WO2008062992A1 - Production method of multi-gauge strips - Google Patents
Production method of multi-gauge strips Download PDFInfo
- Publication number
- WO2008062992A1 WO2008062992A1 PCT/KR2007/005838 KR2007005838W WO2008062992A1 WO 2008062992 A1 WO2008062992 A1 WO 2008062992A1 KR 2007005838 W KR2007005838 W KR 2007005838W WO 2008062992 A1 WO2008062992 A1 WO 2008062992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strip
- gauge
- thin portion
- grooves
- groove
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 52
- 238000003825 pressing Methods 0.000 claims abstract description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 36
- 230000000994 depressogenic effect Effects 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/04—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
- B21C37/045—Manufacture of wire or bars with particular section or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D5/00—Bending sheet metal along straight lines, e.g. to form simple curves
- B21D5/06—Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21H—MAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
- B21H8/00—Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets
Definitions
- the present invention relates to a method for production of multi-gauge strips(MGS) which are mainly used as materials for lead frames of semiconductors.
- Multi-gauge strips refer to a band-shaped member consisting of a thick portion and a thin portion which are continuously disposed along the lengthwise direction.
- the present invention relates to a method of producing multi-gauge strips by using a general purpose roller or a press.
- Multi-gauge strip is a member having a use in a lead frame which supplies electricity to semiconductor parts requiring great electric capacitance or to electric or electronic parts, while supporting them. For example, it is used to supply electricity to heat generating parts, such as a power transistor or a connector, as well as to smoothly radiate heat generated from such parts.
- Multi-gauge strip is generally produced by forming a thick portion and a thin portion in a strip made of copper and a copper alloy, wherein the thin portion is used as a lead and the thick portion as a heat radiator.
- a V-Mill-employing method as shown in Fig. 1.
- the method processes a strip material(2) which includes the formation of a groove ([H])(Ib) in the upper side at the center of a dice(l), and then of slopes(lc) in each right and left side of the groove(lb), wherein the slopes(lc) broadens from the acute angle part(la) so as to form a shape of V .
- the center portion of the strip material(2) inserted into the groove(lb) is formed into a thick portion(2a) shown in Fig. 2, and each side of the lower part of the thick portion(2a) is cut by a right angled part(ld) and an acute angled part(la) in the upper part of the groove in the dice(l), forming a cut part(2b) having a slanted surface(2c) and a linear surface(2d).
- the dimension of the cut part(2b) becomes increased owing to the gradually expanded slanted surface(lc), and the cut part(2b) is formed to a thin portion (2e) by a flat part(le) of the dice(l). Then a multi- gauge strip(2 ) having the thick portion(2a) and the thin portion(2e) is formed.
- a roll (not shown) moves in a back-and- forth motion in the feeding direction of a material or moves in a left-and-right motion at a right angle to the feeding direction of a material. Further, hammering of the upper side of the material at high speed is employed, or the dice(l) can be modified to have the shape of a roll for the formation.
- the pressure should be increased as much as the volume of a protrusion(2f) in the groove, and this necessitate a high ejecting power, thereby causing limitation in formation itself as well as a material transfer.
- MGR Multi Grooved Roll
- a pair of the upper and the lower roll each of which has depression and prominence(3a,3b), respectively, and a pair of the upper and the lower roll having a flat surface(4a,4b) are placed alternately at multiple stages in tandem, as shown in Fig. 3.
- the upper and the lower roll(3a,3b) pressurize both sides of a material(5) to form a bended part and a thin portion, then the upper and the lower roll having a flat surface(4a,4b) correct the depression and prominence of the formed material to a flat plane by repeated rolling.
- the thin portion is formed by being gradually widened in both left and right side directions.
- FIG. 14 As another embodiment of aforementioned MGR method, multiple stages of the upper and the lower roll are placed in tandem for formation.
- This method uses the upper roll(6) where a groove(6a), flat surfaces( ⁇ b) in each side of the groove, and a slope(6c) are formed, and the lower roll (not shown) having a flat surface with the upper roll, as shown in Fig. 4.
- the upper roll(6) forms a thick portion(7a) by making the center portion of a material(7) be inserted into the groove(6a), and at the same time the flat surfaces( ⁇ b) and the slope(6c) form a thin portion(7b) and slopes(7c) at both ends of the thin portion.
- the above procedure is repeated so as to gradually increase the width of the thin portion.
- the strip material forms into a multi-gauge strip, via the shape A, B and then C, as shown in the cross-sectional view of Fig. 5.
- the strip material is formed into a multi-gauge strip via the shape D, E and then F.
- formation is carried out in a way that a thick portion is formed first at the center portion of the material and then the width of the thin portion is increased in each side of the center portion of the material.
- each roll arranged in tandem requires a speed- increasing function, since the thicknesses of both of the thick portion and the thin portion are decreased as the material passes through each upper and lower roll, wherein the decrement contributes to an increase in length. Further, the material becomes hardened during the repeated formation procedure, thereby requiring large scale equipment for exclusive use.
- the methods described above have common problems that, when forming the thin portion through repeated formation process of a material, the position of the material during formation is not fixed. Accordingly, the formation of a shape having a multiple number of the thick and the thin portions is structurally restricted.
- the present invention has been designed to dissolve the problems of conventional arts.
- the object of the present invention is to provide a method of producing multi- gauge strips in which the formation of a thick portion and a thin portion can be conducted simultaneously as the elongation rate in the lengthwise direction of the thick portion becomes synchronized with that of the thin portion, by firstly forming the thin portion having a groove in the lower side of the strip material, thereby making a certain space between the groove and a lower roll, wherein the space makes the elongation rate in the widthwise direction high when the thick portion and the thin portion in the upper side are formed.
- the method of producing multi-gauge st rips of the present invention characteristically comprises the following steps in a method of producing a multi-gauge strip consisting of a relatively thick portion and a relatively thin portion formed along the widthwise direction while continuously transferring a strip material: primarily forming a strip material by pressing the upper side thereof so as to make a groove in the lower side of the part where a thin portion is to be formed; and secondly forming the resulted strip by pressing the upper side of the primarily formed strip so as to form the part having a groove into a thin portion and the other part into a thick portion.
- the groove formed in the primary forming step is in the shape of a trapezoid or curved surface.
- the primary forming step comprises formation of the strip material into a processed strip which has a thick portion formed at the center in the widthwise direction of the strip, and a groove ([H]) formed in each end of the lower side; and the second forming step comprises formation of the processed strip into a multi-gauge strip consisting of a thick portion in the center and a thin portion at each end of the thick portion.
- the second forming step comprises formation of a W-shaped multi-gauge strip by forming a square-shaped depressed area at the center in the upper part of the thick portion.
- the primary forming step comprises formation of a strip material into a processed strip which has a multiple number of grooves in the lower side thereof and a thick portion between said grooves; and second forming step comprises formation of the processed strip into a multi-gauge strip consisting of a multiple number of thick portions and thin portions therebetween, by forming the grooves in the inner part of the processed strip into a thin portion and then forming the grooves at each end part simultaneously into a thin portion.
- the formation of the grooves in the inner part into a thin portion in the second forming step is conducted subsequently in order of grooves in the center and outward grooves.
- the primary forming step comprises formation of a strip material into a processed strip having grooves formed in each side of the protrusion at the center of the lower side, and a thick portion formed outside of the grooves; and a second forming step comprises formation of the processed strip into a multi-gauge strip consisting of thick portions at each end thereof and a thin portion between the thick portions.
- FIGs. 1 and 2 are reference figures showing a method of producing a multi-gauge strip by using a conventional V-MiIl.
- FIGs. 3 to 6 are reference figures showing a method of producing a multi-gauge strip by using a conventional MGR method.
- Fig. 7 is a conceptual plan view of the equipment for describing a method of producing a multi-gauge strip according to the present invention.
- Fig. 8 is a cross-sectional view showing a forming procedure according to a first embodiment of the present invention.
- FIG. 9 is a cross-sectional view showing a forming procedure according to a second embodiment of the present invention.
- FIG. 10 is a cross-sectional view showing a forming procedure according to a third embodiment of the present invention.
- FIG. 11 is a cross-sectional view showing a forming procedure according to a fourth embodiment of the present invention.
- Fig. 11 is a cross-sectional view showing a forming procedure according to a fourth embodiment of the present invention.
- a method of producing multi-gauge strips of the present invention comprises the following steps in a method of producing a multi- gauge strip consisting of a relatively thick portion and a relatively thin portion formed along the widthwise direction while continuously transferring a strip material: primarily forming a strip material by pressing the upper side thereof so as to make a groove in the lower side of the part where a thin portion is to be formed; and secondly forming the resulted strip by pressing the upper side of the primarily formed strip so as to form the part having a groove into a thin portion and the other part into a thick portion. Specific examples according to the present method are described in the below.
- the first embodiment of a method of producing a multi-gauge strip according to the present invention comprises the steps of: forming a strip material(l ⁇ ) into a processed strip(20) in which a thick portion(21) is formed at the center portion in the widthwise direction, and grooves ([H])(22) are formed in each end of the lower side; and forming the processed strip(20) into a multi-gauge strip(30) having thin portions(32) formed on each side of the thick portion(31) in the center, as shown in Figs. 7 and 8.
- the shape of the grooves(22) is not particularly limited, and may include curved groove such as circular or elliptical type, or trapezoid.
- the processed strip(20) is formed by a first lower roller(l ⁇ l) having at least one protrusions(101 ) at each side end in the widthwise direction, and a first upper roller having a flat surface (not shown), and the multi-gauge strip(30) is continuously formed by a second lower roller (not shown) having a flat surface, and a second upper roller(102) having a groove(102 ) corresponding to the thick portion in the center.
- the strip material(l ⁇ ) on the protrusion(101 ) of the first lower roll(l ⁇ l) is pressurized by the first upper roller.
- a groove(22) having a shape of the corresponding to the protrusion is formed on the lower side of the strip, while forming a processed strip (20) which is elongated to the widthwise direction as well as the lengthwise direction.
- the groove(22) formed on the lower part of the processed strip(20) forms a space over the second lower roller having a flat surface.
- a multi-gauge strip(30) is finally, formed which consists of the thick portion(31) at the center and the thin portions (32) at each side of the thick portion.
- the thickness of the thin portion in said processed strip(20) is formed to be larger than the required thickness of the thin portion of the resulting multi-gauge strip(30), since the upper side of the processed strip(20) is to be stretched and elongated when contacting with the groove(102 ) of the second upper roller(102).
- the flat portion pressurizes the upper side of the groove part of the processed strip(20) to stretch it in the widthwise direction, thereby forming a thin portion.
- the formation process is carried out as same as above described, except for eliminating the rolling work for the corresponding volume reduction.
- the slanted part of the groove in the processed strip(20) which forms a space is allowed to have an acute angle in order to extend the length of the slanted part.
- the length of the slanted part of the groove is allowed to be shortened.
- the shape or dimension of the groove is optionally adjusted depending on the standard required.
- a press and a cast i.e. punch and die or the like can be used for formation.
- the processed strip(20) is formed by using a lower punch(l 10) having at least one protrusions(l 11) at each end in the width wise direction and a flat upper die(120).
- the multi-gauge strip(30) is formed by using an upper punch(140) having a groove(141) corresponding to the thick portion(31) over the center of a flat lower die(130).
- This example 2 of the present invention demonstrates a method in which, when forming a processed strip(20) into a multi-gauge strip(30) in the above example 1, a square-shaped depressed area(33) is formed on the upper side at the center of the thick portion(31), resulting in W-shaped multi-gauge strip(30 ), as shown in Fig. 9.
- This example 3 of the present invention demonstrates a method which comprises: a step of forming a strip material into a processed strip(40) having a multiple number of grooves(42) in the lower side thereof and a thick portion(41) therebetween; and a step of forming the processed strip(40) into a multi-gauge strip(50) consisting of a multiple number of thick portions (51) and thin portions (52) therebetween, by forming the grooves in the inner part of the processed strip(40) into a thin portion and then forming the grooves at each end simultaneously into a thin portion, as shown in Fig. 10.
- the formation is conducted subsequently in order of grooves in the center of the processed strip (40) and outward grooves, and then finally the grooves in the edge of the processed strip(40) is formed into a thin portion.
- the groove can be formed as a trapezoid or curved groove.
- a strip material is formed into a first processed strip(40) having a multiple number of grooves in the lower side, by using a lower punch(310) having a multiple number of protrusions and a flat upper die(320); then the first processed strip(40) is formed into a second processed strip(45) in which the inner groove part is formed into a thin portion, by using a flat lower die(330) and a first upper punch(340) having protrusions corresponding to the inner grooves of the first processed strip(40); and finally the second processed strip(45) is formed into a multi-gauge strip(50) having a multiple number of thick portions(51) and thin portions(52) formed therebetween by using a flat lower die(330) and a second punch(350) having protrusions(351) corresponding to the grooves(42) of the first processed strip(40).
- rollers can be used for forming a multi-gauge strip(50).
- This example 4 of the present invention demonstrates a method which comprises: a step of forming a strip material into a processed strip(60) having grooves(62) formed in each side of a protrusion(63) at the center of the lower side, and thick portions( ⁇ l) which are formed on each side of the grooves; and a step of forming the processed strip(60) into a multi-gauge strip(70) consisting of thick portions(71) at each end and a thin portion(72) therebetween, as shown in Fig. 11.
- the protrusion(63) of the processed strip(60) is preferably formed to be a curved shape, and the grooves(62) can suitably have either of a trapezoid or a curved shape.
- the strip material is formed into a processed strip(60) having a protrusion(63) at the center of the lower side of the strip, grooves(62) formed therebetween, and thick portions( ⁇ l) formed on each side of the grooves(62), by using a lower punch(410) having a protrusion (411) where a groove(412) is formed in the center and a flat upper die(420); and then the processed strip(60) is formed into a multi-gauge strip(70) consisting of thick portions(71) at each end thereof and a thin portion (72) between the thick portions, by using a flat lower die(430) and an upper punch(440) having a protrusion (441) corresponding to the groove(62) of the processed strip(60).
- the elongation rate in the widthwise direction is higher than that in the lengthwise direction.
- the elongation rate in the widthwise direction is higher that that in the lengthwise direction, as aforementioned. Accordingly, it is possible to form rather wider thin portion in the center of the multi- gauge strip(70). Further, in this example also, rollers can be used, instead of using a die and a cast of a punch and a die.
- the method of producing multi-gauge strips of the present invention it is possible to reduce investment cost by being capable of forming a multi-gauge strip with a general low-price equipment; to decrease production cost by using a reduced number of process tools owing to the simplified forming process; to minimize the dust generation, thereby decreasing defective proportion while improving productivity at the same time; and to result in multi-gauge strips in various shapes by allowing formation of a thick portion and a thin portion in optional location of a material. Therefore, the present invention may contribute to the development in industries related to semiconductor parts and electric or electronic parts where such multi-gauge strips are used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007800430690A CN101563175B (en) | 2006-11-20 | 2007-11-20 | Production method of multi-gauge strips |
US12/514,583 US20100031727A1 (en) | 2006-11-20 | 2007-11-20 | Production method of multi-gauge strips |
JP2009537090A JP2010510066A (en) | 2006-11-20 | 2007-11-20 | Multi-gauge strip manufacturing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2006-0114506 | 2006-11-20 | ||
KR1020060114506A KR100826397B1 (en) | 2006-11-20 | 2006-11-20 | Production method of multi gauge strip |
KR1020070099118A KR100903266B1 (en) | 2007-10-02 | 2007-10-02 | Production Method of Multi Gauge Strips |
KR10-2007-0099118 | 2007-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008062992A1 true WO2008062992A1 (en) | 2008-05-29 |
Family
ID=39429893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2007/005838 WO2008062992A1 (en) | 2006-11-20 | 2007-11-20 | Production method of multi-gauge strips |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100031727A1 (en) |
JP (1) | JP2010510066A (en) |
WO (1) | WO2008062992A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210217630A1 (en) * | 2020-01-09 | 2021-07-15 | Texas Instruments Incorporated | Lead frame rolling |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06134541A (en) * | 1992-10-26 | 1994-05-17 | Kobe Steel Ltd | Rolling method for bar having deformed cross-section |
JPH0739979A (en) * | 1993-07-28 | 1995-02-10 | Nisshin Steel Co Ltd | Production of deformed section bar |
KR20050032451A (en) * | 2003-10-01 | 2005-04-07 | 김충열 | Method and apparatus for manufacturing a release strip |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6604457B2 (en) * | 2001-05-11 | 2003-08-12 | Graftech Inc. | Process and apparatus for embossing graphite articles |
EP1819460B1 (en) * | 2004-12-03 | 2011-10-05 | Novelis Inc. | Roll embossing of discrete features |
-
2007
- 2007-11-20 WO PCT/KR2007/005838 patent/WO2008062992A1/en active Application Filing
- 2007-11-20 US US12/514,583 patent/US20100031727A1/en not_active Abandoned
- 2007-11-20 JP JP2009537090A patent/JP2010510066A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06134541A (en) * | 1992-10-26 | 1994-05-17 | Kobe Steel Ltd | Rolling method for bar having deformed cross-section |
JPH0739979A (en) * | 1993-07-28 | 1995-02-10 | Nisshin Steel Co Ltd | Production of deformed section bar |
KR20050032451A (en) * | 2003-10-01 | 2005-04-07 | 김충열 | Method and apparatus for manufacturing a release strip |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210217630A1 (en) * | 2020-01-09 | 2021-07-15 | Texas Instruments Incorporated | Lead frame rolling |
Also Published As
Publication number | Publication date |
---|---|
US20100031727A1 (en) | 2010-02-11 |
JP2010510066A (en) | 2010-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180154417A1 (en) | Method and apparatus for forming metal sheet | |
KR100396059B1 (en) | Method for processing a bending deformation portion of metallic material, and metallic material for plastic processing used in the same | |
JP2006255770A (en) | Apparatus and method for bending metallic sheet | |
JP3798299B2 (en) | Method for manufacturing deformed strip and method for manufacturing lead frame | |
US20100031727A1 (en) | Production method of multi-gauge strips | |
KR100903266B1 (en) | Production Method of Multi Gauge Strips | |
CN101563175B (en) | Production method of multi-gauge strips | |
JP4817183B2 (en) | Washer manufacturing method | |
US5575062A (en) | Method for forming a connector | |
US6842977B2 (en) | Method of manufacturing metallic wire segment | |
JPH10192981A (en) | Method for bending metal plate and using die therefor | |
JPS5933982B2 (en) | Lead frame manufacturing method | |
JP2010510066A5 (en) | ||
JP2000158049A (en) | Method and device for forming metallic siding | |
KR101431900B1 (en) | Production method of Multi Gauge Strip | |
JP2005059100A (en) | Manufacturing method and apparatus of regular stacked filler | |
JP5277943B2 (en) | Divided body manufacturing apparatus and manufacturing method | |
JP4145718B2 (en) | Manufacturing method of metal plate members | |
KR100694615B1 (en) | Production method of multi gauge strip | |
US7111487B2 (en) | Apparatus and method for forming curvature in sheet metal | |
JPH0569004A (en) | Method for spreading width of metallic sheet | |
JPH09276934A (en) | Method for pressing metallic sheet and die used for it | |
KR100321852B1 (en) | Multi-blanking method | |
KR101908791B1 (en) | Method and Apparatus For production of Multi Gauge strip | |
JPS6127103A (en) | Manufacture of section odd-shaped metallic plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780043069.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07834144 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12514583 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2009537090 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1076/MUMNP/2009 Country of ref document: IN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07834144 Country of ref document: EP Kind code of ref document: A1 |