WO2008062812A1 - Light emitting device and surface light emitting device - Google Patents
Light emitting device and surface light emitting device Download PDFInfo
- Publication number
- WO2008062812A1 WO2008062812A1 PCT/JP2007/072502 JP2007072502W WO2008062812A1 WO 2008062812 A1 WO2008062812 A1 WO 2008062812A1 JP 2007072502 W JP2007072502 W JP 2007072502W WO 2008062812 A1 WO2008062812 A1 WO 2008062812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- light
- emitting device
- wiring
- guide plate
- Prior art date
Links
- 239000007787 solid Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims description 36
- 230000001681 protective effect Effects 0.000 claims description 4
- 238000007789 sealing Methods 0.000 abstract description 14
- 239000010410 layer Substances 0.000 description 33
- 239000004973 liquid crystal related substance Substances 0.000 description 24
- 238000010586 diagram Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0081—Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
- G02B6/0083—Details of electrical connections of light sources to drivers, circuit boards, or the like
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
- G02B6/003—Lens or lenticular sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0066—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
- G02B6/0068—Arrangements of plural sources, e.g. multi-colour light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0066—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
- G02B6/0073—Light emitting diode [LED]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133603—Direct backlight with LEDs
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133612—Electrical details
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
- H10H20/856—Reflecting means
Definitions
- the present invention relates to a light emitting device and a surface light emitting device, and more particularly to a light emitting device including a solid light emitting element.
- a backlight device has been adopted as a light emitting device in order to irradiate light from the back surface or the side surface of the display panel.
- a light source is installed on two sides or one side of a transparent resin light guide plate, and the light incident on the light guide plate is reflected by a reflecting portion provided on the back surface of the light guide plate, so that the liquid crystal panel surface is reflected.
- edge light (side light) type is a so-called edge light (side light) type to be irradiated.
- a backlight device As such a backlight device, it is common to use a fluorescent tube of a hot cathode type or a cold cathode type. On the other hand, as an alternative to a backlight device using such a fluorescent tube, a backlight device that uses a light emitting diode (LED), which is one of solid-state light emitting elements, as a light source in recent years. Technology development is underway.
- LED light emitting diode
- a light source in which a plurality of light emitting diodes are mounted on a substrate is arranged on one side of a light guide plate is known (for example, a patent). Reference 1).
- a light emitting element array module in which a plurality of light emitting elements are mounted on a substrate is disposed on the bottom wall of the metal plate on which the first side wall, the second side wall, and the bottom wall are formed by bending.
- a reflecting plate is formed on a first side wall and a second side wall is known (for example, see Patent Document 2).
- Patent Document 1 Japanese Patent Laid-Open No. 6-3527
- Patent Document 2 JP-A-2006-310221
- each light emitting diode and a power source are connected to the substrate. Wiring for doing this is formed.
- the number of light-emitting diodes mounted on the substrate has been increasing in order to meet the demand for larger display panels and higher image quality, and the number of wirings formed on the substrate has increased accordingly. ing.
- the area required for routing the wirings increases.
- the area of the substrate itself may be increased, or the number of wiring layers on the substrate may be increased.
- the width of the substrate that is, the thickness in the direction perpendicular to the surface of the display panel of the backlight device increases, and as a result, the thickness of the display device also increases. Will end up.
- the latter method for example, the problem like the former will surely occur, but the number of wiring layers increases, leading to an increase in the manufacturing cost of the substrate.
- the present invention has been made against the background of the above-described technique, and an object thereof is to reduce the thickness of a light-emitting device including a solid-state light-emitting element.
- a light emitting device to which the present invention is applied has a concave cross-section, and a wiring board on which wiring is formed, and is mounted directly inside the concave part of the wiring board and connected to the wiring. And a reflecting member that is formed inside the concave portion of the wiring board and reflects light emitted from the solid light emitting element.
- Such a light emitting device may further include a protective member that is provided inside the concave portion of the wiring board and protects the solid light emitting element. Also, it is necessary to use the force S to make the wiring board bend! /.
- the present invention provides a surface light emitting device that includes a light guide plate that emits light incident from the side surface to the upper surface side, and a light source that irradiates light to the light guide plate from the side surface of the light guide plate. Therefore, the light source has a plurality of solid-state light emitting elements arranged along the side surface of the light guide plate, and a concave portion that is bent so that a facing portion between the side surface of the light guide plate becomes a valley, and inside the concave portion.
- a plurality of solid state light emitting devices are mounted directly and provided with a wiring for supplying power to the plurality of solid state light emitting devices, and inside a recess formed in the substrate, and are output from the plurality of solid state light emitting devices. And a reflective layer that reflects the emitted light toward the light guide plate.
- the substrate includes a base portion on which a plurality of solid state light emitting elements are directly mounted, a first side wall projecting from one end portion side of the base portion toward the side surface of the light guide plate, and other base portions. And a second side wall projecting from the end side to the side surface of the light guide plate, and the reflective layer may be formed on the first side wall and the second side wall.
- the substrate includes a base on which a plurality of solid state light emitting devices are directly mounted, a first side wall projecting from one end of the base toward the side of the light guide plate, and a side of the light guide plate from the other end of the base.
- the second side wall protrudes from the first side wall, and the protrusion length of the second side wall is set larger than that of the first side wall, and wiring is formed on the base and the second side wall, but wiring is not formed on the first side wall.
- the plurality of solid state light emitting elements are composed of a red light emitting element that emits red light, a green light emitting element that emits green light, and a blue light emitting element that emits blue light in order. I can do it.
- the wiring can be characterized by feeding two or more solid state light emitting devices per system. Further, it may be characterized in that two or more solid-state light emitting elements fed by one line of wiring are not adjacent to each other. Furthermore, the wiring can be performed with a special force S to supply power to a plurality of solid state light emitting devices by combining series connection and parallel connection.
- FIG. 1 is a diagram showing an overall configuration of a liquid crystal display device to which the present embodiment is applied.
- the liquid crystal display device to which the present embodiment is applied includes a liquid crystal display module 50 and a backlight device 10 provided on the back side (lower side in FIG. 1) of the liquid crystal display module 50.
- a side-edge type backlight device 10 is used.
- the backlight device 10 as a surface light emitting device includes a light emitting module 11, a light guide plate 12, a reflection plate 13, a diffusion plate 14, prism sheets 15 and 16, and a brightness enhancement film 17.
- a light emitting module 11 as a light emitting device or a light source is disposed to face a side surface of one side (long side) of the light guide plate 12.
- the light emitting module 11 is configured by arranging a plurality of LED chips that emit light of each color of red (R), green (G), and blue (B). The configuration of the light emitting module 11 will be described later in detail.
- the light guide plate 12 has a rectangular shape corresponding to the liquid crystal panel 51, and is made of, for example, an acrylic resin having excellent light transmittance. On the surface opposite to the surface of the light guide plate 12 facing the liquid crystal display module 50, reflective dots (both not shown) made of unevenness or white ink are formed.
- the reflection plate 13 is disposed in close contact with the dot formation surface side of the light guide plate 12.
- the reflecting plate 13 is composed of a white plate or a plate having a metallic luster.
- the diffusion plate 14 is disposed in close contact with the surface of the light guide plate 12 opposite to the reflection plate 13.
- the diffusing plate 14 is, for example, a plate or a film made of a laminate of optical films.
- the prism sheets 15 and 16 are provided on the upper part of the reflection plate 13 (side closer to the liquid crystal display module 50).
- the prism sheets 15 and 16 are composed of diffraction grating films in directions orthogonal to each other.
- the brightness enhancement film 17 is composed of, for example, a PCF (Polarization Conversi on Film) having a polarization separation function.
- the liquid crystal display module 50 is laminated on a liquid crystal panel 51 as a kind of display panel formed by sandwiching liquid crystal between two glass substrates, and on each glass substrate of the liquid crystal panel 51, Polarizing plates 52 and 53 for limiting the vibration of the light wave to a certain direction are provided. Further, peripheral members such as a driving LSI (not shown) are mounted on the liquid crystal display device.
- the liquid crystal panel 51 is configured to include various components not shown. For example, two glass substrates with display electrodes (not shown), active elements such as thin film transistors (TFTs), liquid crystals, spacers, sealing agents, alignment films, common electrodes, protective films, color filters, etc. Get ready.
- active elements such as thin film transistors (TFTs), liquid crystals, spacers, sealing agents, alignment films, common electrodes, protective films, color filters, etc. Get ready.
- the structural unit of the backlight device 10 is arbitrarily selected.
- the unit consisting of only the light emitting module 11 and the light guide plate 12 is referred to as a “backlight device (backlight)” and includes optical compensation systems such as the reflector 13, the diffuser plate 14, the prism sheets 15 and 16, and the brightness enhancement film 17.
- optical compensation systems such as the reflector 13, the diffuser plate 14, the prism sheets 15 and 16, and the brightness enhancement film 17.
- the LED chip of each RGB color When the LED chip of each RGB color is turned on to the light emitting module 11, the light of each RGB color emitted from each LED chip force enters from one side of the light guide plate 12. Then, in the light guide plate 12, the light guided from the light emitting module 11 into the light guide plate 12 is guided to the entire surface of the light guide plate 12 using total reflection of a material (for example, acrylic resin) constituting the light guide plate 12. At this time, the light hitting the reflective dots provided on the back side of the light guide plate 12 changes its path, and the light having an angle smaller than the total reflection angle is the surface of the light guide plate 12 (surface on the diffuser plate 14 side). Come out from.
- a material for example, acrylic resin
- the light emitted from the surface of the light guide plate 12 in this way is scattered and diffused by the diffusion plate 14 and is emitted in a more uniform state.
- the light emitted from the diffusion plate 14 is condensed by the prism sheets 15 and 16 toward the front, that is, the brightness enhancement film 17 (the liquid crystal display module 50).
- the light emitted from the prism sheet 16 is polarized and separated by the brightness enhancement film 17, and is emitted toward the liquid crystal display module 50 in a state where the brightness is improved. Therefore, the liquid crystal display module 50 is irradiated with light that is whitened by a sufficient color mixture and has a uniform intensity over the entire surface, and further has improved luminance over the entire surface.
- FIG. 2A is a perspective view showing the configuration of the light emitting module 11.
- the light emitting module 11 includes a light emitting device 21 on which an LED chip is mounted and a support member 22 that supports the light emitting device 21.
- FIG. 2B shows a state in which the light emitting module 11 is disassembled into the light emitting device 21 and the support member 22.
- the light emitting device 21 includes a wiring board 30.
- the wiring board 30 has a structure bent in a concave shape. For this reason, the wiring board 30 is formed of the formed recess.
- a base 30a serving as a bottom, a first side wall 30b projecting from one end of the base 30a at a substantially right angle, and a second side wall 30c projecting from the other end of the base 30a in the same direction as the first side wall 30b are provided.
- the protruding length of the second side wall 30c is set larger than the protruding length of the first side wall 30b.
- a large number of LED chips (not shown) are arranged along the longitudinal direction on the base 30a inside the recess formed in the wiring board 30 and a lens 33 for protecting these LED chips is provided in the recess 30 of the wiring board 30. It is formed so as to be filled.
- the support member 22 has a structure bent into a concave shape like the wiring board 30 in order to fit and hold the wiring board 30. Therefore, the support member 22 protrudes in the same direction as the first side portion 22b from the other end of the bottom portion 22a of the formed recess, the first side portion 22b protruding from the one end of the bottom portion 22a at a right angle, and the other end of the bottom portion 22a.
- a second side 22c is provided.
- the protruding length of the second side portion 22c is set larger than the protruding length of the first side portion 22b.
- the support member 22 can be made of a metal plate such as stainless steel.
- the protruding length of the first side wall 30b provided on the wiring substrate 30 of the light emitting device 21 is set to be smaller than the protruding length of the first side portion 22b provided on the support member 22.
- the protruding length of the second side wall 30c provided on the wiring board 30 of the light emitting device 21 is set to be larger than the protruding length of the second side portion 22c provided on the support member 22.
- the first side portion 22b protrudes from the first side wall 30b, while the second side wall 30c protrudes from the second side portion 22c.
- a connector pad for supplying power to the wiring board 30 is provided below (outside) the protruding portion of the second side wall 30c, as will be described later.
- FIG. 3 is a diagram showing the configuration of the light emitting device 21.
- Fig. 3 (a) is a front view of the light emitting device 21 as viewed from the light guide plate 12 side shown in Fig. 1
- Fig. 3 (b) is an enlarged view of the main part of Fig. 3 (a)
- Fig. 3 (c) is a diagram.
- 3 (b) is a cross-sectional view of nic-IIIC.
- the light emitting device 21 includes a wiring board 30, a plurality of LED chips 31, a lens 33, and a resist layer.
- the main part is composed of 34.
- the wiring board 30 is constituted by a so-called glass epoxy substrate based on, for example, a glass cloth base epoxy resin. In addition to the glass-epoxy substrate, for example, it has flexibility and is bent. It is also possible to use flexible printed circuit (FPC).
- the wiring board 30 includes wiring (not shown) for supplying power to each LED chip 31. In the present embodiment, a so-called two-layer substrate in which wiring is formed on both surfaces of the wiring substrate 30 is used. The details of the wiring formed on the wiring board 30 will be described later.
- the plurality of LED chips 31 functioning as solid state light emitting elements are directly mounted in a straight line on the base 30 a inside the recess of the wiring board 30.
- a total of 42 LED chips 31 are attached to the base 30a.
- the 42 LED chips 31 are red LED chips R1 to R14 as red light emitting elements that emit red light, green LED chips G1 to G14 as green light emitting elements that emit green light, and blue light emitting elements that emit blue light.
- the LED chips 31 are arranged in the order of red, green, and blue, and in specific white tiles, Rl, Gl, Bl, R2, G2, B2,... R14, G14, B14.
- each electrode pad 32 is formed on the base 30a inside the recess of the wiring board 30 so as to sandwich each LED chip 31.
- Each LED chip 31 is electrically connected to the electrode pads 32 at both ends via bonding wires.
- Each electrode pad 32 is supplied with power through the wiring formed on the wiring board 30.
- the lens 33 that functions as a protective member includes a sealing portion 33a and a lens portion 33b.
- the lens 33 functions to protect each LED chip 31 and to guide light emitted from the corresponding LED chip 31 efficiently and substantially uniformly to the light guide plate 12 shown in FIG.
- the sealing portion 33a is formed so as to fill the concave portion of the wiring substrate 30 that has been bent, that is, in contact with the inner surface of the concave portion of the wiring substrate 30.
- the lens part 33b is formed in a semicircular shape on the sealing part 33a.
- the sealing portion 33a since the plurality of LED chips 31 are linearly arranged, the sealing portion 33a has a quadrangular prism shape as a whole, and the entire lens portion 33b has a semi-cylindrical shape. is doing.
- the sealing portion 33a and the lens portion 33b have light transmission performance that is substantially transparent to red, green, and blue light.
- the resist layer 34 is formed on both surfaces of the wiring board 30.
- the resist layer 34 is not formed at the position where the LED chip 31 is mounted or the position where the electrode pad 32 is provided on the base portion 30a of the wiring board 30.
- the resist layer 34 protects the wiring formed on both sides of the wiring board 30 and the board itself.
- the resist layer 34 formed inside the concave portion of the wiring board 30 also functions as a reflective member or a reflective layer that reflects light emitted from the LED chip 31.
- FIG. 4 is a diagram showing a wiring pattern formed on the wiring board 30.
- FIG. 4A shows a wiring pattern on the surface of the wiring board 30 on which the LED chip 31 is mounted.
- FIG. 4B shows a wiring pattern on the back surface of the wiring board 30 on the side opposite to the front surface.
- FIG. 4 shows a state before the wiring substrate 30 is bent or the resist layer 34 is formed.
- the surface wiring 35 is formed on the surface side of the wiring board 30.
- the surface wiring 35 is formed on the base 30 a and the second side wall 30 c excluding the first side wall 30 b on the surface of the wiring board 30.
- the alternate long and short dash line indicates a part that is to be bent (valley folded) later!
- the back surface wiring 36 is formed on the back surface side of the wiring substrate 30.
- the back surface wiring 36 is formed on the second side wall 30c excluding the base 30a and the first side wall 30b on the back surface of the wiring board 30. Therefore, the first side wall 30b of the wiring board 30 is also formed with! / And misalignment of the front surface wiring 35 and the back surface wiring 36! /, N! /.
- the broken line indicates a part to be bent later (mountain fold).
- the front surface wiring 35 and the back surface wiring 36 are electrically connected through a through hole formed through the wiring substrate 30.
- first connector pad 37 and the second connector pad 38 for supplying power to each LED chip 31 through the front surface wiring 35 and the back surface wiring 36 are provided on the back surface of the wiring board 30. It is Here, the first connector pad 37 is connected to a power source. On the other hand, the second connector pad 38 is grounded. Each of the first connector pad 37 and the second connector pad 38 has 21 electrode pads, and each electrode pad penetrates the wiring board 30. It is electrically connected to the surface wiring 35 through the formed through hole.
- first connector pad 37 and the second connector pad 38 are located more than the second side portion 22c when the light emitting device 21 including the wiring board 30 shown in FIG. It is arranged at the protruding position. This facilitates power feeding to the wiring board 30.
- FIG. 5 is a diagram for explaining a power feeding system based on a wiring pattern formed on the wiring board 30.
- the first connector pad 37 includes 21 electrode pads 37a to 37u.
- the second connector pad 38 includes 21 electrode pads 38a to 38u.
- a total of 42 LED chips 31 are connected using 21 power supply lines. Therefore, one power supply line is connected to two LED chips 31 each. That is, in this power supply system, 21 LED chips 31 connected in series two by two are connected in parallel.
- the electrode node 37a provided on the first connector pad 37 is connected to the electrode pad 38a provided on the second connector pad 38 via the red LED chips R1 and R8.
- the electrode pad 37b provided on the first connector pad 37 is connected to the electrode pad 38b provided on the second connector pad 38 via the green LED chips G1 and G8.
- the electrode pad 37c provided on the first connector pad 37 is connected to the electrode pad 38c provided on the second connector pad 38 via the blue LED chips B1 and B8.
- power is supplied to two LED chips 31 of the same color through a single power supply line.
- One power line connects two LED chips 31 of the same color while straddling six LED chips 31 of the same color.
- one power supply line supplies power to the adjacent LED chip 31 of the same color! / ,!
- FIG. 6 is a flowchart showing a manufacturing process of the light emitting device 21 according to the present embodiment
- FIG. 7 is a diagram for explaining a specific process of each step in the flowchart shown in FIG.
- the wiring board 30 is created (step 101).
- a glass epoxy board or a polyimide film with copper foil attached on both front and back surfaces is used as a starting material.
- Use the through-hole method to form the front wiring 35, back wiring 36, through-hole, electrode pad 32, first connector pad 37, second connector pad 38, etc. by drilling, plating, etching, etc. Can do.
- using a substrate or insulating substrate created by the plated through-hole method as a starting material forming an insulating layer on top of it, creating a conductor pattern, stacking the conductor layers by making interlayer connections It is also possible to use a build-up method that realizes multiple layers.
- FIG. 7 (a) shows the wiring board 30 produced in this way. In FIG. 7 (a), wiring and the like are omitted.
- a resist process is performed on the created wiring board 30 (step 102). Specifically, as shown in FIG. 7B, a resist layer 34 made of resin is formed on both surfaces of the wiring board 30. However, at this time, the resist layer 34 is not formed in a portion of the base portion 30a where the LED chip 31 is mounted later or a portion where the electrode pad 32 is formed. Similarly, the resist layer 34 is not formed on the second side wall 30c where the electrode pads 37a to 37u and 38a to 38u are formed later.
- the resist layer 34 can be selectively formed on the wiring board 30 by using, for example, a screen printing technique.
- the resist layer 34 can be formed of, for example, a thermosetting resist or an ultraviolet ray curing (UV cure) type resist.
- the resist layer 34 is made of a material having a high light reflectance in the visible region, such as white.
- the electrode pad 32 exposed on the surface side of the base 30a and the electrode pads 37a to 37u and electrode pads 38a to 38a exposed on the back side of the second side wall 30c with respect to the wiring substrate 30 subjected to the resist treatment. 38u can be surface treated by electroless silver plating. Further, it is possible to insert a process of forming, for example, a part symbol, a part address, or a name of the completed wiring board 30 on the resist layer 34 by silk printing.
- each LED chip 31 has a corresponding position on the base 30a (see FIG. 7) by adhesion using, for example, epoxy resin, silicone resin, acrylic resin, or the like. 3 Installed between electrode pads 32 shown in (b). Thereafter, each LED chip 31 and the corresponding two electrode nodes 32 are electrically connected by wire bonding (step 104). [0036] Then, the wiring substrate 30 to which the LED chip 31 is attached and wire-bonded is bent (step 105). Specifically, as shown in FIG.
- a formwork or the like is formed on the boundary between the base 30a and the first side wall 30b and the boundary between the base 30a and the second side wall 30c in the wiring board 30.
- the wiring board 30 is deformed into a concave shape, and a recess is formed by the base 30a, the first side wall 30b, and the second side wall 30c.
- 42 LED chips 31 are arranged in a straight line on the base portion 30 a inside the recess formed in the wiring board 30.
- step 106 the concave portion of the wiring board 30 on which the LED chip 31 is mounted and subjected to the bending process is sealed with a resin (step 106). More specifically, as shown in FIG. 7 (e), a liquid resin is injected up to the height of the first side wall 30b so that each LED chip 31 is covered, and then solidified to thereby seal the sealing portion 33a. Let it form.
- the resin constituting the sealing portion 33a for example, an epoxy resin, a polycarbonate resin, a silicone resin, an acrylic resin, or the like that is highly visible and highly transparent in the visible region should be used. Can do.
- the lens portion 33b is attached on the sealing portion 33a (step 107). Specifically, as shown in FIG. 7 (f), a semi-cylindrical lens portion 33b made of resin is attached to the upper surface of the sealing portion 33a using a transparent adhesive resin or the like.
- a resin having high light transmittance in the visible region such as an epoxy resin, a polycarbonate resin, a silicone resin, or an acrylic resin, should be used as in the sealing part 33a. I can do it. Thus, the light emitting device 21 is completed.
- the light emitting device 21 thus produced is then fitted into the support member 22 as shown in FIG. 7 (g), and the light emitting module 11 is obtained.
- FIG. 8 is a diagram for explaining the path of light emitted from the light emitting device 21 manufactured in this way.
- the LED chip 31 When a predetermined current flows through the LED chip 31 via the first connector pad 37 and the second connector pad 38 (see FIG. 4), the LED chip 31 emits light. LED chip 31 force The emitted light spreads in each direction.
- the light emitted upward in the drawing proceeds directly toward the light guide plate 12 shown in FIG. 1 via the lens 33.
- the emitted light for example, light emitted obliquely upward in the figure enters the resist layer 34 provided on the first side wall 30b and the second side wall 30c of the wiring board 30.
- the resist layer has a high reflection characteristic with respect to visible light, and the light incident on the resist layer 34 is reflected upward by the resist layer 34 functioning as a reflection layer, and proceeds upward in the figure. Go.
- the wiring board 30 on which the plurality of LED chips 31 are mounted is bent. Then, the wiring is formed on the wiring board 30 across the bent portion. For this reason, even when the number of LED chips 31 is increased or complex wiring patterns are formed by series-parallel connection! /, Even when the area required for wiring increases, the wiring layer on the wiring board 30 While suppressing the increase in the number, the increase in the thickness of the light emitting module 11 in the thickness direction of the backlight device 10 can be suppressed. As a result, the knocklight device 10 can be reduced in thickness.
- no wiring is formed on the first side wall 30b having a short protruding length in the wiring board 30. This can reduce the risk of disconnection in the wiring when the wiring board 30 is bent.
- the resist layer 34 is formed inside the recess formed in the wiring board 30 so that the light emitted from each LED chip 31 is guided to the light guide plate 12 side by reflection. I did it. This makes it possible to increase the light emission efficiency of the backlight device 10.
- the sealing portion 33a is formed inside the recess formed in the wiring board 30, and the lens portion 33b is formed thereon.
- the sealing portion 33a can be formed easily because the resin can be poured using the wiring substrate 30 as a mold.
- the force that caused the resist layer 34 provided inside the recess of the wiring board 30 to function as a reflective member or a reflective layer is not limited to this.
- a metal reflective film such as an aluminum film may be formed inside the recess of the wiring board 30 and function as a reflective member or a reflective layer.
- the number of LED chips 31 mounted on the power wiring board 30 is such that 42 LED chips 31 of each RGB color are arranged to form the light emitting device 21.
- the design may be changed as appropriate according to the size of the liquid crystal panel 51 and the required optical characteristics.
- the force S described for the example in which the light emitting module 11 is applied to the backlight device 10 of the liquid crystal display module 50, and the application target of the light emitting module 11 is not limited to this.
- the light emitting module 11 can be used as an indoor / outdoor lighting device or the like instead of a lighting device such as a fluorescent lamp.
- FIG. 1 is a diagram showing an overall configuration of a liquid crystal display device to which the present embodiment is applied.
- FIG. 2 (a) is a diagram for explaining a light emitting module, and (b) is a diagram for explaining a light emitting device and a supporting member constituting the light emitting module.
- FIG. 3 (a) is a front view of the light emitting device, (b) is an enlarged view of the main part of ⁇ , and (c) is a mc-mc cross-sectional view of (b).
- FIG. 4 (a) is a diagram showing a wiring pattern formed on the front surface of the wiring substrate (LED chip mounting surface), and (b) is a diagram showing a wiring pattern formed on the back surface of the wiring substrate.
- FIG. 5 is a diagram for explaining a power feeding path for each LED chip.
- FIG. 6 is a flowchart for explaining a manufacturing process of the light emitting device.
- FIG. 7 is a diagram for explaining a manufacturing process for the light-emitting device.
- FIG. 8 is a diagram for explaining a path of light emitted from the light emitting module.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Led Device Packages (AREA)
- Planar Illumination Modules (AREA)
- Liquid Crystal (AREA)
Abstract
Description
明 細 書 Specification
発光装置および面発光装置 Light emitting device and surface light emitting device
技術分野 Technical field
[0001] 本発明は、発光装置および面発光装置に係り、より詳しくは、固体発光素子を含ん で構成される発光装置等に関する。 TECHNICAL FIELD [0001] The present invention relates to a light emitting device and a surface light emitting device, and more particularly to a light emitting device including a solid light emitting element.
背景技術 Background art
[0002] 近年、例えば液晶テレビや液晶モニタに代表される液晶表示装置などの表示装置 では、表示パネルの背面や側面などから光を照射するために、発光装置としてバック ライト装置が採用されている。このバックライト装置としては、透明な樹脂製の導光板 の二辺または一辺に光源を設置し、導光板に入射させた光を導光板の裏面に設け た反射部によって反射させて液晶パネル面を照射させるいわゆるエッジライト(サイド ライト)型が存在する。 In recent years, for example, in a display device such as a liquid crystal display device typified by a liquid crystal television or a liquid crystal monitor, a backlight device has been adopted as a light emitting device in order to irradiate light from the back surface or the side surface of the display panel. . As this backlight device, a light source is installed on two sides or one side of a transparent resin light guide plate, and the light incident on the light guide plate is reflected by a reflecting portion provided on the back surface of the light guide plate, so that the liquid crystal panel surface is reflected. There is a so-called edge light (side light) type to be irradiated.
[0003] このようなバックライト装置としては、熱陰極型や冷陰極型などの蛍光管を用いるの が一般的である。その一方で、このような蛍光管を用いたバックライト装置に代わるも のとして、近年、固体発光素子の 1つである発光ダイオード(LED : Light Emitting Di ode)を光源として使用するバックライト装置の技術開発が進められている。 As such a backlight device, it is common to use a fluorescent tube of a hot cathode type or a cold cathode type. On the other hand, as an alternative to a backlight device using such a fluorescent tube, a backlight device that uses a light emitting diode (LED), which is one of solid-state light emitting elements, as a light source in recent years. Technology development is underway.
そして、発光ダイオードを用いたサイドライト型のバックライト装置として、複数の発 光ダイオードを基板上に実装してなる光源を、導光板の一側面に配置したものが知 られている (例えば、特許文献 1参照。)。また、基板上に複数の発光素子を取り付け てなる発光素子アレイモジュールを、折り曲げによって第 1の側壁、第 2の側壁および 底壁が形成された金属板の底壁に配置し、この金属板の第 1の側壁および第 2の側 壁に反射板を形成したものが知られている(例えば、特許文献 2参照。)。 As a sidelight type backlight device using light emitting diodes, a light source in which a plurality of light emitting diodes are mounted on a substrate is arranged on one side of a light guide plate is known (for example, a patent). Reference 1). In addition, a light emitting element array module in which a plurality of light emitting elements are mounted on a substrate is disposed on the bottom wall of the metal plate on which the first side wall, the second side wall, and the bottom wall are formed by bending. One in which a reflecting plate is formed on a first side wall and a second side wall is known (for example, see Patent Document 2).
[0004] 特許文献 1 :特開平 6— 3527号公報 [0004] Patent Document 1: Japanese Patent Laid-Open No. 6-3527
特許文献 2 :特開 2006— 310221号公報 Patent Document 2: JP-A-2006-310221
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] ところで、上述したバックライト装置では、基板に、各発光ダイオードと電源とを接続 するための配線が形成される。特に、最近では、表示パネルの大型化や高画質化と いった要請に応えるため、基板に実装する発光ダイオードの数が増大してきており、 その分、基板に形成される配線の数も多くなつている。このように基板に形成される 配線の数が多くなつてくると、配線の引き回しに必要な面積が増大することになる。こ こで、配線を引き回すのに必要な面積を増大させるための手法として、例えば、基板 の面積自体を大きくしたり、あるいは、基板における配線の層数を増加させたりするこ とが考えられる。 By the way, in the backlight device described above, each light emitting diode and a power source are connected to the substrate. Wiring for doing this is formed. In particular, recently, the number of light-emitting diodes mounted on the substrate has been increasing in order to meet the demand for larger display panels and higher image quality, and the number of wirings formed on the substrate has increased accordingly. ing. As the number of wirings formed on the substrate increases in this way, the area required for routing the wirings increases. Here, as a technique for increasing the area necessary for routing the wiring, for example, the area of the substrate itself may be increased, or the number of wiring layers on the substrate may be increased.
[0006] しかしながら、例えば前者の手法を採用した場合には、基板の幅すなわちバックラ イト装置の表示パネルの面に垂直な方向の厚さが増大し、結果として表示装置の厚 みも増加することになつてしまう。一方、例えば後者の手法を採用した場合には、確 かに、前者のような問題は生じに《なるものの、配線の層数が増加する分、基板の 製造コストが嵩むことに繋がってしまう。 However, for example, when the former method is adopted, the width of the substrate, that is, the thickness in the direction perpendicular to the surface of the display panel of the backlight device increases, and as a result, the thickness of the display device also increases. Will end up. On the other hand, when the latter method is adopted, for example, the problem like the former will surely occur, but the number of wiring layers increases, leading to an increase in the manufacturing cost of the substrate.
[0007] 本発明は、上述した技術を背景としてなされたものであり、その目的とするところは、 固体発光素子を備えた発光装置の薄型化を図ることにある。 [0007] The present invention has been made against the background of the above-described technique, and an object thereof is to reduce the thickness of a light-emitting device including a solid-state light-emitting element.
課題を解決するための手段 Means for solving the problem
[0008] かかる目的のもと、本発明が適用される発光装置は、凹状の断面を有し、配線が形 成される配線基板と、配線基板の凹部内側に直接実装され、配線に接続される固体 発光素子と、配線基板の凹部内側に形成され、固体発光素子より出射される光を反 射する反射部材とを含んで!/、る。 [0008] For this purpose, a light emitting device to which the present invention is applied has a concave cross-section, and a wiring board on which wiring is formed, and is mounted directly inside the concave part of the wiring board and connected to the wiring. And a reflecting member that is formed inside the concave portion of the wiring board and reflects light emitted from the solid light emitting element.
[0009] このような発光装置において、配線基板の凹部内側に設けられ、固体発光素子を 保護する保護部材をさらに含むことを特徴とすることができる。また、配線基板が屈曲 して!/、ることを特 ί毁とすること力 Sでさる。 [0009] Such a light emitting device may further include a protective member that is provided inside the concave portion of the wiring board and protects the solid light emitting element. Also, it is necessary to use the force S to make the wiring board bend! /.
[0010] また、他の観点から捉えると、本発明は、側面から入射した光を上面側に出射する 導光板と、導光板の側面から導光板に光を照射する光源とを含む面発光装置であつ て、光源は、導光板の側面に沿って複数配列される固体発光素子と、導光板の側面 との対向部が谷となるように屈曲形成された凹部を有し、凹部の内側に複数の固体 発光素子を直接実装するとともに複数の固体発光素子に給電を行うための配線を備 えた基板と、基板に形成された凹部の内側に設けられ、複数の固体発光素子から出 射された光を導光板に向けて反射する反射層とを備えることを特徴としている。 [0010] From another viewpoint, the present invention provides a surface light emitting device that includes a light guide plate that emits light incident from the side surface to the upper surface side, and a light source that irradiates light to the light guide plate from the side surface of the light guide plate. Therefore, the light source has a plurality of solid-state light emitting elements arranged along the side surface of the light guide plate, and a concave portion that is bent so that a facing portion between the side surface of the light guide plate becomes a valley, and inside the concave portion. A plurality of solid state light emitting devices are mounted directly and provided with a wiring for supplying power to the plurality of solid state light emitting devices, and inside a recess formed in the substrate, and are output from the plurality of solid state light emitting devices. And a reflective layer that reflects the emitted light toward the light guide plate.
[0011] このような面発光装置において、基板は、複数の固体発光素子が直接実装される 基部と、基部の一端部側から導光板の側面に向けて突出する第 1側壁と、基部の他 端部側から導光板の側面に突出する第 2側壁とを備え、反射層が、第 1側壁および 第 2側壁に形成されることを特徴とすることができる。また、基板は、複数の固体発光 素子が直接実装される基部と、基部の一端部側から導光板の側面に向けて突出す る第 1側壁と、基部の他端部側から導光板の側面に突出する第 2側壁とを備え、第 1 側壁よりも第 2側壁の突出長を大きく設定し、基部および第 2側壁には配線を形成す る一方、第 1側壁には配線を形成しないことを特徴とすることができる。さらに、複数 の固体発光素子は、赤色光を出射する赤色発光素子、緑色光を出射する緑色発光 素子、および青色光を出射する青色発光素子を順番に配列したものからなることを 特徴とすること力できる。さらにまた、配線は、 1系統あたり 2以上の固体発光素子に 給電を行うことを特徴とすること力できる。また、 1系統の配線にて給電される 2以上の 固体発光素子同士が、隣接していないことを特徴とすることができる。さらに、配線は 、直列接続および並列接続を組み合わせることで複数の固体発光素子に給電を行う ことを特 ί毁とすること力 Sでさる。 In such a surface light emitting device, the substrate includes a base portion on which a plurality of solid state light emitting elements are directly mounted, a first side wall projecting from one end portion side of the base portion toward the side surface of the light guide plate, and other base portions. And a second side wall projecting from the end side to the side surface of the light guide plate, and the reflective layer may be formed on the first side wall and the second side wall. The substrate includes a base on which a plurality of solid state light emitting devices are directly mounted, a first side wall projecting from one end of the base toward the side of the light guide plate, and a side of the light guide plate from the other end of the base. The second side wall protrudes from the first side wall, and the protrusion length of the second side wall is set larger than that of the first side wall, and wiring is formed on the base and the second side wall, but wiring is not formed on the first side wall. Can be characterized. Further, the plurality of solid state light emitting elements are composed of a red light emitting element that emits red light, a green light emitting element that emits green light, and a blue light emitting element that emits blue light in order. I can do it. Furthermore, the wiring can be characterized by feeding two or more solid state light emitting devices per system. Further, it may be characterized in that two or more solid-state light emitting elements fed by one line of wiring are not adjacent to each other. Furthermore, the wiring can be performed with a special force S to supply power to a plurality of solid state light emitting devices by combining series connection and parallel connection.
発明の効果 The invention's effect
[0012] 本発明によれば、固体発光素子を備えた発光装置の薄型化を図ることができる。 [0012] According to the present invention, it is possible to reduce the thickness of a light emitting device including a solid light emitting element.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、添付図面を参照して、本発明を実施するための最良の形態(以下、実施の 形態という)について詳細に説明する。 Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described in detail with reference to the accompanying drawings.
図 1は、本実施の形態が適用される液晶表示装置の全体構成を示す図である。本 実施の形態が適用される液晶表示装置は、液晶表示モジュール 50と、この液晶表 示モジュール 50の背面側(図 1では下部側)に設けられるバックライト装置 10とを備 えている。なお、本実施の形態では、サイドエッジ型のバックライト装置 10が用いられ FIG. 1 is a diagram showing an overall configuration of a liquid crystal display device to which the present embodiment is applied. The liquid crystal display device to which the present embodiment is applied includes a liquid crystal display module 50 and a backlight device 10 provided on the back side (lower side in FIG. 1) of the liquid crystal display module 50. In this embodiment, a side-edge type backlight device 10 is used.
[0014] 面発光装置としてのバックライト装置 10は、発光モジュール 1 1、導光板 12、反射板 13、拡散板 14、プリズムシート 15、 16、および輝度向上フィルム 17を備える。 発光装置あるいは光源としての発光モジュール 11は、導光板 12の一辺(長辺)の 側面に対向配置される。本実施の形態において、発光モジュール 11は、赤 (R)、緑( G)、および青(B)の各色の光を出射する LEDチップを複数配列して構成されて!/、る 。なお、発光モジュール 11の構成については、後で詳細に説明する。 The backlight device 10 as a surface light emitting device includes a light emitting module 11, a light guide plate 12, a reflection plate 13, a diffusion plate 14, prism sheets 15 and 16, and a brightness enhancement film 17. A light emitting module 11 as a light emitting device or a light source is disposed to face a side surface of one side (long side) of the light guide plate 12. In the present embodiment, the light emitting module 11 is configured by arranging a plurality of LED chips that emit light of each color of red (R), green (G), and blue (B). The configuration of the light emitting module 11 will be described later in detail.
導光板 12は、液晶パネル 51に対応した長方形状を有しており、例えば光透過性 に優れたアクリル樹脂等で構成される。この導光板 12の液晶表示モジュール 50との 対向面の反対面には、凹凸あるいは白色インク等にて構成された反射ドット(ともに図 示せず)が形成される。 The light guide plate 12 has a rectangular shape corresponding to the liquid crystal panel 51, and is made of, for example, an acrylic resin having excellent light transmittance. On the surface opposite to the surface of the light guide plate 12 facing the liquid crystal display module 50, reflective dots (both not shown) made of unevenness or white ink are formed.
反射板 13は、導光板 12のドット形成面側に密着配置されている。この反射板 13は 、白色あるいは金属光沢を有する板ほたはフィルム)で構成される。 The reflection plate 13 is disposed in close contact with the dot formation surface side of the light guide plate 12. The reflecting plate 13 is composed of a white plate or a plate having a metallic luster.
拡散板 14は、導光板 12の反射板 13とは逆側の面に密着配置されている。この拡 散板 14は、例えば光学フィルムの積層体で構成された板ほたはフィルム)である。 プリズムシート 15、 16は、反射板 13の上部(液晶表示モジュール 50に近い側)に 設けられる。このプリズムシート 15、 16は、互いに直交する方向の回折格子フィルム で構成される。 The diffusion plate 14 is disposed in close contact with the surface of the light guide plate 12 opposite to the reflection plate 13. The diffusing plate 14 is, for example, a plate or a film made of a laminate of optical films. The prism sheets 15 and 16 are provided on the upper part of the reflection plate 13 (side closer to the liquid crystal display module 50). The prism sheets 15 and 16 are composed of diffraction grating films in directions orthogonal to each other.
輝度向上フィルム 17は、例えば偏光分離機能を備えた PCF (Polarization Conversi on Film)にて構成される。 The brightness enhancement film 17 is composed of, for example, a PCF (Polarization Conversi on Film) having a polarization separation function.
[0015] 一方、液晶表示モジュール 50は、 2枚のガラス基板により液晶が挟まれて構成され る表示パネルの一種としての液晶パネル 51と、この液晶パネル 51の各々のガラス基 板に積層され、光波の振動をある方向に制限するための偏光板 52、 53とを備えてい る。更に、液晶表示装置には、図示しない駆動用 LSIなどの周辺部材も装着される。 On the other hand, the liquid crystal display module 50 is laminated on a liquid crystal panel 51 as a kind of display panel formed by sandwiching liquid crystal between two glass substrates, and on each glass substrate of the liquid crystal panel 51, Polarizing plates 52 and 53 for limiting the vibration of the light wave to a certain direction are provided. Further, peripheral members such as a driving LSI (not shown) are mounted on the liquid crystal display device.
[0016] 液晶パネル 51は、図示しない各種構成要素を含んで構成されている。例えば、 2 枚のガラス基板に、図示しない表示電極、薄膜トランジスタ(TFT : Thin Film Transist or)などのアクティブ素子、液晶、スぺーサ、シール剤、配向膜、共通電極、保護膜、 カラーフィルタ等を備えてレ、る。 The liquid crystal panel 51 is configured to include various components not shown. For example, two glass substrates with display electrodes (not shown), active elements such as thin film transistors (TFTs), liquid crystals, spacers, sealing agents, alignment films, common electrodes, protective films, color filters, etc. Get ready.
なお、バックライト装置 10の構成単位は任意に選択される。例えば、発光モジユー ル 11および導光板 12だけの単位にて「バックライト装置 (バックライト)」と呼び、反射 板 13、拡散板 14、プリズムシート 15、 16や輝度向上フィルム 17などの光学補償シ 一トの積層体を含まない流通形態もあり得る。 Note that the structural unit of the backlight device 10 is arbitrarily selected. For example, the unit consisting of only the light emitting module 11 and the light guide plate 12 is referred to as a “backlight device (backlight)” and includes optical compensation systems such as the reflector 13, the diffuser plate 14, the prism sheets 15 and 16, and the brightness enhancement film 17. There may be a distribution form that does not include a single laminate.
[0017] では、このバックライト装置 10の動作について説明する。 [0017] Next, the operation of the backlight device 10 will be described.
発光モジュール 11にお!/、て RGB各色の LEDチップが点灯すると、各 LEDチップ 力、ら出射された RGBの各色の光が導光板 12の一側面から入射する。すると、導光板 12では、発光モジュール 11から導光板 12内に導かれた光を、導光板 12を構成する 材料 (例えばアクリル樹脂)の全反射を用いて導光板 12の全面に導く。このとき、導 光板 12の裏面側に設けられた反射ドットに当たった光はその進路を変え、全反射角 よりも小さい角度になった光が導光板 12の表面(拡散板 14側の面)から出てくる。ま た、導光板 12の反射ドットに当たらな力 た光は反射板 13にて反射され、さらに導光 板 12の表面にて反射される。これを繰り返すことにより、導光板 12の表面からは、全 面にわたってほぼ均一に光が出射される。この間、 RGBの各色の光は混色され、白 色光として出射されることになる。 When the LED chip of each RGB color is turned on to the light emitting module 11, the light of each RGB color emitted from each LED chip force enters from one side of the light guide plate 12. Then, in the light guide plate 12, the light guided from the light emitting module 11 into the light guide plate 12 is guided to the entire surface of the light guide plate 12 using total reflection of a material (for example, acrylic resin) constituting the light guide plate 12. At this time, the light hitting the reflective dots provided on the back side of the light guide plate 12 changes its path, and the light having an angle smaller than the total reflection angle is the surface of the light guide plate 12 (surface on the diffuser plate 14 side). Come out from. In addition, light that does not hit the reflecting dots of the light guide plate 12 is reflected by the reflector 13 and further reflected by the surface of the light guide plate 12. By repeating this, light is emitted from the surface of the light guide plate 12 almost uniformly over the entire surface. During this time, the RGB colors are mixed and emitted as white light.
[0018] このようにして導光板 12の表面から出射された光は、拡散板 14にて散乱'拡散され 、さらに均一化された状態で出射される。次いで、拡散板 14から出射された光は、プ リズムシート 15、 16にて前方すなわち輝度向上フィルム 17 (液晶表示モジュール 50 )に向けて集光される。そして、プリズムシート 16から出射された光は、輝度向上フィ ルム 17にて偏光分離されることにより、その輝度が向上した状態で、液晶表示モジュ ール 50に向けて出射される。したがって、液晶表示モジュール 50には、十分な混色 により白色化され、且つ、全面にわたってその強度が均一化され、さらに全面にわた つて輝度が向上した光が入射されることになる。 The light emitted from the surface of the light guide plate 12 in this way is scattered and diffused by the diffusion plate 14 and is emitted in a more uniform state. Next, the light emitted from the diffusion plate 14 is condensed by the prism sheets 15 and 16 toward the front, that is, the brightness enhancement film 17 (the liquid crystal display module 50). The light emitted from the prism sheet 16 is polarized and separated by the brightness enhancement film 17, and is emitted toward the liquid crystal display module 50 in a state where the brightness is improved. Therefore, the liquid crystal display module 50 is irradiated with light that is whitened by a sufficient color mixture and has a uniform intensity over the entire surface, and further has improved luminance over the entire surface.
[0019] では次に、上述したバックライト装置 10で用いられる発光モジュール 11について詳 細に説明する。 Next, the light emitting module 11 used in the above-described backlight device 10 will be described in detail.
図 2 (a)は発光モジュール 11の構成を示す斜視図である。この発光モジュール 11 は、 LEDチップを搭載する発光装置 21および発光装置 21を支持する支持部材 22 を備えている。また、図 2 (b)は発光モジュール 11を発光装置 21および支持部材 22 に分解した状態を示して!/、る。 FIG. 2A is a perspective view showing the configuration of the light emitting module 11. The light emitting module 11 includes a light emitting device 21 on which an LED chip is mounted and a support member 22 that supports the light emitting device 21. FIG. 2B shows a state in which the light emitting module 11 is disassembled into the light emitting device 21 and the support member 22.
[0020] 発光装置 21は配線基板 30を備える。本実施の形態において、配線基板 30は凹字 状に折り曲げられた構造を有している。このため、配線基板 30は、形成された凹部の 底部となる基部 30aと、基部 30aの一端からほぼ直角に突出する第 1側壁 30bと、基 部 30aの他端から第 1側壁 30bと同じ方向に突出する第 2側壁 30cとを備える。ここで 、第 2側壁 30cの突出長は、第 1側壁 30bの突出長よりも大きく設定されている。 また、配線基板 30に形成された凹部内側の基部 30aには、図示しない LEDチップ が長手方向に沿って多数配置されており、これら LEDチップを保護するためのレン ズ 33が配線基板 30の凹部を充填するように形成されている。なお、これらの詳細な 構造については後述する。 The light emitting device 21 includes a wiring board 30. In the present embodiment, the wiring board 30 has a structure bent in a concave shape. For this reason, the wiring board 30 is formed of the formed recess. A base 30a serving as a bottom, a first side wall 30b projecting from one end of the base 30a at a substantially right angle, and a second side wall 30c projecting from the other end of the base 30a in the same direction as the first side wall 30b are provided. Here, the protruding length of the second side wall 30c is set larger than the protruding length of the first side wall 30b. In addition, a large number of LED chips (not shown) are arranged along the longitudinal direction on the base 30a inside the recess formed in the wiring board 30 and a lens 33 for protecting these LED chips is provided in the recess 30 of the wiring board 30. It is formed so as to be filled. These detailed structures will be described later.
[0021] 一方、支持部材 22は配線基板 30をはめ込んで保持するために、配線基板 30と同 様に凹字状に折り曲げられた構造を有している。このため、支持部材 22は、形成され た凹部の底部 22a、底部 22aの一端から直角方向に突出する第 1側部 22b、底部 22 aの他端から第 1側部 22bと同方向に突出する第 2側部 22cを備える。ここで、第 2側 部 22cの突出長は、第 1側部 22bの突出長よりも大きく設定されている。この支持部 材 22は、例えばステンレスなどの金属板で構成することができる。 On the other hand, the support member 22 has a structure bent into a concave shape like the wiring board 30 in order to fit and hold the wiring board 30. Therefore, the support member 22 protrudes in the same direction as the first side portion 22b from the other end of the bottom portion 22a of the formed recess, the first side portion 22b protruding from the one end of the bottom portion 22a at a right angle, and the other end of the bottom portion 22a. A second side 22c is provided. Here, the protruding length of the second side portion 22c is set larger than the protruding length of the first side portion 22b. The support member 22 can be made of a metal plate such as stainless steel.
[0022] ここで、発光装置 21の配線基板 30に設けられた第 1側壁 30bの突出長は、支持部 材 22に設けられた第 1側部 22bの突出長よりも小さく設定される。一方、発光装置 21 の配線基板 30に設けられた第 2側壁 30cの突出長は、支持部材 22に設けられた第 2側部 22cの突出長よりも大きく設定される。 Here, the protruding length of the first side wall 30b provided on the wiring substrate 30 of the light emitting device 21 is set to be smaller than the protruding length of the first side portion 22b provided on the support member 22. On the other hand, the protruding length of the second side wall 30c provided on the wiring board 30 of the light emitting device 21 is set to be larger than the protruding length of the second side portion 22c provided on the support member 22.
このため、支持部材 22によって発光装置 21を支持した状態では、第 1側部 22bが 第 1側壁 30bよりも突出する一方で、第 2側壁 30cが第 2側部 22cよりも突出する。な お、第 2側壁 30cの突出部の下側(外側)には、後述するように配線基板 30に対し給 電を行うコネクタパッドが設けられる。 Therefore, in a state where the light emitting device 21 is supported by the support member 22, the first side portion 22b protrudes from the first side wall 30b, while the second side wall 30c protrudes from the second side portion 22c. A connector pad for supplying power to the wiring board 30 is provided below (outside) the protruding portion of the second side wall 30c, as will be described later.
[0023] 図 3は発光装置 21の構成を示す図である。ここで、図 3 (a)は発光装置 21を図 1に 示す導光板 12側からみた正面図、図 3 (b)は図 3 (a)の要部拡大図、図 3 (c)は図 3 ( b)の nic— IIIC断面図である。 FIG. 3 is a diagram showing the configuration of the light emitting device 21. Here, Fig. 3 (a) is a front view of the light emitting device 21 as viewed from the light guide plate 12 side shown in Fig. 1, Fig. 3 (b) is an enlarged view of the main part of Fig. 3 (a), and Fig. 3 (c) is a diagram. 3 (b) is a cross-sectional view of nic-IIIC.
[0024] 発光装置 21は、配線基板 30、複数の LEDチップ 31、レンズ 33、およびレジスト層 [0024] The light emitting device 21 includes a wiring board 30, a plurality of LED chips 31, a lens 33, and a resist layer.
34にてその主要部が構成されている。 The main part is composed of 34.
配線基板 30は、例えばガラス布基材エポキシ樹脂をベースとした所謂ガラエポ基 板にて構成される。なお、ガラエポ基板の他に、例えば可とう性を有し折り曲げカロェ が可能なフレキシブルプリント基板(Flexible Printed Circuit: FPC)を使用することも できる。この配線基板 30は、各 LEDチップ 31に給電を行うための配線(図示せず)を 備えている。本実施の形態では、配線基板 30の両面に配線が形成される所謂二層 基板を用いている。なお、配線基板 30に形成される配線の詳細については後述するThe wiring board 30 is constituted by a so-called glass epoxy substrate based on, for example, a glass cloth base epoxy resin. In addition to the glass-epoxy substrate, for example, it has flexibility and is bent. It is also possible to use flexible printed circuit (FPC). The wiring board 30 includes wiring (not shown) for supplying power to each LED chip 31. In the present embodiment, a so-called two-layer substrate in which wiring is formed on both surfaces of the wiring substrate 30 is used. The details of the wiring formed on the wiring board 30 will be described later.
〇 Yes
[0025] 固体発光素子として機能する複数の LEDチップ 31は、配線基板 30の凹部内側の 基部 30a上に直線状に直接実装される。本実施の形態では、基部 30aに合計で 42 個の LEDチップ 31が取り付けられている。 42個の LEDチップ 31は、赤色光を発光 する赤色発光素子としての赤色 LEDチップ R1〜R14、緑色を発光する緑色発光素 子としての緑色 LEDチップ G1〜G14、および青色を発光する青色発光素子として の青色 LEDチップ B1〜B14からなる。そして、各 LEDチップ 31は、赤、緑、青の順 、具体白勺には Rl、 Gl、 Bl、 R2、 G2、 B2、…ゝ R14、 G14、 B14の 1頓番に並べられ ている。 The plurality of LED chips 31 functioning as solid state light emitting elements are directly mounted in a straight line on the base 30 a inside the recess of the wiring board 30. In the present embodiment, a total of 42 LED chips 31 are attached to the base 30a. The 42 LED chips 31 are red LED chips R1 to R14 as red light emitting elements that emit red light, green LED chips G1 to G14 as green light emitting elements that emit green light, and blue light emitting elements that emit blue light. As a blue LED chip B1 ~ B14. The LED chips 31 are arranged in the order of red, green, and blue, and in specific white tiles, Rl, Gl, Bl, R2, G2, B2,... R14, G14, B14.
また、配線基板 30の凹部内側の基部 30aには、各 LEDチップ 31を挟むように、そ れぞれ 2つずつ合計 84個の電極パッド 32が形成されている。各 LEDチップ 31はそ の両端にある電極パッド 32にそれぞれボンディングワイヤを介して電気的に接続され る。なお、各電極パッド 32には配線基板 30に形成された配線を介して給電が行われ In addition, a total of 84 electrode pads 32 are formed on the base 30a inside the recess of the wiring board 30 so as to sandwich each LED chip 31. Each LED chip 31 is electrically connected to the electrode pads 32 at both ends via bonding wires. Each electrode pad 32 is supplied with power through the wiring formed on the wiring board 30.
[0026] 保護部材として機能するレンズ 33は、封止部 33aおよびレンズ部 33bを備えている 。レンズ 33は、各 LEDチップ 31を保護するとともに、対応する LEDチップ 31から出 射される光を、図 1に示す導光板 12に効率よく且つほぼ均一に導くための機能を有 している。 [0026] The lens 33 that functions as a protective member includes a sealing portion 33a and a lens portion 33b. The lens 33 functions to protect each LED chip 31 and to guide light emitted from the corresponding LED chip 31 efficiently and substantially uniformly to the light guide plate 12 shown in FIG.
ここで、封止部 33aは、折り曲げ加工された配線基板 30の凹部を埋めるように、す なわち、配線基板 30の凹部内面と接するように形成される。また、レンズ部 33bは、 封止部 33a上に半円状に形成される。なお、本実施の形態では複数の LEDチップ 3 1が直線状に配列されているため、封止部 33aは全体として四角柱状の形状を有し、 レンズ部 33b全体は半円柱状の形状を有している。そして、これら封止部 33aおよび レンズ部 33bは、赤、緑、青の各色光に対してほぼ透明な光透過性能を有している。 [0027] レジスト層 34は、配線基板 30の両面に形成される。ただし、レジスト層 34は、配線 基板 30の基部 30aにおいて LEDチップ 31が実装される位置や電極パッド 32が設け られる位置などには形成されない。このレジスト層 34は、配線基板 30の両面に形成 された配線および基板そのものを保護する。また、レジスト層 34のうち、配線基板 30 の凹部内側に形成されるものは、 LEDチップ 31から照射される光を反射する反射部 材あるいは反射層としても機能する。 Here, the sealing portion 33a is formed so as to fill the concave portion of the wiring substrate 30 that has been bent, that is, in contact with the inner surface of the concave portion of the wiring substrate 30. The lens part 33b is formed in a semicircular shape on the sealing part 33a. In the present embodiment, since the plurality of LED chips 31 are linearly arranged, the sealing portion 33a has a quadrangular prism shape as a whole, and the entire lens portion 33b has a semi-cylindrical shape. is doing. The sealing portion 33a and the lens portion 33b have light transmission performance that is substantially transparent to red, green, and blue light. The resist layer 34 is formed on both surfaces of the wiring board 30. However, the resist layer 34 is not formed at the position where the LED chip 31 is mounted or the position where the electrode pad 32 is provided on the base portion 30a of the wiring board 30. The resist layer 34 protects the wiring formed on both sides of the wiring board 30 and the board itself. In addition, the resist layer 34 formed inside the concave portion of the wiring board 30 also functions as a reflective member or a reflective layer that reflects light emitted from the LED chip 31.
[0028] 図 4は、配線基板 30に形成される配線パターンを示す図である。ここで、図 4 (a)は LEDチップ 31が実装される配線基板 30の表面の配線パターンを示している。また、 図 4 (b)は表面とは反対側の配線基板 30の裏面の配線パターンを示している。なお 、図 4は、配線基板 30に折り曲げ加工やレジスト層 34の形成を施す前の状態を示し ている。 FIG. 4 is a diagram showing a wiring pattern formed on the wiring board 30. Here, FIG. 4A shows a wiring pattern on the surface of the wiring board 30 on which the LED chip 31 is mounted. FIG. 4B shows a wiring pattern on the back surface of the wiring board 30 on the side opposite to the front surface. FIG. 4 shows a state before the wiring substrate 30 is bent or the resist layer 34 is formed.
[0029] 図 4 (a)に示すように、配線基板 30の表面側には表面配線 35が形成される。本実 施の形態において、表面配線 35は、配線基板 30の表面のうち第 1側壁 30bを除く基 部 30aおよび第 2側壁 30cに形成される。図 4 (a)に示す配線基板 30において、一点 鎖線は、後で折り曲げ加工 (谷折り)が施される部位を示して!/、る。 As shown in FIG. 4A, the surface wiring 35 is formed on the surface side of the wiring board 30. In the present embodiment, the surface wiring 35 is formed on the base 30 a and the second side wall 30 c excluding the first side wall 30 b on the surface of the wiring board 30. In the wiring board 30 shown in FIG. 4 (a), the alternate long and short dash line indicates a part that is to be bent (valley folded) later!
一方、図 4 (b)に示すように、配線基板 30の裏面側には裏面配線 36が形成される 。本実施の形態において、裏面配線 36は、配線基板 30の裏面のうち基部 30aおよ び第 1側壁 30bを除く第 2側壁 30cに形成される。したがって、配線基板 30の第 1側 壁 30bには、表面配線 35および裏面配線 36の!/、ずれもが形成されて!/、な!/、ことに なる。図 4 (b)に示す配線基板 30において、破線は、後で折り曲げ加工(山折り)が 施される部位を示している。 On the other hand, as shown in FIG. 4B, the back surface wiring 36 is formed on the back surface side of the wiring substrate 30. In the present embodiment, the back surface wiring 36 is formed on the second side wall 30c excluding the base 30a and the first side wall 30b on the back surface of the wiring board 30. Therefore, the first side wall 30b of the wiring board 30 is also formed with! / And misalignment of the front surface wiring 35 and the back surface wiring 36! /, N! /. In the wiring board 30 shown in FIG. 4 (b), the broken line indicates a part to be bent later (mountain fold).
なお、表面配線 35および裏面配線 36は、配線基板 30に貫通形成されたスルーホ ールを介して電気的に接続される。 The front surface wiring 35 and the back surface wiring 36 are electrically connected through a through hole formed through the wiring substrate 30.
[0030] また、配線基板 30の裏面には、表面配線 35および裏面配線 36を介して各 LEDチ ップ 31に給電を行うための第 1のコネクタパッド 37および第 2のコネクタパッド 38が設 けられている。ここで、第 1のコネクタパッド 37は電源に接続される。一方、第 2のコネ クタパッド 38は接地される。第 1のコネクタパッド 37および第 2のコネクタパッド 38に はそれぞれ 21個の電極パッドが形成されており、各電極パッドは、配線基板 30に貫 通形成されたスルーホールを介して表面配線 35と電気的に接続される。 [0030] Further, the first connector pad 37 and the second connector pad 38 for supplying power to each LED chip 31 through the front surface wiring 35 and the back surface wiring 36 are provided on the back surface of the wiring board 30. It is Here, the first connector pad 37 is connected to a power source. On the other hand, the second connector pad 38 is grounded. Each of the first connector pad 37 and the second connector pad 38 has 21 electrode pads, and each electrode pad penetrates the wiring board 30. It is electrically connected to the surface wiring 35 through the formed through hole.
なお、これら第 1のコネクタパッド 37および第 2のコネクタパッド 38は、図 2に示す配 線基板 30を備えた発光装置 21が支持部材 22に装着された際に、第 2側部 22cより も突出した位置に配置される。これにより、配線基板 30に対する給電を容易なものと している。 Note that the first connector pad 37 and the second connector pad 38 are located more than the second side portion 22c when the light emitting device 21 including the wiring board 30 shown in FIG. It is arranged at the protruding position. This facilitates power feeding to the wiring board 30.
[0031] 図 5は、配線基板 30に形成される配線パターンに基づく給電系統を説明するため の図である。第 1のコネクタパッド 37は、 21個の電極パッド 37a〜37uを備える。また 、第 2のコネクタパッド 38は、 21個の電極パッド 38a〜38uを備える。 FIG. 5 is a diagram for explaining a power feeding system based on a wiring pattern formed on the wiring board 30. The first connector pad 37 includes 21 electrode pads 37a to 37u. The second connector pad 38 includes 21 electrode pads 38a to 38u.
本実施の形態では、合計 42個の LEDチップ 31を、 21系統の給電ラインを用いて 接続している。したがって、 1系統の給電ラインはそれぞれ 2個の LEDチップ 31に接 続されることになる。つまり、この給電系統では、 2個ずつ直列接続された LEDチップ 31が、 21個並列接続されている。例えば第 1のコネクタパッド 37に設けられた電極 ノ ッド 37aは、赤色 LEDチップ R1および R8を介して第 2のコネクタパッド 38に設けら れた電極パッド 38aに接続される。また、例えば第 1のコネクタパッド 37に設けられた 電極パッド 37bは、緑色 LEDチップ G1および G8を介して第 2のコネクタパッド 38に 設けられた電極パッド 38bに接続される。さらに、例えば第 1のコネクタパッド 37に設 けられた電極パッド 37cは、青色 LEDチップ B1および B8を介して第 2のコネクタパッ ド 38に設けられた電極パッド 38cに接続される。つまり、本実施の形態では、 1系統 の給電ラインによって同色の 2つの LEDチップ 31に給電を行っている。また、 1系統 の給電ラインは、同色の LEDチップ 31を 6個ずつ跨ぎながら、同色の 2つの LEDチ ップ 31を接続している。逆にいえば、 1系統の給電ラインは、隣接する同色の LEDチ ップ 31には給電を行って!/、な!/、ことになる。 In the present embodiment, a total of 42 LED chips 31 are connected using 21 power supply lines. Therefore, one power supply line is connected to two LED chips 31 each. That is, in this power supply system, 21 LED chips 31 connected in series two by two are connected in parallel. For example, the electrode node 37a provided on the first connector pad 37 is connected to the electrode pad 38a provided on the second connector pad 38 via the red LED chips R1 and R8. Further, for example, the electrode pad 37b provided on the first connector pad 37 is connected to the electrode pad 38b provided on the second connector pad 38 via the green LED chips G1 and G8. Further, for example, the electrode pad 37c provided on the first connector pad 37 is connected to the electrode pad 38c provided on the second connector pad 38 via the blue LED chips B1 and B8. In other words, in the present embodiment, power is supplied to two LED chips 31 of the same color through a single power supply line. One power line connects two LED chips 31 of the same color while straddling six LED chips 31 of the same color. In other words, one power supply line supplies power to the adjacent LED chip 31 of the same color! / ,!
[0032] では次に、発光装置 21の製造方法について、図 6および図 7を参照しながら説明 を行う。図 6は本実施の形態に係る発光装置 21の製造プロセスを示したフローチヤ ートであり、図 7は図 6に示すフローチャートにおける各工程の具体的なプロセスを説 明するための図である。 Next, a method for manufacturing the light emitting device 21 will be described with reference to FIGS. FIG. 6 is a flowchart showing a manufacturing process of the light emitting device 21 according to the present embodiment, and FIG. 7 is a diagram for explaining a specific process of each step in the flowchart shown in FIG.
[0033] まず、配線基板 30を作成する(ステップ 101)。配線基板 30の作成には、例えば表 裏両面に銅箔が貼り付けられたガラエポ基板やポリイミドフィルム等を出発材料とし、 穴開け、めっき、エッチング等によって表面配線 35、裏面配線 36、スルーホール、電 極パッド 32、第 1のコネクタパッド 37および第 2のコネクタパッド 38等を形成するめつ きスルーホール法を利用することができる。また、例えばめつきスルーホール法等に よって作成された基板や絶縁基板などを出発材料とし、その上に絶縁層を形成、導 体パターンを作り、層間接続をして導体層を積み上げていくことにより多層化を実現 するビルドアップ法を利用することもできる。図 7 (a)は、このようにして作成された配 線基板 30を示している。なお、図 7 (a)では、配線等の記載を省略している。 First, the wiring board 30 is created (step 101). For the production of the wiring board 30, for example, a glass epoxy board or a polyimide film with copper foil attached on both front and back surfaces is used as a starting material. Use the through-hole method to form the front wiring 35, back wiring 36, through-hole, electrode pad 32, first connector pad 37, second connector pad 38, etc. by drilling, plating, etching, etc. Can do. Also, for example, using a substrate or insulating substrate created by the plated through-hole method as a starting material, forming an insulating layer on top of it, creating a conductor pattern, stacking the conductor layers by making interlayer connections It is also possible to use a build-up method that realizes multiple layers. FIG. 7 (a) shows the wiring board 30 produced in this way. In FIG. 7 (a), wiring and the like are omitted.
[0034] 次に、作成された配線基板 30に対してレジスト処理を施す (ステップ 102)。具体的 に説明すると、図 7(b)に示すように、配線基板 30の両面に、樹脂からなるレジスト層 3 4を形成する。ただし、このとき、基部 30aのうち、後で LEDチップ 31の実装がなされ る部位や電極パッド 32が形成される部位には、レジスト層 34を形成しないようにする 。また、第 2側壁 30cのうち、後で電極パッド 37a〜37uおよび 38a〜38uが形成され る部位にも、同様にレジスト層 34を形成しないようにする。本実施の形態では、例え ばスクリーン印刷の手法を用いることで、配線基板 30上に選択的にレジスト層 34を 形成できるようになつている。なお、レジスト層 34は、例えば熱硬化性レジストや紫外 線硬化 (UVキュア)型のレジストにて形成することができる。また、レジスト層 34は例え ば白色など、可視領域における光反射率が高い材料で構成される。 Next, a resist process is performed on the created wiring board 30 (step 102). Specifically, as shown in FIG. 7B, a resist layer 34 made of resin is formed on both surfaces of the wiring board 30. However, at this time, the resist layer 34 is not formed in a portion of the base portion 30a where the LED chip 31 is mounted later or a portion where the electrode pad 32 is formed. Similarly, the resist layer 34 is not formed on the second side wall 30c where the electrode pads 37a to 37u and 38a to 38u are formed later. In the present embodiment, the resist layer 34 can be selectively formed on the wiring board 30 by using, for example, a screen printing technique. The resist layer 34 can be formed of, for example, a thermosetting resist or an ultraviolet ray curing (UV cure) type resist. The resist layer 34 is made of a material having a high light reflectance in the visible region, such as white.
なお、レジスト処理が施された配線基板 30に対し、例えば基部 30aの表面側に露 出する電極パッド 32や第 2側壁 30cの裏面側に露出する電極パッド 37a〜37uおよ び電極パッド 38a〜38uに無電解銀めつきによる表面処理を施すことができる。また 、レジスト層 34上に、例えば部品記号や部品アドレスあるいは完成後の配線基板 30 の名称等をシルク印刷にて形成する工程を揷入することも可能である。 For example, the electrode pad 32 exposed on the surface side of the base 30a and the electrode pads 37a to 37u and electrode pads 38a to 38a exposed on the back side of the second side wall 30c with respect to the wiring substrate 30 subjected to the resist treatment. 38u can be surface treated by electroless silver plating. Further, it is possible to insert a process of forming, for example, a part symbol, a part address, or a name of the completed wiring board 30 on the resist layer 34 by silk printing.
[0035] 次いで、レジスト層 34が形成された配線基板 30の基部 30a上に必要個数 (この例 では 42個)の LEDチップ 31を取り付ける(ステップ 103)。具体的に説明すると、図 7 (c)に示すように、各 LEDチップ 31は、例えばエポキシ樹脂、シリコーン樹脂、あるい はアクリル樹脂等を用いた接着によって、基部 30a上の対応する位置(図 3 (b)に示 す電極パッド 32の間)に装着される。その後、各 LEDチップ 31と対応する 2つの電極 ノ ッド 32とを、ワイヤボンディングによって電気的に接続する(ステップ 104)。 [0036] そして、 LEDチップ 31の取り付けおよびワイヤボンディングがなされた配線基板 30 に折り曲げ加工を施す (ステップ 105)。具体的に説明すると、図 7 (d)に示すように、 配線基板 30における基部 30aと第 1側壁 30bとの境界部および基部 30aと第 2側壁 30cとの境界部に対し、型枠等を用いて折り曲げを行う。その結果、配線基板 30は 凹字状に変形し、基部 30aと第 1側壁 30bと第 2側壁 30cとによって凹部が形成され る。そして、配線基板 30に形成された凹部の内側の基部 30a上に、 42個の LEDチッ プ 31が直線状に並べられた状態となる。 Next, the required number (42 in this example) of LED chips 31 is attached on the base 30a of the wiring board 30 on which the resist layer 34 is formed (step 103). Specifically, as shown in FIG. 7 (c), each LED chip 31 has a corresponding position on the base 30a (see FIG. 7) by adhesion using, for example, epoxy resin, silicone resin, acrylic resin, or the like. 3 Installed between electrode pads 32 shown in (b). Thereafter, each LED chip 31 and the corresponding two electrode nodes 32 are electrically connected by wire bonding (step 104). [0036] Then, the wiring substrate 30 to which the LED chip 31 is attached and wire-bonded is bent (step 105). Specifically, as shown in FIG. 7 (d), a formwork or the like is formed on the boundary between the base 30a and the first side wall 30b and the boundary between the base 30a and the second side wall 30c in the wiring board 30. Use to bend. As a result, the wiring board 30 is deformed into a concave shape, and a recess is formed by the base 30a, the first side wall 30b, and the second side wall 30c. Then, 42 LED chips 31 are arranged in a straight line on the base portion 30 a inside the recess formed in the wiring board 30.
[0037] 次に、 LEDチップ 31が実装され、且つ、折り曲げ加工がなされた配線基板 30の凹 部を樹脂で封止する(ステップ 106)。具体的に説明すると、図 7 (e)に示すように、各 LEDチップ 31が覆われるように第 1側壁 30bの高さまで液状の樹脂を注入し、その 後固化させることで封止部 33aを形成させる。なお、封止部 33aを構成する樹脂とし ては、例えばエポキシ樹脂、ポリカーボネート樹脂、シリコーン樹脂、あるいはアクリル 樹脂など、可視領域にぉレ、て高!/、光透過性を有するものを使用することができる。 Next, the concave portion of the wiring board 30 on which the LED chip 31 is mounted and subjected to the bending process is sealed with a resin (step 106). More specifically, as shown in FIG. 7 (e), a liquid resin is injected up to the height of the first side wall 30b so that each LED chip 31 is covered, and then solidified to thereby seal the sealing portion 33a. Let it form. As the resin constituting the sealing portion 33a, for example, an epoxy resin, a polycarbonate resin, a silicone resin, an acrylic resin, or the like that is highly visible and highly transparent in the visible region should be used. Can do.
[0038] そして、封止部 33aの上にレンズ部 33bを取り付ける(ステップ 107)。具体的に説 明すると、図 7 (f)に示すように、樹脂からなる半円柱状のレンズ部 33bを、透明な接 着樹脂等を用いて封止部 33aの上面に取り付ける。なお、レンズ部 33bを構成する 樹脂としては、封止部 33aと同様、例えばエポキシ樹脂、ポリカーボネート樹脂、シリ コーン樹脂、あるいはアクリル樹脂など、可視領域において高い光透過性を有するも のを使用すること力できる。以上により、発光装置 21が完成する。 Then, the lens portion 33b is attached on the sealing portion 33a (step 107). Specifically, as shown in FIG. 7 (f), a semi-cylindrical lens portion 33b made of resin is attached to the upper surface of the sealing portion 33a using a transparent adhesive resin or the like. As the resin constituting the lens part 33b, a resin having high light transmittance in the visible region, such as an epoxy resin, a polycarbonate resin, a silicone resin, or an acrylic resin, should be used as in the sealing part 33a. I can do it. Thus, the light emitting device 21 is completed.
このようにして作成された発光装置 21は、その後、図 7 (g)に示すように支持部材 2 2に対するはめ込みが行われ、発光モジュール 11が得られる。 The light emitting device 21 thus produced is then fitted into the support member 22 as shown in FIG. 7 (g), and the light emitting module 11 is obtained.
[0039] 図 8は、このようにして製造された発光装置 21から照射される光の経路を説明する ための図である。 FIG. 8 is a diagram for explaining the path of light emitted from the light emitting device 21 manufactured in this way.
第 1のコネクタパッド 37および第 2のコネクタパッド 38 (図 4参照)を介して LEDチッ プ 31に所定の電流が流れると、 LEDチップ 31が発光する。そして、 LEDチップ 31 力 出射された光は各方向に広がっていく。 When a predetermined current flows through the LED chip 31 via the first connector pad 37 and the second connector pad 38 (see FIG. 4), the LED chip 31 emits light. LED chip 31 force The emitted light spreads in each direction.
出射された光のうち、図中において上方向に出射された光は、レンズ 33を介して、 そのまま図 1に示す導光板 12に向けて進んでいく。 一方、出射された光のうち、例えば図中において斜め上方向に出射された光は、 配線基板 30の第 1側壁 30bおよび第 2側壁 30cに設けられたレジスト層 34に入射す る。このとき、レジスト層は可視光に対して高い反射特性を有しており、レジスト層 34 に入射した光は、反射層として機能するレジスト層 34によって反射されながら、図中 上方向に向けて進んでいく。 Of the emitted light, the light emitted upward in the drawing proceeds directly toward the light guide plate 12 shown in FIG. 1 via the lens 33. On the other hand, of the emitted light, for example, light emitted obliquely upward in the figure enters the resist layer 34 provided on the first side wall 30b and the second side wall 30c of the wiring board 30. At this time, the resist layer has a high reflection characteristic with respect to visible light, and the light incident on the resist layer 34 is reflected upward by the resist layer 34 functioning as a reflection layer, and proceeds upward in the figure. Go.
[0040] 以上説明したように、本実施の形態では、複数の LEDチップ 31が実装される配線 基板 30を折り曲げるようにした。そして、配線基板 30には、折り曲げ部を跨いで配線 を形成するようにした。このため、 LEDチップ 31の実装数の増加や、直並列接続によ る複雑な配線パターン形成に伴!/、、配線に必要な面積が増大した場合であっても、 配線基板 30における配線層数の増加を抑えながら、バックライト装置 10の厚さ方向 における発光モジュール 11の厚みの増大を抑制することができる。その結果、ノ ック ライト装置 10の薄型化を図ることが可能になる。ここで、本実施の形態では、配線基 板 30のうち、突出長の短い第 1側壁 30bには配線を形成しないようにした。これにより 、配線基板 30を折り曲げた際に配線に断線が発生するリスクを低減することができる [0040] As described above, in the present embodiment, the wiring board 30 on which the plurality of LED chips 31 are mounted is bent. Then, the wiring is formed on the wiring board 30 across the bent portion. For this reason, even when the number of LED chips 31 is increased or complex wiring patterns are formed by series-parallel connection! /, Even when the area required for wiring increases, the wiring layer on the wiring board 30 While suppressing the increase in the number, the increase in the thickness of the light emitting module 11 in the thickness direction of the backlight device 10 can be suppressed. As a result, the knocklight device 10 can be reduced in thickness. Here, in the present embodiment, no wiring is formed on the first side wall 30b having a short protruding length in the wiring board 30. This can reduce the risk of disconnection in the wiring when the wiring board 30 is bent.
[0041] そして、本実施の形態では、配線基板 30に形成された凹部内側にレジスト層 34を 形成することで、各 LEDチップ 31から出射された光を、反射により導光板 12側へと 導くようにした。これにより、バックライト装置 10の発光効率を高めることが可能になる In the present embodiment, the resist layer 34 is formed inside the recess formed in the wiring board 30 so that the light emitted from each LED chip 31 is guided to the light guide plate 12 side by reflection. I did it. This makes it possible to increase the light emission efficiency of the backlight device 10.
[0042] さらに、本実施の形態では、配線基板 30に形成された凹部内側に封止部 33aを形 成し、その上にレンズ部 33bを形成するようにした。ここで、封止部 33aは、配線基板 30を型枠として樹脂を流し込めばよ!/、ので、その形成が容易になる。 Furthermore, in the present embodiment, the sealing portion 33a is formed inside the recess formed in the wiring board 30, and the lens portion 33b is formed thereon. Here, the sealing portion 33a can be formed easily because the resin can be poured using the wiring substrate 30 as a mold.
[0043] なお、本実施の形態では、配線基板 30の凹部内側に設けられたレジスト層 34を反 射部材あるいは反射層として機能させていた力 これに限られるものではない。例え ば配線基板 30の凹部内側にアルミニウム膜などの金属反射膜を形成しておき、これ を反射部材あるいは反射層として機能させるようにしてもよレ、。 In the present embodiment, the force that caused the resist layer 34 provided inside the recess of the wiring board 30 to function as a reflective member or a reflective layer is not limited to this. For example, a metal reflective film such as an aluminum film may be formed inside the recess of the wiring board 30 and function as a reflective member or a reflective layer.
[0044] また、本実施の形態では、 RGB各色の LEDチップ 31を 42個並べて発光装置 21を 構成するようにしていた力 配線基板 30上に実装する LEDチップ 31の数について は、例えば液晶パネル 51の大きさや要求される光学的な特性等に応じて適宜設計 変更して差し支えない。 In the present embodiment, the number of LED chips 31 mounted on the power wiring board 30 is such that 42 LED chips 31 of each RGB color are arranged to form the light emitting device 21. For example, the design may be changed as appropriate according to the size of the liquid crystal panel 51 and the required optical characteristics.
[0045] さらに、本実施の形態では、発光モジュール 11を液晶表示モジュール 50のバック ライト装置 10に適用する例について説明を行った力 S、発光モジュール 11の適用対象 はこれに限られるものではない。この発光モジュール 11は、例えば蛍光灯などの照 明器具に代えて、室内、室外照明機器等として利用することも可能である。 Furthermore, in the present embodiment, the force S described for the example in which the light emitting module 11 is applied to the backlight device 10 of the liquid crystal display module 50, and the application target of the light emitting module 11 is not limited to this. . The light emitting module 11 can be used as an indoor / outdoor lighting device or the like instead of a lighting device such as a fluorescent lamp.
図面の簡単な説明 Brief Description of Drawings
[0046] [図 1]本実施の形態が適用される液晶表示装置の全体構成を示す図である。 FIG. 1 is a diagram showing an overall configuration of a liquid crystal display device to which the present embodiment is applied.
[図 2] (a)は発光モジュールを、(b)は発光モジュールを構成する発光装置および支 持部材を、それぞれ説明するための図である。 FIG. 2 (a) is a diagram for explaining a light emitting module, and (b) is a diagram for explaining a light emitting device and a supporting member constituting the light emitting module.
[図 3] (a)は発光装置の正面図、 (b)は ωの要部拡大図、 (c)は (b)の mc—mc断 面図である。 [FIG. 3] (a) is a front view of the light emitting device, (b) is an enlarged view of the main part of ω, and (c) is a mc-mc cross-sectional view of (b).
[図 4] (a)は配線基板の表面(LEDチップの実装面)に形成される配線パターン、 (b) は配線基板の裏面に形成される配線パターンを、それぞれ示す図である。 [FIG. 4] (a) is a diagram showing a wiring pattern formed on the front surface of the wiring substrate (LED chip mounting surface), and (b) is a diagram showing a wiring pattern formed on the back surface of the wiring substrate.
[図 5]各 LEDチップに対する給電経路を説明するための図である。 FIG. 5 is a diagram for explaining a power feeding path for each LED chip.
[図 6]発光装置の製造プロセスを説明するためのフローチャートである。 FIG. 6 is a flowchart for explaining a manufacturing process of the light emitting device.
[図 7]発光装置の製造プロセスを説明するための図である。 FIG. 7 is a diagram for explaining a manufacturing process for the light-emitting device.
[図 8]発光モジュールから照射される光の経路を説明するための図である。 FIG. 8 is a diagram for explaining a path of light emitted from the light emitting module.
符号の説明 Explanation of symbols
[0047] 10···バックライト装置、 11···発光モジュール、 12···導光板、 13···反射板、 14···拡 散板、 21···発光装置、 22···支持部材、 30···配線基板、 30a…基部、 30b…第 1側 壁、 30c…第 2側壁、 31---LEDチップ、 32…電極ノ ッド、 33…レンズ、 34…レジスト 層、 35···表面配線、 36···裏面配線、 37···第 1のコネクタパッド、 38···第 2のコネクタ ノ ッド、 50···液晶表示モジュール、 R1〜R14' 赤色 LEDチップ、 G1〜G14' 緑色 LEDチップ、 Β1〜Β14···青色 LEDチップ [0047] 10 ··· Backlight device 11 ··· Light emitting module 12 ··· Light guide plate 13 ··· Reflector plate 14 ··· Diffuser plate 21 ··· Light emitting device 22 ··· · Support member, 30 ··· Wiring board, 30a ... Base, 30b ... First side wall, 30c ... Second side wall, 31 --- LED chip, 32 ... Electrode node, 33 ... Lens, 34 ... Resist layer 35 ... Front wiring, 36 ... Back wiring, 37 ... First connector pad, 38 ... Second connector node, 50 ... LCD module, R1-R14 'red LED chip, G1 ~ G14 'green LED chip, Β1 ~ Β14 ... blue LED chip
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008545418A JP5276990B2 (en) | 2006-11-21 | 2007-11-21 | Light emitting device and surface light emitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006314599 | 2006-11-21 | ||
JP2006-314599 | 2006-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008062812A1 true WO2008062812A1 (en) | 2008-05-29 |
Family
ID=39429741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/072502 WO2008062812A1 (en) | 2006-11-21 | 2007-11-21 | Light emitting device and surface light emitting device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5276990B2 (en) |
TW (1) | TWI427368B (en) |
WO (1) | WO2008062812A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2478987A (en) * | 2010-03-26 | 2011-09-28 | Iti Scotland Ltd | Encapsulation of an LED array forming a light concentrator for use with edge-lit light-guided back lights |
EP2378324A3 (en) * | 2010-04-01 | 2012-09-05 | LG Innotek Co., Ltd | Light unit and display apparatus having the same |
JP2012203997A (en) * | 2011-03-23 | 2012-10-22 | Sony Corp | Lighting device and display device |
WO2013105465A1 (en) * | 2012-01-13 | 2013-07-18 | シャープ株式会社 | Linear light source device, planar light emission device and liquid crystal display device |
JP2015170813A (en) * | 2014-03-10 | 2015-09-28 | 日亜化学工業株式会社 | Light emitting device |
GB2540378A (en) * | 2015-07-14 | 2017-01-18 | Zeta Specialist Lighting Ltd | Illuminated displays |
JP2017212405A (en) * | 2016-05-27 | 2017-11-30 | パナソニックIpマネジメント株式会社 | Light source module and lighting device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4785979B1 (en) * | 2010-04-05 | 2011-10-05 | 日本航空電子工業株式会社 | Backlight assembly, relay connector, backlight unit |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63170142U (en) * | 1987-04-24 | 1988-11-07 | ||
JP2000075316A (en) * | 1998-09-02 | 2000-03-14 | Matsushita Electric Ind Co Ltd | Liquid crystal display module and film carrier as well as portable terminal apparatus |
JP2003185813A (en) * | 2001-12-21 | 2003-07-03 | Mitsui Chemicals Inc | Reflector and its use |
JP2004014899A (en) * | 2002-06-10 | 2004-01-15 | Para Light Electronics Co Ltd | Series connection of light emitting diode chip |
JP2004140150A (en) * | 2002-08-20 | 2004-05-13 | Tanaka Kikinzoku Kogyo Kk | Substrate for light emitting diode device |
JP2004349143A (en) * | 2003-05-23 | 2004-12-09 | Advanced Display Inc | Planar light source device and display device |
JP2005135860A (en) * | 2003-10-31 | 2005-05-26 | Harison Toshiba Lighting Corp | LED backlight device |
JP2006310221A (en) * | 2005-05-02 | 2006-11-09 | Matsushita Electric Ind Co Ltd | Edge input type backlight and liquid crystal display device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4144498B2 (en) * | 2002-10-01 | 2008-09-03 | 松下電器産業株式会社 | Linear light source device, method for manufacturing the same, and surface light emitting device |
-
2007
- 2007-11-21 WO PCT/JP2007/072502 patent/WO2008062812A1/en active Application Filing
- 2007-11-21 JP JP2008545418A patent/JP5276990B2/en not_active Expired - Fee Related
- 2007-11-21 TW TW096144127A patent/TWI427368B/en not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63170142U (en) * | 1987-04-24 | 1988-11-07 | ||
JP2000075316A (en) * | 1998-09-02 | 2000-03-14 | Matsushita Electric Ind Co Ltd | Liquid crystal display module and film carrier as well as portable terminal apparatus |
JP2003185813A (en) * | 2001-12-21 | 2003-07-03 | Mitsui Chemicals Inc | Reflector and its use |
JP2004014899A (en) * | 2002-06-10 | 2004-01-15 | Para Light Electronics Co Ltd | Series connection of light emitting diode chip |
JP2004140150A (en) * | 2002-08-20 | 2004-05-13 | Tanaka Kikinzoku Kogyo Kk | Substrate for light emitting diode device |
JP2004349143A (en) * | 2003-05-23 | 2004-12-09 | Advanced Display Inc | Planar light source device and display device |
JP2005135860A (en) * | 2003-10-31 | 2005-05-26 | Harison Toshiba Lighting Corp | LED backlight device |
JP2006310221A (en) * | 2005-05-02 | 2006-11-09 | Matsushita Electric Ind Co Ltd | Edge input type backlight and liquid crystal display device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2478987A (en) * | 2010-03-26 | 2011-09-28 | Iti Scotland Ltd | Encapsulation of an LED array forming a light concentrator for use with edge-lit light-guided back lights |
US9217822B2 (en) | 2010-03-26 | 2015-12-22 | Iti Scotland Limited | Encapsulated LED array and edge light guide device comprising such an LED array |
EP2378324A3 (en) * | 2010-04-01 | 2012-09-05 | LG Innotek Co., Ltd | Light unit and display apparatus having the same |
US9645299B2 (en) | 2010-04-01 | 2017-05-09 | Lg Innotek Co., Ltd. | Light unit and display apparatus having the same |
JP2012203997A (en) * | 2011-03-23 | 2012-10-22 | Sony Corp | Lighting device and display device |
WO2013105465A1 (en) * | 2012-01-13 | 2013-07-18 | シャープ株式会社 | Linear light source device, planar light emission device and liquid crystal display device |
JP2013145688A (en) * | 2012-01-13 | 2013-07-25 | Sharp Corp | Linear light source device, planar light emission device and liquid crystal display device |
JP2015170813A (en) * | 2014-03-10 | 2015-09-28 | 日亜化学工業株式会社 | Light emitting device |
GB2540378A (en) * | 2015-07-14 | 2017-01-18 | Zeta Specialist Lighting Ltd | Illuminated displays |
JP2017212405A (en) * | 2016-05-27 | 2017-11-30 | パナソニックIpマネジメント株式会社 | Light source module and lighting device |
Also Published As
Publication number | Publication date |
---|---|
TWI427368B (en) | 2014-02-21 |
JP5276990B2 (en) | 2013-08-28 |
JPWO2008062812A1 (en) | 2010-03-04 |
TW200832016A (en) | 2008-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102008901B1 (en) | Liquid crystal display device | |
CN101251673B (en) | Back-light assembly and display apparatus having the same | |
KR100821043B1 (en) | Flexible Printed Circuit Board | |
JP5276990B2 (en) | Light emitting device and surface light emitting device | |
US8016448B2 (en) | Display device and light-emitting device | |
KR102067420B1 (en) | Light emitting diode assembly and liquid crystal display device having the same | |
JP2009015324A (en) | Flexible printed circuit board and liquid crystal display device using the same | |
KR20120117137A (en) | Light emitting diode assembly and liquid crystal display device having the same | |
US8172446B2 (en) | Light emitting device and surface light source device | |
KR20100120407A (en) | Liquid crystal display device | |
CN102193245A (en) | Liquid crystal display device | |
JP2008041645A (en) | Backlight unit, method of manufacturing backlight unit, and display device including backlight unit | |
CN111679498A (en) | Backlight module and display device | |
CN101852366B (en) | Backlight unit and liquid crystal display device module including the backlight unit | |
JP2014038827A (en) | Backlight assembly | |
TWI663452B (en) | Liquid crystal display device and led assembly | |
JP5437071B2 (en) | Light emitting device and display device | |
KR20120107759A (en) | Light source assembly and backlight assembly having the same | |
KR20120014422A (en) | Backlight unit and liquid crystal display device using same | |
JP2009267279A (en) | Light-emitting device, and display device | |
KR102094808B1 (en) | Light emitting device package and liquid crystal display device having thereof | |
KR20080076579A (en) | Backlight Unit for Liquid Crystal Display | |
KR20080032834A (en) | Backlight unit and liquid crystal display including the same | |
KR102327463B1 (en) | Liquid crystal display device | |
KR101933546B1 (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07832232 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008545418 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07832232 Country of ref document: EP Kind code of ref document: A1 |