Nothing Special   »   [go: up one dir, main page]

WO2008072508A1 - Nondestructive test instrument and nondestructive test method - Google Patents

Nondestructive test instrument and nondestructive test method Download PDF

Info

Publication number
WO2008072508A1
WO2008072508A1 PCT/JP2007/073441 JP2007073441W WO2008072508A1 WO 2008072508 A1 WO2008072508 A1 WO 2008072508A1 JP 2007073441 W JP2007073441 W JP 2007073441W WO 2008072508 A1 WO2008072508 A1 WO 2008072508A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
magnetic
potential difference
nondestructive inspection
magnetic field
Prior art date
Application number
PCT/JP2007/073441
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Hashimoto
Yasumitsu Tomita
Naoki Osawa
Original Assignee
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University filed Critical Osaka University
Publication of WO2008072508A1 publication Critical patent/WO2008072508A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields

Definitions

  • the present invention relates to a nondestructive inspection apparatus and a nondestructive inspection method using a magnetic potential difference.
  • a non-destructive testing apparatus that uses electrical characteristics that in principle requires an electric current to flow through a subject
  • a non-destructive testing apparatus that uses the magnetic characteristics of a subject uses a magnetic field. There is no need to bring the destructive inspection device into contact with the subject.
  • the magnetic properties of this specimen including measurement of residual stress due to magnetostriction, diagnosis of fatigue damage due to Barkhausen noise, and detection of flaws due to leakage magnetic flux.
  • a patent There is a magnetic flaw detector disclosed in Reference 1.
  • This magnetic flaw detector uses two magnetic sensors provided at the center position of the magnetizer and at a position away from the center position to detect leakage magnetic flux under strong magnetization conditions, and from these two magnetic sensors. By calculating these two signals, the noise component that is included in both of them is canceled, enabling defect detection with a good S / N ratio.
  • the cracks of the specimen include a surface crack and an internal crack, and the surface crack is divided into a near side crack existing on the inspection surface and a far side crack existing on the back surface.
  • the internal flaw and the far-side crack cannot be evaluated in the magnetic flaw inspection using the FEM.
  • Patent Document 1 Japanese Published Patent Publication “JP 2000-227419” (published on August 15, 2000)
  • Non-Patent Document 1 Hashimoto Seishi, Yasutaka Hamada, Naoki Osawa et al., “Study on non-destructive crack detection system using magnetic properties”, Proc. Of the Japan Shipbuilding Society, No. 4, pl31 — 132, November 25, 26, 2004
  • Non-Patent Document 2 Hashimoto Seishi, Yasuda Hamada, Naoki Osawa and others, “Study on crack damage detection system using non-destructive inspection using magnetic properties, Part 2 Application to welded joints”, Japan Marine Proceedings of Engineering Society Lecture, No. 1, November 24, 25, 2005
  • the present invention has been made in view of the above-described conventional problems. It is possible to detect a subject in a non-contact manner, remove the influence of lift-off, and remove a near side crack.
  • An object is to provide a nondestructive inspection apparatus that can stably evaluate a far-side crack and an internal crack at a relatively low cost in a short time, and can be reduced in size and weight.
  • a nondestructive inspection apparatus according to the present invention is a nondestructive inspection apparatus for inspecting a defect inside a subject to solve the above-described problem, and a transmission magnetic flux that passes through the inside of the subject.
  • the magnetic potential difference measuring means for measuring the magnetic potential difference between the two points from the outside of the subject and the subject and the magnetic potential difference measuring means are relatively moved, the magnetic field difference is measured. It is characterized by comprising defect detecting means for detecting the presence of a defect inside the subject by detecting a change in magnetic potential difference measured by the potential difference measuring means.
  • the nondestructive inspection method of the present invention is a nondestructive inspection method for inspecting a defect inside a subject using a nondestructive inspection apparatus in order to solve the above-mentioned problem.
  • a defect detection means provided in a nondestructive inspection apparatus detects a change in magnetic potential difference measured by the magnetic potential difference measurement means when the subject and the magnetic potential difference measurement means are relatively moved.
  • a defect detecting step for detecting the presence of a defect inside the subject.
  • the magnetic potential difference measuring unit measures the magnetic potential difference between two points of the transmitted magnetic flux transmitted through the inside of the subject from the outside of the subject. Then, when the specimen and the magnetic potential difference measuring means are relatively moved, a change in the magnetic potential difference measured by the magnetic potential difference measuring means is detected, whereby a defect inside the specimen is detected. Detect the presence of.
  • defects present at various positions inside the subject include various cracks such as surface cracks and internal cracks as well as various singularities of the specimen. Also, Surface cracks can be classified as so-called near-side cracks and far-side cracks.
  • any of near-side cracks, far-side cracks and internal cracks can be used. It is possible to evaluate.
  • the “near side crack” is a surface crack on the measurement surface side of the subject
  • the “far side crack” is a surface crack on the back side of the measurement surface of the subject.
  • An “internal crack” is a crack inside the subject.
  • the magnetic potential difference measuring means when the subject and the magnetic potential difference measuring means are relatively moved, only the change in the magnetic potential difference measured by the magnetic potential difference measuring means is detected. Since the presence of internal defects can be detected, it can be evaluated in a short time. In addition, in order to detect changes in the magnetic potential difference, it is not necessary to magnetically saturate the measurement site of the subject, and the device can be reduced in size and weight. In addition, the simple method of using the magnetic potential difference makes the circuit configuration simple and enables the creation of a non-destructive inspection device at low cost.
  • FIG. 1 is a block diagram showing a configuration of a nondestructive inspection apparatus according to the present invention.
  • FIG. 2 is a diagram showing a plurality of embodiments of the nondestructive inspection device, (a) shows an embodiment of the nondestructive inspection device, and (b) is a diagram of the nondestructive inspection device. Another embodiment is shown, and (c) shows still another embodiment of the nondestructive inspection apparatus.
  • FIG. 3 is a schematic diagram showing the state of magnetic flux flowing through the nondestructive inspection apparatus, (a) showing the state of magnetic flux flowing through the nondestructive inspection apparatus when there is no defect in the subject, and (b) The state of the magnetic flux which flows into the said nondestructive inspection apparatus when a subject has a defect is shown.
  • FIG. 4 is a diagram showing the measurement results when there is no defect in the specimen, (a) is the pickup core (B) shows the measurement result with the excitation core.
  • FIG. 5 is a diagram showing measurement results when there is a defect in the specimen.
  • (A) shows the measurement results with the pickup core, and (b) shows the measurement results with the excitation core.
  • FIG. 6 is a diagram showing a state when the magnetic flux of the exciting core is controlled to take a constant value.
  • FIG. 7 is a diagram showing the sensitivity of the nondestructive detection device when an alternating current is passed through the first coil and its frequency is changed.
  • FIG. 1 is a block diagram showing the configuration of the nondestructive inspection apparatus 20.
  • the nondestructive inspection apparatus 20 is an apparatus for inspecting a defect inside a subject. As shown in FIG.
  • the subject 7 is an object to be inspected by the nondestructive inspection apparatus 20, and is usually made of a magnetic material, but is not limited thereto, and is made of a material containing a magnetic material. If it is, it may be acceptable.
  • the microcomputer 1 controls the magnitude of the current or voltage generated by the signal generator 2 and the frequency in the case of AC in accordance with an instruction of an input unit (not shown), and is sent from the ⁇ / D converter 13. Various processes are performed, such as processing the incoming digital data and displaying the processing results on a display unit (not shown).
  • the microcomputer 1 may be anything as long as it includes a control unit, a calculation unit, and a memory, and is provided either inside or outside the nondestructive inspection apparatus 20. It may be a thing.
  • the signal generator 2 determines the type of direct current or alternating current, the magnitude of the current or voltage, the amplitude, frequency, waveform, etc. in the case of alternating current according to the instructions of the microcomputer 1, and determines the preamplifier. A current is passed through 3 or a voltage is applied.
  • the preamplifier 3 adds the current or voltage sent from the signal generator 2 and the first integrator 15, and amplifies the added current or voltage and sends it to the first power amplifier 4. is there.
  • the first power amplifier 4 amplifies the current or voltage sent from the preamplifier 3 and applies it to or flows through the first coil 5.
  • the first power amplifier 4 sends analog data of a voltage value given to the first coil 5 or a flowing current value to the A / D converter 13.
  • the first coil 5 generates a magnetic field inside the first coil 5 according to the current supplied from the first power amplifier 4 or flowing.
  • the exciting core 6 is for increasing the magnetic permeability inside the first coil 5 and strengthening the magnetic field generated inside the first coil 5 so as to be applied to the subject 7 as an external magnetic field.
  • a high magnetic permeability material such as amorphous ferrite or high magnetic permeability steel is preferable.
  • the pickup core 8 is for forming a magnetic path provided outside the subject by connecting two points of the transmitted magnetic flux that passes through the subject.
  • the fourth coil 9 gives an induced electromotive force to the second integrator 10 according to the change of the magnetic flux in the pick-up core 8.
  • the second integrator 10 sends the result of integrating the induced electromotive force given by the fourth coil 9 to the second power amplifier 11 as a current value or a voltage value.
  • the second power amplifier 11 amplifies the current or voltage sent from the second integrator 10 and sends it to the third coil 12 and the A / D converter 13.
  • the third coin 12 is a magnetic field opposite to the external magnetic field applied to the subject according to the current or voltage sent from the second power amplifier 11 (hereinafter referred to as "reverse magnetic field"). Is applied to prevent a part of the transmitted magnetic field from passing through the pickup core 8.
  • the A / D converter 13 converts the analog current value or voltage value obtained from the first power amplifier 4 and the second power amplifier 11 into digital data, and outputs it to the microcomputer 1 as a measured value. To send.
  • the second coil 14 provides the first integrator 15 with an induced conductive pressure corresponding to a change in the magnetic flux in the exciting core 6.
  • the first integrator 15 sends the result of integrating the induced electromotive force given by the second coil 14 to the preamplifier 3.
  • the amplification factors of the preamplifier 3, the first power amplifier 4, and the second partial amplifier 11 are the material, number of turns, and number of turns of the first coil 5, the second coinor 14, the third coinor 12, and the fourth coil 9, respectively.
  • an appropriate value may be set in advance according to the purpose.
  • the shape of the exciting core 6 is a donut shape.
  • the figure shows the case where the shape is divided into 1/2 and 1/4. Note that the shape of one of the parts divided into the shape force m / n (m ⁇ n, where m and n are integers equal to or greater than 1) of the exciting core 6 is adopted, without being limited to such a case. Is possible.
  • Fig. 2 (a) is an example of a configuration of the nondestructive inspection apparatus 20 used when the measurement site of the subject is planar.
  • the exciting core 6 has a donut shape that is cut in half along the axis of symmetry (divided in half).
  • Two parts of a substantially rectangular shape shown in the lower part of (a) of FIG. 2 are a part corresponding to a cut face of a doughnut-shaped shape. Since these two surfaces ⁇ and ⁇ are substantially on the same plane, when the subject 7 is planar, the excitation core 6 is easily brought into contact with the subject 7.
  • FIG. 2 (b) shows another example of the configuration of the nondestructive inspection apparatus 20 used for inspecting a defect when the subject has a shape bent at a right angle.
  • the excitation core 6 has a shape obtained by dividing a donut shape into quarters.
  • Two plane C 'D forces corresponding to the donut-shaped cut shown in the lower part of Fig. 2 (b) Compared to Fig. 2 (a), the plane is inclined obliquely.
  • the right side D is inclined 45 degrees upward as compared to the case of Fig. 2 (a).
  • Left face C is tilted 45 degrees to the left.
  • the angle between the planes including the left side C and the right side D is approximately 90 degrees, so the shape of the subject 7 is 90 degrees with respect to the flat plate.
  • the exciting core 6 can be easily brought into contact with the subject 7! /, And the structure becomes! /.
  • FIG. 2 (c) shows still another example of the configuration of the nondestructive inspection apparatus 20, and the shape thereof is the measuring section E force S and the roundness on the subject 7 in the excitation core 6. It has the characteristic of being tinged. Therefore, the measurement part E for the subject 7 in the excitation core 6 is rounded! /, So that the measurement of the excitation core can be performed on the subject 7 having various shapes without changing the shape of the nondestructive inspection device 20. The site can be contacted.
  • FIG. 1, FIG. 3 (a), FIG. 3 (b), FIG. 4 (a), FIG. 4 (b), FIG. 5 (a), FIG. 5 (b) Based on FIGS.
  • FIG. 3 (a) is a schematic diagram showing the state of magnetic flux flowing through the nondestructive inspection apparatus 20 when the subject 7 has no defect
  • Fig. 3 (b) shows the case where the subject 7 has a defect
  • 6 is a schematic view showing a state of magnetic flux flowing through the non-destructive inspection device 20 of a combination.
  • FIG. 3 (a) when there is no defect in the subject 7, there are a total of eight magnetic fluxes generated inside the subject 7 by the exciting core 6, and two of these are the pickup cores 8. It is transparent.
  • FIG. 3 (b) when the subject 7 has a defect, there are a total of eight magnetic fluxes generated in the subject 7 by the exciting core 6, and three of them are the pickup core 8. It is transparent.
  • the force that the excitation core 6 reduces the number of magnetic fluxes generated inside the object 7 by one and the number of magnetic fluxes that pass through the pickup core 8 increases by one. This shows that the magnetic resistance of the subject 7 has increased.
  • the magnetic potential difference between the two points of the transmitted magnetic flux passing through the inside of the subject 7 is present when there is a defect in the measurement site of the subject 7! N / A, it can be seen that the situation is different.
  • the nondestructive inspection apparatus 20 applies this principle.
  • the signal generator 2 supplies current or voltage to the preamplifier 3 according to the instruction from the micro computer 1.
  • This current or voltage may be direct current or alternating current.
  • the frequency of alternating current or voltage can be changed to use the skin effect (adjusting the depth of transmitted magnetic flux from the surface of the subject). It is possible to measure the crack depth from the surface of the test object 7. For example, for the skin effect, the depth s from the surface on the measurement surface side of the subject 7 where the magnetic flux density is approximately 37% of the surface portion is a function of the frequency ⁇ and is given by the following equation: ing.
  • p is the resistivity of the subject, and is the magnetic permeability of the subject.
  • the force S can be increased by increasing the frequency ⁇ to reduce the depth s and decreasing the frequency ⁇ to increase the depth s.
  • the amplitude of the alternating current or voltage is gradually increased after being gradually increased. Then, by applying a strong external magnetic field, the magnetization generated in the subject 7 can be removed, and the influence of the magnetization of the subject 7 can be reduced in the next measurement.
  • the current or voltage sent from the signal generator 2 is amplified by the preamplifier 3 and the first power amplifier 4 and sent to the first coil 5.
  • a magnetic field is generated in the first coil 5 in response to this current or voltage. That is, the strength of the generated magnetic field can be changed according to the current or voltage of the first coil 5.
  • the magnetic field generated in the first coil 5 is applied to the subject 7 as an external magnetic field because the magnetic permeability inside the first coil 5 is increased by the exciting core 6 and the strength thereof is increased.
  • the excitation core 6 is preferably configured using a material that increases the magnetic permeability inside the first coil 5, for example, a high permeability material such as amorphous ferrite or high permeability steel.
  • the magnetic flux inside the fourth coil 9 changes, and therefore an induced electromotive force is generated in the fourth coil 9 by electromagnetic induction.
  • the second integrator 10 integrates the induced electromotive force.
  • the result of the integration is amplified by the second power amplifier 11 and fed back to the third coil 12.
  • the third coil 12 generates a magnetic field (reverse magnetic field) opposite to the external magnetic field by this current or voltage.
  • the amplification factor of the second power amplifier 11 is set to an appropriate value, a reverse magnetic field can be applied so that part of the transmitted magnetic flux does not pass through the pickup core 8. At this time, the magnetic flux in the pickup core 8 becomes zero.
  • the magnitude of the current flowing through the third coil 12 when the magnetic flux in the pickup core 8 is 0 is two points of the transmitted magnetic flux that passes through the inside of the subject. It corresponds to the magnitude of the magnetic potential difference between the two.
  • the transmitted magnetic flux that passes through the inside of the subject is measured between two points.
  • the result is equivalent to measuring the magnetic potential difference.
  • the current value or voltage value of the analog data is converted into digital data by the A / D converter 13 and sent to the microcomputer 1 as a measured value.
  • the current value or voltage value is in accordance with the strength of the magnetic field of the reverse magnetic field, measuring the potential difference or voltage value between the two points of the transmitted magnetic flux passing through the inside of the subject. It is possible to measure the amount corresponding to the magnetic potential difference. Therefore, it is equivalent to detecting the magnetic potential difference between two points of the transmitted magnetic flux passing through the inside of the subject. Further, when the subject 7 and the magnetic potential difference measuring means are relatively moved, by detecting a change in the magnetic potential difference measured by the magnetic potential difference measuring means, defects inside the subject 7 can be detected. Can detect presence
  • the external magnetic field applied to the subject 7 by the excitation core 6 decreases as the distance between the excitation core 6 and the subject 7 increases. In other words, if more accurate measurements are to be made, it is necessary to remove the effects of lift-off as much as possible.
  • the second coil 14 and the first integrator 15 are provided to eliminate the influence of the lift-off as much as possible. As the distance between the excitation core 6 and the subject 7 increases, the magnetic flux of the excitation core 6 changes accordingly. Then, an induced electromotive force is generated in the second coil 14 due to the change of the magnetic flux. This induced electromotive force is integrated by the first integrator 15 and sent to the preamplifier 3. According to the law of electromagnetic induction, the second coil 14 is induced according to the change of magnetic flux in the exciting core 6. An electromotive force is generated.
  • the magnetic flux in the exciting core 6 can be kept constant. That is, the external magnetic field that generates the transmitted magnetic flux from the outside of the subject 7 can be kept constant. Therefore, in the nondestructive inspection apparatus 20, the influence of lift-off due to the change in the distance between the nondestructive inspection apparatus 20 and the subject 7 can be removed.
  • the nondestructive inspection apparatus 20 uses the magnetic field property to inspect using the magnetic field difference between two points of the transmitted magnetic flux that passes through the inside of the subject 7, and thus is nondestructive. There is no need to bring the inspection device 20 into contact with the subject 7. Also, when inspecting using a magnetic potential difference, it is only necessary to consider the magnetic resistance between two points of the transmitted magnetic flux that passes through the inside of the subject 7, so that the distance between the nondestructive inspection device 20 and the subject 7 is small. It is possible to remove the effects of lift-off caused by changes. For this reason, it is possible to stably evaluate defects existing in the specimen 7.
  • near-side cracks, far-side cracks and internal cracks can be evaluated by transmitting the transmitted magnetic flux deep from the surface of the subject 7.
  • the “near-side crack” is a surface crack on the measurement surface side of the subject 7
  • the “far-side crack” is a surface crack on the back side of the measurement surface of the subject 7.
  • the “internal crack” is a crack inside the subject 7.
  • the inside of the subject 7 is detected only by detecting a change in the magnetic potential difference measured by the magnetic potential difference measuring means. Because the presence of defects can be detected, the specimen can be evaluated in a short time. Then, in order to detect a change in magnetic potential difference, it is not necessary to magnetically saturate the measurement site of the subject 7, and the nondestructive inspection apparatus 20 can be reduced in size and weight. Furthermore, since the simple method of using the magnetic potential difference is used, the circuit configuration is simple, and the nondestructive inspection apparatus 20 can be created at low cost.
  • FIG. 4 (a) is a diagram showing the measurement result of the pickup core 8 when the subject 7 has no defect
  • Fig. 4 (b) shows the excitation when the subject 7 has no defect
  • FIG. 6 is a diagram showing the measurement results of core 6.
  • (a) in FIG. 5 is a diagram showing the measurement results of the pickup core when there is a defect in the object
  • (b) in FIG. 5 is the excitation core when there is a defect in the object.
  • FIG. 5 is the excitation core when there is a defect in the object.
  • FIG. 5 is the excitation core when there is a defect in the object.
  • FIG. 5 is the excitation core when there is a defect in the object.
  • FIG. 5 It is a figure which shows a measurement result.
  • these figures are graphed as changes in magnetic flux in the excitation core 6 and the pickup core 8 rather than changes in the magnetic potential difference. Time on the horizontal axis indicates time, and Flax on the vertical axis indicates magnetic flux.
  • FIG. 4 (a) and FIG. 5 (a) are compared, there is a marked difference in the measurement results of the pickup core 8.
  • FIG. 4 (a) the absolute value of the change in magnetic flux in the pickup core 8 when there is no defect (Crack) is on the order of two digits.
  • Fig. 5 (a) the change in magnetic flux when there is a defect is on the order of three digits. This indicates that it is possible to detect a defect in the subject 7 by detecting a change in magnetic flux in the pickup core 8, that is, a corresponding change in magnetic potential difference.
  • the non-destructive inspection apparatus 20 includes the second coil 14 and the first integrator 15 (hereinafter, sometimes referred to as “external magnetic field correction unit” for simplicity).
  • the second coil 14 includes the second coil 14 and the first integrator 15 (hereinafter, sometimes referred to as “external magnetic field correction unit” for simplicity).
  • the horizontal axis is the distance (gap) between the exciting core 6 and the subject 7, and the vertical axis is the ratio of the core magnetic flux to the change in the gap of the exciting core 6.
  • a solid line indicates a case where it is controlled by the external magnetic field correction unit, and a broken line indicates a case where it is not controlled by the external magnetic field correction unit.
  • the horizontal axis is the frequency of the alternating current applied to the exciting core 6, and the vertical axis is the magnetic flux density when the frequency is changed! /, NA! /, And the magnetic flux when the frequency is changed.
  • the nondestructive inspection apparatus of the present invention prevents a part of the transmitted magnetic flux from passing through a magnetic path provided between the two points and provided outside the subject.
  • a reverse magnetic field applying means for applying a reverse magnetic field is provided, and the magnetic potential difference measuring means measures the magnetic potential difference between the two points from the strength of the magnetic field of the reverse magnetic field.
  • the reverse magnetic field applying means applies a reverse magnetic field so that a part of the transmitted magnetic flux does not pass through a magnetic path provided outside the subject by connecting the two points.
  • the magnetic potential difference measuring means measures a magnetic potential difference between the two points from the strength of the reverse magnetic field.
  • the nondestructive inspection apparatus of the present invention includes an external magnetic field applying unit that applies an external magnetic field that generates the transmitted magnetic flux from the outside of the subject, and the transmitted magnetic flux is constant. It is preferable to provide an external magnetic field correcting means for correcting the strength of the external magnetic field.
  • the transmitted magnetic flux inside the subject is constant even when the distance between the external magnetic field applying means and the subject is increased. Therefore, in the nondestructive inspection apparatus, a nondestructive inspection device is provided. The effect of lift-off due to the change in the distance between the device and the subject can be removed. Further, the nondestructive inspection apparatus of the present invention, in addition to the above configuration, the external magnetic field applying means increases the magnetic permeability inside the coil, the coil generating a magnetic field according to the flowing current, and the external magnetic field It is preferable to include an excitation core for applying to the subject.
  • the excitation core is made of a material that increases the magnetic permeability inside the coil, for example, a high permeability material such as amorphous ferrite or high permeability steel, so that the strength of the external magnetic field applied to the subject is increased.
  • the force S is used to concentrate on the measurement site of the subject.
  • the current is preferably an alternating current.
  • the characteristics of the transmitted magnetic field can be changed by changing the AC characteristics. For example, by changing the amplitude, frequency, or waveform of the alternating current or voltage, the transmitted magnetic field can be changed according to each change.
  • the nondestructive inspection apparatus of the present invention preferably includes frequency adjusting means for adjusting the frequency of the alternating current.
  • the skin effect is used by changing the frequency of the alternating current (adjusting the depth of the transmitted magnetic flux from the subject surface), the crack depth from the subject surface on the measurement side, etc. Can be measured.
  • the depth s from the surface on the measurement surface side of the subject where the magnetic flux density is approximately 37% of the surface portion is a function of the frequency ⁇ of the alternating current and is given by the following equation: I understand! /
  • is the resistivity of the subject
  • 11 is the magnetic permeability of the subject. Therefore, the depth S is reduced by increasing the AC frequency ⁇ , and the depth S is increased by reducing the frequency ⁇ by the force S.
  • the nondestructive inspection device of the present invention preferably increases the amplitude of the alternating current gradually and then decreases it gradually.
  • the shape of the exciting core is a donut-shaped shape m / n (m ⁇ n, where m and n are integers of 1 or more It is preferable that it is a shape of one piece of those divided.
  • the excitation core adopts the shape of one of the donut-shaped shapes divided into m / n (m ⁇ n, where m and n are integers greater than or equal to 1) is doing. Therefore, it is possible to appropriately adjust the angle formed by the plane including each of the one end face and the other end face that are the measurement parts for the subject of the excitation core. For this reason, even when the object has a shape that can be obtained when the flat plate is bent at an angle that is the same as the angle formed by the flat surface, the nondestructive inspection apparatus can be used.
  • the measurement unit for the subject in the excitation core is rounded.
  • the measurement unit for the subject in the excitation core is rounded, the measurement portion of the excitation core can be applied to the subject having various shapes without changing the shape of the nondestructive inspection apparatus. Can be contacted.
  • the present invention detects crack damage in welded steel structures such as ships and bridges, and detection of crack damage in pipes made of steel and martensitic stainless steel in power plants and chemical plants.
  • the present invention can be widely applied to an inspection apparatus that detects crack damage or the like of an object made of a magnetic material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

A nondestructive test instrument having a small size and a light weight and used for stably evaluating a near-side crack, a far-side crack, and an internal crack at relatively low cost in a short time while avoiding the influence of lift-off by using a magnetic potentiometer method. A nondestructive test instrument comprises a pickup core (8) for measuring the magnetic potential between two points in the magnetic flux transmitted through the inside of the object under test from outside the object, a fourth coil (9), a second integrator (10), a second power amplifier (11), a third coil (12), a second coil (14) and a first integrator (15) both for correcting the intensity of the external magnetic field, and an A/D converter (13) and a microcomputer (1) for detecting a defect, if any, inside the object by detecting a variation of the measured magnetic potential difference when the pickup core is moved relatively to the object.

Description

明 細 書  Specification
非破壊検査装置及び非破壊検査方法  Nondestructive inspection apparatus and nondestructive inspection method
技術分野  Technical field
[0001] 本発明は、磁位差を用いた非破壊検査装置及び非破壊検査方法に関するもので ある。  [0001] The present invention relates to a nondestructive inspection apparatus and a nondestructive inspection method using a magnetic potential difference.
背景技術  Background art
[0002] 一般に、溶接技術が用いられる船体構造部材ゃ橋梁構造部材等の被検体の溶接 部位における亀裂損傷の検査は目視に頼るところが多ぐ検査の精度 ·効率が良いと は言えない。一方、被検体を破壊することなく被検体内部の状態を検査する従来の 非破壊検査装置には、超音波、 X線及び被検体の電気特性などを利用するものがあ  [0002] In general, inspection of crack damage at a welded part of an object such as a hull structural member or a bridge structural member using welding technology often relies on visual inspection, and it cannot be said that the accuracy and efficiency of the inspection are high. On the other hand, some conventional non-destructive inspection apparatuses that inspect the state inside the subject without destroying the subject use ultrasonic waves, X-rays, and the electrical characteristics of the subject.
[0003] 超音波を利用する非破壊検査装置では、検査の対象部位の表面がきれいである 必要があるため、ペイントの除去等の前処理が要求される。 X線を利用する非破壊検 查装置では、 X線自体が人体に有害なものであり、また、 X線を取り扱うためには、特 別な専門知識が要求される。被検体の電気特性を利用する非破壊検査装置では、 電流を被検体における検査の対象部位に流す必要があるため、非破壊検査装置を 検査の対象部位に接触させる必要がある。 [0003] In a nondestructive inspection apparatus using ultrasonic waves, the surface of the inspection target part needs to be clean, so pretreatment such as paint removal is required. In non-destructive inspection equipment that uses X-rays, the X-rays themselves are harmful to the human body, and special expertise is required to handle them. In a non-destructive inspection apparatus that uses the electrical characteristics of a subject, it is necessary to pass a current through the target region of the subject to be examined, so the non-destructive inspection device needs to contact the target portion of the test.
[0004] したがって、非接触で被検体を検査することが可能であり、ペイントの除去等の前 処理が不要であり、被検体の表面部に加え裏面部の検査も可能であり、人体に無害 であるといった特徴をもち、検査員の技量に左右されない簡便な、亀裂損傷検出の ための非破壊検査装置の開発が望まれる。  [0004] Therefore, it is possible to inspect the subject in a non-contact manner, pretreatment such as paint removal is unnecessary, and the back side as well as the front side of the subject can be inspected, which is harmless to the human body. It is desirable to develop a simple, nondestructive inspection device for crack damage detection that has the characteristics of being such that it is independent of the skill of the inspector.
[0005] ところで、原理的に被検体に電流を流す必要がある電気特性を利用した非破壊検 查装置と異なり、被検体の磁気特性を用いた非破壊検査装置は、磁界を用いるため 、非破壊検査装置を被検体に接触させる必要は無い。この被検体の磁気特性につ いては、磁気ひずみによる残留応力の計測、バルクハウゼンノイズによる疲労損傷度 診断、漏洩磁束によるきず検出をはじめ、多くの例がある。  [0005] By the way, in contrast to a non-destructive testing apparatus that uses electrical characteristics that in principle requires an electric current to flow through a subject, a non-destructive testing apparatus that uses the magnetic characteristics of a subject uses a magnetic field. There is no need to bring the destructive inspection device into contact with the subject. There are many examples of the magnetic properties of this specimen, including measurement of residual stress due to magnetostriction, diagnosis of fatigue damage due to Barkhausen noise, and detection of flaws due to leakage magnetic flux.
[0006] このような、従来の被検体の磁気特性を用いた非破壊検査装置の一例として、特許 文献 1に開示された磁気探傷装置がある。この磁気探傷装置は、磁化器の中心位置 と該中心位置から離れた位置とに設けられた 2つの磁気センサで、強い磁化条件の 下での漏洩磁束の検出を行い、この 2つの磁気センサからの 2つの信号を演算するこ とによって、両者に共通に含まれるノイズ成分をキャンセルし、 S/N比の良い欠陥検 出を可能としたものである。 [0006] As an example of such a conventional non-destructive inspection apparatus using the magnetic characteristics of a subject, a patent There is a magnetic flaw detector disclosed in Reference 1. This magnetic flaw detector uses two magnetic sensors provided at the center position of the magnetizer and at a position away from the center position to detect leakage magnetic flux under strong magnetization conditions, and from these two magnetic sensors. By calculating these two signals, the noise component that is included in both of them is canceled, enabling defect detection with a good S / N ratio.
[0007] その他、従来の被検体の磁気特性を用いた非破壊検査装置の例としては、非特許 文献 1及び 2に開示されたものがある。  [0007] Other examples of conventional nondestructive inspection apparatuses that use the magnetic properties of a subject include those disclosed in Non-Patent Documents 1 and 2.
[0008] しかしながら、被検体の亀裂には、表面亀裂および内部亀裂があり、表面亀裂は検 查面に存在するニヤサイド亀裂と裏面に存在するファーサイド亀裂とに分けられるが 、前記従来の漏れ磁束を利用する磁気探傷検査では内部亀裂及びファーサイド亀 裂をともに評価することが出来ないという問題点がある。  [0008] However, the cracks of the specimen include a surface crack and an internal crack, and the surface crack is divided into a near side crack existing on the inspection surface and a far side crack existing on the back surface. There is a problem that the internal flaw and the far-side crack cannot be evaluated in the magnetic flaw inspection using the FEM.
[0009] また、人体や環境に悪影響を及ぼさない磁気を利用した非破壊検査の方法として 被検体の磁気抵抗を利用する方法もあるが、この磁気抵抗を利用する方法では内部 亀裂及びファーサイド亀裂も評価可能であるが、計測時のリフトオフの影響が大きぐ 安定した評価が困難であるという問題点もある。  [0009] In addition, as a method of non-destructive inspection using magnetism that does not adversely affect the human body and the environment, there is a method of using the magnetoresistance of the subject, but in this method of using magnetoresistance, internal cracks and far-side cracks are used. However, there is also a problem that stable evaluation is difficult because the effect of lift-off during measurement is large.
特許文献 1 :日本国公開特許公報「特開 2000— 227419号公報」(平成 12年 8月 15 日公開)  Patent Document 1: Japanese Published Patent Publication “JP 2000-227419” (published on August 15, 2000)
非特許文献 1 :橋本聖史、冨田康光、大沢直樹他 2名、「磁気特性を用いた非破壊検 查によるき裂損傷検出システムに関する研究」、 日本造船学会講演会論文集、第 4 号、 pl31— 132、平成 16年 11月 25, 26曰  Non-Patent Document 1: Hashimoto Seishi, Yasutaka Hamada, Naoki Osawa et al., “Study on non-destructive crack detection system using magnetic properties”, Proc. Of the Japan Shipbuilding Society, No. 4, pl31 — 132, November 25, 26, 2004
非特許文献 2 :橋本聖史、冨田康光、大沢直樹他 2名、「磁気特性を用いた非破壊検 查によるき裂損傷検出システムに関する研究 その 2 溶接継手部への適用一」、 日 本船舶海洋工学会講演会論文集、第 1号、平成 17年 11月 24, 25日  Non-Patent Document 2: Hashimoto Seishi, Yasuda Hamada, Naoki Osawa and others, “Study on crack damage detection system using non-destructive inspection using magnetic properties, Part 2 Application to welded joints”, Japan Marine Proceedings of Engineering Society Lecture, No. 1, November 24, 25, 2005
発明の開示  Disclosure of the invention
[0010] 本発明は、前記従来の問題点に鑑みなされたものであって、非接触で被検体を検 查することが可能であり、リフトオフの影響をとり除くことができるとともに、ニヤサイド亀 裂、ファーサイド亀裂及び内部亀裂を比較的低コストかつ短時間で安定して評価で き、小型軽量化が可能な非破壊検査装置を提供することを目的とする。 [0011] 本発明の非破壊検査装置は、前記課題を解決するために、被検体の内部の欠陥 を検査するための非破壊検査装置であって、前記被検体の内部を透過する透過磁 束の 2点間における磁位差を、前記被検体の外部から測定するための磁位差測定 手段と、前記被検体と前記磁位差測定手段とを相対的に移動させたときに、前記磁 位差測定手段が測定する磁位差の変化を検知することで、前記被検体の内部の欠 陥の存在を検知する欠陥検知手段とを備えることを特徴ととしている。 [0010] The present invention has been made in view of the above-described conventional problems. It is possible to detect a subject in a non-contact manner, remove the influence of lift-off, and remove a near side crack. An object is to provide a nondestructive inspection apparatus that can stably evaluate a far-side crack and an internal crack at a relatively low cost in a short time, and can be reduced in size and weight. A nondestructive inspection apparatus according to the present invention is a nondestructive inspection apparatus for inspecting a defect inside a subject to solve the above-described problem, and a transmission magnetic flux that passes through the inside of the subject. When the magnetic potential difference measuring means for measuring the magnetic potential difference between the two points from the outside of the subject and the subject and the magnetic potential difference measuring means are relatively moved, the magnetic field difference is measured. It is characterized by comprising defect detecting means for detecting the presence of a defect inside the subject by detecting a change in magnetic potential difference measured by the potential difference measuring means.
[0012] また、本発明の非破壊検査方法は、前記課題を解決するために、非破壊検査装置 を用いて被検体の内部の欠陥を検査するための非破壊検査方法であって、前記非 破壊検査装置に備えられた磁位差測定手段により、前記被検体の内部を透過する 透過磁束の 2点間における磁位差を、前記被検体の外部から測定する磁位差測定 ステップと、前記非破壊検査装置に備えられた欠陥検知手段により、前記被検体と 前記磁位差測定手段とを相対的に移動させたときに、前記磁位差測定手段が測定 する磁位差の変化を検知することで、前記被検体の内部の欠陥の存在を検知する欠 陥検知ステップとを備えることを特徴としてレ、る。  [0012] In addition, the nondestructive inspection method of the present invention is a nondestructive inspection method for inspecting a defect inside a subject using a nondestructive inspection apparatus in order to solve the above-mentioned problem. A magnetic potential difference measurement step of measuring a magnetic potential difference between two points of transmitted magnetic flux that passes through the inside of the subject by a magnetic potential difference measuring means provided in a destructive inspection apparatus; A defect detection means provided in a nondestructive inspection apparatus detects a change in magnetic potential difference measured by the magnetic potential difference measurement means when the subject and the magnetic potential difference measurement means are relatively moved. And a defect detecting step for detecting the presence of a defect inside the subject.
[0013] 前記構成及び方法によれば、磁位差測定手段は、前記被検体の内部を透過する 透過磁束の 2点間における磁位差を、前記被検体の外部から測定する。それから前 記被検体と前記磁位差測定手段とを相対的に移動させたときに、前記磁位差測定 手段が測定する磁位差の変化を検知することで、前記被検体の内部の欠陥の存在 を検知する。  [0013] According to the configuration and the method, the magnetic potential difference measuring unit measures the magnetic potential difference between two points of the transmitted magnetic flux transmitted through the inside of the subject from the outside of the subject. Then, when the specimen and the magnetic potential difference measuring means are relatively moved, a change in the magnetic potential difference measured by the magnetic potential difference measuring means is detected, whereby a defect inside the specimen is detected. Detect the presence of.
[0014] それゆえ、被検体の内部を透過する透過磁束の 2点間における磁位差を用いて検 查し、磁界を利用しているので、非破壊検査装置を被検体に接触させる必要がない 。また、磁位差を用いて検査する場合、被検体の内部を透過する透過磁束の 2点間 における磁気抵抗のみを考慮すれば良いので、非破壊検査装置と被検体との距離 が変化することによるリフトオフの影響をとり除くことができる。このため、安定して被検 体に存在する欠陥を評価することができる。  [0014] Therefore, since the magnetic field is detected by using the magnetic potential difference between two points of the transmitted magnetic flux passing through the inside of the subject, it is necessary to bring the nondestructive inspection apparatus into contact with the subject. Absent . In addition, when inspecting using a magnetic potential difference, it is only necessary to consider the magnetic resistance between two points of the transmitted magnetic flux that passes through the inside of the subject, so that the distance between the nondestructive inspection device and the subject changes. The effect of lift-off due to can be removed. For this reason, it is possible to evaluate defects present in the specimen stably.
[0015] さらに、透過磁束を被検体の表面から深いところに透過させることで、被検体内部 の様々な位置に存在する欠陥を検知することができる。なお、欠陥には、表面亀裂 や、内部亀裂などの亀裂の他、被検体の特異点となる様々なものが含まれる。また、 表面亀裂は、いわゆるニヤサイド亀裂、及びファーサイド亀裂に分類できるが、本発 明の非破壊検査装置及び非破壊検査方法を用いることで、ニヤサイド亀裂、ファー サイド亀裂及び内部亀裂のいずれであっても評価することが可能である。ここで「ニヤ サイド亀裂」とは被検体の測定面側にある表面亀裂のことであり、「ファーサイド亀裂」 とは、被検体の測定面の裏側にある表面亀裂のことである。また、「内部亀裂」とは、 被検体内部の亀裂のことである。 [0015] Furthermore, by transmitting the transmitted magnetic flux deep from the surface of the subject, it is possible to detect defects present at various positions inside the subject. Defects include various cracks such as surface cracks and internal cracks as well as various singularities of the specimen. Also, Surface cracks can be classified as so-called near-side cracks and far-side cracks. By using the non-destructive inspection device and non-destructive inspection method of the present invention, any of near-side cracks, far-side cracks and internal cracks can be used. It is possible to evaluate. Here, the “near side crack” is a surface crack on the measurement surface side of the subject, and the “far side crack” is a surface crack on the back side of the measurement surface of the subject. An “internal crack” is a crack inside the subject.
[0016] また、前記被検体と前記磁位差測定手段とを相対的に移動させたときに、前記磁 位差測定手段が測定する磁位差の変化を検知するだけで、前記被検体の内部の欠 陥の存在を検知できるので、短時間で評価可能である。それから、磁位差の変化を 検知するため、被検体の測定部位を磁気飽和させる必要が無く装置の小型軽量化 が可能である。さらに、磁位差を用いるという簡便な方法なので回路構成も簡単であ り、低コストで非破壊検査装置の作成ができる。  [0016] Further, when the subject and the magnetic potential difference measuring means are relatively moved, only the change in the magnetic potential difference measured by the magnetic potential difference measuring means is detected. Since the presence of internal defects can be detected, it can be evaluated in a short time. In addition, in order to detect changes in the magnetic potential difference, it is not necessary to magnetically saturate the measurement site of the subject, and the device can be reduced in size and weight. In addition, the simple method of using the magnetic potential difference makes the circuit configuration simple and enables the creation of a non-destructive inspection device at low cost.
[0017] 以上より、非接触で被検体を検査することが可能であり、リフトオフの影響をとり除く こと力 Sできるとともに、ニヤサイド亀裂、ファーサイド亀裂及び内部亀裂を比較的低コ ストかつ短時間で安定して評価でき、小型軽量化が可能な非破壊検査装置を提供 すること力 Sでさる。  [0017] From the above, it is possible to inspect the specimen in a non-contact manner, and the force S can be removed to remove the effects of lift-off, and near-side cracks, far-side cracks, and internal cracks are relatively low cost and in a short time. Providing a nondestructive inspection device that can be evaluated stably and can be reduced in size and weight.
[0018] 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分か るであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであ ろう。  [0018] Other objects, features, and advantages of the present invention will be fully understood from the following description. The advantages of the present invention will be apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明における非破壊検査装置の構成を示すブロック図である。  FIG. 1 is a block diagram showing a configuration of a nondestructive inspection apparatus according to the present invention.
[図 2]前記非破壊検査装置の複数の実施の形態を示す図であり、(a)は、前記非破 壊検査装置の実施の形態を示し、(b)は、前記非破壊検査装置の他の実施の形態 を示し、 (c)は前記非破壊検査装置のさらに他の実施の形態を示す。  FIG. 2 is a diagram showing a plurality of embodiments of the nondestructive inspection device, (a) shows an embodiment of the nondestructive inspection device, and (b) is a diagram of the nondestructive inspection device. Another embodiment is shown, and (c) shows still another embodiment of the nondestructive inspection apparatus.
[図 3]前記非破壊検査装置に流れる磁束の状態を示す概略図であり、 (a)は被検体 に欠陥が無い場合の前記非破壊検査装置に流れる磁束の状態を示し、(b)は、被 検体に欠陥がある場合の前記非破壊検査装置に流れる磁束の状態を示す。  FIG. 3 is a schematic diagram showing the state of magnetic flux flowing through the nondestructive inspection apparatus, (a) showing the state of magnetic flux flowing through the nondestructive inspection apparatus when there is no defect in the subject, and (b) The state of the magnetic flux which flows into the said nondestructive inspection apparatus when a subject has a defect is shown.
[図 4]被検体に欠陥が無い場合の測定結果を示す図であり、(a)は、ピックアップコア での測定結果を示し、(b)は、励磁コアでの測定結果を示す。 FIG. 4 is a diagram showing the measurement results when there is no defect in the specimen, (a) is the pickup core (B) shows the measurement result with the excitation core.
[図 5]被検体に欠陥が存在する場合の測定結果を示す図であり、(a)は、ピックアップ コアでの測定結果を示し、(b)は、励磁コアでの測定結果を示す。  FIG. 5 is a diagram showing measurement results when there is a defect in the specimen. (A) shows the measurement results with the pickup core, and (b) shows the measurement results with the excitation core.
[図 6]励磁コアの磁束が一定値を取るように制御したときの状態を示す図である。  FIG. 6 is a diagram showing a state when the magnetic flux of the exciting core is controlled to take a constant value.
[図 7]第 1コイルに、交流電流を流し、その周波数を変化させたときの前記非破壊検 查装置の感度を示す図である。  FIG. 7 is a diagram showing the sensitivity of the nondestructive detection device when an alternating current is passed through the first coil and its frequency is changed.
符号の説明  Explanation of symbols
[0020] 1 マイクロコンピュータ (周波数調整手段、欠陥検知手段)  [0020] 1 microcomputer (frequency adjustment means, defect detection means)
2 信号発生器 (外部磁界印加手段)  2 Signal generator (External magnetic field applying means)
3 プリアンプ (外部磁界印加手段)  3 Preamplifier (External magnetic field applying means)
4 第 1パワーアンプ (外部磁界印加手段)  4 1st power amplifier (external magnetic field applying means)
5 第 1コイル (外部磁界印加手段、コイル)  5 First coil (external magnetic field applying means, coil)
6 励磁コア(外部磁界印加手段)  6 Excitation core (external magnetic field application means)
7 被検体  7 Subject
8 ピックアップコア (磁路、磁位差測定手段)  8 Pickup core (magnetic path, magnetic potential difference measuring means)
9 第 4コイル (逆磁界印加手段、磁位差測定手段)  9 4th coil (reverse magnetic field applying means, magnetic potential difference measuring means)
10 第 2積分器 (逆磁界印加手段、磁位差測定手段)  10 Second integrator (reverse magnetic field application means, magnetic potential difference measurement means)
11 第 2パワーアンプ (逆磁界印加手段、磁位差測定手段)  11 Second power amplifier (reverse magnetic field applying means, magnetic potential difference measuring means)
12 第 3コイル (逆磁界印加手段、磁位差測定手段)  12 3rd coil (reverse magnetic field applying means, magnetic potential difference measuring means)
13 A/Dコンバータ(欠陥検知手段)  13 A / D converter (defect detection means)
14 第 2コイル (外部磁界補正手段)  14 Second coil (External magnetic field correction means)
15 第 1積分器 (外部磁界補正手段)  15 1st integrator (external magnetic field correction means)
20 非破壊検査装置  20 Nondestructive inspection equipment
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の一実施形態について図 1ないし図 7に基づいて説明すれば、以下の通り である。 [0021] One embodiment of the present invention is described below with reference to Figs.
[0022] まず、図 1に基づき、本発明の一実施形態である非破壊検査装置 20の構成につい て説明する。図 1は、非破壊検査装置 20の構成を示すブロック図である。 [0023] 非破壊検査装置 20は、被検体の内部の欠陥を検査するための装置であり、図 1に 示すように、マイクロコンピュータ (周波数調整手段、欠陥検知手段) 1、信号発生器( 外部磁界印加手段) 2、プリアンプ (外部磁界印加手段) 3、第 1パワーアンプ (外部磁 界印加手段) 4、第 1コイル (外部磁界印加手段,コイル) 5、励磁コア (外部磁界印加 手段) 6、ピックアップコア (磁路 ) 8、第 4コイル (逆磁界印加手段、磁位差測定手段) 9、第 2積分器 (逆磁界印加手段、磁位差測定手段) 10、第 2パワーアンプ (逆磁界 印加手段、磁位差測定手段) 11、第 3コイル (逆磁界印加手段、磁位差測定手段) 1 2、 A/Dコンバータ(欠陥検知手段) 13、第 2コイル (外部磁界補正手段) 14、及び 第 1積分器 (外部磁界補正手段) 15を備えるものである。 First, based on FIG. 1, the configuration of a nondestructive inspection apparatus 20 that is an embodiment of the present invention will be described. FIG. 1 is a block diagram showing the configuration of the nondestructive inspection apparatus 20. [0023] The nondestructive inspection apparatus 20 is an apparatus for inspecting a defect inside a subject. As shown in FIG. 1, a microcomputer (frequency adjusting means, defect detecting means) 1, a signal generator (external) Magnetic field application means) 2, Preamplifier (external magnetic field application means) 3, First power amplifier (external magnetic field application means) 4, First coil (external magnetic field application means, coil) 5, Excitation core (external magnetic field application means) 6 , Pickup core (magnetic path) 8, 4th coil (reverse magnetic field applying means, magnetic potential difference measuring means) 9, second integrator (reverse magnetic field applying means, magnetic potential difference measuring means) 10, second power amplifier (reverse) Magnetic field applying means, magnetic potential difference measuring means) 11, third coil (reverse magnetic field applying means, magnetic potential difference measuring means) 1 2, A / D converter (defect detecting means) 13, second coil (external magnetic field correcting means) 14 and a first integrator (external magnetic field correcting means) 15.
[0024] なお、被検体 7は、非破壊検査装置 20の検査対象であり、通常は、磁性体で構成 されるものであるが、これに限られず、磁性体を含む素材で構成されたものであれば 、 ί可であっても良い。  [0024] Note that the subject 7 is an object to be inspected by the nondestructive inspection apparatus 20, and is usually made of a magnetic material, but is not limited thereto, and is made of a material containing a magnetic material. If it is, it may be acceptable.
[0025] マイクロコンピュータ 1は、図示しない入力部の指示に従い、信号発生器 2が発生す る電流又は電圧の大きさや交流の場合における周波数などを制御するとともに、 Α/ Dコンバータ 13から送られてくるデジタルデータを演算処理して、図示しない表示部 に処理結果を表示させるなど様々な処理を行なうものである。  [0025] The microcomputer 1 controls the magnitude of the current or voltage generated by the signal generator 2 and the frequency in the case of AC in accordance with an instruction of an input unit (not shown), and is sent from the Α / D converter 13. Various processes are performed, such as processing the incoming digital data and displaying the processing results on a display unit (not shown).
[0026] なお、マイクロコンピュータ 1は、制御部、演算部、及びメモリを備えたものであれば どのようなものであっても良く、非破壊検査装置 20の内部及び外部のいずれに設け られたものであっても良い。  [0026] The microcomputer 1 may be anything as long as it includes a control unit, a calculation unit, and a memory, and is provided either inside or outside the nondestructive inspection apparatus 20. It may be a thing.
[0027] 信号発生器 2は、直流や交流の電流の種類や、電流又は電圧の大きさや、交流の 場合における振幅、周波数及び波形などをマイクロコンピュータ 1の指示にしたがつ て決定し、プリアンプ 3に電流を流し、又は電圧を与えるものである。  [0027] The signal generator 2 determines the type of direct current or alternating current, the magnitude of the current or voltage, the amplitude, frequency, waveform, etc. in the case of alternating current according to the instructions of the microcomputer 1, and determines the preamplifier. A current is passed through 3 or a voltage is applied.
[0028] プリアンプ 3は、信号発生器 2と第 1積分器 15とから送られてくる電流又は電圧を加 算するとともに、加算した電流又は電圧を増幅して第 1パワーアンプ 4に送るものであ る。第 1パワーアンプ 4は、プリアンプ 3から送られてくる電流又は電圧を増幅して第 1 コイル 5に与え、又は流すものである。また、第 1パワーアンプ 4は、第 1コイル 5に与 えられる電圧値、又は流れる電流値のアナログデータを A/Dコンバータ 13に送るも のである。 [0029] 第 1コイル 5は、第 1パワーアンプ 4から与えられ、又は流れてきた電流に応じて第 1 コイル 5の内部に磁界を発生するものである。励磁コア 6は、第 1コイル 5の内部の透 磁率を高め、第 1コイル 5の内部に発生した磁界を強めて外部磁界として被検体 7に 印加させるためのものである。第 1コイル 5の内部の透磁率を高めるような素材として は、例えば、アモルファスフェライトや高透磁率鋼などの高透磁率素材などが好まし い。励磁コア 6を高透磁率素材を用いて構成することで、記被検体に印加させる外部 磁界の強さを大きぐかつ、被検体の測定部位に集中させることができる。 [0028] The preamplifier 3 adds the current or voltage sent from the signal generator 2 and the first integrator 15, and amplifies the added current or voltage and sends it to the first power amplifier 4. is there. The first power amplifier 4 amplifies the current or voltage sent from the preamplifier 3 and applies it to or flows through the first coil 5. The first power amplifier 4 sends analog data of a voltage value given to the first coil 5 or a flowing current value to the A / D converter 13. The first coil 5 generates a magnetic field inside the first coil 5 according to the current supplied from the first power amplifier 4 or flowing. The exciting core 6 is for increasing the magnetic permeability inside the first coil 5 and strengthening the magnetic field generated inside the first coil 5 so as to be applied to the subject 7 as an external magnetic field. As a material that increases the magnetic permeability inside the first coil 5, for example, a high magnetic permeability material such as amorphous ferrite or high magnetic permeability steel is preferable. By constructing the excitation core 6 using a high permeability material, the strength of the external magnetic field applied to the subject can be increased and concentrated on the measurement site of the subject.
[0030] ピックアップコア 8は、被検体の内部を透過する透過磁束の 2点間を結んで被検体 の外部に設けられた磁路を形成させるためのものである。第 4コイル 9は、ピックアツ プコア 8内の磁束の変化に応じた誘導起電力を第 2積分器 10に与えるものである。  [0030] The pickup core 8 is for forming a magnetic path provided outside the subject by connecting two points of the transmitted magnetic flux that passes through the subject. The fourth coil 9 gives an induced electromotive force to the second integrator 10 according to the change of the magnetic flux in the pick-up core 8.
[0031] 第 2積分器 10は、第 4コイル 9によって与えられた誘導起電力を積分した結果を電 流値又は電圧値として第 2パワーアンプ 11に送るものである。  The second integrator 10 sends the result of integrating the induced electromotive force given by the fourth coil 9 to the second power amplifier 11 as a current value or a voltage value.
[0032] 第 2パワーアンプ 11は、第 2積分器 10から送られてくる電流又は電圧を増幅して、 第 3コイル 12及び A/Dコンバータ 13に送るものである。  The second power amplifier 11 amplifies the current or voltage sent from the second integrator 10 and sends it to the third coil 12 and the A / D converter 13.
[0033] 第 3コィノレ 12は、第 2パワーアンプ 11力、ら送られてきた電流又は電圧に応じて、被 検体に印加される外部磁界と逆向きの磁界(以下「逆磁界」と呼ぶ)を印加して、ピッ クアップコア 8内に透過磁界の一部が透過しないようにするためのものである。  [0033] The third coin 12 is a magnetic field opposite to the external magnetic field applied to the subject according to the current or voltage sent from the second power amplifier 11 (hereinafter referred to as "reverse magnetic field"). Is applied to prevent a part of the transmitted magnetic field from passing through the pickup core 8.
[0034] A/Dコンバータ 13は、第 1パワーアンプ 4及び第 2パワーアンプ 11力、ら得られるァ ナログの電流値又は電圧値をデジタルデータに変換して、測定値としてマイクロコン ピュータ 1に送るものである。第 2コイル 14は、励磁コア 6内の磁束の変化に応じた誘 導電圧を第 1積分器 15に与えるものである。  [0034] The A / D converter 13 converts the analog current value or voltage value obtained from the first power amplifier 4 and the second power amplifier 11 into digital data, and outputs it to the microcomputer 1 as a measured value. To send. The second coil 14 provides the first integrator 15 with an induced conductive pressure corresponding to a change in the magnetic flux in the exciting core 6.
[0035] 第 1積分器 15は、第 2コイル 14によって与えられた誘導起電力を積分した結果を、 プリアンプ 3に送るものである。なお、プリアンプ 3、第 1パワーアンプ 4、及び第 2パヮ 一アンプ 11の増幅率は、それぞれ、第 1コイル 5、第 2コィノレ 14、第 3コィノレ 12、及び 第 4コイル 9の材質や巻数や励磁コア 6及びピックアップコア 8の透磁率などに依存す るが、 目的にあわせて、あらかじめ適切な値を設定しておけば良い。  The first integrator 15 sends the result of integrating the induced electromotive force given by the second coil 14 to the preamplifier 3. Note that the amplification factors of the preamplifier 3, the first power amplifier 4, and the second partial amplifier 11 are the material, number of turns, and number of turns of the first coil 5, the second coinor 14, the third coinor 12, and the fourth coil 9, respectively. Depending on the magnetic permeability of the excitation core 6 and the pickup core 8, an appropriate value may be set in advance according to the purpose.
[0036] ここで、図 2の(a)〜図 2の(c)に基づいて非破壊検査装置 20の形態の例について 説明する。図 2の(a)及び図 2の(b)に示す形態は、励磁コア 6の形状が、ドーナツ型 の形状をそれぞれ、 1/2に分割した形状及び 1/4に分割した形状である場合につ いて示している。なお、このような場合に限られず、励磁コア 6の形状力 m/n (m< nであり、 m, nは 1以上の整数とする)に分割したもののうちの一片が有する形状を採 用することが可能である。 Here, an example of the configuration of the nondestructive inspection apparatus 20 will be described based on (a) to (c) of FIG. 2 (a) and 2 (b), the shape of the exciting core 6 is a donut shape. The figure shows the case where the shape is divided into 1/2 and 1/4. Note that the shape of one of the parts divided into the shape force m / n (m <n, where m and n are integers equal to or greater than 1) of the exciting core 6 is adopted, without being limited to such a case. Is possible.
[0037] 図 2の(a)は、被検体の測定部位が平面的である場合に用いられる非破壊検査装 置 20の形態の一例である。この形態では、励磁コア 6が、ドーナツ型の形状をちよう ど対称軸に沿って真っ二つに切った形状(1/2分割した形状)となっている。図 2の( a)の下部に示される略長方形の 2つの面 Α· Β力 S、ドーナツ型の形状の切り口に相当 する部分である。この 2つの面 Α· Βはほぼ同一平面上にあるため、被検体 7が平面 的である場合に、励磁コア 6を被検体 7に接触させやすい構造となっている。  [0037] Fig. 2 (a) is an example of a configuration of the nondestructive inspection apparatus 20 used when the measurement site of the subject is planar. In this embodiment, the exciting core 6 has a donut shape that is cut in half along the axis of symmetry (divided in half). Two parts of a substantially rectangular shape shown in the lower part of (a) of FIG. 2 are a part corresponding to a cut face of a doughnut-shaped shape. Since these two surfaces Α and Β are substantially on the same plane, when the subject 7 is planar, the excitation core 6 is easily brought into contact with the subject 7.
[0038] 図 2の (b)は、被検体が直角に折れ曲がった形状である場合の欠陥を検査する場 合に用いられる非破壊検査装置 20の形態の他の例である。この形態では、励磁コア 6が、ドーナツ型の形状を 1/4分割した形状となっている。図 2の(b)の下部に示さ れるドーナツ型の形状の切り口に相当する 2つの面 C ' D力 図 2の(a)の場合と比較 して、斜めに傾いている。傾き方は、右側の面 Dが、図 2の(a)の場合と比較して、右 上がりに約 45度傾いている。左側の面 Cは、左上がりに約 45度傾いている。そうする と、この左側の面 Cと、右側の面 Dとは、それぞれの面を含む平面同士のなす角がほ ぼ 90度となっているので、被検体 7の形状が、平板を 90度折り曲げた形状である場 合に、励磁コア 6を被検体 7に接触させやす!/、構造となって!/、る。  FIG. 2 (b) shows another example of the configuration of the nondestructive inspection apparatus 20 used for inspecting a defect when the subject has a shape bent at a right angle. In this embodiment, the excitation core 6 has a shape obtained by dividing a donut shape into quarters. Two plane C 'D forces corresponding to the donut-shaped cut shown in the lower part of Fig. 2 (b) Compared to Fig. 2 (a), the plane is inclined obliquely. In terms of inclination, the right side D is inclined 45 degrees upward as compared to the case of Fig. 2 (a). Left face C is tilted 45 degrees to the left. Then, the angle between the planes including the left side C and the right side D is approximately 90 degrees, so the shape of the subject 7 is 90 degrees with respect to the flat plate. In the case of a bent shape, the exciting core 6 can be easily brought into contact with the subject 7! /, And the structure becomes! /.
[0039] これらの例でわかるとおり、半ドーナツ型の励磁コア 6の被検体に対する測定部で ある 2つの端面のそれぞれを含む平面の為す角を適宜調整することにより、被検体が 、平板を上記平面のなす角と同じ大きさの角度で曲げたときにできる形状である場合 であっても、非破壊検査装置の使用を可能とすることができる。  [0039] As can be seen from these examples, by appropriately adjusting the angle formed by the plane including each of the two end faces that are the measurement portions of the half-doughnut-shaped excitation core 6 with respect to the subject, Even if it is a shape that can be bent when it is bent at the same angle as the angle formed by the plane, it is possible to use a nondestructive inspection device.
[0040] なお、図 2の(c)は非破壊検査装置 20の形態のさらに他の例を示すものであり、そ の形状は、励磁コア 6における被検体 7に対する測定部 E力 S、まるみを帯びていると いう特徴をもっている。このため、励磁コア 6における被検体 7に対する測定部 Eが、 まるみを帯びて!/、るので、非破壊検査装置 20の形状を変えることなく様々な形状の 被検体 7に、励磁コアの測定部位を接触させることができる。 [0041] 次に、図 1、図 3の(a)、図 3の(b)、図 4の(a)、図 4の(b)、図 5の(a)、図 5の(b)、 図 6及び図 7に基づき、非破壊検査装置 20の動作について説明する。まず、図 3の( a)及び図 3の (b)に基づき、非破壊検査装置 20が被検体内部の欠陥を検知する原 理について説明する。図 3の(a)は被検体 7に欠陥が無い場合の非破壊検査装置 2 0に流れる磁束の状態を示す概略図であり、図 3の(b)は、被検体 7に欠陥がある場 合の非破壊検査装置 20に流れる磁束の状態を示す概略図である。 [0040] Fig. 2 (c) shows still another example of the configuration of the nondestructive inspection apparatus 20, and the shape thereof is the measuring section E force S and the roundness on the subject 7 in the excitation core 6. It has the characteristic of being tinged. Therefore, the measurement part E for the subject 7 in the excitation core 6 is rounded! /, So that the measurement of the excitation core can be performed on the subject 7 having various shapes without changing the shape of the nondestructive inspection device 20. The site can be contacted. [0041] Next, FIG. 1, FIG. 3 (a), FIG. 3 (b), FIG. 4 (a), FIG. 4 (b), FIG. 5 (a), FIG. 5 (b) Based on FIGS. 6 and 7, the operation of the nondestructive inspection apparatus 20 will be described. First, based on (a) of FIG. 3 and (b) of FIG. 3, the principle by which the nondestructive inspection apparatus 20 detects defects inside the subject will be described. Fig. 3 (a) is a schematic diagram showing the state of magnetic flux flowing through the nondestructive inspection apparatus 20 when the subject 7 has no defect, and Fig. 3 (b) shows the case where the subject 7 has a defect. 6 is a schematic view showing a state of magnetic flux flowing through the non-destructive inspection device 20 of a combination.
[0042] 図 3の(a)に示すように被検体 7に欠陥が無い場合に、励磁コア 6によって被検体 7 の内部に生じる磁束は全部で 8本あり、そのうち 2本がピックアップコア 8を透過してい る。一方、図 3の(b)に示すように、被検体 7に欠陥がある場合に、励磁コア 6によって 被検体 7の内部に生じる磁束は全部で 8本あり、そのうち 3本がピックアップコア 8を透 過している。欠陥が無い場合と比較して、励磁コア 6によって被検体 7の内部に生じる 磁束の本数が 1本減少し、ピックアップコア 8を透過する磁束の本数が 1本増加してい る力 これは、欠陥によって、被検体 7の磁気抵抗が大きくなつたことを示している。  [0042] As shown in Fig. 3 (a), when there is no defect in the subject 7, there are a total of eight magnetic fluxes generated inside the subject 7 by the exciting core 6, and two of these are the pickup cores 8. It is transparent. On the other hand, as shown in FIG. 3 (b), when the subject 7 has a defect, there are a total of eight magnetic fluxes generated in the subject 7 by the exciting core 6, and three of them are the pickup core 8. It is transparent. Compared to the case where there is no defect, the force that the excitation core 6 reduces the number of magnetic fluxes generated inside the object 7 by one and the number of magnetic fluxes that pass through the pickup core 8 increases by one. This shows that the magnetic resistance of the subject 7 has increased.
[0043] そうすると、被検体 7の内部を透過する透過磁束の 2点間における磁位差は、被検 体 7の測定部位に欠陥が存在して!/、る場合と存在して!/、な!/、場合とで異なることがわ かる。非破壊検査装置 20は、この原理を応用したものである。  [0043] Then, the magnetic potential difference between the two points of the transmitted magnetic flux passing through the inside of the subject 7 is present when there is a defect in the measurement site of the subject 7! N / A, it can be seen that the situation is different. The nondestructive inspection apparatus 20 applies this principle.
[0044] 次に、図 1に基づき、非破壊検査装置 20の動作について説明する。マイクロコンビ ユータ 1の指示により、信号発生器 2は、プリアンプ 3に電流を流し又は電圧を与える 。この電流又は電圧は直流であっても良いし、交流であっても良い。  Next, the operation of the nondestructive inspection apparatus 20 will be described with reference to FIG. The signal generator 2 supplies current or voltage to the preamplifier 3 according to the instruction from the micro computer 1. This current or voltage may be direct current or alternating current.
[0045] なお、交流を用いる場合には、交流電流又は電圧の周波数を変化させて、表皮効 果を利用(透過磁束の被検体表面からの深さを調節)することができ、測定側の被検 体 7の表面から亀裂深さなどの計測が可能となる。例えば、表皮効果については、磁 束密度が表面部の約 37%となる被検体 7の測定面側の表面からの深さ sが、周波数 ωの関数であり、次式で与えられることがわかっている。  [0045] When alternating current is used, the frequency of alternating current or voltage can be changed to use the skin effect (adjusting the depth of transmitted magnetic flux from the surface of the subject). It is possible to measure the crack depth from the surface of the test object 7. For example, for the skin effect, the depth s from the surface on the measurement surface side of the subject 7 where the magnetic flux density is approximately 37% of the surface portion is a function of the frequency ω and is given by the following equation: ing.
[0046] [数 1]  [0046] [Equation 1]
Figure imgf000011_0001
[0047] ここで、 pは被検体の抵抗率、 は被検体の透磁率である。
Figure imgf000011_0001
Here, p is the resistivity of the subject, and is the magnetic permeability of the subject.
[0048] それゆえ、周波数 ωを大きくすることにより、深さ sを浅くし、周波数 ωを小さくするこ とにより、深さ sを深くすること力 Sできる。  [0048] Therefore, the force S can be increased by increasing the frequency ω to reduce the depth s and decreasing the frequency ω to increase the depth s.
[0049] また、交流電流又は電圧の振幅は、次第に大きくした後、次第に小さくすることが好 ましい。そうすると強い外部磁界を印加することによって、被検体 7に生じた磁化を取 り除くことができ、次の測定に際し、被検体 7の磁化による影響を低減させることがで きる。 [0049] In addition, it is preferable that the amplitude of the alternating current or voltage is gradually increased after being gradually increased. Then, by applying a strong external magnetic field, the magnetization generated in the subject 7 can be removed, and the influence of the magnetization of the subject 7 can be reduced in the next measurement.
[0050] 信号発生器 2から送られてきた電流又は電圧はプリアンプ 3及び第 1パワーアンプ 4 によって増幅され、第 1コイル 5に送られる。この電流又は電圧に応じて第 1コイル 5に 磁界が発生する。すなわち、第 1コイル 5の電流又は電圧に応じて、発生する磁界の 強さを変化させることができる。第 1コイル 5で発生した磁界は、励磁コア 6により第 1コ ィル 5の内部の透磁率が高められているため、その強さが大きくなつて外部磁界とし て被検体 7に印加される。この励磁コア 6は、第 1コイル 5の内部の透磁率を高めるよ うな素材、例えば、アモルファスフェライトや高透磁率鋼などの高透磁率素材を用い て構成することが好ましい。  The current or voltage sent from the signal generator 2 is amplified by the preamplifier 3 and the first power amplifier 4 and sent to the first coil 5. A magnetic field is generated in the first coil 5 in response to this current or voltage. That is, the strength of the generated magnetic field can be changed according to the current or voltage of the first coil 5. The magnetic field generated in the first coil 5 is applied to the subject 7 as an external magnetic field because the magnetic permeability inside the first coil 5 is increased by the exciting core 6 and the strength thereof is increased. . The excitation core 6 is preferably configured using a material that increases the magnetic permeability inside the first coil 5, for example, a high permeability material such as amorphous ferrite or high permeability steel.
[0051] 励磁コア 6によって被検体 7に外部磁界が印加されると、被検体 7の内部を透過す る透過磁束が生じる。この透過磁束による磁位差は、ピックアップコア 8、第 4コイル 9 、第 2積分器 10、第 2パワーアンプ 11及び第 3コイル 12 (以下、簡単のため「磁位差 測定手段」と呼ぶこと力 Sある)によって測定することができる。  [0051] When an external magnetic field is applied to the subject 7 by the exciting core 6, a transmitted magnetic flux that passes through the inside of the subject 7 is generated. The magnetic potential difference due to the transmitted magnetic flux is referred to as the pickup core 8, the fourth coil 9, the second integrator 10, the second power amplifier 11, and the third coil 12 (hereinafter referred to as “magnetic potential difference measuring means” for simplicity). Force S).
[0052] 具体的には、ピックアップコア 8に、透過磁束が透過すると、第 4コイル 9の内部の磁 束が変化するので、第 4コイル 9には電磁誘導によって誘導起電力が生じる。第 2積 分器 10は、該誘導起電力を積分する。該積分の結果は第 2パワーアンプ 1 1によって 増幅され第 3コイル 12にフィードバックされる。第 3コイル 12は、この電流又は電圧に より、外部磁界と逆向きの磁界(逆磁界)を生じるようになつている。  Specifically, when the transmitted magnetic flux passes through the pickup core 8, the magnetic flux inside the fourth coil 9 changes, and therefore an induced electromotive force is generated in the fourth coil 9 by electromagnetic induction. The second integrator 10 integrates the induced electromotive force. The result of the integration is amplified by the second power amplifier 11 and fed back to the third coil 12. The third coil 12 generates a magnetic field (reverse magnetic field) opposite to the external magnetic field by this current or voltage.
[0053] そうすると、第 2パワーアンプ 11の増幅率を適切な値に設定すれば、ピックアップコ ァ 8内に透過磁束の一部が透過しないように逆磁界を印加させることができる。このと き、ピックアップコア 8内の磁束は 0となる。ピックアップコア 8内の磁束が 0であるとき の第 3コイル 12に流れる電流の大きさが、被検体の内部を透過する透過磁束の 2点 間における磁位差の大きさに対応するものとなる。 Then, if the amplification factor of the second power amplifier 11 is set to an appropriate value, a reverse magnetic field can be applied so that part of the transmitted magnetic flux does not pass through the pickup core 8. At this time, the magnetic flux in the pickup core 8 becomes zero. The magnitude of the current flowing through the third coil 12 when the magnetic flux in the pickup core 8 is 0 is two points of the transmitted magnetic flux that passes through the inside of the subject. It corresponds to the magnitude of the magnetic potential difference between the two.
[0054] よって、ピックアップコア 8内の磁束が 0であるときに、第 2パワーアンプ 11によって 増幅された電流値又は電圧を測定すれば、被検体の内部を透過する透過磁束の 2 点間における磁位差を測定したのと同等の結果となる。このアナログデータの電流値 また電圧値は、 A/Dコンバータ 13によって、デジタルデータに変換されて、測定値 としてマイクロコンピュータ 1に送られる。  Therefore, when the current value or voltage amplified by the second power amplifier 11 is measured when the magnetic flux in the pickup core 8 is 0, the transmitted magnetic flux that passes through the inside of the subject is measured between two points. The result is equivalent to measuring the magnetic potential difference. The current value or voltage value of the analog data is converted into digital data by the A / D converter 13 and sent to the microcomputer 1 as a measured value.
[0055] この電流値又は電圧値は逆磁界の磁界の強さに応じたものであるから、上記電位 差又は電圧値を測定することで、被検体の内部を透過する透過磁束の 2点間におけ る磁位差に対応する量を測定できることになる。したがって、被検体の内部を透過す る透過磁束の 2点間における磁位差を検知することと同等である。また、被検体 7と磁 位差測定手段とを相対的に移動させたときに、前記磁位差測定手段が測定する磁 位差の変化を検知することで、被検体 7の内部の欠陥の存在を検知することができる  [0055] Since the current value or voltage value is in accordance with the strength of the magnetic field of the reverse magnetic field, measuring the potential difference or voltage value between the two points of the transmitted magnetic flux passing through the inside of the subject. It is possible to measure the amount corresponding to the magnetic potential difference. Therefore, it is equivalent to detecting the magnetic potential difference between two points of the transmitted magnetic flux passing through the inside of the subject. Further, when the subject 7 and the magnetic potential difference measuring means are relatively moved, by detecting a change in the magnetic potential difference measured by the magnetic potential difference measuring means, defects inside the subject 7 can be detected. Can detect presence
[0056] このように、非破壊検査装置 20では、ピックアップコア 8内に透過磁束の一部が透 過しないようにしているので、ピックアップコア 8及び非破壊検査装置 20の磁気抵抗 の影響を大幅に低減させることができる。このため、非破壊検査装置 20と被検体 7と の距離が変化することによるリフトオフの影響をとり除くことができる。なお、「リフトオフ の影響」とは、非破壊検査装置 20と被検体 7との距離が変化することによる検査結果 への影響のことである。 [0056] In this way, in the nondestructive inspection apparatus 20, a part of the transmitted magnetic flux is prevented from passing through the pickup core 8, so that the influence of the magnetic resistance of the pickup core 8 and the nondestructive inspection apparatus 20 is greatly increased. Can be reduced. For this reason, the effect of lift-off due to the change in the distance between the nondestructive inspection apparatus 20 and the subject 7 can be eliminated. The “effect of lift-off” is the effect on the test result due to the change in the distance between the nondestructive inspection device 20 and the subject 7.
[0057] ここで、第 2コイル 14、及び第 1積分器 15の動作について説明する。励磁コア 6が 被検体 7に印加する外部磁界は、励磁コア 6と被検体 7との距離が大きくなると、小さ くなつてしまう。すなわち、より正確な測定を行なおうとする場合には、リフトオフの影 響可能な限り取り除くことが必要となる。  Here, the operation of the second coil 14 and the first integrator 15 will be described. The external magnetic field applied to the subject 7 by the excitation core 6 decreases as the distance between the excitation core 6 and the subject 7 increases. In other words, if more accurate measurements are to be made, it is necessary to remove the effects of lift-off as much as possible.
[0058] 第 2コイル 14、及び第 1積分器 15はこのリフトオフの影響を可能な限り除くために設 けられている。励磁コア 6と被検体 7との距離が大きくなると、それに応じて、励磁コア 6の磁束が変化する。すると、第 2コイル 14にはこの磁束の変化により誘導起電力が 生じる。この誘導起電力は第 1積分器 15で積分されて、プリアンプ 3に送られる。電 磁誘導の法則によれば、第 2コイル 14は、励磁コア 6内の磁束の変化に応じた誘導 起電力が生じる。 [0058] The second coil 14 and the first integrator 15 are provided to eliminate the influence of the lift-off as much as possible. As the distance between the excitation core 6 and the subject 7 increases, the magnetic flux of the excitation core 6 changes accordingly. Then, an induced electromotive force is generated in the second coil 14 due to the change of the magnetic flux. This induced electromotive force is integrated by the first integrator 15 and sent to the preamplifier 3. According to the law of electromagnetic induction, the second coil 14 is induced according to the change of magnetic flux in the exciting core 6. An electromotive force is generated.
[0059] そこで、第 1積分器 15から出る電流又は電圧を第 1コイル 5に流れる電流又は電圧 に適切に増幅してフィードバックさせれば、励磁コア 6内の磁束を一定に保つことが できる。すなわち、被検体 7の外部から透過磁束を生じさせる外部磁界を一定に保つ ことができる。それゆえ、非破壊検査装置 20において、非破壊検査装置 20と被検体 7との距離が変化することによるリフトオフの影響を取り除くことができる。  Therefore, if the current or voltage output from the first integrator 15 is appropriately amplified and fed back to the current or voltage flowing through the first coil 5, the magnetic flux in the exciting core 6 can be kept constant. That is, the external magnetic field that generates the transmitted magnetic flux from the outside of the subject 7 can be kept constant. Therefore, in the nondestructive inspection apparatus 20, the influence of lift-off due to the change in the distance between the nondestructive inspection apparatus 20 and the subject 7 can be removed.
[0060] 以上より、非破壊検査装置 20は、被検体 7の内部を透過する透過磁束の 2点間に おける磁位差を用いて検査し、磁界の性質を利用しているので、非破壊検査装置 20 を被検体 7に接触させる必要がない。また、磁位差を用いて検査する場合、被検体 7 の内部を透過する透過磁束の 2点間における磁気抵抗のみを考慮すれば良いので 、非破壊検査装置 20と被検体 7との距離が変化することによるリフトオフの影響をとり 除くこと力 Sできる。このため、安定して被検体 7に存在する欠陥を評価することができ  [0060] As described above, the nondestructive inspection apparatus 20 uses the magnetic field property to inspect using the magnetic field difference between two points of the transmitted magnetic flux that passes through the inside of the subject 7, and thus is nondestructive. There is no need to bring the inspection device 20 into contact with the subject 7. Also, when inspecting using a magnetic potential difference, it is only necessary to consider the magnetic resistance between two points of the transmitted magnetic flux that passes through the inside of the subject 7, so that the distance between the nondestructive inspection device 20 and the subject 7 is small. It is possible to remove the effects of lift-off caused by changes. For this reason, it is possible to stably evaluate defects existing in the specimen 7.
[0061] さらに、透過磁束を被検体 7の表面から深いところに透過させることで、ニヤサイド 亀裂、ファーサイド亀裂及び内部亀裂を評価することも可能である。ここで「ニヤサイ ド亀裂」とは被検体 7の測定面側にある表面亀裂のことであり、「ファーサイド亀裂」と は、被検体 7の測定面の裏側にある表面亀裂のことである。また、「内部亀裂」とは、 被検体 7の内部の亀裂のことである。 Furthermore, near-side cracks, far-side cracks and internal cracks can be evaluated by transmitting the transmitted magnetic flux deep from the surface of the subject 7. Here, the “near-side crack” is a surface crack on the measurement surface side of the subject 7, and the “far-side crack” is a surface crack on the back side of the measurement surface of the subject 7. The “internal crack” is a crack inside the subject 7.
[0062] また、被検体 7と磁位差測定手段とを相対的に移動させたときに、前記磁位差測定 手段が測定する磁位差の変化を検知するだけで、被検体 7の内部の欠陥の存在を 検知できるので、短時間で被検体の評価可能である。それから、磁位差の変化を検 知するため、被検体 7の測定部位を磁気飽和させる必要が無く非破壊検査装置 20 の小型軽量化が可能である。さらに、磁位差を用いるという簡便な方法なので回路構 成も簡単であり、低コストで非破壊検査装置 20の作成ができる。  [0062] Further, when the subject 7 and the magnetic potential difference measuring means are relatively moved, the inside of the subject 7 is detected only by detecting a change in the magnetic potential difference measured by the magnetic potential difference measuring means. Because the presence of defects can be detected, the specimen can be evaluated in a short time. Then, in order to detect a change in magnetic potential difference, it is not necessary to magnetically saturate the measurement site of the subject 7, and the nondestructive inspection apparatus 20 can be reduced in size and weight. Furthermore, since the simple method of using the magnetic potential difference is used, the circuit configuration is simple, and the nondestructive inspection apparatus 20 can be created at low cost.
[0063] 以上より、非接触で被検体を検査することが可能であり、リフトオフの影響をとり除く こと力 Sできるとともに、ニヤサイド亀裂、ファーサイド亀裂及び内部亀裂を比較的低コ ストかつ短時間で安定して評価でき、小型軽量化が可能な非破壊検査装置 20を提 供すること力 Sでさる。 [0064] ここで、図 4の(a)及び図 4の(b)と図 5の(a)及び図 5の(b)との比較に基づき、実 際に非破壊検査装置 20に構成して、磁位差の変化を測定した結果について説明す [0063] From the above, it is possible to inspect the specimen in a non-contact manner, and to remove the influence of lift-off. In addition, near-side cracks, far-side cracks, and internal cracks can be relatively low-cost and in a short time. Providing a nondestructive inspection device 20 that can be evaluated stably and can be reduced in size and weight. Here, based on the comparison between FIG. 4 (a) and FIG. 4 (b) and FIG. 5 (a) and FIG. The results of measuring the change in magnetic potential difference will be explained.
[0065] 図 4の(a)は、被検体 7に欠陥が無い場合のピックアップコア 8の測定結果を示す図 であり、図 4の (b)は、被検体 7に欠陥が無い場合の励磁コア 6の測定結果を示す図 である。一方、図 5の(a)は、被検体に欠陥が存在する場合のピックアップコアの測定 結果を示す図であり、図 5の (b)は、被検体に欠陥が存在する場合の励磁コアの測 定結果を示す図である。但し、これらの図においては磁位差の変化ではなぐ励磁コ ァ 6及びピックアップコア 8における磁束の変化としてグラフ化したものである。横軸の Timeは時間を示し、縦軸の Flaxは、磁束を示している。 [0065] Fig. 4 (a) is a diagram showing the measurement result of the pickup core 8 when the subject 7 has no defect, and Fig. 4 (b) shows the excitation when the subject 7 has no defect. FIG. 6 is a diagram showing the measurement results of core 6. On the other hand, (a) in FIG. 5 is a diagram showing the measurement results of the pickup core when there is a defect in the object, and (b) in FIG. 5 is the excitation core when there is a defect in the object. It is a figure which shows a measurement result. However, these figures are graphed as changes in magnetic flux in the excitation core 6 and the pickup core 8 rather than changes in the magnetic potential difference. Time on the horizontal axis indicates time, and Flax on the vertical axis indicates magnetic flux.
[0066] 図 4の(a)及び図 5の(a)を比較すると、ピックアップコア 8の測定結果に顕著な差異 が見られる。図 4の(a)に示すように、欠陥(Crack)が無い場合の、ピックアップコア 8 内の磁束の変化の絶対値は 2桁のオーダである。一方、図 5の(a)に示すように、欠 陥がある場合の磁束の変化は、 3桁のオーダである。このことは、ピックアップコア 8内 の磁束の変化、すなわち、対応する磁位差の変化を検知することで、被検体 7内の 欠陥を検知することが可能であることを示してレ、る。  [0066] When FIG. 4 (a) and FIG. 5 (a) are compared, there is a marked difference in the measurement results of the pickup core 8. FIG. As shown in FIG. 4 (a), the absolute value of the change in magnetic flux in the pickup core 8 when there is no defect (Crack) is on the order of two digits. On the other hand, as shown in Fig. 5 (a), the change in magnetic flux when there is a defect is on the order of three digits. This indicates that it is possible to detect a defect in the subject 7 by detecting a change in magnetic flux in the pickup core 8, that is, a corresponding change in magnetic potential difference.
[0067] なお、図 4の(b)及び図 5の(b)を対比してみると、励磁コア 6内の磁束の変化はほ とんど無ぐピックアップコア 8の測定結果の差は、亀裂 (欠陥)の有無に起因するもの であること力 sゎカゝる。 [0067] When comparing (b) in FIG. 4 and (b) in FIG. 5, there is almost no change in the magnetic flux in the exciting core 6, and the difference in the measurement result of the pickup core 8 is it force s Wakakaru is due to the presence or absence of cracks (defects).
[0068] 次に、図 6に基づき、第 2コイル 14及び第 1積分器 15 (以下、簡単のため、「外部磁 界補正部」と呼ぶことがある。 )を非破壊検査装置 20が備えて!/、る場合と備えて!/、な V、場合とを比較した結果にっレ、て説明する。  Next, based on FIG. 6, the non-destructive inspection apparatus 20 includes the second coil 14 and the first integrator 15 (hereinafter, sometimes referred to as “external magnetic field correction unit” for simplicity). We will explain the results of comparing the cases!
[0069] 横軸は、励磁コア 6と被検体 7との距離 (空隙)であり、縦軸は励磁コア 6の空隙の変 化に対するコア磁束の比率である。実線は、外部磁界補正部によって制御されてい る場合を示し、破線は、外部磁界補正部によって制御されていない場合を示している 。図 6に示すように、非破壊検査装置 20に外部磁界補正部を設けることにより、励磁 コア 6内の磁束がほぼ一定に保たれていることがわ力、る。  [0069] The horizontal axis is the distance (gap) between the exciting core 6 and the subject 7, and the vertical axis is the ratio of the core magnetic flux to the change in the gap of the exciting core 6. A solid line indicates a case where it is controlled by the external magnetic field correction unit, and a broken line indicates a case where it is not controlled by the external magnetic field correction unit. As shown in FIG. 6, by providing an external magnetic field correction unit in the nondestructive inspection apparatus 20, it can be said that the magnetic flux in the exciting core 6 is kept almost constant.
[0070] 次に、図 7に基づき、図 1の信号発生器 2が流す電流として交流を用いた場合にお いて、周波数を変化させたときの、ピックアップコア 8による検出信号の感度の測定結 果について説明する。図 7では、被検体 7が有する欠陥力、ファーサイド亀裂である 場合にっレ、ての測定結果を示して!/、る。 Next, based on FIG. 7, when alternating current is used as the current that the signal generator 2 of FIG. The measurement results of the sensitivity of the detection signal by the pickup core 8 when the frequency is changed will be described. In FIG. 7, the measurement results are shown when the specimen 7 has a defect force or far-side crack!
[0071] 横軸は、励磁コア 6に与えられる交流電流の周波数であり、縦軸は、周波数を変化 させて!/、な!/、ときの磁束密度と、周波数を変化させたときの磁束密度との比(Bm/B[0071] The horizontal axis is the frequency of the alternating current applied to the exciting core 6, and the vertical axis is the magnetic flux density when the frequency is changed! /, NA! /, And the magnetic flux when the frequency is changed. Ratio to density (Bm / B
0)であり、ピックアップコア 8による検出信号の感度を示す。 0), indicating the sensitivity of the detection signal by the pickup core 8.
[0072] 図 7に示すように、周波数が小さくなるほど感度が大きくなつていることがわかる。 As shown in FIG. 7, it can be seen that the sensitivity increases as the frequency decreases.
[0073] なお、本発明は、上述した各実施形態に限定されるものではなぐ請求項に示した 範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手 段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれ It should be noted that the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments are appropriately used. Embodiments obtained in combination are also included in the technical scope of the present invention.
[0074] また、本発明の非破壊検査装置は、前記構成に加えて、前記 2点間を結んで前記 被検体の外部に設けられた磁路に、前記透過磁束の一部が透過しないように逆磁 界を印加する逆磁界印加手段を備え、前記磁位差測定手段は、前記逆磁界の磁界 の強さから前記 2点間における磁位差を測定することが好ましい。 [0074] Further, in addition to the above-described configuration, the nondestructive inspection apparatus of the present invention prevents a part of the transmitted magnetic flux from passing through a magnetic path provided between the two points and provided outside the subject. Preferably, a reverse magnetic field applying means for applying a reverse magnetic field is provided, and the magnetic potential difference measuring means measures the magnetic potential difference between the two points from the strength of the magnetic field of the reverse magnetic field.
[0075] 前記構成によれば、逆磁界印加手段は、前記 2点間を結んで前記被検体の外部に 設けられた磁路に、前記透過磁束の一部が透過しないように逆磁界を印加する。ま た、前記磁位差測定手段は、前記逆磁界の磁界の強さから前記 2点間における磁位 差を測定する。  [0075] According to the configuration, the reverse magnetic field applying means applies a reverse magnetic field so that a part of the transmitted magnetic flux does not pass through a magnetic path provided outside the subject by connecting the two points. To do. The magnetic potential difference measuring means measures a magnetic potential difference between the two points from the strength of the reverse magnetic field.
[0076] それゆえ、前記磁路に透過磁束の一部を透過させないので、該磁路及び非破壊 検査装置の磁気抵抗の影響を大幅に低減できる。このため、非破壊検査装置と被検 体との距離が変化することによるリフトオフの影響をとり除くことができる。  Therefore, since a part of the transmitted magnetic flux is not transmitted through the magnetic path, the influence of the magnetic resistance of the magnetic path and the nondestructive inspection apparatus can be greatly reduced. For this reason, the effect of lift-off due to the change in the distance between the non-destructive inspection device and the object can be eliminated.
[0077] また、本発明の非破壊検査装置は、前記構成に加えて、前記被検体の外部から前 記透過磁束を生じさせる外部磁界を印加する外部磁界印加手段と、前記透過磁束 が一定となるように前記外部磁界の強さを補正する外部磁界補正手段とを備えること が好ましい。  In addition to the above-described configuration, the nondestructive inspection apparatus of the present invention includes an external magnetic field applying unit that applies an external magnetic field that generates the transmitted magnetic flux from the outside of the subject, and the transmitted magnetic flux is constant. It is preferable to provide an external magnetic field correcting means for correcting the strength of the external magnetic field.
[0078] 前記構成によれば、外部磁界印加手段と被検体との距離が離れても、被検体内部 の透過磁束が一定となる。それゆえ、前記非破壊検査装置において、非破壊検査装 置と被検体との距離が変化することによるリフトオフの影響を取り除くことができる。 また、本発明の非破壊検査装置は、前記構成に加えて、前記外部磁界印加手段 は、流れる電流に応じて磁界を発生するコイルと、前記コイルの内部の透磁率を高め 、前記外部磁界を前記被検体に印加させるための励磁コアとを備えることが好ましい According to the above configuration, the transmitted magnetic flux inside the subject is constant even when the distance between the external magnetic field applying means and the subject is increased. Therefore, in the nondestructive inspection apparatus, a nondestructive inspection device is provided. The effect of lift-off due to the change in the distance between the device and the subject can be removed. Further, the nondestructive inspection apparatus of the present invention, in addition to the above configuration, the external magnetic field applying means increases the magnetic permeability inside the coil, the coil generating a magnetic field according to the flowing current, and the external magnetic field It is preferable to include an excitation core for applying to the subject.
[0080] 前記構成によれば、コイルに流れる電流に応じて、コイルに発生する磁界の強さを 変化させること力 Sできる。また、励磁コアはコイル内部の透磁率を高めるような素材、 例えば、アモルファスフェライトや高透磁率鋼などの高透磁率素材を用いて構成する ことで、記被検体に印加させる外部磁界の強さを大きぐかつ、被検体の測定部位に 集中させること力 Sでさる。 [0080] According to the configuration, it is possible to change the strength S of the magnetic field generated in the coil according to the current flowing in the coil. The excitation core is made of a material that increases the magnetic permeability inside the coil, for example, a high permeability material such as amorphous ferrite or high permeability steel, so that the strength of the external magnetic field applied to the subject is increased. The force S is used to concentrate on the measurement site of the subject.
[0081] また、本発明の非破壊検査装置は、前記構成に加えて、前記電流が交流電流であ ることが好ましい。  [0081] Further, in the nondestructive inspection device of the present invention, in addition to the above configuration, the current is preferably an alternating current.
[0082] 前記構成によれば、交流の特性を変化させることで、前記透過磁界の特性を変化 させることができる。例えば、交流電流又は電圧の振幅、周波数又は波形を変化させ ることにより、それぞれの変化に応じて透過磁界を変化させることができる。  [0082] According to the above configuration, the characteristics of the transmitted magnetic field can be changed by changing the AC characteristics. For example, by changing the amplitude, frequency, or waveform of the alternating current or voltage, the transmitted magnetic field can be changed according to each change.
[0083] また、本発明の非破壊検査装置は、前記構成に加えて、前記交流電流の周波数を 調整する周波数調整手段を備えることが好ましい。  In addition to the above configuration, the nondestructive inspection apparatus of the present invention preferably includes frequency adjusting means for adjusting the frequency of the alternating current.
[0084] 前記構成によれば、交流電流の周波数を変化させて、表皮効果を利用(透過磁束 の被検体表面からの深さを調節)すれば、測定側の被検体表面から亀裂深さなどの 計測が可能となる。例えば、表皮効果については、磁束密度が表面部の約 37%とな る被検体の測定面側の表面からの深さ sが、交流電流の周波数 ωの関数であり、次 式で与えられることがわかって!/、る。  [0084] According to the above configuration, if the skin effect is used by changing the frequency of the alternating current (adjusting the depth of the transmitted magnetic flux from the subject surface), the crack depth from the subject surface on the measurement side, etc. Can be measured. For example, for the skin effect, the depth s from the surface on the measurement surface side of the subject where the magnetic flux density is approximately 37% of the surface portion is a function of the frequency ω of the alternating current and is given by the following equation: I understand! /
[0085] [数 2]  [0085] [Equation 2]
Figure imgf000017_0001
Figure imgf000017_0001
[0086] ここで、 ρは被検体の抵抗率、 11は被検体の透磁率である。 [0087] それゆえ、交流の周波数 ωを大きくすることにより、深さ sを浅くし、周波数 ωを小さ くすることにより、深さ sを深くすること力 Sでさる。 Here, ρ is the resistivity of the subject, and 11 is the magnetic permeability of the subject. Therefore, the depth S is reduced by increasing the AC frequency ω, and the depth S is increased by reducing the frequency ω by the force S.
[0088] また、本発明の非破壊検査装置は、前記構成に加えて、前記交流電流の振幅を、 次第に大きくした後、次第に小さくすることが好ましい。 [0088] In addition to the above-described configuration, the nondestructive inspection device of the present invention preferably increases the amplitude of the alternating current gradually and then decreases it gradually.
[0089] 前記構成によれば、強い前記外部磁界を印加することによって、被検体に生じた磁 化を取り除くことができ、次の測定に際し、被検体の磁化による影響を低減させること ができる。 [0089] According to the above configuration, by applying the strong external magnetic field, the magnetization generated in the subject can be removed, and the influence of the magnetization of the subject can be reduced in the next measurement.
[0090] また、本発明の非破壊検査装置は、前記構成に加えて、前記励磁コアの形状が、 ドーナツ型の形状を m/n (m< nであり、 m, nは 1以上の整数とする)に分割したもの のうちの一片が有する形状であることを特徴とするが好ましい。  [0090] Further, in the nondestructive inspection apparatus of the present invention, in addition to the above configuration, the shape of the exciting core is a donut-shaped shape m / n (m <n, where m and n are integers of 1 or more It is preferable that it is a shape of one piece of those divided.
[0091] 前記構成によれば、励磁コアがドーナツ型の形状を m/n (m< nであり、 m, nは 1 以上の整数とする)に分割したもののうちの一片が有する形状を採用している。それ ゆえ、励磁コアの被検体に対する測定部である一方及び他方の端面のそれぞれを 含む平面のなす角を適宜調整することができる。このため、被検体が、平板を上記平 面のなす角と同じ大きさの角度で曲げたときにできる形状である場合であっても、非 破壊検査装置の使用を可能とすることができる。  [0091] According to the above configuration, the excitation core adopts the shape of one of the donut-shaped shapes divided into m / n (m <n, where m and n are integers greater than or equal to 1) is doing. Therefore, it is possible to appropriately adjust the angle formed by the plane including each of the one end face and the other end face that are the measurement parts for the subject of the excitation core. For this reason, even when the object has a shape that can be obtained when the flat plate is bent at an angle that is the same as the angle formed by the flat surface, the nondestructive inspection apparatus can be used.
[0092] また、本発明の非破壊検査装置は、前記構成に加えて、前記励磁コアにおける前 記被検体に対する測定部が、まるみを帯びていることが好ましい。  [0092] Further, in the nondestructive inspection apparatus of the present invention, in addition to the above configuration, it is preferable that the measurement unit for the subject in the excitation core is rounded.
[0093] 前記構成によれば、励磁コアにおける前記被検体に対する測定部が、まるみを帯 びているので、非破壊検査装置の形状を変えることなく様々な形状の被検体に、励 磁コアの測定部位を接触させることができる。  [0093] According to the above configuration, since the measurement unit for the subject in the excitation core is rounded, the measurement portion of the excitation core can be applied to the subject having various shapes without changing the shape of the nondestructive inspection apparatus. Can be contacted.
産業上の利用可能性  Industrial applicability
[0094] 本発明は、船舶や橋梁等の溶接鋼構造物における亀裂損傷などの検出や、発電 プラントや化学プラントにおける鋼材やマルテンサイト系ステンレスなどで作られた配 管等の亀裂損傷などの検出など、磁性体で構成される被検体の亀裂損傷などを検 出する検査装置などに広く適用することができる。 [0094] The present invention detects crack damage in welded steel structures such as ships and bridges, and detection of crack damage in pipes made of steel and martensitic stainless steel in power plants and chemical plants. For example, the present invention can be widely applied to an inspection apparatus that detects crack damage or the like of an object made of a magnetic material.

Claims

請求の範囲 The scope of the claims
[1] 被検体の内部の欠陥を検査するための非破壊検査装置であって、  [1] A nondestructive inspection device for inspecting a defect inside a subject,
前記被検体の内部を透過する透過磁束の 2点間における磁位差を、前記被検体の 外部から測定するための磁位差測定手段と、  A magnetic potential difference measuring means for measuring a magnetic potential difference between two points of transmitted magnetic flux passing through the inside of the subject from the outside of the subject;
前記被検体と前記磁位差測定手段とを相対的に移動させたときに、前記磁位差測 定手段が測定する磁位差の変化を検知することで、前記被検体の内部の欠陥の存 在を検知する欠陥検知手段とを備えることを特徴とする非破壊検査装置。  By detecting a change in the magnetic potential difference measured by the magnetic potential difference measuring means when the subject and the magnetic potential difference measuring means are relatively moved, a defect inside the subject is detected. A nondestructive inspection apparatus comprising defect detection means for detecting existence.
[2] 前記 2点間を結んで前記被検体の外部に設けられた磁路に、前記透過磁束の一 部が透過しないように逆磁界を印加する逆磁界印加手段を備え、 [2] A reverse magnetic field applying means for applying a reverse magnetic field so that a part of the transmitted magnetic flux does not pass through a magnetic path provided between the two points and provided outside the subject,
前記磁位差測定手段は、  The magnetic potential difference measuring means includes
前記逆磁界の磁界の強さから前記 2点間における磁位差を測定することを特徴と する請求項 1に記載の非破壊検査装置。  2. The nondestructive inspection apparatus according to claim 1, wherein a magnetic potential difference between the two points is measured from a magnetic field strength of the reverse magnetic field.
[3] 前記被検体の外部から前記透過磁束を生じさせる外部磁界を印加する外部磁界 印加手段と、 [3] An external magnetic field applying unit that applies an external magnetic field that generates the transmitted magnetic flux from the outside of the subject;
前記透過磁束が一定となるように前記外部磁界の強さを補正する外部磁界補正手 段とを備えることを特徴とする請求項 1又は 2に記載の非破壊検査装置。  The nondestructive inspection apparatus according to claim 1, further comprising an external magnetic field correction unit that corrects the strength of the external magnetic field so that the transmitted magnetic flux is constant.
[4] 前記外部磁界印加手段は、流れる電流に応じて磁界を発生するコイルと、 [4] The external magnetic field applying means includes a coil that generates a magnetic field according to a flowing current;
前記コイルの内部の透磁率を高め、前記外部磁界を前記被検体に印加させるため の励磁コアとを備えることを特徴とする請求項 3に記載の非破壊検査装置。  4. The nondestructive inspection apparatus according to claim 3, further comprising an excitation core for increasing the magnetic permeability inside the coil and applying the external magnetic field to the subject.
[5] 前記電流が交流電流であることを特徴とする請求項 4に記載の非破壊検査装置。 5. The nondestructive inspection apparatus according to claim 4, wherein the current is an alternating current.
[6] 前記交流電流の周波数を調整する周波数調整手段を備えることを特徴とする請求 項 4に記載の非破壊検査装置。 6. The nondestructive inspection apparatus according to claim 4, further comprising frequency adjusting means for adjusting the frequency of the alternating current.
[7] 前記交流電流の振幅を、次第に大きくした後、次第に小さくすることを特徴とする請 求項 5又は 6に記載の非破壊検査装置。 [7] The nondestructive inspection device according to claim 5 or 6, wherein the amplitude of the alternating current is gradually increased after being gradually increased.
[8] 前記励磁コアの形状が、ドーナツ型の形状を m/n (m< nであり、 m, nは 1以上の 整数とする)に分割したもののうちの一片が有する形状であることを特徴とする請求項[8] The shape of the exciting core is a shape of one of the donut-shaped shapes divided into m / n (m <n, where m and n are integers of 1 or more). Characteristic claims
4に記載の非破壊検査装置。 4. Non-destructive inspection device according to 4.
[9] 前記励磁コアにおける前記被検体に対する測定部が、まるみを帯びていることを特 徴とする請求項 4に記載の非破壊検査装置。 [9] The measuring part for the subject in the excitation core is rounded. The nondestructive inspection device according to claim 4.
非破壊検査装置を用いて被検体の内部の欠陥を検査するための非破壊検査方法 であって、  A nondestructive inspection method for inspecting a defect inside a subject using a nondestructive inspection device,
前記非破壊検査装置に備えられた磁位差測定手段により、前記被検体の内部を 透過する透過磁束の 2点間における磁位差を、前記被検体の外部から測定する磁 位差測定ステップと、  A magnetic potential difference measuring step of measuring a magnetic potential difference between two points of a transmitted magnetic flux transmitted through the inside of the subject from the outside of the subject by a magnetic potential difference measuring means provided in the nondestructive inspection apparatus; ,
前記非破壊検査装置に備えられた欠陥検知手段により、前記被検体と前記磁位差 測定手段とを相対的に移動させたときに、前記磁位差測定手段が測定する磁位差 の変化を検知することで、前記被検体の内部の欠陥の存在を検知する欠陥検知ステ ップとを備えることを特徴とする非破壊検査方法。  A change in magnetic potential difference measured by the magnetic potential difference measuring means when the subject and the magnetic potential difference measuring means are relatively moved by the defect detecting means provided in the nondestructive inspection apparatus. A nondestructive inspection method comprising: a defect detection step for detecting the presence of a defect inside the subject by detection.
PCT/JP2007/073441 2006-12-14 2007-12-05 Nondestructive test instrument and nondestructive test method WO2008072508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006337383A JP2010048552A (en) 2006-12-14 2006-12-14 Nondestructive inspecting device and method
JP2006-337383 2006-12-14

Publications (1)

Publication Number Publication Date
WO2008072508A1 true WO2008072508A1 (en) 2008-06-19

Family

ID=39511529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073441 WO2008072508A1 (en) 2006-12-14 2007-12-05 Nondestructive test instrument and nondestructive test method

Country Status (2)

Country Link
JP (1) JP2010048552A (en)
WO (1) WO2008072508A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050155A1 (en) * 2008-10-28 2010-05-06 Ntn株式会社 Barkhausen noise inspection apparatus and inspection method
CN103760223A (en) * 2014-02-19 2014-04-30 华中科技大学 Internal and external flaw magnetic flux leakage detection distinguishing method and device based on superficial reversed field
CN103776897A (en) * 2014-02-18 2014-05-07 华中科技大学 Magnetic flux leakage testing method and device based on defect magnetic flux leakage region reversed field
CN106225924A (en) * 2016-09-30 2016-12-14 京东方科技集团股份有限公司 A kind of light-intensity test unit, light intensity detector and detection method, display device
CN106248210A (en) * 2016-07-29 2016-12-21 中国科学院西安光学精密机械研究所 Quasi-entity lateral shearing interferometer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756409B1 (en) 2011-02-18 2011-08-24 大日機械工業株式会社 Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
SE538669C2 (en) * 2014-11-28 2016-10-11 Scania Cv Ab A method of calibrating an evaluation arrangement by sensingmagnetic Barkhausen noise
JP6740077B2 (en) 2016-10-05 2020-08-12 大日機械工業株式会社 CALIBRATION DEVICE FOR NON-DESTRUCTIVE INSPECTION MEASUREMENT SYSTEM AND NON-DESTRUCTIVE INSPECTION MEASUREMENT METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138157A (en) * 1984-12-11 1986-06-25 Toshiba Corp Method and device for magnetic flaw detection
JPH0572180A (en) * 1991-09-12 1993-03-23 Nkk Corp Method and device for magnetic-field inspection
JPH06194342A (en) * 1992-12-24 1994-07-15 Nippon Steel Corp Composite magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138157A (en) * 1984-12-11 1986-06-25 Toshiba Corp Method and device for magnetic flaw detection
JPH0572180A (en) * 1991-09-12 1993-03-23 Nkk Corp Method and device for magnetic-field inspection
JPH06194342A (en) * 1992-12-24 1994-07-15 Nippon Steel Corp Composite magnetic head

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050155A1 (en) * 2008-10-28 2010-05-06 Ntn株式会社 Barkhausen noise inspection apparatus and inspection method
JP2010107229A (en) * 2008-10-28 2010-05-13 Ntn Corp Barkhausen noise apparatus and inspection method
CN103776897A (en) * 2014-02-18 2014-05-07 华中科技大学 Magnetic flux leakage testing method and device based on defect magnetic flux leakage region reversed field
CN103776897B (en) * 2014-02-18 2015-05-06 华中科技大学 Magnetic flux leakage testing method and device based on defect magnetic flux leakage region reversed field
CN103760223A (en) * 2014-02-19 2014-04-30 华中科技大学 Internal and external flaw magnetic flux leakage detection distinguishing method and device based on superficial reversed field
CN103760223B (en) * 2014-02-19 2015-04-15 华中科技大学 Internal and external flaw magnetic flux leakage detection distinguishing method and device based on superficial reversed field
CN106248210A (en) * 2016-07-29 2016-12-21 中国科学院西安光学精密机械研究所 Quasi-entity lateral shearing interferometer
CN106225924A (en) * 2016-09-30 2016-12-14 京东方科技集团股份有限公司 A kind of light-intensity test unit, light intensity detector and detection method, display device

Also Published As

Publication number Publication date
JP2010048552A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP4487082B1 (en) Magnetic flux leakage flaw detection method and apparatus
US6239593B1 (en) Method and system for detecting and characterizing mechanical damage in pipelines using nonlinear harmonics techniques
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP2013505443A (en) Eddy current inspection for surface hardening depth
Ru et al. Structural coupled electromagnetic sensing of defects diagnostic system
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
Zhao et al. A novel ACFM probe with flexible sensor array for pipe cracks inspection
Ortega-Labra et al. A novel system for non-destructive evaluation of surface stress in pipelines using rotational continuous magnetic Barkhausen noise
JP2011047736A (en) Method of inspecting austenite-based stainless steel welding section
Saari et al. Design of eddy current testing probe for surface defect evaluation
Jun et al. Nondestructive evaluation of austenitic stainless steel using CIC-MFL and LIHaS
WO2012021034A2 (en) Conductor thickness detecting device using a double core
JP2017067743A (en) Non-destructive inspection device and non-destructive inspection method
KR101789239B1 (en) Non-distructive inspection apparatus using induced electromotive force
Ge et al. Development of a velocity-adaptable alternating current field measurement device for crack inspection in rails
CN107576720A (en) Ferromagnetic slender member shallow damage magnetic transmitting detection method and magnetic emission detection system
JP6550873B2 (en) Eddy current flaw detection method
JP3307220B2 (en) Method and apparatus for flaw detection of magnetic metal body
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
CN114764086A (en) Pipeline internal detection method based on eddy current detection differential permeability under bias magnetization
Wang et al. A new system for defects inspection of boiler water wall tubes using a combination of EMAT and MFL
JP2008145137A (en) Eddy current flaw detection probe, flaw detector, and flaw detection method
JP5011056B2 (en) Eddy current inspection probe and eddy current inspection device
Okolo et al. Finite element method and experimental investigation for hairline crack detection and characterization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850083

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)