet bar is subjected to finish rolling with a finish rolling exit temperature of 800 ° C or more. A temperature of 750 ° C. or lower to obtain a hot rolled sheet, and the cold rolling process is a process of subjecting the hot rolled sheet to pickling and cold rolling to obtain a cold rolled sheet, and the annealing The process is to remove the cold rolled sheet A This is a process of heating to a temperature in the range from the Cl transformation point to (Ac 3 transformation point + 50 ° C) and then cooling to 350 or below at an average cooling rate of 5 ° C / s or higher. A method for producing a high-tensile cold-rolled steel sheet having a tensile strength of 340 MPa or more. (4) The method for producing a high-tensile cold-rolled steel sheet according to (3), wherein an electric dumbbelling process step of forming an electrogalvanized layer on the steel sheet surface is performed subsequent to the annealing process.
( 5 ) 銅素材に、 熱間圧延工程と、 冷間圧延工程と、 焼鈍一溶融亜鉛めつき処 理工程とを順次施して冷延銅板を製造するに当り、 前記銅素材を、 質量%で、 (5) In manufacturing a cold-rolled copper sheet by sequentially performing a hot rolling process, a cold rolling process, and an annealing and hot-dip galvanizing process on a copper material, the copper material is added in mass%. ,
C: 0. 001〜0. 05%、 Si: 0. 4%以下、 Mn: 0. 5〜2. 0%、 P : 0. 08%以下、 S : 0. 0 05%以下、 A1 : 0. 05%以下、 N: 0. 0080〜0. 0250%を含み、 かつ N/A1が 0. 30 以上、 N/Cが 0. 40以上であり、 残部が Feおよび不可避的不純物からなる組成 を有する鋼素材とし、 前記熱間圧延工程が、 前記銅素材を、 1000°C以上の加熱温 度に加熱し、 粗圧 ¾してシートバーとしたのち、 該シートバーに仕上圧延出側温 度 800°C以上とする仕上圧延を施し、 卷取り温度を 750°C以下で卷き取り熱延板と する工程であり、 前記冷間圧延工程が、 該熱延板に酸洗および冷間圧延を施し冷 延板とする工程であり、 前記焼鈍一溶融亜鉛めつき処理工程が、 該冷延板を Ac, 変態点〜 (Ac3変態点 + 50°C) の範囲の温度に加熱したのち、 平均冷却速度 5 °CZ s以上の冷却速度で 500°C以下に冷却し、 ついで銅板表面に溶融亜鈴めつき層を 形成する溶融亜鉛めつき処理を施したのち、 平均冷却速度 5 °CZ s以上の冷却速 度で 350°C以下の温度域まで冷却する焼鈍一溶融亜^^めつき処理工程とすること を特徴とする引張強さが 340MPa以上の高張力冷延鋼板の製造方法。 C: 0.001 to 0.05%, Si: 0.4% or less, Mn: 0.5 to 2.0%, P: 0.08% or less, S: 0.005% or less, A1: 0 0.5% or less, N: 0.0080 to 0.0250%, N / A1 is 0.30 or more, N / C is 0.40 or more, and the balance is composed of Fe and inevitable impurities. In the hot rolling step, the copper material is heated to a heating temperature of 1000 ° C. or higher, and is roughly compressed to form a sheet bar, and then the finish rolling exit temperature is applied to the sheet bar. It is a process in which finish rolling is performed to 800 ° C or higher, and a hot rolling sheet is formed at a cutting temperature of 750 ° C or lower, and the cold rolling process includes pickling and cold rolling on the hot rolled sheet. After the annealing and molten zinc plating process, the cold-rolled sheet is heated to a temperature in the range of Ac, transformation point to (Ac 3 transformation point + 50 ° C). Cool down to 500 ° C or less at an average cooling rate of 5 ° CZ s or more Next, after applying the hot dip galvanizing process to form a molten dumbbell layer on the surface of the copper plate, it is cooled to 350 ° C or lower at an average cooling rate of 5 ° CZ s or higher. ^^ A method for producing a high-tensile cold-rolled steel sheet with a tensile strength of 340 MPa or more, characterized by a mating process.
( 6 ) 鋼素材に、 熱間圧延工程と、 冷間圧延工程と、 焼鈍一合金化溶融亜鉛め つき処理工程とを順次施して冷延鋼板を製造するに当り、 前記鋼素材を、 質量% で、 C: 0. 001〜0. 05%、 Si: 0. 4%以下、 Mn: 0. 5〜2. 0%、 P : 0. 08%以下、 (6) In manufacturing a cold-rolled steel sheet by sequentially performing a hot rolling process, a cold rolling process, and an annealing-alloyed molten zinc plating process on a steel material, the steel material is C: 0.001 to 0.05%, Si: 0.4% or less, Mn: 0.5 to 2.0%, P: 0.08% or less,
S : 0. 005%以下、 A1: 0. 05%以下、 N: 0. 0080〜0. 0250%を含み、 かつ NZAI が 0. 30以上、 N/ Cが 0. 40以上であり、 残部が Feおよび不可避的不純物からな る組成を有する鋼素材とし、 前記熱間圧延工程が、 前記鋼素材を、 1000°C以上の 加熱温度に加熱し、 粗圧延してシートバーとしたのち、 該シートバーに仕上圧延 出側温度を 800°C以上とする仕上圧延を施し、 巻取り温度を 750°C以下で卷き取り 熱延板とする工程であり、 前記冷間圧延工程が、 該熱延板に酸洗および冷間圧延
を施し冷延板とする工程であり、 前記焼鈍一合金化溶融亜鉛めつき処理工程が、 該冷延板を ACl変態点〜 (Ac3変態点 + 50°C) の範囲の温度に加熱したのち、 平均 冷却速度 5 °C/ s以上の冷却速度で 500°C以下に冷却し、 鋼板表面に溶融亜鉛め つき層を形成する溶融亜鉛めつき処理を施したのち、 該溶融亜鉛めっき層を合金 化溶融亜鉛めつき層とする合金化処理を施し、 ついで平均冷却速度 5 Z s以上 の冷却速度で 350°C以下の温度域まで冷却する焼鈍—合金化溶融亜鉛めつき処理 工程とすることを特徵とする引張強さが 340MPa以上の高張力冷延鋼板の製造方法。 S: 0.005% or less, A1: 0.05% or less, N: 0.0080 to 0.0250% included, NZAI is 0.30 or more, N / C is 0.40 or more, and the remainder A steel material having a composition comprising Fe and unavoidable impurities, and the hot rolling step heats the steel material to a heating temperature of 1000 ° C. or higher, roughly rolls it into a sheet bar, and then the sheet. Finish rolling the bar to finish rolling with an exit temperature of 800 ° C or higher, rolling the bar at a winding temperature of 750 ° C or lower to form a hot-rolled sheet, and the cold rolling step includes the hot rolling Pickling and cold rolling on plate To form a cold-rolled sheet, wherein the annealing and alloying hot-dip galvanizing process heats the cold-rolled sheet to a temperature in the range of A Cl transformation point to (Ac 3 transformation point + 50 ° C). After cooling to 500 ° C or less at an average cooling rate of 5 ° C / s or more, and applying a hot dip galvanizing treatment to form a hot dip galvanized layer on the steel sheet surface, the hot dip galvanized layer An alloying treatment with an alloyed hot-dip zinc plating layer followed by an annealing-alloying hot-dip zinc soldering process with an average cooling rate of 5 Z s or higher and cooling to a temperature range of 350 ° C or lower A method for producing high-tensile cold-rolled steel sheets with a tensile strength of 340 MPa or more.
図面の簡単な説明 Brief Description of Drawings
図 1は焼鈍後の冷却速度と引張特性の関係におよぼす鋼板組成の影響を示すグ ラフである。 発明を実施するための形態 本発明鋼板は、 引張強さが 340MPa以上概ね 500MPa以下の 340MPa級〜 440MPa級 高張力冷延鋼板である。 Figure 1 is a graph showing the effect of steel sheet composition on the relationship between the cooling rate after annealing and the tensile properties. Mode for Carrying Out the Invention The steel sheet of the present invention is a high-tensile cold-rolled steel sheet having a tensile strength of 340 MPa to approximately 440 MPa, and a strength of 340 MPa to 440 MPa.
まず、 本発明鋼板の組成限定理由について説明する。 以下、 組成における質 量%は、 単に%と記す。 First, the reasons for limiting the composition of the steel sheet of the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.
C : 0. 001〜0. 05% C: 0.001 to 0.05%
Cは、 鋼板を高強度化する強化元素であるとともに、 オーステナイ ト相に濃化 してォー テナイト相を安定化させる作用を有する元素であり、 本発明では重要 な元素の一つである。 このような効果を得るためには、 0. 001%以上の含有を必要 とする。 なお、 Cを 0. 001%未満とするには、 脱炭に長時間を要し、 高コストと なる問題もある。 一方、 0. 05%を超えて含有すると、 低温生成相の形成量が多く なり、 強度が高くなりすぎて、 所望の強度や延性が確保できなくなる。 このよう
なことから、 Cは 0. 001〜0. 05%の範囲に限定した。 なお、 好ましくは 0. 008〜0. 04%、 さらに好ましくは 0. 01〜0. 035%、 より好ましくは 0. 01〜0. 029%である。 C is a strengthening element that increases the strength of the steel sheet, and also has an action of concentrating in the austenite phase and stabilizing the austenite phase, and is an important element in the present invention. In order to obtain such an effect, it is necessary to contain 0.001% or more. If C is made less than 0.001%, it takes a long time for decarburization, resulting in high costs. On the other hand, if the content exceeds 0.05%, the amount of low-temperature formation phase is increased, the strength becomes too high, and the desired strength and ductility cannot be ensured. like this Therefore, C is limited to the range of 0.001 to 0.05%. In addition, Preferably it is 0.008 to 0.04%, More preferably, it is 0.01 to 0.035%, More preferably, it is 0.01 to 0.029%.
Si: 0. 4%以下 Si: 0.4% or less
Siは、 銅の延性を低下させることなく、 鋼板を高強度化することができる有用 な強化元素であり、 さらに Siは焼鈍工程において、 炭化物の生成を抑制し未変態 オーステナイト相の安定性を向上させる作用を有する。 このような効果を得るた めには、 0. 001%以上含有することが好ましく、 さらに 0. 01%以上含有すること が望ましい。 一方、 0. 4%を超える含有は、 表面性状、 化成処理(chemical conver sion treatment)性等の表面美麗性に悪影響を及ぼすとともに、 表面美麗性を確保 するために長時間の酸洗処理を行う必要があり、 製造コストの高縢を招くことに なる。 このようなことから、 Siは 0. 4%以下に限定した。 なお、 より表面の美麗 性が要求される使途には、 0. 3%以下とすることが好ましい。 Si is a useful strengthening element that can increase the strength of steel sheets without lowering the ductility of copper.In addition, Si suppresses the formation of carbides during the annealing process and improves the stability of the untransformed austenite phase. Have the effect of In order to obtain such an effect, the content is preferably 0.001% or more, and more preferably 0.01% or more. On the other hand, a content exceeding 0.4% adversely affects surface aesthetics such as surface properties and chemical conversion treatment properties, and performs pickling treatment for a long time to ensure surface aesthetics. It will be necessary, leading to high manufacturing costs. For these reasons, Si was limited to 0.4% or less. It should be noted that the content is preferably 0.3% or less for usages that require a more beautiful surface.
Mn: 0. 5〜2. 0% Mn: 0.5-2. 0%
Mnは、 焼入れ性を向上させる元素であり、 鋼板の強度増加に大きく寄与すると ともに、 オーステナイトに濃化しオーステナイト相の安定化に寄与する効果も有 する。 また、 Mnは Sと結合し、 S起因の熱間割れ (hot tearing)を防止する有効 な元素であり、 含有する S量に応じて含有させることが好ましい。 このような効 果を得るためには、 0. 5%以上の含有を必要とする。 一方、 2. 0%を超える含有は、 上記した効果が飽和するとともに、 加工性やスポット溶接性を顕著に低下させる。 このため、 Mnは 0. 5〜2. 0%の範囲に限定レた。 なお、 優れた成形性を要求される 使途には、 1. 8%以下とすることが好ましい。 Mn is an element that improves hardenability and contributes significantly to increasing the strength of the steel sheet, and also has the effect of concentrating to austenite and contributing to stabilization of the austenite phase. Mn is an effective element that binds to S and prevents hot tearing caused by S, and is preferably contained according to the amount of S contained. In order to obtain such an effect, it is necessary to contain 0.5% or more. On the other hand, if the content exceeds 2.0%, the above-described effects are saturated, and the workability and spot weldability are significantly reduced. For this reason, Mn is limited to the range of 0.5 to 2.0%. In applications where excellent formability is required, it is preferably 1.8% or less.
P : 0. 08%以下 P: 0.08% or less
Pは、 鋼を強化する作用を有する元素であり、 所望の強度に応じて 0. 005%以 上含有させることもできるが、 0. 08%を超える多量の含有は、 溶接性や加工後の
低温靭性を低下させる。 このため、 Pは 0. 08%以下に限定した。 なお、 優れた溶 接性や優れた靭性を要求される使途には 0. 05%以下とすることが好ましい。 溶接 性ゃ靭性の観点から、 より好ましくは 0. 03%以下である。 P is an element that has the effect of strengthening steel and can be contained in an amount of 0.005% or more depending on the desired strength. Reduces low temperature toughness. Therefore, P is limited to 0.08% or less. In applications where excellent weldability and excellent toughness are required, 0.05% or less is preferable. From the viewpoint of weldability and toughness, it is more preferably 0.03% or less.
S : 0. 005%以下 S: 0.005% or less
Sは、 鋼中では硫化物系介在物として存在し、 鋼板の延性、 成形性、 とくに伸 びフランジ成形性を低下させる元素であり、 できるかぎり低減することが望まし いが、 0. 005%以下に低減すると伸びフランジ成形性への悪影響が許容できる程度 となる。 このため、 Sは 0. 005%以下に限定した。 なお、 より優れた伸びフラン ジ成形性や、 優れた溶接性を要求される使途には、 0. 003%以下とすることが好ま しい。 S is present in the steel as sulfide inclusions and is an element that lowers the ductility and formability of the steel sheet, especially the stretch flangeability, and should be reduced as much as possible. If it is reduced below, the adverse effect on stretch flangeability will be acceptable. Therefore, S is limited to 0.005% or less. It should be noted that the content is preferably 0.003% or less for uses that require superior stretch flange formability and excellent weldability.
A1: 0. 05%以下 A1: 0.05% or less
A1は、 脱酸剤として作用し、 鋼板の清浄度を向上させるとともに、 鋼板組織の 微細化に寄与する有用な元素である。 このような効果を得るためには 0. 001%以 上、 より好ましくは 0. 005%以上含有することが望ましいが、 0. 05%を超える多 量の含有は、 鋼板の表面性状を低下させるとともに、 固溶 N量の顕著な低下に繋 がり、 固溶 Nによるオーステナイト相の安定化を介して形成される硬質な低温生 成相量が低下し、 所望の複合組織を形成することが困難となる。 このため、 本発 明では A1は 0. 05%以下に限定した。 なお、 材質の安定性という観点からは 0. 001 〜0. 03%どすることが好ましい。 A1 is a useful element that acts as a deoxidizer, improves the cleanliness of the steel sheet, and contributes to the refinement of the steel sheet structure. In order to obtain such an effect, the content is preferably 0.001% or more, more preferably 0.005% or more. However, if the content exceeds 0.05%, the surface properties of the steel sheet are deteriorated. At the same time, it leads to a significant decrease in the amount of solid solution N, and the amount of hard low-temperature formation phase formed through stabilization of the austenite phase by solid solution N decreases, making it difficult to form the desired composite structure. It becomes. For this reason, in the present invention, A1 is limited to 0.05% or less. From the viewpoint of the stability of the material, the content is preferably 0.001 to 0.03%.
N: 0. 0080〜0. 0250% N: 0.0008 to 0.0250%
Nは、 Cと同様に、 オーステナイ ト相に濃化してオーステナイト相を安定化す る作用を有し、 焼鈍工程の冷却時における、 硬質な低温生成相の形成に有効に作 用する元素であり、 優れたプレス成形性を発現させるうえで、 本発明では重要な 元素である。 また、 Nは、 鋼の変態点を降下させる作用も有しており、 変態点を
大きく割り込んだ熱間圧延をしたくないという場合には Nの添カ卩は有効である。 このような効果を得るためには 0. 0080%以上の含有を必要とする。 一方、 0. 025 0%を超える含有は、 鋼板の内部欠陥の発生率が高くなると共に、 連続铸造時の鎊 片割れなどの発生が顕著となる。 このため、 Nは 0. 0080〜0. 0250%の範囲に限定 した。 なお、 製造工程全体を考慮した材質の安定性、 歩留向上という観点からは、 0. 0100〜0. 0180%とすることが好ましい。 なお、 この程度の N含有では銅板の溶 接性には悪影響は全くない。 固溶状態の N: 0. 0050%以上 N, like C, has the effect of concentrating to the austenite phase and stabilizing the austenite phase, and is an element that effectively works to form a hard, low-temperature product phase during cooling in the annealing process. It is an important element in the present invention for exhibiting excellent press formability. N also has the effect of lowering the transformation point of steel. If you do not want to perform hot rolling that is greatly interrupted, the N additive is effective. In order to obtain such an effect, the content of 0.0008% or more is required. On the other hand, when the content exceeds 0.025%, the occurrence rate of internal defects in the steel sheet increases, and the occurrence of cracks during continuous forging becomes prominent. For this reason, N is limited to a range of 0.0008 to 0.0250%. From the viewpoint of improving the stability of the material and the yield in consideration of the entire manufacturing process, the content is preferably set to 0.0100 to 0.0180%. This N content has no adverse effect on the weldability of the copper plate. Solid solution N: 0.0050% or more
オーステナイ ト相の安定化を図り、 硬質な低温生成相を所望量形成させ、 所望 の複合組織を安定して確保するためには、 固溶状態の Ν·を 0. 0050%以上確保する ことが肝要である。 なお、 焼鈍処理の冷却時の冷却速度が遅く、 さらに安定して 硬質な低温生成相を確保する必要がある場合には、 固溶状態の N量は 0. 0080%以 上とすることが好ましい。 上限は固溶限の N量でも良いが、 0. 020%で十分である。 ここでいう 「固溶状態の N」 とは、 鋼中の全 N量から、 析出 N量を差し引いた値 をいう。 なお、 ここでいう 「析出 N量」 は、 対象とする銅板から採取した試料に ついて、 ァセチルアセトン系の電解液中での定電位電解法を行い抽出した、 残渣 中の N量を化学分析により求めた N量をいう。 In order to stabilize the austenite phase, form a desired amount of hard low-temperature formation phase, and stably secure the desired composite structure, it is necessary to secure a solid solution state of 0.0050% or more. It is essential. In addition, when the cooling rate during the cooling of the annealing process is slow and it is necessary to secure a stable and hard low-temperature formation phase, the N amount in the solid solution state is preferably set to 0.0008% or more. . The upper limit may be the N amount at the solid solubility limit, but 0.020% is sufficient. “Solid-state N” here refers to the value obtained by subtracting the amount of precipitated N from the total amount of N in steel. The “precipitated N content” here refers to the chemical analysis of the N content in the residue extracted from the sample collected from the target copper plate by the controlled potential electrolysis method in the acetylacetone-based electrolyte. The amount of N determined by
N/A1: 0. 30以上 N / A1: 0.30 or more
Nによるオーステナイト相の安定化を介して所望の複合組織を有する鋼板を得 る本発明では、 所定量以上の固溶状態の Nを確保するため、 Nを固定する作用の ある A1の含有量を N含有量との関係で所定範囲に制限することが肝要となる。 こ こで Nは全 N、 A1 は全 A1 をいう。 本発明では、 上記した N, A1 の範囲内でかつ、 N含有量と A1含有量との比、 NZA1を 0. 30以上に調整する。 これにより、 焼鈍 後に安定して固溶状態の Nを 0. 0050%以上確保することができ、 目標とする成形 性が確保できることを確認した。 このようなことから、'本発明では NZA1を 0. 30
以上に限定した。 なお、 好ましくは、 0. 40以上であり、 より好ましくは 0. 50以 上である。 上限は特に規定はしないが、 実際的には 4である。 In the present invention in which a steel sheet having a desired composite structure is obtained through stabilization of the austenite phase by N, in order to secure N in a solid solution state of a predetermined amount or more, the content of A1 having an action of fixing N is set. It is important to limit to the predetermined range in relation to the N content. N is all N and A1 is all A1. In the present invention, the ratio of N content to A1 content, NZA1, is adjusted to 0.30 or more within the above range of N and A1. As a result, it was confirmed that N in a solid solution state could be ensured to be 0.0050% or more stably after annealing, and the target moldability could be secured. For this reason, NZA1 is 0.30 in the present invention. Limited to the above. In addition, Preferably it is 0.40 or more, More preferably, it is 0.50 or more. The upper limit is not specified, but in practice it is 4.
N/C : 0. 40以上 N / C: 0.40 or more
C , Nともに、 オーステナイト相を安定化させる元素であるが、 ここで Nは全 N、 Cは全 Cをいう。 上記したように Cに比べて Nを利用してオーステナイ ト相 を安定化させた方が、 安定して所望量の低温生成相を確保することができる。 と くに N Cを 0. 40以上に調整することにより、 .その効果が顕著となる。 このよう なことから、 本発明では NZCを、 0. 40以上に限定した。 なお、 好ましくは 0. 50 以上である。 上限は特に規定はしないが、 実際的には 2 0である。 上記した成分以外の残部は、 Feおよび不可避的不純物である。 不可避的不純物 としては、 Sb: 0. 01%以下、 Sn: 0. 1%以下、 Zn: 0. 01%以下、 Co: 0. 1%以下等 が許容できる。 なお、 Ca、 REM. Zr等は、 通常の鋼組成の範囲内であれば含有し ても何ら問題はない。 つぎに、 本努明銅板の組織の限定理由について説明する。 Both C and N are elements that stabilize the austenite phase, where N is all N and C is all C. As described above, the use of N as compared to C stabilizes the austenite phase, so that a desired amount of low-temperature product phase can be secured stably. In particular, by adjusting N C to 0.40 or more, the effect becomes remarkable. Therefore, in the present invention, NZC is limited to 0.40 or more. In addition, Preferably it is 0.50 or more. The upper limit is not specified, but it is 20 in practice. The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, Co: 0.1% or less. It should be noted that Ca, REM. Zr, etc. can be contained as long as they are within the normal steel composition range. Next, the reasons for limiting the structure of this Tsukumei copper sheet will be explained.
本発明鋼板は、 主相として組織全体に対する体積率で 95. 0〜99. 5%のフェライ ト相と、 第二相として組織全体に対する体積率で 0. 5〜5. 0%の低温生成相を有す . る複合組織鋼板である。 主相であるフェライ ト相が組織全体に対する体積率で 95 0%未満では、 高い延性を確保することが困難となり、 プレス成形性が低下する傾 向となり、 高度な加工性を必要とする部材用鋼板として要求されるプレス成形性 を確保することが難しくなる。 一方、 複合組織の利点を利用するため、 主相であ るフェライト相は体積率で 99. 5%以下とする必要がある。 このようなことから、 主相であるフェライ ト相は体積率で 95. 0〜99. 5%の範囲に限定した。 なお、 更な る高い延性が要求される使途にはフェライ ト相は体積率で 97. 0%以上とすること が好ましい。
第二相である低温生成相が体積率で 0. 5%未満では、 降伏比を 55%以下として 高いプレス成形性を確保することができない。 一方、 5. 0%を超えて低温生成相が 多くなると、 延性の低下が著しくなる。 このようなことから、 第二相である低温 生成相を体積率で 0. 5〜5. 0%の範囲に限定した。 なお、 更なる高いプレス成形性 が要求される使途には、 第二相である低温生成相は体積率で 1 %以上とすること が好ましい。 ここでいう 「低温生成相」 とは、 硬質のマルテンサイト相および Z またはべィニティックフェライ ト相とする。 なお、 本発明鋼板においては、 上記したフェライ ト相 (主相) と低温生成相 (第二相) とからなる複合組織とすることが好ましいが、 上記した主相、 第二相 以外に、 不可避的に生成される若干量 (例えば体積率で 2. 0%以下程度) のパー ライト相等のその他の相の含有が許容できる。 この場合、 主相、 第二相の合計量 は体積率で 98%以上となる。 The steel sheet of the present invention has a ferrite phase of 95.0 to 99.5% in volume ratio to the whole structure as the main phase, and a low temperature formation phase in volume ratio of 0.5 to 5.0% with respect to the whole structure as the second phase. It is a steel sheet with a composite structure. If the ferrite phase, which is the main phase, is less than 950% of the volume of the entire structure, it will be difficult to ensure high ductility, and the press formability will tend to decline, and for parts that require high workability. It becomes difficult to ensure the press formability required for steel sheets. On the other hand, in order to take advantage of the composite structure, the ferrite phase, which is the main phase, needs to be 99.5% or less by volume. For this reason, the ferrite phase, which is the main phase, was limited to a volume ratio in the range of 95.0 to 99.5%. For applications that require higher ductility, the ferrite phase is preferably 97.0% or more by volume. If the low temperature product phase, which is the second phase, is less than 0.5% by volume, the yield ratio is 55% or less, and high press formability cannot be secured. On the other hand, if the low temperature product phase exceeds 5.0%, the ductility is significantly reduced. For this reason, the low-temperature product phase, which is the second phase, was limited to the range of 0.5 to 5.0% by volume. In addition, for use in which even higher press formability is required, the low-temperature generation phase as the second phase is preferably 1% or more by volume. The term “low-temperature generation phase” here refers to a hard martensite phase and a Z or vinylite ferrite phase. In the steel sheet of the present invention, it is preferable to have a composite structure composed of the ferrite phase (main phase) and the low-temperature generation phase (second phase). However, in addition to the main phase and second phase described above, it is inevitable. A small amount (for example, about 2.0% or less by volume) of other phases such as pearlite phase is acceptable. In this case, the total amount of the main phase and the second phase is 98% or more by volume ratio.
本発明の冷延鋼板では、 鋼板の表面に、 溶融亜鉛めつき層、 合金化溶融亜鉛め つき層、 および電気亜鉛めつき層のうちのいずれかのめっき (表面処理) 層を形 成してもよい。 すなわち、 本発明の冷延鋼板では、 表面に亜鉛めつき層を有する 冷延銅板、 いわゆる亜鉛めつき冷延鋼板としてもよい。 つぎに、 本発明鋼板の好ましい製造方法について説明する。 In the cold-rolled steel sheet of the present invention, a plating (surface treatment) layer of any one of a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, and an electrogalvanized layer is formed on the surface of the steel sheet. Also good. That is, the cold-rolled steel sheet of the present invention may be a cold-rolled copper sheet having a zinc-plated layer on the surface, a so-called zinc-plated cold-rolled steel sheet. Below, the preferable manufacturing method of this invention steel plate is demonstrated.
本発明の冷延鋼板は、 鋼素材 (slab) に、 熱間圧延工程と、 冷間圧延工程と、 焼鈍工程とを順次施して製造される。 鋼素材の製造方法はとくに限定されないが、 上記した組成の溶銅を転炉等の通常の溶製方法で溶製したのち、 連続铸造法等の 通常の方法で鋼素材とすることが好ましい。 なお、 銅素材は、 造塊法、 薄スラブ 铸造法によって製造してもよいことは言うまでもない。
製造された鋼素材には、 ついで熱間圧延工程が施される。 熱間圧延のための加 熱は、 鋼素材の保有熱量に応じて、 ー且室温まで冷却し、 その後再加熱のために 加熱炉に装入する方法、 あるいは室温まで冷却することなく温片のままで加熱炉 に装入する方法、 あるいはわずかの保熱を行ったのち直ちに圧延する直送圧延 - 直接圧延法のいずれも適用することが可能である。 なお、 直送圧延法は、 固溶状 態の Nを有効に確保するために、 有用な技術の一つである。 鋼素材の加熱温度は、 1000°C以上とすることが好ましい。 The cold-rolled steel sheet of the present invention is manufactured by sequentially performing a hot rolling process, a cold rolling process, and an annealing process on a steel material (slab). The manufacturing method of the steel material is not particularly limited, but it is preferable that the molten copper having the above composition is melted by a normal melting method such as a converter and then the steel material is formed by a normal method such as a continuous forging method. Needless to say, the copper material may be manufactured by an ingot forming method or a thin slab forging method. The manufactured steel material is then subjected to a hot rolling process. Depending on the amount of heat stored in the steel material, the heat for hot rolling can be cooled to room temperature and then charged into a heating furnace for reheating, or hot strips can be heated without cooling to room temperature. Either the method of charging into a heating furnace as it is, or the direct feed rolling method in which rolling is performed immediately after performing a slight heat retention, and the direct rolling method can be applied. The direct feed rolling method is one of the useful techniques to effectively secure N in the solid solution state. The heating temperature of the steel material is preferably 1000 ° C or higher.
銅素材の加熱温度が 1000°C未満では、 初期状態として所定量の固溶状態の Nを 確保することができない。 一方、 加熱温度の上限はとくに規定しないが、 酸化重 量の増加に伴うスケールロスの増大という観点から、 1280°C以下とすることが好 ましい。 If the heating temperature of the copper material is less than 1000 ° C, a predetermined amount of N in the solid solution state cannot be secured as the initial state. On the other hand, the upper limit of the heating temperature is not particularly specified, but it is preferably 1280 ° C or less from the viewpoint of an increase in scale loss accompanying an increase in the oxidation weight.
加熱された鋼素材は、 粗圧延を施されシートバーとされる。 シートバーは、 つ いで仕上圧延を施されて熱延板とされる。 仕上圧延は、 仕上圧延出側温度が 80 0°C以上となる圧延とする。 仕上圧延出側温度を 800°C以上とすることにより、 均 一微細な組織を有する熱延板とすることができる。 仕上圧延出側温度が 800°C未 満では、 得られる熱延板組織が不均一となり、 焼鈍後にも組織の不均一が残留し、 プレス成形時に種々の不具合 (例えば、 不均一組織部における亀裂発生等) が発 生する危険性が増大する。 仕上圧延出側温度が 800°C未満と低温になった場合に は、 加工組織の残留を回避するため高い卷取り温度を採用しても、 粗大粒が発生 してプレス成形時に種々の不具合が生じることになる。 このようなことから、 仕 上圧延出側温度を 800°C以上に限定した。 仕上圧延出側温度の上限は、 とくに限 定されないが、 1000°C以下とすることが、 スケール疵の発生を防止する観点から 好ましい。 なお、 更なる特性向上の観点から仕上圧延出側温度を 820°C以上とす ることが好ましい。
仕上圧延終了後、 熱延板はコイル状に卷き取られるが、 卷取り温度は 750°C以 下とすることが好ましい。 卷取り温度が低下するにしたがい、 強度は增加する傾 向となる。 本発明鋼板の目標強度である、 340MPa以上の引張強さを確保するため には、 卷取り温度を 750°C以下とすることが好ましい。 なお、 卷取り温度の下限 はとくに限定されないが、 200°C以上とすることが、 鋼板の形状や材質の均一性の 観点から好ましい。 卷取り温度が 200°C未満となると、 鋼板形状が顕著に乱れだ し、 その後の工程で不具合を発生する危険性が増大するとともに、 材質の均一性 が低下する傾向となる。 なお、 更なる材質の均一性が要求される使途の場合には、 卷取り温度を 300°C以上とすることがより好ましい。 得られた熱延板には、 ついで冷間圧延工程が施される。 冷間圧延工程は、 熱延 板に酸洗および冷間圧延を施し冷延板とする工程とする。 酸洗は、 熱延板表面の スケールを除去できる方法であればよく、 常用の酸洗方法を含めとくに限定され ない。 なお、 熱延板表面のスケールが、 極めて薄い場合には、 酸洗を行うことな く、 冷間圧延を行ってよいことは言うまでもない。 また、 冷間圧延は、 所望の寸 法形状の冷延板とすることができれば、 圧下率等の冷延条件はとくに限定されな い。 なお、 表面の平坦度、 組織の均一性の観点から、 冷延圧下率は 40%以上とす ることが好ましい。 得られた冷延板には、 ついで、 焼鈍工程が施される。 焼鈍工程は、 冷延板を ACl 変態点〜 (Ac3変態点 +50°C) の範囲の温度に加熱したのち、 平均冷却速度: 5 °C / s以上の冷却速度で 350°C以下の温度域まで冷却する工程とする。 なお、 冷延 板の焼鈍は、 連続焼鈍ライン、 あるいは連続溶融亜鉛めつきラインを利用した処 理とすることが好ましい。 なお冷却速度の上限は材料特性を向上させるという点 では特に規定しないが、 通常の冷却設備では 5 0 °C/ sの冷却速度が現実的である。 焼鈍温度が、 ACl変態点未満では、 焼鈍後に硬質な低温生成相が形成されない。 一方、 焼鈍温度が、 (Ac3変態点 + 50°C) を超えて高温となると、 Nによるオース
テナイト相の安定化が希釈されて、 焼鈍後の冷却時に、 安定して所定量の硬質な 低温生成相を形成することが困難となる。 このため、 焼鈍温度は ACl変態点〜 (A c3変態点 +50°C) の範囲の温度とすることが好ましい。 なお、 変態点は、 熱膨張 測定かち求めた値を使用するものとする。 また、 焼鈍温度における保持時間は、 10〜120 sとすることが好ましい。 焼鈍温 度における保持時間が 10 s未満では、 再結晶や粒成長が十分に進行しない場合が あり、 成形性が低下する。 一方、 保持時間が 120 sを超えて長くなると、 焼鈍処 理時間の増加に伴う経済性の低下を招く。 The heated steel material is roughly rolled into a sheet bar. The sheet bar is then rolled into a hot rolled sheet. Finish rolling is rolling in which the finish rolling temperature is 800 ° C or higher. By setting the finish rolling exit temperature to 800 ° C or higher, a hot rolled sheet having a uniform fine structure can be obtained. If the finish rolling exit temperature is less than 800 ° C, the resulting hot-rolled sheet structure becomes non-uniform, and the non-uniform structure remains even after annealing, causing various problems during press forming (for example, cracks in the non-uniform structure part). The risk of occurrence) increases. When the finish rolling exit temperature is as low as less than 800 ° C, coarse grains are generated and various problems occur during press forming even if a high milling temperature is used to avoid the remaining of the processed structure. Will occur. For this reason, the finish rolling exit temperature was limited to 800 ° C or higher. The upper limit of the finish rolling exit temperature is not particularly limited, but is preferably 1000 ° C. or less from the viewpoint of preventing the occurrence of scale flaws. From the viewpoint of further improving the characteristics, it is preferable to set the finish rolling outlet temperature to 820 ° C or higher. After finishing rolling, the hot-rolled sheet is scraped in a coil shape, but the scraping temperature is preferably 750 ° C or lower. As the milling temperature decreases, the strength tends to increase. In order to secure the tensile strength of 340 MPa or more, which is the target strength of the steel sheet of the present invention, it is preferable to set the cutting temperature to 750 ° C. or less. The lower limit of the staking temperature is not particularly limited, but it is preferably 200 ° C. or more from the viewpoint of the shape and material uniformity of the steel sheet. When the milling temperature is less than 200 ° C, the shape of the steel sheet is noticeably disturbed, and the risk of occurrence of defects in the subsequent processes increases, and the uniformity of the material tends to decrease. In addition, it is more preferable to set the scraping temperature to 300 ° C or more for the usage in which further uniformity of material is required. The obtained hot rolled sheet is then subjected to a cold rolling process. The cold rolling process is a process in which hot-rolled sheets are pickled and cold-rolled to form cold-rolled sheets. The pickling may be any method that can remove the scale on the surface of the hot-rolled sheet, and is not particularly limited, including ordinary pickling methods. Needless to say, when the scale on the surface of the hot-rolled sheet is extremely thin, cold rolling may be performed without pickling. Further, the cold rolling conditions such as the rolling reduction are not particularly limited as long as the cold rolling can be a cold rolled sheet having a desired size and shape. In view of the flatness of the surface and the uniformity of the structure, the cold rolling reduction rate is preferably 40% or more. The resulting cold-rolled sheet is then subjected to an annealing process. In the annealing process, after the cold-rolled sheet is heated to a temperature in the range of A Cl transformation point to (Ac 3 transformation point + 50 ° C), the average cooling rate: 350 ° C or less with a cooling rate of 5 ° C / s or more It is set as the process cooled to the temperature range. The annealing of the cold rolled sheet is preferably performed using a continuous annealing line or a continuous molten zinc plating line. The upper limit of the cooling rate is not specified in terms of improving material properties, but a cooling rate of 50 ° C / s is realistic for ordinary cooling equipment. If the annealing temperature is less than the ACl transformation point, a hard low-temperature phase is not formed after annealing. On the other hand, if the annealing temperature exceeds (Ac 3 transformation point + 50 ° C) Since the stabilization of the tenite phase is diluted, it becomes difficult to stably form a predetermined amount of a hard low-temperature product phase during cooling after annealing. For this reason, it is preferable that the annealing temperature is a temperature in the range of A Cl transformation point to (A c 3 transformation point + 50 ° C.). As the transformation point, the value obtained from the thermal expansion measurement shall be used. The holding time at the annealing temperature is preferably 10 to 120 s. If the holding time at the annealing temperature is less than 10 s, recrystallization and grain growth may not proceed sufficiently, and formability will deteriorate. On the other hand, if the holding time is longer than 120 s, the economic efficiency is lowered with the increase of the annealing time.
焼鈍後は、 上記した焼鈍温度から平均冷却速度で 5。じ/ s以上の冷却速度で、 3 50°C以下の温度域まで冷却することが好ましい。 これは、 少なくとも鋼板温度が 350°Cに達するまでは 5 °C/ s以上の平均冷却速度にするという意味である。 冷却 速度が 5 °CZ s未満では、 第二相を所望の'低温生成相とすることが困難となる。 冷却が上記した範囲から外れると、 未変態オーステナイトがフェライ 卜とセメン タイトに分解し、 所望の低温生成相を確保することが困難となる。 また、 本発明では、 上記した焼鈍工程に続いて、 電気亜鉛めつき処理、 溶融亜 鉛めつき処理、 あるいは合金化溶融亜鉛めつき処理を施して、 鋼板の表面にめつ き層を形成するめつき処理工程を施してもよい。 電気亜鉛めつき処理、 溶融亜鉛 めっき処理、 あるいは合金化溶融亜鉛めつき処理の条件はとくに限定する必要は なく、 常用の処理方法がいずれも適用できる。 なお、 溶融亜鉛めつき処理、 ある いは合金化溶融亜鉛めつき処理では、 所定量の低温生成相を確保するため、 処理 後の冷却を平均で 5 °C/ s以上の平均冷却速度で 350°C以下の温度域まで行う必 要力 sある。 また、 連続溶融亜鉛めつきラインを利用して、 焼鈍と溶融亜鉛めつき処理とを 連続して行う焼鈍一溶融亜鉛めつき処理工程あるいは焼鈍、 溶融亜鉛めつき処理
および合金化処理を連続して行う焼鈍一合金化溶融亜鈴めつき処理工程とするこ とが好ましい。 After annealing, the average cooling rate is 5 from the above annealing temperature. It is preferable to cool to a temperature range of 350 ° C. or lower at a cooling rate of J / s. This means that the average cooling rate is at least 5 ° C / s until the steel plate temperature reaches 350 ° C. If the cooling rate is less than 5 ° CZ s, it is difficult to make the second phase the desired 'low-temperature generation phase'. If the cooling is out of the above range, the untransformed austenite decomposes into ferritic soot and cementite, making it difficult to secure the desired low-temperature formation phase. Further, in the present invention, following the above-described annealing step, an electrogalvanizing process, a molten zinc plating process, or an alloyed molten zinc plating process is performed to form a coating layer on the surface of the steel sheet. A sticking process may be performed. The conditions for the electrogalvanizing treatment, hot dip galvanizing treatment, or alloying hot dip galvanizing treatment are not particularly limited, and any conventional treatment method can be applied. In the hot dip galvanizing or galvannealed hot dip treatment, the cooling after the treatment is performed at an average cooling rate of 5 ° C / s or more on average to secure a predetermined amount of low-temperature formation phase. ° there must force s conduct C to below the temperature range. In addition, using the continuous hot-dip zinc plating line, annealing and hot-dip zinc plating process are performed in succession, or the hot-dip zinc plating process or annealing, hot-dip zinc plating process. Further, it is preferable to use an annealing / alloying / melting dumbbelling process step in which the alloying process is continuously performed.
焼鈍と溶融亜鉛めつき処理あるいは合金化溶融亜鉛めつき処理を連続して行う 場合には、 つぎのような工程とすることが好ましい。 焼鈍と溶融亜鉛めつき処理を連続して行う場合には、 冷延板を ACl変態点〜 (A c3変態点 + 50°C) の範囲の温度に加熱したのち、 平均冷却速度: 5 °CZ s以上の 冷却速度で 500°C以下 冷却し、 ついで鋼板表面に溶融亜鉛めつき層を形成する 溶融亜鉛めつき処理を施したのち、 平均冷却速度: 5 °CZ s以上の冷却速度で 35 0°C以下の温度域まで冷却する焼鈍—溶融亜鉛めつき処理工程とすることが好まし い。 また、 焼鈍、:溶融亜鉛めつき処理および合金化処理を連続して行う場合には、 冷延板を ACl変態点〜 (Ac3変態点 + 50°C) の範囲の温度に加熱したのち、 平均冷 却速度: 5 °CZ s以上の冷却速度で 500°C以下に冷却し、 鋼板表面に溶融亜鉛め つき層を形成する溶融亜鉛めつき処理を施したのち、 該溶融亜鉛めつき層を合金 化溶融亜鉛めつき層とする合金化処理を施し、 ついで平均冷却速度: 5 °CZ s以 上の冷却速度で 350°C以下の温度域まで冷却する焼鈍一合金化溶融亜鉛めつき処 理工程とすることが好まレぃ。 いずれの処理の場合も、 通常行われているように、 加熱後溶融亜鉛めつき浴温 近傍まで、 具体的には 500°C以下に冷却するが、 この際の冷却速度を、 所定量の 低温生成相を確保するため、 平均冷却速度 5 °CZ s以上とし、 また溶融亜鉛めつ き処理後、 あるいは合金化処理を施す場合は合金化処理後、 350°C以下の温度域ま で平均冷却速度 5 °CZ s以上の冷却速度で冷却する。 平均冷却速度が上記した範 囲から外れると、 未変態オーステナイトがフェライ トとセメンタイトに分解し、 所定量の低温生成相の確保が困難となる。
なお、 溶融亜鉛めつき処理前の冷却停止温度は上記レたように 500°C以下とす るが、 より好ましくはめつき浴温 +20°C以下であり、 めっき浴温直上まで冷却し てもよいし、 めっき浴温以下 (たとえば (めっき浴温- 6 0 °C) ) まで冷却しても 良い。 When the annealing and the hot dip galvanizing treatment or the alloyed hot dip galvanizing treatment are continuously performed, the following steps are preferable. When annealing and hot dip galvanizing are performed continuously, the cold-rolled sheet is heated to a temperature in the range of A Cl transformation point to (A c 3 transformation point + 50 ° C), then the average cooling rate: 5 Cool at a temperature of 500 ° C or less at a cooling rate of ° CZ s or more, and then form a molten zinc adhesion layer on the steel sheet surface. After performing the molten zinc adhesion treatment, the average cooling rate is 5 ° CZ s or more. It is preferable to use an annealing-hot galvanizing treatment process that cools to a temperature range of 350 ° C or lower. Also, when annealing, hot dip galvanizing and alloying are performed continuously, the cold-rolled sheet is heated to a temperature in the range of A Cl transformation point to (Ac 3 transformation point + 50 ° C). Average cooling rate: After cooling to 500 ° C or less at a cooling rate of 5 ° CZ s or more, and performing a hot-dip galvanizing treatment to form a hot-dip galvanized layer on the steel sheet surface, the molten galvanized layer The alloyed molten zinc galvanized layer is then subjected to an alloying treatment, and then the average cooling rate is cooled to a temperature range of 350 ° C or lower at a cooling rate of 5 ° CZ s or higher. It is preferable to use a physical process. In any case, as usual, after heating, it is cooled to near the hot-dip zinc bath temperature, specifically below 500 ° C. The cooling rate at this time is reduced to a predetermined amount of low temperature. In order to secure the formation phase, the average cooling rate should be 5 ° CZ s or more, and after the hot dip galvanizing treatment or alloying treatment, after the alloying treatment, the average cooling to 350 ° C or less Cool at a cooling rate of at least 5 ° CZ s. When the average cooling rate is outside the above range, untransformed austenite decomposes into ferrite and cementite, making it difficult to secure a predetermined amount of low-temperature formation phase. Note that the cooling stop temperature before the hot dip galvanizing treatment is 500 ° C. or lower as described above, but more preferably, the hot dip bath temperature is + 20 ° C. or lower, and even if it is cooled to just above the plating bath temperature. It may be cooled to below the plating bath temperature (for example, (plating bath temperature-60 ° C)).
なお、 本発明では、 上記した焼鈍工程、 焼鈍一溶融亜鉛めつき処理工程、 焼鈍 一合金化溶融亜鉛めつき処理工程の後、 常法に従い形状矯正や粗度調整などの目 的で、 伸び率 0. 2〜1. 5%程度の調質圧延を施してもよい。 なお、 降伏比を低くす る観点からは、 0. 2〜0. 6%程度の伸び率とすることが好ましい。 実施例 In the present invention, after the above-described annealing process, annealing-hot-dip zinc plating process, annealing-alloyed hot-dip zinc bonding process, elongation rate is adjusted for the purpose of shape correction and roughness adjustment according to conventional methods. A temper rolling of about 0.2 to 1.5% may be performed. From the viewpoint of lowering the yield ratio, it is preferable that the elongation is about 0.2 to 0.6%. Example
表 1に示す組成の溶鋼を転炉で溶製し、 連続鎵造法でスラブ (鋼素材) とした これらスラブ (鋼素材) に表 2に示す条件で熱間圧延工程を施し、 熱延板 (熱延 鋼帯) (板厚: 4. 0mm) とした。 ついで、 これら熱延板に、 酸洗、 および圧下率 8 0%の冷間圧延を施す冷間圧延工程を施し冷延板 (冷延鋼帯) (板厚: 0. 8隱) と した。 ついで、 これら冷延板に、 連続焼鈍ライン、 溶融亜鉛めつきラインで焼鈍 処理、 あるいはさらに溶融亜鉛めつき処理、 合金化溶融亜鈴めつき処理を施す、 焼鈍工程、 あるいは焼鈍一溶融亜鉛めつき処理工程、 焼鈍一合金化溶融亜鉛めつ き処理工程を施した。 なお、 溶融亜鉛めつき処理あるいは合金化溶融亜鉛めつき 処理においては、 めっき浴温を 460°C、 合金化処理温度を 500°Cとした。 一部の鋼 板については、 連続焼鈍ラインで焼鈍工程を行ったのち、 酸洗しついで電気亜鉛 めっきラインで電気亜鉛めつき^理を施す電気亜鉛めつき処理工程を行った。 得 られた鋼板 (鋼帯) には、 表 2に示すように伸び率 0. 3%の調質圧延を施した。 なお、 一部の鋼板では調質圧延の伸び率の影響を把握するため、 表 2に示すよう に伸び率を変化させた。 Molten steel having the composition shown in Table 1 was melted in a converter and slabs (steel materials) were formed by continuous forging. These slabs (steel materials) were subjected to a hot rolling process under the conditions shown in Table 2, (Hot rolled steel strip) (Thickness: 4.0 mm). Then, these hot-rolled sheets were pickled and cold-rolled by cold rolling with a rolling reduction of 80% to obtain cold-rolled sheets (cold-rolled steel strip) (sheet thickness: 0.8 mm). Next, these cold-rolled sheets are subjected to an annealing process in a continuous annealing line or a hot-dip zinc plating line, or further, a hot-dip zinc plating process, an alloyed molten dumbbell plating process, an annealing process, or an annealing-hot-dip zinc plating process. Process, Annealing-alloyed hot-dip galvanizing treatment process was performed. In the hot dip galvanizing treatment or alloying hot dip galvanizing treatment, the plating bath temperature was set to 460 ° C and the alloying treatment temperature was set to 500 ° C. Some steel sheets were subjected to an annealing process in a continuous annealing line, followed by an electrogalvanizing process in which the steel sheet was pickled and electrogalvanized in an electrogalvanizing line. The obtained steel plate (steel strip) was subjected to temper rolling with an elongation of 0.3% as shown in Table 2. For some steel sheets, the elongation was changed as shown in Table 2 in order to understand the effect of the elongation of temper rolling.
得られた鋼板から試験片を採取して、 組織観察、 引張試験、 めっき性試験、 固 溶状態の N量測定を実施した。 試験方法は次のとおりとした。
( 1 ) 組織観察 Specimens were collected from the obtained steel sheet, and microstructure observation, tensile test, plating property test, and measurement of N amount in a solid solution state were performed. The test method was as follows. (1) Tissue observation
得られた鋼板から組織試験片を採取して、 圧延方向に直交する断面 (C断面) について、 研磨しナイタールで腐食して、 光学顕微鏡あるいは走査型電子顕微鏡 を用いて微視組織を撮像し、 画像解析装置を利用して組織の種類を同定するとと もに、 各相の組織分率を求め、 これを体積率とした。 Take a structural specimen from the obtained steel plate, and polish and corrode the cross section (C cross section) perpendicular to the rolling direction with nital, and image the microscopic structure using an optical microscope or scanning electron microscope. In addition to identifying the type of tissue using an image analyzer, the tissue fraction of each phase was determined and used as the volume fraction.
( 2 ) 引張試験 (2) Tensile test
得られた鋼板から、 引張方向が圧延方向と直交する方向となるように JIS 5号 引張試験片を採取して、 JIS Z 2241の規定に準拠して引張試験を実施し、 引張特 :性 (降伏強さ Y S、 引張強さ T S、 降伏点伸び YS— EL) を求めた。: 得られた Y S、 T Sから降伏比 Y R (= (YS/TS) X 100%) を算出した。 From the obtained steel sheet, a tensile direction is taken JIS 5 No. Tensile test pieces such that the direction orthogonal to the rolling direction, and a tensile test according to the provisions of JIS Z 2241, tensile JP: resistance ( Yield strength YS, tensile strength TS, yield point elongation YS—EL) were determined. : Yield ratio YR (= (YS / TS) X 100%) was calculated from the obtained YS and TS.
( 3 ) めっき性試験 (3) Plating property test
鋼板表面にめっき層を形成した鋼板について、 全長にわたり鋼板表面を目視で、 不めっき欠陥の有無を観察し、 めっき性を評価した。 About the steel plate which formed the plating layer on the steel plate surface, the steel plate surface was visually observed over the entire length, the presence or absence of non-plating defects was observed, and the plating property was evaluated.
( 4 ) 固溶状態の N量測定 (4) Measurement of N amount in solid solution
得られた鋼板から電解抽出分析用試験片を採取し、 ァセチルアセトン系の電解 液中で定電位電解法を行い残渣を抽出し、 該残渣中の N量を化学分析により求め、 これを析出 N量とした。 この析出 N量を全 N量から差し引いた値を、 固溶状態の N量とした。 なお、 各鋼板の変態点は、 熱膨張.測定により求めた。 A test piece for electrolytic extraction analysis was collected from the obtained steel plate, a residue was extracted by performing a potentiostatic electrolysis method in a cetylacetone-based electrolytic solution, and the amount of N in the residue was obtained by chemical analysis, and this was deposited. N amount. The value obtained by subtracting the amount of precipitated N from the total amount of N was taken as the amount of N in the solid solution state. The transformation point of each steel plate was obtained by thermal expansion measurement.
得られた結果を表 3に示す。
The results obtained are shown in Table 3.
**) めっき処理温度から冷却停止温度までの温度域での平均冷却速度 **) Average cooling rate in temperature range from plating temperature to cooling stop temperature
***) a :溶融亜鉛めつき, :電気亜鉛めつき
***) a: Hot-dip zinc plating,: Electric zinc plating
*) F : フェライト、 BF:ペイ二ティックフェライト, M:マルテンサイト、 B :ペイナイト、 P :パーライト *) F: Ferrite, BF: Paynictic ferrite, M: Martensite, B: Paynite, P: Pearlite
**) 低温生成相:ペイ二ティックフェライト +マルテンサイト
**) Low-temperature generation phase: payetic ferrite + martensite
本発明例はいずれも、 引張強さ : 340MPa以上の高強度と、 55%以下の低降伏 比を示し、 優れたプレス成形性を有する高張力冷延鋼板となっている。 また、 降 伏点伸びも少ない。 また、 本発明例はいずれも、 不めっき欠陥の発生はなく、 め つき性の低下は認められなかった。 なお、 降伏比をより低くするうえでは、 調質 圧延の伸び率を 0. 2〜0. 6%とすることが効果的である (鋼板 No. 13、 No. 14参 照) 。 一方、 本発明の範囲を外れる比較例は降伏比が 55%を超えて高く、 降伏 点伸びが大きく、 プレス成形性が低下している。 なお、 本願適合例での平均 r値の範囲は 0. 7〜1. 2であり全て 1. 3未満であつ た。 本願発明では、 このような平均 r値であっても、 図 1に示すように広範囲の 焼鈍 :後の冷却速度にわたり安定して 5 5 %以下の低降伏比が達成できているので、 本願で目的としている成形性には問題はない (平均 r値は以下のようにして求め た: 1 ) 得られた鋼板から圧延方向に対し平行 (0 ° ) 、 4 5 ° 、 9 0 ° の各方 向を引っ張り方向とする JIS5号引張試験片を採取。 2 ) JIS Z 2254の規定に 準拠して各方向の r値を測定。 ③次式より平均 r値を計算:平均 ]^直= (r。+ 2 r 45+r90) /4、 ここで r0は 0 ° 、 r 45は 45° 、 r90は 90° 方向の r値である。 ) 。 産業上の利用可能性 Each of the inventive examples is a high-tensile cold-rolled steel sheet having a high tensile strength of 340 MPa or more and a low yield ratio of 55% or less and having excellent press formability. Also, the yield point elongation is small. In all of the inventive examples, no non-plating defect was generated, and no decrease in the tackiness was observed. In order to lower the yield ratio, it is effective to set the elongation of temper rolling to 0.2 to 0.6% (see steel plates No. 13 and No. 14). On the other hand, the comparative example outside the scope of the present invention has a high yield ratio exceeding 55%, a large yield point elongation, and a press formability is deteriorated. The range of the average r value in this application example was 0.7 to 1.2, and all were less than 1.3. In the present invention, even with such an average r value, a low yield ratio of 55% or less can be achieved stably over a wide range of annealing : later cooling rates as shown in FIG. There is no problem with the target formability (average r value was determined as follows: 1) From the obtained steel sheet, parallel to the rolling direction (0 °), 45 °, 90 ° Collect JIS No. 5 tensile test specimens with the direction as the pull direction. 2) Measure r value in each direction according to JIS Z 2254. ③ Calculate the average r value from the following formula: Average] ^ straight = (r. + 2 r 45 + r 90 ) / 4, where r 0 is 0 °, r 45 is 45 °, r 90 is 90 ° r value. ) Industrial applicability
本発明によれば、 高価な合金元素を多量に含有することなく、 降状比 55%以 下であるプレス成形性に優れた 340MPa級〜 440MPa級高張力冷延鋼板、 すなわち、 引張強さが 340MPa以上概ね 500MPa以下の冷延銅板、 を容易に、 しかも安価に製 造することができ産業上、 格段の効果を奏する。
According to the present invention, a high-tensile cold-rolled steel sheet having a yield ratio of 55% or less and excellent press formability, which does not contain a large amount of expensive alloying elements, that is, a tensile strength of Cold rolled copper sheet of 340MPa or more and roughly 500MPa or less can be manufactured easily and inexpensively, and it has a remarkable industrial effect.