Nothing Special   »   [go: up one dir, main page]

WO2008062792A1 - Method for producing hard polyurethane foam - Google Patents

Method for producing hard polyurethane foam Download PDF

Info

Publication number
WO2008062792A1
WO2008062792A1 PCT/JP2007/072466 JP2007072466W WO2008062792A1 WO 2008062792 A1 WO2008062792 A1 WO 2008062792A1 JP 2007072466 W JP2007072466 W JP 2007072466W WO 2008062792 A1 WO2008062792 A1 WO 2008062792A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
polymer
polyurethane foam
rigid polyurethane
mass
Prior art date
Application number
PCT/JP2007/072466
Other languages
French (fr)
Japanese (ja)
Inventor
Teruhiko Yasuda
Hisashi Sato
Hiroshi Wada
Yasuhito Adachi
Katsuhiko Shimizu
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2008062792A1 publication Critical patent/WO2008062792A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/638Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers characterised by the use of compounds having carbon-to-carbon double bonds other than styrene and/or olefinic nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid

Definitions

  • the present invention relates to a method for producing a rigid polyurethane foam.
  • Rigid foam synthetic resin produced by reacting a polyol component and a polyisocyanate component in the presence of a foaming agent (eg, rigid polyurethane foam, etc .; hereinafter referred to as "hard foam” and! /) It has the power S.)) is widely used as a heat insulating material with closed cells!
  • a foaming agent eg, rigid polyurethane foam, etc .; hereinafter referred to as "hard foam” and! /) It has the power S.
  • foaming agent used in the rigid foam a low-boiling-point hydrocarbon compound or a hydrocarbon compound is mainly used!
  • the foam is reduced in density by water foaming, such as by using a hydrofluoric compound or hydrocarbon compound in combination with water to reduce the density of the foam or foaming with only water, the foam However, the dimensional stability of the foam deteriorates due to the remarkable tendency of shrinkage.
  • Measures for the dimensional stability of the foam usually include increasing the density of the foam to increase the foam strength, or making the foam bubbles open.
  • measures to increase the density of the foam increase the amount of raw materials used, which increases costs.
  • the measures to make the foam cells into continuous cells improve the dimensional stability of the foam, but cannot provide sufficient heat insulation performance. That is, in a rigid foam, when water is frequently used as a foaming agent, or foaming is performed only with water, a foam with good foam dimensional stability and sufficient heat insulation performance is desired.
  • polymer-dispersed polyol is a polyol in which polymer fine particles are dispersed in a polyol such as a polyether polyol or a polyester polyol.
  • the polymer-dispersed polyol is conventionally used to improve the hardness of a flexible foam or a semi-rigid foam.
  • a method for producing a polymer-dispersed polyol the following method is known. That is, in a saturated polyol having no polymerizable unsaturated bond, a monomer having a polymerizable unsaturated group is polymerized under the condition that an unsaturated polyol having a polymerizable unsaturated bond is also present in some cases. Thereafter, the unreacted content is removed.
  • a saturated polyol or the unsaturated polyol various polyether polyols and polyester polyols are known.
  • Patent Document 1 European Patent Application Publication No. 0224945
  • Patent Document 2 Japanese Patent Publication No. 8 503720
  • Patent Document 3 JP-A-57-25313
  • Patent Document 4 Japanese Patent Laid-Open No. 11 302340
  • fluorine-containing compounds used in the methods described in Patent Documents 1 and 2 generally have poor solubility in organic substances. When added to a polyol compound and stored, the fluorine-containing compound and the polyol compound were separated, and the storage stability was insufficient, and it was found that a rigid polyurethane foam could not be produced stably.
  • the polymer-dispersed polyol used in the methods described in Patent Documents 3 and 4 does not have sufficient storage stability when mixed with a polyol for rigid polyurethane foam having a low molecular weight, so that the rigid polyurethane foam can be stably produced.
  • Patent Document 4 aims to achieve both dimensional stability and heat insulation performance, and there is still a little problem with respect to thermal conductivity!
  • the present invention provides a rigid polyurethane foam having good dimensional stability and sufficient heat insulation performance, and also when storing a mixture of the polymer-dispersed polyol and the rigid polyurethane foam polyol to be used.
  • “storage stability” refers to a polymer-dispersed polyol and a polyol for rigid polyurethane foam. Means a property that can maintain the uniformity of the mixture when stored.
  • the storage stability is poor, it is possible to obtain a rigid polyurethane foam having a stable quality such that the polymer fine particles are separated from the polyol compound, or the polymer-dispersed polyol migrates in the mixture and the composition becomes non-uniform. It becomes difficult.
  • the present invention provides a method for producing a rigid polyurethane foam by reacting a polyol component (Z) and a polyisocyanate component in the presence of a foaming agent, a foam stabilizer and a catalyst.
  • (Z) is a method for producing a rigid polyurethane foam having an average hydroxyl value of 200 to 800 mgKOH / g and containing the following polymer-dispersed polyol (A).
  • the polymer-dispersed polyol (A) has a polymerizable unsaturated group in the polyol (X).
  • the polymer fine particles are dispersed in a polyol by polymerizing the monomer, and the polyol (X) contains a polyether polyol, and the monomer having the polymerizable unsaturated group is a fluorine-containing acrylate or fluorine-containing monomer. Includes metatarates.
  • the fluorine-containing acrylate or fluorine-containing metatalylate is preferably a monomer represented by the following formula (1):
  • R f is a polyfluoroalkyl group having 1 to 18 carbon atoms
  • R is a hydrogen atom or a methyl group
  • Z is a divalent linking group.
  • the monomer having a polymerizable unsaturated group further contains acrylonitrile or butyl acetate.
  • the polyether polyol preferably has an oxyethylene group content of 10% by mass or more.
  • the polyether polyol preferably has a hydroxyl value of 84 mgKOH / g or less! /.
  • the polyether polyol is preferably a polyoxyalkylene polyol obtained by addition-polymerizing propylene oxide and ethylene oxide to a polyhydric alcohol.
  • the ratio of the monomer represented by the formula (1) in the total monomers having the polymerizable unsaturated group is 20 to 100 mass.
  • the proportion of the polymer-dispersed polyol (A) in the polyol component (Z) is 0.01% by mass or more,
  • the proportion of the polymer fine particles in the polyol component (Z) is preferably 0.001% by mass or more.
  • a rigid polyurethane foam of the present invention it is preferable to use water alone or at least one selected from a hydrofluorocarbon compound and a hydrocarbon compound and water as the foaming agent.
  • a rigid polyurethane foam having good dimensional stability and sufficient heat insulating performance can be obtained. Further, since the storage stability when the mixture of the polymer-dispersed polyol and the polyol for rigid polyurethane foam used is stored is excellent, the rigid polyurethane foam can be produced stably.
  • the method for producing a rigid polyurethane foam of the present invention is a method for producing a rigid polyurethane foam by reacting a polyol component (Z) and a polyisocyanate component in the presence of a foaming agent, a foam stabilizer and a catalyst.
  • the polyol component (Z) in the present invention contains the specific polymer-dispersed polyol (A).
  • components other than the polymer-dispersed polyol (A) of the polyol component (Z) include polyols used in the production of ordinary rigid polyurethane foams such as polyether polyols, polyester polyols, and hydrocarbon polymers having a hydroxyl group at the terminal. (Referred to herein as “polyol for rigid polyurethane foam”) can be used.
  • the polyol for rigid polyurethane foam preferably has an average functional group number of 2-8.
  • the number of functional groups means the number of functional groups (hydroxyl groups) of a polyol that reacts with the polyisocyanate component.
  • the polyether polyol equal to the number of active hydrogens in the initiator used in the production of the catalyst.
  • polyol for the rigid polyurethane foam examples include those similar to those exemplified for the polyol (X) described in the polymer dispersion polyol (A) described later.
  • the average hydroxyl value of the polyol component (Z) is 200 to 800 mgKOH / g, and 200-700 mgKOH / g force S is preferable to 200 to 600 mgKOH / g force S.
  • the average hydroxyl value S of 200 mgKOH / g or more is preferable because the strength of the obtained rigid polyurethane foam is easy. It is preferable that the average hydroxyl value is 800 mgKOH / g or less because the resulting rigid polyurethane foam is difficult to be brittle.
  • the average hydroxyl value means the average value of hydroxyl values of all polyol compounds constituting the polyol component (Z).
  • the polymer-dispersed polyol (A) in the present invention is a polymer fine particle dispersed in a polyol by polymerizing a monomer having a polymerizable unsaturated group in the polyol (X).
  • the polyol (X) The monomer containing a polyether polyol and having a polymerizable unsaturated group contains fluorine-containing acrylate or fluorine-containing metatalylate.
  • the polyol component (Z) contains the polymer-dispersed polyol (A)
  • a rigid polyurethane foam having good dimensional stability and sufficient heat insulation performance can be obtained.
  • the polymer-dispersed polyol (A) is excellent in storage stability when a mixture thereof having high compatibility with the polyol for rigid polyurethane foam is stored, and therefore, a rigid polyurethane foam can be stably produced.
  • “in the polyol (X)” may be in the polyol (X) alone, or the solvent exemplified in the description of the “method for producing the polymer-dispersed polyol (A)” described later. And a polyol (X).
  • examples of the polyol (X) include a polyether polyol, a polyester polyol, and a hydrocarbon polymer having a hydroxyl group at the terminal. You can power to use.
  • the polyol (X) contains at least a polyether polyol.
  • the compatibility between the polyol for rigid polyurethane foam and the polymer-dispersed polyol (A) is increased, and the storage stability is improved.
  • polyether polyol for example, those obtained by addition polymerization of cyclic ethers such as alkylene oxides with initiators such as polyhydroxy compounds such as polyhydric alcohols and polyhydric phenols are used. be able to.
  • initiators include ethylene glycol, diethylene glycol, propylene glycolone, dipropylene glycolanol, neopentyl glycolanol, 3-methyl-1,5-pentanediol, 1,4 butanediol, 1,6-hexanediol. , Water, glycerin, trimethylolpropane, 1,2,6 hexanetriol, pentaerythritol, diglycerin, tetramethylolcyclohexane, methyl dalcoside, sonolebithonole, mannitol, dulcitol, sucrose, triethanolamine, etc.
  • Alcohol Polyphenols such as bisphenol nore A and phenol-formaldehyde initial condensate; piperazine, aniline, monoethanolamine, diethanolamine, isopropanolamine, aminoethylenoreeta Luramine, ammonia, aminomethylbiperazine, aminoethylpiperazine, ethylenediamine, propylenediamine, hexamethylenediamine, tolylenediamine, xylylenediamine, diphenylenomethanediamine, diethylenetriamine, triethylenetetramine, etc. These amino compounds or their cyclic ether adducts.
  • the initiators can be used alone or in combination of two or more.
  • cyclic ether for example, a 3- to 6-membered cyclic ether compound having one oxygen atom in the ring can be used.
  • cyclic ethers include ethylene oxide, propylene oxide, isobutylene oxide, 1-buteneoxide, 2-buteneoxide, trimethylethylene oxide, tetramethylethylene oxide, butadiene monooxide, styrene oxide, a-methyl styrene oxide, Epoxychlorohydrin, Epifnoroleorohydrin, Epib mouth mohydrin, Glycid monole, Butinoreglycidinoatenore, Hexinoreglicidinoreatenore, Fuenoreglycidinore Ethenole, 2-chloroethinoreglycidinoleatenore, o-black fenenoreglycidino oleate, ethylene glycol diglycidyl ether, bisphenol A diglycidyl ethenore, cyclohexene oxide, dihydronaphthalenoxide, vinylenocyclo Examples thereof include compounds having a 3-member
  • a compound having a 3-membered cyclic ether group (monoepoxide) is preferable.
  • An alkylene oxide having 2 to 4 carbon atoms is more preferable.
  • the cyclic ethers can be used alone or in combination of two or more.
  • the cyclic ether is most preferably a combination of propylene oxide and ethylene oxide, preferably an alkylene oxide having 2 to 4 carbon atoms.
  • the above-described initiator can be subjected to addition polymerization of a mixture of two or more kinds of cyclic ethers or sequential addition polymerization of two or more kinds of cyclic ethers with a force S.
  • the polyether polyol has an oxyethylene group content in the polyether polyol of preferably 10% by mass or more, more preferably 30% by mass or more, and even more preferably 40% by mass or more. It is most preferably 55% by mass or more, and most preferably 60% by mass or more. On the other hand, the oxyethylene group content is preferably 90% by mass or less.
  • the oxyethylene group content is 10% by mass or more, a polymer-dispersed polyol (A) in which polymer fine particles are stably dispersed is easily obtained, and storage stability is improved.
  • the oxyethylene group content is 60% by mass or more, the storage stability for a longer period (for example, about one month) becomes better.
  • the “oxyethylene group content” means the ratio of oxethylene groups in the polyol compound.
  • the polyether polyol has a hydroxyl value of 84 mgK OH / g or less, preferably 67 mg KOH / g or less, more preferably 60 mg KOH / g or less. Is particularly preferred.
  • the lower limit of the hydroxyl value is preferably 5 mgKOH / g or more, more preferably 8 mgKOH / g or more, more preferably 20 mgKOH / g or more, particularly preferably 30 mgKOH / g. Most preferably it is.
  • the hydroxyl value is 84 mgKOH / g or less, it is possible to improve storage stability while having low viscosity, and when it is 5 mgKOH / g or more, storage stability is improved.
  • the oxyethylene group content in the polyether polyol is substantially equal to the oxyethylene group content relative to the entire oxyalkylene groups in the polyether polyol.
  • the polyether polyol is preferably obtained by addition polymerization of ethylene oxide or ethylene oxide and another cyclic ether using a polyhydric alcohol as an initiator.
  • polyhydric alcohol for example, glycerin, trimethylolpropane, 1, 2, 6-hexanetriol is preferable!
  • cyclic ethers for example, propylene oxide, which is preferably propylene oxide, isobutylene oxide, 1-butene oxide, 2-butenoxide, is particularly preferable.
  • the polyether polyol is composed of a polyhydric alcohol, propylene oxide, Polyoxyalkylene polyols obtained by addition polymerization of ethylene oxide are preferred.
  • the polyoxyalkylene polyol is used, the polymer-dispersed polyol (A) in which polymer fine particles are more stably dispersed is further easily obtained, and the storage stability is further improved.
  • polyester polyol for example, a polyester polyol obtained by polycondensation of a polyhydric alcohol and a polyvalent carboxylic acid can be used.
  • Other examples include polycondensation of hydroxycarboxylic acids, polymerization of cyclic esters (latatanes), polyaddition of cyclic ethers to polycarboxylic acid anhydrides, and transesterification of waste polyethylene terephthalate.
  • hydrocarbon polymer having a hydroxyl group at the terminal for example, polytetramethylene glycol (PTMG) or polybutadiene polyol can be used.
  • PTMG polytetramethylene glycol
  • polybutadiene polyol can be used as the hydrocarbon polymer having a hydroxyl group at the terminal.
  • the polyol (X) contains at least the polyether polyol, and in addition to the polyether polyol, a polyester polyol, a hydrocarbon polymer having a hydroxyl group at the terminal, or the like may be used in combination. .
  • the content of the polyether polyol is 50% by mass or more in the polyol (X), preferably S, more preferably 80% by mass or more, and most preferably 100% by mass.
  • a polymer-dispersed polyol (A) in which polymer fine particles are stably dispersed is easily obtained, and storage stability is improved.
  • the monomer having a polymerizable unsaturated group in the present invention includes fluorine-containing acrylate or fluorine-containing metatalylate (hereinafter sometimes referred to as “fluorine-containing monomer”).
  • the dispersion stability of the polymer fine particles in the polyol (X) is improved. Further, the compatibility between the polymer-dispersed polyol (A) to be used and the polyol for the rigid polyurethane foam is increased, the storage stability is improved, and the rigid polyurethane foam is easily produced stably. Furthermore, when a rigid polyurethane foam is used, the dimensional stability is improved, and at the same time, good thermal insulation performance is easily obtained.
  • suitable fluorine-containing monomers include monomers represented by the above formula (1) because they have high compatibility with the polyol (X).
  • R f is a polyfluoroalkyl group having 1 to 18 carbon atoms.
  • the number of carbon atoms is 1 to 18; preferably! To 10; more preferably 3 to 8.
  • R f is the total number of hydrogen atoms in which the proportion of fluorine atoms in the alkyl group (the proportion of the number of hydrogen atoms in the alkyl group replaced by fluorine atoms) is preferably 80% or more. It is particularly preferred that it is substituted with an atom. When the number of carbon atoms is 18 or less, foam stability is favorable when foaming in the production of rigid polyurethane foam, which is preferable.
  • R is a hydrogen atom or a methyl group. That is, the monomer represented by the formula (1) is If R is a hydrogen atom, it becomes attalate, and if R is a methyl group, it becomes metatalylate.
  • Z is a divalent linking group, and examples thereof include an alkylene group and an arylene group, and an alkylene group is preferable.
  • the alkylene group may be a straight chain or a branched chain, in which an alkylene group having 1 to 10 carbon atoms is preferable, and an alkylene group having 1 to 5 carbon atoms is particularly preferable.
  • the fluorine-containing monomer can be used alone or in combination of two or more.
  • the amount of the fluorine-containing monomer used is preferably 10 to 100% by mass, more preferably 20 to 100% by mass with respect to all monomers having the polymerizable unsaturated group.
  • the proportion of the monomer represented by the formula (1) in the total monomer having a polymerizable unsaturated group is preferably 20 to 100% by mass, and preferably 30 to 100% by mass. More preferably 40-; most preferably 100% by weight.
  • the use amount is 10% by mass or more, particularly 20% by mass or more, the rigid polyurethane foam is used. Better heat insulation performance can be obtained.
  • the polymer fine particles in the present invention may be a polymer composed of a fluorinated monomer alone or a copolymer of a fluorinated monomer and another monomer having a polymerizable unsaturated group.
  • the polymer fine particles are preferably a copolymer because the dispersion stability of the polymer fine particles in the polyol (X) is good.
  • examples of the monomer having a polymerizable unsaturated group that may be used in combination with the fluorine-containing monomer include a cyano group-containing monomer such as acrylonitrile, methatalonitrile, 2,4 disianobutene 1, styrene, Styrenic monomers such as ⁇ -methylstyrene and halogenated styrene; acrylic monomers such as acrylic acid, methacrylic acid or their alkyl esters, acrylamide and methacrylamide; and bull ester monomers such as butyl acetate and vinylene propionate; Isoprene, butadiene and other gen-based monomers; unsaturated fatty acid esters such as maleic acid diesters and itaconic acid diesters; halogenated butyls such as vinyl chloride, bromobromide and fluorinated butyl; vinylidene chloride, vinylidene bromide Such as vinyli
  • acrylonitrile or vinyl acetate is particularly preferable because acrylonitrile, butyl acetate, and styrene have better storage stability for a longer period of time (for example, about 1 month). It is also preferable to use styrene since the bubble breaking effect is high and the dimensional stability is good.
  • One or two or more monomers other than the fluorine-containing monomer can be used.
  • the mixing ratio of the fluorine-containing monomer and acrylonitrile is preferably 10:90 to 90:10 by mass ratio 30:70 to 70: More preferably, it is 30. Within this range, long-term storage stability is improved. Moreover, especially when it is set as a rigid polyurethane foam, heat insulation performance improves.
  • the fluorine-containing monomer and acrylonitrile are used in combination, and a polyether polyol having an oxyethylene group content of 60% by mass or more is used as the polyol (X), the storage stability is particularly excellent, and a rigid polyurethane foam is obtained. In this case, sufficient heat insulation performance can be obtained.
  • the mixing ratio of the fluorine-containing monomer and the other monomer is 10:90 to 90:10 in terms of mass ratio.
  • 30: 70-70: 30 is more preferred! /.
  • the mixing ratio of acrylonitrile and styrene is preferably 0: 100 to; 100: 0 in mass ratio, more preferably 90:10 to 10:90.
  • the mixing ratio of the fluorine-containing monomer and the other monomers is 30:70 to 70:30 in mass ratio. S, preferably 40: 60-70: 30, better than S! /.
  • the polyisocyanate component in the present invention is not particularly limited, for example, aromatic, alicyclic and aliphatic polyisocyanates having two or more isocyanate groups; two types of the polyisocyanates; Examples thereof include modified polyisocyanates obtained by modifying them. Specific examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenylisocyanate (commonly known as cnolade MDI), xylylene diisocyanate (XDI), isophorone diester.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • MDI polymethylene polyphenylisocyanate
  • XDI xylylene diisocyanate
  • isophorone diester isophorone diester.
  • Polyisocyanates such as isocyanate (IPDI) and hexamethylene diisocyanate (HMDI) Repolymer type modified products; isocyanurate modified products, urea modified products, carpositimide modified products, and the like.
  • IPDI isocyanate
  • HMDI hexamethylene diisocyanate
  • TDI, MDI, Crude MD are preferred to their modified forms.
  • the polyisocyanate component can be used alone or in combination of two or more.
  • the foaming agent in the present invention water is mainly used.
  • the blowing agent other than water for example, it is possible to use a combination of gas, fluorocarbon compound, hydrocarbon compound and general-purpose gas.
  • the hydrated fluorocarbon compound examples include 1,1,1,1,2-tetrafluoroethane (HFC—134a), 1,1,1,3,3-pentafluoropropane (HFC—245 fa), 1 , 1, 1, 3, 3, 3-pentafluorobutane (HFC—365mfc), 1, 1, 2, 2-tetrafluoroethyl difluoromethyl ether (HFE—236pc), 1, 1, 2, 2-tetrafluoro-octylmethyl ether (HFE—254 pc), 1, 1, 1, 2, 2, 3, 3-heptafluorov.
  • Methyl pyrmethyl ether (HFE—347 mcc) and the like can be mentioned.
  • hydrocarbon compound examples include butane, normal pentane, isopentane, cyclopentane, hexane, and cyclohexane.
  • Examples of the general-purpose gas include air, nitrogen, and carbon dioxide gas. Of these, carbon dioxide is preferable.
  • the addition state of the inert gas may be any of a liquid state, a supercritical state, and a subcritical state.
  • the foaming agents can be used singly or in combination of two or more.
  • the foaming effect is improved, and the weight of the rigid polyurethane foam can be reduced.
  • the foam stabilizer in the present invention is not particularly limited, and examples thereof include silicone foam stabilizers. Among them, the heat insulation performance of rigid polyurethane foam is added. Therefore, a silicone type foam stabilizer having a high foam regulating effect capable of reducing the cell diameter is particularly preferred.
  • foam stabilizer can be used alone, or two or more types can be used in combination.
  • the catalyst in the present invention is not particularly limited as long as it is a catalyst that promotes the urethanization reaction.
  • catalysts that promote the urethanization reaction include triethylenediamine, bis (2-dimethylaminoethinole) ether, N, N, ⁇ ', N'-tetramethylhexamethylenediamine, etc.
  • Class amines organometallic compounds such as dibutyltin dilaurate.
  • examples thereof include acetic acid lithium which may be used in combination with a catalyst for promoting the trimerization reaction of isocyanate group, and a metal carboxylate such as potassium 2-ethylhexanoate.
  • an organometallic catalyst such as lead 2-ethylhexanoate in order to complete the reaction in a short time.
  • any compounding agent may be used as required! /.
  • Compounding agents include fillers such as calcium carbonate and barium sulfate; antioxidants such as antioxidants and UV absorbers; flame retardants, plasticizers, colorants, antifungal agents, foam breakers, dispersants, discoloration An inhibitor etc. are mentioned.
  • the present invention is a method for producing a rigid polyurethane foam by reacting a polyol component ( ⁇ ) and a polyisocyanate component in the presence of a foaming agent, a foam stabilizer and a catalyst.
  • the polyol component ( ⁇ ) is prepared in advance, and a mixture of the polyol component ( ⁇ ) and a part or all of the components other than the polyisocyanate component (hereinafter referred to as “polyol system solution”) is prepared. It is preferable to keep it.
  • the foaming agent may be blended in advance in the polyol system liquid, or may be blended after the polyisocyanate component is mixed in the polyol system liquid. I prefer it.
  • the polyol component (Z) can be prepared, for example, by mixing the polymer-dispersed polyol (A) and a polyol for a rigid polyurethane foam.
  • the polymer-dispersed polyol (A) is produced by polymerizing a monomer having a polymerizable unsaturated group in the polyol (X) to produce a polymer-dispersed polyol in which polymer fine particles polymerized with the monomer are dispersed in a polyol.
  • the method is not particularly limited.
  • a monomer having a polymerizable unsaturated group is polymerized in the polyol (X) in the presence of a solvent as necessary to directly polymerize the polymer.
  • a suitable method is a production method in which fine particles are precipitated to obtain a polymer-dispersed polyol.
  • Specific examples of the method for producing the polymer-dispersed polyol (A) include the following methods (1) and (2).
  • a part of the polyol (X) is charged into a reactor, and a mixture of the remaining polyol (X), a monomer having a polymerizable unsaturated group, a polymerization initiator, etc. is stirred into the reactor.
  • Polyol (X) a monomer having a polymerizable unsaturated group, a polymerization initiator, and the like are continuously fed into a reactor under stirring to perform polymerization. At the same time, the produced polymer-dispersed polyol is Continuous process that continuously discharges from the reactor.
  • any of the production methods (1) and (2) can be used.
  • the use amount of all the monomers having a polymerizable unsaturated group is not particularly limited, but is an amount such that the concentration of the polymer fine particles in the polymer-dispersed polyol (A) is 50% by mass or less. It is more preferable to be in an amount of 50 to 50% by mass. It is more preferable to be in an amount of 2 to 45% by mass. It is particularly preferable to be in an amount of 5 to 30% by mass. Is most preferred.
  • the concentration of the polymer fine particles is 50% by mass or less, the polymer-dispersed polyol (A) in which the polymer fine particles are stably dispersed in the polyol (X) is more easily obtained, and the storage stability is further improved. In addition, an appropriate viscosity is obtained, and the liquid stability of the polymer-dispersed polyol (A) is improved.
  • a polymerization initiator that generates a free group and initiates polymerization of a monomer having a polymerizable unsaturated group is usually used. It is done.
  • AIBN 2,2-azobismonoisobutyronitrile
  • AMBN 2,2-azobis-2-methylbutyronitrile
  • benzoyl peroxide diisopropyl peroxide dicarbonate, acetyl chloride, di-tert butyl peroxide, persulfate and the like.
  • AIBN and AMBN are preferred.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is 100 in total of polyol (X), all monomers having a polymerizable unsaturated group including a fluorine-containing monomer, and a stabilizer or grafting agent (described later) used as necessary.
  • the amount is preferably 0.01 to 10 parts by mass with respect to parts by mass.
  • Solvents include, for example, methanol, ethanol, isopropanol, butanol, cyclohexanol, pendinoreanolol, etc .; aliphatic hydrocarbons such as pentane, hexane, cyclohexane, hexene; benzene, toluene Aromatic hydrocarbons such as xylene; ketones such as acetone, methyl ethyl ketone, and acetophenone; esters such as ethyl acetate and butyl acetate; isopropyl ether, tetrahydrofuran, benzyl ethyl ether, acetal, anisole, methyl-tert butyl ether, etc.
  • Ethers Halogenated hydrocarbons such as chlorobenzene, chlorohonolem, dichloroethane, 1,1,2-trichlorotrifoleoleoethane; Nitro compounds such as nitrobenzene; Acetonitrile, benzonitryl, etc. Tolyl ethers; Torimechiruamin, Toriechiruamin, Toribuchiruamin, amines diphosphorus such Jimechirua; N, N-dimethylformamide, amides such as N-methyl pyrrolidone; dimethyl sulfoxide, sulfur compounds such as sulfolane.
  • Halogenated hydrocarbons such as chlorobenzene, chlorohonolem, dichloroethane, 1,1,2-trichlorotrifoleoleoethane
  • Nitro compounds such as nitrobenzene; Acetonitrile, benzonitryl, etc.
  • Tolyl ethers Torimechiruamin, Toriechirua
  • the solvents can be used alone or in combination of two or more.
  • the mixing ratio of the solvent and the polyol (X) is preferably 0: 100 to 60:40 by mass ratio. More preferably, it is ⁇ 40: 60.
  • the mixing ratio is within the range, aggregation of the polymer particles is suppressed, and it becomes easy to obtain a polymer-dispersed polyol (A) in which polymer fine particles are stably dispersed.
  • the solvent is removed.
  • the method for removing the solvent is usually performed by heating under reduced pressure. It can also be carried out under normal pressure heating or reduced pressure at room temperature. At this time, unreacted monomers are also removed together with the solvent.
  • the polymerization reaction of the monomer having a polymerizable unsaturated group in the polyol (X) is performed at a temperature equal to or higher than the decomposition temperature of the polymerization initiator, usually from 80 to 160 ° C, and from 90 to 150 ° C. It is particularly preferable that the reaction be performed at 100 to 130 ° C.
  • a stabilizer or a grafting agent can be used to improve the dispersion stability of the polymer fine particles in the polymer-dispersed polyol (A).
  • Preferable examples of the stabilizer or grafting agent include compounds having an unsaturated bond in the molecule.
  • a high molecular weight polyol or monool obtained by reacting an active hydrogen compound having an unsaturated bond-containing group such as a bur group, a aryl group, or an isopropyl group as an initiator with an alkylene oxide; After reacting the polyol with an unsaturated carboxylic acid such as maleic anhydride, itaconic anhydride, maleic acid, fumaric acid, acrylic acid, methacrylic acid or the like, or an acid anhydride thereof, propylene oxide or ethylene as necessary.
  • an active hydrogen compound having an unsaturated bond-containing group such as a bur group, a aryl group, or an isopropyl group as an initiator with an alkylene oxide
  • an unsaturated carboxylic acid such as maleic anhydride, itaconic anhydride, maleic acid, fumaric acid, acrylic acid, methacrylic acid or the like, or an acid anhydride thereof, propylene oxide or ethylene as necessary.
  • High molecular weight polyols or monools obtained by addition of alkylene oxides such as oxides; unsaturated alcohols such as 2-hydroxyethyl acrylate, butene diol, other polyols and polyisocyanates; A reaction product of an unsaturated epoxy compound such as allylic glycidyl ether and a polyol.
  • These stabilizers or grafting agents preferably have a hydroxyl group and may or may not have a hydroxyl group! /, But preferably have a hydroxyl group. .
  • the stabilizer or grafting agent can be mixed and blended with the polyol (X), a monomer having a polymerizable unsaturated group, a polymerization initiator, and the like.
  • the obtained polymer-dispersed polyol (A) is subjected to a decompression treatment on the obtained polymer-dispersed polyol (A) which may be used as a raw material for a rigid polyurethane foam, and has not been subjected to decompression treatment.
  • a decompression treatment on the obtained polymer-dispersed polyol (A) which may be used as a raw material for a rigid polyurethane foam, and has not been subjected to decompression treatment.
  • the latter is preferred among those that can be used after removal of the reactive monomer.
  • the mixing ratio of the polymer-dispersed polyol (A) and the polyol for the rigid polyurethane foam is determined by the polymer-dispersed polymer in the polyol component (Z).
  • the ratio of all (A) is preferably 0.01 mass% or more, more preferably 0.1 mass% or more, and even more preferably 0.9 mass% or more.
  • the proportion of the polymer-dispersed polyol ( ⁇ ) is preferably 10% by mass or less, and more preferably 7% by mass or less.
  • the proportion of the polymer fine particles in the polyol component ( ⁇ ) is 0.001% by mass or more, preferably S, more preferably 0.01% by mass or more, and 0.1% by mass or more. Is more preferable.
  • the proportion of the polymer fine particles is preferably 5% by mass or less, more preferably 1% by mass or less.
  • both the dimensional stability and the heat insulation performance are improved when a rigid polyurethane foam is obtained.
  • storage stability improves that it is below an upper limit, and a rigid polyurethane foam can be manufactured stably.
  • an appropriate viscosity is easily obtained as the polyol component ( ⁇ ), and the liquid stability is improved.
  • the amount of water used as a foaming agent is:! To 15 parts by mass is preferably 2 to; 13 parts by mass is more preferably 4 to 100 parts by mass of the polyol component ( ⁇ ); 12 parts by mass is more preferable. If the amount of water used is 1 part by mass or more, it is preferable in terms of reducing the weight of the resulting rigid polyurethane foam. On the other hand, if the amount of water used is 15 parts by mass or less, it is preferable because the miscibility between water and the polyol component ( ⁇ ) becomes better.
  • the amount used when using a hydrated fluorocarbon compound other than water is preferably from! To 50 parts by mass with respect to 100 parts by mass of the polyol component ( ⁇ ). More preferred is 20 to 40 parts by mass.
  • the amount used is preferably 1 to 40 parts by mass and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the polyol component (IV).
  • the amount used when using an inert gas is preferably 1 to 100 parts by mass and more preferably 20 to 20 parts by mass with respect to 100 parts by mass of the polyol component (IV).
  • the amount of the foam stabilizer to be used needs to be selected as appropriate, but is preferably from 0 .;
  • the amount of the catalyst used is preferably 0.;! To 10 parts by mass with respect to 100 parts by mass of the polyol component ( ⁇ ). Good.
  • the amount of the polyisocyanate component used is preferably 50 to 300 in terms of the isocyanate index (INDEX).
  • the isocyanate index (INDEX) is a value expressed by multiplying the ratio of the number of isocyanate groups to the total number of active hydrogens of the polyol component (Z) and other active hydrogen compounds by 100.
  • the amount of polyisocyanate component used is preferably from 50 to 140, preferably from 60 to 130 force S in terms of isocyanate index.
  • polyisocyanurate formulation (urethane-modified polyisocyanurate formulation) that mainly uses a catalyst that promotes the trimerization reaction of isocyanate groups as a catalyst
  • the amount of polyisocyanate component used is preferably 120 to 300 in terms of isocyanate index. 120-250 is more preferable.
  • the method for producing a rigid polyurethane foam in the present invention can be applied to various molding methods.
  • the molding method include injection, continuous production board, and spray foaming foam.
  • Injection is in a frame of a mold or the like. This is a method in which a rigid polyurethane foam material is injected and foamed.
  • a continuous production board is a laminate in which rigid polyurethane foam is sandwiched between two face materials, and is used as a heat insulating material for architectural purposes.
  • the spray foaming form is a construction in which rigid polyurethane foam is sprayed and applied.
  • the method for producing a rigid polyurethane foam of the present invention can be suitably applied to the production of an infused urethane foam, a continuous production board, a spray foam foam, and the like.
  • a rigid polyurethane foam having good dimensional stability and sufficient heat insulating performance can be obtained. Further, since the storage stability when the mixture of the polymer-dispersed polyol and the polyol for the rigid polyurethane foam to be used is stored is excellent, the rigid polyurethane foam can be stably produced.
  • Production Examples 1 to 14 are examples, and Production Example 15 is a comparative example.
  • test examples;! To 7, 9 to; 15 and 17 to 23 are evaluation results of storage stability of the polymer-dispersed polyols produced in the examples, and test examples 8, 16, and 24 are the results of the present invention. This is an evaluation result of storage stability when PTFE powder is used in place of the polymer dispersed polyol.
  • Production Examples 16 to 30, 34, 35, 38, 39, 42 and 43 are the results of producing rigid urethane foams using the polymer-dispersed polyols produced in the Examples and evaluating the physical properties. 3;! To 33, 36, 37, 40, 41, 44 and 45 (In addition, the results of the evaluation of physical properties by producing this rigid urethane foam using the polymer dispersed polyol of the present invention).
  • the hydroxyl value was measured according to JIS K1557 (1970 version).
  • the viscosity was measured according to JIS K1557 (1970 version).
  • the polymer fine particle concentration (solid content) was defined as the charged amount of the monomer having a polymerizable unsaturated group as the fine particle concentration (solid content).
  • polymer dispersion polyols F1 to F15 were produced according to the following production examples;
  • Table 1 shows the composition at the time of production of the polymer-dispersed polyol, the hydroxyl value (mgKOH / g), the viscosity (mPa's), and the concentration of polymer fine particles (solid content: mass%) of the obtained polymer-dispersed polyols F1 to F15. Each is shown.
  • polyols D to G, macromonomers Ml and M2 and monomers having polymerizable unsaturated groups are “g”; polymerization initiator is polyol unsaturated with polyols D to G It is the value of “parts by mass” relative to a total of 100 parts by mass with all monomers having a group.
  • Polyol D Glycerin is used as an initiator, and ethylene oxide is added to the glycerin. After polymerization, the mixture [PO /
  • polyoxyalkylene polyol with polyol having an oxyethylene group content of 60% by mass and a hydroxyl value of 28 mgKOH / g in polyol
  • Polyol F ethylenediamine as an initiator
  • Polyol G Glycerin was used as an initiator, and PO was added to and polymerized only with PO.
  • the content of oxyethylene group in polyol G was 0% by mass, and the hydroxyl value was 650 mgKOH.
  • Fluorine-containing monomer (f) A monomer (Asahi Glass Co., Ltd.) represented by the following chemical formula (11) was used.
  • Macromonomer Ml Polyol D and tonorene diphenyl diisocyanate (trade name: T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 2-hydroxyethyl methacrylate (manufactured by Seikagaku Co., Ltd.) are used as polyol D / toluene.
  • Charge diphenyldiisocyanate / 2-hydroxyethyl methacrylate 1/1/1, react at 60 ° C for 1 hour, then react at 80 ° C for 6 hours
  • a macromonomer having a polymerizable unsaturated group having a hydroxyl value of 21 mgKOH / g obtained in
  • Production Example 1 Production of polymer-dispersed polyol F1
  • Production Example 2 Production of polymer-dispersed polyol F2
  • a 5 L pressurized reactor is charged with 70% by weight of polyol D and maintained at 120 ° C, while the remaining 30% by weight of polyol D, acrylonitrile, styrene, fluorine-containing monomer (f), and polymerization initiator (AMBN) is fed over 1 hour with stirring. After completion of the mixing, stirring was continued for about 0.5 hours at the same temperature. At that time, the reaction was terminated after confirming that the reaction rate of the monomer measured by the above method was 80% or more. Thereafter, the unreacted monomer was removed under reduced pressure at 120 ° C. for 6 hours to produce polymer-dispersed polyol F2. The results are shown in Table 1.
  • Production Examples 3 to 7 Production of polymer-dispersed polyols F3 to F7
  • Polymer-dispersed polyols F3 to F7 were produced in the same manner as in Production Example 1 except that the monomer having a polymerizable unsaturated group shown in Table 1 was used. The results are shown in Table 1.
  • Production Example 8 Production of polymer-dispersed polyol F8
  • Production Example 9 Production of polymer-dispersed polyol F9
  • Production Example 10 Production of polymer-dispersed polyol F10
  • Production Examples 11 and 13 Production of polymer-dispersed polyols F11 and 13
  • the polymer composition polyols F11 and F-13 were produced in the same manner as in Production Example 9 by changing the monomer composition having a polyol D and a polymerizable unsaturated group. The results are shown in Table 2.
  • Production Example 12 Production of polymer-dispersed polyol F12
  • Production Example 14 Production of polymer-dispersed polyol F14
  • Production Example 15 Production of polymer-dispersed polyol F15
  • polyol D After all of polyol D, polyol F, polyol G, acrylonitrile, acetic acid butyl and polymerization initiator (AMBN) are charged into a 5 L pressure reaction tank, the temperature rise is started while stirring, and the reaction liquid is kept at 80 ° C. The reaction was allowed for 10 hours. At that time, measured by the above method The reaction was terminated after confirming that the monomer reaction rate was 80% or more. Thereafter, the unreacted monomer was removed by heating under reduced pressure at 110 ° C. and 20 Pa for 2 hours to produce a polymer-dispersed polyol F15. The results are shown in Table 2.
  • Fluorinated monomer (f) 25 25 50 50 50 40 40
  • evaluation sample was stored at 23 ° C. for 1 week, the appearance (separated state) of the evaluation sample after storage was visually observed, and the storage stability (1 week) was evaluated according to the following evaluation criteria. Evaluation criteria
  • Polytetrafluoroethylene (PTFE) powder (trade name: polytetrafluoroethylene resin powder fluon L-173, manufactured by Asahi Glass Co., Ltd.).
  • Polioinole A Tolylenediamine is used as an initiator, E0, P0 and E0 are addition-polymerized in this order to the tolylenediamine, and the hydroxyl value is 350 mgKOH / g. And P ⁇ Polyether polyol with an EO ratio of 33% by mass with respect to the total.
  • Polyol B N- (2-aminoethyl) piperazine was used as an initiator, and only EO was added to the N- (2-aminoethyl) piperazine to polymerize it with a hydroxyl value of 350 mgKOH / g. Etenorepoli-nore.
  • Polyol C A polyether polyol having a hydroxyl value of 380 mg KOH / g, in which a mixture of sucrose and glycerin (mass ratio 5: 4) is used as an initiator, and only PO is subjected to addition polymerization.
  • Polyol H Polyester polyol having a hydroxyl value of S200 mgKOH / g, obtained by polycondensation of diethylene glycol and terephthalic acid.
  • Polyol I The hydroxyl value obtained by adding PO and EO in this order to the Mannich condensation product obtained by reacting nourphenol, formaldehyde and diethanolamine in a molar ratio of 1: 1 to 1.4 to 2.1 is 300 mgKOH.
  • the ratio of EO to the total amount of added PO and EO is 60% by mass.
  • Polyol J aniline (1 mol), phenol (0.99 mol), paraformaldehyde (0.64 mol) and diethanolamine (2.2 mol) were reacted to obtain a Mannich compound.
  • Polyol K A polyether polyol having a hydroxyl value of 760 mgKOH / g, in which ethylenediamine is used as an initiator and only PO is added to the ethylenediamine to effect polymerization.
  • Polyol L A polyether polyol having a hydroxyl value of 400 mgKOH / g, in which glycerin is used as an initiator and only PO is added to the glycerin.
  • Test Example 1 using polymer-dispersed polyols F1 to F14 1 -7, Test Examples 9-; 15 and Test Examples 17-23 were confirmed to have good storage stability.
  • Test Example 8 Test Example 16 and Test Example 24 using PTFE powder were confirmed to have poor storage stability.
  • the polymer monodisperse polyols F1 to F14 produced by the method for producing the polymer-dispersed polyol of the present invention have high compatibility with the polyol for rigid polyurethane foam and excellent storage stability.
  • the unit of the amount of each raw material used is “part by mass”.
  • Polyol D polymer-dispersed polyol F1-F4, F6, F8, F9-F15.
  • Tris (2 black mouth propyl) phosphate (trade name: TMCPP, manufactured by Daihachi Chemical Co., Ltd.)
  • Foaming agent A Water.
  • Blowing agent B Cyclopentane (trade name: Marutsuru FH, manufactured by Maruzen Petrochemical Co., Ltd.)
  • Foaming agent C l, 1, 1, 3, 3, pentafluoropropane (HFC—245fa: manufactured by Honeywell)
  • 'Foam stabilizer Silicone foam stabilizer (trade name: SZ-1671, manufactured by Toray Industries, Inc.).
  • 'Catalyst A N, N, ⁇ ', ⁇ , monotetramethylhexamethylenediamine (trade name: TOYOCAT-MR, manufactured by Tosoh Corporation).
  • Catalyst B Triethylenediamine (trade name: TEDA—L33, manufactured by Tosoh Corporation)
  • Catalyst C N, N, N "Tris (dimethylaminopropyl) hexahydro S-triazine (trade name: POLYCAT 41, manufactured by AIR PRODUCTS).
  • 'Catalyst D Diethylene glycol solution of potassium ethylhexanoate (potassium concentration 15 %, Product name: DABCO K-15, manufactured by AIR PRODUCTS)
  • Catalyst E A mixture of amino alcohols (trade name: TOYOCAT—RX7, manufactured by Tosoh Corporation).
  • 'Catalyst F N, N-Dimethylcyclohexylamine (trade name: Power Olyzer Ichi ⁇ 10, manufactured by Kao Corporation)
  • Polyisocyanate Polymethylene polyphenyl polyisocyanate (crude MDI) (trade name: MR-200, manufactured by Nippon Polyurethane Industry Co., Ltd.).
  • the amount of polyisocyanate used is 110 or 130 for the isocyanate index (IND EX) when the foaming agent is water only, and 105 for the system using a hydrocarbon compound as the foaming agent.
  • the system using a hyde mouth fluorocarbon compound as the agent was set to 110 as the isocyanate index, and the results were compared.
  • the isocyanate index (INDE X) is a value expressed by multiplying the ratio of the number of isocyanate groups to 100 times the total equivalent of active hydrogens of the polyol composition and other active hydrogen compounds.
  • the liquid temperature of both the polyol system liquid and the raw material of the polyisocyanate component was kept at 20 ° C., and then stirred and mixed at a rotational speed of 3000 rpm for 5 seconds. After that, it was put into a 200 x 200 x 200 mm high wooden box and subjected to free foaming to produce a rigid polyurethane foam.
  • the gel time was measured by inserting a wire into a foam that was in the process of foaming and measuring the time (seconds) until string drawing occurred when the foam was pulled up.
  • the total density (box-free density) was measured from the mass and volume according to JIS K7222 (1998 edition).
  • the compressive strength was measured according to JIS A9511. The size of the sample piece was 5 cm ⁇ 5 cm ⁇ 5 cm. The compressive strength was measured in the direction parallel to the gravity direction ( ⁇ ) and in the vertical direction (top). In Table 3, “ ⁇ + up” represents the compression strength of the compression strength in the parallel direction ( ⁇ ) and the compression strength in the vertical direction (up).
  • High-temperature shrinkage is measured by a method according to ASTM D 2126-75.
  • water is the only blowing agent
  • the high-temperature dimensional stability and wet heat dimensional stability are evaluated, and the blowing agent is a hydrocarbon compound or a hyde mouth fluorocarbon compound.
  • the blowing agent is a hydrocarbon compound or a hyde mouth fluorocarbon compound.
  • the rigid polyurethane foam of each example was used as a sample, and after curing for 1 hour, a length (Z) 100 mm ⁇ width (X) 150 mm ⁇ thickness (Y) 75 mm was cut out and used.
  • High temperature dimensional stability is 70 ° C for the sample piece
  • wet heat dimensional stability is 70 ° C
  • relative humidity is 95%
  • low temperature dimensional stability is 30 ° C and 0 ° C in each atmosphere for 24 hours or 50 hours.
  • the length (thickness) increased after time storage was expressed as a dimensional change rate (unit:%) with respect to the length (thickness) before storage. In other words, the dimensional change rate was measured for all six directions in three directions (X, Y, and ⁇ ) under two conditions.
  • A The maximum absolute value among the dimensional change rates in 6 directions was 1% or more and less than 5%.
  • The maximum absolute value among the dimensional change rates in 6 directions was 5% or more and less than 10%.
  • the thermal conductivity (unit: mW / m'K) was measured in accordance with JIS A1412 using a thermal conductivity measuring device (product name: Auto Lambda HC-074, manufactured by Eiko Seiki Co., Ltd.). The heat insulation was evaluated according to the following evaluation criteria.
  • the content of the oxyethylene group in the polyether polyol (Y) is 60% by mass or more, and acrylonitrile or butyl acetate is included as a monomer having a polymerizable unsaturated group, It was also found that a significant effect of improving storage stability was obtained.
  • the polymer-dispersed polyol obtained by the production method of the present invention can be used for production of a rigid polyurethane foam.
  • the polymer-dispersed polyol has good storage stability even when mixed with a polyol having a low molecular weight for rigid polyurethane foam.
  • the polymer-dispersed polyol it is possible to obtain a rigid polyurethane foam that is reduced in weight and excellent in both heat insulating properties and dimensional stability. Further, the polymer-dispersed polyol can be suitably used for the production of injected urethane foam, continuous production board, spray foamed foam and the like. It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2006-312812 filed on November 20, 2006 are hereby incorporated by reference. It is something that is incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Disclosed is a method for producing a polymer-dispersed polyol which has excellent storage stability and high compatibility with polyols for hard polyurethane foam, and enables to attain good heat insulation performance when it is formed into a hard polyurethane foam. Specifically disclosed is a method for producing a polymer-dispersed polyol for hard polyurethane foams, wherein a polyol having polymer particles dispersed therein is produced by polymerizing a monomer having a polymerizable unsaturated group in a polyol (X). This method for producing a polymer-dispersed polyol is characterized in that the polyol (X) contains a polyether polyol (Y) having not less than 10% by mass of an oxyethylene group content, and the monomer having a polymerizable unsaturated group contains a fluorine-containing acrylate or a fluorine-containing methacrylate.

Description

明 細 書  Specification
硬質ポリウレタンフォームの製造方法  Method for producing rigid polyurethane foam
技術分野  Technical field
[0001] 本発明は、硬質ポリウレタンフォームの製造方法に関する。  The present invention relates to a method for producing a rigid polyurethane foam.
背景技術  Background art
[0002] ポリオール成分とポリイソシァネート成分とを発泡剤等の存在下で反応させて製造 される硬質発泡合成樹脂(たとえば、硬質ポリウレタンフォーム等;以下、「硬質フォー ム」と!/、うこと力 Sある。 )は、独立気泡を有する断熱材として広く用いられて!/、る。  [0002] Rigid foam synthetic resin produced by reacting a polyol component and a polyisocyanate component in the presence of a foaming agent (eg, rigid polyurethane foam, etc .; hereinafter referred to as "hard foam" and! /) It has the power S.)) is widely used as a heat insulating material with closed cells!
該硬質フォームに用いられる発泡剤としては、低沸点のハイド口フルォロカーボン 化合物や炭化水素化合物が主に用いられて!/、る。  As the foaming agent used in the rigid foam, a low-boiling-point hydrocarbon compound or a hydrocarbon compound is mainly used!
[0003] ボード等に代表される硬質フォームにおいては、原料の使用量削減によるコストダ ゥンゃ軽量化のため、フォームの更なる低密度化が要望されている。し力、し、フォー ムの低密度化に伴って、フォーム強度が低下し、硬質フォームに収縮が生じやすい 問題がある。  [0003] For rigid foams typified by boards and the like, there is a demand for further reduction in foam density in order to reduce the cost by reducing the amount of raw materials used. However, there is a problem that the foam strength decreases and the rigid foam tends to shrink as the density of the foam decreases.
また、発泡剤においては、環境への負荷を考慮して、低沸点のハイド口フルォロカ 一ボン化合物を削減して水を増やしたり、引火性の点を考慮して、炭化水素化合物 を削減して水を増やしたり、また、低沸点のハイド口フルォロカーボン化合物や炭化 水素化合物を使用しなレ、で水だけを使用したりする技術が検討されて!/、る。  In addition, in the case of blowing agents, considering the burden on the environment, we can reduce the low-boiling Hyde mouth fluorocarbon compounds to increase water, or consider flammability to reduce hydrocarbon compounds. Technologies that increase water or use only water without using a low-boiling Hyde mouth fluorocarbon compound or hydrocarbon compound are being considered!
しかし、ハイド口フルォロカーボン化合物もしくは炭化水素化合物と、水とを併用し てフォームの低密度化を図ったり、または、水だけで発泡させたり等の水発泡によりフ オームを低密度化した場合、フォームが顕著に収縮しやすくなつてフォームの寸法安 定性が悪くなる。  However, if the foam is reduced in density by water foaming, such as by using a hydrofluoric compound or hydrocarbon compound in combination with water to reduce the density of the foam or foaming with only water, the foam However, the dimensional stability of the foam deteriorates due to the remarkable tendency of shrinkage.
[0004] 前記フォームの寸法安定性の対策としては、通常、フォームの密度を高めてフォー ム強度を上げること、または、フォームの気泡を連続気泡にすること等が挙げられる。 しかし、フォームの密度を高める対策では、原料の使用量が多くなるためコストアツ プとなる。また、フォームの気泡を連続気泡化する対策では、フォームの寸法安定性 は向上するものの、充分な断熱性能を得ることができない。 すなわち、硬質フォームにおいては、発泡剤として水を多用する、または、水だけで 発泡する場合、フォームの寸法安定性が良好で、充分な断熱性能を有するものが望 まれている。 [0004] Measures for the dimensional stability of the foam usually include increasing the density of the foam to increase the foam strength, or making the foam bubbles open. However, measures to increase the density of the foam increase the amount of raw materials used, which increases costs. In addition, the measures to make the foam cells into continuous cells improve the dimensional stability of the foam, but cannot provide sufficient heat insulation performance. That is, in a rigid foam, when water is frequently used as a foaming agent, or foaming is performed only with water, a foam with good foam dimensional stability and sufficient heat insulation performance is desired.
[0005] 従来、硬質ポリウレタンフォームの収縮を防止して寸法安定性を向上させる公知技 術として含フッ素化合物、たとえばポリテトラフルォロエチレン (PTFE)類を用いた方 法が提案されている(特許文献 1、 2参照)。特許文献 1、 2に記載の方法によれば、 粒径の小さな PTFEの添加により、フォームに微細な空孔を開けることで寸法安定性 が向上すると共に、良好な断熱性能も得られる。  [0005] Conventionally, a method using a fluorine-containing compound such as polytetrafluoroethylene (PTFE) has been proposed as a well-known technique for preventing shrinkage of rigid polyurethane foam and improving dimensional stability ( (See Patent Documents 1 and 2). According to the methods described in Patent Documents 1 and 2, by adding PTFE having a small particle size, dimensional stability is improved by opening fine pores in the foam, and good thermal insulation performance is also obtained.
[0006] また、ポリオール成分中にポリマー分散ポリオールを配合する方法が提案されてい る(特許文献 3、 4参照)。  [0006] Further, a method of blending a polymer-dispersed polyol in a polyol component has been proposed (see Patent Documents 3 and 4).
「ポリマー分散ポリオール」とは、ポリエーテルポリオールやポリエステルポリオール 等のポリオール中に、ポリマー微粒子が分散したポリオールである。  The “polymer-dispersed polyol” is a polyol in which polymer fine particles are dispersed in a polyol such as a polyether polyol or a polyester polyol.
該ポリマー分散ポリオールは、従来から、軟質フォームまたは半硬質フォームの硬 度を向上させるために用いられて!/、る。  The polymer-dispersed polyol is conventionally used to improve the hardness of a flexible foam or a semi-rigid foam.
[0007] ポリマー分散ポリオールを製造する方法の代表的な例としては、以下の方法が知ら れている。すなわち、重合性不飽和結合を有しない飽和ポリオール中で、場合によつ ては重合性不飽和結合を有する不飽和ポリオールも存在する条件下で、重合性不 飽和基を有するモノマーの重合を行い、その後、未反応分を除去する方法である。 該飽和ポリオールまたは該不飽和ポリオールとしては、各種のポリエーテルポリオ一 ルゃポリエステルポリオールが知られている。  [0007] As a typical example of a method for producing a polymer-dispersed polyol, the following method is known. That is, in a saturated polyol having no polymerizable unsaturated bond, a monomer having a polymerizable unsaturated group is polymerized under the condition that an unsaturated polyol having a polymerizable unsaturated bond is also present in some cases. Thereafter, the unreacted content is removed. As the saturated polyol or the unsaturated polyol, various polyether polyols and polyester polyols are known.
特許文献 1:欧州特許出願公開第 0224945号明細書  Patent Document 1: European Patent Application Publication No. 0224945
特許文献 2:特表平 8 503720号公報  Patent Document 2: Japanese Patent Publication No. 8 503720
特許文献 3 :特開昭 57— 25313号公報  Patent Document 3: JP-A-57-25313
特許文献 4:特開平 11 302340号公報  Patent Document 4: Japanese Patent Laid-Open No. 11 302340
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかし、たとえば特許文献 1、 2に記載の方法等に使用されている含フッ素化合物 は、一般的に、有機物に対する溶解性が乏しいため、 PTFE等の含フッ素化合物を 、ポリオール化合物に添加して貯蔵した場合、含フッ素化合物とポリオール化合物と が分離する等、貯蔵安定性が不充分であり、硬質ポリウレタンフォームを安定に製造 できないことが分かった。 [0008] However, for example, fluorine-containing compounds used in the methods described in Patent Documents 1 and 2 generally have poor solubility in organic substances. When added to a polyol compound and stored, the fluorine-containing compound and the polyol compound were separated, and the storage stability was insufficient, and it was found that a rigid polyurethane foam could not be produced stably.
また、特許文献 3、 4に記載の方法において使用されるポリマー分散ポリオールは、 分子量の小さい硬質ポリウレタンフォーム用ポリオールと混合した際の貯蔵安定性が 充分ではないため、硬質ポリウレタンフォームを安定に製造できず、また、硬質ポリゥ レタンフォームとした際の寸法安定性と断熱性能の両立が困難であることが分かった In addition, the polymer-dispersed polyol used in the methods described in Patent Documents 3 and 4 does not have sufficient storage stability when mixed with a polyol for rigid polyurethane foam having a low molecular weight, so that the rigid polyurethane foam can be stably produced. In addition, it was found that it was difficult to achieve both dimensional stability and heat insulation performance when using rigid polyurethane foam.
Yes
特許文献 4に記載の方法では、寸法安定性と断熱性能の両立を目的としており、熱 伝導率につ!/、ては少し課題が残って!/、た。  The method described in Patent Document 4 aims to achieve both dimensional stability and heat insulation performance, and there is still a little problem with respect to thermal conductivity!
[0009] よって、本発明は、寸法安定性が良好で、充分な断熱性能を有する硬質ポリウレタ ンフォームが得られると共に、使用するポリマー分散ポリオールと硬質ポリウレタンフ オーム用ポリオールとの混合物を貯蔵した場合の貯蔵安定性に優れ、故に硬質ポリ ウレタンフォームを安定に製造できる硬質ポリウレタンフォームの製造方法を提供す なお、本発明における「貯蔵安定性」とは、ポリマー分散ポリオールと硬質ポリウレタ ンフォーム用ポリオールとの混合物を貯蔵した場合に該混合物の均一性を保つこと ができる特性を意味する。貯蔵安定性が悪い場合、ポリマー微粒子がポリオール化 合物から分離する、または該混合物中において、ポリマー分散ポリオールが移行して 組成が不均一となる等、安定した品質の硬質ポリウレタンフォームを得ることが困難と なる。 [0009] Therefore, the present invention provides a rigid polyurethane foam having good dimensional stability and sufficient heat insulation performance, and also when storing a mixture of the polymer-dispersed polyol and the rigid polyurethane foam polyol to be used. In this invention, “storage stability” refers to a polymer-dispersed polyol and a polyol for rigid polyurethane foam. Means a property that can maintain the uniformity of the mixture when stored. When the storage stability is poor, it is possible to obtain a rigid polyurethane foam having a stable quality such that the polymer fine particles are separated from the polyol compound, or the polymer-dispersed polyol migrates in the mixture and the composition becomes non-uniform. It becomes difficult.
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、ポリオール成分 (Z)とポリイソシァネート成分とを、発泡剤、整泡剤およ び触媒の存在下で反応させて硬質ポリウレタンフォームを製造する方法において、 前記ポリオール成分(Z)は、平均水酸基価が 200〜800mgKOH/gであり、かつ 下記ポリマー分散ポリオール (A)を含有することを特徴とする硬質ポリウレタンフォー ムの製造方法である。  [0010] The present invention provides a method for producing a rigid polyurethane foam by reacting a polyol component (Z) and a polyisocyanate component in the presence of a foaming agent, a foam stabilizer and a catalyst. (Z) is a method for producing a rigid polyurethane foam having an average hydroxyl value of 200 to 800 mgKOH / g and containing the following polymer-dispersed polyol (A).
ただし、ポリマー分散ポリオール (A)は、ポリオール (X)中で重合性不飽和基を有 するモノマーを重合させることにより、ポリマー微粒子がポリオール中に分散したもの であり、前記ポリオール (X)はポリエーテルポリオールを含み、前記重合性不飽和基 を有するモノマーは、含フッ素アタリレートまたは含フッ素メタタリレートを含む。 However, the polymer-dispersed polyol (A) has a polymerizable unsaturated group in the polyol (X). The polymer fine particles are dispersed in a polyol by polymerizing the monomer, and the polyol (X) contains a polyether polyol, and the monomer having the polymerizable unsaturated group is a fluorine-containing acrylate or fluorine-containing monomer. Includes metatarates.
[0011] 本発明の硬質ポリウレタンフォームの製造方法においては、前記含フッ素アタリレ ートまたは含フッ素メタタリレートが、下式(1 )で表されるモノマーであることが好ましい [0011] In the method for producing a rigid polyurethane foam of the present invention, the fluorine-containing acrylate or fluorine-containing metatalylate is preferably a monomer represented by the following formula (1):
Yes
[0012] [化 1]  [0012] [Chemical 1]
R R
Rf— Z—◦— C一 C=CH2 式( 1 ) R f — Z—◦— C 1 C = CH 2 formula (1)
0  0
ただし、式(1)中、 Rfは炭素数 1〜; 18のポリフルォロアルキル基であり、 Rは水素原 子またはメチル基であり、 Zは 2価の連結基である。 In the formula (1), R f is a polyfluoroalkyl group having 1 to 18 carbon atoms, R is a hydrogen atom or a methyl group, and Z is a divalent linking group.
[0013] また、本発明の硬質ポリウレタンフォームの製造方法においては、前記重合性不飽 和基を有するモノマーが、さらにアクリロニトリルまたは酢酸ビュルを含むことが好まし い。 [0013] In the method for producing a rigid polyurethane foam of the present invention, it is preferable that the monomer having a polymerizable unsaturated group further contains acrylonitrile or butyl acetate.
また、本発明の硬質ポリウレタンフォームの製造方法において、前記ポリエーテル ポリオールは、ォキシエチレン基含有量が 10質量%以上であることが好ましい。 また、本発明の硬質ポリウレタンフォームの製造方法において、前記ポリエーテル ポリオールは、水酸基価が 84mgKOH/g以下であることが好まし!/、。  In the method for producing a rigid polyurethane foam of the present invention, the polyether polyol preferably has an oxyethylene group content of 10% by mass or more. In the method for producing a rigid polyurethane foam of the present invention, the polyether polyol preferably has a hydroxyl value of 84 mgKOH / g or less! /.
また、本発明の硬質ポリウレタンフォームの製造方法において、前記ポリエーテル ポリオールは、多価アルコールに、プロピレンォキシドとエチレンォキシドとを付加重 合させて得られるポリオキシアルキレンポリオールであることが好ましい。  In the method for producing a rigid polyurethane foam of the present invention, the polyether polyol is preferably a polyoxyalkylene polyol obtained by addition-polymerizing propylene oxide and ethylene oxide to a polyhydric alcohol.
また、本発明の硬質ポリウレタンフォームの製造方法においては、前記重合性不飽 和基を有する全モノマー中の前記式(1)で表されるモノマーの割合が 20〜; 100質量 In the method for producing a rigid polyurethane foam of the present invention, the ratio of the monomer represented by the formula (1) in the total monomers having the polymerizable unsaturated group is 20 to 100 mass.
%であることが好ましい。 % Is preferred.
また、本発明の硬質ポリウレタンフォームの製造方法においては、前記ポリオール 成分(Z)中の前記ポリマー分散ポリオール (A)の割合が 0. 01質量%以上であり、か つ前記ポリオール成分(Z)中の前記ポリマー微粒子の割合が 0. 001質量%以上で あることが好ましい。 In the method for producing a rigid polyurethane foam of the present invention, the proportion of the polymer-dispersed polyol (A) in the polyol component (Z) is 0.01% by mass or more, The proportion of the polymer fine particles in the polyol component (Z) is preferably 0.001% by mass or more.
また、本発明の硬質ポリウレタンフォームの製造方法においては、前記発泡剤とし て水単独、または、ハイド口フルォロカーボン化合物および炭化水素化合物から選ば れる少なくとも一種と水とを使用することが好ましい。  Further, in the method for producing a rigid polyurethane foam of the present invention, it is preferable to use water alone or at least one selected from a hydrofluorocarbon compound and a hydrocarbon compound and water as the foaming agent.
発明の効果  The invention's effect
[0014] 本発明の硬質ポリウレタンフォームの製造方法によれば、寸法安定性が良好で、充 分な断熱性能を有する硬質ポリウレタンフォームが得られる。また、使用するポリマー 分散ポリオールと硬質ポリウレタンフォーム用ポリオールとの混合物を貯蔵した場合 の貯蔵安定性に優れるため、硬質ポリウレタンフォームを安定に製造できる。  [0014] According to the method for producing a rigid polyurethane foam of the present invention, a rigid polyurethane foam having good dimensional stability and sufficient heat insulating performance can be obtained. Further, since the storage stability when the mixture of the polymer-dispersed polyol and the polyol for rigid polyurethane foam used is stored is excellent, the rigid polyurethane foam can be produced stably.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 《硬質ポリウレタンフォームの製造方法》 [0015] <Method for producing rigid polyurethane foam>
本発明の硬質ポリウレタンフォームの製造方法は、ポリオール成分(Z)とポリイソシ ァネート成分とを、発泡剤、整泡剤および触媒の存在下で反応させて硬質ポリウレタ ンフォームを製造する方法である。  The method for producing a rigid polyurethane foam of the present invention is a method for producing a rigid polyurethane foam by reacting a polyol component (Z) and a polyisocyanate component in the presence of a foaming agent, a foam stabilizer and a catalyst.
以下、各成分の詳細について説明する。  Details of each component will be described below.
[0016] [ポリオール成分 (Z) ] [0016] [Polyol component (Z)]
本発明におけるポリオール成分 (Z)は、前記の特定のポリマー分散ポリオール (A) を含む。  The polyol component (Z) in the present invention contains the specific polymer-dispersed polyol (A).
ポリオール成分(Z)のポリマー分散ポリオール (A)以外の成分としては、たとえばポ リエーテルポリオール、ポリエステルポリオール、末端に水酸基を有する炭化水素系 ポリマー等の通常硬質ポリウレタンフォームを製造する際に用いられるポリオール (本 明細書において、「硬質ポリウレタンフォーム用ポリオール」という。)を使用することが できる。  Examples of components other than the polymer-dispersed polyol (A) of the polyol component (Z) include polyols used in the production of ordinary rigid polyurethane foams such as polyether polyols, polyester polyols, and hydrocarbon polymers having a hydroxyl group at the terminal. (Referred to herein as “polyol for rigid polyurethane foam”) can be used.
硬質ポリウレタンフォーム用ポリオールは、その平均官能基数が 2〜8であることが 好ましい。  The polyol for rigid polyurethane foam preferably has an average functional group number of 2-8.
なお、官能基数とは、ポリイソシァネート成分と反応するポリオールの官能基 (水酸 基)の数を意味し、たとえばポリエーテルポリオールの場合、該ポリエーテルポリオ一 ルを製造する際に使用した開始剤の活性水素数に等しい。 The number of functional groups means the number of functional groups (hydroxyl groups) of a polyol that reacts with the polyisocyanate component. For example, in the case of a polyether polyol, the polyether polyol Equal to the number of active hydrogens in the initiator used in the production of the catalyst.
硬質ポリウレタンフォーム用ポリオールとして具体的には、後述するポリマー分散ポ リオール (A)において説明するポリオール (X)について例示するものと同様のものが 挙げられる。  Specific examples of the polyol for the rigid polyurethane foam include those similar to those exemplified for the polyol (X) described in the polymer dispersion polyol (A) described later.
[0017] ポリオール成分(Z)の平均水酸基価は 200〜800mgKOH/gであり、 200—700 mgKOH/gが好ましぐ 200〜600mgKOH/g力 Sより好ましい。該平均水酸基価 力 S200mgKOH/g以上であると、得られる硬質ポリウレタンフォームの強度が出や すいため好ましい。該平均水酸基価が 800mgKOH/g以下であると、得られる硬質 ポリウレタンフォームの脆さが出難いため好ましい。  [0017] The average hydroxyl value of the polyol component (Z) is 200 to 800 mgKOH / g, and 200-700 mgKOH / g force S is preferable to 200 to 600 mgKOH / g force S. The average hydroxyl value S of 200 mgKOH / g or more is preferable because the strength of the obtained rigid polyurethane foam is easy. It is preferable that the average hydroxyl value is 800 mgKOH / g or less because the resulting rigid polyurethane foam is difficult to be brittle.
本発明において、平均水酸基価とは、ポリオール成分 (Z)を構成する全ポリオール 化合物の水酸基価の平均値を意味する。  In the present invention, the average hydroxyl value means the average value of hydroxyl values of all polyol compounds constituting the polyol component (Z).
[0018] (ポリマー分散ポリオール (A) )  [0018] (Polymer-dispersed polyol (A))
本発明におけるポリマー分散ポリオール (A)は、ポリオール (X)中で重合性不飽和 基を有するモノマーを重合させることにより、ポリマー微粒子がポリオール中に分散し たものであり、前記ポリオール (X)はポリエーテルポリオールを含み、前記重合性不 飽和基を有するモノマーは、含フッ素アタリレートまたは含フッ素メタタリレートを含む ものである。  The polymer-dispersed polyol (A) in the present invention is a polymer fine particle dispersed in a polyol by polymerizing a monomer having a polymerizable unsaturated group in the polyol (X). The polyol (X) The monomer containing a polyether polyol and having a polymerizable unsaturated group contains fluorine-containing acrylate or fluorine-containing metatalylate.
ポリオール成分 (Z)が、該ポリマー分散ポリオール (A)を含有することにより、寸法 安定性が良好で、充分な断熱性能を有する硬質ポリウレタンフォームが得られる。ま た、該ポリマー分散ポリオール (A)は、前記硬質ポリウレタンフォーム用ポリオールと の相溶性が高ぐそれらの混合物を貯蔵した場合の貯蔵安定性に優れ、故に硬質ポ リウレタンフォームを安定に製造できる。  When the polyol component (Z) contains the polymer-dispersed polyol (A), a rigid polyurethane foam having good dimensional stability and sufficient heat insulation performance can be obtained. In addition, the polymer-dispersed polyol (A) is excellent in storage stability when a mixture thereof having high compatibility with the polyol for rigid polyurethane foam is stored, and therefore, a rigid polyurethane foam can be stably produced.
本発明において、「ポリオ一ノレ(X)中で」とは、ポリオール(X)単独の中であってもよ ぐ後述の「ポリマー分散ポリオール (A)の製造方法」についての説明において例示 する溶媒と、ポリオール (X)との混合物中であってもよい。  In the present invention, “in the polyol (X)” may be in the polyol (X) alone, or the solvent exemplified in the description of the “method for producing the polymer-dispersed polyol (A)” described later. And a polyol (X).
[0019] 'ポリオール(X) [0019] 'Polyol (X)
ポリマー分散ポリオール (A)において、ポリオール (X)としては、たとえばポリエーテ ルポリオール、ポリエステルポリオール、末端に水酸基を有する炭化水素系ポリマー を使用すること力できる。 In the polymer-dispersed polyol (A), examples of the polyol (X) include a polyether polyol, a polyester polyol, and a hydrocarbon polymer having a hydroxyl group at the terminal. You can power to use.
ただし、本発明において、ポリオール (X)は、ポリエーテルポリオールを少なくとも含 む。ポリエーテルポリオールを含むことにより、前記硬質ポリウレタンフォーム用ポリオ ールとポリマー分散ポリオール (A)との相溶性が高まって貯蔵安定性が向上する。  However, in the present invention, the polyol (X) contains at least a polyether polyol. By including the polyether polyol, the compatibility between the polyol for rigid polyurethane foam and the polymer-dispersed polyol (A) is increased, and the storage stability is improved.
[0020] ポリエーテルポリオールとしては、たとえば多価アルコール、多価フエノール等のポ リヒドロキシ化合物ゃァミン類等の開始剤に、アルキレンォキシド等の環状エーテル を付加重合させて得られるものを使用することができる。 [0020] As the polyether polyol, for example, those obtained by addition polymerization of cyclic ethers such as alkylene oxides with initiators such as polyhydroxy compounds such as polyhydric alcohols and polyhydric phenols are used. be able to.
開始剤として具体的には、エチレングリコール、ジエチレングリコール、プロピレング リコーノレ、ジプロピレングリコーノレ、ネオペンチルグリコーノレ、 3—メチルー 1 , 5—ペン タンジオール、 1 , 4 ブタンジオール、 1 , 6—へキサンジオール、水、グリセリン、トリ メチロールプロパン、 1 , 2, 6 へキサントリオール、ペンタエリスリトール、ジグリセリ ン、テトラメチロールシクロへキサン、メチルダルコシド、ソノレビトーノレ、マンニトール、 ズルシトール、シユークロース、トリエタノールァミン等の多価アルコール;ビスフエノー ノレ A、フエノールーホルムアルデヒド初期縮合物等の多価フエノール;ピぺラジン、ァ 二リン、モノエタノールァミン、ジエタノールァミン、イソプロパノールァミン、アミノエチ ノレエタノールァミン、アンモニア、アミノメチルビペラジン、アミノエチルピペラジン、ェ チレンジァミン、プロピレンジァミン、へキサメチレンジァミン、トリレンジァミン、キシリレ ンジァミン、ジフエ二ノレメタンジァミン、ジエチレントリァミン、トリエチレンテトラミン等の ァミノ化合物またはそれらの環状エーテル付加物が挙げられる。  Specific examples of initiators include ethylene glycol, diethylene glycol, propylene glycolone, dipropylene glycolanol, neopentyl glycolanol, 3-methyl-1,5-pentanediol, 1,4 butanediol, 1,6-hexanediol. , Water, glycerin, trimethylolpropane, 1,2,6 hexanetriol, pentaerythritol, diglycerin, tetramethylolcyclohexane, methyl dalcoside, sonolebithonole, mannitol, dulcitol, sucrose, triethanolamine, etc. Alcohol: Polyphenols such as bisphenol nore A and phenol-formaldehyde initial condensate; piperazine, aniline, monoethanolamine, diethanolamine, isopropanolamine, aminoethylenoreeta Luramine, ammonia, aminomethylbiperazine, aminoethylpiperazine, ethylenediamine, propylenediamine, hexamethylenediamine, tolylenediamine, xylylenediamine, diphenylenomethanediamine, diethylenetriamine, triethylenetetramine, etc. These amino compounds or their cyclic ether adducts.
前記開始剤は、 1種を単独で、または 2種以上を組み合わせて使用することができ  The initiators can be used alone or in combination of two or more.
[0021] 環状エーテルとしては、たとえば環内に 1個の酸素原子を有する 3〜6員環の環状 エーテル化合物を使用することができる。 [0021] As the cyclic ether, for example, a 3- to 6-membered cyclic ether compound having one oxygen atom in the ring can be used.
環状エーテルとして具体的には、エチレンォキシド、プロピレンォキシド、イソブチレ ンォキシド、 1—ブテンォキシド、 2—ブテンォキシド、トリメチルエチレンォキシド、テト ラメチルエチレンォキシド、ブタジエンモノォキシド、スチレンォキシド、 aーメチルス チレンォキシド、ェピクロロヒドリン、ェピフノレオロヒドリン、ェピブ口モヒドリン、グリシド 一ノレ、ブチノレグリシジノレエーテノレ、へキシノレグリシジノレエーテノレ、フエニノレグリシジノレ エーテノレ、 2—クロロェチノレグリシジノレエーテノレ、 o—クロ口フエニノレグリシジノレエーテ ノレ、エチレングリコールジグリシジルエーテル、ビスフエノール Aジグリシジルエーテ ノレ、シクロへキセンォキシド、ジヒドロナフタレンォキシド、ビニノレシクロへキセンモノォ キシド等の 3員環状エーテル基を有する化合物(モノエポキシド);ォキセタン、テトラ ヒドロフラン、テトラヒドロピラン等の 4〜6員環状エーテル基を有する化合物が挙げら れる。 Specific examples of cyclic ethers include ethylene oxide, propylene oxide, isobutylene oxide, 1-buteneoxide, 2-buteneoxide, trimethylethylene oxide, tetramethylethylene oxide, butadiene monooxide, styrene oxide, a-methyl styrene oxide, Epoxychlorohydrin, Epifnoroleorohydrin, Epib mouth mohydrin, Glycid monole, Butinoreglycidinoatenore, Hexinoreglicidinoreatenore, Fuenoreglycidinore Ethenole, 2-chloroethinoreglycidinoleatenore, o-black fenenoreglycidino oleate, ethylene glycol diglycidyl ether, bisphenol A diglycidyl ethenore, cyclohexene oxide, dihydronaphthalenoxide, vinylenocyclo Examples thereof include compounds having a 3-membered cyclic ether group such as xene monooxide (monoepoxide); compounds having a 4- to 6-membered cyclic ether group such as oxetane, tetrahydrofuran, tetrahydropyran and the like.
前記のなかでも、 3員環状エーテル基を有する化合物(モノエポキシド)が好ましぐ 炭素数 2〜4のアルキレンォキシドがより好ましぐエチレンォキシド、プロピレンォキ シド、イソブチレンォキシド、 1ーブテンォキシド、 2—ブテンォキシドがさらに好ましく 、エチレンォキシド、プロピレンォキシドが特に好ましい。  Among these, a compound having a 3-membered cyclic ether group (monoepoxide) is preferable. An alkylene oxide having 2 to 4 carbon atoms is more preferable. Ethylene oxide, propylene oxide, isobutylene oxide, 1-butene oxide, 2 —Butenoxide is more preferable, and ethylene oxide and propylene oxide are particularly preferable.
前記環状エーテルは、 1種を単独で、または 2種以上を組み合わせて使用すること ができる。  The cyclic ethers can be used alone or in combination of two or more.
環状エーテルの 2種以上を組み合わせて使用する場合、環状エーテルとしては、 炭素数 2〜4のアルキレンォキシドが好ましぐプロピレンォキシドとエチレンォキシド との組み合わせが最も好ましい。その際、前記開始剤に、 2種以上の環状エーテル の混合物を付加重合させたり、 2種以上の環状エーテルを順次、付加重合させたり すること力 Sでさる。  When two or more cyclic ethers are used in combination, the cyclic ether is most preferably a combination of propylene oxide and ethylene oxide, preferably an alkylene oxide having 2 to 4 carbon atoms. At that time, the above-described initiator can be subjected to addition polymerization of a mixture of two or more kinds of cyclic ethers or sequential addition polymerization of two or more kinds of cyclic ethers with a force S.
ポリエーテルポリオールは、該ポリエーテルポリオール中のォキシエチレン基含有 量が 10質量%以上であることが好ましぐ 30質量%以上であることがより好ましぐ 40 質量%以上であることがさらに好ましぐ 55質量%以上であることが特に好ましぐ 60 質量%以上であることが最も好ましい。一方、該ォキシエチレン基含有量は、 90質量 %以下であることが好ましレ、。  The polyether polyol has an oxyethylene group content in the polyether polyol of preferably 10% by mass or more, more preferably 30% by mass or more, and even more preferably 40% by mass or more. It is most preferably 55% by mass or more, and most preferably 60% by mass or more. On the other hand, the oxyethylene group content is preferably 90% by mass or less.
該ォキシエチレン基含有量が 10質量%以上であると、ポリマー微粒子が安定に分 散したポリマー分散ポリオール (A)が得られやすく貯蔵安定性が向上する。特に、該 ォキシエチレン基含有量が 60質量%以上であると、より長期間(たとえば 1ヶ月間程 度)の貯蔵安定性が良好となる。  When the oxyethylene group content is 10% by mass or more, a polymer-dispersed polyol (A) in which polymer fine particles are stably dispersed is easily obtained, and storage stability is improved. In particular, when the oxyethylene group content is 60% by mass or more, the storage stability for a longer period (for example, about one month) becomes better.
本発明において、「ォキシエチレン基含有量」とは、ポリオール化合物中のォキシェ チレン基の割合を意味する。 [0023] また、ポリエーテルポリオールは、該ポリエーテルポリオールの水酸基価が 84mgK OH/g以下であることが好ましぐ 67mgKOH/g以下であることがより好ましぐ 60 mgKOH/g以下であることが特に好ましい。該水酸基価の下限値としては、 5mgK OH/g以上であることが好ましぐ 8mgKOH/g以上であることがより好ましぐ 20m gKOH/g以上であることが特に好ましぐ 30mgKOH/gであることが最も好ましい 。該水酸基価が 84mgKOH/g以下であると、低粘度でありながら貯蔵安定性を良 好にすること力 Sでき、 5mgKOH/g以上であると貯蔵安定性が良好になるため好ま しい。 In the present invention, the “oxyethylene group content” means the ratio of oxethylene groups in the polyol compound. [0023] The polyether polyol has a hydroxyl value of 84 mgK OH / g or less, preferably 67 mg KOH / g or less, more preferably 60 mg KOH / g or less. Is particularly preferred. The lower limit of the hydroxyl value is preferably 5 mgKOH / g or more, more preferably 8 mgKOH / g or more, more preferably 20 mgKOH / g or more, particularly preferably 30 mgKOH / g. Most preferably it is. When the hydroxyl value is 84 mgKOH / g or less, it is possible to improve storage stability while having low viscosity, and when it is 5 mgKOH / g or more, storage stability is improved.
ポリエーテルポリオールの水酸基価が 84mgKOH/g以下である場合、ポリエーテ ルポリオール中のォキシエチレン基含有量は、該ポリエーテルポリオール中のォキシ アルキレン基全体に対するォキシエチレン基含有量とほぼ等しくなる。  When the hydroxyl value of the polyether polyol is 84 mg KOH / g or less, the oxyethylene group content in the polyether polyol is substantially equal to the oxyethylene group content relative to the entire oxyalkylene groups in the polyether polyol.
[0024] また、前記ポリエーテルポリオールは、開始剤として多価アルコールを使用し、ェチ レンォキシド、または、エチレンォキシドと他の環状エーテルとを付加重合させて得ら れるものが好ましい。 [0024] The polyether polyol is preferably obtained by addition polymerization of ethylene oxide or ethylene oxide and another cyclic ether using a polyhydric alcohol as an initiator.
多価アルコールとしては、たとえばグリセリン、トリメチロールプロパン、 1 , 2, 6—へ キサントリオールが好まし!/、。  As the polyhydric alcohol, for example, glycerin, trimethylolpropane, 1, 2, 6-hexanetriol is preferable!
他の環状エーテルとしては、たとえばプロピレンォキシド、イソブチレンォキシド、 1 ーブテンォキシド、 2—ブテンォキシドが好ましぐプロピレンォキシドが特に好ましい なかでも、前記ポリエーテルポリオールは、多価アルコールに、プロピレンォキシド とエチレンォキシドとを付加重合させて得られるポリオキシアルキレンポリオールが好 ましい。該ポリオキシアルキレンポリオールであると、ポリマー微粒子がより安定に分 散したポリマー分散ポリオール (A)がさらに得られやすく貯蔵安定性がより向上する  As other cyclic ethers, for example, propylene oxide, which is preferably propylene oxide, isobutylene oxide, 1-butene oxide, 2-butenoxide, is particularly preferable. Among these, the polyether polyol is composed of a polyhydric alcohol, propylene oxide, Polyoxyalkylene polyols obtained by addition polymerization of ethylene oxide are preferred. When the polyoxyalkylene polyol is used, the polymer-dispersed polyol (A) in which polymer fine particles are more stably dispersed is further easily obtained, and the storage stability is further improved.
[0025] ポリエステルポリオールとしては、たとえば多価アルコールと多価カルボン酸との重 縮合によって得られるポリエステルポリオールを使用することができる。その他、たとえ ばヒドロキシカルボン酸の重縮合、環状エステル (ラタトン)の重合、ポリカルボン酸無 水物への環状エーテルの重付加、廃ポリエチレンテレフタレートのエステル交換反応 によって得られるポリエステルポリオール等が挙げられる。 [0025] As the polyester polyol, for example, a polyester polyol obtained by polycondensation of a polyhydric alcohol and a polyvalent carboxylic acid can be used. Other examples include polycondensation of hydroxycarboxylic acids, polymerization of cyclic esters (latatanes), polyaddition of cyclic ethers to polycarboxylic acid anhydrides, and transesterification of waste polyethylene terephthalate. And polyester polyols obtained by the above.
[0026] 末端に水酸基を有する炭化水素系ポリマーとしては、たとえばポリテトラメチレンダリ コール(PTMG)、ポリブタジエンポリオールを使用することができる。 [0026] As the hydrocarbon polymer having a hydroxyl group at the terminal, for example, polytetramethylene glycol (PTMG) or polybutadiene polyol can be used.
[0027] 本発明において、ポリオール (X)としては、前記ポリエーテルポリオールを少なくと も含み、該ポリエーテルポリオール以外に、ポリエステルポリオール、末端に水酸基を 有する炭化水素系ポリマー等を併用してもよい。 [0027] In the present invention, the polyol (X) contains at least the polyether polyol, and in addition to the polyether polyol, a polyester polyol, a hydrocarbon polymer having a hydroxyl group at the terminal, or the like may be used in combination. .
前記ポリエーテルポリオールの含有量は、ポリオール (X)中、 50質量%以上である こと力 S好ましく、 80質量%以上であることがより好ましぐ 100質量%であることが最も 好ましい。該含有量が 50質量%以上、最も好ましくは 100質量%であると、ポリマー 微粒子が安定に分散したポリマー分散ポリオール (A)が得られやすく貯蔵安定性が 向上する。  The content of the polyether polyol is 50% by mass or more in the polyol (X), preferably S, more preferably 80% by mass or more, and most preferably 100% by mass. When the content is 50% by mass or more, and most preferably 100% by mass, a polymer-dispersed polyol (A) in which polymer fine particles are stably dispersed is easily obtained, and storage stability is improved.
[0028] ·重合性不飽和基を有するモノマー  [0028] Monomer having polymerizable unsaturated group
本発明における重合性不飽和基を有するモノマーは、含フッ素アタリレートまたは 含フッ素メタタリレート(以下、「含フッ素モノマー」ということがある。)を含む。  The monomer having a polymerizable unsaturated group in the present invention includes fluorine-containing acrylate or fluorine-containing metatalylate (hereinafter sometimes referred to as “fluorine-containing monomer”).
該含フッ素モノマーを含むことにより、前記ポリオール (X)中でのポリマー微粒子の 分散安定性が良好となる。また、使用するポリマー分散ポリオール (A)と前記硬質ポ リウレタンフォーム用ポリオールとの相溶性が高まって貯蔵安定性が向上し、硬質ポリ ウレタンフォームを安定に製造しやすくなる。さらに、硬質ポリウレタンフォームとした 際、寸法安定性が良好となり、同時に、良好な断熱性能も得られやすくなる。  By including the fluorine-containing monomer, the dispersion stability of the polymer fine particles in the polyol (X) is improved. Further, the compatibility between the polymer-dispersed polyol (A) to be used and the polyol for the rigid polyurethane foam is increased, the storage stability is improved, and the rigid polyurethane foam is easily produced stably. Furthermore, when a rigid polyurethane foam is used, the dimensional stability is improved, and at the same time, good thermal insulation performance is easily obtained.
[0029] 本発明において、含フッ素モノマーの好適なものとしては、ポリオール (X)との相溶 性が高いことから、前記式(1)で表されるモノマーが挙げられる。 [0029] In the present invention, suitable fluorine-containing monomers include monomers represented by the above formula (1) because they have high compatibility with the polyol (X).
前記式(1)中、 Rfは、炭素数 1〜; 18のポリフルォロアルキル基である。 Rfにおいて、 炭素数は 1〜; 18であり、;!〜 10であることが好ましぐ 3〜8であることがより好ましい。 In the formula (1), R f is a polyfluoroalkyl group having 1 to 18 carbon atoms. In R f , the number of carbon atoms is 1 to 18; preferably! To 10; more preferably 3 to 8.
Rfは、アルキル基中のフッ素原子の割合(アルキル基中の水素原子がフッ素原子 に置換されている個数の割合)が、 80%以上であることが好ましぐ全部の水素原子 力 ッ素原子で置換されていることが特に好ましい。炭素数が 18以下であると、硬質 ポリウレタンフォーム製造における発泡時、フォームの安定性が良好となり好ましい。 R f is the total number of hydrogen atoms in which the proportion of fluorine atoms in the alkyl group (the proportion of the number of hydrogen atoms in the alkyl group replaced by fluorine atoms) is preferably 80% or more. It is particularly preferred that it is substituted with an atom. When the number of carbon atoms is 18 or less, foam stability is favorable when foaming in the production of rigid polyurethane foam, which is preferable.
Rは、水素原子またはメチル基である。すなわち、前記式(1)で表されるモノマーは Rが水素原子であればアタリレートとなり、 Rがメチル基であればメタタリレートとなる R is a hydrogen atom or a methyl group. That is, the monomer represented by the formula (1) is If R is a hydrogen atom, it becomes attalate, and if R is a methyl group, it becomes metatalylate.
Zは、 2価の連結基であり、たとえばアルキレン基、ァリーレン基が挙げられ、アルキ レン基が好ましい。該アルキレン基は、炭素数 1〜; 10のアルキレン基が好ましぐ炭 素数 1〜5のアルキレン基が特に好ましぐ直鎖状であってもよぐ分岐鎖状であって あよい。 Z is a divalent linking group, and examples thereof include an alkylene group and an arylene group, and an alkylene group is preferable. The alkylene group may be a straight chain or a branched chain, in which an alkylene group having 1 to 10 carbon atoms is preferable, and an alkylene group having 1 to 5 carbon atoms is particularly preferable.
前記式(1)で表されるモノマーの具体例を以下に例示する。  Specific examples of the monomer represented by the formula (1) are illustrated below.
[0030] [化 2] [0030] [Chemical 2]
CH3 CH 3
C6F13— (CH2)2 0— C I=CH2 (1 -D C 6 F 13 — (CH2) 2 0— CI = CH 2 (1 -D
0  0
C6F13— (CHz — 0— — CH=CH2 (1 -2) C 6 F 13 — (CHz — 0— — CH = CH 2 (1 -2)
0  0
Figure imgf000012_0001
Figure imgf000012_0001
[0031] 前記含フッ素モノマーは、 1種を単独で、または 2種以上を組み合わせて使用する こと力 Sでさる。 [0031] The fluorine-containing monomer can be used alone or in combination of two or more.
前記含フッ素モノマーの使用量は、前記重合性不飽和基を有する全モノマーに対 し、 10〜; 100質量%であることが好ましぐ 20〜; 100質量%であることがより好ましい 特に、前記重合性不飽和基を有する全モノマー中の前記式(1)で表されるモノマ 一の割合は、 20〜; 100質量%であることが好ましぐ 30〜; 100質量%であることがよ り好ましぐ 40〜; 100質量%であることが最も好ましい。  The amount of the fluorine-containing monomer used is preferably 10 to 100% by mass, more preferably 20 to 100% by mass with respect to all monomers having the polymerizable unsaturated group. The proportion of the monomer represented by the formula (1) in the total monomer having a polymerizable unsaturated group is preferably 20 to 100% by mass, and preferably 30 to 100% by mass. More preferably 40-; most preferably 100% by weight.
該使用量が 10質量%以上、特に 20質量%以上であると、硬質ポリウレタンフォー ムとした際により良好な断熱性能が得られる。 When the use amount is 10% by mass or more, particularly 20% by mass or more, the rigid polyurethane foam is used. Better heat insulation performance can be obtained.
前記より、本発明におけるポリマー微粒子は、含フッ素モノマー単独からなる重合 体であってもよぐ含フッ素モノマーと他の重合性不飽和基を有するモノマーとの共 重合体であってもよい。なかでも、前記ポリオール (X)中でのポリマー微粒子の分散 安定性が良好なことから、ポリマー微粒子は共重合体であることが好ましい。  From the above, the polymer fine particles in the present invention may be a polymer composed of a fluorinated monomer alone or a copolymer of a fluorinated monomer and another monomer having a polymerizable unsaturated group. Among these, the polymer fine particles are preferably a copolymer because the dispersion stability of the polymer fine particles in the polyol (X) is good.
[0032] 本発明において、前記含フッ素モノマーと併用してもよい重合性不飽和基を有する モノマーとしては、たとえばアクリロニトリル、メタタリロニトリル、 2, 4 ジシァノブテン 1等のシァノ基含有モノマー;スチレン、 α—メチルスチレン、ハロゲン化スチレン 等のスチレン系モノマー;アクリル酸、メタクリル酸またはそれらのアルキルエステル、 アクリルアミド、メタクリルアミド等のアクリル系モノマー;酢酸ビュル、プロピオン酸ビ二 ノレ等のビュルエステル系モノマー;イソプレン、ブタジエンその他のジェン系モノマー ;マレイン酸ジエステル、ィタコン酸ジエステル等の不飽和脂肪酸エステル類;塩化ビ ニル、臭化ビュル、フッ化ビュル等のハロゲン化ビュル;塩化ビニリデン、臭化ビニリ デン、フッ化ビニリデン等のハロゲン化ビニリデン;メチルビュルエーテル、ェチルビ ニルエーテル、イソプロピルビュルエーテル等のビュルエーテル系モノマー;または それら以外のォレフィン、ハロゲン化ォレフイン、マクロモノマー等が挙げられる。 「マクロモノマー」とは、片末端にラジカル重合性不飽和基を有する低分子量のポリ マーまたはオリゴマーのことをレ、う。  [0032] In the present invention, examples of the monomer having a polymerizable unsaturated group that may be used in combination with the fluorine-containing monomer include a cyano group-containing monomer such as acrylonitrile, methatalonitrile, 2,4 disianobutene 1, styrene, Styrenic monomers such as α-methylstyrene and halogenated styrene; acrylic monomers such as acrylic acid, methacrylic acid or their alkyl esters, acrylamide and methacrylamide; and bull ester monomers such as butyl acetate and vinylene propionate; Isoprene, butadiene and other gen-based monomers; unsaturated fatty acid esters such as maleic acid diesters and itaconic acid diesters; halogenated butyls such as vinyl chloride, bromobromide and fluorinated butyl; vinylidene chloride, vinylidene bromide Such as vinylidene chloride Examples thereof include vinylidene halides; butyl ether monomers such as methyl butyl ether, ethyl vinyl ether, and isopropyl butyl ether; or other olefins, halogenated olefins, macromonomers, and the like. The “macromonomer” refers to a low molecular weight polymer or oligomer having a radically polymerizable unsaturated group at one end.
前記のなかでも、アクリロニトリル、酢酸ビュル、スチレンが好ましぐより長期間(たと えば 1ヶ月間程度)の貯蔵安定性が良好となることから、アクリロニトリルまたは酢酸ビ ニルが特に好ましい。また、破泡効果が高ぐ寸法安定性が良好となることから、スチ レンを用いることも好ましい。  Among these, acrylonitrile or vinyl acetate is particularly preferable because acrylonitrile, butyl acetate, and styrene have better storage stability for a longer period of time (for example, about 1 month). It is also preferable to use styrene since the bubble breaking effect is high and the dimensional stability is good.
前記含フッ素モノマー以外のモノマーは、 1種、または 2種以上を使用することがで きる。  One or two or more monomers other than the fluorine-containing monomer can be used.
[0033] 前記含フッ素モノマーとアクリロニトリルとを併用する場合、前記含フッ素モノマーと アクリロニトリルとの混合割合は、質量比で 10 : 90〜90: 10であることが好ましぐ 30 : 70〜70 : 30であることがより好ましい。該範囲であると、長期間の貯蔵安定性が向 上する。また、特に、硬質ポリウレタンフォームとした際に断熱性能が向上する。 前記含フッ素モノマーとアクリロニトリルとを併用し、さらに、ポリオール (X)としてォ キシエチレン基含有量が 60質量%以上のポリエーテルポリオールを使用すると、貯 蔵安定性が特に優れると共に、硬質ポリウレタンフォームとした際に充分な断熱性能 が得られる。 [0033] When the fluorine-containing monomer and acrylonitrile are used in combination, the mixing ratio of the fluorine-containing monomer and acrylonitrile is preferably 10:90 to 90:10 by mass ratio 30:70 to 70: More preferably, it is 30. Within this range, long-term storage stability is improved. Moreover, especially when it is set as a rigid polyurethane foam, heat insulation performance improves. When the fluorine-containing monomer and acrylonitrile are used in combination, and a polyether polyol having an oxyethylene group content of 60% by mass or more is used as the polyol (X), the storage stability is particularly excellent, and a rigid polyurethane foam is obtained. In this case, sufficient heat insulation performance can be obtained.
[0034] さらに、前記含フッ素モノマーとアクリロニトリルとスチレンとを併用する場合、前記含 フッ素モノマーと、それ以外のモノマーとの混合割合は、質量比で10 : 90〜90 : 10 であること力 S好ましく、 30: 70-70: 30であることがより好まし!/、。  [0034] Further, when the fluorine-containing monomer, acrylonitrile, and styrene are used in combination, the mixing ratio of the fluorine-containing monomer and the other monomer is 10:90 to 90:10 in terms of mass ratio. Preferably, 30: 70-70: 30 is more preferred! /.
また、アクリロニトリルとスチレンとの混合割合は、質量比で 0 : 100〜; 100 : 0であるこ と力 S好ましく、 90 : 10〜10 : 90であることがより好ましい。  Further, the mixing ratio of acrylonitrile and styrene is preferably 0: 100 to; 100: 0 in mass ratio, more preferably 90:10 to 10:90.
該混合割合であると、使用するポリマー分散ポリオールと硬質ポリウレタンフォーム 用ポリオールとの混合物を貯蔵した場合の貯蔵安定性と、硬質ポリウレタンフォーム とした際における寸法安定性および断熱性能がいずれも向上し、それら特性がバラ ンスよく得られる。  With this mixing ratio, the storage stability when the mixture of the polymer-dispersed polyol and the polyol for rigid polyurethane foam used is stored, and the dimensional stability and thermal insulation performance when used as the rigid polyurethane foam are improved. These characteristics are well balanced.
[0035] さらに、前記含フッ素モノマーと酢酸ビュルモノマーを併用する場合、前記含フッ素 モノマーと、それ以外のモノマーとの混合割合は、質量比で30 : 70〜70 : 30でぁるこ と力 S好ましく、 40: 60-70: 30であること力 Sより好まし!/、。  [0035] Furthermore, when the fluorine-containing monomer and the acetic acid butyl monomer are used in combination, the mixing ratio of the fluorine-containing monomer and the other monomers is 30:70 to 70:30 in mass ratio. S, preferably 40: 60-70: 30, better than S! /.
該混合割合であると、本発明に係るポリマー分散ポリオールと硬質ポリウレタンフォ ーム用ポリオールとの混合物を貯蔵した場合の貯蔵安定性と、硬質ポリウレタンフォ ームとした際における寸法安定性および断熱性能がいずれも向上し、それら特性が ノ ランスよく得られる。  With this mixing ratio, the storage stability when the mixture of the polymer-dispersed polyol according to the present invention and the polyol for the rigid polyurethane foam is stored, and the dimensional stability and the heat insulation performance when the rigid polyurethane foam is obtained. These are all improved, and these characteristics can be obtained with good tolerance.
[0036] [ポリイソシァネート成分]  [0036] [Polyisocyanate component]
本発明におけるポリイソシァネート成分としては、特に制限はなぐたとえばイソシァ ネート基を 2以上有する芳香族系、脂環族系および脂肪族系等のポリイソシァネート ;該ポリイソシァネートの 2種類以上の混合物;それらを変性して得られる変性ポリイソ シァネート等が挙げられる。具体例としては、トリレンジイソシァネート (TDI)、ジフエ ニルメタンジイソシァネート(MDI)、ポリメチレンポリフエ二ルイソシァネート(通称:ク ノレード MDI)、キシリレンジイソシァネート(XDI)、イソホロンジイソシァネート(IPDI) 、へキサメチレンジイソシァネート(HMDI)等のポリイソシァネートまたはそれらのプ レポリマー型変性体;イソシァヌレート変性体、ゥレア変性体、カルポジイミド変性体 等が挙げられる。なかでも、 TDI、 MDI、クルード MDほたはそれらの変性体が好ま しい。 The polyisocyanate component in the present invention is not particularly limited, for example, aromatic, alicyclic and aliphatic polyisocyanates having two or more isocyanate groups; two types of the polyisocyanates; Examples thereof include modified polyisocyanates obtained by modifying them. Specific examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenylisocyanate (commonly known as cnolade MDI), xylylene diisocyanate (XDI), isophorone diester. Polyisocyanates such as isocyanate (IPDI) and hexamethylene diisocyanate (HMDI) Repolymer type modified products; isocyanurate modified products, urea modified products, carpositimide modified products, and the like. Of these, TDI, MDI, Crude MD are preferred to their modified forms.
ポリイソシァネート成分は、 1種を単独で、または 2種以上を組み合わせて使用する こと力 Sでさる。  The polyisocyanate component can be used alone or in combination of two or more.
[0037] [発泡剤] [0037] [Foaming agent]
本発明における発泡剤としては、主に水が用いられる。水以外の発泡剤としては、 たとえばノ、イド口フルォロカーボン化合物、炭化水素化合物、汎用のガスを併用する こと力 Sでさる。  As the foaming agent in the present invention, water is mainly used. As the blowing agent other than water, for example, it is possible to use a combination of gas, fluorocarbon compound, hydrocarbon compound and general-purpose gas.
ハイド口フルォロカーボン化合物として具体的には、たとえば 1 , 1 , 1 , 2—テトラフ ノレォロェタン(HFC— 134a)、 1 , 1 , 1 , 3, 3—ペンタフルォロプロパン(HFC— 245 fa)、 1 , 1 , 1 , 3, 3—ペンタフルォロブタン(HFC— 365mfc)、 1 , 1 , 2, 2—テトラフ ノレォロェチルジフルォロメチルエーテル(HFE— 236pc)、 1 , 1 , 2, 2—テトラフルォ 口ェチルメチルエーテル(HFE— 254pc)、 1 , 1 , 1 , 2, 2, 3, 3—ヘプタフルオロフ。 口ピルメチルエーテル(HFE— 347mcc)等が挙げられる。  Specific examples of the hydrated fluorocarbon compound include 1,1,1,1,2-tetrafluoroethane (HFC—134a), 1,1,1,3,3-pentafluoropropane (HFC—245 fa), 1 , 1, 1, 3, 3, 3-pentafluorobutane (HFC—365mfc), 1, 1, 2, 2-tetrafluoroethyl difluoromethyl ether (HFE—236pc), 1, 1, 2, 2-tetrafluoro-octylmethyl ether (HFE—254 pc), 1, 1, 1, 2, 2, 3, 3-heptafluorov. Methyl pyrmethyl ether (HFE—347 mcc) and the like can be mentioned.
炭化水素化合物として具体的には、たとえばブタン、ノルマルペンタン、イソペンタ ン、シクロペンタン、へキサン、シクロへキサン等が挙げられる。  Specific examples of the hydrocarbon compound include butane, normal pentane, isopentane, cyclopentane, hexane, and cyclohexane.
汎用のガスとしては、たとえば空気、窒素、炭酸ガス等が挙げられる。なかでも、炭 酸ガスが好ましい。不活性ガスの添加状態は、液状態、超臨界状態、亜臨界状態の いずれでも構わない。  Examples of the general-purpose gas include air, nitrogen, and carbon dioxide gas. Of these, carbon dioxide is preferable. The addition state of the inert gas may be any of a liquid state, a supercritical state, and a subcritical state.
[0038] 発泡剤は、 1種を単独で、または 2種以上を組み合わせて使用することができる。  [0038] The foaming agents can be used singly or in combination of two or more.
本発明においては、発泡剤として水単独、または、ハイド口フルォロカーボン化合 物および炭化水素化合物から選ばれる少なくとも一種と水とを使用することが好まし い。これにより、発泡効果が向上し、硬質ポリウレタンフォームの軽量化を図ることが できる。  In the present invention, it is preferable to use water alone or at least one selected from a hydrofluorocarbon compound and a hydrocarbon compound as the blowing agent and water. Thereby, the foaming effect is improved, and the weight of the rigid polyurethane foam can be reduced.
[0039] [整泡剤]  [0039] [Foam stabilizer]
本発明における整泡剤としては、特に制限はなぐたとえばシリコーン系整泡剤が 好適なものとして挙げられる。その中でも、硬質ポリウレタンフォームの断熱性能を付 与するため、セル径を小さくできる整泡効果が高いシリコーン系整泡剤が特に好まし い。 The foam stabilizer in the present invention is not particularly limited, and examples thereof include silicone foam stabilizers. Among them, the heat insulation performance of rigid polyurethane foam is added. Therefore, a silicone type foam stabilizer having a high foam regulating effect capable of reducing the cell diameter is particularly preferred.
整泡剤は、 1種を単独で、または 2種以上を組み合わせて使用することができる。  One type of foam stabilizer can be used alone, or two or more types can be used in combination.
[0040] [触媒] [0040] [Catalyst]
本発明における触媒としては、ウレタン化反応を促進する触媒であれば特に制限 はない。  The catalyst in the present invention is not particularly limited as long as it is a catalyst that promotes the urethanization reaction.
ウレタン化反応を促進する触媒としては、たとえばトリエチレンジァミン、ビス(2—ジ メチルアミノエチノレ)エーテル、 N, N, Ν' , N'—テトラメチルへキサメチレンジァミン 等の 3級ァミン類;ジブチルスズジラウレート等の有機金属化合物が挙げられる。 また、イソシァネート基の三量化反応を促進させる触媒を併用してもよぐ酢酸力リウ ム、 2—ェチルへキサン酸カリウム等のカルボン酸金属塩等が挙げられる。  Examples of catalysts that promote the urethanization reaction include triethylenediamine, bis (2-dimethylaminoethinole) ether, N, N, Ν ', N'-tetramethylhexamethylenediamine, etc. Class amines; organometallic compounds such as dibutyltin dilaurate. Further, examples thereof include acetic acid lithium which may be used in combination with a catalyst for promoting the trimerization reaction of isocyanate group, and a metal carboxylate such as potassium 2-ethylhexanoate.
また、硬質フォームの製造方法としてスプレー発泡を採用する場合には、反応を短 時間で完結させるために、 2—ェチルへキサン酸鉛等の有機金属触媒を併用するこ とが好ましい。  When spray foaming is employed as a method for producing a rigid foam, it is preferable to use an organometallic catalyst such as lead 2-ethylhexanoate in order to complete the reaction in a short time.
[0041] [その他の配合剤] [0041] [Other ingredients]
本発明にお!/、ては、必要に応じて任意の配合剤を使用してもよ!/、。  In the present invention, any compounding agent may be used as required! /.
配合剤としては、炭酸カルシウム、硫酸バリウム等の充填剤;酸化防止剤、紫外線 吸収剤等の老化防止剤;難燃剤、可塑剤、着色剤、抗カビ剤、破泡剤、分散剤、変 色防止剤等が挙げられる。  Compounding agents include fillers such as calcium carbonate and barium sulfate; antioxidants such as antioxidants and UV absorbers; flame retardants, plasticizers, colorants, antifungal agents, foam breakers, dispersants, discoloration An inhibitor etc. are mentioned.
[0042] <硬質ポリウレタンフォームの製造方法〉 [0042] <Method for producing rigid polyurethane foam>
本発明は、ポリオール成分 (Ζ)とポリイソシァネート成分とを、発泡剤、整泡剤およ び触媒の存在下で反応させて硬質ポリウレタンフォームを製造する方法である。 製造の際は予め、ポリオール成分 (Ζ)を調製し、該ポリオール成分 (Ζ)と、ポリイソ シァネート成分以外の一部または全部との混合物(以下、ポリオールシステム液と!/ヽ う。)を調製しておくことが好ましい。  The present invention is a method for producing a rigid polyurethane foam by reacting a polyol component (Ζ) and a polyisocyanate component in the presence of a foaming agent, a foam stabilizer and a catalyst. In production, the polyol component (成分) is prepared in advance, and a mixture of the polyol component (Ζ) and a part or all of the components other than the polyisocyanate component (hereinafter referred to as “polyol system solution”) is prepared. It is preferable to keep it.
なお、発泡剤は、ポリオールシステム液に予め配合しておいてもよぐポリオールシ ステム液にポリイソシァネート成分を混合した後に配合してもよぐなかでもポリオール システム液に予め配合しておくことが好ましレ、。 [0043] ポリオール成分(Z)は、たとえばポリマー分散ポリオール (A)と硬質ポリウレタンフォ ーム用ポリオールとを混合することにより調製することができる。 The foaming agent may be blended in advance in the polyol system liquid, or may be blended after the polyisocyanate component is mixed in the polyol system liquid. I prefer it. [0043] The polyol component (Z) can be prepared, for example, by mixing the polymer-dispersed polyol (A) and a polyol for a rigid polyurethane foam.
ポリマー分散ポリオール (A)の製造方法は、ポリオール (X)中で重合性不飽和基を 有するモノマーを重合させることにより、該モノマーが重合したポリマー微粒子がポリ オール中に分散したポリマー分散ポリオールを製造する方法であれば、特に限定さ れるものではない。たとえば、ポリオール (X)中でのポリマー微粒子の分散安定性が 良好なことから、必要に応じて溶媒の存在下、ポリオール (X)中で重合性不飽和基を 有するモノマーを重合し、直接ポリマー微粒子を析出させてポリマー分散ポリオール を得る製造方法が好適な方法として挙げられる。  The polymer-dispersed polyol (A) is produced by polymerizing a monomer having a polymerizable unsaturated group in the polyol (X) to produce a polymer-dispersed polyol in which polymer fine particles polymerized with the monomer are dispersed in a polyol. The method is not particularly limited. For example, since the dispersion stability of the polymer fine particles in the polyol (X) is good, a monomer having a polymerizable unsaturated group is polymerized in the polyol (X) in the presence of a solvent as necessary to directly polymerize the polymer. A suitable method is a production method in which fine particles are precipitated to obtain a polymer-dispersed polyol.
[0044] ポリマー分散ポリオール (A)の製造方法として具体的には、たとえば以下の(1)、 ( 2)の製造方法が挙げられる。  [0044] Specific examples of the method for producing the polymer-dispersed polyol (A) include the following methods (1) and (2).
(1)反応器内にポリオール (X)の一部を仕込み、撹拌下、該反応器内に残りのポリ オール (X)、重合性不飽和基を有するモノマー、重合開始剤等の混合物を、徐々に フィードして重合を行うバッチ法。  (1) A part of the polyol (X) is charged into a reactor, and a mixture of the remaining polyol (X), a monomer having a polymerizable unsaturated group, a polymerization initiator, etc. is stirred into the reactor. A batch method in which polymerization is performed by gradually feeding.
(2)ポリオール (X)、重合性不飽和基を有するモノマー、重合開始剤等の混合物を 、撹拌下、反応器内に連続的にフィードして重合を行い、同時に、生成したポリマー 分散ポリオールを連続的に反応器から排出する連続法。  (2) Polyol (X), a monomer having a polymerizable unsaturated group, a polymerization initiator, and the like are continuously fed into a reactor under stirring to perform polymerization. At the same time, the produced polymer-dispersed polyol is Continuous process that continuously discharges from the reactor.
本発明においては、(1)、 (2)のいずれの製造方法も用いることができる。  In the present invention, any of the production methods (1) and (2) can be used.
[0045] 本発明において、前記重合性不飽和基を有する全モノマーの使用量は、特に限定 されないが、ポリマー分散ポリオール (A)中のポリマー微粒子の濃度が 50質量%以 下となる量とすることが好ましぐ;!〜 50質量%となる量とすることがより好ましぐ 2〜4 5質量%となる量とすることが特に好ましぐ 5〜30質量%となる量とすることが最も好 ましい。該ポリマー微粒子の濃度を 50質量%以下とすると、前記ポリオール (X)中で ポリマー微粒子が安定に分散したポリマー分散ポリオール (A)がさらに得られやすく なって貯蔵安定性がより向上する。また、適度な粘度が得られ、ポリマー分散ポリオ ール (A)の液安定性が向上する。 [0045] In the present invention, the use amount of all the monomers having a polymerizable unsaturated group is not particularly limited, but is an amount such that the concentration of the polymer fine particles in the polymer-dispersed polyol (A) is 50% by mass or less. It is more preferable to be in an amount of 50 to 50% by mass. It is more preferable to be in an amount of 2 to 45% by mass. It is particularly preferable to be in an amount of 5 to 30% by mass. Is most preferred. When the concentration of the polymer fine particles is 50% by mass or less, the polymer-dispersed polyol (A) in which the polymer fine particles are stably dispersed in the polyol (X) is more easily obtained, and the storage stability is further improved. In addition, an appropriate viscosity is obtained, and the liquid stability of the polymer-dispersed polyol (A) is improved.
[0046] ポリマー分散ポリオール (A)の製造方法において、重合開始剤としては、通常、遊 離基を生成させて重合性不飽和基を有するモノマーの重合を開始させるものが用い られる。 [0046] In the method for producing the polymer-dispersed polyol (A), as the polymerization initiator, a polymerization initiator that generates a free group and initiates polymerization of a monomer having a polymerizable unsaturated group is usually used. It is done.
具体的には、たとえば 2, 2—ァゾビス一イソブチロニトリル(以下、「AIBN」と略す。 )、 2, 2—ァゾビス一 2—メチルブチロニトリル(以下、「AMBN」と略す)、 2, 2—ァゾ ビス 2, 4 ジメチルバレロニトリル、ベンゾィルペルォキシド、ジイソプロピルペルォ キシジカーボネート、ァセチルペルォキシド、ジー tert ブチルペルォキシド、過硫 酸塩等が挙げられる。なかでも、 AIBN、 AMBNが好ましい。  Specifically, for example, 2,2-azobismonoisobutyronitrile (hereinafter abbreviated as “AIBN”), 2,2-azobis-2-methylbutyronitrile (hereinafter abbreviated as “AMBN”), 2 1,2-azobis 2,4 dimethylvaleronitrile, benzoyl peroxide, diisopropyl peroxide dicarbonate, acetyl chloride, di-tert butyl peroxide, persulfate and the like. Of these, AIBN and AMBN are preferred.
該重合開始剤は、 1種を単独で、または 2種以上を組み合わせて使用することがで きる。  These polymerization initiators can be used alone or in combination of two or more.
該重合開始剤の使用量は、ポリオール (X)、含フッ素モノマーを含む重合性不飽 和基を有する全モノマーおよび必要に応じて使用される安定化剤またはグラフト化剤 (後述)の合計 100質量部に対し、 0. 01〜; 10質量部であることが好ましい。  The amount of the polymerization initiator used is 100 in total of polyol (X), all monomers having a polymerizable unsaturated group including a fluorine-containing monomer, and a stabilizer or grafting agent (described later) used as necessary. The amount is preferably 0.01 to 10 parts by mass with respect to parts by mass.
溶媒としては、たとえばメタノール、エタノール、イソプロパノール、ブタノール、シク 口へキサノーノレ、ペンジノレアノレコーノレ等のァノレコーノレ類;ペンタン、へキサン、シクロ へキサン、へキセン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族 炭化水素;アセトン、メチルェチルケトン、ァセトフエノン等のケトン類;酢酸ェチル、酢 酸ブチル等のエステル類;イソプロピルエーテル、テトラヒドロフラン、ベンジルェチル エーテル、ァセタール、ァニソール、メチルー tert ブチルエーテル等のエーテル類 ;クロロベンゼン、クロロホノレム、ジクロロェタン、 1 , 1 , 2—トリクロロトリフノレオロェタン 等のハロゲン化炭化水素;ニトロベンゼン等のニトロ化合物;ァセトニトリル、ベンゾニ トリル等の二トリル類;トリメチルァミン、トリエチルァミン、トリブチルァミン、ジメチルァ 二リン等のアミン類; N, N ジメチルホルムアミド、 N メチルピロリドン等のアミド類; ジメチルスルホキシド、スルホラン等の硫黄化合物等が挙げられる。  Solvents include, for example, methanol, ethanol, isopropanol, butanol, cyclohexanol, pendinoreanolol, etc .; aliphatic hydrocarbons such as pentane, hexane, cyclohexane, hexene; benzene, toluene Aromatic hydrocarbons such as xylene; ketones such as acetone, methyl ethyl ketone, and acetophenone; esters such as ethyl acetate and butyl acetate; isopropyl ether, tetrahydrofuran, benzyl ethyl ether, acetal, anisole, methyl-tert butyl ether, etc. Ethers: Halogenated hydrocarbons such as chlorobenzene, chlorohonolem, dichloroethane, 1,1,2-trichlorotrifoleoleoethane; Nitro compounds such as nitrobenzene; Acetonitrile, benzonitryl, etc. Tolyl ethers; Torimechiruamin, Toriechiruamin, Toribuchiruamin, amines diphosphorus such Jimechirua; N, N-dimethylformamide, amides such as N-methyl pyrrolidone; dimethyl sulfoxide, sulfur compounds such as sulfolane.
前記溶媒は、 1種を単独で、または 2種以上を組み合わせて使用することができる。 ポリマー分散ポリオール (A)の製造において、溶媒を使用する場合、該溶媒と前記 ポリオール (X)との混合割合は、質量比で 0 : 100〜60 : 40であることが好ましぐ 0 : 100〜40 : 60であることがより好ましい。該混合割合の範囲であると、ポリマー粒子同 士の凝集が抑制され、ポリマー微粒子が安定に分散したポリマー分散ポリオール (A )が得られやすくなる。 重合性不飽和基を有するモノマーの重合が終了した後、該溶媒は除去される。溶 媒の除去方法は、通常、減圧加熱により行われる。また、常圧加熱または減圧常温 下により行うこともできる。この際、溶媒とともに未反応モノマーも除去される。 The solvents can be used alone or in combination of two or more. When a solvent is used in the production of the polymer-dispersed polyol (A), the mixing ratio of the solvent and the polyol (X) is preferably 0: 100 to 60:40 by mass ratio. More preferably, it is ˜40: 60. When the mixing ratio is within the range, aggregation of the polymer particles is suppressed, and it becomes easy to obtain a polymer-dispersed polyol (A) in which polymer fine particles are stably dispersed. After the polymerization of the monomer having a polymerizable unsaturated group is completed, the solvent is removed. The method for removing the solvent is usually performed by heating under reduced pressure. It can also be carried out under normal pressure heating or reduced pressure at room temperature. At this time, unreacted monomers are also removed together with the solvent.
[0048] ポリオール (X)中での重合性不飽和基を有するモノマーの重合反応は、重合開始 剤の分解温度以上、通常は 80〜; 160°Cで行われ、 90〜150°Cで行われることが好 ましぐ 100〜130°Cで行われることが特に好ましい。  [0048] The polymerization reaction of the monomer having a polymerizable unsaturated group in the polyol (X) is performed at a temperature equal to or higher than the decomposition temperature of the polymerization initiator, usually from 80 to 160 ° C, and from 90 to 150 ° C. It is particularly preferable that the reaction be performed at 100 to 130 ° C.
[0049] また、本発明においては、ポリマー分散ポリオール (A)中のポリマー微粒子の分散 安定性を向上させるため、安定化剤またはグラフト化剤を使用することができる。 安定化剤またはグラフト化剤の好適なものとしては、たとえば分子内に不飽和結合 を有する化合物が挙げられる。具体的には、開始剤としてビュル基、ァリル基、イソプ 口ピル基等の不飽和結合含有基を有する活性水素化合物に、アルキレンォキシドを 反応させて得られた高分子量のポリオールまたはモノオール;ポリオールに、無水マ レイン酸、無水ィタコン酸、マレイン酸、フマル酸、アクリル酸、メタクリル酸等の不飽 和カルボン酸またはその酸無水物を反応させた後、必要に応じてプロピレンォキシド 、エチレンォキシド等のアルキレンォキシドを付加して得られた高分子量のポリオ一 ノレまたはモノオール; 2—ヒドロキシェチルアタリレート、ブテンジオール等の不飽和ァ ルコールと他のポリオールとポリイソシァネートとの反応物;ァリルグリシジルエーテル 等の不飽和エポキシ化合物とポリオールとの反応物等が挙げられる。  In the present invention, a stabilizer or a grafting agent can be used to improve the dispersion stability of the polymer fine particles in the polymer-dispersed polyol (A). Preferable examples of the stabilizer or grafting agent include compounds having an unsaturated bond in the molecule. Specifically, a high molecular weight polyol or monool obtained by reacting an active hydrogen compound having an unsaturated bond-containing group such as a bur group, a aryl group, or an isopropyl group as an initiator with an alkylene oxide; After reacting the polyol with an unsaturated carboxylic acid such as maleic anhydride, itaconic anhydride, maleic acid, fumaric acid, acrylic acid, methacrylic acid or the like, or an acid anhydride thereof, propylene oxide or ethylene as necessary. High molecular weight polyols or monools obtained by addition of alkylene oxides such as oxides; unsaturated alcohols such as 2-hydroxyethyl acrylate, butene diol, other polyols and polyisocyanates; A reaction product of an unsaturated epoxy compound such as allylic glycidyl ether and a polyol.
これらの安定化剤またはグラフト化剤は、水酸基を有していてもよぐ水酸基を有し てレ、なくてもよ!/、が、水酸基を有してレ、ることが好ましレ、。  These stabilizers or grafting agents preferably have a hydroxyl group and may or may not have a hydroxyl group! /, But preferably have a hydroxyl group. .
該安定化剤またはグラフト化剤は、ポリオール (X)、重合性不飽和基を有するモノ マーおよび重合開始剤等と共に混合して配合することができる。  The stabilizer or grafting agent can be mixed and blended with the polyol (X), a monomer having a polymerizable unsaturated group, a polymerization initiator, and the like.
[0050] 重合反応終了後、得られたポリマー分散ポリオール (A)は、硬質ポリウレタンフォー ム用の原料としてそのまま使用してもよぐ得られたポリマー分散ポリオール (A)を減 圧処理して未反応モノマーを除去した後に使用してもよぐなかでも後者の方が好ま しい。 [0050] After the completion of the polymerization reaction, the obtained polymer-dispersed polyol (A) is subjected to a decompression treatment on the obtained polymer-dispersed polyol (A) which may be used as a raw material for a rigid polyurethane foam, and has not been subjected to decompression treatment. Of these, the latter is preferred among those that can be used after removal of the reactive monomer.
[0051] ポリオール成分(Z)の調製において、ポリマー分散ポリオール (A)と硬質ポリウレタ ンフォーム用ポリオールとの混合割合は、ポリオール成分 (Z)中のポリマー分散ポリ オール (A)の割合が 0· 01質量%以上であることが好ましぐ 0· 1質量%以上である こと力 り好ましく、 0. 9質量%以上であることがさらに好ましい。一方、該ポリマー分 散ポリオール (Α)の割合は 10質量%以下であることが好ましぐ 7質量%以下である ことがより好ましい。 [0051] In the preparation of the polyol component (Z), the mixing ratio of the polymer-dispersed polyol (A) and the polyol for the rigid polyurethane foam is determined by the polymer-dispersed polymer in the polyol component (Z). The ratio of all (A) is preferably 0.01 mass% or more, more preferably 0.1 mass% or more, and even more preferably 0.9 mass% or more. On the other hand, the proportion of the polymer-dispersed polyol (Α) is preferably 10% by mass or less, and more preferably 7% by mass or less.
また、ポリオール成分(Ζ)中のポリマー微粒子の割合が 0. 001質量%以上である こと力 S好ましく、 0. 01質量%以上であることがより好ましぐ 0. 1質量%以上であるこ とがさらに好ましい。一方、該ポリマー微粒子の割合は 5質量%以下であることが好ま しぐ 1質量%以下であることがより好ましい。  In addition, the proportion of the polymer fine particles in the polyol component (Ζ) is 0.001% by mass or more, preferably S, more preferably 0.01% by mass or more, and 0.1% by mass or more. Is more preferable. On the other hand, the proportion of the polymer fine particles is preferably 5% by mass or less, more preferably 1% by mass or less.
ポリオール成分(Ζ)中のポリマー分散ポリオール (Α)およびポリマー微粒子の割合 がそれぞれ下限値以上であると、硬質ポリウレタンフォームとした際に寸法安定性お よび断熱性能が共に向上する。一方、上限値以下であると、貯蔵安定性が向上し、 硬質ポリウレタンフォームを安定に製造できる。また、ポリオール成分 (Ζ)として適度 な粘度が得られやすく液安定性が向上する。  When the ratio of the polymer-dispersed polyol (Α) and polymer fine particles in the polyol component (Ζ) is at least the lower limit value, both the dimensional stability and the heat insulation performance are improved when a rigid polyurethane foam is obtained. On the other hand, storage stability improves that it is below an upper limit, and a rigid polyurethane foam can be manufactured stably. In addition, an appropriate viscosity is easily obtained as the polyol component (Ζ), and the liquid stability is improved.
[0052] 発泡剤として用いる水の使用量は、ポリオール成分(Ζ) 100質量部に対して、;!〜 1 5質量部が好ましぐ 2〜; 13質量部がより好ましぐ 4〜; 12質量部がさらに好ましい。 水の使用量が 1質量部以上であれば、得られる硬質ポリウレタンフォームの軽量化の 点で好ましい。一方、水の使用量が 15質量部以下であれば、水とポリオール成分(Ζ )との混合性がより良好になるため好ましい。 [0052] The amount of water used as a foaming agent is:! To 15 parts by mass is preferably 2 to; 13 parts by mass is more preferably 4 to 100 parts by mass of the polyol component (Ζ); 12 parts by mass is more preferable. If the amount of water used is 1 part by mass or more, it is preferable in terms of reducing the weight of the resulting rigid polyurethane foam. On the other hand, if the amount of water used is 15 parts by mass or less, it is preferable because the miscibility between water and the polyol component (Ζ) becomes better.
発泡剤として水以外のものを併用する際、水以外のものとしてハイド口フルォロカー ボン化合物を用いる場合の使用量は、ポリオール成分 (Ζ) 100質量部に対して、;!〜 50質量部が好ましぐ 20〜40質量部がより好ましい。  When a non-water foaming agent is used in combination, the amount used when using a hydrated fluorocarbon compound other than water is preferably from! To 50 parts by mass with respect to 100 parts by mass of the polyol component (Ζ). More preferred is 20 to 40 parts by mass.
炭化水素化合物を用いる場合の使用量は、ポリオール成分 (Ζ) 100質量部に対し て、 1〜40質量部が好ましぐ 10〜20質量部がより好ましい。  When the hydrocarbon compound is used, the amount used is preferably 1 to 40 parts by mass and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the polyol component (IV).
不活性ガスを用いる場合の使用量は、ポリオール成分 (Ζ) 100質量部に対して、 1 〜; 100質量部が好ましぐ;!〜 20質量部がより好ましい。  The amount used when using an inert gas is preferably 1 to 100 parts by mass and more preferably 20 to 20 parts by mass with respect to 100 parts by mass of the polyol component (IV).
[0053] 整泡剤の使用量は、適宜選定する必要があるが、ポリオール成分 (Ζ) 100質量部 に対して、 0. ;!〜 10質量部が好ましい。 [0053] The amount of the foam stabilizer to be used needs to be selected as appropriate, but is preferably from 0 .;
触媒の使用量は、ポリオール成分(Ζ) 100質量部に対して、 0. ;!〜 10質量部が好 ましい。 The amount of the catalyst used is preferably 0.;! To 10 parts by mass with respect to 100 parts by mass of the polyol component (Ζ). Good.
[0054] ポリイソシァネート成分の使用量は、イソシァネート指数(INDEX)で 50〜300が好 ましい。  [0054] The amount of the polyisocyanate component used is preferably 50 to 300 in terms of the isocyanate index (INDEX).
なお、イソシァネート指数(INDEX)とは、ポリオール成分(Z)およびその他の活性 水素化合物の活性水素の合計数に対するイソシァネート基の数の割合を 100倍して 表される値を示す。  The isocyanate index (INDEX) is a value expressed by multiplying the ratio of the number of isocyanate groups to the total number of active hydrogens of the polyol component (Z) and other active hydrogen compounds by 100.
触媒としてウレタン化触媒を主に用いるポリウレタン処方においては、ポリイソシァネ ート成分の使用量は、イソシァネート指数で 50〜; 140が好ましぐ 60〜; 130力 Sより好 ましい。  In polyurethane formulations that mainly use a urethanization catalyst as the catalyst, the amount of polyisocyanate component used is preferably from 50 to 140, preferably from 60 to 130 force S in terms of isocyanate index.
また、触媒としてイソシァネート基の三量化反応を促進させる触媒を主に用いるポリ イソシァヌレート処方(ウレタン変性ポリイソシァヌレート処方)においては、ポリイソシ ァネート成分の使用量は、イソシァネート指数で 120〜300が好ましぐ 120-250 がより好ましい。  In polyisocyanurate formulation (urethane-modified polyisocyanurate formulation) that mainly uses a catalyst that promotes the trimerization reaction of isocyanate groups as a catalyst, the amount of polyisocyanate component used is preferably 120 to 300 in terms of isocyanate index. 120-250 is more preferable.
[0055] 本発明における硬質ポリウレタンフォームの製造方法は、各種の成形法に適用でき 成形法としては、たとえば注入、連続生産ボード、スプレー発泡フォームが挙げられ 注入とは、金型等の枠内に硬質ポリウレタンフォーム原料を注入し、発泡させる方 法である。連続生産ボードとは、 2枚の面材間に硬質ポリウレタンフォームが挟まれた 積層体であり、建築用途として断熱材に用いられるものである。スプレー発泡フォー ムとは、硬質ポリウレタンフォームをスプレーで吹き付け施工するものである。  [0055] The method for producing a rigid polyurethane foam in the present invention can be applied to various molding methods. Examples of the molding method include injection, continuous production board, and spray foaming foam. Injection is in a frame of a mold or the like. This is a method in which a rigid polyurethane foam material is injected and foamed. A continuous production board is a laminate in which rigid polyurethane foam is sandwiched between two face materials, and is used as a heat insulating material for architectural purposes. The spray foaming form is a construction in which rigid polyurethane foam is sprayed and applied.
前記のなかでも、本発明の硬質ポリウレタンフォームの製造方法は、注入ウレタンフ オーム、連続生産ボード、スプレー発泡フォーム等の製造に好適に適用できる。  Among these, the method for producing a rigid polyurethane foam of the present invention can be suitably applied to the production of an infused urethane foam, a continuous production board, a spray foam foam, and the like.
[0056] 前記のように、本発明の硬質ポリウレタンフォームの製造方法によれば、寸法安定 性が良好で、充分な断熱性能を有する硬質ポリウレタンフォームが得られる。また、 使用するポリマー分散ポリオールと硬質ポリウレタンフォーム用ポリオールとの混合物 を貯蔵した場合の貯蔵安定性に優れるため、硬質ポリウレタンフォームを安定に製造 できる。 実施例 [0056] As described above, according to the method for producing a rigid polyurethane foam of the present invention, a rigid polyurethane foam having good dimensional stability and sufficient heat insulating performance can be obtained. Further, since the storage stability when the mixture of the polymer-dispersed polyol and the polyol for the rigid polyurethane foam to be used is stored is excellent, the rigid polyurethane foam can be stably produced. Example
[0057] 以下、本発明を実施例により具体的に説明するが、本発明はこれら例によって何ら 限定されない。製造例 1〜; 14は実施例であり、製造例 15は比較例である。また、試 験例;!〜 7、 9〜; 15及び 17〜23は実施例で製造されたポリマー分散ポリオールの貯 蔵安定性の評価結果であり、試験例 8、 16及び 24は本発明のポリマー分散ポリオ一 ルの替わりに PTFE粉末を用いた場合の貯蔵安定性の評価結果である。製造例 16 〜30、 34、 35、 38、 39、 42及び 43は、実施例で製造されたポリマー分散ポリオ一 ルを用いて硬質ウレタンフォームを製造して物性を評価した結果であり、製造例 3;!〜 33、 36、 37、 40、 41、 44及び 45(ま、本発明のポリマー分散ポリオ一ノレを用レヽず (こ 硬質ウレタンフォームを製造して物性を評価した結果である。  [0057] Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. Production Examples 1 to 14 are examples, and Production Example 15 is a comparative example. In addition, test examples;! To 7, 9 to; 15 and 17 to 23 are evaluation results of storage stability of the polymer-dispersed polyols produced in the examples, and test examples 8, 16, and 24 are the results of the present invention. This is an evaluation result of storage stability when PTFE powder is used in place of the polymer dispersed polyol. Production Examples 16 to 30, 34, 35, 38, 39, 42 and 43 are the results of producing rigid urethane foams using the polymer-dispersed polyols produced in the Examples and evaluating the physical properties. 3;! To 33, 36, 37, 40, 41, 44 and 45 (In addition, the results of the evaluation of physical properties by producing this rigid urethane foam using the polymer dispersed polyol of the present invention).
以下の実施例において、水酸基価は、 JIS K1557 (1970年版)に準拠して測定し た。粘度は、 JIS K1557 (1970年版)に準拠して測定した。ポリマー微粒子の濃度( 固形分)は、重合性不飽和基を有するモノマーの仕込み量を微粒子濃度(固形分)と した。  In the following examples, the hydroxyl value was measured according to JIS K1557 (1970 version). The viscosity was measured according to JIS K1557 (1970 version). The polymer fine particle concentration (solid content) was defined as the charged amount of the monomer having a polymerizable unsaturated group as the fine particle concentration (solid content).
[0058] 《ポリマー分散ポリオールの評価》  <Evaluation of polymer-dispersed polyol>
«ポリマー分散ポリオールの評価 >  «Evaluation of polymer-dispersed polyols>
表 1および表 2に示す配合比に従って、下記製造例;!〜 15によりポリマー分散ポリ オール F1〜F15を製造した。  According to the blending ratios shown in Table 1 and Table 2, polymer dispersion polyols F1 to F15 were produced according to the following production examples;
ポリマー分散ポリオール製造時の配合組成、得られたポリマー分散ポリオール F1 〜F15の水酸基価(mgKOH/g)、粘度(mPa' s)およびポリマー微粒子の濃度(固 形分;質量%)を表 1にそれぞれ示す。  Table 1 shows the composition at the time of production of the polymer-dispersed polyol, the hydroxyl value (mgKOH / g), the viscosity (mPa's), and the concentration of polymer fine particles (solid content: mass%) of the obtained polymer-dispersed polyols F1 to F15. Each is shown.
表 1および表 2の配合組成において、ポリオール D〜G、マクロモノマー Mlと M2お よび重合性不飽和基を有するモノマーは「g」;重合開始剤は、ポリオール D〜Gと重 合性不飽和基を有する全モノマーとの合計 100質量部に対する「質量部」の値であ  In the composition of Table 1 and Table 2, polyols D to G, macromonomers Ml and M2 and monomers having polymerizable unsaturated groups are “g”; polymerization initiator is polyol unsaturated with polyols D to G It is the value of “parts by mass” relative to a total of 100 parts by mass with all monomers having a group.
[0059] (使用した原料)。 [0059] (Raw materials used).
'ポリエーテルポリオール (Y)  'Polyether polyol (Y)
ポリオール D :開始剤としてグリセリンを用い、該グリセリンに、エチレンォキシドを付 加重合した後、 混合物 [PO/Polyol D: Glycerin is used as an initiator, and ethylene oxide is added to the glycerin. After polymerization, the mixture [PO /
EO = 46. 2/53. 8 (質量比)]を付加重合させた、ポリオール D中のォキシエチレン 基含有量 65質量%、水酸基価が 48mgKOH/gのポリオキシアルキレンポリオール ポリオール E :開始剤としてグリセリンを用い、該グリセリンに、エチレンォキシドを付 加重合した後、
Figure imgf000023_0001
[PO/
EO = 46. 2 / 53.8 (mass ratio)], polyoxyalkylene polyol in polyol D with a content of oxyethylene group of 65% by mass and a hydroxyl value of 48 mgKOH / g in polyol D Polyol E: Glycerin as initiator The glycerin was added to and polymerized with ethylene oxide,
Figure imgf000023_0001
[PO /
EO = 48. 0/52. 0 (質量比)]を付加重合させた、ポリオール E中のォキシエチレン 基含有量 60質量%、水酸基価が 28mgKOH/gのポリオキシアルキレンポリオール ポリオール F :開始剤としてエチレンジァミンを用い、該エチレンジァミンに、 POのみ を付加重合させた、ポリオール F中のォキシエチレン基含有量 0質量%、水酸基価 が 760mgKOH/gのポリオキシアルキレンポリオール。 EO = 48. 0 / 52.0 (mass ratio)], polyoxyalkylene polyol with polyol having an oxyethylene group content of 60% by mass and a hydroxyl value of 28 mgKOH / g in polyol E Polyol F: ethylenediamine as an initiator A polyoxyalkylene polyol having an oxyethylene group content of 0% by mass and a hydroxyl value of 760 mgKOH / g in polyol F, obtained by addition polymerization of only PO to the ethylenediamine.
ポリオール G :開始剤としてグリセリンを用い、該グリセリンに、 POのみを付加重合さ せた、ポリオール G中のォキシエチレン基含有量 0質量%、水酸基価 650mgKOH
Figure imgf000023_0002
Polyol G: Glycerin was used as an initiator, and PO was added to and polymerized only with PO. The content of oxyethylene group in polyol G was 0% by mass, and the hydroxyl value was 650 mgKOH.
Figure imgf000023_0002
[0061] '含フッ素モノマー  [0061] 'Fluorine-containing monomer
含フッ素モノマー(f):下記化学式(1 1)で表されるモノマー(旭硝子社製)を用い た。  Fluorine-containing monomer (f): A monomer (Asahi Glass Co., Ltd.) represented by the following chemical formula (11) was used.
[0062] [化 3]  [0062] [Chemical 3]
(1 -1 )(1 -1)
Figure imgf000023_0003
Figure imgf000023_0003
[0063] '他の重合性不飽和基を有するモノマ [0063] 'Monomers having other polymerizable unsaturated groups
アクリロニトリル (純正化学社製)。 Acrylonitrile (manufactured by Junsei Kagaku).
Figure imgf000023_0004
Figure imgf000023_0004
酢酸ビュル (純正化学社製)。  Butyl acetate (manufactured by Junsei Kagaku).
•重合開始剤 2, 2—ァゾビス一 2—メチルブチロニトリル(商品名: ABN— E、 日本ヒドラジン工業 社製; 以下、「AMBN」と略す。)。 • Polymerization initiator 2, 2-azobis-2-methylbutyronitrile (trade name: ABN-E, manufactured by Nippon Hydrazine Industry Co., Ltd .; hereinafter abbreviated as “AMBN”).
[0064] マクロモノマー [0064] Macromonomer
マクロモノマー Ml:ポリオール Dおよびトノレエンジフエニルジイソシァネート(商品名 : T— 80、 日本ポリウレタン工業社製)および 2-ヒドロキシェチルメタタリレート(純正化 学社製)をポリオール D/トルエンジフエニルジイソシァネート /2-ヒドロキシェチルメ タクリレート = 1/1/1のモル比率となるように仕込み、 60°Cで 1時間反応させた後さ らに 80°Cで 6時間反応させることで得られた、水酸基価 40mgKOH/gの重合性不 飽和基を有するマクロモノマー。  Macromonomer Ml: Polyol D and tonorene diphenyl diisocyanate (trade name: T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 2-hydroxyethyl methacrylate (manufactured by Seikagaku Co., Ltd.) are used as polyol D / toluene. Charge diphenyldiisocyanate / 2-hydroxyethyl methacrylate = 1/1/1, react at 60 ° C for 1 hour, then react at 80 ° C for 6 hours A macromonomer having a polymerizable unsaturated group having a hydroxyl value of 40 mgKOH / g.
マクロモノマー M2:ポリオール Eおよびトルエンジフエニルジイソシァネート(商品名 : T— 80、 日本ポリウレタン工業社製)および 2-ヒドロキシェチルメタタリレート(純正化 学社製)をポリオール E/トルエンジフエニルジイソシァネート /2-ヒドロキシェチルメ タクリレート = 1/1/1のモル比率となるように仕込み、 60°Cで 1時間反応させた後さ らに 80°Cで 6時間反応させることで得られた、水酸基価 21mgKOH/gの重合性不 飽和基を有するマクロモノマー。  Macromonomer M2: Polyol E and toluene diphenyl diisocyanate (trade name: T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 2-hydroxyethyl methacrylate (manufactured by Seikagaku Co., Ltd.) Prepare a molar ratio of enyl diisocyanate / 2-hydroxyethyl methacrylate = 1/1/1, react at 60 ° C for 1 hour, and then react at 80 ° C for 6 hours. A macromonomer having a polymerizable unsaturated group having a hydroxyl value of 21 mgKOH / g obtained in
[0065] <ポリマー分散ポリオールの製造〉 <Production of polymer-dispersed polyol>
製造例 1:ポリマー分散ポリオール F1の製造  Production Example 1: Production of polymer-dispersed polyol F1
5L加圧反応槽にポリオール Dの 70質量%分を仕込み、 120°Cに保ちながら、残り の 30質量%分のポリオール D、アクリロニトリル、含フッ素モノマー(f)および重合開 始剤 (AMBN)の混合物を、撹拌しながら 2時間かけてフィードし、全フィード終了後 、同温度下で約 0. 5時間撹拌を続けた。その際、前記方法により測定されるモノマー の反応率が 80%以上であることを確認して反応を終了した。その後、未反応モノマ 一を減圧下、 120°Cで 8時間除去することによりポリマー分散ポリオール F1を製造し た。結果を表 1に示す。  Charge 70% by weight of polyol D to a 5L pressurized reactor and maintain the remaining 30% by weight of polyol D, acrylonitrile, fluorine-containing monomer (f) and polymerization initiator (AMBN) while maintaining the temperature at 120 ° C. The mixture was fed over 2 hours with stirring, and stirring was continued at the same temperature for about 0.5 hours after the completion of all the feeds. At that time, it was confirmed that the monomer reaction rate measured by the above method was 80% or more, and the reaction was completed. Thereafter, unreacted monomer was removed under reduced pressure at 120 ° C. for 8 hours to produce polymer-dispersed polyol F1. The results are shown in Table 1.
[0066] 製造例 2:ポリマー分散ポリオール F2の製造 [0066] Production Example 2: Production of polymer-dispersed polyol F2
5L加圧反応槽にポリオール Dの 70質量%分を仕込み、 120°Cに保ちながら、残り の 30質量%分のポリオール D、アクリロニトリル、スチレン、含フッ素モノマー(f)およ び重合開始剤 (AMBN)の混合物を、撹拌しながら 1時間かけてフィードし、全フィー ド終了後、同温度下で約 0. 5時間撹拌を続けた。その際、前記方法により測定され るモノマーの反応率が 80%以上であることを確認して反応を終了した。その後、未反 応モノマーを減圧下、 120°Cで 6時間除去することによりポリマー分散ポリオール F2 を製造した。結果を表 1に示す。 A 5 L pressurized reactor is charged with 70% by weight of polyol D and maintained at 120 ° C, while the remaining 30% by weight of polyol D, acrylonitrile, styrene, fluorine-containing monomer (f), and polymerization initiator ( AMBN) is fed over 1 hour with stirring. After completion of the mixing, stirring was continued for about 0.5 hours at the same temperature. At that time, the reaction was terminated after confirming that the reaction rate of the monomer measured by the above method was 80% or more. Thereafter, the unreacted monomer was removed under reduced pressure at 120 ° C. for 6 hours to produce polymer-dispersed polyol F2. The results are shown in Table 1.
[0067] 製造例 3〜7:ポリマー分散ポリオール F3〜F7の製造  [0067] Production Examples 3 to 7: Production of polymer-dispersed polyols F3 to F7
表 1の重合性不飽和基を有するモノマーを用いた以外は、製造例 1と同様にしてポ リマー分散ポリオール F3〜F7をそれぞれ製造した。結果を表 1に示す。  Polymer-dispersed polyols F3 to F7 were produced in the same manner as in Production Example 1 except that the monomer having a polymerizable unsaturated group shown in Table 1 was used. The results are shown in Table 1.
[0068] 製造例 8:ポリマー分散ポリオール F8の製造  [0068] Production Example 8: Production of polymer-dispersed polyol F8
5L加圧反応槽中に、全量を 100質量%としてポリオール 090質量%分を仕込み、 120°Cに保ちながら、残り 10質量%分の酢酸ビュル、含フッ素モノマー(f)および重 合開始剤 (AMBN)の混合物を、撹拌しながら 2時間かけてフィードし、全フィード終 了後、同温度下で約 0. 5時間撹拌を続けた。その際、前記方法により測定されるモノ マーの反応率が 80%以上であることを確認して反応を終了した。その後、未反応モ ノマーを減圧下、 120°Cで 3時間除去することによりポリマー分散ポリオール F8を製 造した。結果を表 2に示す。  In a 5 L pressurized reaction tank, the total amount is 100% by mass, and 090% by mass of polyol is charged, and the remaining 10% by mass of butyl acetate, fluorine-containing monomer (f), and polymerization initiator (120 ° C) The mixture of (AMBN) was fed over 2 hours with stirring, and stirring was continued at the same temperature for about 0.5 hours after the completion of all feeds. At that time, the reaction was terminated after confirming that the monomer reaction rate measured by the above method was 80% or more. Thereafter, unreacted monomer was removed under reduced pressure at 120 ° C. for 3 hours to produce polymer-dispersed polyol F8. The results are shown in Table 2.
[0069] 製造例 9:ポリマー分散ポリオール F9の製造  [0069] Production Example 9: Production of polymer-dispersed polyol F9
5L加圧反応槽中に、全量を 100質量%としてポリオール 089質量%分およびマク 口モノマー Mlの 1質量%分を仕込み、 120°Cに保ちながら、残り 10質量%分の酢酸 ビュル、含フッ素モノマー(f)および重合開始剤 (AMBN)の混合物を、撹拌しながら 2時間かけてフィードし、全フィード終了後、同温度下で約 0. 5時間撹拌を続けた。 その際、前記方法により測定されるモノマーの反応率が 80%以上であることを確認し て反応を終了した。その後、未反応モノマーを減圧下、 120°Cで 3時間除去すること によりポリマー分散ポリオール F9を製造した。結果を表 2に示す。  In a 5L pressurized reaction tank, the total amount is 100% by mass, and 089% by mass of polyol and 1% by mass of the monomer monomer Ml are charged. While maintaining at 120 ° C, the remaining 10% by mass of acetic acid butyl and fluorine-containing The mixture of the monomer (f) and the polymerization initiator (AMBN) was fed over 2 hours with stirring, and stirring was continued for about 0.5 hours at the same temperature after the completion of all feeds. At that time, it was confirmed that the monomer reaction rate measured by the above method was 80% or more, and the reaction was terminated. Thereafter, unreacted monomer was removed under reduced pressure at 120 ° C. for 3 hours to produce polymer-dispersed polyol F9. The results are shown in Table 2.
[0070] 製造例 10:ポリマー分散ポリオール F 10の製造  [0070] Production Example 10: Production of polymer-dispersed polyol F10
5L加圧反応槽中に、全量を 100質量%としてポリオール 080質量%分を仕込み、 120°Cに保ちながら、残り 20質量%分の酢酸ビュル、含フッ素モノマー(f)および重 合開始剤 (AMBN)の混合物を、撹拌しながら 2時間かけてフィードし、全フィード終 了後、同温度下で約 0. 5時間撹拌を続けた。その際、前記方法により測定されるモノ マーの反応率が 80%以上であることを確認して反応を終了した。その後、未反応モ ノマーを減圧下、 120°Cで 3時間除去することによりポリマー分散ポリオール F10を製 造した。結果を表 2に示す。 In a 5L pressurized reactor, the total amount is 100% by mass, and 080% by mass of polyol is charged, and the remaining 20% by mass of butyl acetate, fluorine-containing monomer (f) and polymerization initiator are maintained while maintaining at 120 ° C ( The mixture of (AMBN) was fed over 2 hours with stirring, and stirring was continued at the same temperature for about 0.5 hours after the completion of all feeds. At that time, the thing measured by the above method The reaction was completed after confirming that the reaction rate of the monomer was 80% or more. Thereafter, unreacted monomer was removed under reduced pressure at 120 ° C. for 3 hours to produce polymer-dispersed polyol F10. The results are shown in Table 2.
[0071] 製造例 11および 13 :ポリマー分散ポリオール F11および 13の製造 [0071] Production Examples 11 and 13: Production of polymer-dispersed polyols F11 and 13
表 2に記載したように、ポリオール Dと重合性不飽和基を有するモノマー組成を変 化させ、製造例 9と同様にしてポリマー分散ポリオール F11および F— 13をそれぞれ 製造した。結果を表 2に示す。  As described in Table 2, the polymer composition polyols F11 and F-13 were produced in the same manner as in Production Example 9 by changing the monomer composition having a polyol D and a polymerizable unsaturated group. The results are shown in Table 2.
製造例 12 :ポリマー分散ポリオール F12の製造  Production Example 12: Production of polymer-dispersed polyol F12
5L加圧反応槽中に、全量を 100質量%としてポリオール D29. 2質量%分および ポリオ一ノレ Gの 49. 8質量%分およびマクロモノマー Mlの 1質量%分を仕込み、 12 0°Cに保ちながら、残り 20質量%分の酢酸ビュル、含フッ素モノマー(f)および重合 開始剤 (AMBN)の混合物を、撹拌しながら 2時間かけてフィードし、全フィード終了 後、同温度下で約 0. 5時間撹拌を続けた。その際、前記方法により測定されるモノマ 一の反応率が 80%以上であることを確認して反応を終了した。その後、未反応モノ マーを減圧下、 120°Cで 3時間除去することによりポリマー分散ポリオール F12を製 造した。結果を表 2に示す。  In a 5 L pressurized reaction tank, the total amount is 100% by mass, and 29.2% by mass of polyol D, 49.8% by mass of Polyol Nore G and 1% by mass of macromonomer Ml are charged to 120 ° C. While maintaining, feed the remaining 20% by mass of the mixture of butyl acetate, fluorine-containing monomer (f) and polymerization initiator (AMBN) over 2 hours with stirring. Stirring was continued for 5 hours. At that time, the reaction was terminated after confirming that the monomer reaction rate measured by the above method was 80% or more. Thereafter, unreacted monomer was removed under reduced pressure at 120 ° C. for 3 hours to produce polymer-dispersed polyol F12. The results are shown in Table 2.
[0072] 製造例 14 :ポリマー分散ポリオール F14の製造 [0072] Production Example 14: Production of polymer-dispersed polyol F14
5L加圧反応槽中に、全量を 100質量%としてポリオール 079質量%分およびマク 口モノマー M2の 1質量%分を仕込み、 120°Cに保ちながら、残り 20質量%分の酢酸 ビュル、含フッ素モノマー(f)および重合開始剤 (AMBN)の混合物を、撹拌しながら 2時間かけてフィードし、全フィード終了後、同温度下で約 0. 5時間撹拌を続けた。 その際、前記方法により測定されるモノマーの反応率が 80%以上であることを確認し て反応を終了した。その後、未反応モノマーを減圧下、 120°Cで 3時間除去すること によりポリマー分散ポリオール F14を製造した。結果を表 2に示す。  In a 5L pressurized reactor, the total amount is 100% by mass, and 079% by mass of polyol and 1% by mass of M2 monomer M2 are charged, and the remaining 20% by mass of acetic acid butyl and fluorine-containing are kept at 120 ° C. The mixture of the monomer (f) and the polymerization initiator (AMBN) was fed over 2 hours with stirring, and stirring was continued for about 0.5 hours at the same temperature after the completion of all feeds. At that time, it was confirmed that the monomer reaction rate measured by the above method was 80% or more, and the reaction was terminated. Thereafter, unreacted monomer was removed under reduced pressure at 120 ° C. for 3 hours to produce polymer-dispersed polyol F14. The results are shown in Table 2.
[0073] 製造例 15 :ポリマー分散ポリオール F15の製造 [0073] Production Example 15: Production of polymer-dispersed polyol F15
5L加圧反応槽にポリオール D、ポリオール F、ポリオール G、アクリロニトリル、酢酸 ビュルおよび重合開始剤 (AMBN)を全て仕込んだ後、撹拌しながら昇温を開始し、 反応液を 80°Cに保ちながら 10時間反応させた。その際、前記方法により測定される モノマーの反応率が 80%以上であることを確認して反応を終了した。その後、未反 応モノマーを、 110°C、 20Paで 2時間加熱減圧脱気して除去することによりポリマー 分散ポリオール F15を製造した。結果を表 2に示す。 After all of polyol D, polyol F, polyol G, acrylonitrile, acetic acid butyl and polymerization initiator (AMBN) are charged into a 5 L pressure reaction tank, the temperature rise is started while stirring, and the reaction liquid is kept at 80 ° C. The reaction was allowed for 10 hours. At that time, measured by the above method The reaction was terminated after confirming that the monomer reaction rate was 80% or more. Thereafter, the unreacted monomer was removed by heating under reduced pressure at 110 ° C. and 20 Pa for 2 hours to produce a polymer-dispersed polyol F15. The results are shown in Table 2.
[表 1] [table 1]
Figure imgf000027_0001
Figure imgf000027_0001
[表 2] [Table 2]
製造例 製造例 製造例 製造例 製造例 製造例 製造例 製造例 Production example Production example Production example Production example Production example Production example Production example Production example
8 9 1 0 1 1 1 2 1 3 1 4 1 5 ポリオール D 450 445 400 395 146 395 395 945 ポリオ一ル E  8 9 1 0 1 1 1 2 1 3 1 4 1 5 Polyol D 450 445 400 395 146 395 395 945 Polyol E
ポリオール F 900 ポリオ一ル G 249 905 マクロモノマ一 M1 5 5 5 5  Polyol F 900 Polyol G 249 905 Macro monomer M1 5 5 5 5
マクロモノマ一 M2 5  Macro monomer M2 5
含フッ素モノマー (f) 25 25 50 50 50 40 40  Fluorinated monomer (f) 25 25 50 50 50 40 40
アクリロニトリル 150  Acrylonitrile 150
スチレン  Styrene
酢酸ビニル 25 25 50 50 50 60 60 600 重合開始剤  Vinyl acetate 25 25 50 50 50 60 60 600 Polymerization initiator
2.5 2.5 2.5 2.5 2.5 2.5 2.5 30  2.5 2.5 2.5 2.5 2.5 2.5 2.5 30
(質量部)  (Parts by mass)
水酸基価  Hydroxyl value
46 45 41 41 373 40 40 320  46 45 41 41 373 40 40 320
(mgKOH/g)  (mgKOH / g)
粘度  Viscosity
1810 1930 1750 7120 1950 4060 5400 1500  1810 1930 1750 7120 1950 4060 5400 1500
(mPa - s)  (mPa-s)
ポリマー微粒子の濃度  Polymer fine particle concentration
10 10 20 20 20 20 20 20  10 10 20 20 20 20 20 20
(固形分;質量%) '  (Solid content; mass%) '
名称 F8 F9 F1 0 F1 1 F1 2 F1 3 F1 4 F1 5  Name F8 F9 F1 0 F1 1 F1 2 F1 3 F1 4 F1 5
[0076] <貯蔵安定性の評価 > [0076] <Evaluation of storage stability>
表 3〜表 5に示す試験例;!〜 24の配合比に従って、製造例;!〜 14で製造されたポ リマー分散ポリオール F1〜F14と下記ポリテトラフルォロエチレン(PTFE)粉末を、 下記ポリオール A〜Cおよび H、 Iを混合したポリオールにそれぞれ添加して評価サン プルを調製した。  Test examples shown in Tables 3 to 5; according to the mixing ratio of! To 24, production examples; polymer dispersed polyols F1 to F14 produced in! To 14 and the following polytetrafluoroethylene (PTFE) powder Polyols A to C, H, and I were added to the mixed polyols to prepare evaluation samples.
そして、該評価サンプルを、 23°Cで 1週間貯蔵し、貯蔵後の評価サンプルの外観( 分離状態)を目視観察し、下記評価基準により、貯蔵安定性(1週間)を評価した。 評価基準  Then, the evaluation sample was stored at 23 ° C. for 1 week, the appearance (separated state) of the evaluation sample after storage was visually observed, and the storage stability (1 week) was evaluated according to the following evaluation criteria. Evaluation criteria
〇:均一な分散溶液であった。  ◯: A uniform dispersion solution.
X:ポリマー微粒子または PTFE粉末と、ポリオールとが分離していた。  X: Polymer fine particles or PTFE powder and polyol were separated.
[0077] (使用した原料) [0077] (Raw materials used)
ポリテトラフルォロエチレン(PTFE)粉末(商品名:ボリテトラフルォロエチレン樹脂 粉末 fluon L— 173、旭硝子社製)。  Polytetrafluoroethylene (PTFE) powder (trade name: polytetrafluoroethylene resin powder fluon L-173, manufactured by Asahi Glass Co., Ltd.).
[0078] '硬質ポリウレタンフォーム用ポリオール [0078] 'Polyol for rigid polyurethane foam
ポリオ一ノレ A:開始剤としてトリレンジアミンを用レ、、該トリレンジァミンに、 E〇と P〇と E〇とを、この順序で付加重合させた、水酸基価が 350mgKOH/gであり、 E〇と P〇 との合計に対する EOの割合が 33質量%のポリエーテルポリオール。 Polioinole A: Tolylenediamine is used as an initiator, E0, P0 and E0 are addition-polymerized in this order to the tolylenediamine, and the hydroxyl value is 350 mgKOH / g. And P〇 Polyether polyol with an EO ratio of 33% by mass with respect to the total.
ポリオール B :開始剤として N— (2—アミノエチル)ピぺラジンを用い、該 N— (2—ァ ミノェチル)ピぺラジンに、 EOのみを付加重合させた、水酸基価が 350mgKOH/g のポリエーテノレポリ才ーノレ。  Polyol B: N- (2-aminoethyl) piperazine was used as an initiator, and only EO was added to the N- (2-aminoethyl) piperazine to polymerize it with a hydroxyl value of 350 mgKOH / g. Etenorepoli-nore.
ポリオール C:開始剤としてシユークロースとグリセリンとの混合物(質量比で 5: 4)を 用い、該混合物に、 POのみを付加重合させた、水酸基価が 380mgKOH/gのポリ エーテルポリオール。  Polyol C: A polyether polyol having a hydroxyl value of 380 mg KOH / g, in which a mixture of sucrose and glycerin (mass ratio 5: 4) is used as an initiator, and only PO is subjected to addition polymerization.
ポリオール H:ジエチレングリコールとテレフタル酸とを重縮合して得られた、水酸基 価力 S200mgKOH/gのポリエステルポリオール。  Polyol H: Polyester polyol having a hydroxyl value of S200 mgKOH / g, obtained by polycondensation of diethylene glycol and terephthalic acid.
ポリオール I:ノユルフェノール、ホルムアルデヒドおよびジエタノールアミンをモル比 1対 1. 4対 2. 1で反応させて得られたマンニッヒ縮合物に PO、 EOをこの順で付加し て得られた水酸基価が 300mgKOH/g、付加させた POと EOの合計量に対する E Oの割合は 60質量%である。  Polyol I: The hydroxyl value obtained by adding PO and EO in this order to the Mannich condensation product obtained by reacting nourphenol, formaldehyde and diethanolamine in a molar ratio of 1: 1 to 1.4 to 2.1 is 300 mgKOH. The ratio of EO to the total amount of added PO and EO is 60% by mass.
ポリオール J:ァニリン(1モル)、フエノール(0. 99モル)、パラホルムアルデヒド(0. 64モル)およびジエタノールァミン(2· 2モル)を反応させてマンニッヒ化合物を得た 。該マンニッヒ化合物に POのみを付加重合させて得られた、水酸基価が 540mgKO H/gのポリエーテノレポリ才ーノレ。  Polyol J: aniline (1 mol), phenol (0.99 mol), paraformaldehyde (0.64 mol) and diethanolamine (2.2 mol) were reacted to obtain a Mannich compound. Polyetherolene having a hydroxyl value of 540 mg KO H / g, obtained by addition polymerization of only PO to the Mannich compound.
ポリオール K :開始剤としてエチレンジァミンを用い、該エチレンジァミンに、 POの みを付加重合させた、水酸基価が 760mgKOH/gのポリエーテルポリオール。 ポリオール L :開始剤としてグリセリンを用い、該グリセリンに、 POのみを付加重合さ せた、水酸基価が 400mgKOH/gのポリエーテルポリオール。  Polyol K: A polyether polyol having a hydroxyl value of 760 mgKOH / g, in which ethylenediamine is used as an initiator and only PO is added to the ethylenediamine to effect polymerization. Polyol L: A polyether polyol having a hydroxyl value of 400 mgKOH / g, in which glycerin is used as an initiator and only PO is added to the glycerin.
[表 3] 試験例 試験例 試験例 試験例 試験例 試験例 試験例 試験例 [Table 3] Test example Test example Test example Test example Test example Test example Test example Test example
1 2 3 4 5 6 フ 8 ポリオ一ル A 40 40 40 40 40 40 40 40 ポリオール B 20 20 20 20 20 20 20 20 ポリオール C 39.7 39.7 39.7 39.7 39.7 39.7 39.7 39.7 1 2 3 4 5 6 F Polyol A 40 40 40 40 40 40 40 40 Polyol B 20 20 20 20 20 20 20 20 Polyol C 39.7 39.7 39.7 39.7 39.7 39.7 39.7 39.7
F1 0.3 F1 0.3
F2 0.3  F2 0.3
F3 0.3  F3 0.3
F4 0.3  F4 0.3
F5 0.3  F5 0.3
F6 0.3  F6 0.3
F7 0.3  F7 0.3
PTFE粉末 0.3 貯蔵安定性  PTFE powder 0.3 Storage stability
〇 〇 〇 〇 〇 〇 〇 X (23°C、 1週間)  ○ ○ ○ ○ ○ ○ ○ X (23 ° C, 1 week)
[0080] [表 4]
Figure imgf000030_0001
[0080] [Table 4]
Figure imgf000030_0001
[0081] [表 5] [0081] [Table 5]
Figure imgf000030_0002
Figure imgf000030_0002
[0082] 表 3〜表 5に示した結果から、ポリマー分散ポリオール F1〜F14を用いた試験例 1 〜7、試験例 9〜; 15および試験例 17〜23は、貯蔵安定性が良好であることが確認で きた。 [0082] From the results shown in Tables 3 to 5, Test Example 1 using polymer-dispersed polyols F1 to F14 1 -7, Test Examples 9-; 15 and Test Examples 17-23 were confirmed to have good storage stability.
一方、 PTFE粉末を用いた試験例 8、試験例 16および試験例 24は、貯蔵安定性 が悪いことが確認された。  On the other hand, Test Example 8, Test Example 16 and Test Example 24 using PTFE powder were confirmed to have poor storage stability.
したがって、本発明のポリマー分散ポリオールの製造方法により製造されたポリマ 一分散ポリオール F1〜F14は、硬質ポリウレタンフォーム用ポリオールとの相溶性が 高ぐ貯蔵安定性に優れていることが確認できた。  Therefore, it was confirmed that the polymer monodisperse polyols F1 to F14 produced by the method for producing the polymer-dispersed polyol of the present invention have high compatibility with the polyol for rigid polyurethane foam and excellent storage stability.
[0083] 《硬質ポリウレタンフォームの評価》 [0083] << Evaluation of rigid polyurethane foam >>
表 6〜表 10に示す製造例 16〜45の配合比に従って、下記製造方法により硬質ポ リウレタンフォームを製造した。  In accordance with the mixing ratios of Production Examples 16 to 45 shown in Tables 6 to 10, rigid polyurethane foams were produced by the following production method.
表 6〜表 10の配合組成において、各原料の使用量の単位は「質量部」である。  In the composition of Table 6 to Table 10, the unit of the amount of each raw material used is “part by mass”.
[0084] (使用した原料)。 [0084] (Raw materials used).
•ポリオール成分  • Polyol component
ポリオール A〜Cおよび H〜L、 PTFE粉末、  Polyols A to C and H to L, PTFE powder,
ポリオール D、ポリマー分散ポリオール F1〜F4、 F6、 F8、 F9〜F15。  Polyol D, polymer-dispersed polyol F1-F4, F6, F8, F9-F15.
[0085] '難燃剤:トリス(2 クロ口プロピル)ホスフェート(商品名: TMCPP、大八化学社製)[0085] 'Flame Retardant: Tris (2 black mouth propyl) phosphate (trade name: TMCPP, manufactured by Daihachi Chemical Co., Ltd.)
Yes
•発泡剤 A :水。  • Foaming agent A: Water.
発泡剤 B :シクロペンタン(商品名:マル力ゾール FH、丸善石油化学社製)。  Blowing agent B: Cyclopentane (trade name: Marutsuru FH, manufactured by Maruzen Petrochemical Co., Ltd.)
発泡剤 C : l , 1 , 1 , 3, 3 ペンタフルォロプロパン(HFC— 245fa :ハネウエル社 製)  Foaming agent C: l, 1, 1, 3, 3, pentafluoropropane (HFC—245fa: manufactured by Honeywell)
'整泡剤:シリコーン系整泡剤(商品名: SZ— 1671、東レ 'ダウコーユング社製)。 '触媒 A : N, N, Ν' , Ν,一テトラメチルへキサメチレンジァミン(商品名: TOYOCAT -MR,東ソ一社製)。  'Foam stabilizer: Silicone foam stabilizer (trade name: SZ-1671, manufactured by Toray Industries, Inc.). 'Catalyst A: N, N, Ν', Ν, monotetramethylhexamethylenediamine (trade name: TOYOCAT-MR, manufactured by Tosoh Corporation).
•触媒 B :トリエチレンジァミン(商品名: TEDA— L33、東ソ一社製)  • Catalyst B: Triethylenediamine (trade name: TEDA—L33, manufactured by Tosoh Corporation)
•触媒 C: N, N, N" トリス(ジメチルァミノプロピル)へキサヒドロ S トリアジン(商 品名: POLYCAT 41、 AIR PRODUCTS社製)。  • Catalyst C: N, N, N "Tris (dimethylaminopropyl) hexahydro S-triazine (trade name: POLYCAT 41, manufactured by AIR PRODUCTS).
'触媒 D : 2 ェチルへキサン酸カリウムのジエチレングリコール溶液(カリウム濃度 15 %、商品名: DABCO K— 15、 AIR PRODUCTS社製) 'Catalyst D: Diethylene glycol solution of potassium ethylhexanoate (potassium concentration 15 %, Product name: DABCO K-15, manufactured by AIR PRODUCTS)
•触媒 E :ァミノアルコール類の混合物(商品名: TOYOCAT— RX7、東ソ一社製)。 '触媒 F : N,N—ジメチルシクロへキシルァミン(商品名:力オーライザ一 ΝΟ· 10、花 王社製)  • Catalyst E: A mixture of amino alcohols (trade name: TOYOCAT—RX7, manufactured by Tosoh Corporation). 'Catalyst F: N, N-Dimethylcyclohexylamine (trade name: Power Olyzer Ichi · 10, manufactured by Kao Corporation)
•ポリイソシァネート:ポリメチレンポリフエ二ルポリイソシァネート(クルード MDI) (商品 名: MR— 200、 日本ポリウレタン工業社製)。  • Polyisocyanate: Polymethylene polyphenyl polyisocyanate (crude MDI) (trade name: MR-200, manufactured by Nippon Polyurethane Industry Co., Ltd.).
[0086] <硬質ポリウレタンフォームの製造〉 [0086] <Manufacture of rigid polyurethane foam>
1Lポリビーカーに、表 6〜表 10に示す配合比に従い、ポリオール成分 100質量部 、発泡剤、整泡剤、難燃剤および触媒をそれぞれ投入し、これらを撹拌機でよく混合 し、ポリオールシステム液を得た。  In accordance with the compounding ratio shown in Table 6 to Table 10, 100 parts by mass of a polyol component, a foaming agent, a foam stabilizer, a flame retardant, and a catalyst were respectively added to a 1 L poly beaker, and these were mixed well with a stirrer to obtain a polyol system solution. Got.
ポリイソシァネートの使用量は、発泡剤が水のみの場合はイソシァネート指数 (IND EX)で 110または 130とし、発泡剤に炭化水素化合物を用いた系はイソシァネート指 数で 105とし、また、発泡剤としてハイド口フルォロカーボン化合物を用いた系はイソ シァネート指数で 110とし、それぞれにおいて比較した。イソシァネート指数 (INDE X)とは、ポリオール組成物およびその他の活性水素化合物の活性水素の合計当量 に対するイソシァネート基の数の割合を 100倍して表現される値である。  The amount of polyisocyanate used is 110 or 130 for the isocyanate index (IND EX) when the foaming agent is water only, and 105 for the system using a hydrocarbon compound as the foaming agent. The system using a hyde mouth fluorocarbon compound as the agent was set to 110 as the isocyanate index, and the results were compared. The isocyanate index (INDE X) is a value expressed by multiplying the ratio of the number of isocyanate groups to 100 times the total equivalent of active hydrogens of the polyol composition and other active hydrogen compounds.
ポリオールシステム液とポリイソシァネート成分の原料双方の液温を 20°Cに保温し た後、回転数 3000rpmで 5秒間撹拌混合した。その後、縦 200 X横 200 X高さ 200 mmの木製ボックスに投入し、自由発泡を行い、硬質ポリウレタンフォームを製造した The liquid temperature of both the polyol system liquid and the raw material of the polyisocyanate component was kept at 20 ° C., and then stirred and mixed at a rotational speed of 3000 rpm for 5 seconds. After that, it was put into a 200 x 200 x 200 mm high wooden box and subjected to free foaming to produce a rigid polyurethane foam.
Yes
[0087] <硬質ポリウレタンフォームの評価〉  [0087] <Evaluation of rigid polyurethane foam>
得られた各製造例の硬質ポリウレタンフォームにおいて、ゲルタイム(秒)、全密度と してボックスフリー密度(単位: kg/m3)、圧縮強度(単位: MPa)、寸法安定性として 高温収縮(単位:%)、断熱性能として 24°Cにおける熱伝導率(単位: mW/m*K)を それぞれ測定した。また、貯蔵安定性として下記評価を行った。それらの結果を表 3 に示す。 In the rigid polyurethane foam obtained in each production example, gel time (second), box free density (unit: kg / m 3 ) as total density, compressive strength (unit: MPa), and high temperature shrinkage (unit: unit) :) and the thermal conductivity at 24 ° C (unit: mW / m * K) was measured as the heat insulation performance. Moreover, the following evaluation was performed as storage stability. The results are shown in Table 3.
[0088] ゲルタイムの測定は、発泡途中のフォームに針金を差し込み、引き上げる時に糸引 きが発生するまでの時間(秒)を測定した。 全密度(ボックスフリー密度)の測定は、 JIS K7222 (1998年版)に準拠し、質量と 体積から求めた。 [0088] The gel time was measured by inserting a wire into a foam that was in the process of foaming and measuring the time (seconds) until string drawing occurred when the foam was pulled up. The total density (box-free density) was measured from the mass and volume according to JIS K7222 (1998 edition).
圧縮強度は、 JIS A9511に準拠して測定した。試料片の大きさは、 5cm X 5cm X 5cmとした。また、重力方向に対して平行方向(〃)および垂直方向(上)の圧縮強度 について測定した。表 3中、「〃+上」は、平行方向(〃)の圧縮強度と、垂直方向(上 )の圧縮強度とを足し合わせた圧縮強度を表す。  The compressive strength was measured according to JIS A9511. The size of the sample piece was 5 cm × 5 cm × 5 cm. The compressive strength was measured in the direction parallel to the gravity direction (重力) and in the vertical direction (top). In Table 3, “〃 + up” represents the compression strength of the compression strength in the parallel direction (垂直) and the compression strength in the vertical direction (up).
[0089] (寸法安定性の評価) [0089] (Evaluation of dimensional stability)
高温収縮は、 ASTM D 2126— 75に準じた方法で測定し、発泡剤が水のみの 場合は高温寸法安定性および湿熱寸法安定性を評価し、発泡剤が炭化水素化合 物もしくはハイド口フルォロカーボン化合物を併用する場合は低温寸法安定性の評 価を行った。  High-temperature shrinkage is measured by a method according to ASTM D 2126-75. When water is the only blowing agent, the high-temperature dimensional stability and wet heat dimensional stability are evaluated, and the blowing agent is a hydrocarbon compound or a hyde mouth fluorocarbon compound. When used together, low temperature dimensional stability was evaluated.
試料として各例の硬質ポリウレタンフォームを用い、 1時間養生の後、縦(Z) 100m m X横(X) 150mm X厚さ( Y) 75mmを切り出して用レ、た。  The rigid polyurethane foam of each example was used as a sample, and after curing for 1 hour, a length (Z) 100 mm × width (X) 150 mm × thickness (Y) 75 mm was cut out and used.
高温寸法安定性は前記試料片を 70°C、湿熱寸法安定性は 70°Cで相対湿度 95% 、低温寸法安定性は 30°Cと 0°Cのそれぞれの雰囲気下に、 24時間もしくは 50時 間保存し、増加した長さ (厚さ)を、保存前の長さ (厚さ)に対する寸法変化率 (単位: %)で表した。すなわち、 2条件で各 3方向(X、 Y、 Ζ)の全 6方向について寸法変化 率をそれぞれ測定した。  High temperature dimensional stability is 70 ° C for the sample piece, wet heat dimensional stability is 70 ° C, relative humidity is 95%, and low temperature dimensional stability is 30 ° C and 0 ° C in each atmosphere for 24 hours or 50 hours. The length (thickness) increased after time storage was expressed as a dimensional change rate (unit:%) with respect to the length (thickness) before storage. In other words, the dimensional change rate was measured for all six directions in three directions (X, Y, and Ζ) under two conditions.
ただし、寸法変化率において、負の数値は収縮を意味し;絶対値が大きいことは、 寸法変化が大きいことを意味する。寸法変化は、下記評価基準により評価した。 評価基準  However, in the dimensional change rate, a negative value means shrinkage; a large absolute value means a large dimensional change. The dimensional change was evaluated according to the following evaluation criteria. Evaluation criteria
◎ : 6方向の寸法変化率の中の絶対値の最大値が 1 %未満であった。  A: The maximum absolute value among the dimensional change rates in 6 directions was less than 1%.
〇: 6方向の寸法変化率の中の絶対値の最大値が 1 %以上 5%未満であった。 △: 6方向の寸法変化率の中の絶対値の最大値が 5%以上 10%未満であった。  A: The maximum absolute value among the dimensional change rates in 6 directions was 1% or more and less than 5%. Δ: The maximum absolute value among the dimensional change rates in 6 directions was 5% or more and less than 10%.
X: 6方向の寸法変化率の中の絶対値の最大値が 10%以上であった。  X: The maximum absolute value among the dimensional change rates in the 6 directions was 10% or more.
[0090] (断熱性の評価) [0090] (Evaluation of thermal insulation)
熱伝導率(単位: mW/m'K)は、 JIS A1412に準拠し、熱伝導率測定装置 (製 品名:オートラムダ HC— 074型、英弘精機社製)を用いて測定した。 断熱性は、下記評価基準により評価した。 The thermal conductivity (unit: mW / m'K) was measured in accordance with JIS A1412 using a thermal conductivity measuring device (product name: Auto Lambda HC-074, manufactured by Eiko Seiki Co., Ltd.). The heat insulation was evaluated according to the following evaluation criteria.
評価基準 Evaluation criteria
発泡剤が水のみの場合は以下の基準とした。  When the foaming agent was only water, the following criteria were used.
〇:熱伝導率が 27以下であった。  ○: Thermal conductivity was 27 or less.
X:熱伝導率が 27超であった。  X: Thermal conductivity was more than 27.
発泡剤として炭化水素化合物を併用した場合は以下の基準とした。  When a hydrocarbon compound was used as a blowing agent, the following criteria were used.
〇:熱伝導率が 22以下であった。  ○: Thermal conductivity was 22 or less.
X:熱伝導率が 22超であった。  X: Thermal conductivity was over 22.
発泡剤としてハイド口フルォロカーボン化合物を併用した場合は以下の基準とした  When using a hyde mouth fluorocarbon compound as a foaming agent, the following criteria were used:
〇:熱伝導率が 21以下であった。 ○: Thermal conductivity was 21 or less.
X:熱伝導率が 21超であった。  X: Thermal conductivity was more than 21.
(貯蔵安定性の評価) (Evaluation of storage stability)
表 6 10に示す製造例;!;!〜 45の配合比に従って、ポリオール A Cおよび H L を混合した後に、 F1 F4 F6 F8 F9 F15 PTFE粉末、ポリオール Dをそれぞ れ添加、混合して混合ポリオール 300gを調製し、蓋付きガラス瓶に入れた。そして、 23°Cで 1週間貯蔵、または、 23°Cで 1ヶ月間貯蔵し、貯蔵後の混合ポリオールの上 層から注射器で上層液 lOOgを抜き取り、下層から下層液 lOOgが取れるように中層 液を廃棄し、下層から下層液 lOOgの混合ポリオールを採取した。  Example of production shown in Table 6 10! ;! After mixing polyol AC and HL according to the blending ratio of ~ 45, F1 F4 F6 F8 F9 F15 PTFE powder and polyol D were added and mixed to prepare 300 g of mixed polyol and put in a glass bottle with a lid It was. Then, store at 23 ° C for 1 week, or at 23 ° C for 1 month, and remove the upper layer liquid lOOg with a syringe from the upper layer of the mixed polyol after storage, and the intermediate layer liquid so that the lower layer liquid lOOg can be removed from the lower layer The mixed polyol of the lower layer solution lOOg was collected from the lower layer.
次いで、前記 <硬質ポリウレタンフォームの製造〉において、ポリオール成分 100 質量部に代えて、上層液 100質量部または下層液 100質量部を用いた以外は、く 硬質ポリウレタンフォームの製造〉と同様にして硬質ポリウレタンフォームを製造した そして、得られた硬質ポリウレタンフォームの特性から、下記評価基準に基づいて 貯蔵安定性を評価した。  Next, in <Manufacture of rigid polyurethane foam> in the above <Manufacture of rigid polyurethane foam>, except that 100 parts by mass of the upper layer liquid or 100 parts by mass of the lower layer liquid was used instead of 100 parts by mass of the polyol component, A polyurethane foam was produced. From the characteristics of the obtained rigid polyurethane foam, the storage stability was evaluated based on the following evaluation criteria.
貯蔵安定性が悪い場合、貯蔵中に上層もしくは下層にポリマー分散ポリオールが 移行して、混合ポリオールの上下の組成が異なり、これを用いて製造された硬質ポリ ウレタンフォームの特性に影響を与える。そのため、上層液と下層液の各々を用いた 場合の発泡状態、または、得られる硬質ボリウレタンフォームの寸法変化率により貯 蔵安定性を評価できる。 When the storage stability is poor, the polymer-dispersed polyol migrates to the upper layer or lower layer during storage, and the upper and lower compositions of the mixed polyol are different, affecting the properties of rigid polyurethane foams produced using this. Therefore, each of upper layer liquid and lower layer liquid was used. Storage stability can be evaluated by the foamed state of the case or the dimensional change rate of the resulting rigid polyurethane foam.
評価基準 Evaluation criteria
〇:上層液および下層液を発泡したもののいずれにも発泡不良が見られず、かつ 硬質ポリウレタンフォームの寸法変化率の絶対値がいずれも 5%未満であった。  A: No foaming failure was observed in any of the foamed upper layer liquid and lower layer liquid, and the absolute value of the dimensional change rate of the rigid polyurethane foam was less than 5%.
X:上層液および下層液を発泡したもののいずれかに発泡不良が見られる力、、また はいずれかの硬質ポリウレタンフォームの寸法変化率の絶対値が 5%以上であった。  X: The force at which foaming failure was observed in any of the foamed upper layer liquid and lower layer liquid, or the absolute value of the dimensional change rate of any rigid polyurethane foam was 5% or more.
[表 6] [Table 6]
Figure imgf000035_0001
[0093] [表 7]
Figure imgf000035_0001
[0093] [Table 7]
Figure imgf000036_0001
Figure imgf000036_0001
[0094] [表 8]
Figure imgf000037_0001
9]
Figure imgf000038_0001
10]
Figure imgf000039_0001
表 6〜表 10に示した結果から明らかなように、本発明のポリマー分散ポリオールの 製造方法により製造されたポリマー分散ポリオール F1 F4 F6 F8 F14を用い た場合、貯蔵安定性(1週間)に優れることが確認できた。
[0094] [Table 8]
Figure imgf000037_0001
9]
Figure imgf000038_0001
Ten]
Figure imgf000039_0001
As is clear from the results shown in Table 6 to Table 10, when the polymer-dispersed polyol F1 F4 F6 F8 F14 produced by the polymer-dispersed polyol production method of the present invention is used, the storage stability (one week) is excellent. I was able to confirm.
また、ポリマー分散ポリオール F1 F4 F6 F8 F14を用いて製造された製造例 16—30,製造例 34〜35および製造例 38〜39、製造例 42〜43の硬質ポリウレタン フォームは、断熱性能および寸法安定性が共に良好であることが確認できた。 In addition, production examples produced using polymer-dispersed polyol F1 F4 F6 F8 F14 It was confirmed that the rigid polyurethane foams of 16-30, Production Examples 34 to 35, Production Examples 38 to 39, and Production Examples 42 to 43 had good heat insulation performance and dimensional stability.
[0098] また、ポリマー分散ポリオール F1〜F3、 F10、 Fl l、 F13を用いた場合、さらに貯 蔵安定性(1ヶ月間)にも優れること力 S確認できた。 [0098] In addition, it was confirmed that when the polymer-dispersed polyols F1 to F3, F10, Fl1, and F13 were used, they were further excellent in storage stability (for one month).
これにより、ポリマー分散ポリオールの製造方法において、ポリエーテルポリオール (Y)中のォキシエチレン基含有量を 60質量%以上とし、かつ重合性不飽和基を有 するモノマーとしてアクリロニトリルまたは酢酸ビュルを含むことにより、さらに顕著な 貯蔵安定性の向上効果が得られることが分かった。  Thus, in the method for producing a polymer-dispersed polyol, the content of the oxyethylene group in the polyether polyol (Y) is 60% by mass or more, and acrylonitrile or butyl acetate is included as a monomer having a polymerizable unsaturated group, It was also found that a significant effect of improving storage stability was obtained.
[0099] 一方、製造例 32、 36、 40及び 44に示すように、 PTFE粉末を用いた場合、貯蔵安 定性(1週間、 1ヶ月)が悪いことが確認された。 On the other hand, as shown in Production Examples 32, 36, 40 and 44, it was confirmed that when PTFE powder was used, the storage stability (1 week, 1 month) was poor.
含フッ素モノマー(f)を用いてレ、なレ、ポリマー分散ポリオール F15を用いて製造さ れた製造例 31の硬質ポリウレタンフォームは、断熱性能が悪いことが確認された。 ポリマー微粒子を含まないポリオール Dを用いて製造された製造例 33、製造例 37 および製造例 41、製造例 45の硬質ポリウレタンフォームは、寸法安定性が悪いこと が確認された。  It was confirmed that the rigid polyurethane foam of Production Example 31 produced using the fluorine-containing monomer (f) and the polymer dispersion polyol F15 had poor heat insulation performance. It was confirmed that the rigid polyurethane foams of Production Example 33, Production Example 37 and Production Example 41, Production Example 45 produced using Polyol D containing no polymer fine particles had poor dimensional stability.
産業上の利用可能性  Industrial applicability
[0100] 本発明の製造方法により得られるポリマー分散ポリオールは、硬質ポリウレタンフォ ームの製造に使用することができる。また、該ポリマー分散ポリオールは、硬質ポリゥ レタンフォーム用の分子量の小さいポリオールと混合しておいても貯蔵安定性が良 好である。 [0100] The polymer-dispersed polyol obtained by the production method of the present invention can be used for production of a rigid polyurethane foam. The polymer-dispersed polyol has good storage stability even when mixed with a polyol having a low molecular weight for rigid polyurethane foam.
また、該ポリマー分散ポリオールを用いることにより、軽量化が図られ、断熱性およ び寸法安定性が共に優れた硬質ポリウレタンフォームが得られる。また、該ポリマー 分散ポリオールは、注入ウレタンフォーム、連続生産ボード、スプレー発泡フォーム等 の製造に好適に利用できる。 なお、 2006年 11月 20曰に出願された曰本特許出願 2006— 312812号の明細書 、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示と して、取り入れるものである。  Further, by using the polymer-dispersed polyol, it is possible to obtain a rigid polyurethane foam that is reduced in weight and excellent in both heat insulating properties and dimensional stability. Further, the polymer-dispersed polyol can be suitably used for the production of injected urethane foam, continuous production board, spray foamed foam and the like. It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2006-312812 filed on November 20, 2006 are hereby incorporated by reference. It is something that is incorporated.

Claims

請求の範囲 The scope of the claims
[1] ポリオール成分 (Z)とポリイソシァネート成分とを、発泡剤、整泡剤および触媒の存 在下で反応させて硬質ポリウレタンフォームを製造する方法において、  [1] In a method for producing a rigid polyurethane foam by reacting a polyol component (Z) and a polyisocyanate component in the presence of a foaming agent, a foam stabilizer and a catalyst,
前記ポリオール成分(Z)は、平均水酸基価が 200〜800mgKOH/gであり、かつ 下記ポリマー分散ポリオール (A)を含有することを特徴とする硬質ポリウレタンフォー ムの製造方法。  The polyol component (Z) has an average hydroxyl value of 200 to 800 mgKOH / g, and contains the following polymer-dispersed polyol (A): A method for producing a rigid polyurethane foam.
ただし、ポリマー分散ポリオール (A)は、ポリオール (X)中で重合性不飽和基を有 するモノマーを重合させることにより、ポリマー微粒子がポリオール中に分散したもの であり、前記ポリオール (X)はポリエーテルポリオールを含み、前記重合性不飽和基 を有するモノマーは、含フッ素アタリレートまたは含フッ素メタタリレートを含む。  However, the polymer-dispersed polyol (A) is obtained by polymerizing a monomer having a polymerizable unsaturated group in the polyol (X) to disperse the polymer fine particles in the polyol. The monomer containing an ether polyol and having the polymerizable unsaturated group contains fluorine-containing acrylate or fluorine-containing metatalylate.
[2] 前記含フッ素アタリレートまたは含フッ素メタタリレートが、下式(1)で表されるモノマ 一である請求項 1に記載の硬質ポリウレタンフォームの製造方法。 [2] The method for producing a rigid polyurethane foam according to [1], wherein the fluorinated acrylate or fluorinated metatalylate is a monomer represented by the following formula (1).
[化 1コ  [Chemical 1
R R
Rf—Z— 0— C— C=CH2 式( 1 ) R f —Z— 0— C— C = CH 2 formula (1)
0  0
ただし、式(1)中、 Rfは炭素数 1〜; 18のポリフルォロアルキル基であり、 Rは水素原 子またはメチル基であり、 Zは 2価の連結基である。 In the formula (1), R f is a polyfluoroalkyl group having 1 to 18 carbon atoms, R is a hydrogen atom or a methyl group, and Z is a divalent linking group.
[3] 前記重合性不飽和基を有するモノマー力 S、さらにアクリロニトリルまたは酢酸ビュル を含む請求項 1または 2に記載の硬質ポリウレタンフォームの製造方法。 [3] The method for producing a rigid polyurethane foam according to claim 1 or 2, further comprising monomer power S having a polymerizable unsaturated group, and further acrylonitrile or butyl acetate.
[4] 前記ポリエーテルポリオールは、ォキシエチレン基含有量が 10質量%以上である 請求項 1〜3のいずれかに記載の硬質ポリウレタンフォームの製造方法。 [4] The method for producing a rigid polyurethane foam according to any one of claims 1 to 3, wherein the polyether polyol has an oxyethylene group content of 10% by mass or more.
[5] 前記ポリエーテルポリオールは、水酸基価が 84mgKOH/g以下である請求項 1[5] The polyether polyol has a hydroxyl value of 84 mg KOH / g or less.
〜4のいずれかに記載の硬質ポリウレタンフォームの製造方法。 The manufacturing method of the rigid polyurethane foam in any one of -4.
[6] 前記ポリエーテルポリオールは、多価アルコールに、プロピレンォキシドとエチレン ォキシドとを付加重合させて得られるポリオキシアルキレンポリオールである請求項 1[6] The polyether polyol is a polyoxyalkylene polyol obtained by addition polymerization of propylene oxide and ethylene oxide to a polyhydric alcohol.
〜5のいずれかに記載の硬質ポリウレタンフォームの製造方法。 The manufacturing method of the rigid polyurethane foam in any one of -5.
[7] 前記重合性不飽和基を有する全モノマー中の前記式(1)で表されるモノマーの割 合が 30〜; 100質量%である請求項 2〜6のいずれかに記載の硬質ポリウレタンフォ ームの製造方法。 [7] The rigid polyurethane according to any one of [2] to [6], wherein the ratio of the monomer represented by the formula (1) in all the monomers having a polymerizable unsaturated group is 30 to 100% by mass. Form manufacturing method.
[8] 前記ポリオール成分 (Z)中の前記ポリマー分散ポリオール (A)の割合が 0. 01質量 %以上であり、かつ前記ポリオール成分 (Z)中の前記ポリマー微粒子の割合が 0. 0 01質量%以上である請求項 1〜7のいずれかに記載の硬質ポリウレタンフォームの 製造方法。  [8] The proportion of the polymer-dispersed polyol (A) in the polyol component (Z) is 0.01% by mass or more, and the proportion of the polymer fine particles in the polyol component (Z) is 0.001 mass. The method for producing a rigid polyurethane foam according to any one of claims 1 to 7, which is not less than 10%.
[9] 前記発泡剤として水単独、または、ハイド口フルォロカーボン化合物および炭化水 素化合物から選ばれる少なくとも一種と水とを使用する請求項 1〜8のいずれかに記 載の硬質ポリウレタンフォームの製造方法。  [9] The method for producing a rigid polyurethane foam according to any one of [1] to [8], wherein water is used alone, or at least one kind selected from a hydrated fluorocarbon compound and a hydrocarbon compound and water. .
PCT/JP2007/072466 2006-11-20 2007-11-20 Method for producing hard polyurethane foam WO2008062792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-312812 2006-11-20
JP2006312812A JP2010031064A (en) 2006-11-20 2006-11-20 Manufacturing method for hard polyurethane foam

Publications (1)

Publication Number Publication Date
WO2008062792A1 true WO2008062792A1 (en) 2008-05-29

Family

ID=39429723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072466 WO2008062792A1 (en) 2006-11-20 2007-11-20 Method for producing hard polyurethane foam

Country Status (2)

Country Link
JP (1) JP2010031064A (en)
WO (1) WO2008062792A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256484A (en) * 2008-04-17 2009-11-05 Achilles Corp Method for producing hard polyurethane foam
WO2009142143A1 (en) * 2008-05-20 2009-11-26 旭硝子株式会社 Manufacturing method for hard polyurethane foam
US8258196B2 (en) 2006-11-20 2012-09-04 Asahi Glass Company, Limited Method for producing rigid polyurethane foam, and rigid polyurethane foam
JP5062179B2 (en) * 2006-11-20 2012-10-31 旭硝子株式会社 Method for producing rigid polyurethane foam
CN103476831A (en) * 2011-03-30 2013-12-25 旭硝子株式会社 Polyether polyol and soft polyurethane foam production method and sheet
CN113861500A (en) * 2021-10-20 2021-12-31 安徽理工大学环境友好材料与职业健康研究院(芜湖) Preparation method of conductive rigid polyurethane foam

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407544B2 (en) * 2008-05-20 2014-02-05 旭硝子株式会社 Method for producing polymer-dispersed polyol
JP6832892B2 (en) * 2017-10-04 2021-02-24 株式会社エフコンサルタント Covering material
JP7026523B2 (en) * 2018-02-10 2022-02-28 株式会社エフコンサルタント Dressing
JP6765474B2 (en) * 2018-05-11 2020-10-07 株式会社エフコンサルタント Film formation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262833A (en) * 1992-03-19 1993-10-12 Asahi Glass Co Ltd Polyol containing dispersed polymer, its production, and production of polyurethane
JPH08503720A (en) * 1992-09-28 1996-04-23 ザ ダウ ケミカル カンパニー Cellular polymer containing porous cell window and method for producing the same
JPH11106447A (en) * 1997-10-07 1999-04-20 Asahi Glass Co Ltd Polymer-dispersed polyol, its production and production of rigid polyurethane foam
JPH11302340A (en) * 1998-04-22 1999-11-02 Asahi Glass Co Ltd Polymer dispersed polyol, its production and production of hard polyurethane foam
JP2005272806A (en) * 2003-10-22 2005-10-06 Sanyo Chem Ind Ltd Rigid polyurethane foam
WO2006126611A1 (en) * 2005-05-25 2006-11-30 Asahi Glass Company, Limited Flexible polyurethane foam, process for producing the same, and automotive seat employing the flexible polyurethane foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262833A (en) * 1992-03-19 1993-10-12 Asahi Glass Co Ltd Polyol containing dispersed polymer, its production, and production of polyurethane
JPH08503720A (en) * 1992-09-28 1996-04-23 ザ ダウ ケミカル カンパニー Cellular polymer containing porous cell window and method for producing the same
JPH11106447A (en) * 1997-10-07 1999-04-20 Asahi Glass Co Ltd Polymer-dispersed polyol, its production and production of rigid polyurethane foam
JPH11302340A (en) * 1998-04-22 1999-11-02 Asahi Glass Co Ltd Polymer dispersed polyol, its production and production of hard polyurethane foam
JP2005272806A (en) * 2003-10-22 2005-10-06 Sanyo Chem Ind Ltd Rigid polyurethane foam
WO2006126611A1 (en) * 2005-05-25 2006-11-30 Asahi Glass Company, Limited Flexible polyurethane foam, process for producing the same, and automotive seat employing the flexible polyurethane foam

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258196B2 (en) 2006-11-20 2012-09-04 Asahi Glass Company, Limited Method for producing rigid polyurethane foam, and rigid polyurethane foam
JP5062179B2 (en) * 2006-11-20 2012-10-31 旭硝子株式会社 Method for producing rigid polyurethane foam
JP2009256484A (en) * 2008-04-17 2009-11-05 Achilles Corp Method for producing hard polyurethane foam
WO2009142143A1 (en) * 2008-05-20 2009-11-26 旭硝子株式会社 Manufacturing method for hard polyurethane foam
JPWO2009142143A1 (en) * 2008-05-20 2011-09-29 旭硝子株式会社 Method for producing rigid polyurethane foam
CN103476831A (en) * 2011-03-30 2013-12-25 旭硝子株式会社 Polyether polyol and soft polyurethane foam production method and sheet
CN103476831B (en) * 2011-03-30 2016-08-31 旭硝子株式会社 PPG and the manufacture method of flexible polyurethane foams and seat
CN113861500A (en) * 2021-10-20 2021-12-31 安徽理工大学环境友好材料与职业健康研究院(芜湖) Preparation method of conductive rigid polyurethane foam
CN113861500B (en) * 2021-10-20 2023-08-04 安徽理工大学环境友好材料与职业健康研究院(芜湖) Preparation method of conductive rigid polyurethane foam

Also Published As

Publication number Publication date
JP2010031064A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
WO2008062792A1 (en) Method for producing hard polyurethane foam
JP5062179B2 (en) Method for producing rigid polyurethane foam
WO2009142143A1 (en) Manufacturing method for hard polyurethane foam
KR101425240B1 (en) Method for the production of rigid polyurethane foam
JP5396858B2 (en) Method for producing polymer-dispersed polyol
US20070254973A1 (en) Method for the Production of Polyurethane Foam Materials
JP4355307B2 (en) Active hydrogen compound or active hydrogen component and method for producing foam
JP5720567B2 (en) Method for producing polyether polyol mixture, and method for producing rigid foam synthetic resin using the same
WO2009145236A1 (en) Hard foam synthetic resin and process for producing the same
WO2010023885A1 (en) Method of manufacturing flexible polyurethane foam
JP2003113219A (en) Method for producing polyurethane resin
JP4609179B2 (en) Manufacturing method of rigid foam synthetic resin
JP2011241255A (en) Method for producing polyether polyol and method for producing rigid foamed synthetic resin
JP2010006914A (en) Method for producing rigid polyurethane foam
JP5407544B2 (en) Method for producing polymer-dispersed polyol
JPH1160651A (en) Polymer-dispersed polyol and production of rigid polyurethane foam
JP4894321B2 (en) Manufacturing method of rigid foam synthetic resin
JP4530661B2 (en) Method for producing rigid polyurethane foam
JP5408080B2 (en) Method for producing polymer-dispersed polyol and method for producing rigid foam synthetic resin
JP3838270B2 (en) Method for producing rigid polyurethane foam
JP2008223001A (en) Method for producing hard polyurethane foam
JP2010047635A (en) Flexible polyurethane foam and method for manufacturing the same
JP2015110729A (en) Polymer dispersion polyol and manufacturing method of rigid cellular synthetic resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP