Nothing Special   »   [go: up one dir, main page]

WO2008069078A1 - 情報記録媒体及び原盤露光装置 - Google Patents

情報記録媒体及び原盤露光装置 Download PDF

Info

Publication number
WO2008069078A1
WO2008069078A1 PCT/JP2007/072984 JP2007072984W WO2008069078A1 WO 2008069078 A1 WO2008069078 A1 WO 2008069078A1 JP 2007072984 W JP2007072984 W JP 2007072984W WO 2008069078 A1 WO2008069078 A1 WO 2008069078A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
area
recording medium
transition section
track
Prior art date
Application number
PCT/JP2007/072984
Other languages
English (en)
French (fr)
Inventor
Hidehiro Sasaki
Masae Kubo
Kenjirou Kiyono
Original Assignee
Mitsubishi Kagaku Media Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kagaku Media Co., Ltd. filed Critical Mitsubishi Kagaku Media Co., Ltd.
Priority to EP07832706A priority Critical patent/EP2091042A4/en
Priority to CN2007800187637A priority patent/CN101449323B/zh
Priority to US12/515,075 priority patent/US8018823B2/en
Publication of WO2008069078A1 publication Critical patent/WO2008069078A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming

Definitions

  • the present invention relates to an information recording medium such as a Blu-ray disc and a master exposure apparatus for manufacturing the information recording medium.
  • a recording layer is formed on a substrate, and data can be written or read by condensing a laser beam on the recording layer.
  • a track is formed in a spiral on the medium, and reading and writing of data is performed by condensing laser light along the track while rotating the information recording medium on a spindle motor or the like.
  • the track is embodied by grooves and pits physically engraved on the substrate.
  • the track is embodied by a groove.
  • the track is embodied by pits.
  • the groove is an uneven pattern formed physically and continuously in the circumferential direction of the information recording medium.
  • a pit is a concave / convex pattern formed intermittently in the circumferential direction of the information recording medium.
  • a large number of pits are arranged in the circumferential direction of the information recording medium to form one track. ! /
  • both the groove and the pit may be engraved in a predetermined area on the same information recording medium. That is, for example, an area in which only grooves are engraved is used as a recordable area, and an area in which only pits are engraved is used as a read-only area.
  • control data the optimum recording power of the information recording medium is recorded on the information recording medium in advance as the control data (the control data is recorded).
  • the area is referred to as a “control data area.” In some cases, it is called “PIC area”. ).
  • the control data is recorded by meandering the groove by a modulation method different from the user data area.
  • the meandering is realized by slightly displacing the groove with a predetermined amplitude and pattern in the radial direction of the information recording medium.
  • the modulation method is a conversion method for converting data to be recorded in advance into a predetermined meandering pattern.
  • the modulation method used for the meandering of the groove is simply described as “the wobble modulation method”.
  • the track pitch of the control data area is larger than the track pitch of the user data area in order to make the control data read by the drive more reliable. Is formed.
  • the track pitch is the distance between the centers of two adjacent tracks when the information recording medium is viewed in the radial direction.
  • the meandering of the groove in the radial direction of the information recording medium does not take into account the meandering of the groove when discussing the value of the track pitch.
  • the track pitch is equal to the average distance between the grooves when the information recording medium is viewed in the radial direction.
  • a part of the laser light applied to the information recording medium is reflected, and the reflected light is received by, for example, a two-divided photodetector.
  • FIGS. 15 (a) to 15 (c) show normalized push-pull signal amplitudes (differences of outputs of the two-divided photodetectors in which the detection surface is divided in the direction along the track). (Signal amplitude divided by sum of outputs) and track pitch, groove depth, and groove width
  • the track pitch in the control data area is wider than the track pitch in the user data area.
  • the normalized push-pull signal amplitude obtained from the control data area is larger than the normalized push-pull signal amplitude obtained from the user data area force. It is also known that the magnitude of the standardized push-pull signal amplitude varies with the groove width and depth.
  • a pickup equipped with an objective lens for condensing laser light follows a track based on a standardized push-pull signal (hereinafter referred to as “tracking operation”). This is called “tracking”, and the control that executes tracking is called “tracking servo”.)
  • the pickup is usually designed on the assumption that the normalized push-pull signal amplitude is within a certain range. In other words, stable tracking servo can be realized for the first time when the normalized push-pull signal amplitude is within a predetermined range.
  • the push-pull signal (two-division photo with the detection surface divided in the direction along the track) is used as the focus error signal used for focus servo.
  • the difference signal of each detector output is superimposed as noise! / ⁇ It may cause problems such as out of focus.
  • tracking may be performed using a signal other than the standardized push-pull signal. However, this is the first time that the signal amplitude used for tracking is within a predetermined range. The same is true in that stable tracking servo can be realized.
  • the groove shape can be changed for each region by changing the exposure noise in the master exposure apparatus for each region.
  • proposals have been made to form areas with different track pitches as one spiral track and to provide a transition section that gradually changes the track pitch.
  • the technique of providing a transition section for gradually changing the track pitch is employed in, for example, a recordable Blu-ray disc.
  • the control data area and the user data area are formed as a continuous spiral track, and both areas are connected by providing a track pitch transition section Stp in which the track pitch is gradually changed.
  • FIG. 16 is a diagram for explaining the arrangement of the control data area, user data area, and track pitch transition section Stp in a general recordable Blu-ray disc.
  • control data area is set on the inner circumference side of the user data area, and the track pitch in the control data area is about 0 ⁇ 35 m.
  • the track pitch of the data area is set to approximately 0 ⁇ 32 111 respectively.
  • a protection zone is provided between the user data area and the control data area, and the track pitch transition section Stp is formed so as to be completely included in the protection area. Is done.
  • the track pitch in the side protection area is set to the same value as the track pitch in the control data area.
  • the track pitch of the protection area (outer periphery protection area in FIG. 16) existing on the outer periphery side of the track pitch transition section Stp is set to the same value as the track pitch of the user data area.
  • the wobble modulation scheme is different between the control data area and the user area, and the wobble modulation scheme in the protection area is the same as the wobble modulation scheme in the user data area.
  • the wobble modulation method is formed to change at the boundary between the protection area and the control data area (Patent Document 2).
  • the protection region is a region provided between two regions having different wobble modulation methods and different track pitches, and provided to connect two regions formed as one spiral track. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-346384
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2006-12355
  • control data area force S is provided on the inner circumference side of the user data area with a relatively wide track pitch. Both are provided on continuous tracks, and a track pitch transition section Stp in which the track pitch is gradually changed is provided between the two.
  • the groove shape of both recording areas can be reduced by making the exposure power of both areas different in the master exposure apparatus. Can be different from each other.
  • the tracking servo system gain control circuit could not follow up, resulting in a tracking servo failure.
  • the “ingle-type” refers to a Blu-ray disc of the type in which the groove portion on the side farther from the recording medium surface on which recording / reproducing light is incident is used as the recording track in the concavo-convex pattern.
  • the Low-To-High recording type Blu-ray disc is a Blu-ray disc configured such that the reflectance of the recording mark portion is higher than the reflectance of the unrecorded portion.
  • the standardized push-pull signal amplitude before recording is increased to some extent in order to obtain practically sufficient recording / reproduction characteristics in one user data area. It is desirable to do. For this reason, in the state before recording, the difference between the standardized push-pull signal amplitude in the control data area and the user data area becomes large, and the tracking servo caused by the discontinuity in the standardized push-pnore signal amplitude at the connection between both areas. It is thought that defects such as defects are likely to occur.
  • an object of the present invention is an information recording medium having a plurality of recording areas having different track pitches and groove shapes, and an information recording medium capable of realizing stable focus servo and tracking servo. It is an object of the present invention to provide a master exposure apparatus capable of producing a recording medium.
  • an information recording medium having a plurality of recording areas with different track pitches and groove shapes has a track pitch between these recording areas.
  • a transition section having a section in which the transition is made and a section in which the groove shape is transitioned, these sections share at least a part of the region, thereby stabilizing It was found that a single servo and tracking servo can be realized.
  • the master exposure device with a mechanism that sweeps the recording light intensity monotonously increasing or monotonically decreasing, or a mechanism that repeats the operation of interpolating and adjusting the recording light intensity with a cycle of 100 msec or less.
  • the present invention has been completed by discovering that it is possible to manufacture a new information recording medium.
  • the present invention has the following gist.
  • the recording track includes a first recording area R1, a second recording area R2, a first recording area R1, and a second recording area. And at least a recording area transition section Sx arranged between the areas R2,
  • the track pitch tpl, groove width wl, and groove depth dl in the first recording area R1, and the track pitch tp2, groove width w2, and groove depth d2 in the second recording area R2 are expressed by the following equation (1). Satisfying the following formula (2) and / or formula (3),
  • the recording area transition section Sx has a track pitch transition section Stp in which the track pitch transitions from tpl to tp2, and the groove width transitions from wl to w2 and / or the groove depth transitions from dl to d2. It has a groove shape transition section Sg to transfer,
  • the information recording medium wherein the track pitch transition section Stp and the groove shape transition section Sg share at least a part of the area SL.
  • a disk-shaped information recording medium wherein the length Lg along the track in the groove-shaped transition section Sg is equal to or longer than one track of the disk-shaped information recording medium.
  • the groove shape transition section Sg has a groove width and / or groove depth that changes monotonously increasing or decreasing along the track! /, Any of (1) to (7) above.
  • the information recording medium according to any one of (1) to (8) above.
  • Normalized push-pull signal amplitude NPP satisfies the following formula for all areas in the recording area transition section Sx!
  • the information recording medium according to any one of (1) to (9) above.
  • the information recording medium according to any one of (1) to (; 10) above.
  • the first recording area R1 is arranged on the inner circumference side than the second recording area R2, and the track pitch tpl in the first recording area R1 is arranged on the inner circumference side of the first recording area R1.
  • the second The information recording medium according to any one of (1) to (; 11) above, wherein a third recording region R3 having a track pitch tp3 wider than the track pitch tp2 in the second recording region R2 is disposed.
  • the normalized push-pull signal amplitude in the read-only area is NPP1
  • the normalized push-pull signal amplitude in the unrecorded state in the readable / writable area is NPP2
  • the normalized push after recording in the readable / writable area The pull signal amplitude is NPP2a, and the largest value in each maximum value is NPPAL, and the largest value in each minimum value.
  • the first wobble modulation method is applied to the read-only area
  • the second wobble modulation method different from the first wobble modulation method is applied to the read / write area
  • the recording is performed.
  • the information recording medium according to any one of (15) to (; 18), wherein the same wobble modulation method as that for the readable / writable area is applied in the area transition section Sx.
  • a deflection signal generation mechanism for generating a predetermined deflection signal based on a predetermined format, and the recording light source is generated based on the deflection signal generated by the deflection signal generation mechanism.
  • a recording light deflection mechanism for deflecting the recording light
  • a condensing mechanism for condensing the recording light on the master for condensing the recording light on the master
  • a rotation mechanism for placing and rotating the master is
  • the rotational speed of the rotating mechanism is based on a preset value so that a plurality of recording areas with different track pitches can be generated with a radial moving mechanism that moves the condensing mechanism relative to the radial direction of the master.
  • a master exposure apparatus comprising: a recording light intensity sweep mechanism that sweeps the recording light intensity monotonously increasing or decreasing monotonously based on a preset value!
  • a deflection signal generation mechanism for generating a predetermined deflection signal based on a predetermined format, and the recording light source is generated based on the deflection signal generated by the deflection signal generation mechanism
  • a recording light deflection mechanism for deflecting the recording light
  • a condensing mechanism for condensing the recording light on the master for condensing the recording light on the master
  • a rotation mechanism for placing and rotating the master is
  • the rotational speed of the rotating mechanism is based on a preset value so that a plurality of recording areas with different track pitches can be generated with a radial moving mechanism that moves the condensing mechanism relative to the radial direction of the master.
  • a recording light intensity adjustment mechanism that interpolates and adjusts the recording light intensity based on the position of the light collecting mechanism and the recording light intensity setting value at a specific radius value set in advance;
  • a master exposure apparatus comprising at least a repetitive operation mechanism that repeatedly performs the recording light intensity adjustment operation, wherein an operation time required for one cycle of the repetitive operation mechanism is 100 msec or less.
  • the information recording medium of the present invention has a plurality of recording areas having different track pitches and groove shapes, and can realize stable focus servo and tracking servo.
  • the above-described information recording medium can be efficiently manufactured with the force S.
  • FIG. 1 (a) and (b) are schematic partial cross-sectional views showing examples of the layer structure of the information recording medium of the present invention.
  • FIG. 2 is a diagram showing a relationship among a first recording area Rl, a second recording area R2, and a recording area transition section Sx in the information recording medium of the present invention.
  • An example of the cross-sectional shape of two adjacent grooves in each of the first recording area Rl, the second recording area R2, and the recording area transition section Sx is schematically shown.
  • FIG. 3 is a top view schematically showing the arrangement of recording areas in a recording Blu-ray disc which is an example of the information recording medium of the present invention.
  • FIG. 4 (a) to (i) are steps of manufacturing a stamper for manufacturing the information recording medium of the present invention. It is a figure which shows an example.
  • FIG. 5 is a functional block diagram schematically showing an example of a basic configuration of a master exposure apparatus according to an embodiment of the present invention.
  • FIG. 7 A graph showing the relationship between the actual exposure intensity obtained by repeating the interpolation operation and the radius value of the condensing mechanism in the second aspect of the master exposure apparatus according to one embodiment of the present invention.
  • FIG. 8] (a) is a functional block showing a configuration of a main part of an information reproducing apparatus (hereinafter referred to as “evaluation information reproducing apparatus”) used for evaluating the information recording media of the respective examples and comparative examples.
  • FIG. (B) is a diagram showing a configuration of a four-divided photodiode included in the evaluation information reproducing apparatus shown in (a).
  • FIG. 9 is a diagram showing the waveform of the normalized push-pull signal amplitude NPP and the sum signal SUM in the information recording medium of Example 1 for one half of the information recording medium.
  • FIG. 10 is a diagram showing the waveforms of the normalized push-pull signal amplitude NPP and sum signal SUM in the information recording medium of Example 2 for about one half of the information recording medium.
  • FIG. 11 is a diagram showing waveforms of the half of the information recording medium of the normalized push-pull signal amplitude NPP and sum signal SUM in the information recording medium of Example 3.
  • FIG. 12 is a diagram showing the waveform of the normalized push-pull signal amplitude NPP and sum signal SUM in the information recording medium of Comparative Example 1 for about one half of the information recording medium.
  • FIG. 13 A diagram showing the waveform of the normalized push-pull signal amplitude NPP and sum signal SUM in the information recording medium of Comparative Example 2 for one half of the information recording medium.
  • FIG. 15 (a) to (c) are the normalized push-pull signal amplitude (the difference signal of the output of each of the two-divided photodetectors whose detection surface is divided in the direction along the groove track), and the track It is a graph showing the correlation with pitch, groove depth, and groove width. 16] —A diagram showing an arrangement of a control data area, a data area, and a track pitch transition section Stp in a general recordable Blu-ray disc.
  • the present invention is preferably applied to an in-groove type Low-To-High recording type Blu-ray disc. Therefore, in the following description of the embodiments of the present invention, an information recording medium is appropriately used.
  • a groove type Low-To-High recording Blu-ray disc will be described as an example.
  • the present invention is not applicable only to specific information recording media (for example, on-group type recording Blu-ray discs, DVD (Digital Versatile Disc), etc. Blu-rays). — It can be applied to information recording media other than ray discs.
  • the information recording medium of the present invention is an information recording medium having a recording track formed by a concavo-convex pattern, and usually includes at least a disk-shaped (disk-shaped) substrate and a recording layer formed on the substrate. Prepare.
  • the substrate is preferably provided with shape stability so that a force information recording medium capable of appropriately using conventionally known materials has a certain degree of rigidity. That is, it is preferable that the mechanical stability is high and the rigidity is large.
  • Such materials include acrylic resins, methacrylic resins, polycarbonate resins, polyolefin resins (particularly amorphous polyolefins), polyester resins, polystyrene resins, epoxy resins, and the like, and glass. Can do. Any one of these materials may be used alone, or two or more of these materials may be used in any combination and ratio. Among these, polycarbonate is preferable as the substrate material from the viewpoints of high productivity such as moldability, cost, low hygroscopicity, and shape stability.
  • the thickness of the substrate is preferably 0.5 mm or more and usually 1.2 mm or less.
  • the recording layer changes its physical characteristics or shape by irradiation with laser light, and appropriately uses conventionally known materials capable of recording and reproducing information by changing optical characteristics such as reflectance. it can.
  • materials include inorganic materials such as organic pigment materials and phase change materials.
  • organic dye materials include macrocyclic azanulene dyes (phthalocyanine dyes, naphthalocyanine dyes, porphyrin dyes, etc.), pyromethene dyes, polymethine dyes (cyanine dyes, merocyanine dyes, squalium dyes, etc.), anthraquinone dyes, and azuleni dyes.
  • macrocyclic azanulene dyes phthalocyanine dyes, naphthalocyanine dyes, porphyrin dyes, etc.
  • pyromethene dyes polymethine dyes (cyanine dyes, merocyanine dyes, squalium dyes, etc.)
  • anthraquinone dyes examples include sulfur dyes, metal-containing azo dyes, and metal-containing indoor diphosphorus dyes.
  • inorganic materials include chalcogen-based alloy films such as GeTe and GeSbTe; two-layer films such as Si / Ge and A1 / Sb; (partial) nitride films such as BiGeN and SnNbN; (partial) oxides such as TeO and BiFO A membrane or the like is used. These materials may be used alone or in combination of two or more in any combination and ratio! /.
  • the film thickness of the recording layer is usually lnm or more and usually lOOnm or less, preferably 10 to 90 nm.
  • the composition and film thickness of the recording layer are preferably the same in at least the first recording region R1, the second recording region R2, and the recording region transition section Sx.
  • it does not prohibit the inevitable recording layer composition and film thickness non-uniformity due to the manufacturing process and groove shape. That is, for example, when an organic dye material is applied as a recording layer by using a general spin coating method, the recording layer thickness may be slightly different in a region having a different groove shape or the inner and outer circumferences of the disc.
  • the information recording medium of the present invention is preferably applied to an in-groove type Low-To-High recording type B1 u-ray disc. That is, the composition and film thickness of the recording layer are preferably such that the reflectance at the recorded mark portion is higher than the reflectance at the unrecorded portion. This is because, as described above, the in-groove type Low-ToHigh recording type Blu ray disc is liable to have a defect such as a tracking servo failure due to the discontinuity of the standardized push-pull signal amplitude. However, the information recording medium of the present invention may be applied to a high-to-low recording type Blu-ray disc, and the composition and thickness of the recording layer can be arbitrarily selected.
  • the information recording medium of the present invention uses a known recording and / or reproducing apparatus to irradiate the recording layer with a laser beam for recording or reproducing, thereby causing the recording layer to display data. Data recorded on the recording layer can be reproduced.
  • the information recording medium of the present invention may have other layers.
  • examples of other layers include a reflective layer, a cover layer, an intermediate layer, and an interface layer.
  • the reflective layer is required to have a certain reflectivity with respect to the laser beam used for recording and reproduction, and a conventionally known material can be appropriately used.
  • a conventionally known material for example, a metal such as Al, Ag, Au, or an alloy of these metals is used. Any one of these materials may be used alone, or two or more of these materials may be used in any combination and ratio.
  • the thickness of the reflective layer is usually 3 nm or more and usually 400 nm or less, preferably 50 nm. ⁇ 300nm.
  • the cover layer a material that is transparent to the laser beam used for recording and reproduction and has little birefringence is selected. Usually, it is formed by applying a plastic layer (referred to as a sheet) with an adhesive and applying a solution of the bar layer and then curing it with light, radiation or heat. Any one of these materials may be used alone, or two or more of these materials may be used in any combination and ratio.
  • the film thickness of the cover layer is usually 10 m or more and usually 300 m or less, preferably 50 to 150 111.
  • the cover layer In a Blu-ray disc, the cover layer generally has a thickness of about 100 to 111, preferably 97 to 103 mm.
  • the intermediate layer is mainly used in a laminated information recording medium having a plurality of recording layers. It is necessary to have a certain degree of light transmittance with respect to the laser beam used for recording and reproduction, and it is necessary to be able to form grooves and pits by unevenness.
  • Examples of the material for the intermediate layer include resin materials such as thermoplastic resins, thermosetting resins, electron beam curable resins, and ultraviolet curable resins (including delayed curable resins). Any one of these materials may be used alone, or two or more of these materials may be used in any combination and in any ratio.
  • resin materials such as thermoplastic resins, thermosetting resins, electron beam curable resins, and ultraviolet curable resins (including delayed curable resins). Any one of these materials may be used alone, or two or more of these materials may be used in any combination and in any ratio.
  • the thickness of the intermediate layer is usually 5 m or more and usually 100 m or less, preferably 10 to 70 ⁇ m.
  • the interface layer is provided at an interface between the recording layer and the cover layer, an interface between the recording layer and the reflective layer, and has functions such as preventing diffusion of the mutual layers and adjusting optical characteristics.
  • the thickness of the interface layer is usually 1 nm or more and usually 50 nm or less, preferably 3 to 15 ⁇ m.
  • the number and combination of these layers, the stacking order, etc. are not limited.
  • FIGS. 1 (a) and 1 (b) are schematic partial sectional views showing examples of the layer structure of the information recording medium of the present invention.
  • the information recording medium 100 shown in FIG. 1 (a) is an example of a single-layer information recording medium.
  • the substrate 101, the reflective layer 102, the recording layer 103, and the cover layer 104 are laminated in this order. Further, by irradiating the recording layer 103 with a laser beam 105 for recording or reproduction from the cover layer 104 side, data is recorded on the recording layer 103 or data recorded on the recording layer 103 is reproduced. be able to.
  • the information recording medium 200 shown in FIG. 1 (b) is a two-layer information recording medium, and includes a substrate 201, a first reflective layer 202, a first recording layer 203, an intermediate layer 204, A second reflective layer 205, a second recording layer 206, and a cover layer 207 are laminated in this order. Further, the first recording layer 203 or the second recording layer 206 is irradiated by irradiating the first recording layer 203 or the second recording layer 206 with a laser beam 208 for recording or reproduction from the cover layer 207 side. The data can be recorded on the first recording layer 203 or the data recorded on the first recording layer 203 or the second recording layer 206 can be reproduced.
  • the layer configuration shown in Fig. 1 (a) and Fig. 1 (b) may be described as an example, but the layer configuration shown in Fig. 1 (a) and Fig. 1 (b) is only described. It is an example of the layer structure of the information recording medium of this invention.
  • the information recording medium of the present invention is not limited to these layer configurations and may have other layer configurations.
  • some of the layer configurations shown in Fig. 1 (a) and Fig. 1 (b) may be deleted, other layers may be added, two or more layers may be formed as one layer, Can be changed, three or more recording layers can be provided, and any other changes can be made.
  • the information recording medium of the present invention has a spiral track embodied by a concavo-convex pattern on any of its layers (usually a substrate, an intermediate layer, etc.). Data is recorded along the track by irradiating the recording layer with a laser beam for recording on the basis of this track. Further, by irradiating the recording layer with a laser beam for reproduction on the basis of this track, the data recorded along the track can be reproduced.
  • a track (groove track) GT1 is formed on a substrate 101, and a reflective layer 102, a recording layer 103, and a cover layer 104 are formed. It is stacked on top of it!
  • a track (groove track) GT21 is formed on a substrate 201, and a first reflective layer 202, a first recording layer 203 are formed. , Middle layer 20 4 is laminated on it. Further, a track (groove track) GT22 is formed on the surface of the intermediate layer 204 opposite to the first recording layer 203, and a second reflective layer 205, a second recording layer 206, and a cover layer 207 are formed thereon. Are stacked.
  • the layer on which the track is formed in the information recording medium of the present invention is not limited to the substrate or the intermediate layer.
  • the track is formed by both the convex portion and the concave portion that may be formed by the convex portion or the concave portion of the concave and convex pattern when viewed from the laser light incident side of the information recording medium. May be.
  • a track is formed by a concave portion of a concave and convex pattern when viewed from the laser light incident side.
  • Such a track formed by the concave portions of the concave / convex pattern when viewed from the laser light incident side is referred to as a “groove track” in the following description.
  • Tracks GT1, GT21, and GT22 shown in Fig. 1 (a) and Fig. 1 (b) are all examples of groove tracks.
  • the cross-sectional shape of the groove (the cross-sectional shape in the thickness direction of the information recording medium) is not limited and is arbitrary. Examples include rectangular, trapezoidal, semicircular, semielliptical.
  • the width of the groove forming the track is defined as “groove width”.
  • the width of the groove forming the track varies depending on the position in the thickness direction of the information recording medium, for example, when the track has a trapezoidal cross-sectional shape
  • the width of the groove at the half depth position The width can be defined as the “groove width”.
  • the depth of the groove forming the track is defined as “groove depth”.
  • the maximum depth is set to “groove”. ⁇ Depth '' That's the power S.
  • the shape of the groove forming the track is mainly defined by the “groove width” and “groove depth”.
  • the groove width and / or groove depth of the information recording medium may be collectively referred to as “groove shape”.
  • FIG. 2 is a diagram for explaining the relationship between the first recording area Rl, the second recording area R2, and the recording area transition section Sx in the information recording medium of the present invention. 2 schematically shows an example of the cross-sectional shape of two adjacent grooves in each of the second recording area R2 and the recording area transition section Sx.
  • the recording track of the information recording medium of the present invention includes at least a first recording area R1 and a second recording area R2.
  • the recording track of the information recording medium of the present invention has a track pitch tpl, a groove width wl, and a groove depth dl in the first recording area R1, and a track pitch t p2 and a groove width w2 in the second recording area R2.
  • the groove depth d2 satisfies the following formula (1) and the following formula (2) and / or formula (3).
  • Expression (1) represents that the track pitch tpl in the first recording area Rl and the track pitch tp2 in the second recording area R2 have different values.
  • Equation (2) represents that the groove width wl in the first recording area R1 and the groove width w2 in the second recording area R2 have different values.
  • Equation (3) indicates that the groove depth dl in the first recording area R1 and the groove depth d2 in the second recording area R2 have different values.
  • Formula (2) and Formula (3) may satisfy either one or both of them. That is, the groove width wl of the first recording area Rl is different from the groove width w2 of the second recording area R2, and the groove depth dl of the first recording area R1 and the groove depth of the second recording area R2 are different. It may be different from d2. Further, the groove width wl of the first recording area R1 and the groove width w2 of the second recording area R2 are different, while the groove depth dl of the first recording area R1 and the groove depth of the second recording area R2 are different. D 2 may be the same.
  • the groove width wl of the first recording area R1 and the groove width w2 of the second recording area R2 are the same, the groove depth d1 of the first recording area R1 and the second recording area The groove depth of R2 is different from d2.
  • the groove width wl of the first recording area R1 is different from the groove width w2 of the second recording area R2, and the groove depth dl of the first recording area R1 and the second recording area R2 This shows the case where the groove depth d2 is different! /, But the present invention is not limited to this.
  • the track pitch tpl, groove width wl, and groove depth dl in the first recording area R1, and the track pitch tp2, groove width w2, and groove depth d2 in the second recording area R2 are: All of them are generally the same throughout the recording areas Rl and R2.
  • the information recording medium of the present invention includes a recording area transition section Sx arranged between the first recording area R1 and the second recording area R2. That is, the first recording area R1 and the second recording area R2 are physically separated, and the recording area transition section Sx is arranged between the first recording area R1 and the second recording area R2. Is done.
  • This recording area transition section Sx has a track pitch transition section Stp in which the track pitch transitions from tpl to tp2, a groove width transitions from wl to w2, and / or a groove depth from dl to d2. And a groove-shaped transition section Sg for transition.
  • the track pitch transition section Stp exists between the recording areas R1 and R2, and the track pitch gradually changes from tpl to tp2 when the information recording medium is viewed along the track. It is an area where
  • the groove shape transition section Sg exists between the recording areas R1 and R2, and when the information recording medium is viewed along the track, the groove width changes from wl to w2. It is a region where the groove depth is gradually changing and / or the groove depth is gradually changing from dl to d2.
  • the groove width wl of the first recording area R1 and the groove width w2 of the second recording area R2 are the same.
  • the groove width of the groove shape transition section Sg does not change, is the same as wl and w2, and only the groove depth gradually changes from dl to d2.
  • the groove depth of the groove shape transition section Sg does not change, and dl and This is the same as d2, and only the groove width gradually changes from wl to w2.
  • the track pitch transition section Stp and the groove shape transition section Sg share at least a part of the area SL! /.
  • the recording area transition section Sx includes the common area SL and each single area. Refers to the combined area.
  • the important point is that the track pitch transition section Stp and the groove shape transition section Sg share at least a partial area SL. That is, an aspect in which both regions are completely separated is not included in the subject of the present invention.
  • the groove cross-sectional shape of the area SL shared by the track pitch transition section Stp and the groove shape transition section Sg is shown as the groove cross-sectional shape of the recording area transition section Sx.
  • the groove width is between wl and w2
  • the groove depth is between dl and d2 is schematically shown.
  • the groove cross-sectional shape of the recording area transition section Sx is not limited to this.
  • the groove shape is a geometric shape of each groove in a cross section perpendicular to the recording medium as represented by the groove width and the groove shape, and changes depending on the wobble modulation method. Mizoe It is not meandering in the radial direction of the body. Therefore, the transition of the groove shape does not mean the transition of the meandering amount in the radial direction of the groove itself, but both can be controlled independently. However, this does not prohibit changes in the wobble modulation method within the groove shape transition section Sg or changes in the meandering amount in the radial direction of the groove itself! /. If there is no problem in the characteristics of the medium! /, For example, the wobble modulation method may be changed in the groove shape transition section Sg! /.
  • the length Lg along the track in the groove shape transition section Sg is preferably equal to or longer than one track of the disk-shaped information recording medium. Yes.
  • the state of change in the track pitch in the track pitch transition section Stp monotonously increase or decrease along the track in order to suppress a sudden change in the normalized push-pull signal amplitude.
  • the track pitch transition section Stp the track pitch preferably changes continuously. However, if the fluctuation of the standardized push-pull signal amplitude is suppressed to the extent that it does not interfere with practical use! /, If the track pitch change is discontinuous.
  • the state of the change in the groove shape in the groove shape transition section Sg is that the groove width and / or the groove depth monotonously increases or decreases along the track. This is preferable in order to suppress various fluctuations.
  • the groove shape changes continuously in the groove shape transition section Sg.
  • fluctuations in the normalized push-pull signal amplitude can be suppressed to a practical extent! /, So long as the groove shape change is discontinuous! /.
  • the maximum value of the groove reflectance in the unrecorded state in the recording area R1 and the recording area R2 can be calculated as Rgv.
  • the minimum value is Rgv
  • Transition region Transition interval If the groove reflectance Rgv in the unrecorded state satisfies the above equation in all regions within the transition section Sx, fluctuations in the normalized push-pull signal amplitude are suppressed. Can be made more reliable.
  • the ratio Lg / Ltp between the length Ltp along the track in the track pitch transition section Stp and the length Lg along the track in the groove shape transition section Sg is usually 0 ⁇ 2 or more, especially 0 ⁇ It is preferable to set the values of Ltp and Lg so as to satisfy the relationship of 4 or more, further 0.6 or more, and usually 2.5 or less.
  • the predetermined range refers to a range in which sufficiently good focus servo characteristics and tracking servo characteristics can be realized by making fine adjustments to the focus servo circuit and tracking servo circuit as necessary. .
  • the maximum value of the normalized push-pull signal amplitude in the unrecorded state in the recording area R1 and the recording area R2 is NPP
  • the normalized push-pull signal amplitude in the recording area transition section Sx can always be within the range of the normalized push-pull signal amplitude in the recording area R1 and the recording area R2. Accordingly, it is possible to realize a stable focus servo and tracking servo state without particularly adjusting the focus servo circuit and the tracking servo circuit, which is preferable.
  • the inventor estimates the reason why a stable focus servo and tracking servo state can be realized by the information recording medium of the present invention as follows.
  • the difference in track pitch is obtained by gradually changing the track pitch at the boundary between the two recording areas R1 and R2 having different track pitches, that is, by providing the track pitch transition section Stp.
  • a steep change in the normalized push-pull signal amplitude derived from can be suppressed.
  • the normalized push-pull signal amplitude accompanying the change in the groove shape is steep. It becomes possible to suppress the change.
  • the information recording medium of the present invention may have at least one combination of the first recording area Rl, the second recording area R2, and the recording area transition section Sx. You may have. Thus, when there are two or more combinations of the first recording area Rl, the second recording area R2, and the recording area transition section Sx, the first recording area R1 in one combination and the other The second recording area R2 in the combination may be the same recording area.
  • all the forces S of the first recording area R1, the second recording area R2, and the recording area transition section Sx are formed by physically continuous grooves.
  • a physically continuous groove means that when the groove is viewed along the track from the inner periphery to the outer periphery, the groove is not torn at any location.
  • the configuration can be arbitrarily selected without excluding the case where the groove is intermittent.
  • the information recording medium of the present invention when the information recording medium of the present invention is in a disc shape, which of the first recording area R1 and the second recording area R2 exists on the inner circumference side of the disk and which is on the outer circumference side of the disk May exist.
  • the recording area existing on the inner circumference side of the disk is defined as the first recording area R1
  • the disk The recording area existing on the outer peripheral side is defined as a second recording area R2.
  • the track pitch tp3 was wider than both the track pitch tp1 in the first recording area R1 and the track pitch tp2 in the second recording area R2.
  • the third recording area R3 is arranged! /.
  • Information is recorded by meandering grooves! /.
  • a track pitch transition section Stp ′ in which the track pitch transitions from tp3 to tp1 may be arranged between the third recording area R3 and the first recording area R1.
  • FIG. 3 is a schematic top view showing the arrangement of recording areas in a recordable Blu-ray disc which is an example of the information recording medium of the present invention.
  • the recording Blu-ray disc 300 shown in FIG. 3 has three recording areas with different track pitches.
  • a BCA (Burst Cutting Area) region 301 is formed on the innermost circumference of the disc.
  • the track pitch of the BCA region 301 is approximately 2 ⁇ O ⁇ m, and the radius value from the center of the disk is formed over a section from about 21 mm to about 22.2 mm.
  • bar code-like low-density recording is performed, and various attribute information of the information recording medium is stored.
  • a PIC (Permanent Information and Control data) area (this may be referred to as a "control data area”) 302 is formed.
  • the PIC area 302 has a track pitch of about 0 ⁇ 35 111 and a radius value from the center of the disk of about 22 It is formed over the section from 2mm to about 23.2mm.
  • the PIC area 302 stores, for example, optimum recording power and media manufacturer information, and is read-only.
  • a user data area 303 is formed outside the PIC area 302.
  • the user data area 303 has a track pitch of approximately 0 ⁇ 32 111, and is formed over a section in which the radius value from the center of the disk is about 23.2 mm to about 58.5 mm. Data can be written to the user data area 303, and the written data can be read.
  • the PIC area 302 and the user data area 303 have their groove shapes adjusted to obtain predetermined normalized push-pull signal amplitudes!
  • the width in the PIC region 302 is preferably 0.01 mm or more, more preferably 0.07 mm or more, 0.25 m or less force S, more preferably 0.13 m or less.
  • the groove depth in the PIC region 302 is preferably 10 nm or more, more preferably 20 nm or more, preferably 50 nm or less, and more preferably 40 nm or less.
  • the groove width in the user data area 303 is preferably 0.1 lO ⁇ m or more (preferably 0.117 111 or more, 0.28 in or less, more preferably (0.21 i m3 ⁇ 4T).
  • the groove depth in the user data area 303 is preferably 20 nm or more, more preferably 30 nm or more, and preferably 70 nm or less, more preferably 60 nm or less.
  • the first recording area R1 includes a PIC area which is a read-only area storing predetermined information
  • the second recording area R2 is a readable / writable area into which user data can be written. It is preferable to include a user data area.
  • the recording area transition section Sx is completely included in the protection area. That is, this means that the track pitch and groove shape of the PIC area transition to the track pitch and groove shape of the user data area in the protection area.
  • the groove shape of the first recording area R1 and the second recording area R2, that is, the groove widths wl and w2, and the groove depths dl and d2, are the recording / reproduction characteristics required for the information recording medium and the production of the information recording medium. Depending on the process or the like, appropriate values are selected as described above. Where, for example, For Blu-ray discs, the track pitch of the PIC area and the user data area is different, and the difference in normalized push-pull signal amplitude caused by the difference in track pitch between the two areas. When reducing the width between the two regions, it is preferable from the viewpoint of the manufacturing process that the groove depth is not only different, but also the groove depth is different.
  • the groove width in the PIC area should be narrower than the groove width in the user data area. There must be. However, if only trying to reduce the groove width in the PIC area, the groove width in the PIC area becomes too narrow in some cases, exceeding the resolution limit of the master exposure system, and the grooves are not formed correctly. Because there is a possibility that a case may occur. In this case, it is effective to make the PIC area groove depth shallower than the user data area groove depth along with changing the groove width. Therefore, it is better to make the groove width and the groove depth different from each other than to manufacture the medium with only the groove width of the first recording area R1 and the second recording area R2 being different. This is preferable for manufacturing a recording medium.
  • the third recording area R3 is an area including the BCA area! /.
  • Normalized push-pull signal amplitude in the PIC area is NPP1
  • Normalized push-pull signal amplitude in the unrecorded state in the user data area is NPP2
  • Normalized push-pull signal amplitude after recording in the user data area is NPP2a
  • each The maximum value of NPPAL is the largest value of NPPAL, and the smallest value of each minimum value is NPPAL.
  • composition and film thickness of the groove shape and recording layer so as to satisfy the above. That is, even before and after recording! /, Even when there is a discrepancy! /, The value of the standardized push-pull signal amplitude in both the PIC area and the user data area can be kept within a certain range.
  • the focus servo and tracking servo states can be realized.
  • the boundary between the BCA area 301 and the PIC area 302 and / or the PIC area 302 and the user one data area 303 are used.
  • the groove shape transition section Sg is formed so as to share at least a part of the area with the track pitch transition section Stp (that is, the recording area transition section Sx is provided).
  • the recording area transition section Sx and the groove shape transition section Sg are either the boundary between the BCA area 301 and the PIC area 302 or the boundary between the PIC area 302 and the user data area 303. It may be provided only on one side or on both sides. However, it is preferable to provide the recording area transition section Sx and the groove shape transition section Sg at least at the boundary between the PIC area 302 and the user data area 303 because the above effect can be remarkably obtained.
  • the wobble modulation method is usually different between the control data area and the user data area.
  • the wobble modulation method is the same and the same wobble modulation method as that in the user data area is applied.
  • the recording area transition section Sx is completely included in the protection area. That is, it is preferable that the wobble modulation method is the same in all areas in the recording area transition section S X.
  • the groove shape (groove width and groove depth) of the information recording medium is measured by the following procedure. You can. For example, information in which a recording layer is laminated on a substrate such as a recordable Blu-ray disc on which a concave / convex pattern corresponding to a groove track is formed, and a cover layer made of an ultraviolet curable resin or the like is further formed thereon.
  • the depth and width of the groove can be directly measured by measuring the substrate before the recording layer is laminated with an AFM (Atomic Force Microscope).
  • the cover layer is peeled off with a cutter knife or the like to expose the uneven pattern on the substrate corresponding to the groove track on the surface. This makes it possible to measure the groove shape using AFM.
  • the length Lg along the track of the groove shape transition section Sg of the information recording medium can also be obtained by the following procedure using the AFM.
  • the groove shape transition section Sg is measured at a plurality of locations in the vicinity of the groove shape, and further, the radius value on the information recording medium at the measurement location is measured to obtain the groove shape transition section.
  • the inner peripheral edge radius value and the outer peripheral edge radius value of Sg are obtained.
  • the number of tracks existing in the groove shape transition section Sg is counted, and the product of the circumferential length at the radius value in which the groove shape transition section Sg exists is taken as the track of the groove shape transition section Sg.
  • the length Lg can be obtained.
  • the length of the groove shape transition section Sg information along the track is checked by reproducing the information recording medium with an appropriate reproducing device and examining the change in the amount of reflected light in the groove shape transition section Sg. Lg may be obtained. That is, when the laser beam is condensed on the track by the objective lens while the information recording medium is placed and rotated on the spindle motor, reflected light having a light amount corresponding to the groove shape is obtained.
  • the groove shape changes in the groove shape transition section Sg
  • the groove shape is determined by examining the correspondence between the radius value on the information recording medium where the laser beam is focused and the change in the amount of reflected light. Knowing the length Lg along the track in the shape transition section Sg, the force S can be obtained. [0114] Further, the track pitch and track pitch transition section Stp length Ltp of the information recording medium can be measured by the following procedure.
  • the AFM can directly measure the track pitch and the track pitch transition section Stp length Ltp of the information recording medium.
  • the track pitches of the first recording area R1 and the second recording area R2 are optically measured.
  • a large number of groove tracks are arranged at equal intervals.
  • a coherent light such as a laser beam
  • a large number of groove tracks function as a diffraction grating, and the diffracted light is emitted at an angle corresponding to the track pitch. It is generally known to appear.
  • a shape measuring device applying this principle has been devised (see Japanese Laid-Open Patent Publication No. 57-187604). If this principle is used, it is possible to know the track pitch by measuring the angle at which the diffracted light appears.
  • the length of the track pitch transition section Stp along the track can be obtained. For example, by scanning the laser beam in the radial direction of the information recording medium and recording the position where the diffracted beam appears together with the radius value irradiated with the laser beam, the size of the track pitch transition section Stp in the radial direction is recorded. Can know. Furthermore, the length of the track pitch transition section Stp along the track is estimated based on the radial size of the track pitch transition section Stp and the average track pitch obtained from the track pitch before and after the track pitch transition section Stp. Can do.
  • the intensity of the diffracted light changes according to the groove shape.
  • the state of the groove shape transition section Sg and the track pitch transition section Stp can be measured simultaneously by scanning the laser beam in the radial direction of the information recording medium and simultaneously measuring the position and intensity at which the diffracted light appears. Is also possible.
  • the information recording medium of the present invention is not limited.
  • a stamper having a concavo-convex pattern complementary to the shape of the concavo-convex pattern of a track formed on a substrate or an intermediate layer is prepared.
  • a track with an uneven pattern is formed on the layer. Therefore, in order to manufacture the information recording medium of the present invention having the groove shape transition section Sg described above, the concave / convex pattern shape of the stamper may be set to a desired shape.
  • the shape of the concavo-convex pattern of the stamper is usually determined when the master is exposed in the stamper manufacturing procedure. In order to form a concavo-convex pattern having a specific shape defined in the present invention, it is effective to use a specific master exposure apparatus.
  • stamper manufacturing procedure will be described first, and then an information recording medium manufacturing procedure using the stamper will be described. Thereafter, a master exposure apparatus (master exposure apparatus of the present invention) for obtaining a stamper having a concavo-convex pattern of a desired shape will be described.
  • FIGS. 4 (a) to 4 (i) are diagrams showing an example of a stamper manufacturing procedure for manufacturing the information recording medium of the present invention.
  • the following manufacturing procedure is merely an example, and the stamper manufacturing procedure for manufacturing the information recording medium of the present invention is not limited to the following example.
  • a master 503 is prepared by coating a photoresist 502 on a master substrate 501 (see FIG. 4 (a)).
  • the material of the master substrate 501 is not limited, but a glass plate is usually used.
  • a general photoresist such as a so-called nopolac diazonaphthoquinone resist or a chemically amplified resist can be used.
  • a positive resist or a negative resist may be used. Further, any one of these may be used alone, or two or more may be used in any combination and ratio. The definition of the positive resist and negative resist will be described later.
  • Photoresist 502 is usually applied onto master substrate 501 by spin coating, and the film The thickness is substantially uniform within the surface of the master substrate 501.
  • the specific film thickness of photoresist 502 is
  • It may be set according to the shape of the concave / convex pattern of the target stamper, but it is usually in the range of 10 nm or more and usually lOOnm or less.
  • the master 503 is exposed using a master exposure apparatus, and a predetermined pattern 504 corresponding to the concavo-convex pattern corresponding to the target track is formed on the photoresist 502 on the master substrate 501 as a latent image. (See Fig. 4 (b)).
  • the configuration and operation of the master exposure apparatus used in this process will be described in detail in [III. Master exposure apparatus].
  • the master 503 is subjected to development processing, and the pattern 504 formed as a latent image is revealed as a physical uneven pattern (see FIG. 4 (c)).
  • force that can be taken by placing the master 503 on the turntable of the developing machine and dropping the developer while rotating the turntable for example, a method of piling up the developer while the glass plate is stationary (La, so-called paddle development method) can also be used.
  • the pattern 504 formed as the latent image can be made convex, or the pattern 504 formed as the latent image can be made convex.
  • a photoresist with a concave pattern 504 side this is called “positive resist”.
  • a stamper material is formed on the concave / convex master 503 ′ using a sputtering method or an electroless plating method to form a conductive layer 505 (see FIG. 4 (d)).
  • a metal material is usually used as a material for the stamper.
  • An example of the metal material is nickel. Any one of the stamper materials may be used alone, or two or more of them may be used in any combination and ratio.
  • the thickness of the conductive layer 505 is not particularly limited. Any thickness can be selected as long as it is not thick.
  • the uneven master 503 'on which the conductive layer 505 is formed is attached to an electric apparatus, and a stamper material is further laminated on the conductive layer 505 by an electric plating method or the like. (See Fig. 4 (e)).
  • the father layer 506 is formed integrally with the conductive layer 505, and the thickness thereof is not particularly limited, but is usually 100 m or more and usually 500 m or less.
  • the photoresist adhering to the father layer 506 is removed using a photoresist removing solution or the like (FIG. 4 (f) See).
  • the photoresist removing solution may be appropriately selected according to the type of the photoresist 502. For example, acetone or N-303C manufactured by Nagase ChemteX Corporation can be used. Any one of these may be used alone, or two or more may be used in any combination and ratio.
  • the obtained father layer 506 is referred to as a father stamper (hereinafter referred to as “father 1 506”).
  • father 1 506 The force that the uneven pattern is copied on the Faza 506
  • the uneven pattern is the reverse of the uneven pattern on the uneven master 503 ′.
  • the concavo-convex pattern surface of the father 506 is treated by a technique such as oxidation to form a release layer 507 (see FIG. 4G).
  • the thickness of the release layer 507 is not particularly limited, but is usually 0.1 lnm or more and usually lOOnm or less.
  • a stamper material is laminated on the release layer 507 by an electric plating method or the like to form a mother layer 508 (see FIG. 4 (h)).
  • the thickness of the mother layer 508 is not particularly limited! /, But is usually 100 am or more and usually 500 am or less.
  • the mother layer 508 is peeled off (see Fig. 4 (i)).
  • the obtained mother layer 508 is referred to as a mother stamper (hereinafter referred to as “Maza 508”).
  • the uneven pattern is also copied on the mother 508, and the uneven pattern is the same as the uneven pattern on the uneven master 503 '.
  • Either the father 506 or the mother 508 obtained by the above procedure can be used as a stamper.
  • a new stamper by using the father stamper 506 and the mother stamper 508 as a mold and copying the concavo-convex pattern onto another material.
  • a plurality of mother stampers 508 can be copied from the father stamper 506, or a sun stamper (not shown) can be copied from the mother stamper 508!
  • the uneven pattern on the sun stamper thus obtained is the same as the uneven pattern on the father stamper 506 (hereinafter, the sun stamper may be simply referred to as “sun”).
  • a stamper made of a resin material (resin stamper)
  • a stamper made of a metal material (metal stamper) is manufactured by the above-described procedure, and this metal stamper is used as a mold to form a resin material. It is effective to obtain a resin stamper in which the concave / convex pattern of the metal stamper is copied by injection molding.
  • the substrate 101 on which the concave / convex pattern corresponding to the track is formed using the stamper.
  • the material of the substrate 101 is injection-molded to form the substrate 101 in which the uneven pattern of the stamper is copied, and the obtained substrate 101 is removed from the stamper. It can be used after peeling.
  • the material and thickness of the substrate 101 are as described above.
  • the stamper a stamper made of a metal material (metal stamper) is usually used.
  • the concavo-convex pattern copied from the stamper onto the substrate 101 is the reverse of the concavo-convex pattern of the stamper.
  • the recording track is concave when viewed from the laser beam incident side, so that a father stamper or sun stamper may be used as the mold.
  • the recording track is convex side when viewed from the laser beam incident side.
  • -A stamper may be used as a mold.
  • the reflective layer 102 is formed on the uneven pattern of the substrate 101.
  • the material and thickness of the reflective layer 102 are as described above. Examples of a method for forming the reflective layer 102 include a sputtering method.
  • the recording layer 103 is formed on the reflective layer 102.
  • the material and thickness of the recording layer 103 are as described above.
  • Examples of the method for forming the recording layer 103 include a coating method such as spin coating when the recording layer 103 is an organic color material, and a sputtering method when the recording layer 103 is an inorganic material.
  • the cover layer 104 is formed on the recording layer 103.
  • the material and thickness of the cover layer 104 are as described above. Examples of the method for forming the cover layer 104 include a spin coat method. Further, a separately prepared cover layer 104 may be bonded onto the recording layer 103 via an adhesive layer or the like.
  • a substrate 201 on which a track concavo-convex pattern is formed is manufactured using a stamper.
  • the formation procedure is the same as that of the substrate 101 in FIG.
  • a first reflective layer 202 and a first recording layer 203 are sequentially stacked on the uneven pattern of the substrate 201.
  • the material, thickness, formation procedure, and the like of these layers are the same as those of the reflective layer 102 and the recording layer 103 in FIG.
  • the intermediate layer 204 is formed on the first recording layer 203.
  • the material and thickness of the intermediate layer 204 are as described above. Examples of the method for forming the intermediate layer 204 include a coating method.
  • a concavo-convex pattern is formed using a stamper.
  • the procedure for forming the uneven pattern is not limited, but the stamper uneven pattern may be copied onto the intermediate layer 204 by pressing the stamper uneven pattern onto the intermediate layer 204.
  • a photocurable resin such as an ultraviolet curable resin or a visible light curable resin is used as a material for the intermediate layer 204, and the desired photocurable resin is formed on the first recording layer 203.
  • a film is formed to a thickness.
  • the photocurable resin is irradiated with light such as ultraviolet rays and visible light capable of curing the photocurable resin through the stamper. Harden.
  • the stamper a stamper (usually a resin stamper) having a material strength capable of transmitting light such as ultraviolet rays and visible light capable of curing the photocurable resin is used.
  • the uneven pattern copied from the stamper onto the intermediate layer 204 is the reverse of the uneven pattern of the stamper, and as described above, according to the type of the desired information recording medium, Select Stanno X Father Stamper or Sun Stamper.
  • a second reflective layer 205 and a second recording layer 206 are sequentially stacked on the uneven pattern of the intermediate layer 204.
  • the material, thickness, formation procedure, and the like of these layers are the same as those of the reflective layer 102 and the recording layer 103 in FIG.
  • cover layer 207 is formed on the second recording layer 206.
  • the material, thickness, formation procedure, and the like of the cover layer 207 are the same as those in the case of the cover layer 104 in FIG.
  • the shape of the uneven pattern of the track that the substrate 201 has and the shape of the uneven pattern of the track that the intermediate layer 204 has are the same. May be different from each other.
  • the uneven patterns of the substrate 201 and the intermediate layer 204 are different from each other, it is only necessary that at least one of the substrate 201 and the intermediate layer 204 satisfies the provisions of the present invention. That is, it is only necessary to have the first recording area R1, the second recording area R2, and the recording area transition section Sx defined in the present invention. Further, both the substrate 201 and the intermediate layer 204 may satisfy the provisions of the present invention.
  • the information recording medium of the present invention is manufactured by the above procedure.
  • the above description can be manufactured by appropriately changing the above procedure for the power recording medium such as a recordable Blu-ray disc as well as other information recording media.
  • the power recording medium such as a recordable Blu-ray disc
  • a substrate with a thickness of 0.6 mm may be bonded.
  • the information recording medium of the present invention has two different track pitches and groove shapes.
  • a predetermined groove shape transition section S g is provided between the recording areas.
  • the groove shape transition section Sg is formed according to the concave / convex pattern shape of the stamper used when manufacturing the information recording medium.
  • the concave / convex pattern shape of the stamper is realized by the master exposure device in the master exposure process (see Fig. 4 (b) above) in the stamper manufacturing procedure.
  • master exposure apparatus used for manufacturing the information recording medium of the present invention will be described with reference to embodiments.
  • FIG. 5 is a functional block diagram schematically showing an example of the basic configuration of the master exposure apparatus according to one embodiment of the present invention.
  • a master exposure apparatus 600 shown in FIG. 5 includes a formatter (a deflection signal generation mechanism) 601 that generates a predetermined deflection signal, a laser light source (recording light source) 602 for generating recording light, and a recording light.
  • a formatter a deflection signal generation mechanism
  • a laser light source recording light source
  • a slider (radial movement mechanism) 607 for relatively moving, and one or a plurality of mirrors 608 for controlling the direction of laser light are provided.
  • controller 609 for cooperatively controlling a part or all of these components 60 ;! to 608 is provided.
  • the controller 609 has a function of controlling the rotational speed of the turntable 606, the moving speed of the slider 607, and the position of the objective lens 605 based on preset values.
  • the recording light emitted from the laser light source 602 first passes through the power adjustment element 603.
  • the adjustment element 603 can change the recording light intensity based on a preset value!
  • the recording light whose intensity has been adjusted by the noise adjusting element 603 is then used to deflect the recording light.
  • the force S using the EOD element 604 is not limited to the EOD element 604 as long as the element has a function of deflecting the recording light.
  • AOD Acoustic
  • Optical Deflector elements may be used.
  • a formatter 601 is connected to the EOD element 604, and the force S is used to deflect the recording light in the angular direction based on the signal generated by the formatter 601.
  • an AOM for modulating recording light may be used.
  • the function of modulating the recording light and the function of deflecting the recording light may be collectively managed by one element, and the configuration can be arbitrarily changed depending on the type of the information recording medium to be manufactured.
  • the recording light emitted from the EOD element 604 is guided to an objective lens 605 for focusing on the master 503.
  • a beam expander (not shown in FIG. 5) for shaping the beam shape may be passed before recording light is incident on the objective lens 605.
  • the objective lens 605 is attached to a focus actuator (not shown in FIG. 5), and the focus servo is operated so that the distance between the master 503 surface and the objective lens 605 is always constant. It has been applied. By applying focus servo, the distance between the master 503 surface and the objective lens 605 can be kept constant, so the spot size of the recording light focused on the master 503 surface is always the same, and the width is Uniform pattern can be exposed
  • the slider 607 is fed at a predetermined feed rate while rotating the turntable 606 on which the master 503 is placed at a predetermined rotation speed. Send it at speed.
  • the turntable 606 is rotated and the slider 607 is moved at a predetermined speed. That is, a pattern corresponding to the track of the first recording area R1 having the first track pitch is formed.
  • the rotation direction and speed of the turntable 606, the moving speed and The conditions such as the moving direction can be arbitrarily selected based on the format of the manufactured! /, Stamper and information recording medium, and an appropriate operating condition may be selected.
  • the intensity of the recording light can be set arbitrarily according to each manufacturing process and the groove shape to be formed.
  • the groove is formed to meander with a predetermined amplitude in the radial direction of the medium.
  • Several types of serpentine patterns are defined in advance, and a method of recording information such as address information and disc manufacturer information by combining a plurality of types of serpentine patterns is used.
  • the recording of information by the meandering pattern means that information is recorded by changing the meandering shape of the groove in the disk surface such as the amplitude and period of the meandering, and the groove depth, groove width, It does not change the average track pitch.
  • Such meandering of the grooves can be formed by deflecting the recording light in the radial direction of the master disk 503 by a predetermined amount each time in the master disk exposure apparatus 600.
  • a deflection signal for deflecting the recording light is generated by the formatter 601, and the recording light is deflected by the EOD element 604.
  • the meandering pattern can be made arbitrary by changing the internal configuration of the formatter 601. Therefore, when an information recording medium other than a recordable Blu-ray disc is manufactured as the information recording medium of the present invention, the internal structure of the formatter may be changed so as to form an appropriate meander pattern each time.
  • the track pitch transition section Stp can be formed by changing the moving speed of the slider 607.
  • the radius value at which the formation of the track pitch transition section Stp is to be started is stored in advance in the exposure apparatus 600, and the movement speed of the slider 607 is changed by detecting that the slider 607 has passed the radius value. Do it! /
  • the frequency of the Knoll train for driving the slider 607 is used. Etc. At this time, for example, by changing the sweep time of the frequency of the noise train for driving the slider 607, the track pitch transition section Stp having an arbitrary length can be obtained.
  • the frequency sweep time should be lengthened, and to make the shorter track pitch transition section Stp, the frequency sweep time should be shortened.
  • the moving speed of the slider 607 may be changed in stages, but it is preferable to continuously change the moving speed of the slider 607 in order to make the change in the track pitch smooth.
  • the master exposure apparatus 600 is provided with a mechanism (recording light intensity sweep mechanism) that sweeps the recording light intensity monotonously increasing or decreasing monotonically based on a preset value.
  • a mechanism recording light intensity sweep mechanism
  • the groove width gradually changes from wl to w2 by sweeping the recording light intensity monotonously increasing or monotonically decreasing and / or the groove.
  • a pattern in which the depth gradually changes from dl to d2 can be formed.
  • the first aspect since a sharp groove shape change due to a sudden change in recording light intensity can be suppressed, a sudden change in the normalized push-pull signal amplitude in the finally obtained information recording medium is suppressed. Can be suppressed. That is, according to the first aspect, an information recording medium capable of realizing a stable focus servo and tracking servo state can be obtained.
  • the recording light intensity sweeping mechanism preferably has a function of starting and / or ending the recording light intensity sweep by detecting that the condensing mechanism has reached a specific radius position set in advance. It is also preferable that the recording light intensity sweep mechanism has a function of starting and / or ending the recording light intensity sweep by detecting that the deflection signal generating mechanism outputs a predetermined preset address! /.
  • the recording light intensity sweep mechanism has the above functions, thereby changing the recording light intensity.
  • the master that keeps the start point of the standardization accurately constant can always be produced, so the power of constantly changing the standardized push-pull signal amplitude in the finally obtained information recording medium S can.
  • an information recording medium capable of realizing a stable focus servo and tracking servo state can be obtained.
  • the recording light intensity sweeping mechanism detects that the light converging mechanism has reached a specific radius position set in advance and starts sweeping the recording light intensity, and after a predetermined time has elapsed. It is also preferable to have a function of terminating the sweep. Further, the recording light intensity sweep mechanism detects that the deflection signal generation mechanism has output a specific address set in advance, starts the recording light intensity sweep by the recording light intensity sweep mechanism, and It is also preferable to have a function of terminating the sweep after a predetermined time has elapsed.
  • the recording light intensity sweep mechanism When the recording light intensity sweep mechanism has these functions, the recording light intensity sweep mechanism only monitors the sweep start trigger and manages the sweep time! It can be made simple.
  • the various functions of the recording light intensity sweep mechanism described above can be realized as functions of the controller 609 by causing the controller 609 to perform desired operations using software or the like, for example.
  • the present invention intends to suppress sudden fluctuations in the normalized push-pull signal amplitude at the boundary between two recording areas having different track pitches.
  • the groove shape may not be necessarily changed continuously but may be an intermittent change. From this viewpoint, a master exposure apparatus having a simpler configuration than that of the first aspect and easy maintenance can be considered.
  • the above-described master exposure apparatus 600 is provided with recording light based on the position of the objective lens (condensing mechanism) 605 and the set value of the recording light intensity at a predetermined specific radius value.
  • a recording light intensity adjusting mechanism for adjusting the intensity by interpolation and a repetitive operation mechanism for repeating the recording light intensity adjusting operation are provided. Furthermore, in the second aspect, the above repetitive operation The operating time required for one cycle of the mechanism shall be 100 msec or less.
  • FIG. 6 is a graph showing the relationship between the theoretical exposure intensity obtained by continuous interpolation and the radius value of the condensing mechanism in the master exposure apparatus according to this embodiment.
  • FIG. 7 is a graph showing the relationship between the actual exposure intensity obtained by repeating the interpolation operation and the radius value of the condensing mechanism in the master exposure apparatus according to this embodiment.
  • the exposure operation is directed from the inner periphery to the outer periphery.
  • the exposure power Pl when forming a pattern corresponding to the track of the first recording area R1 and the pattern corresponding to the track of the second recording area R2 It is assumed that parameters such as the exposure power P2 and the inner radius value Ri of the groove shape transition section Sg and the outer radius value Ro are stored in the master exposure apparatus in advance.
  • the recording light intensity adjustment mechanism is operated while the turntable 600 is rotated and the slider 607 is moved at a predetermined speed based on a preset linear velocity and track pitch.
  • the radius position of the lens 605 on the master disk is read, and it is first determined which area the objective lens 605 is exposing. Next, based on the result of the judgment, the exposure intensity Set to the appropriate value.
  • the slider 607 since the slider 607 always moves at a predetermined speed, at the moment when the exposure light intensity is set to an appropriate value, the objective lens 605 moves to a radial position different from the initially read radial position. !
  • the radius position of the objective lens 605 is read again, it is judged again which area the objective lens 605 is exposing, and the exposure intensity is changed to an appropriate value based on the judgment result.
  • this cycle operation is sequentially repeated until the desired radial position, thereby performing exposure at the desired exposure intensity on the entire master surface. Touch with force S.
  • Tu is a value that depends on the performance of the master exposure apparatus.
  • the recording light intensity adjusting mechanism operates so that the exposure intensity is P1, and the second recording area R2 is being exposed.
  • the recording light intensity adjustment mechanism operates so that the exposure intensity is P2. If it is determined that the objective lens 605 is exposing the groove shape transition section Sg, for example, as shown in FIG. 6, the exposure intensity interpolates between Ri and Ro with a function of an appropriate form. As described above, the recording light intensity adjustment mechanism operates.
  • the objective lens 605 is positioned at the radial position Rc (here In this case, the exposure power Pc is calculated by the following formula.
  • the exposure intensity is interpolated in a linear function.
  • the form of the function is not limited to a linear function.
  • the exposure intensity may be increased or decreased in a quadratic function. That is, it is important to set the exposure intensity by interpolation by calculation.
  • the groove shape in the groove shape transition section Sg can be changed stepwise.
  • it is desirable to suppress fluctuations in the normalized push-pull signal amplitude to a certain extent it is desirable to shorten the track length Su corresponding to one step of the groove shape changed stepwise to some extent. .
  • Su is the product of the linear velocity LV at exposure and Tu, so to reduce Su, the force to decrease LV, Tu can be decreased. .
  • Tu is at least 100 msec or less. If Tu is too long, the groove shape change in the groove shape transition section Sg becomes extremely rough when exposed at a realistic exposure line speed, and the normalized push-pull signal amplitude suddenly increases. Sometimes changes cannot be suppressed.
  • an information recording medium a recording-type Blu-ray disc in which the formation conditions of the groove shape transition section Sg and the track pitch transition section Stp were changed was manufactured, and the obtained information recording medium Were evaluated by reproducing them with an information reproducing apparatus.
  • the target groove shape transition section Sg and track pitch transition section are prepared.
  • Stamper with a concavo-convex pattern equivalent to Stp (Faza 1) was manufactured.
  • the stamper was manufactured in accordance with the method described in the section “ ⁇ -1. Manufacturing the stamper” above. Specifically, a glass plate having a thickness of 6 mm is used as a master substrate 501, and a master 503 formed thereon with a photoresist 502 having a thickness of 60 nm is used and exposed based on the following conditions. Development was performed to obtain an uneven master 503 ′. On this uneven master 503 ′, a nickel film having a thickness of 20 nm was formed by sputtering (conductive layer 505), and nickel was further laminated by electroplating to form a 290 m thick fuzzer. One layer 506 was formed. This father layer 506 was peeled off to obtain a father stamper 506.
  • the PIC area corresponds to the inner circumference of the disc and the user data area corresponds to the outer circumference of the disc.
  • the track is in the direction from the PIC area to the user data area, and the master exposure is also fi in the direction from the PIC area to the user data area.
  • the first recording area R1 is the PIC area
  • the second recording area R2 is the user data area
  • the first recording area R1 The track pitch tpl was 0.35 ⁇ 111
  • the track pitch tp2 in the second recording area R2 was 0.32 ⁇ 111.
  • the exposure light intensity at the time of master exposure uses only the master exposure apparatus (master exposure apparatus provided with a recording light intensity adjustment mechanism and a repetitive operation mechanism) according to the second aspect described above only in Example 3. It was done. Other examples and comparative examples were carried out using the master exposure apparatus (master exposure apparatus provided with a recording light intensity sweep mechanism) according to the first aspect described above.
  • the information recording medium of each example and each comparative example was manufactured using the above stamper.
  • the reflection layer, the recording layer, the interface layer, and the cover layer were laminated on the substrate in this order.
  • polycarbonate was used as a material for the substrate, and the above stamper was used as a mold to perform injection molding, thereby forming a substrate on which the uneven pattern of the stamper was copied.
  • the thickness of the substrate was 1 ⁇ 1 mm.
  • a reflective layer made of an AgNdCu alloy was formed on this substrate to a thickness of 70 nm by sputtering.
  • a recording layer was formed on this reflective layer by diluting a metal-containing azo dye with octafluoropentanol (OFP) and then depositing the film by spin coating.
  • the conditions for the spin coating method are as follows. That is, a solution of 1.0% by weight of a metal-containing azo dye dissolved in OFP was applied in the shape of a ring of 1.5g near the center of the substrate, and the substrate was rotated at 1200rpm for 7 seconds to stretch the dye. did. Thereafter, the coating was carried out by rotating at 9200 rpm for 3 seconds and shaking off the dye. After coating, the medium was kept at 100 ° C for 1 hour to evaporate and remove the solvent OFP. The thickness of the recording layer was targeted at about 30 nm.
  • an interface layer made of ZnS: SiO was formed on the recording layer to a thickness of 16 nm by sputtering.
  • a transparent cover layer having a total thickness of 100 am composed of a polycarbonate resin sheet having a thickness of 75 m and a pressure-sensitive adhesive layer having a thickness of 25 m was bonded. .
  • FIG. 8 (a) is a functional block diagram showing the configuration of the main part of the information reproducing apparatus for evaluation used for the evaluation of the information recording medium of each example and each comparative example
  • FIG. 9 is a diagram showing a configuration of a four-divided photodiode included in the evaluation information reproducing apparatus shown in FIG. 8 (a).
  • the evaluation information reproducing apparatus 900 shown in FIG. 8 (a) includes a four-division photodiode 901, a push-pull signal generation circuit 902, a sum signal generation circuit 903, and a standardized push-pull signal generation circuit 9 04, a synthesis circuit 905, a spindle motor (not shown), a light source (not shown) such as a semiconductor laser, an objective lens (not shown), an amplifier circuit (not shown), and the like. Further, the information recording medium 906 to be evaluated can be attached to the spindle motor.
  • FIG. 8 (b) Laser light emitted from a semiconductor laser or the like is collected by an objective lens on an information recording medium 906 fixed to a spindle motor.
  • the laser beam reflected on the information recording medium 906 is guided to the quadrant photodiode 901.
  • the quadrant photodiode 901 is composed of four detectors, and an electrical signal corresponding to the intensity of the laser light incident on each detector is output from each detector. Is done.
  • the electrical signals output from the detectors are guided to a push-pull signal generation circuit 902 and a sum signal generation circuit 903 after passing through an amplifier circuit (not shown) or the like as necessary.
  • the push-pull signal generation circuit 902 calculates (A + B) — (C + D) and generates a push-pull signal PP.
  • the sum signal generation circuit 903 calculates (A + B) + (C + D) and generates the sum signal SUM.
  • the standardized push-pull signal generation circuit 904 calculates PP / SUM based on the push-pull signal PP and the sum signal SUM, and generates a standardized push-pull signal.
  • a servo unit (not shown) executes tracking control based on the standardized push-pull signal.
  • A is a photodiode right front with respect to the track direction
  • B is right rear with respect to the track direction
  • C is front left with respect to the track direction
  • D is right rear with respect to the track direction.
  • the information recording media of the examples and comparative examples were evaluated using the above-described evaluation information reproducing apparatus 900 according to the following procedure.
  • Push-pull signal PP and sum signal SUM in the unrecorded state near the boundary between the PIC area and the user data area were measured with an oscilloscope without tracking servo, and NPP was calculated. . Next, the characteristics of NPP were evaluated by investigating how NPP fluctuated near the boundary between the PIC area and the user data area.
  • the NPP management range in the PIC area was set to 0.26 to 0.52. If the NPP in the PIC area is within this range, a stable focus servo and tracking servo state can be realized in the PIC area.
  • the target NPP in the unrecorded state in the user data area is set to about 0.6, and the unrecorded state in the user data area is the target.
  • the upper limit of NPP was set to 0.8.
  • the lower limit of NPP in the unrecorded state in the user data area was set to 0.21. If the NPP in the unrecorded state in the user data area is within this range, a stable focus servo and tracking servo state can be realized in the user data area.
  • the NPP management range in the unrecorded state in the recording area transition section Sx is the above-described management range of the PIC area and the user data area. The same range as the wider user data area. In other words, the NPP management range in the unrecorded state in the recording area transition section Sx is set to 0.21 to 0.8.
  • the above NPP management range is a fluid value that depends on the performance of the servo system, and is appropriately determined by the servo system used.
  • the value set this time is a little lower than the performance of a normal servo device, and is within the range where stable focus servo and tracking servo states can be realized even with the device. That is, if an information recording medium in which the NPP on the entire surface of the information recording medium is within the above range can be provided, stable focus servo and tracker servo states can be realized in various recording / reproducing apparatuses.
  • NPP refers to NPP in an unrecorded state.
  • the length Ltp along the track in the track pitch transition section Stp was 3.2 m
  • the length Lg along the track in the groove shape transition section Sg was 4.5 m.
  • Track pitch transition zone The start point of Stp is set earlier in time than the start point of the groove-shaped transition section Sg, and the length LL along the track where Stp and Sg overlap is 2.9 m.
  • Lg / Ltp is 1.41
  • An information recording medium was manufactured under the above conditions. This is the information recording medium of Example 1.
  • the NPP in the PIC area was 0.3
  • the NPP in the user data area was 0.63.
  • the NPP changes smoothly in the vicinity of the boundary between the PIC area and the user data area, and even in the recording area transition section Sx, the lower limit and the upper limit of the predetermined NPP management range cannot be exceeded.
  • the NPP in the recording area transition section Sx was always smaller than the NPP in the user data area, which is always larger than the NPP in the PIC area.
  • the length Ltp along the track in the track pitch transition section Stp was 3.2 m
  • the length Lg along the track in the groove shape transition section Sg was 2.5 m.
  • the start point of the track pitch transition section Stp and the start point of the groove shape transition section Sg are made substantially the same, and the length LL along the track of the overlapping portion of Stp and Sg is 2.5 m.
  • the direct value of Lg / Ltp is 0.78
  • the direct value of LL / Ltp is 0.78.
  • An information recording medium was manufactured under the above conditions. This is the information recording medium of Example 2.
  • the NPP in the PIC area was 0.39
  • the NPP in the user data area was 0.63.
  • the force S in which the NPP in the recording area transition section Sx is slightly increased in the -part area, and the maximum value of the NPP in the increased part is 0.77
  • the upper limit of the predetermined NPP management range is set. It did not exceed.
  • the length Ltp along the track in the track pitch transition section Stp was 1.6 m
  • the length Lg along the track in the groove shape transition section Sg was 3.9 m.
  • the start point of the track pitch transition zone Stp is set earlier in time than the start point of the groove shape transition zone Sg
  • the length LL along the track where Stp and Sg overlap is set to 0.4 m.
  • the value of Lg / Ltp is 2.44
  • the value of L L / Ltp is 0.25.
  • the master exposure apparatus (master exposure apparatus having a recording light intensity adjustment mechanism and a repetitive operation mechanism) is used to change between the PIC area and the user data area.
  • the recording light intensity is adjusted by the recording light intensity adjustment mechanism in the recording area transition section Sx without performing the exposure light intensity sweep at the part! /, The operation is repeated every 90 msec. .
  • An information recording medium was manufactured under the above conditions. This is the information recording medium of Example 3.
  • the NPP in the PIC area was 0.34
  • the NPP in the user data area was 0.66.
  • An information recording medium was produced by the same procedure as in Example 1 except that the values of Ltp, Lg, and LL were changed to the values shown in Table 1 below. These are the information recording media of Examples 4 to 7.
  • NPP was measured in the same manner as in Examples 1 to 3, all of which were within the specified range of values, and information recording capable of realizing stable focus servo and tracking servo states was possible.
  • the media could be provided.
  • the length Ltp along the track in the track pitch transition section Stp was 3.2 m
  • the length Lg along the track in the groove shape transition section Sg was 0.5 m.
  • Track pitch transition interval Stp end point and groove shape transition interval Sg start point are approximately the same
  • the length LL along the track where Stp and Sg overlap is set to Om that is, Stp and Sg No overlapping part.
  • the value of Lg / Ltp is 0.16
  • the value of LL / Ltp is 0.
  • An information recording medium was manufactured under the above conditions. This is the information recording medium of Comparative Example 1.
  • Figure 12 shows the normalized push-pull signal amplitude NPP and sum signal SUM near the boundary between the PIC area and the user data area in the information recording medium of Comparative Example 1.
  • the NPP in the PIC area was 0.41 and the NPP in the user data area was 0.67.
  • NPP exceeds the upper limit of the management range in the part area, and further falls below the lower limit in another area! /. If the NPP exceeds the control range to this extent, it is difficult to perform tracking servo stably.
  • the length Ltp along the track in the track pitch transition section Stp is 3.2 m
  • the length Lg along the track in the groove shape transition section Sg is Om, that is, the groove shape with the Stp start point as the boundary. was changed at a stretch so that no groove shape transition section Sg was provided.
  • An information recording medium was manufactured under the above conditions. This is the information recording medium of Comparative Example 2.
  • Figure 13 shows the normalized push-pull signal amplitude NPP and sum signal SUM near the boundary between the PIC area and the user data area in the information recording medium of Comparative Example 2.
  • the NPP in the PIC area was 0.3 and the NPP in the user data area was 0.61.
  • the maximum value of NPP in the recording area transition section Sx was 1.2, and the minimum value was 0.2.
  • the change in NPP is relatively rapid and has changed discontinuously.
  • Such an information recording medium may cause a failure in the tracking servo at that location.
  • FIG. 14 is a graph plotting the relationship between Lg / Ltp and LL / Ltp obtained for the information recording media of Examples;! To 7 and Comparative Examples 1 and 2.
  • the bold line frame in the graph indicates the range of Lg / Ltp and LL / Ltp values suitable for the present invention (0.2 ⁇ Lg / Ltp ⁇ 2.5, 0.1 ⁇ LL / Ltp ⁇ l. 0). Is shown.
  • the information recording medium and master exposure apparatus of the present invention are suitably used in the field of information recording media such as Blu-ray discs.
  • the specifications, claims, drawings, and specifications of Japanese patent application 2006-3244452 filed on November 30, 2006 and Japanese patent application 2007-073272 filed March 20, 2007 The entire contents of the abstract are hereby incorporated by reference as disclosure of the specification of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

 トラックピッチ及び溝形状が異なる複数の記録領域を有する情報記録媒体において、安定したフォーカスサーボ及びトラッキングサーボを実現する。  凹凸パターンにより形成された記録トラックが、第一及び第二の記録領域R1,R2と、第一及び第二の記録領域R1,R2間に配置された記録領域遷移区間Sxとを備え、第一の記録領域R1におけるトラックピッチtp1、溝幅w1、及び溝深さd1並びに第二の記録領域R2におけるトラックピッチtp2、溝幅w2、及び溝深さd2が式(1)と式(2)及び/又は式(3)とを満たし、0 < |tp1-tp2|(1) 0 < |w1-w2|(2) 0 < |d1-d2|(3) 記録領域遷移区間Sxが、トラックピッチがtp1からtp2へと遷移するトラックピッチ遷移区間Stpと、溝幅がw1からw2へと、及び/又は、溝深さがd1からd2へと遷移する溝形状遷移区間Sgとを備え、トラックピッチ遷移区間Stpと溝形状遷移区間Sgとが少なくとも一部の領域SLを共有する情報記録媒体。

Description

明 細 書
情報記録媒体及び原盤露光装置
技術分野
[0001] 本発明は、例えば Blu— rayディスク等の情報記録媒体と、その情報記録媒体を製 造するための原盤露光装置に関する。
背景技術
[0002] Blu— rayディスク等の情報記録媒体では、基板上に記録層が形成され、レーザー 光を記録層に集光させることでデータの書き込みあるいは読み取りができるようにな つている。
また、媒体上にはトラックが螺旋状に形成されてなり、データの読み書きは、情報記 録媒体をスピンドルモーターなどに載置回転させつつ、トラックに沿ってレーザー光 を集光することによって実行される。
[0003] トラックは、基板上に物理的に刻設された溝やピットによって具現化されている。例 えば記録型 Blu— rayディスクにおいては、トラックは溝によって具現化されている。ま た、例えば再生専用型 Blu— rayディスクにおいては、トラックはピットによって具現化 されている。
[0004] ここで、溝とは、情報記録媒体の周方向に物理的に連続して形成された凹凸バタ ーンのことである。また、ピットとは、情報記録媒体の周方向に断続して形成された凹 凸パターンのことであり、多数個のピットが情報記録媒体の周方向に並ぶことにより、 一つのトラックを構成して!/、る。
[0005] なお、情報記録媒体の種類によっては、同一の情報記録媒体上に溝及びピットの 両方が、それぞれ所定の領域内で刻設されてなるものもある。即ち、例えば溝のみが 刻設された領域を記録可能な領域として用い、ピットのみが刻設された領域を再生 専用領域として用いる等の場合がある。
[0006] 一方、記録型 Blu— rayディスクの場合、情報記録媒体の最適記録パワーゃメディ ァ製造者情報等が、コントロールデータとして予め情報記録媒体上に記録されてい る(コントロールデータが記録された領域を「コントロールデータ領域」という。後述す るように「PIC領域」という場合もある。)。コントロールデータの記録は、ユーザーデー タ領域とは異なる変調方式によって溝を蛇行させることによりなされている。
[0007] ここで、蛇行とは、溝を所定の振幅及びパターンで情報記録媒体の半径方向に微 小に変位させることによって実現されるものである。また、変調方式とは、予め記録し ておきたいデータを所定の蛇行パターンに変換するための変換方式のことである。な お、以下の記載では、簡便のため、「溝の蛇行に用いられる変調方法」のことを、単に 「ゥォブル変調方式」と記述することとする。
[0008] 更に、記録型 Blu— rayディスクにおいては、ドライブによるコントロールデータの読 み取りをより確実なものとするため、コントロールデータ領域のトラックピッチは、ユー ザ一データ領域のトラックピッチよりも大きく形成されている。
[0009] ここで、トラックピッチとは、情報記録媒体を半径方向に見たときの隣接する二つの トラックの中心間距離のことである。上記したように、記録型 Blu— rayディスクにおい ては、溝を情報記録媒体の半径方向に微小量蛇行させている力 トラックピッチの値 を議論する際には、溝の蛇行は考慮に入れない。従って、トラックピッチは、情報記 録媒体を半径方向に見たときの溝間の平均的な距離に等しい。
一方、情報記録媒体に照射されたレーザー光については、その一部が反射され、 反射光は、例えば二分割フォトディテクターなどで受光される。
[0010] 図 15 (a)〜図 15 (c)はそれぞれ、規格化プッシュプル信号振幅(トラックに沿った 方向に検出面が分割された二分割フォトディテクターの各々の出力の差を、各々の 出力の和で除算した信号の振幅)と、トラックピッチ、溝深さ、及び溝幅との相関関係
[0011] 図 15 (a)〜図 15 (c)のグラフから分かるように、例えば記録型 Blu— rayディスクの 場合、コントロールデータ領域のトラックピッチは、ユーザーデータ領域のトラックピッ チよりも広いので、コントロールデータ領域とユーザーデータ領域の溝形状が略同一 の場合、コントロールデータ領域から得られる規格化プッシュプル信号振幅は、ユー ザ一データ領域力 得られる規格化プッシュプル信号振幅よりも大きくなる。また、規 格化プッシュプル信号振幅の大きさが、溝幅及び溝深さによって変化することも知ら れている。 [0012] 一方、レーザー光を集光するための対物レンズを搭載したピックアップは、規格化 プッシュプル信号を基にしてトラックに追随していく(以下、トラックに追随して動作す ることを「トラッキング」と呼び、トラッキングを実行する制御のことを「トラッキングサーボ 」と呼ぶ。)。ピックアップは、通常、規格化プッシュプル信号振幅がある所定の範囲 内であることを前提として設計される。言い換えると、規格化プッシュプル信号振幅が 所定の範囲内である時に、初めて安定したトラッキングサーボを実現できることになる
[0013] 例えば、規格化プッシュプル信号振幅が所定の範囲内の値よりも小さ!/、場合、安定 したトラッキングサーボを実現するための十分な信号振幅が得られず、トラッキングサ ーボ不良を引き起こすという悪影響が出る。
また、例えば、規格化プッシュプル信号振幅が所定の範囲内の値よりも大きい場合 、必要以上の信号振幅がトラッキングサーボ回路に入力され、その結果サーボ系が 発振する、といった悪影響が出る。
[0014] 更に、規格化プッシュプル信号振幅が相対的に大き過ぎる場合、フォーカスサーボ を行なう上で用いられるフォーカスエラー信号にプッシュプル信号(トラックに沿った 方向に検出面が分割された二分割フォトディテクターの各々の出力の差信号)がノィ ズとして重畳してしま!/ \フォーカスが外れる等の課題を引き起こす可能性がある。
[0015] なお、ピックアップの種類によっては、規格化プッシュプル信号以外の信号を用い てトラッキングを実行する場合も考えられるが、トラッキングの実行に用いられる信号 振幅が所定の範囲内にあるときに初めて安定したトラッキングサーボを実現できると いう点では同様である。
[0016] また、規格化プッシュプル信号振幅が所定の範囲内であっても、急激な規格化プッ シュプル信号振幅の変化に対してはサーボ系のゲインコントロール回路が追従でき ず、トラッキングサーボ不良を引き起こすといったケースも起こり得る。従って、規格化 プッシュプル信号振幅の変化をできるだけ小さくした方力 S、トラッキングサーボに関す る不具合を起こす可能性が低くなる。
[0017] 上記のように、規格化プッシュプル信号の急激な変化はトラッキングサーボ或いは フォーカスサーボに悪影響を及ぼすので、例えばコントロールデータ領域とユーザー データ領域との溝形状を異ならせることによって、コントロールデータ領域とユーザー データ領域との規格化プッシュプル信号振幅の差を小さくすればよいことが知られて いる。
[0018] なお、一般的な情報記録媒体の製造方法によれば、原盤露光装置における露光 ノ^ を領域毎に変化させることによって、領域毎に溝形状を変化させることができ また、上記トラックピッチの異なる領域に対して安定したトラッキングサーボを実現す るため、トラックピッチの異なる領域同士を一つの螺旋状のトラックとして形成し、かつ トラックピッチを徐々に変化させる遷移区間を設ける提案もなされている(特許文献 1)
[0019] 上記トラックピッチを徐々に変化させる遷移区間を設けるという技術は、例えば記録 型 Blu— rayディスクにおいて採用されている。この技術によれば、コントロールデー タ領域とユーザーデータ領域とは連続した螺旋状のトラックとされ、両領域はトラック ピッチを徐々に変化させたトラックピッチ遷移区間 Stpを設けることによって接続され ている。
[0020] 記録型 Blu— rayディスクにおける、コントロールデータ領域、ユーザーデータ領域 、及びトラックピッチ遷移区間 Stpの配置について、図 16を用いて説明する。なお、 図 16は、一般的な記録型 Blu— rayディスクにおけるコントロールデータ領域、ユー ザ データ領域、及びトラックピッチ遷移区間 Stpの配置を説明するための図である
[0021] 図 16に示すように、記録型 Blu— rayディスクでは、コントロールデータ領域はユー ザ データ領域よりも内周側に設置され、コントロールデータ領域におけるトラックピ ツチは約 0· 35 mに、ユーザーデータ領域のトラックピッチは約 0· 32 111に、それ ぞれ設定される。
[0022] 更に、ユーザーデータ領域とコントロールデータ領域との間には、保護領域(Protec tion zone)が設けられており、トラックピッチ遷移区間 Stpは、保護領域に完全に包 含されるように形成される。
トラックピッチ遷移区間 Stpよりも内周側に存在する保護領域(図 16における内周 側保護領域)のトラックピッチは、コントロールデータ領域のトラックピッチと同じ値に 設定される。
一方、トラックピッチ遷移区間 Stpよりも外周側に存在する保護領域(図 16における 外周側保護領域)のトラックピッチは、ユーザーデータ領域のトラックピッチと同じ値に 設定される。
[0023] 更に、ゥォブル変調方式は、コントロールデータ領域とユーザー領域とで異なった 方式とされ、保護領域のゥォブル変調方式はユーザーデータ領域のゥォブル変調方 式と同じものとされる。つまり、ゥォブル変調方式は、保護領域とコントロールデータ領 域との境界部にお!/、て変化するように形成されてレ、る(特許文献 2)。
[0024] 即ち、保護領域とは、ゥォブル変調方法及びトラックピッチが相異なる二領域の間 に設けられ、一つの螺旋状のトラックとして形成された二領域を接続するために設け られた領域である。
[0025] 特許文献 1 :特開 2003— 346384号公報
特許文献 2:特開 2006— 12355号公報
発明の開示
発明が解決しょうとする課題
[0026] 本発明が解決しょうとする課題について、 Blu— rayディスクを例に挙げて説明する
上記のように、 Blu— rayディスクにおいては、コントロールデータ領域力 S、相対的に 広いトラックピッチでユーザーデータ領域の内周側に設けられている。両者は連続し たトラック上に設けられ、両者の間にはトラックピッチを徐々に変化させたトラックピッ チ遷移区間 Stpが設けられている。
また、コントロールデータ領域とユーザーデータ領域との規格化プッシュプル信号 振幅の差を小さくするために、原盤露光装置において両領域の露光パワーをそれぞ れ異ならせることによって、両記録領域の溝形状を互いに異ならせることができる。
[0027] しかし、両記録領域の溝形状を異ならせると、異なった溝形状の接続部分において 規格化プッシュプル信号振幅の不連続が発生し、ドライブの動作に必要なだけの大 きさの規格化プッシュプル信号振幅が得られない、或いはトラッキングサーボゃフォ 一カスサーボに支障をきたすほどの大きな規格化プッシュプル信号振幅が得られて しまう、等の不具合があった。
更に、規格化プッシュプル信号振幅が不連続であることにより、トラッキングサーボ 系のゲインコントロール回路が追従しきれず、トラッキングサーボ不良を引き起こすと いう不具合もあった。
[0028] このような不具合は、特に、記録層に有機色素材料を含んだ、イングループ型の Lo w— To— High記録型 Blu— rayディスクにおいて顕著であった。ここで、イングル一 ブ型とは、凹凸パターンのうち、記録再生光が入射する側の記録媒体表面から遠い 側の溝底部を記録トラックとするタイプの Blu— rayディスクのことである。また、 Low —To— High記録型 Blu— rayディスクとは、記録マーク部分の反射率が未記録部分 の反射率よりも高い構成とされた Blu— rayディスクのことである。
[0029] イングルーブ型の Low— To— High記録型 Blu— rayディスクにおいては、ユーザ 一データ領域において実用上十分な記録再生特性を得るために、記録前の規格化 プッシュプル信号振幅をある程度大きくすることが望まれる。このため、記録前の状態 においては、コントロールデータ領域とユーザーデータ領域における規格化プッシュ プル信号振幅との差が大きくなり、両領域の接続部分における規格化プッシュプノレ 信号振幅の不連続に起因するトラッキングサーボ不良等の不具合が出易くなるものと 考えられる。
[0030] 本発明は、上記の課題を解決するべくなされたものである。即ち、本発明の目的は 、トラックピッチ及び溝形状が異なる複数の記録領域を有する情報記録媒体であって 、安定したフォーカスサーボ及びトラッキングサーボを実現することが可能な情報記 録媒体と、この情報記録媒体を製造することが可能な原盤露光装置を提供すること である。
課題を解決するための手段
[0031] 本発明者らは、上記課題に鑑み鋭意検討した結果、トラックピッチ及び溝形状が異 なる複数の記録領域を有する情報記録媒体にぉレ、て、これらの記録領域間に、トラッ クピッチが遷移する区間と溝形状が遷移する区間とを有する遷移区間を設けるととも に、これらの区間が少なくとも一部領域を共有するようにすることにより、安定したフォ 一カスサーボ及びトラッキングサーボを実現することが可能となることを見出した。 また、原盤露光装置に、記録光の強度を単調増加又は単調減少でスイープさせる 機構、或いは、記録光強度を補間して調節する動作を 100msec以下のサイクルで 繰り返し行なう機構を設けることにより、このような情報記録媒体を製造することが可 能となることを見出し、本発明を完成させた。
即ち、本発明は、以下の要旨を有するものである。
(1)凹凸パターンにより形成された記録トラックを有する情報記録媒体において、 該記録トラックが、第一の記録領域 R1と、第二の記録領域 R2と、第一の記録領域 R1及び第二の記録領域 R2の間に配置された記録領域遷移区間 Sxとを少なくとも 備え、
第一の記録領域 R1におけるトラックピッチ tpl、溝幅 wl、及び溝深さ dl、並びに第 二の記録領域 R2におけるトラックピッチ tp2、溝幅 w2、及び溝深さ d2が、下記式(1) と、下記の式(2)及び/又は式(3)とを満たし、
0 < I tpl -tp2 I (1)
0 < I wl -w2 I (2)
0 < I dl -d2 I (3)
記録領域遷移区間 Sxが、トラックピッチが tplから tp2へと遷移するトラックピッチ遷 移区間 Stpと、溝幅が wlから w2へと遷移し、及び/又は、溝深さが dlから d2へと遷 移する溝形状遷移区間 Sgとを備え、
トラックピッチ遷移区間 Stpと溝形状遷移区間 Sgとは、少なくとも一部の領域 SLを 共有している、ことを特徴とする情報記録媒体。
(2)第一の記録領域 R1と、第二の記録領域 R2と、記録領域遷移区間 Sxとが、物理 的に連続した溝によって形成されている、上記(1)に記載の情報記録媒体。
(3)前記情報記録媒体が、有機色素を含む記録層を有する、上記(1)又は(2)に記 載の情報記録媒体。
(4)記録マーク部分における反射率が、未記録部分の反射率よりも高い、上記(1)〜 (3)の何れかに記載の情報記録媒体。
(5)凹凸パターンのうち、記録再生光入射側の情報記録媒体の表面から遠い側の溝 底部を記録トラックとする、上記(1)〜(4)の何れかに記載の情報記録媒体。
(6)記録層の組成及び膜厚が、少なくとも、第一の記録領域 R1と、第二の記録領域 R2と、記録領域遷移区間 Sxと、において同一である、上記(1)〜(5)の何れかに記 載の情報記録媒体。
(7)ディスク状の情報記録媒体であって、溝形状遷移区間 Sgのトラックに沿った長さ Lgが、ディスク状の情報記録媒体におけるトラック一周分以上である、上記(1)〜½ )の何れかに記載の情報記録媒体。
(8)溝形状遷移区間 Sgにおける溝幅及び/又は溝深さが、トラックに沿って単調増 加又は単調減少で変化して!/、る、上記(1)〜(7)の何れかに記載の情報記録媒体。
(9)トラックピッチ遷移区間 Stpのトラックに沿った長さ Ltpと、トラックピッチ遷移区間 Stpと溝形状遷移区間 Sgとが共有する領域 SLのトラックに沿った長さ LLとが、下記 の式 (4)及び式(5)を満たす
Figure imgf000010_0001
0. 1 ≤ LL/Ltp ≤ 1. 0 (5)
、上記(1)〜(8)の何れかに記載の情報記録媒体。
(10)第一の記録領域 R1及び第二の記録領域 R2における、未記録状態での規格 化プッシュプル信号振幅の最大値を NPP とし、最小値を NPP とした場合に、記
max mm
録領域遷移区間 Sx内の全領域にお!/、て、規格化プッシュプル信号振幅 NPPが以 下の式を満たす
NPP ≤ NPP ≤ NPP (6)
mm max
、上記(1)〜(9)の何れかに記載の情報記録媒体。
(11)第一の記録領域 R1及び第二の記録領域 R2における、未記録状態での溝部 反射率の最大値を Rgv とし、最小値を Rgv とした場合に、記録領域遷移区間 Sx max min
内の全領域にお!/、て、未記録状態での溝部反射率 Rgvが以下の式を満たす
Rgv ≤ Rgv ≤ Rgv (7)
mm max
、上記(1)〜(; 10)の何れかに記載の情報記録媒体。
(12)第一の記録領域 R1が、第二の記録領域 R2よりも内周側に配置され、かつ、第 一の記録領域 R1の内周側に、第一の記録領域 R1におけるトラックピッチ tpl及び第 二の記録領域 R2におけるトラックピッチ tp2よりも広いトラックピッチ tp3を有した第三 の記録領域 R3が配置された、上記(1)〜(; 11)の何れかに記載の情報記録媒体。
(13)第三の記録領域 R3にお!/、ては、溝の蛇行による情報の記録がされて!/、ない、 上記(12)に記載の情報記録媒体。
(14)第三の記録領域 R3と第一の記録領域 R1の間に、トラックピッチが tp3から tpl へと遷移するトラックピッチ遷移区間 Stp'が配置された、上記(12)又は(13)に記載 の情報記録媒体。
(15)第一の記録領域 R1が、所定の情報を格納した読み取り専用領域を含み、第二 の記録領域 R2が、ユーザーデータを書き込み可能な読み書き可能領域を含む、上 記(1)〜(; 14)の何れかに記載の情報記録媒体。
(16)読み取り専用領域におけるトラックピッチが 0. 35 111であり、読み書き可能領 域におけるトラックピッチが 0. 32 111である、上記(15)に記載の情報記録媒体。
(17)読み取り専用領域における規格化プッシュプル信号振幅を NPP1とし、読み書 き可能領域における未記録状態での規格化プッシュプル信号振幅を NPP2とし、読 み書き可能領域における記録後の規格化プッシュプル信号振幅を NPP2aとし、さら に、各々の最大値の中で最も大きい値を NPPAL とし、各々の最小値の中で最も
max
小さい値を NPPAL としたとき、
min
NPPAL /NPPAL ≤ 3である、
max mm
上記(15)又は(16)に記載の情報記録媒体。
(18) NPPAL /NPPAL ≤ 2である、上記(17)に記載の情報記録媒体。
max mm
(19)読み取り専用領域に対しては第一のゥォブル変調方式が適用され、読み書き 可能領域に対しては第一のゥォブル変調方式とは異なった第二のゥォブル変調方式 が適用され、かつ、記録領域遷移区間 Sxにおいては読み書き可能領域と同じゥォブ ル変調方式が適用されている、上記(15)〜(; 18)の何れかに記載の情報記録媒体。
(20)記録光源と、
所定のフォーマットに基づいた所定の偏向信号を発生させる偏向信号生成機構と 上記偏向信号生成機構が生成した偏向信号に基づいて、上記記録光源が発生す る記録光を偏向させる記録光偏向機構と、
上記記録光を原盤上に集光させる集光機構と、
上記原盤を載置し回転させるための回転機構と、
上記集光機構を上記原盤の半径方向に相対的に移動させる半径移動機構と、 トラックピッチの異なる複数の記録領域を生成できるように、予め設定した値に基づ いて、上記回転機構の回転速度と、上記半径移動機構の移動速度と、上記集光機 構の位置とを制御する制御機構と、
上記記録光の強度を調節する記録光強度調節機構と、
予め設定した値に基づ!/、て、上記記録光の強度を単調増加又は単調減少でスィ ープさせる、記録光強度スイープ機構と、を備えたことを特徴とする原盤露光装置。
(21)予め設定した特定の半径位置に集光機構が達したことを検出して、上記記録 光強度スイープ機構による記録光強度のスイープを開始及び/又は終了する機構 を備えた、上記(20)に記載の原盤露光装置。
(22)予め設定した特定のアドレスを上記偏向信号生成機構が出力したことを検出し て、上記記録光強度スイープ機構による記録光強度のスイープを開始及び/又は終 了する機構を備えた、上記(20)に記載の原盤露光装置。
(23)予め設定した特定の半径位置に集光機構が達したことを検出して、上記記録 光強度スイープ機構による記録光強度のスイープを開始し、かつ、予め設定した所 定の時間経過後に上記スイープを終了する機構を備えた、上記(20)に記載の原盤 露光装 1#。
(24)予め設定した特定のアドレスを上記偏向信号生成機構が出力したことを検出し て、上記記録光強度スイープ機構による記録光強度のスイープを開始し、かつ、予 め設定した所定の時間経過後に上記スイープを終了する機構を備えた、上記(20) に記載の原盤露光装置。
(25)記録光源と、
所定のフォーマットに基づいた所定の偏向信号を発生させる偏向信号生成機構と 上記偏向信号生成機構が生成した偏向信号に基づいて上記記録光源が発生する 記録光を偏向させる記録光偏向機構と、
上記記録光を原盤上に集光させる集光機構と、
上記原盤を載置し回転させるための回転機構と、
上記集光機構を上記原盤の半径方向に相対的に移動させる半径移動機構と、 トラックピッチの異なる複数の記録領域を生成できるように、予め設定した値に基づ いて、上記回転機構の回転速度と、上記半径移動機構の移動速度と、上記集光機 構の位置とを制御する制御機構と、
上記集光機構の位置と、予め設定した特定の半径値における記録光強度設定値と に基づいて、記録光強度を補間して調節する記録光強度調節機構と、
上記記録光強度調節動作を繰り返し行なう繰り返し動作機構とを少なくとも備え、 上記繰り返し動作機構の 1サイクルに要する動作時間が、 100msec以下である、こ とを特徴とする原盤露光装置。
発明の効果
[0033] 本発明の情報記録媒体は、トラックピッチ及び溝形状が異なる複数の記録領域を 有するとともに、安定したフォーカスサーボ及びトラッキングサーボを実現することが できる。
また、本発明の原盤露光装置によれば、上記の情報記録媒体を効率的に製造する こと力 Sでさる。
図面の簡単な説明
[0034] [図 1] (a) , (b)は何れも、本発明の情報記録媒体が有する層構成の例を示す、模式 的な部分断面図である。
[図 2]本発明の情報記録媒体における第一の記録領域 Rl、第二の記録領域 R2、及 び記録領域遷移区間 Sxの関係を示す図である。第一の記録領域 Rl、第二の記録 領域 R2、及び記録領域遷移区間 Sxの各々における、隣接する二つの溝の断面形 状の例を、模式的に示している。
[図 3]本発明の情報記録媒体の一例である記録型 Blu— rayディスクにおける記録領 域の配置を模式的に示す上方視図である。
[図 4] (a)〜(i)は、本発明の情報記録媒体を製造するためのスタンパの製造手順の 一例を示す図である。
[図 5]本発明の一実施形態に係る原盤露光装置の基本構成の例を模式的に示す機 能ブロック図である。
園 6]本発明の一実施形態に係る原盤露光装置の第 2の態様において、連続的な補 間により得られる理論的な露光強度と集光機構の半径値との関係を表わすグラフで ある。
園 7]本発明の一実施形態に係る原盤露光装置の第 2の態様において、補間動作の 繰り返しによって得られる実際の露光強度と集光機構の半径値との関係を表わすグ ラフである。
[図 8] (a)は、各実施例及び各比較例の情報記録媒体の評価に用いた情報再生装 置(以下「評価用情報再生装置」という。 )の要部の構成を示す機能ブロック図である 。 (b)は、(a)に示す評価用情報再生装置が有する 4分割フォトダイオードの構成を 示す図である。
園 9]実施例 1の情報記録媒体における規格化プッシュプル信号振幅 NPP及び和信 号 SUMの、情報記録媒体約 2分の一周分の波形を示す図である。
園 10]実施例 2の情報記録媒体における規格化プッシュプル信号振幅 NPP及び和 信号 SUMの、情報記録媒体約 2分の一周分の波形を示す図である。
園 11]実施例 3の情報記録媒体における規格化プッシュプル信号振幅 NPP及び和 信号 SUMの、情報記録媒体約 2分の一周分の波形を示す図である。
園 12]比較例 1の情報記録媒体における規格化プッシュプル信号振幅 NPP及び和 信号 SUMの、情報記録媒体約 2分の一周分の波形を示す図である。
園 13]比較例 2の情報記録媒体における規格化プッシュプル信号振幅 NPP及び和 信号 SUMの、情報記録媒体約 2分の一周分の波形を示す図である。
園 14]実施例 1〜7及び比較例 1 , 2の情報記録媒体について得られた Lg/Ltpと L
L/Ltpとの関係をプロットした図である。
[図 15] (a)〜(c)はそれぞれ、規格化プッシュプル信号振幅(グルーブトラックに沿つ た方向に検出面が分割された二分割フォトディテクターの各々の出力の差信号)と、 トラックピッチ、溝深さ及び溝幅との相関関係を表わすグラフである。 園 16]—般的な記録型 Blu— rayディスクにおけるコントロールデータ領域、ュ データ領域、及びトラックピッチ遷移区間 Stpの配置を示す図である。
符号の説明
100, 200 情報記録媒体
101 , 201 基板
102 反射層
103 記録層
104, 207 カノ 一層
105, 208 レーザー光
202 第 1の反射層
203 第 1の記録層
204 中間層
205 第 2の反射層
206 第 2の記録層
300 記録型 Blu— rayディスク
301 BCA領域
302 PIC領域
303 ユーザーデータ領域
501 原盤用基板
502 フォトレジスト
503 原盤
503' 凹凸原盤
504 パターン
505 導電層
506 ファザ一層(ファザースタンパ、ファザ一)
507 剥離層
508 マザ一層(マザースタンパ、マザ一)
600 原盤露光装置 601 フォーマッター(偏向信号生成機構)
602 レーザー光源(記録光源)
603 パワー調整素子 (記録光強度調節機構)
604 EOD素子(記録光偏向機構)
605 対物レンズ (集光機構)
606 ターンテーブル(回転機構)
607 スライダー(半径移動機構)
608 ミラー
609 コントローラー(制御機構)
900 評価用情報再生装置
901 4分割フォトダイオード
902 プッシュプル信号生成回路
903 和信号生成回路
904 規格化プッシュプル信号生成回路
905 合成回路
906 評価対象の情報記録媒体
発明を実施するための最良の形態
[0036] 以下、本発明を実施するための最良の形態(以下「発明の実施の形態」という。)に ついて、図面を参照して説明する。
[0037] 但し、本発明は以下の発明の実施の形態に限定されるものではなぐその要旨の 範囲内において種々変形して実施することができる。
なお、本発明は、イングルーブ型の Low— To— High記録型 Blu— rayディスクに 対して適用することが好ましいので、以下の発明の実施の形態の説明では、情報記 録媒体として適宜、イングルーブ型の Low— To— High記録型 Blu— rayディスクを 例にとって説明する。但し、本発明は特定の情報記録媒体にのみ適用されるもので はなぐ種々の情報記録媒体 (例えば、オングループ型等の記録型 Blu— rayデイス クゃ、 DVD (Digital Versatile Disc)等の Blu— rayディスク以外の情報記録媒体等 )にも適用可能である。 [0038] [I.情報記録媒体]
Cl- 1.基本構成〕
本発明の情報記録媒体は、凹凸パターンにより形成された記録トラックを有する情 報記録媒体であって、通常は円盤状 (ディスク状)の基板と、基板上に形成された記 録層とを少なくとも備えてなる。
[0039] 基板は、従来公知の材料を適宜使用することができる力 情報記録媒体がある程 度の剛性を有するよう、形状安定性を備えることが望ましい。即ち、機械的安定性が 高ぐ剛性が大きいことが好ましい。
このような材料としては、例えばアクリル系樹脂、メタクリル系樹脂、ポリカーボネート 樹脂、ポリオレフイン系樹脂(特に非晶質ポリオレフイン)、ポリエステル系樹脂、ポリス チレン樹脂、エポキシ樹脂等の樹脂や、ガラス等を用いることができる。これらの材料 は何れか一種を単独で用いてもよぐ二種以上を任意の組み合わせ及び比率で併 用してもよい。中でも、成形性等の高生産性、コスト、低吸湿性、形状安定性等の点 からは、基板の材料としてはポリカーボネートが好ましい。
基板の厚みとしては、通常 0. 5mm以上、また、通常 1. 2mm以下とするのが好ま しい。
[0040] 記録層は、レーザー光の照射によりその物理特性あるいは形状等が変化し、反射 率等の光学特性の変化による情報の記録再生が可能な従来公知の材料を適宜使 用すること力 Sできる。このような材料としては、有機色素材料、相変化材料を始めとす る無機材料等が挙げられる。
有機色素材料としては、例えば大環状ァザァヌレン系色素(フタロシアニン色素、ナ フタロシアニン色素、ポルフィリン色素等)、ピロメテン系色素、ポリメチン系色素(シァ ニン色素、メロシアニン色素、スクヮリリウム色素等)、アントラキノン系色素、ァズレニ ゥム系色素、含金属ァゾ系色素、含金属インドア二リン系色素等が挙げられる。
無機材料としては、例えば GeTe、 GeSbTe等のカルコゲン系合金膜; Si/Ge、 A1 /Sb等の 2層膜; BiGeN、 SnNbN等の(部分)窒化膜; TeO、 BiFO等の(部分)酸 化膜等が用いられる。これらの材料は何れか一種を単独で用いてもよぐ二種以上を 任意の組み合わせ及び比率で併用してもよ!/、。 記録層の膜厚は、通常 lnm以上、また、通常 lOOnm以下とされ、好ましくは、 10 〜90nmでめる。
[0041] ここで、記録層の組成及び膜厚は、少なくとも第一の記録領域 R1と、第二の記録 領域 R2と、記録領域遷移区間 Sxと、において同一であることが好ましい。しかし、製 造プロセスや溝形状に起因した不可避的な記録層の組成及び膜厚の分布の不均一 を禁止するものではない。即ち、例えば記録層として有機色素材料を一般的なスピン コート法を用いて塗布する場合、溝形状の相違する領域あるいはディスクの内外周 にお!/、て記録層膜厚が若干異なる場合が生じるが、安定したフォーカスサーボ及び トラッキングサーボが実現出来る範囲であれば許容される。
[0042] また、本発明の情報記録媒体は、イングルーブ型の Low— To— High記録型の B1 u— rayディスクに対して適用されることが好ましい。即ち、記録層の組成や膜厚は、 記録マーク部分における反射率が、未記録部分の反射率よりも高い構成であるのが 好ましい。なぜなら、前記したように、イングルーブ型の Low— ToHigh記録型の Blu rayディスクは、規格化プッシュプル信号振幅の不連続に起因するトラッキングサ ーボ不良等の不具合が出易いからである。しかし、本発明の情報記録媒体は、 High To— Low記録型の Blu— rayディスクなどに適用してもよく、記録層の組成や膜厚 は任意に選択可能である。
[0043] さらに、本発明の情報記録媒体は、公知の記録及び/又は再生装置を用いて、記 録又は再生のためのレーザー光を記録層に対して照射することにより、記録層にデ ータを記録し、或いは記録層に記録されたデータを再生することができる。
[0044] なお、本発明の情報記録媒体は、その他の層を有していてもよい。その他の層の例 としては、反射層、カバー層、中間層、界面層等が挙げられる。
[0045] 反射層は、記録再生に使用されるレーザー光に対する一定以上の反射率を有する ことが必要とされ、従来公知の材料を適宜使用することができる。このような材料とし ては、例えば Al、 Ag、 Au等の金属若しくはこれら金属の合金が用いられる。これら の材料は何れか一種を単独で用いてもよぐ二種以上を任意の組み合わせ及び比 率で併用してもよい。
反射層の膜厚は、通常 3nm以上、また、通常 400nm以下であり、好ましくは、 50 〜300nmである。
[0046] カバー層には、記録再生に使用されるレーザー光に対して透明で複屈折の少ない 材料が選ばれる。通常は、プラスチック板 (シートと呼ぶ)を接着剤で貼り合せる力、、力 バー層の溶液を塗布後、光、放射線、または熱等で硬化して形成する。これらの材 料は何れか一種を単独で用いてもよぐ二種以上を任意の組み合わせ及び比率で 併用してもよい。
カバー層の膜厚は、通常 10 m以上、また、通常 300 m以下であり、好ましくは 50〜; 150 111である。 Blu— rayディスクにおいては、通常、カバー層の膜厚は、 10 0〃111程度であり、好ましくは 97〜; 103〃 mである。
[0047] 中間層は、主に記録層を複数有する積層型情報記録媒体にお!/、て用いられる。記 録再生に使用されるレーザー光に対してある程度の光透過性を有する必要があるほ 力、、凹凸により溝やピットが形成可能である必要がある。
中間層の材料としては、例えば、熱可塑性樹脂、熱硬化性樹脂、電子線硬化性樹 脂、紫外線硬化性樹脂 (遅延硬化型を含む)等の樹脂材料を挙げることができる。こ れらの材料は何れか一種を単独で用いてもよぐ二種以上を任意の組み合わせ及び 比率で併用してもよい。
中間層の膜厚は、通常 5 m以上、また、通常 100 m以下であり、好ましくは 10 ~70 μ mである。
[0048] 界面層は、記録層とカバー層との界面、記録層と反射層との界面等に設けられ、相 互の層の拡散防止や光学特性の調整等の機能を有する。
界面層の膜厚は、通常 lnm以上、また、通常 50nm以下であり、好ましくは 3〜; 15η mである。
[0049] 本発明の情報記録媒体における、これらの層の数や組み合わせ、積層順等に制限 はなぐ任意である。
[0050] 本発明の情報記録媒体が有する具体的な層構成の例について、図 1 (a) ,図 1 (b) を用いて説明する。ここで、図 1 (a) ,図 1 (b)は何れも、本発明の情報記録媒体が有 する層構成の例を示す、模式的な部分断面図である。
[0051] 具体的には、図 1 (a)に示す情報記録媒体 100は、単層型の情報記録媒体の一例 であり、基板 101、反射層 102、記録層 103、カバー層 104が、この順に積層されて いる。また、記録又は再生のためのレーザー光 105を、カバー層 104側から記録層 1 03に照射することにより、記録層 103にデータを記録し、或いは記録層 103に記録さ れたデータを再生することができる。
[0052] また、図 1 (b)に示す情報記録媒体 200は、二層型の情報記録媒体であり、基板 2 01、第 1の反射層 202、第 1の記録層 203、中間層 204、第 2の反射層 205、第 2の 記録層 206、カバー層 207が、この順に積層されている。また、記録又は再生のため のレーザー光 208を、カバー層 207側から第 1の記録層 203又は第 2の記録層 206 に照射することにより、第 1の記録層 203又は第 2の記録層 206にデータを記録し、 或いは第 1の記録層 203又は第 2の記録層 206に記録されたデータを再生すること ができる。
[0053] 以下、図 1 (a) ,図 1 (b)に示す層構成を例として説明を行なう場合があるが、これら 図 1 (a) ,図 1 (b)に示す層構成は、あくまでも本発明の情報記録媒体の層構成の一 例である。本発明の情報記録媒体はこれらの層構成に制限されるものではなぐその 他の層構成を有していてもよい。例えば、図 1 (a) ,図 1 (b)に示す層構成のうち一部 の層を削除したり、他の層を追加したり、二つ以上の層を一層として形成したり、積層 順を変更したり、三層以上の記録層を設けたり、その他任意の変更を加えることが可 能である。
[0054] 本発明の情報記録媒体は、その何れかの層(通常は基板や中間層等)に、凹凸パ ターンにより具現化された螺旋状のトラックを有する。このトラックを基準として、記録 のためのレーザー光を記録層に照射することにより、トラックに沿ってデータが記録さ れる。また、このトラックを基準として、再生のためのレーザー光を記録層に照射する ことにより、トラックに沿って記録されたデータを再生することができる。
[0055] 具体的に、図 1 (a)に示す一層型の情報記録媒体においては、基板 101上にトラッ ク(グルーブトラック) GT1が形成され、反射層 102、記録層 103、カバー層 104がそ の上に積層形成されて!/、る。
[0056] また、図 1 (b)に示す二層型の情報記録媒体においては、基板 201上にトラック(グ ルーブトラック) GT21が形成され、第 1の反射層 202、第 1の記録層 203、中間層 20 4がその上に積層されている。また、中間層 204の第 1の記録層 203とは反対側の面 にトラック(グルーブトラック) GT22が形成され、第 2の反射層 205、第 2の記録層 20 6、カバー層 207がその上に積層されている。
[0057] 以下の記載では、原則として、図 1 (a) ,図 1 (b)に示すように、基板又は中間層にト ラックが形成される場合を例として説明を行なう。しかし、本発明の情報記録媒体に おいてトラックが形成される層は、基板又は中間層に制限されるものではない。
[0058] また、トラックは情報記録媒体のレーザー光入射側から見た場合における凹凸バタ 一ンの凹部によって形成されてもよぐ凸部によって形成されてもよぐ凸部と凹部の 双方によって形成されてもよい。但し、特に有機色素材料を記録層として有する膜面 入射方式の情報記録媒体においては、レーザー光入射側から見た場合における凹 凸パターンの凹部によってトラックが形成されることが好ましい。この様な、レーザー 光入射側から見た場合における凹凸パターンの凹部によって形成されるトラックを、 以下の記載では「グルーブトラック」と呼ぶ。図 1 (a) ,図 1 (b)に示すトラック GT1、 G T21、 GT22は、何れもグルーブトラックの例である。
[0059] 以下の記載では特に断り書きのない限り、図 1 (a) ,図 1 (b)に示すように、基板や 中間層等の溝(凹部)によって形成されるグルーブトラックを前提として説明を行なう 力 S、本発明の情報記録媒体が有するトラックはグルーブトラックに制限されるものでは ない。
[0060] また、トラックが溝によって形成される場合、その溝の断面形状 (情報記録媒体の厚 み方向における断面形状)は制限されず、任意である。例としては、矩形、台形、半 円形、半楕円形等が挙げられる。
[0061] なお、本発明では、トラックを形成する溝の幅を「溝幅」と定義する。なお、トラックを 形成する溝の幅が情報記録媒体の厚み方向の位置によって異なる場合、例えば、ト ラックの断面形状が台形の場合等には、溝の最大深さの 2分の 1の位置における幅 をもって「溝幅」とすることができる。
[0062] また、本発明では、トラックを形成する溝の深さを、「溝深さ」と定義する。なお、トラッ クを形成する溝の深さが情報記録媒体の半径方向の位置によって異なる場合 (例え ば、溝の断面形状が半円の場合等)には、その深さの最大値をもって「溝深さ」とする こと力 Sでさる。
[0063] なお、トラックを形成する溝の形状は、主にこれらの「溝幅」及び「溝深さ」によって規 定される。以下の記載では、情報記録媒体の溝幅及び/又は溝深さを、「溝形状」と して総称する場合がある。
[0064] [1- 2.記録領域及び記録領域遷移区間 Sx〕
次いで、本発明の情報記録媒体の記録トラックが有する第一の記録領域 Rl、第二 の記録領域 R2、及び記録領域遷移区間 Sxの関係について、図 2を参照しながら説 明する。なお、図 2は、本発明の情報記録媒体における第一の記録領域 Rl、第二の 記録領域 R2、及び記録領域遷移区間 Sxの関係を説明するための図であり、第一の 記録領域 Rl、第二の記録領域 R2、及び記録領域遷移区間 Sxの各々における、隣 接する二つの溝の断面形状の例を、模式的に示している。
[0065] 本発明の情報記録媒体の記録トラックは、図 2に示すように、第一の記録領域 R1と 、第二の記録領域 R2とを少なくとも備える。
本発明の情報記録媒体の記録トラックは、第一の記録領域 R1におけるトラックピッ チ tpl、溝幅 wl、及び溝深さ dl、並びに第二の記録領域 R2におけるトラックピッチ t p2、溝幅 w2、及び溝深さ d2が、下記式(1)と、下記の式(2)及び/又は式(3)とを 満たす。
0 < I tpl -tp2 I (1)
0 < I wl -w2 I (2)
0 < I dl -d2 I (3)
[0066] 式(1)は、第一の記録領域 Rlにおけるトラックピッチ tplと、第二の記録領域 R2に おけるトラックピッチ tp2とが、互いに異なった値を有することを表わしている。
また、式(2)は、第一の記録領域 R1における溝幅 wlと、第二の記録領域 R2にお ける溝幅 w2と力 互いに異なった値を有することを表わして!/、る。
また、式(3)は、第一の記録領域 R1における溝深さ dlと、第二の記録領域 R2にお ける溝深さ d2とが、互いに異なった値を有することを表わしている。
[0067] なお、式(2)及び式(3)は、何れか一方のみを満たしていてもよぐ両方を満たして いてもよい。 即ち、第一の記録領域 Rlの溝幅 wlと第二の記録領域 R2の溝幅 w2とが異なると 共に、第一の記録領域 R1の溝深さ dlと第二の記録領域 R2の溝深さ d2とが異なつ ていてもよい。また、第一の記録領域 R1の溝幅 wlと第二の記録領域 R2の溝幅 w2 とが異なる一方で、第一の記録領域 R1の溝深さ dlと第二の記録領域 R2の溝深さ d 2とが同一であってもよい。さらに、第一の記録領域 R1の溝幅 wlと第二の記録領域 R2の溝幅 w2とが同一である一方で、第一の記録領域 R 1の溝深さ d 1と第二の記録 領域 R2の溝深さ d2とが異なって!/、てもよ!/、。
図 2では、第一の記録領域 R1の溝幅 wlと第二の記録領域 R2の溝幅 w2とが異な ると共に、第一の記録領域 R1の溝深さ dlと第二の記録領域 R2の溝深さ d2とが異な る場合を示して!/、るが、本発明はこれに制限されるものではなレ、。
[0068] なお、第一の記録領域 R1におけるトラックピッチ tpl、溝幅 wl、及び溝深さ dl、並 びに第二の記録領域 R2におけるトラックピッチ tp2、溝幅 w2、及び溝深さ d2は、何 れも通常は各記録領域 Rl , R2の全体に亘つて略同一である。
[0069] 更に、本発明の情報記録媒体は、図 2に示すように、上記の第一の記録領域 R1及 び第二の記録領域 R2の間に配置された記録領域遷移区間 Sxを備える。即ち、第一 の記録領域 R1と第二の記録領域 R2とは物理的に分離しており、これら第一の記録 領域 R1と第二の記録領域 R2との間に記録領域遷移区間 Sxが配置される。
この記録領域遷移区間 Sxは、トラックピッチが tplから tp2へと遷移するトラックピッ チ遷移区間 Stpと、溝幅が wlから w2へと遷移し、及び/又は、溝深さが dlから d2 へと遷移する溝形状遷移区間 Sgとを備えている。
[0070] ここで、トラックピッチ遷移区間 Stpとは、記録領域 R1と R2との間に存在し、トラック に沿って情報記録媒体を見た場合に、トラックピッチが tplから tp2に徐々に変化して いる領域である。
また、溝形状遷移区間 Sgとは、トラックピッチ遷移区間 Stpと同様、記録領域 R1と R 2との間に存在し、トラックに沿って情報記録媒体を見た場合に、溝幅が wlから w2 へと徐々に変化している、及び/又は、溝深さが dlから d2へと徐々に変化している 領域のことである。
[0071] 即ち、第一の記録領域 R1の溝幅 wlと第二の記録領域 R2の溝幅 w2とが同一であ る場合には、溝形状遷移区間 Sgの溝幅は変化せず、 wl及び w2と同一であって、溝 深さのみが dlから d2へと徐々に変化していることになる。また、第一の記録領域 R1 の溝深さ dlと第二の記録領域 R2の溝深さ d2とが同一である場合には、溝形状遷移 区間 Sgの溝深さは変化せず、 dl及び d2と同一であって、溝幅のみが wlから w2へ と徐々に変化していることになる。
[0072] 更に、これらのトラックピッチ遷移区間 Stpと溝形状遷移区間 Sgとは、少なくとも一 部の領域 SLを共有して!/、る。
ここで、記録領域遷移区間 Sxとトラックピッチ遷移区間 Stp、溝形状遷移区間 Sgの 関係にっレ、ては、例えば以下の(1)〜(3)の態様が考えられる。
[0073] (1)トラックピッチ遷移区間 Stp及び溝形状遷移区間 Sgが完全に一致し、互いに全 領域 SLを共有している場合、記録領域遷移区間 Sxも両者に一致する。
(2)トラックピッチ遷移区間 Stp及び溝形状遷移区間 Sgがー部領域 SLを共有し、 それぞれ単独で存在する領域を有する場合、記録領域遷移区間 Sxは前記共有領 域 SL及びそれぞれの単独領域をあわせた領域を指す。
(3)トラックピッチ遷移区間 Stp及び溝形状遷移区間 Sgのうち、何れか一方の(広 V、方の)記録領域に他方の(狭!/、方の)記録領域が完全に含まれる場合、狭!/、方の 記録領域の全てとなる SLが共有されることとなる一方、記録領域遷移区間 Sxは両者 の領域のうち広レ、方の領域と一致する。
[0074] ここで、重要な点は、トラックピッチ遷移区間 Stpと溝形状遷移区間 Sgが少なくとも 一部領域 SLを共有していることである。即ち、両領域が完全に分離した態様は、本 発明の対象には含まれない。
[0075] なお、図 2では、明確化のために、記録領域遷移区間 Sxの溝断面形状として、トラ ックピッチ遷移区間 Stpと溝形状遷移区間 Sgとが共有する領域 SLの溝断面形状を 示している。即ち、トラックピッチが tplと tp2との間であり、溝幅が wlと w2との間であ り、溝深さが dlと d2との間である場合を模式的に示したものである。上記のように、記 録領域遷移区間 Sxの溝断面形状はこれに限られるものではない。
[0076] ここで、溝形状とは、溝幅や溝形状に代表されるように記録媒体に垂直な断面にお ける個々の溝の幾何学的な形状であって、ゥォブル変調方法によって変化する溝自 体の半径方向への蛇行のことではない。従って、溝形状の遷移とは、溝自体の半径 方向への蛇行量の遷移を意味するものではなぐ両者は独立して制御可能である。 ただし、溝形状遷移区間 Sg内におけるゥォブル変調方法の変化や、溝自体の半径 方向への蛇行量の変化を禁止するものではな!/、。媒体の特性上問題がな!/、のであ れば、例えば溝形状遷移区間 Sg内でゥォブル変調方法が変化して!/、ても差し支え ない。
[0077] また、溝形状の急激な変化を抑えるためには、溝形状遷移区間 Sgのトラックに沿つ た長さ Lgが、ディスク状の情報記録媒体におけるトラック一周分以上であることが好 ましい。
[0078] また、トラックピッチ遷移区間 Stpにおけるトラックピッチの変化の状態は、トラックに 沿って単調に増加或いは減少することが、規格化プッシュプル信号振幅の急激な変 動を抑える上で好ましい。
また、トラックピッチ遷移区間 Stpにおいて、トラックピッチは連続的に変化している ことが好ましい。但し、実用上差し支えない程度に規格化プッシュプル信号振幅の変 動が抑えられて!/、れば、トラックピッチの変化が不連続であってもよレ、。
[0079] また、溝形状遷移区間 Sgにおける溝形状の変化の状態は、溝幅及び/又は溝深 さがトラックに沿って単調に増加或いは減少することが、規格化プッシュプル信号振 幅の急激な変動を抑える上で好ましレ、。
また、溝形状遷移区間 Sgにおいて、溝形状は連続的に変化していることが好まし い。但し、実用上差し支えない程度に規格化プッシュプル信号振幅の変動が抑えら れて!/、れば、溝形状の変化が不連続であってもよ!/、。
[0080] 即ち、上記のように溝形状の変化をトラックに沿って単調に増加あるいは減少させ ることにより、記録領域 R1と記録領域 R2における未記録状態での溝部反射率の最 大値を Rgv とし、最小値を Rgv とした場合に、記録領域遷移区間 Sx内の全領域 max mm
において、未記録状態での溝部反射率 Rgvが
Rgv ^ Rgv ^ Rgv
mm max
を満たす可能性が高まる。遷移領域遷移区間 Sx内の全領域にお!/、て未記録状態で の溝部反射率 Rgvが上記式を満たせば、規格化プッシュプル信号振幅の変動を抑 えることをより確実なものとすることが出来る。
[0081] また、トラックピッチ遷移区間 Stpのトラックに沿った長さ Ltpと、溝形状遷移区間 Sg のトラックに沿った長さ Lgとの比 Lg/Ltpが、通常 0· 2以上、中でも 0· 4以上、更に は 0. 6以上、また、通常 2. 5以下という関係を満たすように、 Ltp及び Lgの値を設定 することが好ましい。
[0082] 更に、トラックピッチ遷移区間 Stpと溝形状遷移区間 Sgとが共有する領域 SLのトラ ックに沿った長さを LLとした時、 LLと Ltpとの比 LL/Ltp力 通常 0· 1以上、中でも 0. 2以上、また、通常 1. 0以下という関係を満たすように、 LL及び Ltpの値を設定す ることが好ましい。
[0083] Lg、 Ltp、 LLの値を上記範囲内に設定することで、急激な規格化プッシュプル信 号振幅の変化を抑えることができる。さらに、記録領域 Rl , R2間に存在する記録領 域遷移区間 Sxの全領域にお!/、て、規格化プッシュプル信号振幅を所定の範囲に収 めることが可能となり、安定したフォーカスサーボ及びトラッキングサーボ状態を実現 すること力 Sでさる。
ここで、所定の範囲とは、必要に応じてフォーカスサーボ回路およびトラッキングサ ーボ回路に微調整を加えるだけで、十分に良好なフォーカスサーボ特性およびトラッ キングサーボ特性が実現できる範囲のことである。
[0084] 即ち、 Lg、 Ltp、 LLの値を上記範囲内に設定することで、記録領域 R1と記録領域 R2における未記録状態での規格化プッシュプル信号振幅の最大値を NPP とし、 max 規格化プッシュプル信号振幅の最小値を NPP としたとき、記録領域遷移区間 Sx内 mm
の全領域において、規格化プッシュプル信号振幅 NPPが常に以下の式(6)を満た す可能性が高まる。
NPP ≤ NPP ≤ NPP (6)
mm max
[0085] 即ち、記録領域遷移区間 Sx内の規格化プッシュプル信号振幅を、記録領域 R1及 び記録領域 R2における規格化プッシュプル信号振幅の範囲に常に収めることがで きる。従って、フォーカスサーボ回路及びトラッキングサーボ回路を特に調整すること なぐ安定したフォーカスサーボ及びトラッキングサーボ状態を実現することができ、 好適である。 [0086] 本発明者は、本発明の情報記録媒体によって、安定したフォーカスサーボ及びトラ ッキングサーボ状態を実現できる理由を、以下のように推定している。
[0087] 即ち、トラックピッチの異なる 2つの記録領域 R1 ,記録領域 R2の境界部において、 トラックピッチを徐々に変化させることにより、即ち、トラックピッチ遷移区間 Stpを設け ることにより、トラックピッチの相違に由来する規格化プッシュプル信号振幅の急峻な 変化を抑制することができる。
[0088] また、トラックピッチの異なる 2つの記録領域 R1 ,記録領域 R2における溝形状を適 宜変更することにより、両記録領域 R1 ,記録領域 R2での規格化プッシュプル信号振 幅の差を小さくすることが可能となり、安定したフォーカスサーボ及びトラッキングサー ボ状態を実現することができる。
[0089] しかしながら、溝形状の異なる 2つの記録領域 R1 ,記録領域 R2の境界部において 、溝形状が急激に変化すると、規格化プッシュプル信号振幅も急峻に変化してしまい 、フォーカスサーボ及びトラッキングサーボに悪影響を与えてしまう。
[0090] そこで、本発明では、溝形状遷移区間 Sgを少なくともトラックピッチ遷移区間 Stpと 一部領域を共有するように設けることにより、上記溝形状の変化に伴う規格化プッシ ュプル信号振幅の急峻な変化を抑制することが可能となる。
[0091] 本発明の情報記録媒体は、上記の第一の記録領域 Rl、第二の記録領域 R2及び 記録領域遷移区間 Sxの組み合わせを、少なくとも一組有していればよいが、ニ組以 上有していてもよい。このように、第一の記録領域 Rl、第二の記録領域 R2及び記録 領域遷移区間 Sxの組み合わせが二組以上存在する場合には、一の組み合わせに おける第一の記録領域 R1と、他の組み合わせにおける第二の記録領域 R2とが、同 一の記録領域であってもよレ、。
[0092] また、本発明の情報記録媒体にお!/、ては、第一の記録領域 R1、第二の記録領域 R2及び記録領域遷移区間 Sxの全て力 S、物理的に連続した溝によって形成されるこ とが好ましい。物理的に連続した溝とは、内周から外周に渡ってトラックに沿って溝を 見た場合、いずれの場所においても溝が断裂されていないということである。但し、規 格化プッシュプル信号振幅及び記録再生特性に影響を与えない程度であれば、溝 が断続的である場合を排除するものではなぐその構成は任意に選択できる。 [0093] また、本発明の情報記録媒体がディスク状の場合は、第一の記録領域 R1及び第 二の記録領域 R2は、何れがディスクの内周側に存在し、何れがディスクの外周側に 存在してもよい。通常は、上記の第一の記録領域 R1及び第二の記録領域 R2の関係 を満たす二つの記録領域のうち、ディスクの内周側に存在する記録領域を第一の記 録領域 R1とし、ディスクの外周側に存在する記録領域を第二の記録領域 R2とする。
[0094] ここで、第一の記録領域の内周側に、第一の記録領域 R1におけるトラックピッチ tp 1及び第二の記録領域 R2におけるトラックピッチ tp2のいずれよりも広いトラックピッチ tp3を有した第三の記録領域 R3が配置された態様をとつてもよ!/、。第三の記録領域 R3にお!/、ては、溝の蛇行による情報の記録がなされて!/、なくてもょレ、。
[0095] また、第三の記録領域 R3と第一の記録領域 R1の間に、トラックピッチが tp3から tp 1へと遷移するトラックピッチ遷移区間 Stp 'が配置されていてもよい。
これらの態様を記録型 Blu— rayディスクに適用した場合の例に関しては、以下で 詳細に述べる。
[0096] [1- 3.記録型 Blu— rayディスクに適用した例〕
次に、本発明の情報記録媒体を記録型 Blu— rayディスクに適用した場合の構成 について、図 3を用いて説明する。なお、図 3は本発明の情報記録媒体の一例である 記録型 Blu— rayディスクにおける記録領域の配置を示す模式的な上方視図である
[0097] 図 3に示す記録型 Blu— rayディスク 300は、トラックピッチの異なる三つの記録領 域を有している。
[0098] まず、ディスクの最内周には、 BCA (Burst Cutting Area)領域 301が形成されて いる。 BCA領域 301のトラックピッチは略 2· O ^ mであり、ディスク中心からの半径値 が約 21mmから約 22. 2mmまでの区間に亘つて形成される。 BCA領域 301にはバ 一コード状の低密度の記録がなされ、情報記録媒体の各種属性情報が格納される。
BCA領域には、通常、溝の蛇行による情報の記録がなされていない。
[0099] BCA領域 301の外側には、 PIC (Permanent Information and Control data)領 域 (これを「コントロールデータ領域」と呼ぶ場合もある。)302が形成されている。 PIC 領域 302は、トラックピッチが略 0· 35 111であり、ディスク中心からの半径値が約 22 . 2mmから約 23. 2mmまでの区間に亘つて形成される。 PIC領域 302には、例えば 最適記録パワーやメディア製造者情報等が格納され、読取専用とされる。
[0100] PIC領域 302の外側には、ユーザーデータ領域 303が形成されている。ユーザー データ領域 303は、トラックピッチが略 0· 32 111であり、ディスク中心からの半径値 が約 23. 2mmから約 58. 5mmまでの区間に亘つて形成される。ユーザーデータ領 域 303にはデータの書き込みが可能であり、書き込まれたデータは読み取り可能とさ れる。
[0101] なお、 PIC領域 302及びユーザーデータ領域 303は、それぞれ所定の規格化プッ シュプル信号振幅が得られるように、その溝形状が調整されて!/、る。
PIC領域 302における?冓幅は 0. 01〃m以上カ好ましく、更に好ましくは 0. 07〃m 以上であり、 0. 25 m以下力 S好ましく、更に好ましくは 0· 13 m以下である。 PIC 領域 302における溝深さは 10nm以上が好ましぐ更に好ましくは 20nm以上であり、 50nm以下が好ましく、更に好ましくは 40nm以下である。
ユーザーデータ領域 303における溝幅は 0. l O ^ m以上が好ましぐ更に好ましく (ま 0. 17 111以上であり、 0. 28 in以下カ好ましく、更に好ましく (ま 0. 21 i m¾T である。ユーザーデータ領域 303における溝深さは 20nm以上が好ましぐ更に好ま しくは 30nm以上であり、 70nm以下が好ましぐ更に好ましくは 60nm以下である。
[0102] なお、 PIC領域 302とユーザーデータ領域 303とを接続するために、両領域 302, 303の間に保護領域を設けることが好まし!/、(図示せず)。
[0103] ここで、第一の記録領域 R1が、所定の情報を格納した読取専用領域である PIC領 域を含み、第二の記録領域 R2が、ユーザーデータを書き込み可能な読み書き可能 領域であるユーザーデータ領域を含むようにすることが好ましい。この態様では、記 録領域遷移区間 Sxが、保護領域に完全に包含される。即ち、 PIC領域のトラックピッ チ及び溝形状が、保護領域内において、ユーザーデータ領域のトラックピッチ及び 溝形状に遷移することを意味してレ、る。
第一の記録領域 R1と第二の記録領域 R2との溝形状、即ち溝幅 wl及び w2と、溝 深さ dl及び d2は、情報記録媒体に求められる記録再生特性や情報記録媒体の製 造プロセスなどによって、上記の通りそれぞれ適当な値が選択される。ここで、例えば Blu— rayディスクにお!/、ては、 PIC領域とユーザーデータ領域のトラックピッチが異 なった値とされており、両領域のトラックピッチの差に起因する規格化プッシュプル信 号振幅の差を両領域間で小さくする場合、溝幅を異なった値とするだけでなぐ溝深 さについても異なった値とすること力 製造プロセス上好ましい。なぜなら、例えば PI C領域における規格化プッシュプル信号振幅をユーザーデータ領域における規格化 プッシュプル信号振幅と同等程度にするためには、 PIC領域の溝幅をユーザーデー タ領域の溝幅よりも狭くしなければならない。しかし、 PIC領域の溝幅を狭くすることの みで対応しょうとすると、場合によっては PIC領域の溝幅が狭くなりすぎて原盤露光 装置の分解能の限界を超えてしまい、溝が正しく形成されな!、場合が発生する可能 性があるからである。この場合は、溝幅の変更とともに、 PIC領域の溝深さをユーザー データ領域の溝深さよりも浅くすることが効果的である。従って、第一の記録領域 R1 と第二の記録領域 R2との溝幅のみを異なった値として媒体を製造するよりも、溝幅と 同時に溝深さについても異なった値とした方が、情報記録媒体の製造上好ましい。
[0104] また、第三の記録領域 R3を、 BCA領域を含む領域とすることが好まし!/、。
PIC領域における規格化プッシュプル信号振幅を NPP1、ユーザーデータ領域に おける未記録状態での規格化プッシュプル信号振幅を NPP2、ユーザーデータ領域 における記録後の規格化プッシュプル信号振幅を NPP2a、さらに、各々の最大値の 中で最も大きい値を NPPAL 、各々の最小値の中で最も小さい値を NPPAL とし max mm たとき、
NPPAL /NPPAL ≤ 3
max mm
を満たすように溝形状及び記録層等の組成や膜厚を調整することが好ましい。即ち、 記録前後の!/、ずれにお!/、ても、 PIC領域及びユーザーデータ領域の両領域での規 格化プッシュプル信号振幅の値を一定の範囲に収めることが出来るので、安定した フォーカスサーボ及びトラッキングサーボ状態を実現することが出来る。
[0105] 中でも、
NPPAL /NPPAL ≤ 2
max mm
を満たすように溝形状及び記録層等の組成や膜厚を調整することが、さらに好ましい 。こうすることにより、より安定したフォーカスサーボ及びトラッキングサーボ状態を実 現することが出来る。
[0106] また、記録型 Blu— rayディスク 300においては、 BCA領域 301、 PIC領域 302、ュ 一ザ一データ領域 303の全てのトラックが連続したトラックとして形成されるとともに、 BCA領域 301と PIC領域 302との境界部、及び、 PIC領域 302とユーザーデータ領 域 303との境界部には各々、トラックピッチ遷移区間 Stpが設けられる(図 3では図示 を省略している。)。これらのトラックピッチ遷移区間 Stpでは、上記のように、トラックピ ツチが連続的に変化している。
[0107] 上記の記録型 Blu— rayディスク 300を本発明の情報記録媒体として構成する場合 は、 BCA領域 301と PIC領域 302との境界部、及び/又は、 PIC領域 302とユーザ 一データ領域 303との境界部に、上記の溝形状遷移区間 Sgを、トラックピッチ遷移 区間 Stpと少なくとも一部の領域を共有するように形成する(即ち、上記した記録領域 遷移区間 Sxを設ける)。これにより、急激な規格化プッシュプル信号振幅の変化を抑 えることができ、安定したフォーカスサーボ及びトラッキングサーボ状態を実現するこ と力 Sできる。
[0108] なお、記録領域遷移区間 Sx及び溝形状遷移区間 Sgは、 BCA領域 301と PIC領 域 302との境界部、及び、 PIC領域 302とユーザーデータ領域 303との境界部のうち 、何れか一方のみに設けてもよぐ双方に設けてもよい。但し、少なくとも PIC領域 30 2とユーザーデータ領域 303との境界部に記録領域遷移区間 Sx及び溝形状遷移区 間 Sgを設けることにより、上記の効果を顕著に得ることができるので好ましい。
[0109] なお、ゥォブル変調方法は、コントロールデータ領域とユーザーデータ領域とで通 常異なった方法とされる。ここで、保護領域内部においては、ゥォブル変調方法は同 一であり、かつユーザーデータ領域と同じゥォブル変調方式が適用されることが好ま しい。
[0110] 一方、前記の通り、本発明の記録型 Blu— rayディスクにおいては、記録領域遷移 区間 Sxは保護領域に完全に包含されることが好ましい。即ち、記録領域遷移区間 S X内の全領域においては、ゥォブル変調方法が同一であることが好ましい。
[0111] [1-4.測定方法〕
情報記録媒体が有する溝形状 (溝幅及び溝深さ)は、以下の手順により測定するこ とができる。例えば、記録型 Blu— rayディスク等の、グルーブトラックに相当する凹凸 ノ ターンが形成された基板上に記録層が積層され、更にその上に紫外線硬化樹脂 等よりなるカバー層が形成されている情報記録媒体の場合には、記録層の積層前の 基板を AFM (Atomic Force Microscope:原子間力顕微鏡)で測定することにより、 溝の深さや幅を直接測定することができる。
また、記録層上にカバー層が形成されている情報記録媒体の場合は、例えば、カツ ターナイフなどでカバー層を剥離して、グルーブトラックに相当する基板上の凹凸パ ターンを表面に露出させることにより、 AFMを用いて溝形状を測定することが可能と なる。
[0112] また、情報記録媒体が有する溝形状遷移区間 Sgのトラックに沿った長さ Lgも、 AF Mを用いて以下の手順により求めることができる。
具体的には、まず、溝形状遷移区間 Sg内及びその近傍の複数個所の溝形状を測 定し、更に、当該測定箇所の情報記録媒体上における半径値を測定することにより、 溝形状遷移区間 Sgの内周端半径値及び外周端半径値を求める。次に、溝形状遷 移区間 Sg内に存在するトラックの本数をカウントし、溝形状遷移区間 Sgが存在する 半径値における円周長さとの積を取ることにより、溝形状遷移区間 Sgのトラックに沿 つた長さ Lgを求めることができる。
[0113] 但し、上記の方法で溝形状遷移区間 Sgのトラックに沿った長さ Lgを求める為には、 複数個所の溝形状について精度の良い測定が求められ、さらに、当該測定箇所の 半径値の測定が求められる等、煩雑な場合がある。そのような場合は、情報記録媒 体を適当な再生装置で再生し、溝形状遷移区間 Sgにおける反射光の光量の変化の 様子を調べることによって溝形状遷移区間 Sg情報のトラックに沿った長さ Lgを求め てもよい。即ち、当該情報記録媒体をスピンドルモーターに載置回転させつつ、対物 レンズにてレーザー光をトラック上に集光させると、溝形状に応じた光量の反射光が 得られる。溝形状遷移区間 Sgにおいては溝形状が変化しているので、レーザー光を 集光した箇所の情報記録媒体上における半径値と、反射光の光量の変化との対応 の様子を調べることによって、溝形状遷移区間 Sgのトラックに沿った長さ Lgを知るこ と力 Sできる。 [0114] また、情報記録媒体が有するトラックピッチ及びトラックピッチ遷移区間 Stpの長さ L tpについては、以下の手順で測定することができる。
まず、上記の溝形状の場合と同様、 AFMにより、情報記録媒体が有するトラックピ ツチ及びトラックピッチ遷移区間 Stpの長さ Ltpを直接測定することができる。
[0115] あるいは、第一の記録領域 R1及び第二の記録領域 R2のトラックピッチを光学的に 測定することあでさる。
本発明の情報記録媒体が有する第一の記録領域 R1及び第二の記録領域 R2にお いては、グルーブトラックが等間隔で多数並んでいる。この場合、レーザー光などのコ ヒーレントな光をこれらの記録領域 R1 ,記録領域 R2に照射することにより、多数並ん だグルーブトラックが回折格子の役割を果たし、トラックピッチに応じた角度で回折光 が現れることが一般的に知られている。また、この原理を応用した形状測定装置も考 案されている(特開昭 57— 187604公報等参照)。この原理を利用すれば、回折光 の現れる角度を測定することにより、トラックピッチを知ること力 Sできる。
[0116] また、この原理を利用して、トラックピッチ遷移区間 Stpのトラックに沿った長さを求 めることもできる。例えば、レーザー光を情報記録媒体の半径方向に走査し、回折光 の現れる位置を、レーザー光が照射されている半径値とともに記録しておくことにより 、トラックピッチ遷移区間 Stpの半径方向の大きさを知ることができる。更に、トラックピ ツチ遷移区間 Stpの半径方向の大きさと、トラックピッチ遷移区間 Stpの前後における トラックピッチから求めた平均トラックピッチとに基づいて、トラックピッチ遷移区間 Stp のトラックに沿った長さを見積もることができる。
[0117] また、上記回折光の強度は、溝形状に応じて変化するということも一般的に知られ ている。また、レーザー光を情報記録媒体の半径方向に走査し、回折光の現れる位 置及び強度を同時に測定することにより、溝形状遷移区間 Sg及びトラックピッチ遷移 区間 Stpの存在の様子を同時に測定することも可能である。
[0118] なお、上記の各測定は、 AFMの他に、例えば SEM (Scanning Electron Microsco pe:走査型電子顕微鏡)等を用いて行なうことも可能である。
[0119] [II.情報記録媒体の製造方法]
本発明の情報記録媒体は、制限されるものではないが、例えば以下に説明する方 法により製造される。
情報記録媒体の一般的な製造手順においては、基板や中間層に形成されるトラッ クの凹凸パターンの形状と相補的な形状の凹凸パターンを有するスタンパを用意し、 このスタンパを用いて基板や中間層に凹凸パターンのトラックを形成する。従って、上 記の溝形状遷移区間 Sgを有する本発明の情報記録媒体を製造するためには、この スタンパが有する凹凸パターンの形状を所望の形状となるようにすればよい。
[0120] スタンパが有する凹凸パターンの形状は、通常、スタンパの製造手順における原盤 の露光時に決定される。本発明で規定する特定の形状の凹凸パターンを形成するた めには、特定の原盤露光装置を使用することが有効である。
以下の記載では、まずスタンパの製造手順について説明し、次いで該スタンパを用 いた情報記録媒体の製造手順について説明する。その後、所望の形状の凹凸バタ ーンを有するスタンパを得るための原盤露光装置 (本発明の原盤露光装置)につい て説明する。
[0121] [Π— 1 ·スタンパの製造]
本発明の情報記録媒体を製造するためのスタンパの製造手順の一例について、図 4を用いて詳細に説明する。なお、図 4 (a)〜図 4 (i)は、本発明の情報記録媒体を製 造するためのスタンパの製造手順の一例を示す図である。但し、以下の製造手順は あくまでも一例であり、本発明の情報記録媒体を製造するためのスタンパの製造手 順は、以下の例に限定されるものではない。
[0122] まず、原盤用基板 501上にフォトレジスト 502を塗布してなる原盤 503を用意する( 図 4 (a)参照)。
原盤用基板 501の材質は制限されないが、通常はガラス板が用いられる。 フォトレジスト 502としては、いわゆるノポラック'ジァゾナフトキノン系レジストや化学 増幅型レジスト等、一般的なフォトレジストを使用することができる。また、ポジ型レジ ストを用いてもよぐネガ型レジストを用いてもよい。更にこれらは何れか一種を単独 で用いてもよぐ二種以上を任意の組み合わせ及び比率で併用してもよい。なお、ポ ジ型レジスト及びネガ型レジストの定義については後述する。
フォトレジスト 502は通常、スピンコート法で原盤用基板 501上に塗布され、その膜 厚は原盤用基板 501の面内で略均一とされる。具体的なフォトレジスト 502の膜厚は
、 目的とするスタンパの凹凸パターンの形状に応じて設定すればよいが、通常 10nm 以上、また、通常 lOOnm以下の範囲である。
[0123] 次に、原盤露光装置を用いて原盤 503を露光処理し、原盤用基板 501上のフォト レジスト 502に、 目的とするトラックに相当する凹凸パターンに対応する所定のパター ン 504を潜像として形成する(図 4 (b)参照)。本工程で使用する原盤露光装置の構 成及び動作については、 [III.原盤露光装置]で詳しく説明する。
[0124] その後、原盤 503に現像処理を施し、潜像として形成されたパターン 504を、物理 的な凹凸パターンとして顕在化させる(図 4 (c)参照)。
一般的には、原盤 503を現像機のターンテーブルに載置し、ターンテーブルを回 転させながら現像液を滴下させる方法が取られる力 例えばガラス板を静止した状態 で現像液を液盛りする方法(レ、わゆるパドル現像法)等を用いることもできる。
このとき、フォトレジスト 502の種類を選択することによって、潜像として形成された ノ ターン 504側を凹にすることもできるし、逆に潜像として形成されたパターン 504を 凸にすることもできる。一般的にはパターン 504側が凹になるようなフォトレジスト(こ れを「ポジ型レジスト」と呼ぶ。 )を用いる場合が多!/、。
本明細書では、図 4を含め、主にポジ型レジストを用いた場合について説明するが
、パターン 504側が凸となるようなフォトレジスト(これを「ネガ型レジスト」と呼ぶ。)を 用いてもよぐその選択は任意である。
[0125] 上記の手順により、物理的な凹凸パターンを有する原盤 (これを「凹凸原盤」という。
) 503'が得られる。この凹凸原盤 503 'を用いて、以下の手順によりスタンパを作製 する。
[0126] まず、上記の凹凸原盤 503'上に、スパッタ法ゃ無電解メツキ法等を用いて、スタン パの材料を成膜し、導電層 505を形成する(図 4 (d)参照)。
スタンパの材料としては、通常は金属材料が用いられる。金属材料としては、例え ばニッケルが挙げられる。スタンパの材料は何れか一種を単独で用いてもよぐ二種 以上を任意の組み合わせ及び比率で併用してもよい。
導電層 505の厚さは特に制限されないが、後述する電気めつきにおいて支障をき たさない厚さであれば、任意に選択できる。
[0127] 次に、導電層 505が形成された凹凸原盤 503 'を電铸装置に取り付け、電気めつき 法等により、導電層 505上に更にスタンパの材料を積層することにより、ファザ一層 5 06を形成する(図 4 (e)参照)。ファザ一層 506は導電層 505と一体に形成され、その 厚さは特に制限されないが、通常 100 m以上、通常 500 m以下である。
[0128] 次いで、ファザ一層 506を凹凸原盤 503 'より剥離し、必要に応じて、ファザ一層 50 6上に付着したフォトレジストを、フォトレジスト除去液等を用いて除去する(図 4 (f)参 照)。フォトレジスト除去液は、フォトレジスト 502の種類に応じて適宜選択すればよい 。例えば、アセトンや、ナガセケムテックス社製 N— 303Cを用いることができる。これ らは何れか一種を単独で用いてもよぐ二種以上を任意の組み合わせ及び比率で併 用してもよい。
得られたファザ一層 506を、ファザースタンパと呼ぶ(以下「ファザ一 506」と称する 。)。ファザ一 506上には凹凸パターンが写し取られている力 その凹凸パターンは 凹凸原盤 503 '上の凹凸パターンとは逆転したものとなっている。
[0129] 次いで、当該ファザ一 506の凹凸パターン表面を、酸化処理等の手法で処理する ことにより、剥離層 507を形成する(図 4 (g)参照)。剥離層 507の厚さは特に制限さ れないが、通常 0. lnm以上、通常 lOOnm以下である。
[0130] 更に、当該剥離層 507上に、電気めつき法等によりスタンパの材料を積層し、マザ 一層 508を形成する(図 4 (h)参照)。マザ一層 508の厚さは特に制限されな!/、が、 通常 100 a m以上、通常 500 a m以下である。
[0131] 次いで、当該マザ一層 508を剥離する(図 4 (i)参照)。得られたマザ一層 508を、 マザースタンパと呼ぶ(以下「マザ一 508」と称する。)。マザ一 508上にも凹凸パター ンが写し取られており、その凹凸パターンは凹凸原盤 503 '上での凹凸パターンと同 じものとなっている。
[0132] 上記の手順により得られたファザ一 506又はマザ一 508は、何れもスタンパとして 使用することが可能である。
[0133] また、これらのファザースタンパ 506,マザースタンパ 508を型として、更に別の材 料に凹凸パターンを写し取ることにより、新たなスタンパを作製することも可能である。 例えばファザースタンパ 506から、複数枚のマザースタンパ 508を写し取っていくこと もできるし、マザースタンパ 508から更にサンスタンパ(図示せず)を写し取って!/、くこ ともできる。こうして得られるサンスタンパ上の凹凸パターンは、ファザースタンパ 506 上での凹凸パターンと同じものとなっている(以下、サンスタンパのことを単に「サン」と 称する場合がある)。
[0134] また、樹脂材料からなるスタンパ(樹脂製スタンパ)を製造する場合には、上記の手 順により金属材料からなるスタンパ(金属製スタンパ)を作製し、この金属製スタンパ を型として樹脂材料を射出成形することにより、金属製スタンパの凹凸パターンが写 し取られた樹脂製スタンパを得るという手法が有効である。
[0135] [II - 2.情報記録媒体の製造]
上記の手順で作製されたスタンパを型として、基板や中間層等に凹凸パターンを 形成し、本発明の情報記録媒体を製造する。
[0136] 図 1 (a)に示す一層型の情報記録媒体 100を製造する場合には、まず、上記のスタ ンパを用いて、トラックに相当する凹凸パターンが形成された基板 101を作製する。 具体的には、例えば、上記のスタンパを型として、基板 101の材料を射出成形するこ とにより、スタンパの凹凸パターンが写し取られた基板 101を形成し、得られた基板 1 01をスタンパから剥離して使用すればよい。基板 101の材料や厚さ等は、上記の通 りである。また、スタンパとしては、通常は金属材料からなるスタンパ(金属スタンパ)を 用いる。
[0137] なお、スタンパから基板 101上に写し取られた凹凸パターンは、スタンパの凹凸パ ターンとは逆転したものとなる。例えば、イングループ型の記録型 Blu— rayディスクを 製造する場合は、記録トラックはレーザー光入射側から見て凹側であるので、ファザ ースタンパあるいはサンスタンパを型として用いればよい。一方、レーザー光入射側 力、ら見て凸側を記録トラックとして用いるオングノレーブ型の記録型 Blu— rayディスク を製造する場合は、記録トラックはレーザー光入射側から見て凸側であるので、マザ ースタンパを型として用いればよい。なお、記録層に有機色素を用いる情報記録媒 体においては、イングループ型を採用することが、製造方法及び記録特性の面から 好ましい。 [0138] 次いで、基板 101の凹凸パターン上に、反射層 102を形成する。反射層 102の材 料や厚さ等は、上記の通りである。反射層 102の形成方法としては、例えばスパッタリ ング法等が挙げられる。
[0139] その後、反射層 102上に、記録層 103を形成する。記録層 103の材料や厚さ等は 、上記の通りである。記録層 103の形成方法としては、例えば記録層 103が有機色 素材料である場合はスピンコート等の塗布法等、無機材料の場合はスパッタリング法 等が挙げられる。
[0140] 次いで、記録層 103上に、カバー層 104を形成する。カバー層 104の材料や厚さ 等は、上記の通りである。カバー層 104の形成方法としては、例えばスピンコート法 等が挙げられる。また、別に用意したカバー層 104を、接着層等を介して記録層 103 上に接着してもよい。
[0141] また、図 1 (b)に示す二層型の情報記録媒体 200を製造する場合には、まず、スタ ンパを用いて、トラックの凹凸パターンが形成された基板 201を作製する。その形成 手順は、図 1 (a)の基板 101の場合と同様である。
次いで、基板 201の凹凸パターン上に第 1の反射層 202、第 1の記録層 203を順に 積層形成する。これらの層の材料や厚さ、形成手順等は、図 1 (a)の反射層 102及び 記録層 103の場合と同様である。
[0142] 次いで、第 1の記録層 203上に、中間層 204を形成する。中間層 204の材料や厚 さ等は、上記の通りである。中間層 204の形成方法としては、例えば塗布法等が挙げ られる。
[0143] この中間層 204の形成時に、スタンパを用いて凹凸パターンを形成する。凹凸バタ ーンの形成手順は制限されないが、中間層 204上にスタンパの凹凸パターンを押し 当てることにより、スタンパの凹凸パターンを中間層 204上に写し取ればよい。
[0144] 中でも好ましい手法としては、中間層 204の材料として紫外線硬化性樹脂や可視 光硬化性樹脂等の光硬化性樹脂を用い、該光硬化性樹脂を第 1の記録層 203上に 所望の厚みに成膜する。その後、その上に更にスタンパを載置した状態で、光硬化 性樹脂を硬化させることが可能な紫外線や可視光等の光を、スタンパを通じて光硬 化性樹脂に照射し、光硬化性樹脂を硬化させる。これにより、スタンパの凹凸パター ンが写し取られた中間層 204を形成することが可能となる。なお、スタンパとしては、 光硬化性樹脂を硬化させることが可能な紫外線や可視光等の光を透過させることが 可能な材料力もなるスタンパ(通常は樹脂製スタンパ)を用いる。
[0145] なお、スタンパから中間層 204上に写し取られる凹凸パターンは、スタンパの凹凸 ノ ターンとは逆転したものとなるので、上記のように、所望の情報記録媒体の形式に 応じてマザ一スタンノ Xファザースタンパ或いはサンスタンパを選択すればよい。
[0146] 次いで、中間層 204の凹凸パターン上に、第 2の反射層 205、第 2の記録層 206を 順に積層形成する。これらの層の材料や厚さ、形成手順等は、図 1 (a)の反射層 102 及び記録層 103の場合と同様である。
その後、第 2の記録層 206上に、カバー層 207を形成する。カバー層 207の材料や 厚さ、形成手順等は、図 1 (a)のカバー層 104の場合と同様である。
[0147] 図 1 (b)に示す二層型の情報記録媒体 200の場合は、基板 201が有するトラックの 凹凸パターンの形状と、中間層 204が有するトラックの凹凸パターンの形状とは同一 であってもよく、互いに異なっていてもよい。基板 201及び中間層 204の凹凸パター ンの形状が互いに異なる場合には、基板 201及び中間層 204のうち少なくとも一方 が本発明の規定を満たしていればよい。即ち、本発明で規定する第 1の記録領域 R1 と、第 2の記録領域 R2と、記録領域遷移区間 Sxとを有していればよい。また、基板 2 01及び中間層 204の双方が本発明の規定を満たしていてもよい。
[0148] また、トラックが三層以上に存在する情報記録媒体(即ち、三層以上の記録層を有 する情報記録媒体)の場合も、それらの少なくとも何れか一層が本発明の規定を満た して!/、ればよ!/、が、それらの全ての層が本発明の規定を満たして!/、てもよレ、。
[0149] 上記の手順により、本発明の情報記録媒体が製造される。
なお、上記の説明は、記録型 Blu— rayディスクを例としている力 その他の情報記 録媒体についても、上記の手順に適宜変更を加えることにより製造することができる。 例えば、 DVD (Digital Versatile Disc)を製造する場合、厚さ 0· 6mmの基板を貼り 合せた構成とすればよい。
[0150] [III.原盤露光装置]
本発明の情報記録媒体は、上記のように、トラックピッチ及び溝形状が異なる二つ の記録領域の間に、トラックピッチ遷移区間 Stpに加えて、所定の溝形状遷移区間 S gを有するものである。この溝形状遷移区間 Sgは、情報記録媒体の製造時に使用さ れるスタンパの凹凸パターン形状に応じて形成される。
スタンパの凹凸パターン形状は、スタンパの製造手順における原盤の露光工程(上 記の図 4 (b)参照)にお!/、て、原盤露光装置によって具現化される。
以下、本発明の情報記録媒体を製造するために使用される原盤露光装置 (本発明 の原盤露光装置)について、実施形態を挙げて説明する。
[0151] [III 1 ·基本構成]
本発明の一実施形態に係る原盤露光装置の基本構成について、図 5を参照しなが ら説明する。なお、図 5は、本発明の一実施形態に係る原盤露光装置の基本構成の 例を模式的に示す機能ブロック図である。
[0152] 図 5に示す原盤露光装置 600は、所定の偏向信号を発生させるフォーマッター(偏 向信号生成機構) 601と、記録光を発生させるためのレーザー光源 (記録光源) 602 と、記録光を所定の出力に設定させるパワー調整素子 (記録光強度調節機構) 603 と、フォーマッター 601の出力信号に基づいてレーザー光を偏向させるための EOD ( Electro Optical Deflector)素子(記録光偏向機構) 604と、レーザー光を原盤 503 上に絞り込むための対物レンズ (集光機構) 605と、原盤 503を載置し、回転させる ためのターンテーブル(回転機構) 606と、対物レンズ 605を原盤 503の半径方向に 相対的に移動させるためのスライダー(半径移動機構) 607と、レーザー光の方向を 制御するための一又は複数のミラー 608とを備える。更に、これらの構成要素 60;!〜 608のうち一部又は全部を協調制御するためのコントローラー(制御機構) 609を備 えている。特に、コントローラー 609は、予め設定した値に基づいて、ターンテーブル 606の回転速度と、スライダー 607の移動速度と、対物レンズ 605の位置とを制御す る機能を有している。
[0153] レーザー光源 602から出射された記録光は、まずパワー調整素子 603を通る。パヮ 一調整素子 603は、予め設定した値に基づ!/、て記録光強度を変化させることができ
[0154] ノ^ー調整素子 603で強度を調整された記録光は、次いで記録光を偏向させる為 に EOD素子 604に導かれる。
本実施形態では EOD素子 604を用いている力 S、記録光を偏向させる機能を持った 素子であれば特に EOD素子 604に限定されるものではなぐ例えば AOD (Acoustic
Optical Deflector)素子を用いてもよい。 EOD素子 604にはフォーマッター 601が 接続され、フォーマッター 601が発生する信号に基づいて記録光を角度方向に偏向 させること力 Sでさる。
[0155] なお、製造する情報記録媒体の種類によっては、記録光を変調させるための AOM
(Acoustic Optical Modulator)素子や EOM (Electro Optical Modulator)素子(図 5では図示省略)を設けてもよ!/、。
更に、記録光を変調させる機能と偏向させる機能を一つの素子にまとめて受け持た せてもよく、その構成は、製造する情報記録媒体の種類によって任意に変更できる。
[0156] 次に、 EOD素子 604から出た記録光は、原盤 503上に集光させるための対物レン ズ 605に導かれる。なお、対物レンズ 605に記録光を入射させる前に、ビーム形状を 整形するためのビームエキスパンダー(図 5では図示省略)を通してもよい。
[0157] また、対物レンズ 605はフォーカスァクチユエータ(図 5では図示省略)に取り付けら れ、原盤 503面と対物レンズ 605との間の距離を常に一定に保つようにフォーカスサ ーボがかけられている。フォーカスサーボをかけることによって、原盤 503面と対物レ ンズ 605との間の距離を一定に保つことができるので、原盤 503面上に集光された 記録光のスポットサイズは常に同一となり、幅が均一なパターンを露光することができ
[0158] なお、螺旋状のトラックに相当するパターンを原盤 503上に形成するためには、原 盤 503を載置したターンテーブル 606を所定の回転数で回転させながら、スライダー 607を所定の送り速度で送ればよい。
[0159] 次に、上記構成を有する原盤露光装置 600の動作に関して説明する。
予め設定した線速及びトラックピッチに基づいて、ターンテーブル 606を回転させ、 且つスライダー 607を所定の速度で移動させる。即ち、第一のトラックピッチを持つ第 一の記録領域 R1のトラックに相当するパターンを形成する。
なお、ターンテーブル 606の回転方向や回転数、スライダー 607の移動速度や移 動方向等の条件は、作製した!/、スタンパ及び情報記録媒体のフォーマットに基づレヽ て任意に選ぶことができ、適切な動作条件を選択すればよい。
また、記録光の強度も、各々の製造プロセスや、形成したい溝形状により、任意に 設定すること力でさる。
[0160] 本発明の情報記録媒体が記録型 Blu— rayディスクである場合は、その溝は媒体の 半径方向に所定の振幅で蛇行するように形成される。蛇行パターンとしては数種類 が予め規定されており、複数種類の蛇行パターンの組み合わせによって、アドレス情 報やディスク製造者情報などの情報を記録するという方法が取られる。
蛇行パターンによる情報の記録とは、蛇行の振幅や周期等、ディスク面内の溝の蛇 行形状自体を変更することにより情報を記録していることを指すものであり、溝深さや 溝幅、平均的なトラックピッチを変更する訳ではない。このような溝の蛇行は、原盤露 光装置 600において、記録光を原盤 503の半径方向に所定の分量だけその都度偏 向させることにより形成できる。記録光を偏向させるための偏向信号はフォーマッター 601によって発生され、記録光の偏向は EOD素子 604によってなされる。なお、蛇 行パターンはフォーマッター 601の内部構成を変更することにより任意とすることがで きる。従って、本発明の情報記録媒体として記録型 Blu— rayディスク以外の情報記 録媒体を作製する場合には、その都度適切な蛇行パターンを形成するようにフォー マッターの内部構成を変更すればよい。
[0161] 上記の手順により、第一の記録領域 R1のトラックに相当するパターンの形成が完 了すると、次に第二のトラックピッチを持つ第二の記録領域 R2のトラックに相当する ノ ターンの形成に移行する。この段階で、トラックピッチ遷移区間 Stp及び溝形状遷 移区間 Sgの形成を行なうことになるので、トラックピッチ遷移区間 Stp及び溝形状遷 移区間 Sgの形成方法に関して述べる。
[0162] トラックピッチ遷移区間 Stpは、スライダー 607の移動速度を変化させることによって 形成できる。例えば、予めトラックピッチ遷移区間 Stpの形成を開始したい半径値を 原盤露光装置 600内部に記憶させるなどしておき、スライダー 607が当該半径値を 通過したことを検出してスライダー 607の移動速度を変化させればよ!/、。移動速度を 変化させる方法としては、例えばスライダー 607を駆動させる為のノ ルス列の周波数 を変化させる等がある。このとき、例えばスライダー 607を駆動させるためのノ ルス列 の周波数のスイープ時間を変えることによって、任意の長さのトラックピッチ遷移区間 Stpとすることができる。長めのトラックピッチ遷移区間 Stpとしたい場合は周波数のス ィープ時間を長くすれば良いし、短めのトラックピッチ遷移区間 Stpとしたい場合は周 波数のスイープ時間を短くすればよい。スライダー 607の移動速度は、段階的に変 化させてもよいが、トラックピッチの変化の仕方を滑らかなものとするためには、スライ ダー 607の移動速度を連続的に変化させることが好ましい。
[0163] 一方、溝形状遷移区間 Sgの形成方法としては、二つの態様が考えられ、それに応 じて、原盤露光装置 600の構成も異なる。以下、これら二つの態様について説明す
[0164] [III 2·第 1の態様]
第 1の態様では、上記の原盤露光装置 600に、予め設定した値に基づいて、記録 光の強度を単調増加又は単調減少でスイープさせる機構 (記録光強度スイープ機構 )を設ける。即ち、溝形状遷移区間 Sgに相当する凹凸パターンの形成時に、記録光 の強度を単調増加又は単調減少でスイープさせることにより、溝幅が wlから w2へと 徐々に変化する、及び/又は、溝深さが dlから d2へと徐々に変化するパターン (即 ち、溝形状遷移区間 Sgに相当する凹凸パターン)を形成することができる。
第 1の態様では、急激な記録光強度の変化に起因する急激な溝形状変化を抑制 することができるので、最終的に得られる情報記録媒体での急激な規格化プッシュプ ル信号振幅の変化を抑制することができる。即ち、第 1の態様により、安定したフォー カスサーボ及びトラッキングサーボ状態を実現することが可能な情報記録媒体を得る ことが可能となる。
[0165] 記録光強度スイープ機構は、予め設定した特定の半径位置に集光機構が達したこ とを検出して、記録光強度のスイープを開始及び/又は終了する機能を有すること が好ましい。また、記録光強度スイープ機構が、予め設定した特定のアドレスを上記 偏向信号生成機構が出力したことを検出して、記録光強度のスイープを開始及び/ 又は終了する機能を有することも好まし!/、。
記録光強度スイープ機構は、上記の機能を有することによって、記録光強度の変 化開始点を正確に一定の値に保った原盤を常に作製することができるので、最終的 に得られる情報記録媒体での規格化プッシュプル信号振幅の変化の仕方を常に一 定にすること力 Sできる。即ち、安定したフォーカスサーボ及びトラッキングサーボ状態 を実現することが可能な情報記録媒体を得ることができる。
[0166] また、記録光強度スイープ機構が、予め設定した特定の半径位置に集光機構が達 したことを検出して記録光強度のスイープを開始し、かつ、予め設定した所定の時間 経過後に上記スイープを終了する機能を有することも好ましい。また、記録光強度ス ィープ機構が、予め設定した特定のアドレスを上記偏向信号生成機構が出力したこ とを検出して、上記記録光強度スイープ機構による記録光強度のスイープを開始し、 かつ、予め設定した所定の時間経過後に上記スイープを終了する機能を有すること も好ましい。
記録光強度スイープ機構がこれらの機能を有する場合、記録光強度スイープ機構 はスイープ開始トリガーの監視及びスイープ時間の管理のみを行なって!/、ればよ!/ヽ ので、原盤露光装置の構成を簡便なものとすることができる。
[0167] なお、上記で説明した記録光強度スイープ機構の各種機能は、例えばソフトウェア 等を用いてコントローラー 609に所望の動作をさせることにより、コントローラー 609の 機能として実現することが可能である。
[0168] [III 3·第 2の態様]
本発明では、トラックピッチの異なる二つの記録領域の境界部における急激な規格 化プッシュプル信号振幅の変動を抑えることを意図している。特に、実用上問題ない 程度にまで規格化プッシュプル信号振幅変動が抑えられるのであれば、必ずしも溝 形状が連続的に変化する必要は無ぐ断続的な変化であっても構わない。このような 着眼点に立つと、上記の第 1の態様よりも簡素な構成で、メンテナンスが容易な態様 の原盤露光装置も考えられる。
[0169] 第 2の態様では、上記の原盤露光装置 600に、対物レンズ (集光機構) 605の位置 と、予め設定した特定の半径値における記録光強度の設定値とに基づいて、記録光 強度を補間して調節する記録光強度調節機構と、上記記録光強度調節動作を繰り 返し行なう繰り返し動作機構とを設ける。さらに、第 2の態様では、上記繰り返し動作 機構の 1サイクルに要する動作時間を、 100msec以下とする。
[0170] 本態様に係る原盤露光装置の基本的な動作に関して、図 6及び図 7を参照して、 以下に詳細に説明する。図 6は、本態様に係る原盤露光装置において、連続的な補 間によつて得られる理論的な露光強度と集光機構の半径値との関係を表わすグラフ である。図 7は、本態様に係る原盤露光装置において、補間動作の繰り返しによって 得られる実際の露光強度と集光機構の半径値との関係を表わすグラフである。
[0171] また、以下の記載は、下記の条件を基にしている。
(1)第一の記録領域 R1が第二の記録領域 R2よりも内周側に存在する記録情報媒 体のトラックに相当するパターンを露光する場合であって、
(2)第一の記録領域 R1のトラックに対応するパターンは露光強度 P1にて露光し、
(3)第二の記録領域 R2のトラックに対応するパターンは露光強度 P2にて露光し、
(4)溝形状遷移区間 Sgのトラックに対応するパターンは半径値 Riから Roに亘つて形 成し、
(5)半径値 Riでの露光パワーは P1に等しぐ
(6)半径値 Roでの露光パワーは P2に等しぐ
(7)露光動作は内周から外周に向力、つて行なう、
[0172] 但し、露光パワーや半径値の設定等の詳細に関しては、種々のケースが考えられ るため、上記(1)〜(7)の条件下に限定されるものではなぐその要旨の範囲内で種 々変形して実施することができる。
[0173] また、本態様に係る原盤露光装置では、例えば、第一の記録領域 R1のトラックに 対応するパターンを形成する際の露光パワー Pl、第二の記録領域 R2のトラックに対 応するパターンを形成する際の露光パワー P2、溝形状遷移区間 Sgの内側半径値 R i、外側半径値 Ro等のパラメータを、予め原盤露光装置内部に記憶させる等しておく ものとする。
[0174] 本態様によれば、予め設定した線速及びトラックピッチに基づレ、てターンテーブル 6 06を回転させ、且つスライダー 607を所定の速度で移動させつつ、記録光強度調節 機構が対物レンズ 605の原盤上での半径位置を読み取り、対物レンズ 605がどの領 域を露光中であるのかをまず判断する。次いで、その判断の結果を元に、露光強度 を然るべき値へと設定する。一方、スライダー 607は所定の速度で常に移動している ので、露光光強度を然るべき値とさせた瞬間には、対物レンズ 605は、当初読み取つ た半径位置とは異なった半径位置に移動して!/、る。そこで再び対物レンズ 605の半 径位置を読み取り、対物レンズ 605がどの領域を露光中であるのかを再度判断し、 判断結果を基に、露光強度をしかるべき値へと変化させる。このようにして、半径位置 読み取りから露光強度設定までを 1サイクルとし、このサイクル動作を所望の半径位 置まで順次繰り返して行なうことにより、所望の露光強度での露光を原盤全面に行な うこと力 Sでさる。
[0175] この補間動作について、以下、より具体的に説明する。なお、簡便のため、半径位 置読み取りから露光強度設定までの 1サイクルに要する動作時間を Tuと記載する。 なお、 Tuは原盤露光装置の性能により左右される値である。
[0176] 即ち、対物レンズ 605が第一の記録領域 R1を露光中であれば露光強度を P1とす るように記録光強度調整機構が作動し、第二の記録領域 R2を露光中であれば露光 強度を P2とするように記録光強度調整機構が作動する。対物レンズ 605が溝形状遷 移区間 Sgを露光中であると判断された場合は、例えば図 6に示すように、 Riと Roの 間を適当な形態の関数で補間するような露光強度となるように記録光強度調整機構 が作動する。つまり、第一の記録領域 R1が第二の記録領域 R2よりも内周側に位置 し、更に Riと Roの間を一次関数的に補間する場合には、対物レンズ 605が半径位置 Rc (ここで、 Ri≤Rc≤Roとする。)に位置する場合の露光パワー Pcは、下記式により 算出される。
Pc = (P2-P1) X (Rc -Ri) / (Ro-Ri) +P1
[0177] なお、上記説明では一次関数的に露光強度を補間しているが、関数の形態は一次 関数に限定されるものではなぐ例えば二次関数的に露光強度が増減されてもよい。 つまり、計算によって補間して露光強度を設定するという点が重要なのである。
[0178] 一方、上記のように、原盤露光装置には繰り返し動作時間 Tuが必要であるため、 溝形状遷移区間 Sg内での実際の露光強度は、図 6に示すように平滑とはならず、図 7に示すように階段状となる。ここで、階段の 1ステップに相当するトラック長さ Suは、 Tuに露光時の線速 LVを乗じたものに相当し、下記式で表わされる。 Su = LVXTu
[0179] 本態様に係る原盤露光装置の基本的な動作は、上記したとおりである。
即ち、第一の記録領域 R1の形成を完了した後、溝形状遷移区間 Sgを形成する際 に、対物レンズ 605の半径位置を順次読み込んで記録光強度を階段状に、即ち段 階的に変えるので、溝形状遷移区間 Sgにおける溝形状を段階的に変化させることが できる。また、規格化プッシュプル信号振幅変動は、ある程度にまで抑えることが望ま しいので、段階的に変化された溝形状の 1ステップに相当するトラック長さ Suをある 程度にまで短くすることが望まれる。
[0180] Suを短くするためには、 Suは、露光時の線速 LVと Tuとの積であるので、 Suを小さ くするためには、 LVを小さくする力、 Tuを小さくすればよい。
しかし、 LVを小さくしてしまうと、露光に要する時間が長くなるという問題が発生して しまう。露光に要する時間が長くなると生産量が落ちてしまうだけでなぐ長時間に亘 る原盤露光装置の安定性の確保が困難となってしまうという問題が発生する。
[0181] Suを小さくするためには、 Tuを小さくする方法がより適切であり、現実的な LVを確 保するためには、 Tuを少なくとも 100msec以下とすることが望まれる。 Tuが長過ぎる 場合、現実的な速さの露光線速で露光すると、溝形状遷移区間 Sg内の溝形状変化 が極めて粗!/、状態となってしまい、規格化プッシュプル信号振幅の急激な変化を抑 え切れなくなってしまう場合がある。
実施例
[0182] 以下、実施例を用いて本発明を更に詳細に説明する力 本発明はその要旨を超え なレ、限り以下の実施例により限定して解釈されるものではなレ、。
以下の各実施例及び各比較例では、情報記録媒体として、溝形状遷移区間 Sg及 びトラックピッチ遷移区間 Stpの形成条件を変えた記録型 Blu— rayディスクを作製し 、得られた情報記録媒体を情報再生装置にて再生することにより評価を行なった。
[0183] [スタンパの製造]
所望の溝形状遷移区間 Sg及びトラックピッチ遷移区間 Stpを有する、各実施例及 び各比較例の情報記録媒体を製造するために、まず、 目的とする溝形状遷移区間 S g及びトラックピッチ遷移区間 Stpに相当する凹凸パターンを有するスタンパ(ファザ 一)を製造した。
スタンパの製造は、前記の [Π— 1.スタンパの製造]の欄で説明した方法に従い行 なった。具体的には、厚さ 6mmのガラス板を原盤用基板 501として、その上にフォト レジスト 502を厚さ 60nmとなるように形成した原盤 503を用い、下記の条件に基づ いて露光した後、現像し、凹凸原盤 503'を得た。この凹凸原盤 503'上に、スパッタ 法を用いてニッケルを厚さ 20nmとなるように成膜し(導電層 505)、更に電気めつき 法でニッケルを積層することにより、厚さ 290 mのファザ一層 506を形成した。この ファザ一層 506を剥離して、ファザースタンパ 506とした。
[0184] なお、原盤の露光は、以下の条件により行なった。
記録型 Blu— rayディスクにおいては、 PIC領域がディスクの内周側、ユーザーデー タ領域がディスクの外周側に相当する。トラックは PIC領域からユーザーデータ領域 へと進む方向であり、原盤露光も PIC領域からユーザーデータ領域へと進む方向で fiなった。
[0185] また、何れの実施例及び比較例にお!/、ても、第一の記録領域 R1を PIC領域とし、 第二の記録領域 R2をユーザーデータ領域とし、第一の記録領域 R1におけるトラック ピッチ tplを 0. 35 ^ 111,第二の記録領域 R2におけるトラックピッチ tp2を 0. 32 ^ 111 とした。
[0186] 規格化プッシュプル信号振幅 NPPが下記の管理範囲を満足するように、 PIC領域 及びユーザーデータ領域の溝形状を調製した。具体的な数値としては、 PIC領域の 溝深さを 30nm、溝幅を 0. 10 mとし、ユーザーデータ領域の溝深さを 60nm、溝 幅を 0. 19〃mとした。
[0187] 原盤露光時の露光光強度の調節は、実施例 3のみが上記の第 2の態様に係る原 盤露光装置 (記録光強度調節機構及び繰り返し動作機構を備えた原盤露光装置)を 用いて行なった。それ以外の実施例及び比較例については、上記の第 1の態様に係 る原盤露光装置 (記録光強度スイープ機構を備えた原盤露光装置)を用いて行なつ た。
[0188] [情報記録媒体の製造]
各実施例及び各比較例の情報記録媒体は、上記のスタンパを用いて基板を作製 し、その基板上に反射層、記録層、界面層及びカバー層をこの順に積層して形成す ることにより、行なった。
[0189] 具体的には、まず、基板の材料としてポリカーボネートを使用し、上記のスタンパを 型として射出成形することにより、スタンパの凹凸パターンが写し取られた基板を形成 した。なお、基板の厚みは 1 · 1mmとした。
[0190] 次!/、で、この基板上に、 AgNdCu合金からなる反射層を、スパッタ法にて 70nmの 厚さに形成した。
[0191] 次いで、この反射層上に、含金属ァゾ系色素をォクタフルォロペンタノール(OFP) で希釈後、スピンコート法にて成膜することにより、記録層を形成した。スピンコート法 の条件は次の通りである。即ち、含金属ァゾ系色素を 1. 0重量%の濃度で OFPに溶 解させた溶液を、基板の中央付近に 1. 5g環状に塗布し、基板を 1200rpmで 7秒間 回転させ色素を延伸した。その後、 9200rpmで 3秒間回転させ色素を振り切ることに よって塗布を行なった。なお、塗布後には媒体を 100°Cの環境下で 1時間保持する ことで、溶媒である OFPを蒸発させて除去した。記録層の厚みは 30nm程度を目標と した。
[0192] 次に、この記録層上に、スパッタ法により、 ZnS: SiOからなる界面層を、 16nmの 厚さに形成した。
[0193] 次いで、この界面層上に、厚さ 75 mのポリカーボネート樹脂のシートと厚さ 25 mの感圧接着剤層とからなる、合計の厚さ 100 a mの透明なカバー層を貼り合わせ た。
[0194] [評価用情報再生装置]
各実施例及び各比較例の情報記録媒体の評価には、図 8に示す構成の情報再生 装置 (以下「評価用情報再生装置」という。)を用いた。なお、図 8 (a)は、各実施例及 び各比較例の情報記録媒体の評価に用いた評価用情報再生装置の要部の構成を 示す機能ブロック図であり、図 8 (b)は、図 8 (a)に示す評価用情報再生装置が有す る 4分割フォトダイオードの構成を示す図である。
[0195] 図 8 (a)に示す評価用情報再生装置 900は、 4分割フォトダイオード 901、プッシュ プル信号生成回路 902、和信号生成回路 903、規格化プッシュプル信号生成回路 9 04、合成回路 905、スピンドルモーター(図示省略)、半導体レーザー等の光源(図 示省略)、対物レンズ (図示省略)、増幅回路(図示省略)等を具備する。また、スピン ドルモーターに、評価対象となる情報記録媒体 906を装着できるようになつている。
[0196] 半導体レーザー等から出射されたレーザー光は、スピンドルモーターに固定された 情報記録媒体 906上に、対物レンズにて集光される。情報記録媒体 906上で反射さ れたレーザー光は 4分割フォトダイオード 901へと導かれる。 4分割フォトダイオード 9 01は、図 8 (b)に示すように、 4つに分割されたディテクタからなり、各ディテクタへと 入射するレーザー光の強度に応じた電気信号が、各々のディテクタより出力される。
[0197] 各々のディテクタより出力された電気信号は、必要に応じて増幅回路(図示せず)な どを通過した後、プッシュプル信号生成回路 902及び和信号生成回路 903へと導か れる。プッシュプル信号生成回路 902は、(A+B)— (C + D)を計算してプッシュプ ル信号 PPを生成する。また、和信号生成回路 903は、 (A+B) + (C + D)を計算し て和信号 SUMを生成する。更に、規格化プッシュプル信号生成回路 904は、プッシ ュプル信号 PP及び和信号 SUMをもとに PP/SUMを計算して、規格化プッシュプ ル信号を生成する。その後、規格化プッシュプル信号に基づいて、サーボユニット( 図示せず)がトラッキング制御を実行する。
ここで、 Aはトラック方向に対して右前方、 Bはトラック方向に対して右後方、 Cはトラ ック方向に対して左前方、 Dはトラック方向に対して右後方、のフォトダイオードである
[0198] [情報記録媒体の評価手順]
各実施例及び各比較例の情報記録媒体の評価は、上記の評価用情報再生装置 9 00を用いて、以下の手順により行なった。
[0199] PIC領域とユーザーデータ領域との境界近傍での未記録状態でのプッシュプル信 号 PP及び和信号 SUMを、トラッキングサーボを行なわなレ、状態でオシロスコープに て測定し、 NPPを算出した。次いで、 PIC領域とユーザーデータ領域との境界近傍 における NPPの変動の様子を調べることで、 NPPの特性を評価した。
なお、下記の実施例;!〜 3及び比較例 1 , 2については、上記の手順により測定され た規格化プッシュプル信号振幅 NPP及び和信号 SUMのオシロスコープによる波形 を、図 9〜図 14に示している。これらの波形は、何れも情報記録媒体のトラック約 2分 の 1周分の波形を示している。即ち、これらの図の横軸は、何れもトラック約 2分の 1周 分に相当する。
[0200] また、何れの実施例及び比較例においても、 PIC領域における NPPの管理範囲を 0. 26—0. 52とした。 PIC領域における NPPがこの範囲であれば、 PIC領域におい て安定したフォーカスサーボ及びトラッキングサーボ状態が実現できる。
[0201] また、何れの実施例及び比較例にお!/、ても、ユーザーデータ領域における未記録 状態での NPPとしては 0. 6程度を目標とし、ユーザーデータ領域における未記録状 態での NPPの上限を 0. 8と設定した。また、ユーザーデータ領域における未記録状 態での NPPの下限は 0. 21と設定した。ユーザーデータ領域における未記録状態で の NPPがこの範囲であれば、ユーザーデータ領域にお!/、て安定したフォーカスサー ボ及びトラッキングサーボ状態が実現できる。
[0202] また、何れの実施例及び比較例におレ、ても、記録領域遷移区間 Sxにおける未記 録状態での NPPの管理範囲は、上記 PIC領域及びユーザーデータ領域の管理範 囲のうち、より範囲の広いユーザーデータ領域と同様の範囲とした。即ち、記録領域 遷移区間 Sxにおける未記録状態での NPPの管理範囲を、 0. 21-0. 8とした。
[0203] なお、上記の NPPの管理範囲は、サーボ系の性能により左右される流動的な数値 であり、使用するサーボ系により適宜決定される。
今回設定した値は、通常のサーボ装置の性能よりもやや低!/、装置でも安定したフォ 一カスサーボ及びトラッキングサーボ状態が実現できると考えられる範囲とした。 即ち、情報記録媒体全面における NPPが上記の範囲内である情報記録媒体が提 供できれば、様々な記録再生装置におレ、て安定したフォーカスサーボ及びトラツキン ダサーボ状態が実現できると考えられる。
なお、以下の実施例及び比較例における NPPとは、全て未記録状態での NPPの ことを指す。
[0204] [実施例 1]
原盤露光時に、トラックピッチ遷移区間 Stpのトラックに沿った長さ Ltpを 3. 2mとし 、溝形状遷移区間 Sgのトラックに沿った長さ Lgを 4. 5mとした。トラックピッチ遷移区 間 Stpの開始点は溝形状遷移区間 Sgの開始点よりも時間的に早くし、 Stpと Sgの重 なり部分のトラックに沿った長さ LLを 2. 9mとした。ここで、 Lg/Ltpの値は 1. 41、 L
L/Ltpのィ直 ίま 0. 91となる。
以上の条件で情報記録媒体を作製した。これを実施例 1の情報記録媒体とする。
[0205] 実施例 1の情報記録媒体について、上記の手順で評価を行なった。その結果とし て得られた、 PIC領域とユーザーデータ領域の境界近傍での規格化プッシュプル信 号 ΝΡΡ及び和信号 SUMの様子を、図 9に示す。
[0206] 実施例 1の情報記録媒体では、 PIC領域での NPPは 0. 3であり、ユーザーデータ 領域での NPPは 0. 63であった。
[0207] 更に、 PIC領域及びユーザーデータ領域の境界近傍では、 NPPが滑らかに変化し ており、記録領域遷移区間 Sxにおいても所定の NPPの管理範囲の下限及び上限を 外れることがな力 た。
[0208] また、記録領域遷移区間 Sx内の NPPが、 PIC領域の NPPよりも常に大きぐユー ザ一データ領域の NPPよりも常に小さくなつていた。
[0209] 以上の結果から、本実施例では、十分に安定したフォーカスサーボ及びトラツキン ダサーボ状態の実現可能な情報記録媒体が得られたことが分かる。
[0210] [実施例 2]
原盤露光時に、トラックピッチ遷移区間 Stpのトラックに沿った長さ Ltpを 3. 2mとし 、溝形状遷移区間 Sgのトラックに沿った長さ Lgを 2. 5mとした。トラックピッチ遷移区 間 Stpの開始点と溝形状遷移区間 Sgの開始点とを略同一箇所とし、 Stpと Sgの重な り部分のトラックに沿った長さ LLを 2. 5mとした。ここで、 Lg/Ltpのィ直は 0. 78、 LL /Ltpのィ直は 0. 78となる。
以上の条件で情報記録媒体を作製した。これを実施例 2の情報記録媒体とする。
[0211] 実施例 2の情報記録媒体につ!/、て、上記の手順で評価を行なった。その結果とし て得られた、 PIC領域とユーザーデータ領域の境界近傍での規格化プッシュプル信 号振幅 NPP及び和信号 SUMの様子を、図 10に示す。
[0212] 実施例 2の情報記録媒体では、 PIC領域での NPPは 0. 39であり、ユーザーデー タ領域での NPPは 0. 63であった。 [0213] ここで、記録領域遷移区間 Sxでの NPPがー部領域においてやや増大している力 S、 増大部分における NPPの最大値は 0. 77であり、所定の NPPの管理範囲の上限を 上回ることはなかった。
[0214] 以上の結果から、本実施例では、安定したフォーカスサーボ及びトラッキングサー ボ状態の実現可能な情報記録媒体が得られたことが分かる。
[0215] [実施例 3]
原盤露光時に、トラックピッチ遷移区間 Stpのトラックに沿った長さ Ltpを 1. 6mとし 、溝形状遷移区間 Sgのトラックに沿った長さ Lgを 3. 9mとした。トラックピッチ遷移区 間 Stpの開始点は溝形状遷移区間 Sgの開始点よりも時間的に早くし、 Stpと Sgの重 なり部分のトラックに沿った長さ LLを 0. 4mとした。ここで、 Lg/Ltpの値は 2. 44、 L L/Ltpのィ直 ίま 0. 25となる。
[0216] また、原盤露光時には、上記の第 2の態様に係る原盤露光装置 (記録光強度調節 機構及び繰り返し動作機構を備えた原盤露光装置)を用い、 PIC領域とユーザーデ ータ領域の遷移部にお!/、て露光光強度スイープを行なわず、記録領域遷移区間 Sx にお!/、て、記録光強度調節機構により記録光強度を調整すると!/、う動作を 90msec 毎に繰り返した。
以上の条件で情報記録媒体を作製した。これを実施例 3の情報記録媒体とする。
[0217] 実施例 3の情報記録媒体について、上記の手順で評価を行なった。その結果とし て得られた、 PIC領域とユーザーデータ領域の境界近傍での規格化プッシュプル信 号振幅 NPP及び和信号 SUMの様子を、図 11に示す。
[0218] 実施例 3の情報記録媒体では、 PIC領域での NPPは 0. 34であり、ユーザーデー タ領域での NPPは 0. 66であった。
[0219] また、 PIC領域及びユーザーデータ領域の境界近傍では、一部 NPPが小さい箇所 があるが、当該箇所の NPPは 0. 26であり、所定の NPPの管理範囲の下限値を下回 ることはなかった。
[0220] つまり、この構成の情報記録媒体では、上記原盤露光装置の繰り返し動作が 100 msec以下となっているので、記録領域遷移区間 Sxにおいて NPPが急激に変化して いる様子は見られなかった。また、 NPPが極端に大きい箇所或いは極端に小さい箇 所が存在せず、所定の NPPの管理範囲の下限及び上限を外れることがなかった。
[0221] 以上の結果から、本実施例では、フォーカスサーボ回路及びトラッキングサーボ回 路の微調整により十分に安定したフォーカスサーボ及びトラッキングサーボ状態が実 現可能な情報記録媒体が得られたことが分かる。
[0222] [実施例 4〜7]
Ltp、 Lg、 LLの値を各々、以下の表 1に示す値とした以外は、実施例 1と同様の手 順により情報記録媒体を作製した。これらを実施例 4〜7の情報記録媒体とする。
[0223] 実施例 4〜7について、実施例 1〜3と同様に NPPを測定したところ、何れも所定の 範囲の数値に納まっており、安定したフォーカスサーボ及びトラッキングサーボ状態 の実現可能な情報記録媒体が提供できた。
[0224] [比較例 1]
原盤露光時に、トラックピッチ遷移区間 Stpのトラックに沿った長さ Ltpを 3. 2mとし 、溝形状遷移区間 Sgのトラックに沿った長さ Lgを 0. 5mとした。トラックピッチ遷移区 間 Stpの終了点と溝形状遷移区間 Sgの開始点とを略同一箇所とし、 Stpと Sgの重な り部分のトラックに沿った長さ LLを Om (つまり、 Stpと Sgの重なり部分が無い状態)と した。ここで、 Lg/Ltpの値は 0. 16、 LL/Ltpの値は 0となる。
以上の条件で情報記録媒体を作製した。これを比較例 1の情報記録媒体とする。
[0225] 比較例 1の情報記録媒体における、 PIC領域とユーザーデータ領域の境界近傍で の規格化プッシュプル信号振幅 NPP及び和信号 SUMの様子を、図 12に示す。
[0226] 比較例 1の情報記録媒体では、 PIC領域での NPPは 0. 41であり、ユーザーデー タ領域での NPPは 0. 67であった。
また、記録領域遷移区間 Sxにおける NPPの最大値は 0. 9であり、最小値は 0. 07 であった。
[0227] 即ち、 NPPがー部領域において管理範囲の上限を上回っており、更に別の領域に お!/、ては下限を下回ってしまって!/、る。この程度にまで NPPが管理範囲を超えて!/ヽ ると、安定してトラッキングサーボを実行することは困難である。
[0228] また、 NPPの変化が比較的急激であり、不連続に変化してしまっている。このような 情報記録媒体は、当該箇所においてトラッキングサーボに障害が生じる可能性があ [0229] [比較例 2]
原盤露光時に、トラックピッチ遷移区間 Stpのトラックに沿った長さ Ltpを 3. 2mとし 、溝形状遷移区間 Sgのトラックに沿った長さ Lgを Om、即ち、 Stpの開始点を境に溝 形状を一気に変更し、溝形状遷移区間 Sgを全く設けない状態とした。
以上の条件で情報記録媒体を作製した。これを比較例 2の情報記録媒体とする。
[0230] 比較例 2の情報記録媒体における、 PIC領域とユーザーデータ領域の境界近傍で の規格化プッシュプル信号振幅 NPP及び和信号 SUMの様子を、図 13に示す。
[0231] 比較例 2の情報記録媒体では、 PIC領域での NPPは 0. 3であり、ユーザーデータ 領域での NPPは 0. 61であった。
また、記録領域遷移区間 Sxにおける NPPの最大値が 1. 2であり、最小値が 0. 2で あった。
[0232] 即ち、 NPPが管理範囲の上限を超えてしまっている箇所と、下限を下回っている箇 所が存在した。この程度にまで NPPが管理範囲を超えていると、安定してトラツキン ダサーボを実行することは困難である。
[0233] また、 NPPの変化が比較的急激であり、不連続に変化してしまっている。このような 情報記録媒体は、当該箇所においてトラッキングサーボに障害が生じる可能性があ
[0234] [評価]
各実施例及び各比較例における、トラックピッチ遷移区間 Stpのトラックに沿った長 さ Ltp、溝形状遷移区間 Sgのトラックに沿った長さ Lg、トラックピッチ遷移区間 Stpと 溝形状遷移区間 Sgとの重なり部分のトラックに沿った長さ LL、Lg/Ltp及び LL/L tpの各数値を、以下の表 1に示す。
[表 1] 表 1
Figure imgf000056_0001
[0235] 図 14は、実施例;!〜 7及び比較例 1、 2の情報記録媒体について得られた Lg/Lt pと LL/Ltpとの関係をプロットした図である。グラフ中の太線の枠は、本発明におい て好適な Lg/Ltp及び LL/Ltpの値の範囲(0. 2≤Lg/Ltp≤2. 5、 0. 1≤LL/ Ltp≤l . 0)を示している。
[0236] 以上の結果より、本発明において、 LgZLtp及び LL/Ltpの上記の好適な範囲内 に設定することが、安定したフォーカスサーボ及びトラッキングサーボ状態を実現する 上で好ましいことが判る。
産業上の利用可能性
[0237] 本発明の情報記録媒体及び原盤露光装置は、例えば Blu— rayディスク等の情報 記録媒体の分野に好適に用いられる。 なお、 2006年 11月 30曰に出願された曰本特許出願 2006— 324452号及び 200 7年 3月 20日に出願された日本特許出願 2007— 073272号の明細書、特許請求の 範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り 入れるものである。

Claims

請求の範囲
[1] 凹凸パターンにより形成された記録トラックを有する情報記録媒体において、
該記録トラックが、第一の記録領域 R1と、第二の記録領域 R2と、第一の記録領域 R1及び第二の記録領域 R2の間に配置された記録領域遷移区間 Sxとを少なくとも 備え、
第一の記録領域 R1におけるトラックピッチ tpl、溝幅 wl、及び溝深さ dl、並びに第 二の記録領域 R2におけるトラックピッチ tp2、溝幅 w2、及び溝深さ d2が、下記式(1) と、下記の式(2)及び/又は式(3)とを満たし、
0 < I tpl -tp2 I (1)
0 < I wl -w2 I (2)
0 < I dl -d2 I (3)
記録領域遷移区間 Sxが、トラックピッチが tplから tp2へと遷移するトラックピッチ遷 移区間 Stpと、溝幅が wlから w2へと遷移し、及び/又は、溝深さが dlから d2へと遷 移する溝形状遷移区間 Sgとを備え、
トラックピッチ遷移区間 Stpと溝形状遷移区間 Sgとは、少なくとも一部の領域 SLを 共有している、ことを特徴とする情報記録媒体。
[2] 第一の記録領域 R1と、第二の記録領域 R2と、記録領域遷移区間 Sxとが、物理的 に連続した溝によって形成されて!/、る、ことを特徴とする請求項 1に記載の情報記録 媒体。
[3] 前記情報記録媒体が、有機色素を含む記録層を有することを特徴とする請求項 1 又は 2に記載の情報記録媒体。
[4] 記録マーク部分における反射率力 未記録部分の反射率よりも高い、ことを特徴と する請求項;!〜 3の何れか一項に記載の情報記録媒体。
[5] 凹凸パターンのうち、記録再生光入射側の情報記録媒体の表面から遠い側の溝底 部を記録トラックとする、ことを特徴とする請求項 1〜4の何れか一項に記載の情報記 録媒体。
[6] 記録層の組成及び膜厚が、少なくとも、第一の記録領域 R1と、第二の記録領域 R2 と、記録領域遷移区間 Sxと、において同一である、ことを特徴とする請求項 1〜5の 何れか一項に記載の情報記録媒体。
[7] ディスク状の情報記録媒体であって、溝形状遷移区間 Sgのトラックに沿った長さ Lg
、ディスク状の情報記録媒体におけるトラック一周分以上である、ことを特徴とする 請求項;!〜 6の何れか一項に記載の情報記録媒体。
[8] 溝形状遷移区間 Sgにおける溝幅及び/又は溝深さが、トラックに沿って単調増加 又は単調減少で変化している、ことを特徴とする請求項 1〜7の何れか一項に記載の 情報記録媒体。
[9] トラックピッチ遷移区間 Stpのトラックに沿った長さ Ltpと、トラックピッチ遷移区間 St Pと溝形状遷移区間 Sgとが共有する領域 SLのトラックに沿った長さ LLとが、下記の 式 (4)及び式(5)を満たす
Figure imgf000058_0001
0. 1 ≤ LL/Ltp ≤ 1. 0 (5)
、ことを特徴とする請求項 1〜8の何れか一項に記載の情報記録媒体。
[10] 第一の記録領域 R1及び第二の記録領域 R2における、未記録状態での規格化プ ッシュプル信号振幅の最大値を NPP とし、最小値を NPP とした場合に、記録領 max mm
域遷移区間 Sx内の全領域にお!/、て、規格化プッシュプル信号振幅 NPPが以下の 式を満たす
NPP ≤ NPP ≤ NPP (6)
mm max
、ことを特徴とする請求項 1〜9の何れか一項に記載の情報記録媒体。
[11] 第一の記録領域 R1及び第二の記録領域 R2における、未記録状態での溝部反射 率の最大値を Rgv とし、最小値を Rgv とした場合に、記録領域遷移区間 Sx内の max mm
全領域にお!/、て、未記録状態での溝部反射率 Rgvが以下の式を満たす
Rgv ≤ Rgv ≤ Rgv (7)
mm max
、ことを特徴とする請求項 1〜; 10の何れか一項に記載の情報記録媒体。
[12] 第一の記録領域 R1が、第二の記録領域 R2よりも内周側に配置され、かつ、第一の 記録領域 R1の内周側に、第一の記録領域 R1におけるトラックピッチ tpl及び第二の 記録領域 R2におけるトラックピッチ tp2よりも広いトラックピッチ tp3を有した第三の記 録領域 R3が配置された、ことを特徴とする請求項 1〜; 11の何れか一項に記載の情 報記録媒体。
[13] 第三の記録領域 R3においては、溝の蛇行による情報の記録がなされていない、こ とを特徴とする請求項 12に記載の情報記録媒体。
[14] 第三の記録領域 R3と第一の記録領域 R1の間に、トラックピッチが tp3から tplへと 遷移するトラックピッチ遷移区間 Stp'が配置された、ことを特徴とする請求項 12又は
13に記載の情報記録媒体。
[15] 第一の記録領域 R1が、所定の情報を格納した読み取り専用領域を含み、
第二の記録領域 R2が、ユーザーデータを書き込み可能な読み書き可能領域を含 む、ことを特徴とする請求項 1〜; 14の何れか一項に記載の情報記録媒体。
[16] 読み取り専用領域におけるトラックピッチが 0. 35 であり、読み書き可能領域に おけるトラックピッチが 0. 32 111である、ことを特徴とする請求項 15に記載の情報記 録媒体。
[17] 読み取り専用領域における規格化プッシュプル信号振幅を NPP1とし、読み書き可 能領域における未記録状態での規格化プッシュプル信号振幅を NPP2とし、読み書 き可能領域における記録後の規格化プッシュプル信号振幅を NPP2aとし、さらに、 各々の最大値の中で最も大きい値を NPPAL とし、各々の最小値の中で最も小さ
max
い値を NPPAL としたとき、
min
NPPAL /NPPAL ≤ 3である、
max min
ことを特徴とする請求項 15又は 16に記載の情報記録媒体。
[18] NPPAL /NPPAL ≤ 2である、請求項 17に記載の情報記録媒体。
max min
[19] 読み取り専用領域に対しては第一のゥォブル変調方式が適用され、読み書き可能 領域に対しては第一のゥォブル変調方式とは異なった第二のゥォブル変調方式が適 用され、かつ、記録領域遷移区間 Sxにおいては読み書き可能領域と同じゥォブル変 調方式が適用されている、請求項 15〜; 18の何れか一項に記載の情報記録媒体。
[20] 記録光源と、
所定のフォーマットに基づいた所定の偏向信号を発生させる偏向信号生成機構と 上記偏向信号生成機構が生成した偏向信号に基づいて、上記記録光源が発生す る記録光を偏向させる記録光偏向機構と、
上記記録光を原盤上に集光させる集光機構と、
上記原盤を載置し回転させるための回転機構と、
上記集光機構を上記原盤の半径方向に相対的に移動させる半径移動機構と、 トラックピッチの異なる複数の記録領域を生成できるように、予め設定した値に基づ いて、上記回転機構の回転速度と、上記半径移動機構の移動速度と、上記集光機 構の位置とを制御する制御機構と、
上記記録光の強度を調節する記録光強度調節機構と、
予め設定した値に基づ!/、て、上記記録光の強度を単調増加又は単調減少でスィ ープさせる、記録光強度スイープ機構と、を備えたことを特徴とする原盤露光装置。
[21] 予め設定した特定の半径位置に集光機構が達したことを検出して、上記記録光強 度スイープ機構による記録光強度のスイープを開始及び/又は終了する機構を備え た、ことを特徴とする請求項 20に記載の原盤露光装置。
[22] 予め設定した特定のアドレスを上記偏向信号生成機構が出力したことを検出して、 上記記録光強度スイープ機構による記録光強度のスイープを開始及び/又は終了 する機構を備えた、ことを特徴とする請求項 20に記載の原盤露光装置。
[23] 予め設定した特定の半径位置に集光機構が達したことを検出して、上記記録光強 度スイープ機構による記録光強度のスイープを開始し、かつ、予め設定した所定の 時間経過後に上記スイープを終了する機構を備えた、ことを特徴とする請求項 20に 記載の原盤露光装置。
[24] 予め設定した特定のアドレスを上記偏向信号生成機構が出力したことを検出して、 上記記録光強度スイープ機構による記録光強度のスイープを開始し、かつ、予め設 定した所定の時間経過後に上記スイープを終了する機構を備えた、ことを特徴とする 請求項 20に記載の原盤露光装置。
[25] 記録光源と、
所定のフォーマットに基づいた所定の偏向信号を発生させる偏向信号生成機構と 上記偏向信号生成機構が生成した偏向信号に基づいて上記記録光源が発生する 記録光を偏向させる記録光偏向機構と、
上記記録光を原盤上に集光させる集光機構と、
上記原盤を載置し回転させるための回転機構と、
上記集光機構を上記原盤の半径方向に相対的に移動させる半径移動機構と、 トラックピッチの異なる複数の記録領域を生成できるように、予め設定した値に基づ いて、上記回転機構の回転速度と、上記半径移動機構の移動速度と、上記集光機 構の位置とを制御する制御機構と、
上記集光機構の位置と、予め設定した特定の半径値における記録光強度設定値と に基づいて、記録光強度を補間して調節する記録光強度調節機構と、
上記記録光強度調節動作を繰り返し行なう繰り返し動作機構とを少なくとも備え、 上記繰り返し動作機構の 1サイクルに要する動作時間が、 100msec以下である、こ とを特徴とする原盤露光装置。
PCT/JP2007/072984 2006-11-30 2007-11-28 情報記録媒体及び原盤露光装置 WO2008069078A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07832706A EP2091042A4 (en) 2006-11-30 2007-11-28 INFORMATION RECORDING MEDIUM AND MASTER EXPOSURE DEVICE
CN2007800187637A CN101449323B (zh) 2006-11-30 2007-11-28 信息记录介质和母盘曝光装置
US12/515,075 US8018823B2 (en) 2006-11-30 2007-11-28 Optical recording medium having a relation between groove widths, groove depths and track pitches

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-324452 2006-11-30
JP2006324452 2006-11-30
JP2007073272 2007-03-20
JP2007-073272 2007-03-20

Publications (1)

Publication Number Publication Date
WO2008069078A1 true WO2008069078A1 (ja) 2008-06-12

Family

ID=39491979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072984 WO2008069078A1 (ja) 2006-11-30 2007-11-28 情報記録媒体及び原盤露光装置

Country Status (7)

Country Link
US (1) US8018823B2 (ja)
EP (1) EP2091042A4 (ja)
JP (2) JP5189830B2 (ja)
KR (1) KR101010551B1 (ja)
CN (1) CN101449323B (ja)
TW (1) TW200837734A (ja)
WO (1) WO2008069078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267807A1 (en) * 2009-10-01 2012-10-25 Sonopress Gmbh Mesh structure for surface plasmon resonance spectroscopy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8588049B2 (en) * 2010-05-10 2013-11-19 Thomson Licensing Optical storage medium comprising a phase shift compensation
JP2021034082A (ja) * 2019-08-26 2021-03-01 株式会社東芝 磁気ディスク装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187604A (en) 1981-05-14 1982-11-18 Toshiba Corp Measurement device of profile
JPS63103454A (ja) * 1986-10-06 1988-05-09 エヌ・ベ−・フィリップス・フル−イランペンファブリケン 光学的に読取り可能な記録キャリア及びその製造方法
JPH05198012A (ja) * 1991-06-14 1993-08-06 Mitsui Toatsu Chem Inc 光記録媒体、光記録媒体用基板及びスタンパー
JPH10198961A (ja) * 1997-01-11 1998-07-31 Ricoh Co Ltd レジスト付き原盤の露光記録方法とその装置
JP2002092890A (ja) * 2000-05-17 2002-03-29 Victor Co Of Japan Ltd 情報記録媒体、情報記録媒体の記録方法、および情報記録媒体の再生方法
JP2003346384A (ja) 2002-05-27 2003-12-05 Sony Corp 光学記録再生媒体、光学記録再生媒体製造用原盤、光学記録再生媒体の製造方法及び光学記録再生装置
JP2006012355A (ja) 2004-06-29 2006-01-12 Sony Corp 記録媒体の製造方法、記録媒体、記録媒体原盤の製造方法および記録媒体原盤
JP2006324452A (ja) 2005-05-19 2006-11-30 Wako Pure Chem Ind Ltd 半導体基板表面処理剤及び処理方法
JP2007073272A (ja) 2005-09-05 2007-03-22 Noritake Co Ltd 非電子伝導性組成傾斜型固体電解質膜

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8602504A (nl) * 1986-10-06 1988-05-02 Philips Nv Optisch uitleesbare registratiedrager voor het optekenen van informatie, een inrichting voor het vervaardigen van een dergelijke registratiedrager, een inrichting voor het optekenen van informatie op een dergelijke registratiedrager, alsmede een inrichting voor het uitlezen van op een dergelijke registratiedrager opgetekende informatie.
CA2070221A1 (en) * 1991-06-14 1992-12-15 Tadahiko Mizukuki Optical recording medium
US5344982A (en) * 1993-04-02 1994-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Diamines and polyimides containing pendent ethynyl groups
EP1262964B1 (en) * 2000-02-28 2009-09-02 Fujitsu Limited Optical disk
JP2001291275A (ja) * 2000-04-07 2001-10-19 Victor Co Of Japan Ltd 記録型光ディスク、光ディスク原盤、ディスク基板、光ディスク原盤製造方法
JP2001307382A (ja) 2000-04-24 2001-11-02 Victor Co Of Japan Ltd 記録型光ディスク、光ディスク原盤、ディスク基板、光ディスク原盤製造方法
CN1193355C (zh) * 2000-05-17 2005-03-16 日本胜利株式会社 信息记录媒体及其记录方法
CN1282180C (zh) * 2000-06-22 2006-10-25 松下电器产业株式会社 光盘记录媒体
JP2002237100A (ja) 2000-12-08 2002-08-23 Mitsubishi Chemicals Corp 光記録媒体
JP2003016697A (ja) * 2001-06-29 2003-01-17 Nikon Corp 光情報記録媒体、スタンパー及びスタンパーの製造方法
KR20040020069A (ko) * 2001-07-18 2004-03-06 소니 가부시끼 가이샤 광학 기록 재생 매체용 기판, 광학 기록 재생 매체 제조용스탬퍼의 제조 방법 및 광학 기록 재생 매체 제조용스탬퍼
JP4018481B2 (ja) * 2001-08-23 2007-12-05 松下電器産業株式会社 光ディスク原盤露光方法および原盤露光装置
CN1220981C (zh) * 2001-10-15 2005-09-28 日本胜利株式会社 信息记录载体
US7233318B1 (en) * 2002-03-13 2007-06-19 Apple Inc. Multi-button mouse
JP2003338039A (ja) 2002-03-15 2003-11-28 Matsushita Electric Ind Co Ltd 光記録媒体原盤の作製方法および作製装置
TW200306561A (en) * 2002-03-15 2003-11-16 Matsushita Electric Ind Co Ltd Manufacturing method of optical recording medium mother disc and manufacturing apparatus
WO2003083845A1 (en) * 2002-04-02 2003-10-09 Koninklijke Philips Electronics N.V. Optical data storage medium and use of such medium
US7649824B2 (en) * 2002-07-01 2010-01-19 Panasonic Corporation Optical storage medium control data region
JP2005203070A (ja) * 2003-12-15 2005-07-28 Pioneer Electronic Corp 記録媒体並びに記録再生方法及び記録再生装置
DK1883923T3 (da) * 2005-05-09 2009-11-30 Koninkl Philips Electronics Nv Optisk datalagringsmedie, apparat og fremgangsmåde til aflæsning af et sådant medie
US8331213B2 (en) * 2005-07-15 2012-12-11 Pioneer Corporation Information recording medium, information reproducing device and method, and apparatus and method for manufacturing information recording medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187604A (en) 1981-05-14 1982-11-18 Toshiba Corp Measurement device of profile
JPS63103454A (ja) * 1986-10-06 1988-05-09 エヌ・ベ−・フィリップス・フル−イランペンファブリケン 光学的に読取り可能な記録キャリア及びその製造方法
JPH05198012A (ja) * 1991-06-14 1993-08-06 Mitsui Toatsu Chem Inc 光記録媒体、光記録媒体用基板及びスタンパー
JPH10198961A (ja) * 1997-01-11 1998-07-31 Ricoh Co Ltd レジスト付き原盤の露光記録方法とその装置
JP2002092890A (ja) * 2000-05-17 2002-03-29 Victor Co Of Japan Ltd 情報記録媒体、情報記録媒体の記録方法、および情報記録媒体の再生方法
JP2003346384A (ja) 2002-05-27 2003-12-05 Sony Corp 光学記録再生媒体、光学記録再生媒体製造用原盤、光学記録再生媒体の製造方法及び光学記録再生装置
JP2006012355A (ja) 2004-06-29 2006-01-12 Sony Corp 記録媒体の製造方法、記録媒体、記録媒体原盤の製造方法および記録媒体原盤
JP2006324452A (ja) 2005-05-19 2006-11-30 Wako Pure Chem Ind Ltd 半導体基板表面処理剤及び処理方法
JP2007073272A (ja) 2005-09-05 2007-03-22 Noritake Co Ltd 非電子伝導性組成傾斜型固体電解質膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2091042A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267807A1 (en) * 2009-10-01 2012-10-25 Sonopress Gmbh Mesh structure for surface plasmon resonance spectroscopy

Also Published As

Publication number Publication date
JP5189830B2 (ja) 2013-04-24
CN101449323A (zh) 2009-06-03
KR101010551B1 (ko) 2011-01-24
US8018823B2 (en) 2011-09-13
US20100034074A1 (en) 2010-02-11
TW200837734A (en) 2008-09-16
EP2091042A4 (en) 2010-08-04
JP2013048011A (ja) 2013-03-07
CN101449323B (zh) 2011-04-13
EP2091042A1 (en) 2009-08-19
TWI377567B (ja) 2012-11-21
KR20090025214A (ko) 2009-03-10
JP2008262667A (ja) 2008-10-30

Similar Documents

Publication Publication Date Title
JP4770710B2 (ja) 記録媒体およびその製造方法、並びに記録媒体用原盤およびその製造方法
JP2009003993A (ja) 記録媒体およびその製造方法、並びに記録媒体用原盤およびその製造方法
EP1170734A2 (en) Optical recording medium and its production method
JP5189830B2 (ja) 情報記録媒体及び原盤露光装置
JP2003085778A (ja) 光学記録再生媒体、光学記録再生媒体製造用マザースタンパ及び光学記録再生装置
JP4705530B2 (ja) 光記録媒体とその基板、及び該基板の成形用スタンパ
US6611492B2 (en) Optical recording medium and master disc for preparation thereof
JP2012164383A (ja) 光情報記録媒体およびその製造方法
JP4239975B2 (ja) 光ディスク製造用原盤の作製方法及び光ディスクの製造方法
JP4484785B2 (ja) 記録方法
WO2003079340A1 (fr) Support d&#39;enregistrement/reproduction optique, matrice de pressage destinee a la fabrication d&#39;un support d&#39;enregistrement/reproduction optique, et dispositif d&#39;enregistrement/reproduction optique
US20060114807A1 (en) Information storage medium, stamper, disc apparatus, and management information playback method
JP2005032317A (ja) 光学記録再生媒体、光学記録再生媒体製造用スタンパ及び光学記録方法
JP4320916B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP4370756B2 (ja) 光学記録再生媒体、光学記録再生媒体製造用原盤、光学記録再生媒体の製造方法及び光学記録再生装置
JP4320915B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP5108343B2 (ja) 光記録媒体
JP2000048409A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2006048785A (ja) 光ディスクスタンパの作製方法、光ディスクスタンパおよび光ディスク
JP2004178651A (ja) 光学記録再生媒体及びこれを用いた光学記録再生装置
JP2000132869A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2006172637A (ja) 光ディスク用原盤の製造方法、光ディスク用原盤および光ディスクならびに凹凸形成方法および凹凸基板
JP2000260070A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2005203051A (ja) 光ディスク、光ディスク用原盤並びに記録方法
JP2005203050A (ja) 光ディスク原盤の記録方法、光ディスク原盤の製造方法、光ディスク原盤、並びに光ディスク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018763.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087028772

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007832706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 932/MUMNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12515075

Country of ref document: US