WO2008072498A1 - Mold for optical element, having nanostructure, mold for nanostructure, method for manufacturing the mold, and optical element - Google Patents
Mold for optical element, having nanostructure, mold for nanostructure, method for manufacturing the mold, and optical element Download PDFInfo
- Publication number
- WO2008072498A1 WO2008072498A1 PCT/JP2007/073321 JP2007073321W WO2008072498A1 WO 2008072498 A1 WO2008072498 A1 WO 2008072498A1 JP 2007073321 W JP2007073321 W JP 2007073321W WO 2008072498 A1 WO2008072498 A1 WO 2008072498A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanostructure
- optical element
- mold
- substrate
- island
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
- B29C33/424—Moulding surfaces provided with means for marking or patterning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C99/00—Subject matter not provided for in other groups of this subclass
- B81C99/0075—Manufacture of substrate-free structures
- B81C99/009—Manufacturing the stamps or the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
Definitions
- Mold for optical element having nanostructure, mold for nanostructure, manufacturing method thereof and optical element
- the present invention relates to an optical element having a nanostructure used for high-sensitivity detection in the bio or medical field, or a mold for forming a nanostructure, a method for producing the same, and an optical element.
- the mold for nanostructure is a superordinate concept of “mold for optical element having nanostructure”.
- nanostructure mentioned here is a high-spectrum nanostructure used for high-sensitivity detection in the bio and medical fields, and the “nanostructure mold” has the high aspect ratio. This is a mold used to mold nanostructures. Moreover, this nanostructure can be used, for example, for heat dissipation control, heat conduction control of materials, and wettability control.
- optical element having a nanostructure is a sensing chip or the like used for highly sensitive detection in the bio or medical field
- nanostructures can improve detection sensitivity in optical elements used for fluorescence analysis and polarization analysis in the bio and medical fields. For this reason, surface treatment is performed on the substrate surface in order to achieve high detection sensitivity.
- a specific method of this surface treatment a method of forming a fine and dense uneven shape on the substrate surface is known.
- a nano-periodic structure can be produced using anodized porous alumina to produce a fine nanostructure (see, for example, Patent Document 3 and Patent Document 4).
- the preparation method using anodized porous alumina is a method in which aluminum is anodized in a strong alkali solution such as sulfuric acid to self-form periodic nanoholes on the aluminum surface.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2006-300726
- Patent Document 2 JP 2005-337771 A
- Patent Document 3 Japanese Patent Laid-Open No. 2006-62049
- Patent Document 4 Japanese Unexamined Patent Application Publication No. 2006-68827
- the method for producing a fine nanostructure using anodized porous alumina can form a large-area periodic nanostructure at once, but the substrate material is limited. There's a problem.
- the method using anodized porous alumina has a problem in that high-precision voltage / current control is required to produce a uniform nanostructure over a large area.
- the processing conditions change depending on the substrate size and processing area, and it is difficult to obtain reproducibility.
- the present invention aims to solve the above-mentioned problems, and an object of the present invention is to provide a molding die for an optical element having the following nanostructure, and molding for a nanostructure. It is a point which implement
- the mold for an optical element or nanostructure having a nanostructure according to the present invention has a nanostructure consisting of a large-area and complex-shaped structure uniformly on the substrate surface.
- the detection sensitivity can be further improved.
- the method for producing a molding die for optical elements or a nanostructure according to the present invention is a method that can be produced by only a dry process with a small number of steps and high productivity.
- the optical element according to the present invention has a nanostructure having a fine uneven surface on the substrate surface and a high aspect ratio nanopattern arranged in a random manner.
- the nanopattern is a light source. It is an optical element provided with a nano pattern having a structure in which an interval equal to or less than the wavelength is maintained.
- the present invention provides a method for manufacturing a mold for an optical element or nanostructure having a nanostructure having a fine uneven surface on a substrate surface, wherein one layer is formed on the substrate.
- the above-described etching transfer layer is formed, and a thin film for generating island-shaped fine particles is formed on the etching transfer layer, and either a thermal reaction, a photoreaction, a chemical reaction, or a composite reaction thereof is used for the thin film.
- a plurality of island-shaped fine particles are formed by causing an aggregation action, a decomposition action, or a nucleation action of the thin film material, and the etching transfer layer and the substrate are sequentially etched using the plurality of island-shaped fine particles as a protective mask.
- Each of the plurality of island-shaped fine particles has a nanometer order, and forms a nano-pattern that is randomly arranged while maintaining an interval equal to or smaller than the wavelength of the light source targeted. I prefer to do it.
- the material of the thin film is mainly composed of a substance containing silver, gold, platinum, or palladium as a main component, or a component of silver, gold, platinum, palladium, tungsten, bismuth, or tellurium. Preferred is oxide or nitride! /.
- the island-shaped fine particles have an average particle diameter of 5 nm to OOOnm, and the average interval between the plurality of island-shaped fine particles is preferably 10 nm to 2000 nm.
- the substrate is made of quartz glass, resin, silicon, gallium nitride, gallium arsenide, indium phosphide.
- the etching transfer layer is preferably composed of a single layer of oxide, nitride or carbide, or a multilayer of oxide, nitride and / or carbide! /.
- the present invention provides a mold for optical elements or a mold for nanostructures having a nanostructure manufactured by a method for manufacturing a mold for optical elements.
- the present invention has a nano-structure with fine irregularities on the substrate surface.
- An optical element comprising a high-aspect-ratio nanopattern arranged randomly is provided.
- the nanopattern of the optical element having the nanostructure has a configuration in which an interval equal to or less than a wavelength of a light source is maintained.
- the optical element molding die according to the present invention has a nanostructure uniformly and stably on a substrate surface having a large area and a complicated free-form surface, and has a large area at a lower cost. High sensitivity sensor chips can be manufactured.
- the method for producing a mold for an optical element or nanostructure having a nanostructure according to the present invention can be produced by only a dry process with a small number of steps and high productivity.
- the optical element according to the present invention has a nanostructure having a fine uneven surface on the substrate surface and a high aspect ratio nanopattern arranged in a random manner.
- the nanopattern is a light source. It is an optical element provided with a nano pattern having a structure in which an interval equal to or less than the wavelength is maintained.
- FIG. 1 is a diagram illustrating Example 1 of the present invention.
- FIG. 2 is a diagram for explaining Example 1 of the present invention.
- FIG. 3 is a diagram for explaining Example 1 of the present invention.
- FIG. 4 is a diagram for explaining Example 2 of the present invention.
- FIG. 5 Injection molding using a mold for optical elements having the nanostructure of Example 1 of the present invention. It is a figure explaining manufacture of a form, shaping
- FIG. 6 is a diagram for explaining the production of an injection mold using the mold for an optical element having a nanostructure of Example 2 of the present invention, the molding of the optical element having a nanostructure, and the optical element. .
- the present invention is for an optical element or a nanostructure for molding an optical element having a fine uneven structure (nanostructure) on the surface for obtaining a highly sensitive sensing effect such as biotechnology or medical treatment.
- the steps of the method for producing the molding die for optical elements according to the present invention are as follows.
- a plurality of etching transfer layers are formed on the substrate, and a thin film is formed all at once. These forming steps are performed by a vacuum dry process.
- the substance that becomes the island-shaped fine particles is mainly a material mainly containing one of silver, gold, platinum, and radium, or one of silver, gold, platinum, palladium, tungsten, bismuth, and tellurium.
- an oxide material or nitride as a component, it is possible to form a nanopattern in which the interval between the plurality of island-shaped fine particles is narrow.
- the average particle size of the hemispherical island-shaped fine particles is 5 nm to 1 OOOnm, and the average interval between adjacent island-shaped fine particles is preferably 1 Onm to 200 Onm or less! /.
- a plurality of etching transfer layers are provided between the island-shaped substance and the substrate, so that an optical element including a nanostructure having a high aspect ratio can be molded.
- Concave and convex surfaces can be efficiently produced on the surface of the mold for optical elements.
- a nanostructure having a fine uneven surface on the surface of the substrate and arranged in a random manner has a high aspect ratio.
- the nanopattern is an optical element having a nanopattern that is configured to maintain a distance equal to or smaller than the wavelength of the light source.
- FIG. 1 is a diagram for explaining the steps of a manufacturing method for manufacturing a mold 1 for an optical element according to Example 1 of the present invention using a reactive ion etching method.
- the surface of the planar substrate 2 is composed of one or more layers.
- An etching transfer layer 3 and a thin film 4 for producing island-shaped fine particles are formed (FIG. 1 (a)).
- the inventors of the present invention randomly deposited island-like particles 5 on the surface of the substrate 2 on the surface of the substrate 2 at intervals less than the wavelength of the target light source. Confirm that it is effective as a material for the thin film 4 to form!
- the island-like fine particles 5 arranged in the random space are produced at intervals equal to or shorter than the wavelength (FIG. 1 (b)).
- 2 (a) and 2 (b) are a cross-sectional view and a plan view showing island-shaped fine particles 5 formed on the substrate 2 and the etching transfer layer 3.
- the aggregation reaction and nucleation reaction of the material can be controlled to control the average particle diameter and interval of the island-shaped fine particles 5. It is possible. In addition, the present inventors have confirmed that the average particle diameter and interval of the island-shaped fine particles 5 can be controlled by adding impurities to the material of the thin film 4.
- a reactive gas for example, CF, CH
- the etching transfer layer 3 maintains the same shape as the island-shaped fine particles 5, is etched, and sequentially functions as a masking layer for the next etching transfer layer 3 or the substrate 2.
- the fine irregular surface (nanostructure type surface) 1 ' having a substantially conical shape for forming the nanostructure on the surface of the optical element is formed on the surface of the substrate 2 using the island-shaped fine particles 5,
- the etching transfer layer 3 it is possible to produce a substantially conical shape having a high aspect ratio structure.
- materials mainly composed of carbon, silicon, silicon oxide, silicon nitride, etc. are effective. is there.
- the etching rate between the island-like fine particles 5 and the etching transfer layer 3 is “island-like”.
- Fine particle 5 Etching rate ” ⁇ “ Etching rate of etching transfer layer 3 ”Reactive etching is performed using a gas species. Thereby, the island-shaped fine particles 5 generate a masking effect, and a pattern can be formed on the etching transfer layer 3.
- the gas type in which the etching rate ratio is "etching rate of the etching transfer layer 3" ⁇ "etching rate of the substrate 2" Reactive etching using is performed.
- the etching transfer layer 3 does not need to be a single layer, and can be produced in multiple layers by a process design for etching.
- a similar process is performed on the second and subsequent etching transfer layers 3 (FIG. 1 (d)). Finally, the substrate 2 is etched, and the surface of the substrate 2 is finely formed with a substantially conical shape. An optical element molding die 1 having an uneven surface (nanostructure mold surface) 1 ′ is formed (FIG. 1 (f)).
- the substrate 2 has a fine concavo-convex structure formed on the surface of the substrate 2 densely at intervals equal to or less than the wavelength of the target light source and randomly in a substantially conical shape only by a dry process. Things are possible. As a result, even an optical substrate having a complicated shape can be easily manufactured, and the manufacturing process can be simplified.
- FIG. 3 shows a representative SEM image (scanning electron microscope image) of the island-shaped fine particles 5 obtained by the Example 1 of the present inventors.
- SEM image scanning electron microscope image
- Example 1 the inventors have realized control of the aggregation reaction and nucleation reaction of these materials by controlling the thermal reaction, photoreaction, or gas reaction, It was also confirmed that the average particle size and interval of the island-shaped fine particles 5 can be controlled. It was also confirmed that the average particle size and spacing of the island-shaped fine particles 5 can be controlled by adding impurities to these materials.
- the fluorescence intensity was measured using the optical element molding die 1 (not the optical element itself) produced using the optical element molding die 1 having the nanostructure manufactured according to Example 1. As a result, it was confirmed that the detection sensitivity could be improved 50 times in the presence of nanostructures compared to the case without nanostructures.
- the present invention can produce a substantially concave and convex surface (nanostructure-type surface) 1 'having a substantially conical shape on the surface of the substrate 2 only by a dry process, thereby reducing costs and productivity. I assured that this is an excellent method.
- a resin such as quartz, glass, polycarbonate, PMMA, gallium nitride, gallium arsenide, indium phosphide, uckel, iron, titanium, carbon, sapphire, carbon nitride, or the like may be used. , Confirmed that there is a similar effect.
- FIG. 4 is a diagram for explaining a process for performing the manufacturing method of the optical element mold 6 according to Example 2 of the present invention using the reactive ion etching method in the same manner as in Example 1.
- Example 2 relates to a molding die for an optical element that molds an optical element having a nanostructure on a substrate having a free-form surface, and the substrate 7 has a free-form surface and is different in its manufacturing method. Therefore, the description thereof is omitted.
- the surface of the substrate 6 is formed with a substantially conical fine uneven surface (nanostructure mold surface) 1 '.
- the same effect as in Example 1 can be obtained.
- FIG. 5 (a) shows an optical element molding die 1 having a silicon nanostructure obtained in Example 1 of the present invention (an optical element molding die having a quartz glass nanostructure). 1 is acceptable. Using this mold 1 for optical elements having nanostructures made of silicon, Fig. 5 (b) As shown in FIG. 5, an injection mold 8 as shown in FIG. 5 (c) is produced by performing a normal nickel electroplating process.
- the optical element 9 having the nanostructure as shown in FIG. 5 (e) is used using the injection mold 8.
- This optical element 9 has a nano-structure with fine irregularities on the substrate surface and is provided with a high-aspect-ratio nano-pattern that is randomly arranged.
- this nano-pattern has an interval less than the wavelength of the light source. It is an optical element provided with the nano pattern which is the structure maintained.
- the nanopattern of the optical element 9 is island-shaped, and the average diameter thereof is preferably 5 nm to 100 Onm, and the average interval between adjacent islands is preferably 10 nm to 2000 nm or less.
- FIG. 6 is a diagram for explaining a method using the optical element mold 6 (see FIG. 6 (a)) having the nanostructure obtained in Example 2 of the present invention. This method is exactly the same as the method shown in FIG. 5, and an injection mold 10 (see FIG. 6 (c)) is created by performing a normal nickel electroplating process (see FIG. 6 (b)). .
- an optical element having a nanostructure is injection-molded using the injection mold 10 (see FIG. 6 (d)).
- An optical element 11 with a body (see Fig. 6 (e)) can also be mass-produced.
- the optical element in general (for example, a projector lens, an optical pickup, a display, etc.), the light emitting element in general (for example, LED, laser, etc.), the light receiving element in general (photo (Applicable to diodes, solar cells, etc.), bioanalysis chips, thermal control plates, fluid sensors, and acceleration sensors.
- the light emitting element for example, LED, laser, etc.
- the light receiving element in general (photo (Applicable to diodes, solar cells, etc.), bioanalysis chips, thermal control plates, fluid sensors, and acceleration sensors.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
This invention provides a method for manufacturing a mold for an optical element, having a nanostructure of nano-order fine concavoconvex face on a surface of a substrate (2) through a simple process. One or more etching transfer layers (3) are formed on a substrate (2). A thin film (4) for semispherical fine particle formation is formed on the etching transfer layer (3). Aggregation, decomposition, or nucleation is allowed to take place in a material constituting the thin film (4) by taking advantage of any of a thermal reaction, a photoreaction, and a gas reaction, or a complex reaction of these reactions, whereby a plurality of semispherical island-shaped fine particles are formed. The etching transfer layer (3) and the substrate (2) are successively etched by a reactant gas using the plurality of island-shaped fine particles (5) as a protective mask to form a fine conical pattern on the substrate (2) and thus to manufacture a mold (1) for an optical element, having a fine concavoconvex face (a nanostructure mold face) (1') on a surface of the substrate (2).
Description
明 細 書 Specification
ナノ構造体を有する光学素子用成形型、ナノ構造体用成形型、その製造 方法および光学素子 Mold for optical element having nanostructure, mold for nanostructure, manufacturing method thereof and optical element
技術分野 Technical field
[0001] 本発明は、バイオや医療分野の高感度検出に用いられるナノ構造体を有する光学 素子用又はナノ構造体用成形型、その製造方法および光学素子に関するものであ る。ナノ構造体用成形型は、「ナノ構造体を有する光学素子用成形型」の上位概念 である。 TECHNICAL FIELD [0001] The present invention relates to an optical element having a nanostructure used for high-sensitivity detection in the bio or medical field, or a mold for forming a nanostructure, a method for producing the same, and an optical element. The mold for nanostructure is a superordinate concept of “mold for optical element having nanostructure”.
[0002] ここで言う「ナノ構造体」とは、バイオや医療分野の高感度検出に用いられる、高ァ スぺタトのナノ構造体であり、「ナノ構造成形型」は、これら高アスペクトのナノ構造体 の成形に用いられる成形型である。また、このナノ構造体は、たとえば、放熱制御、物 質の熱伝導制御、ぬれ性制御に用いることが出来る。 The “nanostructure” mentioned here is a high-spectrum nanostructure used for high-sensitivity detection in the bio and medical fields, and the “nanostructure mold” has the high aspect ratio. This is a mold used to mold nanostructures. Moreover, this nanostructure can be used, for example, for heat dissipation control, heat conduction control of materials, and wettability control.
[0003] ここで言う「ナノ構造体を有する光学素子」とは、バイオや医療分野の高感度検出 に用いられるセンシングチップ等であり、「ナノ構造体を有する光学素子用成形型」は 、これらのセンシングチップ等の成形に用いられる成形型である。 The “optical element having a nanostructure” referred to herein is a sensing chip or the like used for highly sensitive detection in the bio or medical field, and the “molding die for an optical element having a nanostructure” It is a shaping | molding die used for shaping | molding of the sensing chip of this.
背景技術 Background art
[0004] 従来、ナノ構造体はバイオや医療分野の蛍光分析、偏光分析などに用いる光学素 子において、検出感度を向上させることが可能である。そのため、高検出感度を達成 するために、基板表面に表面処理が行われている。この表面処理の具体的な方法と して、基板表面に微細且つ緻密な凹凸形状を形成する方法が知られている。 [0004] Conventionally, nanostructures can improve detection sensitivity in optical elements used for fluorescence analysis and polarization analysis in the bio and medical fields. For this reason, surface treatment is performed on the substrate surface in order to achieve high detection sensitivity. As a specific method of this surface treatment, a method of forming a fine and dense uneven shape on the substrate surface is known.
[0005] このように基板表面に周期的な凹凸形状を設けた場合、基板表面積を飛躍的に増 大させることが可能になるために、検出感度を大幅に向上する事ができる(例えば、 特許文献 1、特許文献 2参照)。 [0005] When a periodic uneven shape is provided on the substrate surface in this way, the surface area of the substrate can be dramatically increased, so that the detection sensitivity can be greatly improved (for example, patents) Reference 1 and Patent Reference 2).
[0006] このような微細なナノ構造体を実現するためには、波長以下の微細なパターンが必 要とされるため、このような微細構造を作製するために、電子ビームリソグラフィ一法 を用いる方法が知られている。この方法は電子線レジストを塗布したのち、電子線を 用いてパターユングを行レ、、反応性エッチングを用いて基板の加工(エッチング)を
行う方法である。 [0006] In order to realize such a fine nanostructure, a fine pattern with a wavelength equal to or less than a wavelength is required. Therefore, an electron beam lithography method is used to produce such a fine structure. The method is known. In this method, after applying an electron beam resist, patterning is performed using an electron beam, and processing (etching) of the substrate is performed using reactive etching. How to do it.
[0007] また、陽極酸化ポーラスアルミナを用いて、ナノ周期構造を作製し、微細なナノ構造 体を作製する事が出来る事が知られている(例えば、特許文献 3、特許文献 4参照)。 陽極酸化ポーラスアルミナを用いた作成方法は、アルミを例えば硫酸などの強アル カリ溶液中で陽極酸化させ、アルミ表面に周期的なナノホールを自己形成する方法 である。 [0007] It is also known that a nano-periodic structure can be produced using anodized porous alumina to produce a fine nanostructure (see, for example, Patent Document 3 and Patent Document 4). The preparation method using anodized porous alumina is a method in which aluminum is anodized in a strong alkali solution such as sulfuric acid to self-form periodic nanoholes on the aluminum surface.
[0008] 特許文献 1 :特開 2006— 300726号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2006-300726
特許文献 2 :特開 2005— 337771号公報 Patent Document 2: JP 2005-337771 A
特許文献 3:特開 2006— 62049号公報 Patent Document 3: Japanese Patent Laid-Open No. 2006-62049
特許文献 4 :特開 2006— 68827号公報 Patent Document 4: Japanese Unexamined Patent Application Publication No. 2006-68827
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0009] しかしながら、電子線描画装置を用いてナノ構造を作製する方法は、電子ビームを 走査しパターユングをする必要があるために、描画スループットが極めて遅ぐパター ン形成に時間を要する。また、そのことから、大面積化した光学素子へ対応するため には、コストが高くなる問題が発生している。 [0009] However, in the method of manufacturing a nanostructure using an electron beam drawing apparatus, it is necessary to perform patterning by scanning an electron beam, and thus it takes time to form a pattern with extremely slow drawing throughput. In addition, for this reason, there is a problem that the cost is increased in order to cope with an optical element having a large area.
[0010] また、陽極酸化ポーラスアルミナを用いて、微細なナノ構造体を作製する方法は、 一括に大面積の周期的なナノ構造物を形成する事が出来るが、基板材料が限られ てしまう問題がある。 [0010] In addition, the method for producing a fine nanostructure using anodized porous alumina can form a large-area periodic nanostructure at once, but the substrate material is limited. There's a problem.
[0011] さらに、陽極酸化ポーラスアルミナを用いる方法は、大面積に均一なナノ構造体を 作製するための、高精度な電圧/電流制御が求められる問題がある。また、これらは 基板サイズ、加工面積によって加工条件が変化してしまい、再現性を得るのが難しい 問題がある。 [0011] Furthermore, the method using anodized porous alumina has a problem in that high-precision voltage / current control is required to produce a uniform nanostructure over a large area. In addition, the processing conditions change depending on the substrate size and processing area, and it is difficult to obtain reproducibility.
[0012] 本発明は、上記問題点を解決することを目的とするものであり、その課題とするとこ ろは、次のようなナノ構造体を有する光学素子用成形型、ナノ構造体用成形型、その 製造方法および光学素子を実現する点である。 [0012] The present invention aims to solve the above-mentioned problems, and an object of the present invention is to provide a molding die for an optical element having the following nanostructure, and molding for a nanostructure. It is a point which implement | achieves a type | mold, its manufacturing method, and an optical element.
(1)本発明に係るナノ構造体を有する光学素子用又はナノ構造体用成形型は、大面 積で且つ複雑な形状の構造体から成るナノ構造体を基板表面に、均一に安定して
ナノ構造体を有し、バイオや医療分野の蛍光分析、偏光分析などに用いる光学素子 において、より検出感度を向上させることができるものである。 (1) The mold for an optical element or nanostructure having a nanostructure according to the present invention has a nanostructure consisting of a large-area and complex-shaped structure uniformly on the substrate surface. In an optical element having a nanostructure and used for fluorescence analysis or polarization analysis in bio or medical fields, the detection sensitivity can be further improved.
(2)本発明に係る光学素子用成形型若しくはナノ構造体の製造方法は、少な!/、行程 で、且つ生産性の高!/、ドライプロセスのみで製造することができる方法である。 (2) The method for producing a molding die for optical elements or a nanostructure according to the present invention is a method that can be produced by only a dry process with a small number of steps and high productivity.
(3)本発明に係る光学素子は、基板表面に微細な凹凸面のナノ構造を有し、ランダ ムに配置されて成る高アスペクト比のナノパターンを備え、好ましくは、このナノパター ンは、光源の波長以下の間隔を保たれてレ、る構成であるナノパターンを備えた光学 素子である。 (3) The optical element according to the present invention has a nanostructure having a fine uneven surface on the substrate surface and a high aspect ratio nanopattern arranged in a random manner. Preferably, the nanopattern is a light source. It is an optical element provided with a nano pattern having a structure in which an interval equal to or less than the wavelength is maintained.
課題を解決するための手段 Means for solving the problem
[0013] 本発明は上記課題を解決するために、基板表面に微細な凹凸面のナノ構造を有 する光学素子用又はナノ構造体用成形型の製造方法であって、前記基板上に 1層 以上のエッチング転写層を形成し、該エッチング転写層上に島状微粒子生成用の薄 膜を形成し、前記薄膜に、熱反応、光反応、化学反応のいずれか、またはそれらの 複合反応を用いて、薄膜物質の凝集作用、分解作用、または核形成作用を生じさせ て、島状微粒子を複数、形成し、 前記複数の島状微粒子を保護マスクとしてエッチ ング転写層及び前記基板を順次エッチングして、基板の微細な表面に凸状の高ァス ぺクト比のパターンを形成することを特徴とするナノ構造を有する光学素子用又はナ ノ構造体の製造方法を提供する。 [0013] In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a mold for an optical element or nanostructure having a nanostructure having a fine uneven surface on a substrate surface, wherein one layer is formed on the substrate. The above-described etching transfer layer is formed, and a thin film for generating island-shaped fine particles is formed on the etching transfer layer, and either a thermal reaction, a photoreaction, a chemical reaction, or a composite reaction thereof is used for the thin film. Then, a plurality of island-shaped fine particles are formed by causing an aggregation action, a decomposition action, or a nucleation action of the thin film material, and the etching transfer layer and the substrate are sequentially etched using the plurality of island-shaped fine particles as a protective mask. Thus, a method for producing a nanostructure or an optical structure having a nanostructure, characterized by forming a convex high aspect ratio pattern on a fine surface of a substrate.
[0014] 前記複数の島状微粒子は、それぞれの大きさはナノメータオーダであって、互いに 対象とする互いに対象とする光源の波長以下の間隔を保ちながらランダムに配置さ れて成るナノパターンを形成することが好ましレ、。 [0014] Each of the plurality of island-shaped fine particles has a nanometer order, and forms a nano-pattern that is randomly arranged while maintaining an interval equal to or smaller than the wavelength of the light source targeted. I prefer to do it.
[0015] 前記薄膜の材料は、銀、金、白金、若しくはパラジウムを主成分とする物質、又は、 銀、金、白金、パラジウム、タングステン、ビスマス、テルルのいずれかの成分を主成 分とする酸化物若しくは窒化物であることが好まし!/、。 [0015] The material of the thin film is mainly composed of a substance containing silver, gold, platinum, or palladium as a main component, or a component of silver, gold, platinum, palladium, tungsten, bismuth, or tellurium. Preferred is oxide or nitride! /.
[0016] 前記島状微粒子は、その平均粒径は 5nm〜; !OOOnmであり、複数の島状微粒子 の平均間隔は、 10nm〜2000nmであることが好ましい。 [0016] The island-shaped fine particles have an average particle diameter of 5 nm to OOOnm, and the average interval between the plurality of island-shaped fine particles is preferably 10 nm to 2000 nm.
[0017] 前記基板は、石英ガラス、樹脂、シリコン、窒化ガリウム、砒化ガリウム、インジウム燐[0017] The substrate is made of quartz glass, resin, silicon, gallium nitride, gallium arsenide, indium phosphide.
、ニッケル、鉄、チタン、炭素、サフアイャ、又は窒化カーボンを主成分とする金属ま
たは非金属であることが好ましレ、。 Metals based on nickel, iron, titanium, carbon, sapphire, or carbon nitride Or it is preferable to be non-metallic.
[0018] 前記エッチング転写層は、酸化物、窒化物若しくは炭化物の 1層、又は酸化物、窒 化物及び炭化物の!/、ずれかから成る多層で構成されることが好まし!/、。 [0018] The etching transfer layer is preferably composed of a single layer of oxide, nitride or carbide, or a multilayer of oxide, nitride and / or carbide! /.
[0019] 本発明は上記課題を解決するために、光学素子用成形型の製造方法によって製 造されたナノ構造を有する光学素子用成形型又はナノ構造用成形型を提供する。 In order to solve the above-described problems, the present invention provides a mold for optical elements or a mold for nanostructures having a nanostructure manufactured by a method for manufacturing a mold for optical elements.
[0020] 本発明は上記課題を解決するために、基板表面に微細な凹凸面のナノ構造を有し[0020] In order to solve the above problems, the present invention has a nano-structure with fine irregularities on the substrate surface.
、ランダムに配置されて成る高アスペクト比のナノパターンを備えたことを特徴とする 光学素子を提供する。 An optical element comprising a high-aspect-ratio nanopattern arranged randomly is provided.
[0021] 前記ナノ構造体を有する光学素子の前記ナノパターンは、光源の波長以下の間隔 を保たれて!/、る構成であることが好ましレ、。 [0021] Preferably, the nanopattern of the optical element having the nanostructure has a configuration in which an interval equal to or less than a wavelength of a light source is maintained.
発明の効果 The invention's effect
[0022] 本発明によれば、次の効果が生じる。 [0022] According to the present invention, the following effects occur.
(1)本発明に係る光学素子用成形型は、大面積で且つ複雑な自由曲面を持つ基板 表面に、均一に安定してナノ構造体を有し、より安価に大面積の、バイオや医療に用 V、る高感度センサーチップを製造することができる。 (1) The optical element molding die according to the present invention has a nanostructure uniformly and stably on a substrate surface having a large area and a complicated free-form surface, and has a large area at a lower cost. High sensitivity sensor chips can be manufactured.
(2)本発明に係るナノ構造体を有する光学素子用又はナノ構造体用成形型の製造 方法は、少ない行程で、且つ生産性の高いドライプロセスのみで製造することができ (2) The method for producing a mold for an optical element or nanostructure having a nanostructure according to the present invention can be produced by only a dry process with a small number of steps and high productivity.
(3)本発明に係る光学素子は、基板表面に微細な凹凸面のナノ構造を有し、ランダ ムに配置されて成る高アスペクト比のナノパターンを備え、好ましくは、このナノパター ンは、光源の波長以下の間隔を保たれてレ、る構成であるナノパターンを備えた光学 素子である。 (3) The optical element according to the present invention has a nanostructure having a fine uneven surface on the substrate surface and a high aspect ratio nanopattern arranged in a random manner. Preferably, the nanopattern is a light source. It is an optical element provided with a nano pattern having a structure in which an interval equal to or less than the wavelength is maintained.
図面の簡単な説明 Brief Description of Drawings
[0023] [図 1]本発明の実施例 1を説明する図である。 FIG. 1 is a diagram illustrating Example 1 of the present invention.
[図 2]本発明の実施例 1を説明する図である FIG. 2 is a diagram for explaining Example 1 of the present invention.
[図 3]本発明の実施例 1を説明する図である。 FIG. 3 is a diagram for explaining Example 1 of the present invention.
[図 4]本発明の実施例 2を説明する図である。 FIG. 4 is a diagram for explaining Example 2 of the present invention.
[図 5]本発明の実施例 1のナノ構造体を有する光学素子用成形型を利用した射出成
形型の製造及びナノ構造体の成形、並びに光学素子を説明する図である。 [Fig. 5] Injection molding using a mold for optical elements having the nanostructure of Example 1 of the present invention. It is a figure explaining manufacture of a form, shaping | molding of a nanostructure, and an optical element.
[図 6]本発明の実施例 2のナノ構造体を有する光学素子用成形型を利用した射出成 形型の製造及びナノ構造体を有する光学素子の成形を、並びに光学素子説明する 図である。 FIG. 6 is a diagram for explaining the production of an injection mold using the mold for an optical element having a nanostructure of Example 2 of the present invention, the molding of the optical element having a nanostructure, and the optical element. .
符号の説明 Explanation of symbols
1 ナノ構造体を有する光学素子用成形型 1 Mold for optical elements with nanostructures
2 基板 2 Board
3 エッチング転写層 3 Etching transfer layer
4 島状微粒子作製の為の薄膜 4 Thin films for the production of island-shaped fine particles
5 島状微粒子 5 Island-like fine particles
6 ナノ構造体を有する光学素子用成形型 6 Molds for optical elements with nanostructures
7 基板 7 Board
8 射出成形型 8 Injection mold
9 ナノ構造体を有する光学素子 9 Optical elements with nanostructures
10 射出成形型 10 Injection mold
11 ナノ構造体を有する光学素子 11 Optical elements with nanostructures
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 本発明に係るナノ構造体を有する光学素子用又はナノ構造体用成形型、その製造 方法および光学素子を実施するための最良の形態を実施例に基づいて図面を参照 して、以下に説明する。 [0025] An optical element having a nanostructure according to the present invention or a mold for forming a nanostructure, a manufacturing method thereof, and a best mode for carrying out the optical element will be described below with reference to the drawings based on the embodiments. Explained.
[0026] 本発明は、バイオや医療などの高感度センシング効果を得るための微細な凹凸構 造 (ナノ構造体)を表面に有する光学素子を成形するための光学素子用又はナノ構 造体用成形型及びその製造方法である。本発明に係る光学素子用成形型の製造方 法の工程は、次のとおりである。 The present invention is for an optical element or a nanostructure for molding an optical element having a fine uneven structure (nanostructure) on the surface for obtaining a highly sensitive sensing effect such as biotechnology or medical treatment. A mold and a manufacturing method thereof. The steps of the method for producing the molding die for optical elements according to the present invention are as follows.
(1)基板上 の薄膜の形成工程 (1) Thin film formation process on the substrate
基板上に複数のエッチング転写層を形成し、さらに、一括に薄膜を形成する。これ らの形成工程は、真空ドライプロセスで行う。 A plurality of etching transfer layers are formed on the substrate, and a thin film is formed all at once. These forming steps are performed by a vacuum dry process.
[0027] (2)ナノパターンの形成
熱反応、光反応、ガス反応のいずれ力、、またはこれらの反応を 2以上組み合わせた 複合反応を用いて、上記薄膜に、薄膜物質の凝集作用、分解作用、または核形成を 生じさせて、ナノメータオーダの微細な半球状の島状微粒子力 対象とする光源の波 長以下の間隔でランダムに存在するナノパターンを形成する。 [0027] (2) Formation of nanopattern Using the power of thermal reaction, photoreaction, gas reaction, or a composite reaction that combines two or more of these reactions, the thin film is caused to agglomerate, decompose, or nucleate, and the nanometer Ordered fine hemispherical island-shaped fine particles Force nano-patterns that exist randomly at intervals less than the wavelength of the target light source.
[0028] 島状微粒子となる物質は、銀、金、白金、ノ ラジウムのいずれかを主成分とする材 料、又は、銀、金、白金、パラジウム、タングステン、ビスマス、テルルのいずれかを主 成分とする酸化物材料若しくは窒化物、を用いることで、複数の島状微粒子の間隔 が狭いナノパターンを形成する事が可能である。このとき、半球状の島状微粒子の平 均粒径は 5nm〜 1 OOOnmであり、隣接する島状微粒子の平均間隔は 1 Onm〜 200 Onm以下であることが好まし!/、。 [0028] The substance that becomes the island-shaped fine particles is mainly a material mainly containing one of silver, gold, platinum, and radium, or one of silver, gold, platinum, palladium, tungsten, bismuth, and tellurium. By using an oxide material or nitride as a component, it is possible to form a nanopattern in which the interval between the plurality of island-shaped fine particles is narrow. At this time, the average particle size of the hemispherical island-shaped fine particles is 5 nm to 1 OOOnm, and the average interval between adjacent island-shaped fine particles is preferably 1 Onm to 200 Onm or less! /.
[0029] (3)形成したナノパターンを用いて、即ち、島状微粒子を保護マスクとして、エツチン グ転写層をエッチングし、さらに、最終的に目的とする基板へのエッチングを行い、基 板表面に微細な錐形状のナノ構造体を形成し、ナノ構造を有する光学素子用成形 型又はナノ構造用成形型を作製する。 [0029] (3) Etching the etching transfer layer using the formed nano-pattern, that is, using the island-shaped fine particles as a protective mask, and finally etching to the target substrate, A nano-structure with a fine cone shape is formed on the substrate, and a mold for an optical element having a nano structure or a mold for a nano structure is produced.
[0030] この場合、島状物質と基板との間に、上記のとおり、複数層のエッチング転写層を 設けてレ、るので、高アスペクト比のナノ構造体を備えた光学素子を成形できる微細凹 凸面(ナノ構造型面)を、光学素子用成形型の表面に、効率的に作製する事が可能 である。 [0030] In this case, as described above, a plurality of etching transfer layers are provided between the island-shaped substance and the substrate, so that an optical element including a nanostructure having a high aspect ratio can be molded. Concave and convex surfaces (nanostructure mold surfaces) can be efficiently produced on the surface of the mold for optical elements.
[0031] この光学素子用成形型を使用すれば、以下の実施例において説明するように、基 板表面に微細な凹凸面のナノ構造を有し、ランダムに配置されて成る高アスペクト比 のナノパターンを備え、好ましくは、このナノパターンは、光源の波長以下の間隔を保 たれている構成であるナノパターンを備えた光学素子である。 [0031] If this optical element mold is used, as will be described in the following examples, a nanostructure having a fine uneven surface on the surface of the substrate and arranged in a random manner has a high aspect ratio. Preferably, the nanopattern is an optical element having a nanopattern that is configured to maintain a distance equal to or smaller than the wavelength of the light source.
実施例 1 Example 1
[0032] 以下、図面を参照して本発明に係る光学素子用成形型及びその製造方法の実施 例 1について詳細に説明する。図 1は、本発明の実施例 1に係る光学素子用成形型 1を、反応性イオンエッチング法を用いて製造する製造方法の工程を説明する図で ある。 Hereinafter, with reference to the drawings, Embodiment 1 of an optical element molding die and a manufacturing method thereof according to the present invention will be described in detail. FIG. 1 is a diagram for explaining the steps of a manufacturing method for manufacturing a mold 1 for an optical element according to Example 1 of the present invention using a reactive ion etching method.
[0033] (1)成膜装置(図示しない。)を用いて、平面状の基板 2の表面に 1層以上から構成さ
れるエッチング転写層 3と島状微粒子作製の為の薄膜 4を成膜する(図 l (a) )。本発 明者らは、実証試験により、銀、金、白金、パラジウムを主成分とする物質は、基板 2 の表面に、対象とする光源の波長以下の間隔で、ランダムに島状微粒子 5を形成す る為の薄膜 4の材料として、効果的であることを確認して!/、る。 [0033] (1) Using a film forming apparatus (not shown), the surface of the planar substrate 2 is composed of one or more layers. An etching transfer layer 3 and a thin film 4 for producing island-shaped fine particles are formed (FIG. 1 (a)). Based on a verification test, the inventors of the present invention randomly deposited island-like particles 5 on the surface of the substrate 2 on the surface of the substrate 2 at intervals less than the wavelength of the target light source. Confirm that it is effective as a material for the thin film 4 to form!
[0034] (2)次に、凝集作用、核形成採用又は分解作用を用いて、波長以下の間隔で、ラン ダムに配置された島状微粒子 5を作製する(図 1 (b) )。図 2 (a)及び (b)は、基板 2及 びエッチング転写層 3の上に形成された島状微粒子 5を示す断面図及び平面図であ [0034] (2) Next, using the agglomeration action, the nucleation adoption, or the decomposition action, the island-like fine particles 5 arranged in the random space are produced at intervals equal to or shorter than the wavelength (FIG. 1 (b)). 2 (a) and 2 (b) are a cross-sectional view and a plan view showing island-shaped fine particles 5 formed on the substrate 2 and the etching transfer layer 3.
[0035] ところで、熱反応、光反応、ガス反応等をパラメータとすることにより、材料の凝集反 応、核形成反応を制御して、島状微粒子 5の平均粒径や間隔を制御することが可能 である。また、本発明者らは、薄膜 4の材料に不純物を添加することによって、島状微 粒子 5の平均粒径や間隔を制御可能な事を確認した。 By the way, by using thermal reaction, light reaction, gas reaction and the like as parameters, the aggregation reaction and nucleation reaction of the material can be controlled to control the average particle diameter and interval of the island-shaped fine particles 5. It is possible. In addition, the present inventors have confirmed that the average particle diameter and interval of the island-shaped fine particles 5 can be controlled by adding impurities to the material of the thin film 4.
[0036] また、銀、金、白金、パラジウム、タングステン、ビスマス、テルルのいずれかの成分 を主成分とする酸化物を用いた場合は、熱、光、またはガス分解作用を用いることに より、島状微粒子 5の平均粒径や間隔を制御することが可能である。 [0036] In addition, when an oxide mainly composed of any of silver, gold, platinum, palladium, tungsten, bismuth, and tellurium is used, by using heat, light, or gas decomposition action, It is possible to control the average particle size and interval of the island-shaped fine particles 5.
[0037] (3)次に、形成した島状微粒子 5をマスキングとして、反応性ガス(例えば、 CF、 CH [0037] (3) Next, using the formed island-shaped fine particles 5 as a mask, a reactive gas (for example, CF, CH
4 Four
F、 CH、 CF、 H、 C〇、 NH、 CI、 BC1 )を用いて、エッチング転写層 3のエッチF, CH, CF, H, C0, NH, CI, BC1)
3 4 6 2 3 2 3 3 4 6 2 3 2 3
ングを行う(図 l (c) )。ここで、エッチング転写層 3は、島状微粒子 5と同等の形状を維 持し、エッチングされ、順次、次のエッチング転写層 3又は基板 2のためのマスキング 層として機能する。 (Fig. L (c)). Here, the etching transfer layer 3 maintains the same shape as the island-shaped fine particles 5, is etched, and sequentially functions as a masking layer for the next etching transfer layer 3 or the substrate 2.
[0038] 島状微粒子 5を用いて、光学素子表面のナノ構造を形成するための略錐形状の微 細な凹凸面(ナノ構造型面) 1 'を基板 2の表面に形成する際に、上記のとおり、エツ チング転写層 3を設けることにより、高アスペクト比構造の略錐形状の作製が可能で ある。エッチング転写層 3の材料としては、たとえば、銀を主成分とする島状微粒子 5 をマスキング層とする場合は、炭素を主成分とする材料やシリコン、シリコン酸化物、 シリコン窒化物などが有効である。 [0038] When the fine irregular surface (nanostructure type surface) 1 'having a substantially conical shape for forming the nanostructure on the surface of the optical element is formed on the surface of the substrate 2 using the island-shaped fine particles 5, As described above, by providing the etching transfer layer 3, it is possible to produce a substantially conical shape having a high aspect ratio structure. As a material for the etching transfer layer 3, for example, when island-like fine particles 5 mainly composed of silver are used as a masking layer, materials mainly composed of carbon, silicon, silicon oxide, silicon nitride, etc. are effective. is there.
[0039] ここで、島状微粒子 5の主成分を銀、エッチング転写層 3を炭素、基板 2を石英とし た場合には、島状微粒子 5とエッチング転写層 3とのエッチング速度が「島状微粒子 5
のエッチング速度」 < <「エッチング転写層 3のエッチング速度」となるようなガス種を もちいた反応性エッチングをする。これにより、島状微粒子 5がマスクキング効果を生 じ、エッチング転写層 3にパターンを形成する事が可能である。 Here, when the main component of the island-like fine particles 5 is silver, the etching transfer layer 3 is carbon, and the substrate 2 is quartz, the etching rate between the island-like fine particles 5 and the etching transfer layer 3 is “island-like”. Fine particle 5 Etching rate ”<<“ Etching rate of etching transfer layer 3 ”Reactive etching is performed using a gas species. Thereby, the island-shaped fine particles 5 generate a masking effect, and a pattern can be formed on the etching transfer layer 3.
[0040] 次にエッチング転写層 3と基板 2とのエッチングの場合には、エッチング速度比が、 「エッチング転写層 3のエッチング速度」 < <「基板 2のエッチング速度」となるようなガ ス種を用いた反応性エッチングを行う。これにより、基板 2の表面に、島状微粒子 5を もとにマスキングした略錐形状のナノ構造の作製が可能である。また、エッチング転 写層 3は単層である必要はなぐエッチングの為のプロセス設計により多層にしても、 作製可能である。 [0040] Next, in the case of etching between the etching transfer layer 3 and the substrate 2, the gas type in which the etching rate ratio is "etching rate of the etching transfer layer 3" <<"etching rate of the substrate 2" Reactive etching using is performed. As a result, it is possible to produce a substantially cone-shaped nanostructure masked on the surface of the substrate 2 based on the island-shaped fine particles 5. Further, the etching transfer layer 3 does not need to be a single layer, and can be produced in multiple layers by a process design for etching.
[0041] 第 2層以降のエッチング転写層 3にも、同様のプロセスを行い(図 1 (d) )、最終的に は、基板 2 のエッチングを行い、基板 2表面に略錐形状の微細な凹凸面(ナノ構造 型面) 1 'が形成された光学素子用成形型 1を形成する(図 1 (f ) )。 [0041] A similar process is performed on the second and subsequent etching transfer layers 3 (FIG. 1 (d)). Finally, the substrate 2 is etched, and the surface of the substrate 2 is finely formed with a substantially conical shape. An optical element molding die 1 having an uneven surface (nanostructure mold surface) 1 ′ is formed (FIG. 1 (f)).
[0042] 以上の製造方法を用いることにより、ドライプロセスのみで、基板 2表面に対象とす る光源の波長以下の間隔で緻密に、ランダムに略錐形状に形成された微細凹凸構 造を有する事が可能である。これにより、複雑な形状を持つ光学基板においても、容 易に作製可能であり、且つ作製プロセスの簡単化が実現できる。 [0042] By using the above manufacturing method, the substrate 2 has a fine concavo-convex structure formed on the surface of the substrate 2 densely at intervals equal to or less than the wavelength of the target light source and randomly in a substantially conical shape only by a dry process. Things are possible. As a result, even an optical substrate having a complicated shape can be easily manufactured, and the manufacturing process can be simplified.
[0043] 図 3は、本発明者らが実施例 1を実施して得られた島状微粒子 5の代表的な SEM 像(走査型電子顕微鏡像)を示す。これにより、基板 2表面に対象とする光源の波長 以下の間隔で、ランダムに島状微粒子 5を形成できる事を確認した。また、この SEM 像から、実施例 1によって、有効的な薄膜 4材料は、銀を主成分とする物質が効果的 であることを確認、した。 FIG. 3 shows a representative SEM image (scanning electron microscope image) of the island-shaped fine particles 5 obtained by the Example 1 of the present inventors. As a result, it was confirmed that island-shaped fine particles 5 could be randomly formed on the surface of the substrate 2 at intervals equal to or less than the wavelength of the target light source. In addition, from this SEM image, it was confirmed by Example 1 that the effective material for the thin film 4 is a substance mainly composed of silver.
[0044] また、本発明者ら、実施例 1の実証試験を通じて、熱反応、光反応、またはガス反 応を制御することにより、これらの材料の凝集反応、核形成反応を制御が実現され、 島状微粒子 5の平均粒径や間隔を制御することが可能であることも確認した。また、こ れらの材料に不純物を添加することによって、島状微粒子 5の平均粒径や間隔を制 御可能な事を確認した。 [0044] In addition, through the demonstration test of Example 1, the inventors have realized control of the aggregation reaction and nucleation reaction of these materials by controlling the thermal reaction, photoreaction, or gas reaction, It was also confirmed that the average particle size and interval of the island-shaped fine particles 5 can be controlled. It was also confirmed that the average particle size and spacing of the island-shaped fine particles 5 can be controlled by adding impurities to these materials.
[0045] さらに、島状微粒子 5を形成する薄膜として、金、白金、パラジウム、タングステン、 ビスマス、テルルのいずれかの成分を主成分とする酸化物を用いた場合にも、熱、光
、またはガス分解作用を用いることにより、島状微粒子 5の平均粒径や間隔を制御す ること力 S可倉であることあ確言忍した。 [0045] Further, when an oxide mainly composed of any of gold, platinum, palladium, tungsten, bismuth and tellurium is used as the thin film forming the island-shaped fine particles 5, heat, light Or, by using the gas decomposition action, I was confident that I was able to control the average particle size and spacing of the island-shaped fine particles 5.
[0046] 実施例 1によって製造したナノ構造体を有する光学素子用成形型 1を用いて作製し た光学素子用成形型 1 (光学素子そのものにではない。)を用いて、蛍光強度を測定 した結果、ナノ構造体が無い場合に比べ、ナノ構造体がある場合には、 50倍検出感 度の向上が可能なことを確認した。 [0046] The fluorescence intensity was measured using the optical element molding die 1 (not the optical element itself) produced using the optical element molding die 1 having the nanostructure manufactured according to Example 1. As a result, it was confirmed that the detection sensitivity could be improved 50 times in the presence of nanostructures compared to the case without nanostructures.
[0047] このこと力、ら、本発明は、ドライプロセスのみで、基板 2表面に略錐形状の微細な凹 凸面(ナノ構造型面) 1 'を作製出来ることから、低コスト化と生産性に優れた手法であ ることを確言忍した。 [0047] Because of this fact, the present invention can produce a substantially concave and convex surface (nanostructure-type surface) 1 'having a substantially conical shape on the surface of the substrate 2 only by a dry process, thereby reducing costs and productivity. I assured that this is an excellent method.
[0048] また、基板 2の材料として、石英、ガラス、ポリカーボネイトや PMMAなどの樹脂、窒 化ガリウム、砒化ガリウム、インジウム燐、ュッケル、鉄、チタン、炭素、サフアイャ、窒 化カーボンなどを用いても、同様の効果があることを確認した。 [0048] Further, as a material of the substrate 2, a resin such as quartz, glass, polycarbonate, PMMA, gallium nitride, gallium arsenide, indium phosphide, uckel, iron, titanium, carbon, sapphire, carbon nitride, or the like may be used. , Confirmed that there is a similar effect.
実施例 2 Example 2
[0049] 図 4は、本発明の実施例 2に係る光学素子用成形型 6の製造方法を、実施例 1と同 様に、反応性イオンエッチング法を用いて行う工程を説明する図である。この実施例 2は、自由曲面を有する基板上にナノ構造体を有する光学素子を成形する光学素子 用成形型に関するものであり、基板 7は自由曲面を有する点で異なる力 その製造方 法は同じであるので、その説明は省略する。 [0049] Fig. 4 is a diagram for explaining a process for performing the manufacturing method of the optical element mold 6 according to Example 2 of the present invention using the reactive ion etching method in the same manner as in Example 1. . Example 2 relates to a molding die for an optical element that molds an optical element having a nanostructure on a substrate having a free-form surface, and the substrate 7 has a free-form surface and is different in its manufacturing method. Therefore, the description thereof is omitted.
[0050] この実施例 2に係る製造方法で得られたナノ構造体を有する光学素子用成形型 6 は、基板 6表面に略錐形状の微細凹凸面(ナノ構造型面) 1 'が形成されており、反射 特性についても実施例 1と同様の効果が得られる。 [0050] In the mold 6 for an optical element having a nanostructure obtained by the manufacturing method according to Example 2, the surface of the substrate 6 is formed with a substantially conical fine uneven surface (nanostructure mold surface) 1 '. As for the reflection characteristics, the same effect as in Example 1 can be obtained.
[0051] (射出成形用型の製造方法及びナノ構造体を有する光学素子の成形) [0051] (Method of manufacturing injection mold and molding of optical element having nanostructure)
次に、図 5に示す模式図を用いて、上記説明したナノ構造体を有する光学素子用 成形型 1から射出成形用型の製造方法を説明するとともに、この射出成型用型を用 いるナノ構造体を有する光学素子の量産方法の一例を説明する。 Next, using the schematic diagram shown in FIG. 5, a method for producing an injection molding die from the optical element molding die 1 having the nanostructure described above will be described, and the nanostructure using this injection molding die An example of a mass production method of an optical element having a body will be described.
[0052] 図 5 (a)は、本発明の実施例 1で得られたシリコン製のナノ構造体を有する光学素 子用成形型 1 (石英ガラス製のナノ構造体を有する光学素子用成形型 1でもよい。 ) を示す。このシリコン製のナノ構造体を有する光学素子用成形型 1を用いて、図 5 (b)
に示すように、通常のニッケル電铸処理を行うことによって、図 5 (c)に示すような射出 成形型 8を作成する。 FIG. 5 (a) shows an optical element molding die 1 having a silicon nanostructure obtained in Example 1 of the present invention (an optical element molding die having a quartz glass nanostructure). 1 is acceptable. Using this mold 1 for optical elements having nanostructures made of silicon, Fig. 5 (b) As shown in FIG. 5, an injection mold 8 as shown in FIG. 5 (c) is produced by performing a normal nickel electroplating process.
[0053] 次に、この射出成形型 8を用いて図 5 (d)に示すように、射出成形型 8を利用して、 図 5 (e)に示すようなナノ構造体を有する光学素子 9を量産することができる。この光 学素子 9は、基板表面に微細な凹凸面のナノ構造を有し、ランダムに配置されて成る 高アスペクト比のナノパターンを備え、好ましくは、このナノパターンは、光源の波長 以下の間隔を保たれている構成であるナノパターンを備えた光学素子である。 Next, as shown in FIG. 5 (d) using the injection mold 8, the optical element 9 having the nanostructure as shown in FIG. 5 (e) is used using the injection mold 8. Can be mass-produced. This optical element 9 has a nano-structure with fine irregularities on the substrate surface and is provided with a high-aspect-ratio nano-pattern that is randomly arranged. Preferably, this nano-pattern has an interval less than the wavelength of the light source. It is an optical element provided with the nano pattern which is the structure maintained.
[0054] 具体的には、光学素子 9のナノパターンは、島状であり、その平均径は 5nm〜; 100 Onmであり、隣接する島の平均間隔は 10nm〜2000nm以下であることが好ましい。 [0054] Specifically, the nanopattern of the optical element 9 is island-shaped, and the average diameter thereof is preferably 5 nm to 100 Onm, and the average interval between adjacent islands is preferably 10 nm to 2000 nm or less.
[0055] 図 6は、本発明の実施例 2で得られたナノ構造体を有する光学素子用成形型 6 (図 6 (a)参照)を用いる方法を説明する図である。この方法は、図 5に示す方法と全く同 じであり、通常のニッケル電铸処理を行うことによって(図 6 (b)参照)、射出成形型 10 (図 6 (c)参照)を作成する。 FIG. 6 is a diagram for explaining a method using the optical element mold 6 (see FIG. 6 (a)) having the nanostructure obtained in Example 2 of the present invention. This method is exactly the same as the method shown in FIG. 5, and an injection mold 10 (see FIG. 6 (c)) is created by performing a normal nickel electroplating process (see FIG. 6 (b)). .
[0056] さらに、この射出成形型 10を用いて、に示すように、射出成形型を利用してナノ構 造体を有する光学素子を射出成形して(図 6 (d)参照)、ナノ構造体を有する光学素 子 11 (図 6 (e)参照)も量産可能である。 [0056] Further, as shown in FIG. 6, an optical element having a nanostructure is injection-molded using the injection mold 10 (see FIG. 6 (d)). An optical element 11 with a body (see Fig. 6 (e)) can also be mass-produced.
産業上の利用可能性 Industrial applicability
[0057] 本発明は、以上のような構成であるから、光学素子一般 (例えば、プロジェクター用 レンズ、光ピックアップ、ディスプレイ等)、発光素子一般 (例えば、 LED,レーザ等)、 受光素子一般 (フォ卜ダイオード、太陽電池等)、バイオ分析チップ、熱制御板、流体 センサ、加速度センサに適用可能である。
[0057] Since the present invention has the above-described configuration, the optical element in general (for example, a projector lens, an optical pickup, a display, etc.), the light emitting element in general (for example, LED, laser, etc.), the light receiving element in general (photo (Applicable to diodes, solar cells, etc.), bioanalysis chips, thermal control plates, fluid sensors, and acceleration sensors.
Claims
[1] 基板表面に微細な凹凸面のナノ構造を有する光学素子成形するための光学素子 用又はナノ構造体用成形型の製造方法であって、 [1] A method for producing a molding die for an optical element or a nanostructure for molding an optical element having a nano structure with fine irregularities on a substrate surface,
前記基板上に 1層以上のエッチング転写層を形成し、該エッチング転写層上に島 状微粒子生成用の薄膜を形成し、 Forming one or more etching transfer layers on the substrate, forming a thin film for generating island-shaped fine particles on the etching transfer layer;
前記薄膜に、熱反応、光反応、化学反応のいずれか、またはそれらの複合反応を 用いて、薄膜物質の凝集作用、分解作用、または核形成作用を生じさせて、島状微 粒子を複数、形成し、 A plurality of island-shaped fine particles are produced by causing the thin film material to agglomerate, decompose, or nucleate using a thermal reaction, a light reaction, a chemical reaction, or a composite reaction thereof. Forming,
前記複数の島状微粒子を保護マスクとしてエッチング転写層及び前記基板を順次 エッチングして、基板の微細な表面に高アスペクト比のパターンを形成することを特 徴とするナノ構造体を有する光学素子用又はナノ構造体用成形型の製造方法。 For an optical element having a nanostructure, characterized in that an etching transfer layer and the substrate are sequentially etched using the plurality of island-shaped fine particles as a protective mask to form a high aspect ratio pattern on a fine surface of the substrate. Or the manufacturing method of the shaping | molding die for nanostructures.
[2] 前記複数の島状の粒子は半球状であり、それぞれの大きさはナノメータオーダであ つて、互いに対象とする光源の波長以下の間隔を保ちながら、ランダムに配置されて 成るナノパターンを形成する事を特徴とする請求項 1記載のナノ構造体を有する光 学素子用又はナノ構造体用成形型の製造方法。 [2] The plurality of island-shaped particles are hemispherical, each having a nanometer order, and a nanopattern formed randomly arranged while maintaining an interval equal to or less than the wavelength of the target light source. The method for producing a mold for an optical element or a nanostructure having a nanostructure according to claim 1, wherein the mold is formed.
[3] 前記薄膜の材料は、銀、金、白金、若しくはパラジウムを主成分とする物質、又は、 銀、金、白金、パラジウム、タングステン、ビスマス、テルルのいずれかの成分を主成 分とする酸化物若しく窒化物であることを特徴とする請求項 1又は 2記載のナノ構造 体を有する光学素子用又はナノ構造体用成形型の製造方法。 [3] The material of the thin film is mainly composed of a substance mainly composed of silver, gold, platinum, or palladium, or any component of silver, gold, platinum, palladium, tungsten, bismuth, and tellurium. 3. The method for producing a mold for an optical element or nanostructure having a nanostructure according to claim 1 or 2, wherein the mold is an oxide or a nitride.
[4] 前記島状微粒子は、その平均粒径は 5nm〜; !OOOnmであり、複数の島状微粒子 の平均間隔は、 10nm〜2000nmであることを特徴とする請求項 1〜3のいずれか 1 項に記載のナノ構造体を有する光学素子用又はナノ構造体用成形型の製造方法。 [4] The island-shaped fine particles may have an average particle diameter of 5 nm or more;! OOOnm, and an average interval between the plurality of island-shaped fine particles may be 10 nm to 2000 nm. A method for producing a mold for an optical element or a nanostructure having the nanostructure according to item 1.
[5] 前記基板は、石英ガラス、樹脂、シリコン、窒化ガリウム、砒化ガリウム、インジウム燐 、ニッケル、鉄、チタン、炭素、サフアイャ、又は窒化カーボンを主成分とする金属ま たは非金属であることを特徴とする請求項 1〜4のいずれ力、 1項に記載のナノ構造体 を有する光学素子用又はナノ構造体用成形型の製造方法。 [5] The substrate is made of quartz glass, resin, silicon, gallium nitride, gallium arsenide, indium phosphide, nickel, iron, titanium, carbon, sapphire, or a metal or non-metal mainly composed of carbon nitride. A method for producing a mold for an optical element or a nanostructure having the nanostructure according to any one of claims 1 to 4.
[6] 前記エッチング転写層は、酸化物、窒化物若しくは炭化物の 1層、又は酸化物、窒 化物及び炭化物のいずれかから成る多層で構成される事を特徴とする請求項;!〜 5
のいずれか 1項に記載のナノ構造体を有する光学素子用又はナノ構造体用成形型 の製造方法。 [6] The etching transfer layer is composed of a single layer of oxide, nitride, or carbide, or a multilayer composed of any of oxide, nitride, and carbide. A method for producing a mold for an optical element or a nanostructure having the nanostructure according to any one of the above.
[7] 請求項 1〜6のいずれかの光学素子用成形型の製造方法によって製造されたこと を特徴とするナノ構造体を有する光学素子用又はナノ構造体用成形型。 [7] An optical element- or nanostructure-forming mold having a nanostructure produced by the method for producing an optical element-molding mold according to any one of [1] to [6].
[8] 基板表面に微細な凹凸面のナノ構造を有し、ランダムに配置されて成る高ァスぺク ト比のナノパターンを備えたことを特徴とする光学素子。 [8] An optical element characterized in that it has a nanopattern with a high aspect ratio, which is formed by randomly arranging nano-structures with fine irregularities on the substrate surface.
[9] 前記ナノ構造体を有する光学素子の前記ナノパターンは、光源の波長以下の間隔 を保たれている構成であることを特徴とする請求項 8記載の光学素子。
9. The optical element according to claim 8, wherein the nanopattern of the optical element having the nanostructure is configured to maintain an interval equal to or less than a wavelength of a light source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/519,052 US20100075114A1 (en) | 2006-12-13 | 2007-12-03 | Mold for optical element, having nanostructure, mold for nanostructure, method for manufacturing the mold, and optical element |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006335311 | 2006-12-13 | ||
JP2006-335311 | 2006-12-13 | ||
JP2007109956A JP4986137B2 (en) | 2006-12-13 | 2007-04-19 | Method for producing mold for optical element or nanostructure having nanostructure |
JP2007-109956 | 2007-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008072498A1 true WO2008072498A1 (en) | 2008-06-19 |
Family
ID=39511520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/073321 WO2008072498A1 (en) | 2006-12-13 | 2007-12-03 | Mold for optical element, having nanostructure, mold for nanostructure, method for manufacturing the mold, and optical element |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008072498A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2379442A2 (en) * | 2008-12-30 | 2011-10-26 | 3M Innovative Properties Company | Method for making nanostructured surfaces |
KR20130060214A (en) * | 2010-05-03 | 2013-06-07 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Method of making a nanostructure |
CN104370270A (en) * | 2014-11-20 | 2015-02-25 | 中国科学院上海微系统与信息技术研究所 | Method for preparing silicon oxide nano island array by precise positioning |
CN107267387A (en) * | 2017-08-03 | 2017-10-20 | 长春理工大学 | One kind can precise assembly and potential measurement functionalization cell culture substrate and preparation method and application |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000258607A (en) * | 1999-03-11 | 2000-09-22 | Canon Inc | Method for formation of fine structure and production of optical device |
JP2003066203A (en) * | 2001-08-28 | 2003-03-05 | Hitachi Maxell Ltd | Method for forming fine rugged structure, and member having the ruggedness |
JP2003285334A (en) * | 2001-07-31 | 2003-10-07 | Mitsuboshi Belting Ltd | Manufacturing method for fine processing mold and manufacturing method for molded object having fine pattern |
JP2004237526A (en) * | 2003-02-05 | 2004-08-26 | Fujitsu Ltd | Fine pattern and method for forming matrix for the pattern |
JP2006103981A (en) * | 2004-09-30 | 2006-04-20 | Sumitomo Osaka Cement Co Ltd | Silicon carbide structure and manufacturing method of mold for optical lens, electron discharge element, and silicon carbide structure therewith |
JP2006171219A (en) * | 2004-12-14 | 2006-06-29 | Canon Inc | Optical element, its manufacturing method and optical appliance using it |
JP2007193249A (en) * | 2006-01-23 | 2007-08-02 | Matsushita Electric Ind Co Ltd | Method for producing molded component |
-
2007
- 2007-12-03 WO PCT/JP2007/073321 patent/WO2008072498A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000258607A (en) * | 1999-03-11 | 2000-09-22 | Canon Inc | Method for formation of fine structure and production of optical device |
JP2003285334A (en) * | 2001-07-31 | 2003-10-07 | Mitsuboshi Belting Ltd | Manufacturing method for fine processing mold and manufacturing method for molded object having fine pattern |
JP2003066203A (en) * | 2001-08-28 | 2003-03-05 | Hitachi Maxell Ltd | Method for forming fine rugged structure, and member having the ruggedness |
JP2004237526A (en) * | 2003-02-05 | 2004-08-26 | Fujitsu Ltd | Fine pattern and method for forming matrix for the pattern |
JP2006103981A (en) * | 2004-09-30 | 2006-04-20 | Sumitomo Osaka Cement Co Ltd | Silicon carbide structure and manufacturing method of mold for optical lens, electron discharge element, and silicon carbide structure therewith |
JP2006171219A (en) * | 2004-12-14 | 2006-06-29 | Canon Inc | Optical element, its manufacturing method and optical appliance using it |
JP2007193249A (en) * | 2006-01-23 | 2007-08-02 | Matsushita Electric Ind Co Ltd | Method for producing molded component |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2379442A2 (en) * | 2008-12-30 | 2011-10-26 | 3M Innovative Properties Company | Method for making nanostructured surfaces |
JP2012514242A (en) * | 2008-12-30 | 2012-06-21 | スリーエム イノベイティブ プロパティズ カンパニー | Method for producing a nanostructured surface |
EP2379442A4 (en) * | 2008-12-30 | 2014-02-26 | 3M Innovative Properties Co | Method for making nanostructured surfaces |
EP3115334A1 (en) * | 2008-12-30 | 2017-01-11 | 3M Innovative Properties Company | Method for making nanostructured surfaces using a microstructured surface and a nanoscale mask |
KR20130060214A (en) * | 2010-05-03 | 2013-06-07 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Method of making a nanostructure |
JP2013532072A (en) * | 2010-05-03 | 2013-08-15 | スリーエム イノベイティブ プロパティズ カンパニー | Nanostructure fabrication method |
KR101721721B1 (en) | 2010-05-03 | 2017-03-30 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Method of making a nanostructure |
CN104370270A (en) * | 2014-11-20 | 2015-02-25 | 中国科学院上海微系统与信息技术研究所 | Method for preparing silicon oxide nano island array by precise positioning |
CN107267387A (en) * | 2017-08-03 | 2017-10-20 | 长春理工大学 | One kind can precise assembly and potential measurement functionalization cell culture substrate and preparation method and application |
CN107267387B (en) * | 2017-08-03 | 2020-02-07 | 长春理工大学 | Cell culture substrate capable of positioning, controlling and measuring potential, preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5317141B2 (en) | Mold for optical element having nanostructure, mold for nanostructure, and optical element | |
JP4986138B2 (en) | Method for manufacturing mold for optical element having antireflection structure | |
Liang et al. | Self‐assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications | |
Zhang et al. | Colloidal lithography—the art of nanochemical patterning | |
Zhan et al. | Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique | |
JP5876059B2 (en) | Method for fabricating highly ordered nanopillars or nanohole structures on large areas | |
CN103958397B (en) | Method for producing and aligning nanowires and use of such a method | |
KR101878600B1 (en) | Method of fabricating periodic metal nanopatterns for optical biosensors | |
US8048789B2 (en) | Mesoscale pyramids, arrays and methods of preparation | |
US20120234792A1 (en) | Lithography method using tilted evaporation | |
US11037794B2 (en) | Methods for multiple-patterning nanosphere lithography for fabrication of periodic three-dimensional hierarchical nanostructures | |
Yang et al. | Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications | |
Zhao et al. | Direct chemisorption-assisted nanotransfer printing with wafer-scale uniformity and controllability | |
Stokes et al. | Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications | |
WO2008072498A1 (en) | Mold for optical element, having nanostructure, mold for nanostructure, method for manufacturing the mold, and optical element | |
KR101828293B1 (en) | forming method of nanostructure pattern by vacuum deposition, manufacturing method of sensor device and sensor device thereby | |
Wang et al. | Mass fabrication of hierarchical nanostructures based on plasmonic nanochemistry for ultra-sensitive optical sensing | |
TWI546247B (en) | Method for making bowl-metal nanostructure array | |
TWI530451B (en) | Bowl-metal nanostructure array | |
KR101886056B1 (en) | forming method of nanostructure pattern by vacuum deposition and sensor device thereby | |
KR20180012387A (en) | forming method of hybrid pattern by vacuum deposition, manufacturing method of sensor device and sensor device thereby | |
Potejana et al. | Fabrication of metallic nano pillar arrays on substrate by sputter coating and direct imprinting processes | |
WO2008059671A1 (en) | Molding die for optical device with antireflective structure, process for producing the same, and optical device | |
KR101568838B1 (en) | Method for producing a glass with low reflection, anti-fingerprint properties | |
RU2655651C1 (en) | Method of producing nanolithographic drawings with a crystalline structure with a super-developed surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07832941 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12519052 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07832941 Country of ref document: EP Kind code of ref document: A1 |