Nothing Special   »   [go: up one dir, main page]

WO2008053801A1 - Spherical machine element and method of producing the same - Google Patents

Spherical machine element and method of producing the same Download PDF

Info

Publication number
WO2008053801A1
WO2008053801A1 PCT/JP2007/070902 JP2007070902W WO2008053801A1 WO 2008053801 A1 WO2008053801 A1 WO 2008053801A1 JP 2007070902 W JP2007070902 W JP 2007070902W WO 2008053801 A1 WO2008053801 A1 WO 2008053801A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical
spherical surface
segment
insert
exterior body
Prior art date
Application number
PCT/JP2007/070902
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Mochizuki
Tsunashi Fujita
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to JP2008542079A priority Critical patent/JP5579988B2/en
Publication of WO2008053801A1 publication Critical patent/WO2008053801A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/043Sliding-contact bearings self-adjusting with spherical surfaces, e.g. spherical plain bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings

Definitions

  • the present invention relates to a spherical bearing, a rod end, a ball joint, a pillow ball, etc. that allow the outer body and the inserted body inserted into the spherical surface to come into spherical contact to allow the inserted body to swing relative to the outer body. It relates to spherical machine elements.
  • a spherical bearing is known as a bearing that allows the inner ring to swing with respect to the outer ring.
  • the spherical bearing 51 includes an inner ring 52 having a spherical portion 52a having a predetermined radius on the outer peripheral surface, and an outer ring 53 having a spherical concave portion 53a corresponding to the spherical portion 52a of the inner ring 52 on the inner peripheral surface.
  • power is also constructed.
  • the contact surface between the inner ring 52 and the outer ring 53 is a spherical surface, and the center of the spherical portion 52a of the inner ring 52 and the center P of the spherical concave portion 53a of the outer ring 53 coincide.
  • the inner ring 52 can rotate relative to the outer ring 53 while sliding around the XYZ coordinate axes with the center P as the origin.
  • the shaft 54 fitted to the inner ring 52 can swing around the center P within the range of the allowable inclination angle ⁇ .
  • the rod end 58 As a spherical machine element, there is a rod end 58 as shown in FIG. 31 in addition to a spherical bearing.
  • the rod end 58 includes an inner ring 55 having a spherical portion 55a with a predetermined radius on the outer peripheral surface, an outer ring 56 having a spherical concave portion 56a corresponding to the spherical portion 55a of the inner ring 55 on the inner peripheral surface, and a holder for holding the outer ring 56. 57 and power are also composed.
  • a holder 57 is formed on the outer ring 56 into a body.
  • a ball joint 59 as shown in FIG. 32 is also known.
  • the ball joint 59 is also called a link ball (registered trademark), and includes a ball shank 62 in which the shank portion 61 is welded to the ball surface portion 60, a holder 63 in which the spherical surface portion 60 is wrapped by die casting, and a force.
  • the spherical bearing 51 can also apply a radial load (1) acting in the radial direction on the axis of the inner ring 52, which not only allows the inner ring 52 to swing. it can. This is because the contact area between the inner ring 52 and the outer ring 53 can be secured when a radial load (1) is applied.
  • the spherical bearing 51 cannot load the thrust load (2) acting in the axial direction of the inner ring 52 as much as the radial load (1).
  • Axial direction of outer ring 53 when thrust load (2) is applied This is because the inner ring 52 protrudes from the opposite end, and the contact area between the inner ring 52 and the outer ring 53 cannot be secured. Even with the rod end 58 and the ball joint 59 that are connected only by the spherical bearing 51, the thrust load cannot be applied as much as the radial load.
  • Patent Document 1 discloses a spherical bearing that can solve this problem and can apply a thrust load as well as a radial load alone.
  • the outer ring 66 is divided into three in the axial direction.
  • the central segment 66a receives a radial load, and the segments 66b and 66c on both sides receive a thrust load.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-327737 (see page 1, Fig. 1)
  • an object of the present invention is to provide a spherical machine element capable of adjusting a radial load and a thrust load that can be loaded while keeping the size of the spherical machine element compact, and a method for manufacturing the same. .
  • the invention according to claim 1 has a first spherical surface portion formed of a part of a spherical surface having a predetermined radius, substantially the same center as the first spherical surface portion, and An inserted body having an outer peripheral surface having a second spherical surface portion formed of a part of a spherical surface having a different radius from the first spherical surface portion, and the inserted spherical body is inserted into the first spherical surface portion and the second spherical surface portion.
  • a spherical machine element including an outer body having a first spherical surface recess and a second spherical surface recess on the inner peripheral surface corresponding to each of the spherical surfaces.
  • the invention according to claim 2 is the spherical machine element according to claim 1, wherein a radius of the second spherical portion is larger than a radius of the first spherical portion, and the insertion Body axis
  • a thrust load applied in the linear direction can be received by the second spherical surface portion of the insert, and a radial load applied in the radial direction with respect to the axial line of the insert is applied to the first load of the insert.
  • a spherical portion can be received.
  • the invention according to claim 3 is the spherical machine element according to claim 2, wherein the first spherical portion is formed around the axis of the insert and has a center in the axial direction.
  • the second spherical portion is most bulged, and the second spherical portion is formed around the axis of the insert, and the end on the first spherical portion side in the axial direction is most bulged.
  • the invention according to claim 4 is the spherical machine element according to claim 2 or 3, wherein the second spherical portion of the insert is on both sides of the first spherical portion in the axial direction.
  • the second spherical surface recess of the exterior body is also provided on both sides in the axial direction of the first spherical surface recess corresponding to the second spherical surface portion.
  • the invention according to claim 5 is the spherical machine element according to claim 1 or 2, wherein the insert is between the exterior body and the insert body with respect to the exterior body. It is characterized in that a cavity is provided so that it can swing.
  • the invention according to claim 6 is the spherical machine element according to claim 5, wherein the cavity is filled with a lubricant.
  • the invention according to claim 7 is the spherical mechanical element according to claim 1 or 2, wherein a sliding film is provided around the first spherical portion and the second spherical portion of the insert. It is characterized by being coated.
  • the invention according to claim 8 is the spherical mechanical element according to claim 7, wherein the sliding film is outsert-molded around the first spherical portion of the insert.
  • the invention according to claim 9 is the spherical machine element according to claim 7, wherein the sliding film coated around the first spherical portion of the insert is formed of the insert.
  • a divided sliding film made of a resin molded product is combined.
  • the invention according to claim 10 is the spherical machine element according to claim 1 or 2, wherein the exterior body is divided by a cross section perpendicular to the axis of the exterior body.
  • the invention according to claim 11 is the spherical machine element according to claim 1 or 2, wherein the exterior body is divided by a cross section orthogonal to an axis of the exterior body.
  • a first segment having a concave part for a part and a second segment having a concave part for the second spherical part are joined together, and the first segment is formed by a cutting plane including the axis of the exterior body. It is characterized by combining the divided segments.
  • the invention according to claim 12 is the spherical machine element according to claim 4, wherein the exterior body is divided by a cut surface perpendicular to the axis of the exterior body. A first segment having a recess and a pair of second segments having the second spherical surface recess are combined.
  • the invention according to claim 13 is the spherical machine element according to claim 1 or 2, wherein the exterior body is divided by a cut surface including an axis of the exterior body, and the first spherical portion And a plurality of divided bodies having a part in the circumferential direction of the concave portion for the second spherical portion and the concave portion for the second spherical surface portion.
  • the invention according to claim 14 includes a first spherical surface portion formed of a part of a spherical surface having a predetermined radius, the first spherical surface portion having substantially the same center as the first spherical surface portion. And a second spherical surface portion made of a part of a spherical surface having a radius different from the radius of the insertion body.
  • the insertion body processing step for processing the outer peripheral surface of the insertion body, and the first spherical surface portion around the insertion body.
  • a spherical machine element comprising: an exterior body mounting step of mounting an exterior body having a first spherical surface recess and a second spherical surface recess corresponding to each of the second spherical surface portions on an inner peripheral surface thereof. It is a manufacturing method.
  • the invention according to claim 15 is the method of manufacturing a spherical machine element according to claim 14, wherein the exterior body mounting step is performed around the first spherical surface portion of the insert.
  • the invention according to claim 16 is the method of manufacturing a spherical machine element according to claim 14, wherein the exterior body mounting step is performed around the first spherical surface portion of the insert body.
  • the invention according to claim 17 is the method of manufacturing a spherical machine element according to claim 14, wherein the exterior body mounting step is divided by a cut surface including an axis of the exterior body, A plurality of divided bodies having a part in the circumferential direction of the concave portion for the spherical surface portion and the concave portion for the second spherical surface portion, and after the insertion body is assembled between the plurality of divided bodies, Combining the divided bodies.
  • the insert can swing with respect to the exterior body. . Since the insert has first and second spherical portions having different radii, the radial load and thrust load that can be loaded can be adjusted while keeping the size of the spherical machine element compact.
  • the thrust load that can be loaded is radial. Can be close to the load.
  • the radius of the first spherical portion that receives the radial load is reduced, the outer diameter of the spherical machine element can also be reduced.
  • the first spherical portion of the insert can receive a radial load, and the second spherical portion can receive a thrust load.
  • the force S is applied to receive the thrust load in both axial directions of the insert.
  • the insertion body can be swung with respect to the exterior body.
  • the inserted body smoothly swings with respect to the exterior body.
  • the insert body smoothly swings with respect to the exterior body.
  • the first A sliding film can be formed around the spherical surface.
  • the first A sliding film can be formed around the spherical surface.
  • the first spherical surface portion of the insert has an undercut that is recessed relative to the second spherical portion, the first spherical surface of the insert A first segment can be formed around the part.
  • the first A first segment can be formed around the spherical portion.
  • the first and second segments of the exterior body are mounted around the first and second spherical surface portions of the insert body having a hollow undercut. can do.
  • the dimension of the spherical machine element is kept compact.
  • a spherical mechanical element capable of adjusting the radial load and the thrust load that can be applied is obtained.
  • the first and second spherical surfaces of the insert even if the first and second spherical portions of the insert are recessed undercuts.
  • An exterior body can be attached around the part.
  • FIG. 1 is a perspective view of a spherical bearing according to a first embodiment of the present invention.
  • FIG.3 Perspective view of inner ring of spherical bearing
  • FIG. 5 Perspective view of another example of spherical bearing
  • FIG. 6 Perspective view of inner ring of spherical bearing of Fig. 5
  • FIG. 7 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (the state where the inner ring is processed)
  • FIG. 8 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (a state where the first spherical portion of the inner ring is covered with a sliding film)
  • FIG. 9 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (the state where the first segment is molded on the inner ring)
  • FIG. 10 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (a state in which the second spherical portion of the inner ring is covered with a sliding film)
  • FIG. 11 Diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (with the O-ring attached to the first segment)
  • FIG. 12 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (the second segment is fixed to the first segment).
  • FIG. 13 is a perspective view of a spherical bearing according to a second embodiment of the present invention.
  • FIG. 15 is a perspective view of the inner ring of the spherical bearing of FIG.
  • FIG. 16 is an exploded perspective view of a spherical bearing according to a third embodiment of the present invention.
  • FIG. 17 is a perspective view of a spherical bearing according to a fourth embodiment of the present invention.
  • FIG. 18 is a perspective view of the spherical bearing in FIG. 17 seen through.
  • FIG. 19 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (in which the inner ring is processed) state)
  • FIG. 20 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (a state where the first spherical portion of the inner ring is covered with a sliding film)
  • FIG. 21 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (with the lower divided segment fitted to the inner ring)
  • FIG. 22 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (a state where a pair of divided segments are coupled)
  • FIG. 23 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (a state where the second spherical surface portion of the inner ring is covered with a sliding film)
  • FIG. 24 Cross-sectional view showing an example of the outer ring coupling method (sleeve caulking) using caulking
  • FIG. 25 Sectional view showing another example (radial caulking) of the outer ring coupling method using caulking
  • FIG. 26 is a cross-sectional view showing another example (axial caulking) of the outer ring coupling method using caulking.
  • FIG. 28 is a diagram showing an example of a method of joining divided bodies using caulking.
  • FIG. 29 is a diagram showing an example of a method of joining divided bodies
  • FIG.32 Perspective view of conventional ball joint (including partial cross section)
  • FIG. 1 and FIG. 2 show a first embodiment (spherical bearing) of the spherical machine element of the present invention.
  • Fig. 1 shows a perspective view of a spherical bearing
  • Fig. 2 shows a side view.
  • An inner ring 2 which is an example of a inserted body, is incorporated inside a cylindrical outer ring 1 which is an example of an exterior body.
  • the inner ring 2 can swing within a predetermined inclination angle ⁇ with respect to the outer ring 1.
  • the shape of the outer ring 1 and the inner ring 2 is a rotating body (that is, a shape formed by rotating around the axis 3 and having symmetry).
  • FIG. 3 shows a perspective view of the inner ring 2.
  • the inner ring 2 has a first spherical surface portion 4 at the central portion in the axial direction, and has second spherical surface portions 5 at both end portions in the axial direction.
  • the connecting portion 10 between the first spherical portion 4 and the second spherical portion 5 is recessed.
  • the first spherical portion 4 is formed around the axis 3 and the center in the axial direction is most swelled.
  • the second spherical surface portion 5 is formed around the axis 3 and the end on the first spherical surface portion 4 side is most swelled!
  • the outer diameter of the second spherical portion 5 is larger than the outer diameter of the first spherical portion 4.
  • the inner ring 2 is made of metal such as iron or aluminum and is manufactured by forging or forging. On the surface of the first and second spherical surface parts 4 and 5 of the inner ring 2, self-lubricating fluororesin, molybdenum disulfide, graphite, or low-sliding nylon, Teflon (registered trademark) Sliding films 4a and 5a made of a lubricating film such as polyacetal or a molded resin product are coated.
  • Inner ring 2 penetrates in the axial direction Hole 6 is drilled. When using a spherical bearing, insert the shaft into the through hole 6, screw the nut into the male thread machined into the shaft, and fasten the shaft to the inner ring 2.
  • FIG. 4 shows a cross-sectional view of the spherical bearing.
  • the first spherical surface portion 4 of the inner ring 2 is composed of a part of a spherical surface having a radius R1 centered on the axis. Since the first spherical surface portion 4 is covered with the sliding film 4a, the surface of the sliding film 4a actually consists of a part of the spherical surface.
  • the second spherical surface portion 5 provided at both ends in the axial direction of the first spherical surface portion 4 has substantially the same center P as the first spherical surface portion 4 and has a larger radius R2 than the first spherical surface portion 4. It consists of a part of the spherical surface.
  • the center is substantially the same
  • “the center is substantially the same” means that the center of the first spherical portion 4 and the second spherical portion 5 are the same point, and the first spherical portion 4 and the second spherical portion 4 are the same. This includes the case where the center of the spherical surface portion 5 is slightly displaced with respect to the outer ring 1 so that the inner ring 2 can swing. Since the second spherical portion 5 is also covered with the sliding film 5a !, the surface of the sliding film 5a actually consists of a part of a spherical surface.
  • the outer ring 1 is divided into three parts, and the first segment 8 in the center in the axial direction and the pair of second segments 9 attached to both ends in the axial direction of the first segment 8 and the force are also configured. It is done.
  • a first spherical surface recess 8 a corresponding to the first spherical surface portion 4 is formed on the inner periphery of the ring-shaped first segment 8. That is, the first concave portion 8a for the spherical surface portion is formed of a part of the spherical surface with the radius R1 having the center P on the axis 3, and the center in the axial direction is most concave.
  • a second spherical portion recess 9 a corresponding to the second spherical portion 5 is also formed on the inner periphery of the ring-shaped second segment 9. That is, the second spherical portion recess 9a is formed of a part of a spherical surface having a center R on the axis 3 and having a radius R2, and the end on the first spherical portion recess 8a side is most recessed.
  • the first and second segments 8, 9 are made of metal such as iron and aluminum.
  • the inner ring 2 Since the first spherical portion 4 is sandwiched between the pair of second spherical portions 5 in the axial direction, the inner ring 2 has an undercut that is depressed in the central first spherical portion 4. Yes. Since the outer diameter of the second spherical portion 5 of the inner ring 2 is larger than the inner diameter of the first segment 8, the first segment 8 cannot pass through the second spherical portion 5. For this reason, the first segment 8 is manufactured by outsert molding around the first spherical surface portion 4 of the inner ring 2. Specifically, gold It is manufactured by inserting the inner ring 2 into the mold and die casting molten metal around the first spherical surface portion 4 of the inner ring 2. Die-casting is a forging method in which a molten product such as an aluminum alloy or zinc alloy is pressed into a precision mold by pressure to obtain a porcelain.
  • Die-casting is a forging method in which a molten product such as an aluminum alloy or zinc
  • the second segment 9 is manufactured separately from the inner ring 2 by forging, forging or cutting.
  • the second segment 9 is fitted around the second spherical surface portion 5 of the inner ring 2 and is coupled to both end surfaces of the first segment 8 in the axial direction.
  • Ring-shaped O-ring grooves 8b and 9b are formed on the opposing surfaces of the first segment 8 and the second segment 9, respectively.
  • An O-ring 13 that seals the joint surface is fitted into the O-ring grooves 8b and 9b.
  • a radial radial load (1) and an axial thrust load (2) are applied to the inner ring 2 with respect to the axis 3.
  • the first spherical surface portion 4 receives the radial load (1) applied to the inner ring 2 and the second spherical surface portion 5 receives the thrust load (2). That is, when a radial load (1) is applied to the inner ring 2, the first spherical surface portion 4 of the inner ring 2 comes into contact with the first spherical surface recess 8a of the first segment 8, and the thrust load (2) is applied. Then, the second spherical surface portion 5 of the inner ring 2 and the second spherical surface concave portion 9a of the second segment 9 come into contact with each other.
  • the thrust load (2) that can be applied is reduced to the radial load ( The ability to approach 1) S. Further, by making the radius R1 of the first spherical surface portion 4 smaller than the radius R2 of the second spherical surface portion 5, the outer diameter of the spherical bearing can be made compact.
  • FIG. 5 and 6 show other examples of spherical bearings.
  • FIG. 5 shows a perspective view of the spherical bearing
  • FIG. 6 shows a perspective view of the inner ring.
  • the first and second spherical portions 4 and 5 of the inner ring 2 are not covered with a sliding film. This is because if the first spherical portion 4 and the second spherical portion 5 are covered with a sliding film, the cost may increase. in this way The first spherical part 4 and the second spherical part 5 do not have to be covered with a sliding film! /.
  • the first and second spherical surface portions 4 and 5 of the inner ring 2 are in sliding contact with the first and second spherical surface recesses 8a and 9a of the outer ring 1 directly.
  • the cavity 11 is filled with lubricating oil such as sliding surface oil and grease.
  • first, the first spherical portion 4 and the second spherical portion 5 are processed on the outer periphery of the metal inner ring 2 by forging, forging, or cutting.
  • a sliding film 4a having a resin such as fluororesin, polyetherketone, nylon, or an alloy such as brass is formed around the first spherical surface portion 4.
  • a sliding film is attached to the first spherical surface portion 4.
  • This molding is called outsert molding because it is a molding in which resin or the like is attached around the first spherical surface portion 4.
  • synthetic resin other solid lubricants can be coated with low sliding materials.
  • the first segment 8 is outsert-molded around the first spherical surface portion 4. Specifically, the first spherical surface portion 4 of the inner ring 2 is inserted into a mold, and molten metal is die-cast into the mold. Since the first spherical surface portion 4 of the inner ring is undercut, such a molding process is necessary.
  • the O-ring groove 8b of the first segment 8 may be cut after die casting.
  • a slide film 5 a made of a resin such as fluororesin, polyether ketone, nylon, or alloy such as brass is formed around the second spherical portion 5 by outsert molding.
  • a resin such as fluororesin, polyether ketone, nylon, or alloy such as brass
  • another solid lubricant may be coated with a low sliding material.
  • the O-ring 13 is fitted into the O-ring groove 8 b of the first segment 8.
  • FIG. 12 the second segment 9 is fitted around the second spherical surface portion 5 of the inner ring 2, and the second segment 9 is coupled to the first segment 8. .
  • the second segment 9 is outsert-molded around the second spherical surface portion 5 of the inner ring 2, the periphery of the second spherical surface portion 5 is buried. Since the cavity disappears and the inner ring 2 cannot swing with respect to the outer ring 1, the second segment 9 is manufactured in advance by forging, forging or cutting, and is fitted into the inner ring 2 later.
  • FIGS. 13 and 14 show a second embodiment (spherical bearing) of the spherical machine element of the present invention.
  • This spherical bearing also includes an outer ring 21 and an inner ring 22 fitted to the outer ring 21, and the inner ring 22 can swing with respect to the outer ring 21 within a range of a predetermined inclination angle.
  • FIG. 15 shows a perspective view of the inner ring.
  • the inner ring 22 has a first spherical surface portion 24 and a second spherical surface portion 25 on its outer peripheral surface. Unlike the spherical bearing of the first embodiment, the second spherical portion 25 is formed only on one side of the first spherical portion 24 in the axial direction.
  • the center P of the first spherical portion 24 is substantially the same as the center P of the second spherical portion 25, and the radius R2 of the second spherical portion 25 is Larger than radius R1 of one spherical surface portion 24. Then, the second spherical portion 25 receives a thrust load (2) acting in one axial direction of the inner ring 22, and the first spherical portion 24 receives a radial load (1) acting radially on the axial line 23. receive.
  • the outer ring 21 has a first segment 28 in which a first spherical portion recess 28a corresponding to the first spherical portion 24 is formed, and a second spherical portion corresponding to the second spherical portion 25. It is divided into a second segment 29 in which a recess 29a is formed. The second segment 29 is provided only on one side of the first segment 28.
  • FIG. 16 shows a third embodiment (spherical bearing) of the spherical machine element of the present invention.
  • This spherical bearing also includes an outer ring 31 and an inner ring 2 fitted to the outer ring 31, and the inner ring 2 can swing within a predetermined inclination angle with respect to the outer ring 31.
  • the outer ring 31 of this embodiment is a cross section including the axis of the cylindrical outer ring 31 that is not divided by a cross section orthogonal to the axis of the cylindrical outer ring 1 as in the spherical bearing of the first embodiment. Thus, for example, it is divided into two divided bodies 31a and 31b. Since the structure of the inner ring 2 is the same as that of the spherical bearing of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • Each divided body 31a, 31b is formed with a half circumference of first and second spherical surface concave portions 36, 37 corresponding to the first and second spherical surface portions 4, 5 of the inner ring 2, respectively.
  • the Each divided body 31a, 31b is manufactured by forging, forging or cutting. Around each segment, it extends in the circumferential direction. A groove 35 is formed.
  • a coupling means such as a coil spring 33 rounded into a circle, a rubber band, or a heat shrinkable tube is fitted in the groove 35.
  • the coupling means couples the pair of divided bodies 31a and 31b so as not to be separated.
  • a cylindrical housing 34 can be used instead of the coil spring 33 as the coupling means.
  • the housing 34 and the outer ring 31 are preferably fitted with a tight fit.
  • the coil spring 33 and the housing 34 may be used together to form a coupling means.
  • the divided bodies 31a and 31b may be directly coupled by welding such as laser welding.
  • a cavity for swinging the inner ring 2 is provided between the divided bodies 31a and 31b and the inner ring 2.
  • the inner ring 2 may or may not be coated with a sliding film made of a solid lubricant. If the sliding film is not covered, the cavity is filled with lubricating oil.
  • the man-hour of the outer ring 31 can be reduced, and therefore the manufacturing cost of the outer ring 31 can be reduced.
  • FIGS. 17 and 18 show a spherical bearing according to a fourth embodiment of the present invention.
  • the spherical bearing of this embodiment includes a central first segment 43 in which the outer ring 41 is divided by a cross section perpendicular to the axis of the outer ring 41, and a first segment 43. And a pair of second segments 42 provided on both sides in the axial direction. At both ends in the axial direction of the outer peripheral surface of the first segment 43, a receiving port 43a having a reduced diameter is formed (see FIG. 22). The end of the second segment 42 is fitted into the receptacle 43a.
  • the first segment 43 is a divided segment divided by a cross section including the axis of the outer ring 41.
  • the second segment 42 is fixed to the first segment 43 by welding such as laser welding, MIG welding, or TIG welding after being fitted into the receiving port 43a of the first segment 43.
  • FIGS. 19 to 23 show manufacturing process diagrams of the spherical bearing of the fourth embodiment.
  • the first spherical surface portion 47 and the second spherical surface portion 48 are processed on the outer peripheral surface of the inner ring 44 by forging, forging, or cutting.
  • a sliding film 47a made of a resin such as fluororesin, nylon, polyetherketone, or an alloy such as brass is provided around the first spherical portion 47 of the inner ring 44. Covered Overturn.
  • the sliding film 47a may be outsert-molded around the first spherical surface portion 47, or may be a combination of the divided sliding film 47a made of a resin molded product divided into two semicircles. .
  • the segment segment 46 divided into two semicircles is fitted around the sliding membrane 47a, and these are coupled by coupling means such as bolts and welding.
  • the second spherical portion 48 is covered with a ring-shaped sliding film 48a.
  • the sliding film 48a may be outsert-molded on the second spherical surface portion 48, or may be manufactured by fitting a molded product pre-resin-molded into the second spherical surface portion 48.
  • the second segment 42 is attached to the second spherical portion 48.
  • the first segment 43 is formed with a receiving port 43a (see FIG. 23).
  • the second segment 42 is fitted in the receptacle 43a of the first segment 43. After fitting the second segment 42 to the first segment 43, these are joined by laser welding or the like. As shown in FIG. 18, the second segment 42 is formed with an air vent hole 42a during laser welding.
  • the first segment 43 and the second segment 42 may be laser-welded at the same time as the first segment 43 and the second segment 42 are laser-welded.
  • the stepped receiving port 43 a in the first segment 43, it is possible to prevent laser welding from entering the outer ring 41. Also, the O-ring can be omitted by welding the first segment 43 and the second segment 42.
  • the inner ring 2 , 44 is undercut with a recessed center.
  • the outer rings 1 and 41 are divided into three parts by a cutting plane orthogonal to the axis, or the outer ring 31 is divided into two by a cut section including the axis.
  • FIG. 24 shows an example of a coupling method using force and crimping.
  • First segment 71 and second segment A cylindrical sleeve 73 is press-fitted around the segment 72.
  • the sleeve 73 is fitted to the back 72a of the second segment 72.
  • a taper may be formed on the inner peripheral surface of the sleeve 73.
  • the end 73a of the sleeve 73 is bent inward so as to be plastically deformed. Note that the first segment 71 and the second segment 72 may be joined by bending both ends of the cylindrical sleeve 73.
  • FIG. 25 and FIG. 26 show a method of directly caulking the first segment 71 and the second segment 72 without using a sleeve.
  • Figure 25 shows the caulking in the radial direction
  • Figure 26 shows the caulking in the axial direction.
  • a radial caulking force is applied to the end 72a of the second segment 72, and the end 72a is turned inward.
  • the first segment 71 and the second segment 72 may be fixed by bending.
  • the caulking force in the axial direction is applied to the first segment 71 or the second segment 72.
  • the first segment 71 and the second segment 72 may be combined.
  • welding can be used as a method of joining the first segment 71.
  • a split segment 76 is provided with a hook-like hooking force 76a and these are engaged with each other. You may do it. Since the ij segment 76 can slide along the spherical surface of the inner ring 2, the work of engaging the hook and hook 76a is facilitated.
  • FIG. 28 shows an example in which the divided body 74 divided into two along the axis is coupled using the sleeve 75. After the sleeve 75 is press-fitted into the divided body 74, the two divided bodies 74 are joined by bending the end portion of the sleeve 75.
  • FIG. 29 shows another example of a method for joining two divided bodies 74.
  • Each of the divided bodies 74 may be provided with a hook-like hooking force, a flange 74a, and these may be engaged with each other.
  • the radius of the first spherical portion and the radius of the second spherical portion can be variously changed depending on the radial to be loaded and the thrust load. For example, radial load When the weight is large, the radius of the first spherical portion may be larger than the radius of the second spherical portion. If it carries out like this, the length of the axial direction of a spherical bearing can be made small.
  • the insert has a third spherical surface formed of a part of a spherical surface having a radius R3 different from the radii Rl and R2 of the first spherical surface portion and the second spherical surface portion, and the exterior body is a third spherical surface portion.
  • the center of the third spherical portion needs to substantially coincide with the centers of the first and second spherical portions.
  • the spherical mechanical element of the present invention can be applied to a spherical bearing, a rod end shown in FIG. 31, a ball joint shown in FIG. 32, or a pillow ball. Since the rigidity in the thrust direction is high V and! /, It is suitable as an alternative to ball bushes and pillow balls incorporated in automobile suspensions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

A spherical machine element that has compact dimensions and in which a radial load and thrust load that the element can receive are adjustable. An insertion body (2) is inserted into an exterior body (1). On the outer peripheral surface of the insertion body (2) are provided a first spherical surface section (4) and a second spherical surface section (5). The first spherical surface section (4) is constructed from a part of a spherical surface having a predetermined radius (R1). The second spherical surface section (5) has substantially the same center (P) as the first spherical surface section (4) and is constructed from a part of a spherical surface that is different from the spherical surface of the first spherical surface section (4) and has a radius (R2). On the inner peripheral surface of the exterior body (1) are provided a recess (8a) and a recess (9a) that correspond to the first spherical surface section (4) and the second spherical surface section (5), respectively. The insertion body (2) rocks relative to the exterior body (1) about the center (P).

Description

明 細 書  Specification
球面機械要素及びその製造方法  Spherical machine element and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、外装体とこれに揷入される揷入体とが球面接触して、外装体に対する揷 入体の揺動を許容する球面軸受、ロッドエンド、ボールジョイント、ピロボールなどの 球面機械要素に関する。  The present invention relates to a spherical bearing, a rod end, a ball joint, a pillow ball, etc. that allow the outer body and the inserted body inserted into the spherical surface to come into spherical contact to allow the inserted body to swing relative to the outer body. It relates to spherical machine elements.
背景技術  Background art
[0002] 外輪に対する内輪の揺動を許容する軸受として球面軸受が知られている。図 30に 示されるように、球面軸受 51は、外周面に所定の半径の球面部 52aを有する内輪 52 と、内輪 52の球面部 52aに対応する球面状凹部 53aを内周面に有する外輪 53と、 力も構成される。内輪 52と外輪 53との接触面は球面になり、内輪 52の球面部 52aの 中心と外輪 53の球面状凹部 53aの中心 Pとは一致する。内輪 52は外輪 53に対して 、中心 Pを原点にした XYZの座標軸のまわりを滑りながら回転できる。そして、内輪 5 2に嵌められる軸 54は、中心 Pのまわりを許容傾斜角 αの範囲内で揺動できる。  A spherical bearing is known as a bearing that allows the inner ring to swing with respect to the outer ring. As shown in FIG. 30, the spherical bearing 51 includes an inner ring 52 having a spherical portion 52a having a predetermined radius on the outer peripheral surface, and an outer ring 53 having a spherical concave portion 53a corresponding to the spherical portion 52a of the inner ring 52 on the inner peripheral surface. And power is also constructed. The contact surface between the inner ring 52 and the outer ring 53 is a spherical surface, and the center of the spherical portion 52a of the inner ring 52 and the center P of the spherical concave portion 53a of the outer ring 53 coincide. The inner ring 52 can rotate relative to the outer ring 53 while sliding around the XYZ coordinate axes with the center P as the origin. The shaft 54 fitted to the inner ring 52 can swing around the center P within the range of the allowable inclination angle α.
[0003] 球面機械要素としては、球面軸受の他に、図 31に示されるようなロッドエンド 58が ある。ロッドエンド 58は、外周面に所定の半径の球面部 55aを有する内輪 55と、内輪 55の球面部 55aに対応する球面状凹部 56aを内周面に有する外輪 56と、外輪 56を 保持するホルダ 57と力も構成される。ロッドエンド 58においては、外輪 56にホルダ 5 7がー体に成形される。ロッドエンド 58の他にも、図 32に示されるようなボールジョイ ント 59も知られている。ボールジョイント 59はリンクボール (登録商標)とも呼ばれ、球 面部 60にシャンク部 61を溶接したボール付きシャンク 62と、球面部 60をダイカスト铸 造でくるんだホルダ 63と、力も構成される。  As a spherical machine element, there is a rod end 58 as shown in FIG. 31 in addition to a spherical bearing. The rod end 58 includes an inner ring 55 having a spherical portion 55a with a predetermined radius on the outer peripheral surface, an outer ring 56 having a spherical concave portion 56a corresponding to the spherical portion 55a of the inner ring 55 on the inner peripheral surface, and a holder for holding the outer ring 56. 57 and power are also composed. In the rod end 58, a holder 57 is formed on the outer ring 56 into a body. In addition to the rod end 58, a ball joint 59 as shown in FIG. 32 is also known. The ball joint 59 is also called a link ball (registered trademark), and includes a ball shank 62 in which the shank portion 61 is welded to the ball surface portion 60, a holder 63 in which the spherical surface portion 60 is wrapped by die casting, and a force.
[0004] 図 30に示されるように、球面軸受 51は、内輪 52の揺動を許容するだけでなぐ内 輪 52の軸線に対し半径方向に作用するラジアル荷重 (1)をも負荷することができる。 ラジアル荷重 (1)が作用したときに、内輪 52と外輪 53との接触面積を確保できるから である。その一方、球面軸受 51は、内輪 52の軸線方向に作用するスラスト荷重 (2)は ラジアル荷重 (1)ほど負荷できない。スラスト荷重 (2)が作用したとき、外輪 53の軸線方 向の端部から内輪 52がせりだし、内輪 52と外輪 53の接触面積が確保できないから である。球面軸受 51だけでなぐロッドエンド 58やボールジョイント 59にあっても、ラ ジアル荷重ほどはスラスト荷重を負荷することができない。 [0004] As shown in FIG. 30, the spherical bearing 51 can also apply a radial load (1) acting in the radial direction on the axis of the inner ring 52, which not only allows the inner ring 52 to swing. it can. This is because the contact area between the inner ring 52 and the outer ring 53 can be secured when a radial load (1) is applied. On the other hand, the spherical bearing 51 cannot load the thrust load (2) acting in the axial direction of the inner ring 52 as much as the radial load (1). Axial direction of outer ring 53 when thrust load (2) is applied This is because the inner ring 52 protrudes from the opposite end, and the contact area between the inner ring 52 and the outer ring 53 cannot be secured. Even with the rod end 58 and the ball joint 59 that are connected only by the spherical bearing 51, the thrust load cannot be applied as much as the radial load.
[0005] この問題を解決し、ラジアル荷重だけでなぐスラスト荷重をも負荷できる球面軸受 が特許文献 1に開示されている。図 33に示されるように、この球面軸受 65において は、外輪 66が軸線方向に三つに分割されている。そして、中央のセグメント 66aがラ ジアル荷重を受け、両側のセグメント 66b、 66cがスラスト荷重を受ける。 [0005] Patent Document 1 discloses a spherical bearing that can solve this problem and can apply a thrust load as well as a radial load alone. As shown in FIG. 33, in this spherical bearing 65, the outer ring 66 is divided into three in the axial direction. The central segment 66a receives a radial load, and the segments 66b and 66c on both sides receive a thrust load.
特許文献 1 :特開 2002— 327737号公報(1頁、図 1参照)  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-327737 (see page 1, Fig. 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、特許文献 1に記載の球面軸受にあっては、負荷できるスラスト荷重を大きく しょうとすると、内輪の球面部の半径を大きくし、外輪が内輪を覆う面積を大きくする 必要がある。内輪の球面部の半径が一定のまま外輪の軸線方向の長さを長くして、 外輪が内輪を覆う面積を大きくすると、内輪の揺動角度が制限されてしまうからである 。勿論、内輪の球面部の半径を大きくすると、球面軸受の外径が増大してしまう。  [0006] However, in the spherical bearing described in Patent Document 1, in order to increase the thrust load that can be applied, it is necessary to increase the radius of the spherical surface of the inner ring and increase the area of the outer ring covering the inner ring. . This is because if the axial length of the outer ring is increased while the radius of the spherical surface portion of the inner ring is constant, and the area of the outer ring covering the inner ring is increased, the swing angle of the inner ring is limited. Of course, when the radius of the spherical portion of the inner ring is increased, the outer diameter of the spherical bearing is increased.
[0007] そこで本発明は、球面機械要素の寸法をコンパクトに保った上で、負荷できるラジ アル荷重及びスラスト荷重を調整することができる球面機械要素及びその製造方法 を提供することを目的とする。  [0007] Therefore, an object of the present invention is to provide a spherical machine element capable of adjusting a radial load and a thrust load that can be loaded while keeping the size of the spherical machine element compact, and a method for manufacturing the same. .
課題を解決するための手段  Means for solving the problem
[0008] 以下、本発明につ!/、て説明する。  [0008] Hereinafter, the present invention will be described.
上記課題を解決するために、請求項 1に記載の発明は、所定の半径の球面の一部 からなる第一の球面部と、前記第一の球面部と実質的に同じ中心を持ち、前記第一 の球面部と異なる半径の球面の一部からなる第二の球面部と、を外周面に有する揷 入体と、この揷入体が挿入され、前記第一の球面部及び前記第二の球面部それぞ れに対応する第一の球面部用凹部及び第二の球面部用凹部を内周面に有する外 装体と、を備える球面機械要素である。  In order to solve the above-mentioned problem, the invention according to claim 1 has a first spherical surface portion formed of a part of a spherical surface having a predetermined radius, substantially the same center as the first spherical surface portion, and An inserted body having an outer peripheral surface having a second spherical surface portion formed of a part of a spherical surface having a different radius from the first spherical surface portion, and the inserted spherical body is inserted into the first spherical surface portion and the second spherical surface portion. A spherical machine element including an outer body having a first spherical surface recess and a second spherical surface recess on the inner peripheral surface corresponding to each of the spherical surfaces.
[0009] 請求項 2に記載の発明は、請求項 1に記載の球面機械要素において、前記第二の 球面部の半径は、前記第一の球面部の半径よりも大きぐそして、前記揷入体の軸 線方向にかかるスラスト荷重を、前記揷入体の前記第二の球面部が受けることができ 、前記揷入体の軸線に対し半径方向にかかるラジアル荷重を、前記揷入体の前記 第一の球面部が受けることができることを特徴とする。 [0009] The invention according to claim 2 is the spherical machine element according to claim 1, wherein a radius of the second spherical portion is larger than a radius of the first spherical portion, and the insertion Body axis A thrust load applied in the linear direction can be received by the second spherical surface portion of the insert, and a radial load applied in the radial direction with respect to the axial line of the insert is applied to the first load of the insert. A spherical portion can be received.
[0010] 請求項 3に記載の発明は、請求項 2に記載の球面機械要素において、前記第一の 球面部は、前記揷入体の軸線の周囲に形成されると共に前記軸線方向の中央が最 も膨らんでいて、前記第二の球面部は、前記揷入体の軸線の周囲に形成されると共 に前記軸線方向の第一の球面部側の端が最も膨らんでいることを特徴とする。  [0010] The invention according to claim 3 is the spherical machine element according to claim 2, wherein the first spherical portion is formed around the axis of the insert and has a center in the axial direction. The second spherical portion is most bulged, and the second spherical portion is formed around the axis of the insert, and the end on the first spherical portion side in the axial direction is most bulged. To do.
[0011] 請求項 4に記載の発明は、請求項 2又は 3に記載の球面機械要素において、前記 揷入体の前記第二の球面部は、前記第一の球面部の前記軸線方向の両側に設け られ、前記外装体の前記第二の球面部用凹部も、前記第二の球面部に対応して、 前記第一の球面部用凹部の前記軸線方向の両側に設けられることを特徴とする。  [0011] The invention according to claim 4 is the spherical machine element according to claim 2 or 3, wherein the second spherical portion of the insert is on both sides of the first spherical portion in the axial direction. The second spherical surface recess of the exterior body is also provided on both sides in the axial direction of the first spherical surface recess corresponding to the second spherical surface portion. To do.
[0012] 請求項 5に記載の発明は、請求項 1又は 2に記載の球面機械要素において、前記 外装体と前記揷入体との間には、前記外装体に対して前記揷入体が揺動できるよう に空洞が設けられることを特徴とする。  [0012] The invention according to claim 5 is the spherical machine element according to claim 1 or 2, wherein the insert is between the exterior body and the insert body with respect to the exterior body. It is characterized in that a cavity is provided so that it can swing.
[0013] 請求項 6に記載の発明は、請求項 5に記載の球面機械要素において、前記空洞に 潤滑剤が充填されることを特徴とする。  [0013] The invention according to claim 6 is the spherical machine element according to claim 5, wherein the cavity is filled with a lubricant.
[0014] 請求項 7に記載の発明は、請求項 1又は 2に記載の球面機械要素において、前記 揷入体の前記第一の球面部及び前記第二の球面部の周囲に、摺動膜が被覆される ことを特徴とする。  [0014] The invention according to claim 7 is the spherical mechanical element according to claim 1 or 2, wherein a sliding film is provided around the first spherical portion and the second spherical portion of the insert. It is characterized by being coated.
[0015] 請求項 8に記載の発明は、請求項 7に記載の球面機械要素において、前記摺動膜 は、前記揷入体の前記第一の球面部の周囲にアウトサート成形されることを特徴とす  [0015] The invention according to claim 8 is the spherical mechanical element according to claim 7, wherein the sliding film is outsert-molded around the first spherical portion of the insert. Features
[0016] 請求項 9に記載の発明は、請求項 7に記載の球面機械要素において、前記揷入体 の前記第一の球面部の周囲に被覆される摺動膜は、前記揷入体の軸線を含む切断 面により分割されると共に、樹脂の成型品からなる分割摺動膜を結合させてなること を特徴とする。 [0016] The invention according to claim 9 is the spherical machine element according to claim 7, wherein the sliding film coated around the first spherical portion of the insert is formed of the insert. In addition to being divided by a cut surface including an axis, a divided sliding film made of a resin molded product is combined.
[0017] 請求項 10に記載の発明は、請求項 1又は 2に記載の球面機械要素において、前 記外装体は、前記外装体の軸線に直交する断面により分割された、前記第一の球面 部用凹部を有する第一のセグメントと、前記第二の球面部用凹部を有する第二のセ グメントとを結合させてなり、前記第一のセグメントは、前記揷入体の周囲にアウトサ ート成形されてレ、ることを特徴とする。 [0017] The invention according to claim 10 is the spherical machine element according to claim 1 or 2, wherein the exterior body is divided by a cross section perpendicular to the axis of the exterior body. A first segment having a recess for a part and a second segment having a recess for the second spherical part, and the first segment is outsert around the insert. It is characterized by being molded.
[0018] 請求項 11に記載の発明は、請求項 1又は 2に記載の球面機械要素において、前 記外装体は、前記外装体の軸線に直交する断面により分割された、前記第一の球面 部用凹部を有する第一のセグメントと、前記第二の球面部用凹部を有する第二のセ グメントとを結合させてなり、前記第一のセグメントは、前記外装体の軸線を含む切断 面により分割された分割セグメントを結合させてなることを特徴とする。  [0018] The invention according to claim 11 is the spherical machine element according to claim 1 or 2, wherein the exterior body is divided by a cross section orthogonal to an axis of the exterior body. A first segment having a concave part for a part and a second segment having a concave part for the second spherical part are joined together, and the first segment is formed by a cutting plane including the axis of the exterior body. It is characterized by combining the divided segments.
[0019] 請求項 12に記載の発明は、請求項 4に記載の球面機械要素において、前記外装 体は、前記外装体の軸線に直交する切断面により分割された、前記第一の球面部用 凹部を有する第一のセグメントと、前記第二の球面部用凹部を有する一対の第二の セグメントとを結合させてなることを特徴とする。  [0019] The invention according to claim 12 is the spherical machine element according to claim 4, wherein the exterior body is divided by a cut surface perpendicular to the axis of the exterior body. A first segment having a recess and a pair of second segments having the second spherical surface recess are combined.
[0020] 請求項 13に記載の発明は、請求項 1又は 2に記載の球面機械要素において、前 記外装体は、前記外装体の軸線を含む切断面により分割され、前記第一の球面部 用凹部及び前記第二の球面部用凹部の周方向の一部を有する複数の分割体を結 合させてなることを特徴とする。  [0020] The invention according to claim 13 is the spherical machine element according to claim 1 or 2, wherein the exterior body is divided by a cut surface including an axis of the exterior body, and the first spherical portion And a plurality of divided bodies having a part in the circumferential direction of the concave portion for the second spherical portion and the concave portion for the second spherical surface portion.
[0021] 請求項 14に記載の発明は、所定の半径の球面の一部からなる第一の球面部と、 前記第一の球面部と実質的に同じ中心を持ち、前記第一の球面部の半径と異なる 半径の球面の一部からなる第二の球面部とを、揷入体の外周面に加工する揷入体 加工工程と、前記揷入体の周囲に、前記第一の球面部及び前記第二の球面部それ ぞれに対応する第一の球面部用凹部及び第二の球面部用凹部を内周面に有する 外装体を装着する外装体装着工程と、を備える球面機械要素の製造方法である。  [0021] The invention according to claim 14 includes a first spherical surface portion formed of a part of a spherical surface having a predetermined radius, the first spherical surface portion having substantially the same center as the first spherical surface portion. And a second spherical surface portion made of a part of a spherical surface having a radius different from the radius of the insertion body. The insertion body processing step for processing the outer peripheral surface of the insertion body, and the first spherical surface portion around the insertion body. A spherical machine element comprising: an exterior body mounting step of mounting an exterior body having a first spherical surface recess and a second spherical surface recess corresponding to each of the second spherical surface portions on an inner peripheral surface thereof. It is a manufacturing method.
[0022] 請求項 15に記載の発明は、請求項 14に記載の球面機械要素の製造方法におい て、前記外装体装着工程は、前記揷入体の前記第一の球面部の周囲に、第一のセ グメントをアウトサート成形する第一のセグメント成形工程と、前記揷入体の前記第二 の球面部に対応する第二の球面部用凹部を有する第二のセグメントを、前記揷入体 の前記第二の球面部の周囲に嵌めて、前記第一のセグメントに結合する第二のセグ メント結合工程と、を備えることを特徴とする。 [0023] 請求項 16に記載の発明は、請求項 14に記載の球面機械要素の製造方法におい て、前記外装体装着工程は、前記揷入体の前記第一の球面部の周囲に、前記外装 体の軸線を含む切断面により分割された分割セグメントを結合して第一のセグメント を得る分割セグメント結合工程と、前記揷入体の前記第二の球面部に対応する第二 の球面部用凹部を有する第二のセグメントを、前記揷入体の前記第二の球面部の周 囲に嵌めて、前記第一のセグメントに結合する第二のセグメント結合工程と、を備える ことを特徴とする。 [0022] The invention according to claim 15 is the method of manufacturing a spherical machine element according to claim 14, wherein the exterior body mounting step is performed around the first spherical surface portion of the insert. A first segment forming step of outsert-molding one segment, and a second segment having a second spherical portion recess corresponding to the second spherical portion of the insert. And a second segment coupling step for fitting to the first segment and coupling to the first segment. [0023] The invention according to claim 16 is the method of manufacturing a spherical machine element according to claim 14, wherein the exterior body mounting step is performed around the first spherical surface portion of the insert body. A split segment joining step of joining the split segments divided by the cut surface including the axis of the exterior body to obtain a first segment, and a second spherical portion corresponding to the second spherical portion of the insert A second segment coupling step of fitting a second segment having a recess into the circumference of the second spherical surface portion of the insert and coupling the first segment to the first segment. .
[0024] 請求項 17に記載の発明は、請求項 14に記載の球面機械要素の製造方法におい て、前記外装体装着工程は、前記外装体の軸線を含む切断面により分割され、前記 第一の球面部用凹部及び前記第二の球面部用凹部の周方向の一部を有する複数 の分割体を用意する工程と、複数の分割体間に前記揷入体を組み込んだ後、前記 複数の分割体を結合する工程と、を備えることを特徴とする。  [0024] The invention according to claim 17 is the method of manufacturing a spherical machine element according to claim 14, wherein the exterior body mounting step is divided by a cut surface including an axis of the exterior body, A plurality of divided bodies having a part in the circumferential direction of the concave portion for the spherical surface portion and the concave portion for the second spherical surface portion, and after the insertion body is assembled between the plurality of divided bodies, Combining the divided bodies.
発明の効果  The invention's effect
[0025] 請求項 1に記載の発明によれば、揷入体の第一の球面部と第二の球面部の中心 が実質的に同じなので、外装体に対して揷入体が揺動できる。そして、揷入体が半 径の異なる第一及び第二の球面部を有するので、球面機械要素の寸法をコンパクト に保った上で、負荷できるラジアル荷重及びスラスト荷重を調整できる。  [0025] According to the invention described in claim 1, since the centers of the first spherical portion and the second spherical portion of the insert are substantially the same, the insert can swing with respect to the exterior body. . Since the insert has first and second spherical portions having different radii, the radial load and thrust load that can be loaded can be adjusted while keeping the size of the spherical machine element compact.
[0026] 請求項 2に記載の発明によれば、半径の小さい第一の球面部がラジアル荷重を受 け、半径の大きい第二の球面部がスラスト荷重を受けるので、負荷できるスラスト荷重 をラジアル荷重に近づけることができる。しかも、ラジアル荷重を受ける第一の球面部 の半径を小さくするので、球面機械要素の外径も小さくすることができる。  [0026] According to the invention of claim 2, since the first spherical portion having a small radius receives a radial load and the second spherical portion having a large radius receives a thrust load, the thrust load that can be loaded is radial. Can be close to the load. In addition, since the radius of the first spherical portion that receives the radial load is reduced, the outer diameter of the spherical machine element can also be reduced.
[0027] 請求項 3に記載の発明によれば、揷入体の第一の球面部がラジアル荷重を受ける ことができ、第二の球面部がスラスト荷重を受けることができる。  [0027] According to the invention described in claim 3, the first spherical portion of the insert can receive a radial load, and the second spherical portion can receive a thrust load.
[0028] 請求項 4に記載の発明によれば、揷入体の軸線方向の両方向のスラスト荷重を受 けること力 Sでさる。  [0028] According to the invention described in claim 4, the force S is applied to receive the thrust load in both axial directions of the insert.
[0029] 請求項 5に記載の発明によれば、外装体に対して揷入体を揺動させることができる  [0029] According to the invention described in claim 5, the insertion body can be swung with respect to the exterior body.
[0030] 請求項 6に記載の発明によれば、外装体に対して揷入体が滑らかに揺動する。 [0031] 請求項 7に記載の発明によれば、外装体に対して揷入体が滑らかに揺動する。 [0030] According to the invention of claim 6, the inserted body smoothly swings with respect to the exterior body. [0031] According to the invention of claim 7, the insert body smoothly swings with respect to the exterior body.
[0032] 請求項 8に記載の発明によれば、たとえ揷入体の第一の球面部が第二の球面部よ りもくぼんだアンダーカットになっていても、揷入体の第一の球面部の周囲に摺動膜 を形成すること力できる。 [0032] According to the invention described in claim 8, even if the first spherical surface portion of the insert is undercut that is more recessed than the second spherical portion, the first A sliding film can be formed around the spherical surface.
[0033] 請求項 9に記載の発明によれば、たとえ揷入体の第一の球面部が第二の球面部よ りもくぼんだアンダーカットになっていても、揷入体の第一の球面部の周囲に摺動膜 を形成すること力できる。 [0033] According to the invention of claim 9, even if the first spherical surface portion of the insert is undercut that is more recessed than the second spherical portion, the first A sliding film can be formed around the spherical surface.
[0034] 請求項 10に記載の発明によれば、たとえ揷入体の第一の球面部が第二の球面部 よりもくぼんだアンダーカットになっていても、揷入体の第一の球面部の周囲に第一 のセグメントを成形することができる。 [0034] According to the invention of claim 10, even if the first spherical surface portion of the insert has an undercut that is recessed relative to the second spherical portion, the first spherical surface of the insert A first segment can be formed around the part.
[0035] 請求項 1 1に記載の発明によれば、たとえ揷入体の第一の球面部が第二の球面部 よりもくぼんだアンダーカットになっていても、揷入体の第一の球面部の周囲に第一 のセグメントを成形することができる。 [0035] According to the invention described in claim 11, even if the first spherical surface portion of the insert is undercut that is recessed from the second spherical portion, the first A first segment can be formed around the spherical portion.
[0036] 請求項 12に記載の発明によれば、くぼんだアンダーカットになっている揷入体の第 一及び第二の球面部の周囲に、外装体の第一及び第二のセグメントを装着すること ができる。 [0036] According to the invention of claim 12, the first and second segments of the exterior body are mounted around the first and second spherical surface portions of the insert body having a hollow undercut. can do.
[0037] 請求項 13に記載の発明によれば、たとえ揷入体の第一及び第二の球面部がくぼ んだアンダーカットになっていても、揷入体の第一及び第二の球面部の周囲に外装 体を装着できる。また、外装体を廉価に製造できる。  [0037] According to the invention of claim 13, even if the first and second spherical surface portions of the insert are concavely cut, the first and second spherical surfaces of the insert. An exterior body can be attached around the part. Further, the exterior body can be manufactured at a low cost.
[0038] 請求項 14に記載の発明によれば、球面機械要素の寸法をコンパクトに保った上で[0038] According to the invention of claim 14, the dimension of the spherical machine element is kept compact.
、負荷できるラジアル荷重及びスラスト荷重を調整できる球面機械要素が得られる。 A spherical mechanical element capable of adjusting the radial load and the thrust load that can be applied is obtained.
[0039] 請求項 15に記載の発明によれば、たとえ揷入体の第一及び第二の球面部がくぼ んだアンダーカットになっていても、揷入体の第一及び第二の球面部の周囲に外装 体を装着できる。 [0039] According to the invention described in claim 15, the first and second spherical surfaces of the insert even if the first and second spherical portions of the insert are recessed undercuts. An exterior body can be attached around the part.
[0040] 請求項 16に記載の発明によれば、たとえ揷入体の第一及び第二の球面部がくぼ んだアンダーカットになっていても、揷入体の第一及び第二の球面部の周囲に外装 体を装着できる。  [0040] According to the invention of claim 16, even if the first and second spherical surface portions of the insert are recessed undercuts, the first and second spherical surfaces of the insert. An exterior body can be attached around the part.
[0041] 請求項 17に記載の発明によれば、たとえ揷入体の第一及び第二の球面部がくぼ んだアンダーカットになっていても、揷入体の第一及び第二の球面部の周囲に外装 体を装着できる。また、外装体を廉価に製造できる。 [0041] According to the invention of claim 17, even if the first and second spherical surface portions of the insert are recessed, Even with an undercut, it is possible to attach an exterior body around the first and second spherical portions of the insert. Further, the exterior body can be manufactured at a low cost.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の第一の実施形態の球面軸受の斜視図 FIG. 1 is a perspective view of a spherical bearing according to a first embodiment of the present invention.
[図 2]球面軸受の側面図 [Figure 2] Side view of spherical bearing
[図 3]球面軸受の内輪の斜視図 [Fig.3] Perspective view of inner ring of spherical bearing
[図 4]球面軸受の断面図 [Figure 4] Cross section of spherical bearing
[図 5]球面軸受の他の例の斜視図 [Fig. 5] Perspective view of another example of spherical bearing
[図 6]図 5の球面軸受の内輪の斜視図 [Fig. 6] Perspective view of inner ring of spherical bearing of Fig. 5
[図 7]第一の実施形態の球面軸受の製造工程の一例を示す図(内輪を加工した状態 )  FIG. 7 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (the state where the inner ring is processed)
[図 8]第一の実施形態の球面軸受の製造工程の一例を示す図(内輪の第一の球面 部に摺動膜を被覆した状態)  FIG. 8 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (a state where the first spherical portion of the inner ring is covered with a sliding film)
[図 9]第一の実施形態の球面軸受の製造工程の一例を示す図(内輪に第一のセグメ ントを成形した状態)  FIG. 9 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (the state where the first segment is molded on the inner ring)
[図 10]第一の実施形態の球面軸受の製造工程の一例を示す図(内輪の第二の球面 部に摺動膜を被覆した状態)  FIG. 10 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (a state in which the second spherical portion of the inner ring is covered with a sliding film)
[図 11]第一の実施形態の球面軸受の製造工程の一例を示す図(第一のセグメントに Oリングを装着した状態)  [Fig. 11] Diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (with the O-ring attached to the first segment)
[図 12]第一の実施形態の球面軸受の製造工程の一例を示す図(第二のセグメントを 第一のセグメントに固定した状態)  FIG. 12 is a diagram showing an example of the manufacturing process of the spherical bearing of the first embodiment (the second segment is fixed to the first segment).
[図 13]本発明の第二の実施形態の球面軸受の斜視図  FIG. 13 is a perspective view of a spherical bearing according to a second embodiment of the present invention.
[図 14]図 13の球面軸受の側面図  [Fig.14] Side view of spherical bearing of Fig.13
[図 15]図 13の球面軸受の内輪の斜視図  FIG. 15 is a perspective view of the inner ring of the spherical bearing of FIG.
[図 16]本発明の第三の実施形態の球面軸受の分解斜視図  FIG. 16 is an exploded perspective view of a spherical bearing according to a third embodiment of the present invention.
[図 17]本発明の第四の実施形態の球面軸受の斜視図  FIG. 17 is a perspective view of a spherical bearing according to a fourth embodiment of the present invention.
[図 18]図 17の球面軸受の外輪を透視した斜視図  FIG. 18 is a perspective view of the spherical bearing in FIG. 17 seen through.
[図 19]第四の実施形態の球面軸受の製造工程の一例を示す図(内輪を加工した状 態) FIG. 19 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (in which the inner ring is processed) state)
[図 20]第四の実施形態の球面軸受の製造工程の一例を示す図(内輪の第一の球面 部に摺動膜を被覆した状態)  FIG. 20 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (a state where the first spherical portion of the inner ring is covered with a sliding film)
[図 21]第四の実施形態の球面軸受の製造工程の一例を示す図(内輪に下側の分割 セグメントを嵌めた状態)  FIG. 21 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (with the lower divided segment fitted to the inner ring)
[図 22]第四の実施形態の球面軸受の製造工程の一例を示す図(一対の分割セグメ ントを結合した状態)  FIG. 22 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (a state where a pair of divided segments are coupled)
[図 23]第四の実施形態の球面軸受の製造工程の一例を示す図(内輪の第二の球面 部に摺動膜を被覆した状態)  FIG. 23 is a diagram showing an example of the manufacturing process of the spherical bearing of the fourth embodiment (a state where the second spherical surface portion of the inner ring is covered with a sliding film)
[図 24]かしめを用いた外輪の結合方法の一例 (スリーブかしめ)を示す断面図  [Fig. 24] Cross-sectional view showing an example of the outer ring coupling method (sleeve caulking) using caulking
[図 25]かしめを用いた外輪の結合方法の他の例(半径方向かしめ)を示す断面図 [FIG. 25] Sectional view showing another example (radial caulking) of the outer ring coupling method using caulking
[図 26]かしめを用いた外輪の結合方法の他の例(軸線方向かしめ)を示す断面図FIG. 26 is a cross-sectional view showing another example (axial caulking) of the outer ring coupling method using caulking.
[図 27]分割セグメントの結合方法の一例を示す図 [Fig.27] Diagram showing an example of how to combine segmented segments
[図 28]かしめを用いた分割体の結合方法の一例を示す図  FIG. 28 is a diagram showing an example of a method of joining divided bodies using caulking.
[図 29]分割体の結合方法の一例を示す図  FIG. 29 is a diagram showing an example of a method of joining divided bodies
[図 30]従来の球面軸受の軸線に沿った断面図  [Fig.30] Sectional view along axis of conventional spherical bearing
[図 31]従来のロッドエンドの断面図  [Fig.31] Cross section of conventional rod end
[図 32]従来のボールジョイントの斜視図(一部断面を含む)  [Fig.32] Perspective view of conventional ball joint (including partial cross section)
[図 33]従来の球面軸受の軸線に沿った断面図 [Fig.33] Cross section along axis of conventional spherical bearing
符号の説明 Explanation of symbols
1 , 21 , 31 , 41…外輪(外装体) 1, 21, 31, 41… Outer ring (exterior body)
2, 22, 44…内輪 (揷入体)  2, 22, 44… inner ring
3, 23…車由線  3, 23 ...
4, 24, 47· · ·第一の球面部  4, 24, 47
5, 25, 48 · · ·第二の球面部  5, 25, 48 ... the second spherical part
4a, 5&—摺動膜 4a, 5 & —sliding membrane
47a…分割摺動膜  47a… Partial sliding membrane
8, 28, 43, 71…第一のセグメント 8a, 28a, 36 · · ·第一の球面部用凹部 8, 28, 43, 71… first segment 8a, 28a, 36 ...
9, 29, 42, 72…第二のセグメント  9, 29, 42, 72… second segment
46 , 76…分害 IJセグメント  46, 76… Pollution IJ segment
9a, 29a, 37· · ·第二の球面部用凹部  9a, 29a, 37
31 a, 31b, 74…分害 ij体  31 a, 31b, 74… harm ij
11 · · ·空洞  11 · · · Cavity
R1 · · ·第一の球面部の半径  R1 · · · Radius of the first spherical surface
R2' 第二の球面部の半径  R2 'Radius of the second spherical part
P…中心  P ... Center
(1) · · ·ラジアル荷重  (1) · · · Radial load
(2) · · ·スラスト荷重  (2) Thrust load
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 図 1及び図 2は、本発明の球面機械要素の第一の実施形態(球面軸受)を示す。図 1は球面軸受の斜視図を示し、図 2は側面図を示す。外装体の一例である円筒形状 の外輪 1の内部には、揷入体の一例である内輪 2が組み込まれる。図 2に示されるよ うに、内輪 2は外輪 1に対して所定の傾斜角 αの範囲内で揺動できる。外輪 1及び内 輪 2の形状は、回転体 (すなわち軸線 3を軸として回転してつくられ、対称性を持つ形 状)である。 FIG. 1 and FIG. 2 show a first embodiment (spherical bearing) of the spherical machine element of the present invention. Fig. 1 shows a perspective view of a spherical bearing, and Fig. 2 shows a side view. An inner ring 2, which is an example of a inserted body, is incorporated inside a cylindrical outer ring 1 which is an example of an exterior body. As shown in FIG. 2, the inner ring 2 can swing within a predetermined inclination angle α with respect to the outer ring 1. The shape of the outer ring 1 and the inner ring 2 is a rotating body (that is, a shape formed by rotating around the axis 3 and having symmetry).
[0045] 図 3は内輪 2の斜視図を示す。内輪 2は軸線方向の中央部に第一の球面部 4を有 し、軸線方向の両端部に第二の球面部 5を有する。第一の球面部 4と第二の球面部 5との接続部分 10は窪んでいる。第一の球面部 4は、軸線 3の周囲に形成されると共 に軸線方向の中央が最も膨らんでいる。第二の球面部 5は、軸線 3の周囲に形成さ れると共に第一の球面部 4側の端が最も膨らんで!/、る。第二の球面部 5の外径は第 一の球面部 4の外径よりも大きい。内輪 2は、鉄、アルミなどの金属製であり、铸造又 は鍛造などにより製造される。内輪 2の第一及び第二の球面部 4, 5の表面には、自 己潤滑性を有するフッ素樹脂、二硫化モリブデン、グラフアイト、あるいは、低摺動性 を有するナイロン、テフロン (登録商標)、ポリアセタールなどの潤滑膜、又は樹脂の 成型品などからなる摺動膜 4a, 5aが被覆される。内輪 2には軸線方向に伸びる貫通 孔 6が空けられる。球面軸受を使用する際は、貫通孔 6に軸を揷入し、軸に加工した 雄ねじにナットを螺合させて、軸を内輪 2に締結する。 FIG. 3 shows a perspective view of the inner ring 2. The inner ring 2 has a first spherical surface portion 4 at the central portion in the axial direction, and has second spherical surface portions 5 at both end portions in the axial direction. The connecting portion 10 between the first spherical portion 4 and the second spherical portion 5 is recessed. The first spherical portion 4 is formed around the axis 3 and the center in the axial direction is most swelled. The second spherical surface portion 5 is formed around the axis 3 and the end on the first spherical surface portion 4 side is most swelled! The outer diameter of the second spherical portion 5 is larger than the outer diameter of the first spherical portion 4. The inner ring 2 is made of metal such as iron or aluminum and is manufactured by forging or forging. On the surface of the first and second spherical surface parts 4 and 5 of the inner ring 2, self-lubricating fluororesin, molybdenum disulfide, graphite, or low-sliding nylon, Teflon (registered trademark) Sliding films 4a and 5a made of a lubricating film such as polyacetal or a molded resin product are coated. Inner ring 2 penetrates in the axial direction Hole 6 is drilled. When using a spherical bearing, insert the shaft into the through hole 6, screw the nut into the male thread machined into the shaft, and fasten the shaft to the inner ring 2.
[0046] 図 4は、球面軸受の断面図を示す。内輪 2の第一の球面部 4は、軸線上に中心を 持つ半径 R1の球面の一部からなる。第一の球面部 4には摺動膜 4aが被覆されてい るので、実際には摺動膜 4aの表面が球面の一部からなる。第一の球面部 4の軸線方 向の両端に設けられる第二の球面部 5は、第一の球面部 4と実質的に同じ中心 Pを 持つと共に第一の球面部 4よりも大きい半径 R2の球面の一部からなる。ここで、「中 心が実質的に同じ」とは、第一の球面部 4と第二の球面部 5の中心が同じ点である場 合のほか、第一の球面部 4と第二の球面部 5の中心が、外輪 1に対して内輪 2が揺動 できる程度に僅かにずれている場合も含まれる。第二の球面部 5にも摺動膜 5aが被 覆されて!/、るので、実際には摺動膜 5aの表面が球面の一部からなる。  FIG. 4 shows a cross-sectional view of the spherical bearing. The first spherical surface portion 4 of the inner ring 2 is composed of a part of a spherical surface having a radius R1 centered on the axis. Since the first spherical surface portion 4 is covered with the sliding film 4a, the surface of the sliding film 4a actually consists of a part of the spherical surface. The second spherical surface portion 5 provided at both ends in the axial direction of the first spherical surface portion 4 has substantially the same center P as the first spherical surface portion 4 and has a larger radius R2 than the first spherical surface portion 4. It consists of a part of the spherical surface. Here, “the center is substantially the same” means that the center of the first spherical portion 4 and the second spherical portion 5 are the same point, and the first spherical portion 4 and the second spherical portion 4 are the same. This includes the case where the center of the spherical surface portion 5 is slightly displaced with respect to the outer ring 1 so that the inner ring 2 can swing. Since the second spherical portion 5 is also covered with the sliding film 5a !, the surface of the sliding film 5a actually consists of a part of a spherical surface.
[0047] 外輪 1は、全体が三分割され、軸線方向の中央の第一のセグメント 8と、第一のセグ メント 8の軸線方向の両端に取り付けられる一対の第二のセグメント 9と、力も構成さ れる。リング状の第一のセグメント 8の内周には、第一の球面部 4に対応する第一の 球面部用凹部 8aが形成される。すなわち、第一の球面部用凹部 8aは、軸線 3上に 中心 Pを持つ半径 R1の球面の一部からなり、軸線方向の中央が最も凹んでいる。リ ング状の第二のセグメント 9の内周にも、第二の球面部 5に対応する第二の球面部用 凹部 9aが形成される。すなわち、第二の球面部用凹部 9aは、軸線 3上に中心 Pを持 つ半径 R2の球面の一部からなり、第一の球面部用凹部 8a側の端が最も凹んでいる 。第一の球面部 4と第二の球面部 5との接続部分 10の外周と第二のセグメント 9の内 周との間には、内輪 2が揺動したとき、内輪 2の第二の球面部 5と第二のセグメント 9と の干渉を避けるように、空洞 11が設けられる。第一及び第二のセグメント 8, 9は、鉄、 アルミなどの金属製である。  [0047] The outer ring 1 is divided into three parts, and the first segment 8 in the center in the axial direction and the pair of second segments 9 attached to both ends in the axial direction of the first segment 8 and the force are also configured. It is done. On the inner periphery of the ring-shaped first segment 8, a first spherical surface recess 8 a corresponding to the first spherical surface portion 4 is formed. That is, the first concave portion 8a for the spherical surface portion is formed of a part of the spherical surface with the radius R1 having the center P on the axis 3, and the center in the axial direction is most concave. A second spherical portion recess 9 a corresponding to the second spherical portion 5 is also formed on the inner periphery of the ring-shaped second segment 9. That is, the second spherical portion recess 9a is formed of a part of a spherical surface having a center R on the axis 3 and having a radius R2, and the end on the first spherical portion recess 8a side is most recessed. When the inner ring 2 swings between the outer periphery of the connecting portion 10 between the first spherical portion 4 and the second spherical portion 5 and the inner periphery of the second segment 9, the second spherical surface of the inner ring 2 A cavity 11 is provided so as to avoid interference between the part 5 and the second segment 9. The first and second segments 8, 9 are made of metal such as iron and aluminum.
[0048] 第一の球面部 4は一対の第二の球面部 5の間に軸線方向に挟まれているので、内 輪 2は中央の第一の球面部 4において窪んだアンダーカットになっている。内輪 2の 第二の球面部 5の外径は第一のセグメント 8の内径よりも大きいので、第二の球面部 5に第一のセグメント 8を通すことはできない。このため、第一のセグメント 8は、内輪 2 の第一の球面部 4の周囲にアウトサート成形することで製造される。具体的には、金 型に内輪 2を揷入し、内輪 2の第一の球面部 4の周囲に溶融金属をダイカストするこ とで製造される。ダイカストは、アルミニウム合金 ·亜鉛合金などの溶融したものを、圧 力によって精密な金型に圧し込んで铸物を得る铸造法である。 [0048] Since the first spherical portion 4 is sandwiched between the pair of second spherical portions 5 in the axial direction, the inner ring 2 has an undercut that is depressed in the central first spherical portion 4. Yes. Since the outer diameter of the second spherical portion 5 of the inner ring 2 is larger than the inner diameter of the first segment 8, the first segment 8 cannot pass through the second spherical portion 5. For this reason, the first segment 8 is manufactured by outsert molding around the first spherical surface portion 4 of the inner ring 2. Specifically, gold It is manufactured by inserting the inner ring 2 into the mold and die casting molten metal around the first spherical surface portion 4 of the inner ring 2. Die-casting is a forging method in which a molten product such as an aluminum alloy or zinc alloy is pressed into a precision mold by pressure to obtain a porcelain.
[0049] 第二のセグメント 9は、铸造、鍛造又は切削加工により内輪 2とは別に製造される。  [0049] The second segment 9 is manufactured separately from the inner ring 2 by forging, forging or cutting.
第二のセグメント 9は、内輪 2の第二の球面部 5の周囲に嵌められて、第一のセグメン ト 8の軸線方向の両端面に結合される。第一のセグメント 8及び第二のセグメント 9そ れぞれの対向面には、リング状の Oリング溝 8b, 9bが加工される。 Oリング溝 8b, 9b には、接合面を密封する Oリング 13が嵌められる。  The second segment 9 is fitted around the second spherical surface portion 5 of the inner ring 2 and is coupled to both end surfaces of the first segment 8 in the axial direction. Ring-shaped O-ring grooves 8b and 9b are formed on the opposing surfaces of the first segment 8 and the second segment 9, respectively. An O-ring 13 that seals the joint surface is fitted into the O-ring grooves 8b and 9b.
[0050] 内輪 2には、軸線 3に対して半径方向のラジアル荷重 (1)と、軸線方向のスラスト荷 重 (2)とがかかる。内輪 2にかかるラジアル荷重 (1)を第一の球面部 4が受け、スラスト荷 重 (2)を第二の球面部 5が受ける。すなわち、内輪 2にラジアル荷重 (1)が作用したとき 、内輪 2の第一の球面部 4と第一のセグメント 8の第一の球面部用凹部 8aが接触し、 スラスト荷重 (2)が作用したとき、内輪 2の第二の球面部 5と第二のセグメント 9の第二 の球面部用凹部 9aが接触する。  [0050] A radial radial load (1) and an axial thrust load (2) are applied to the inner ring 2 with respect to the axis 3. The first spherical surface portion 4 receives the radial load (1) applied to the inner ring 2 and the second spherical surface portion 5 receives the thrust load (2). That is, when a radial load (1) is applied to the inner ring 2, the first spherical surface portion 4 of the inner ring 2 comes into contact with the first spherical surface recess 8a of the first segment 8, and the thrust load (2) is applied. Then, the second spherical surface portion 5 of the inner ring 2 and the second spherical surface concave portion 9a of the second segment 9 come into contact with each other.
[0051] 内輪 2の傾斜角度 αを一定に保ったうえで、内輪 2にスラスト荷重 (2)が作用したとき の、内輪 2の第二の球面部 5と外輪 1の第二の球面部用凹部 9aとの接触面積を大き くしょうとすると、第二の球面部 5の半径 R2を大きくしなければならない。その一方、 たとえ第一の球面部 4の半径が小さくても、内輪 2にラジアル荷重 (1)が作用したとき の、内輪 2の第一の球面部 4と外輪 1の第一の球面部用凹部 8aの接触面積が大きく なる傾向がある。スラスト荷重 (2)を受ける第二の球面部 5の半径を大きくし、ラジアル 荷重 (1)を受ける第一の球面部 4の半径を小さくすれば、負荷できるスラスト荷重 (2)を ラジアル荷重 (1)に近づけること力 Sできる。また、第一の球面部 4の半径 R1を第二の球 面部 5の半径 R2よりも小さくすることで、球面軸受の外径をコンパクトにすることがで きる。  [0051] For the second spherical surface portion 5 of the inner ring 2 and the second spherical surface portion of the outer ring 1 when a thrust load (2) is applied to the inner ring 2 while keeping the inclination angle α of the inner ring 2 constant. In order to increase the contact area with the recess 9a, the radius R2 of the second spherical surface portion 5 must be increased. On the other hand, even if the radius of the first spherical portion 4 is small, when the radial load (1) is applied to the inner ring 2, the first spherical portion 4 of the inner ring 2 and the first spherical portion of the outer ring 1 are used. The contact area of the recess 8a tends to increase. If the radius of the second spherical part 5 that receives the thrust load (2) is increased and the radius of the first spherical part 4 that receives the radial load (1) is reduced, the thrust load (2) that can be applied is reduced to the radial load ( The ability to approach 1) S. Further, by making the radius R1 of the first spherical surface portion 4 smaller than the radius R2 of the second spherical surface portion 5, the outer diameter of the spherical bearing can be made compact.
[0052] 図 5及び図 6は、球面軸受の他の例を示す。図 5は球面軸受の斜視図を示し、図 6 は内輪の斜視図を示す。この例の球面軸受においては、内輪 2の第一及び第二の 球面部 4, 5の周囲には、摺動膜が被覆されていない。第一の球面部 4及び第二の 球面部 5に摺動膜を被覆すると、コストアップを招く場合があるからである。このように 第一の球面部 4及び第二の球面部 5に摺動膜を被覆しなくてもよ!/、。摺動膜を被覆し ないと、内輪 2の第一及び第二の球面部 4, 5が外輪 1の第一及び第二の球面部用 凹部 8a, 9aに直接すベり接触する。すべり接触する部分の摩擦抵抗を下げるために 、空洞 11 (図 4参照)には摺動面油、グリースなどの潤滑油が充填される。 5 and 6 show other examples of spherical bearings. FIG. 5 shows a perspective view of the spherical bearing, and FIG. 6 shows a perspective view of the inner ring. In the spherical bearing of this example, the first and second spherical portions 4 and 5 of the inner ring 2 are not covered with a sliding film. This is because if the first spherical portion 4 and the second spherical portion 5 are covered with a sliding film, the cost may increase. in this way The first spherical part 4 and the second spherical part 5 do not have to be covered with a sliding film! /. If the sliding film is not covered, the first and second spherical surface portions 4 and 5 of the inner ring 2 are in sliding contact with the first and second spherical surface recesses 8a and 9a of the outer ring 1 directly. In order to reduce the frictional resistance of the sliding contact part, the cavity 11 (see Fig. 4) is filled with lubricating oil such as sliding surface oil and grease.
[0053] 図 7ないし図 12は、球面軸受の製造工程の一例を示す。図 7に示されるように、ま ず、铸造、鍛造又は切削加工により、金属製の内輪 2の外周に第一の球面部 4と第 二の球面部 5を加工する。  7 to 12 show an example of the manufacturing process of the spherical bearing. As shown in FIG. 7, first, the first spherical portion 4 and the second spherical portion 5 are processed on the outer periphery of the metal inner ring 2 by forging, forging, or cutting.
[0054] 次に、図 8に示されるように、第一の球面部 4の周囲にフッ素樹脂、ポリエーテルケト ン、ナイロンなどの樹脂、又は真鍮などの合金力もなる摺動膜 4aを成形し、第一の球 面部 4に摺動膜を付着させる。この成形は、第一の球面部 4の周囲に樹脂などを付 着させる成形なので、アウトサート成形と呼ばれる。合成樹脂の替わりに他の固体潤 滑材ゃ低摺動材を被覆してもよレ、。  Next, as shown in FIG. 8, a sliding film 4a having a resin such as fluororesin, polyetherketone, nylon, or an alloy such as brass is formed around the first spherical surface portion 4. Then, a sliding film is attached to the first spherical surface portion 4. This molding is called outsert molding because it is a molding in which resin or the like is attached around the first spherical surface portion 4. Instead of synthetic resin, other solid lubricants can be coated with low sliding materials.
[0055] 次に、図 9に示されるように第一の球面部 4の周囲に第一のセグメント 8をアウトサー ト成形する。具体的には、内輪 2の第一の球面部 4を金型に揷入し、金型に溶融金属 をダイカストする。内輪の第一の球面部 4はアンダーカットになるので、このような成形 工程が必要になる。第一のセグメント 8の Oリング溝 8bはダイカスト後に切削加工され てもよい。  Next, as shown in FIG. 9, the first segment 8 is outsert-molded around the first spherical surface portion 4. Specifically, the first spherical surface portion 4 of the inner ring 2 is inserted into a mold, and molten metal is die-cast into the mold. Since the first spherical surface portion 4 of the inner ring is undercut, such a molding process is necessary. The O-ring groove 8b of the first segment 8 may be cut after die casting.
[0056] 次に、図 10に示されるように、第二の球面部 5の周囲にフッ素樹脂、ポリエーテルケ トン、ナイロンなどの樹脂、又は真鍮などの合金力 なる摺動膜 5aをアウトサート成形 する。合成樹脂の替わりに他の固体潤滑材ゃ低摺動材を被覆してもよい。  Next, as shown in FIG. 10, a slide film 5 a made of a resin such as fluororesin, polyether ketone, nylon, or alloy such as brass is formed around the second spherical portion 5 by outsert molding. . Instead of the synthetic resin, another solid lubricant may be coated with a low sliding material.
[0057] 次に、図 11に示されるように、第一のセグメント 8の Oリング溝 8bに Oリング 13を嵌 める。  Next, as shown in FIG. 11, the O-ring 13 is fitted into the O-ring groove 8 b of the first segment 8.
[0058] 最後に、図 12に示されるように、第二のセグメント 9を内輪 2の第二の球面部 5の周 囲に嵌めて、第二のセグメント 9を第一のセグメント 8に結合する。なお、内輪 2の第二 の球面部 5の周囲に第二のセグメント 9をアウトサート成形すると、第二の球面部 5の 周囲が埋まってしまう。空洞がなくなって内輪 2が外輪 1に対して揺動できなくなるの で、第二のセグメント 9はあらかじめ铸造、鍛造又は切削加工により製造されていて、 後から内輪 2に嵌められる。 [0059] 図 13及び図 14は、本発明の球面機械要素の第二の実施形態(球面軸受)を示す 。この球面軸受も、外輪 21と、外輪 21に嵌められる内輪 22とを備え、外輪 21に対し て内輪 22が所定の傾斜角の範囲内で揺動できる。 [0058] Finally, as shown in FIG. 12, the second segment 9 is fitted around the second spherical surface portion 5 of the inner ring 2, and the second segment 9 is coupled to the first segment 8. . If the second segment 9 is outsert-molded around the second spherical surface portion 5 of the inner ring 2, the periphery of the second spherical surface portion 5 is buried. Since the cavity disappears and the inner ring 2 cannot swing with respect to the outer ring 1, the second segment 9 is manufactured in advance by forging, forging or cutting, and is fitted into the inner ring 2 later. FIGS. 13 and 14 show a second embodiment (spherical bearing) of the spherical machine element of the present invention. This spherical bearing also includes an outer ring 21 and an inner ring 22 fitted to the outer ring 21, and the inner ring 22 can swing with respect to the outer ring 21 within a range of a predetermined inclination angle.
[0060] 図 15は内輪の斜視図を示す。内輪 22はその外周面に第一の球面部 24と第二の 球面部 25を有する。第一の実施形態の球面軸受と異なり、第二の球面部 25は第一 の球面部 24の軸線方向の一方にのみ形成されている。  FIG. 15 shows a perspective view of the inner ring. The inner ring 22 has a first spherical surface portion 24 and a second spherical surface portion 25 on its outer peripheral surface. Unlike the spherical bearing of the first embodiment, the second spherical portion 25 is formed only on one side of the first spherical portion 24 in the axial direction.
[0061] 図 14に示されるように、第一の球面部 24の中心 Pは第二の球面部 25の中心 Pと実 質的に同じであり、第二の球面部 25の半径 R2は第一の球面部 24の半径 R1よりも 大きい。そして、第二の球面部 25が内輪 22の軸線方向の一方向に作用するスラスト 荷重 (2)を受け、第一の球面部 24が軸線 23に対し半径方向に作用するラジアル荷重 (1)を受ける。  [0061] As shown in FIG. 14, the center P of the first spherical portion 24 is substantially the same as the center P of the second spherical portion 25, and the radius R2 of the second spherical portion 25 is Larger than radius R1 of one spherical surface portion 24. Then, the second spherical portion 25 receives a thrust load (2) acting in one axial direction of the inner ring 22, and the first spherical portion 24 receives a radial load (1) acting radially on the axial line 23. receive.
[0062] 外輪 21は、第一の球面部 24に対応する第一の球面部用凹部 28aが形成される第 一のセグメント 28と、第二の球面部 25に対応する第二の球面部用凹部 29aが形成さ れる第二のセグメント 29とに分割されている。第二のセグメント 29は第一のセグメント 28の片側にのみ設けられている。  [0062] The outer ring 21 has a first segment 28 in which a first spherical portion recess 28a corresponding to the first spherical portion 24 is formed, and a second spherical portion corresponding to the second spherical portion 25. It is divided into a second segment 29 in which a recess 29a is formed. The second segment 29 is provided only on one side of the first segment 28.
[0063] 球面軸受の使用状況によっては、軸線方向の一方向のみのスラスト荷重 (2)を負荷 すればよい場合がある。このような場合、この実施形態の球面軸受のように、一対の 第二の球面部 25のうちの一方を省略することも可能である。  [0063] Depending on how the spherical bearing is used, it may be necessary to apply a thrust load (2) in only one axial direction. In such a case, one of the pair of second spherical surface portions 25 can be omitted as in the spherical bearing of this embodiment.
[0064] 図 16は、本発明の球面機械要素の第三の実施形態(球面軸受)を示す。この球面 軸受も、外輪 31と、外輪 31に嵌められる内輪 2とを備え、外輪 31に対して内輪 2が所 定の傾斜角の範囲内で揺動できる。この実施形態の外輪 31は、上記第一の実施形 態の球面軸受のように、筒状の外輪 1の軸線に直交する断面により分割されるのでは なぐ筒状の外輪 31の軸線を含む断面により複数に例えば二つの分割体 31a, 31b に分割される。内輪 2の構造は、上記第一の実施形態の球面軸受と同じなので、同 一の符号を附してその説明を省略する。  FIG. 16 shows a third embodiment (spherical bearing) of the spherical machine element of the present invention. This spherical bearing also includes an outer ring 31 and an inner ring 2 fitted to the outer ring 31, and the inner ring 2 can swing within a predetermined inclination angle with respect to the outer ring 31. The outer ring 31 of this embodiment is a cross section including the axis of the cylindrical outer ring 31 that is not divided by a cross section orthogonal to the axis of the cylindrical outer ring 1 as in the spherical bearing of the first embodiment. Thus, for example, it is divided into two divided bodies 31a and 31b. Since the structure of the inner ring 2 is the same as that of the spherical bearing of the first embodiment, the same reference numerals are given and description thereof is omitted.
[0065] 各分割体 31a, 31bには、内輪 2の第一及び第二の球面部 4, 5それぞれに対応す る第一及び第二の球面部用凹部 36, 37の半周分が形成される。各分割体 31 a, 31 bは、铸造、鍛造又は切削加工により製造される。各分割体の周囲には、周方向に伸 びる溝 35が形成される。一対の分割体 31a, 31b間に内輪 2を組み込んだ後、円形 に丸めたコイルスプリング 33や、ゴムバンド、熱収縮チューブなどの結合手段が溝 35 に嵌められる。結合手段は、一対の分割体 31a, 31bが分離しないように結合する。 [0065] Each divided body 31a, 31b is formed with a half circumference of first and second spherical surface concave portions 36, 37 corresponding to the first and second spherical surface portions 4, 5 of the inner ring 2, respectively. The Each divided body 31a, 31b is manufactured by forging, forging or cutting. Around each segment, it extends in the circumferential direction. A groove 35 is formed. After the inner ring 2 is assembled between the pair of divided bodies 31a, 31b, a coupling means such as a coil spring 33 rounded into a circle, a rubber band, or a heat shrinkable tube is fitted in the groove 35. The coupling means couples the pair of divided bodies 31a and 31b so as not to be separated.
[0066] なお、結合手段には、コイルスプリング 33の替わりに円筒状のハウジング 34を用い ることもできる。ハウジング 34と外輪 31との嵌合は、締め代のある締り嵌めが望ましい 。コイルスプリング 33とハウジング 34とを併用して結合手段にしてもよい。また、各分 割体 31 a, 31bをレーザー溶接などの溶接によって直接結合してもよい。  Note that a cylindrical housing 34 can be used instead of the coil spring 33 as the coupling means. The housing 34 and the outer ring 31 are preferably fitted with a tight fit. The coil spring 33 and the housing 34 may be used together to form a coupling means. Further, the divided bodies 31a and 31b may be directly coupled by welding such as laser welding.
[0067] 分割体 31a, 31bの内部に内輪 2を組み込んだ状態において、分割体 31a, 31bと 内輪 2との間には、内輪 2が揺動するための空洞が設けられる。内輪 2には、固体潤 滑材からなる摺動膜が被覆されてもよいし、被覆されなくてもよい。摺動膜が被覆され ない場合、空洞に潤滑油が充填される。  [0067] In the state in which the inner ring 2 is incorporated into the divided bodies 31a and 31b, a cavity for swinging the inner ring 2 is provided between the divided bodies 31a and 31b and the inner ring 2. The inner ring 2 may or may not be coated with a sliding film made of a solid lubricant. If the sliding film is not covered, the cavity is filled with lubricating oil.
[0068] この第三の実施形態の球面軸受によれば、外輪 31の工数を減らすことができるの で、外輪 31の製造コストを削減できる。  [0068] According to the spherical bearing of the third embodiment, the man-hour of the outer ring 31 can be reduced, and therefore the manufacturing cost of the outer ring 31 can be reduced.
[0069] 図 17及び図 18は、本発明の第四の実施形態の球面軸受を示す。この実施形態の 球面軸受は、第一の実施形態の球面軸受と同様に、外輪 41が外輪 41の軸線に直 交する断面により分割された中央の第一のセグメント 43と、第一のセグメント 43の軸 線方向の両側に設けられる一対の第二のセグメント 42とを結合させてなる。第一のセ グメント 43の外周面の軸線方向の両端部には、径を狭めた受け口 43aが形成される (図 22参照)。第二のセグメント 42の端部が受け口 43aに嵌められる。  FIGS. 17 and 18 show a spherical bearing according to a fourth embodiment of the present invention. Similar to the spherical bearing of the first embodiment, the spherical bearing of this embodiment includes a central first segment 43 in which the outer ring 41 is divided by a cross section perpendicular to the axis of the outer ring 41, and a first segment 43. And a pair of second segments 42 provided on both sides in the axial direction. At both ends in the axial direction of the outer peripheral surface of the first segment 43, a receiving port 43a having a reduced diameter is formed (see FIG. 22). The end of the second segment 42 is fitted into the receptacle 43a.
[0070] 第一のセグメント 43は、外輪 41の軸線を含む断面により分割された分割セグメント  [0070] The first segment 43 is a divided segment divided by a cross section including the axis of the outer ring 41.
46をボルト、溶接などの結合手段によって結合させてなる。第二のセグメント 42は、 第一のセグメント 43の受け口 43aに嵌められた後、レーザー溶接、 MIG溶接、 TIG 溶接などの溶接によって第一のセグメント 43に固定される。  46 is connected by connecting means such as bolts and welding. The second segment 42 is fixed to the first segment 43 by welding such as laser welding, MIG welding, or TIG welding after being fitted into the receiving port 43a of the first segment 43.
[0071] 図 19ないし図 23は、第四の実施形態の球面軸受の製造工程図を示す。まず、内 輪 44の外周面に、铸造、鍛造、又は切削加工により第一の球面部 47及び第二の球 面部 48を加工する。  FIGS. 19 to 23 show manufacturing process diagrams of the spherical bearing of the fourth embodiment. First, the first spherical surface portion 47 and the second spherical surface portion 48 are processed on the outer peripheral surface of the inner ring 44 by forging, forging, or cutting.
[0072] 次に、図 20に示されるように、内輪 44の第一の球面部 47の周囲にフッ素樹脂、ナ ィロン、ポリエーテルケトンなどの樹脂、又は真鍮などの合金からなる摺動膜 47aを被 覆する。摺動膜 47aは、第一の球面部 47の周囲にアウトサート成形されてもよいし、 半円状に二分割された樹脂の成型品からなる分割摺動膜 47aを結合させたものでも よい。 Next, as shown in FIG. 20, a sliding film 47a made of a resin such as fluororesin, nylon, polyetherketone, or an alloy such as brass is provided around the first spherical portion 47 of the inner ring 44. Covered Overturn. The sliding film 47a may be outsert-molded around the first spherical surface portion 47, or may be a combination of the divided sliding film 47a made of a resin molded product divided into two semicircles. .
[0073] 次に、図 21及び図 22に示されるように、半円状に二分割された分割セグメント 46を 摺動膜 47aの周囲に嵌めて、これらをボルト、溶接などの結合手段によって結合する  Next, as shown in FIG. 21 and FIG. 22, the segment segment 46 divided into two semicircles is fitted around the sliding membrane 47a, and these are coupled by coupling means such as bolts and welding. Do
[0074] 次に、図 23に示されるように、第二の球面部 48にリング状の摺動膜 48aを被覆する 。摺動膜 48aは、第二の球面部 48にアウトサート成形されてもよいし、あらかじめ樹脂 成形された成型品を第二の球面部 48に嵌めこむことで製造されてもよい。 Next, as shown in FIG. 23, the second spherical portion 48 is covered with a ring-shaped sliding film 48a. The sliding film 48a may be outsert-molded on the second spherical surface portion 48, or may be manufactured by fitting a molded product pre-resin-molded into the second spherical surface portion 48.
[0075] 次に、図 17に示されるように、第二の球面部 48に第二のセグメント 42を装着する。  Next, as shown in FIG. 17, the second segment 42 is attached to the second spherical portion 48.
第一のセグメント 43には受け口 43a (図 23参照)が形成されている。第二のセグメント 42は第一のセグメント 43の受け口 43aに嵌められる。第一のセグメント 43に第二の セグメント 42を嵌めた後、これらをレーザー溶接などによって結合する。図 18に示さ れるように、第二のセグメント 42には、レーザー溶接時のエアー抜き孔 42aが加工さ れる。なお、第一のセグメント 43と第二のセグメント 42をレーザー溶接するのと同時 に二分割された第一のセグメント 43をレーザー溶接してもよい。  The first segment 43 is formed with a receiving port 43a (see FIG. 23). The second segment 42 is fitted in the receptacle 43a of the first segment 43. After fitting the second segment 42 to the first segment 43, these are joined by laser welding or the like. As shown in FIG. 18, the second segment 42 is formed with an air vent hole 42a during laser welding. The first segment 43 and the second segment 42 may be laser-welded at the same time as the first segment 43 and the second segment 42 are laser-welded.
[0076] 第一のセグメント 43に段付きの受け口 43aを形成することで、レーザー溶接が外輪 41の内部に入るのを防止することができる。また、第一のセグメント 43と第二のセグメ ント 42を溶接することで、 Oリングを省略することができる。  By forming the stepped receiving port 43 a in the first segment 43, it is possible to prevent laser welding from entering the outer ring 41. Also, the O-ring can be omitted by welding the first segment 43 and the second segment 42.
[0077] 第一、第三及び第四の実施形態の球面軸受において、内輪 2, 44の第一の球面 部 4, 47は第二の球面部 5, 48よりも径が小さいので、内輪 2, 44は中央がくぼんだ アンダーカットになっている。アンダーカットの内輪 2, 44に対応するために、外輪 1 , 41は軸線に直交する切断面で三分割される力、、もしくは、外輪 31は軸線を含んだ切 断面で二分割される。  [0077] In the spherical bearings of the first, third and fourth embodiments, since the first spherical portions 4, 47 of the inner rings 2, 44 have a smaller diameter than the second spherical portions 5, 48, the inner ring 2 , 44 is undercut with a recessed center. In order to correspond to the inner rings 2 and 44 of the undercut, the outer rings 1 and 41 are divided into three parts by a cutting plane orthogonal to the axis, or the outer ring 31 is divided into two by a cut section including the axis.
[0078] そして、複数に分割された外輪を結合する手段としては、上述の溶接やボルト結合 が用いられる。溶接やボルト結合の他にも、力もめを用いることも可能である。以下で は、力もめを用いた結合方法につ!/、て説明する。  [0078] As the means for connecting the outer ring divided into a plurality of parts, the above-described welding or bolt connection is used. In addition to welding and bolt connection, it is also possible to use force force. In the following, we will explain the connection method using force!
[0079] 図 24は、力、しめを用いた結合方法の一例を示す。第一のセグメント 71及び第二の セグメント 72の周囲には、円筒状のスリーブ 73が圧入される。スリーブ 73は第二のセ グメント 72の奥部 72aまで嵌めこまれる。スリーブ 73の内周面には、テーパが形成さ れてもよい。スリーブ 73を圧入した後、スリーブ 73の端部 73aは、塑性変形するよう に内側に折り曲げられる。なお、筒状のスリーブ 73の両端部を折り曲げることで、第 一のセグメント 71と第二のセグメント 72とを結合してもよい。 FIG. 24 shows an example of a coupling method using force and crimping. First segment 71 and second segment A cylindrical sleeve 73 is press-fitted around the segment 72. The sleeve 73 is fitted to the back 72a of the second segment 72. A taper may be formed on the inner peripheral surface of the sleeve 73. After press-fitting the sleeve 73, the end 73a of the sleeve 73 is bent inward so as to be plastically deformed. Note that the first segment 71 and the second segment 72 may be joined by bending both ends of the cylindrical sleeve 73.
[0080] 図 25及び図 26は、スリーブを用いないで、第一のセグメント 71と第二のセグメント 7 2を直接的にかしめる方法を示す。図 25は半径方向のかしめを示し、図 26は軸線方 向のかしめを示す。図 25に示されるように、第一のセグメント 71に第二のセグメント 7 2を嵌めた後、第二のセグメント 72の端部 72aに半径方向のかしめ力を加え、端部 7 2aを内側に折り曲げることで、第一のセグメント 71と第二のセグメント 72を固定しても よい。 FIG. 25 and FIG. 26 show a method of directly caulking the first segment 71 and the second segment 72 without using a sleeve. Figure 25 shows the caulking in the radial direction, and Figure 26 shows the caulking in the axial direction. As shown in FIG. 25, after the second segment 72 is fitted to the first segment 71, a radial caulking force is applied to the end 72a of the second segment 72, and the end 72a is turned inward. The first segment 71 and the second segment 72 may be fixed by bending.
[0081] また図 26に示されるように、第一のセグメント 71の内側に第二のセグメント 72を嵌 め込んだ後、第一のセグメント 71又は第二のセグメント 72に軸線方向のかしめ力を 加えて、第一のセグメント 71と第二のセグメント 72とを結合してもよい。なお、この例 では、第一のセグメント 71が第二のセグメント 72の外側に配置されるので、かしめる 前に半円状に二分割された第一のセグメント 71を結合させておく必要がある。第一 のセグメント 71を結合する方法としては、溶接を用いることもできるし、図 27に示され るように、分割セグメント 76に鈎状の引掛力、り部 76aを設け、これらが互いに係合する ようにしてもよい。分害 ijセグメント 76は、内輪 2の球面に沿ってスライドできるので、引 掛カ、り部 76aを係合させる作業が容易になる。  [0081] Further, as shown in FIG. 26, after the second segment 72 is fitted inside the first segment 71, the caulking force in the axial direction is applied to the first segment 71 or the second segment 72. In addition, the first segment 71 and the second segment 72 may be combined. In this example, since the first segment 71 is disposed outside the second segment 72, it is necessary to combine the first segment 71 divided into two semicircles before caulking. . As a method of joining the first segment 71, welding can be used. As shown in FIG. 27, a split segment 76 is provided with a hook-like hooking force 76a and these are engaged with each other. You may do it. Since the ij segment 76 can slide along the spherical surface of the inner ring 2, the work of engaging the hook and hook 76a is facilitated.
[0082] 図 28は、軸線に沿って二分割された分割体 74をスリーブ 75を用いて結合する例を 示す。分割体 74にスリーブ 75を圧入した後、スリーブ 75の端部を折り曲げることで、 二つの分割体 74を結合する。  FIG. 28 shows an example in which the divided body 74 divided into two along the axis is coupled using the sleeve 75. After the sleeve 75 is press-fitted into the divided body 74, the two divided bodies 74 are joined by bending the end portion of the sleeve 75.
[0083] 図 29は、二つの分割体 74の結合方法の他の例を示す。分割体 74のそれぞれに 鈎状の引掛力、り部 74aを設け、これらが互いに係合するようにしてもよい。  FIG. 29 shows another example of a method for joining two divided bodies 74. Each of the divided bodies 74 may be provided with a hook-like hooking force, a flange 74a, and these may be engaged with each other.
[0084] なお、本発明は上記の実施形態に限られることなぐ本発明の要旨を変更しない範 囲で種々変更可能である。第一の球面部の半径と第二の球面部との半径は、負荷 すべきラジアル及びスラスト荷重に応じてさまざまに変更できる。例えば、ラジアル荷 重が大きいときは、第一の球面部の半径を第二の球面部の半径より大きくしてもよい 。こうすると、球面軸受の軸線方向の長さを小さくすることができる。また、揷入体が第 一の球面部及び第二の球面部の半径 Rl , R2と異なる半径 R3の球面の一部からな る第三の球面部を有し、外装体が第三の球面部に対応する第三の球面部用凹部を 有してもよい。ただし、この場合でも、第三の球面部の中心は、第一及び第二の球面 部の中心に実質的に一致する必要がある。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. The radius of the first spherical portion and the radius of the second spherical portion can be variously changed depending on the radial to be loaded and the thrust load. For example, radial load When the weight is large, the radius of the first spherical portion may be larger than the radius of the second spherical portion. If it carries out like this, the length of the axial direction of a spherical bearing can be made small. In addition, the insert has a third spherical surface formed of a part of a spherical surface having a radius R3 different from the radii Rl and R2 of the first spherical surface portion and the second spherical surface portion, and the exterior body is a third spherical surface portion. You may have the 3rd spherical part recessed part corresponding to a part. However, even in this case, the center of the third spherical portion needs to substantially coincide with the centers of the first and second spherical portions.
[0085] 本明細書は、 2006年 10月 31曰出願の特願 2006— 296748および 2007年 9月 2 8日出願の特願 2007— 256279に基づく。この内容はすべてここに含めておく。 産業上の利用可能性 [0085] This specification is based on Japanese Patent Application No. 2006-296748 filed on Oct. 31, 2006 and Japanese Patent Application No. 2007-256279 filed on Sep. 28, 2007. All this content is included here. Industrial applicability
[0086] 本発明の球面機械要素は、球面軸受、図 31に示されるロッドエンド、図 32に示され るボールジョイント、又はピロボールに適用することができる。スラスト方向の剛性が高 V、と!/、う特性を持つので、自動車のサスペンションに組み込まれるボールブッシュや 、ピロボールの代替として好適である。 The spherical mechanical element of the present invention can be applied to a spherical bearing, a rod end shown in FIG. 31, a ball joint shown in FIG. 32, or a pillow ball. Since the rigidity in the thrust direction is high V and! /, It is suitable as an alternative to ball bushes and pillow balls incorporated in automobile suspensions.

Claims

請求の範囲 The scope of the claims
[1] 所定の半径の球面の一部からなる第一の球面部と、前記第一の球面部と実質的に 同じ中心を持ち、前記第一の球面部と異なる半径の球面の一部からなる第二の球面 部と、を外周面に有する揷入体と、  [1] A first spherical surface portion including a part of a spherical surface having a predetermined radius, and a part of a spherical surface having substantially the same center as the first spherical surface portion and having a radius different from that of the first spherical surface portion. A second spherical portion, and a insert having an outer peripheral surface,
この揷入体が挿入され、前記第一の球面部及び前記第二の球面部それぞれに対 応する第一の球面部用凹部及び第二の球面部用凹部を内周面に有する外装体と、 を備える球面機械要素。  An exterior body in which the inserted body is inserted and has a first spherical surface concave portion and a second spherical surface concave portion corresponding to the first spherical surface portion and the second spherical surface portion, respectively, on the inner peripheral surface; A spherical machine element comprising
[2] 前記第二の球面部の半径は、前記第一の球面部の半径よりも大きぐ  [2] The radius of the second spherical portion is larger than the radius of the first spherical portion.
そして、前記揷入体の軸線方向にかかるスラスト荷重を、前記揷入体の前記第二の 球面部が受けることができ、  And the second spherical surface portion of the insert can receive the thrust load applied in the axial direction of the insert,
前記揷入体の軸線に対し半径方向にかかるラジアル荷重を、前記揷入体の前記 第一の球面部が受けることができることを特徴とする請求項 1に記載の球面機械要素  2. The spherical machine element according to claim 1, wherein the first spherical surface portion of the inserted body can receive a radial load applied in a radial direction with respect to an axis of the inserted body.
[3] 前記第一の球面部は、前記揷入体の軸線の周囲に形成されると共に軸線方向の 中央が最も膨らんでいて、 [3] The first spherical surface portion is formed around the axis of the insert and has a center in the axial direction that is most bulging,
前記第二の球面部は、前記揷入体の軸線の周囲に形成されると共に軸線方向の 第一の球面部側の端が最も膨らんでいることを特徴とする請求項 2に記載の球面機 械要素。  3. The spherical machine according to claim 2, wherein the second spherical surface portion is formed around an axis of the insertion body, and an end on the first spherical surface side in the axial direction is swelled most. Machine element.
[4] 前記揷入体の前記第二の球面部は、前記第一の球面部の前記軸線方向の両側 に設けられ、  [4] The second spherical portion of the insert is provided on both sides in the axial direction of the first spherical portion,
前記外装体の前記第二の球面部用凹部も、前記第二の球面部に対応して、前記 第一の球面部用凹部の前記軸線方向の両側に設けられることを特徴とする請求項 2 又は 3に記載の球面機械要素。  3. The concave portion for the second spherical surface portion of the exterior body is also provided on both sides in the axial direction of the concave portion for the first spherical surface portion corresponding to the second spherical surface portion. Or Spherical machine element according to 3.
[5] 前記外装体と前記揷入体との間には、前記外装体に対して前記揷入体が揺動でき るように空洞が設けられることを特徴とする請求項 1又は 2に記載の球面機械要素。  [5] The method according to claim 1 or 2, wherein a cavity is provided between the exterior body and the insert so that the insert can swing relative to the exterior body. Spherical machine element.
[6] 前記空洞に潤滑剤が充填されることを特徴とする請求項 5に記載の球面機械要素  6. The spherical machine element according to claim 5, wherein the cavity is filled with a lubricant.
[7] 前記揷入体の前記第一の球面部及び前記第二の球面部の周囲に、摺動膜が被 覆されることを特徴とする請求項 1又は 2に記載の球面機械要素。 [7] A sliding film is provided around the first spherical portion and the second spherical portion of the insert. Spherical machine element according to claim 1 or 2, characterized in that it is covered.
[8] 前記摺動膜は、前記揷入体の前記第一の球面部の周囲にアウトサート成形される ことを特徴とする請求項 7に記載の球面機械要素。 8. The spherical machine element according to claim 7, wherein the sliding film is outsert-molded around the first spherical portion of the insert.
[9] 前記揷入体の前記第一の球面部の周囲に被覆される摺動膜は、前記揷入体の軸 線を含む切断面により分割されると共に、樹脂の成型品からなる分割摺動膜を結合 させてなることを特徴とする請求項 7に記載の球面機械要素。 [9] A sliding film coated around the first spherical surface portion of the insert is divided by a cut surface including an axis of the insert, and a split slide made of a resin molded product. The spherical mechanical element according to claim 7, wherein the dynamic membrane is combined.
[10] 前記外装体は、前記外装体の軸線に直交する断面により分割された、前記第一の 球面部用凹部を有する第一のセグメントと、前記第二の球面部用凹部を有する第二 のセグメントとを結合させてなり、 [10] The exterior body is divided by a cross section perpendicular to the axis of the exterior body, the first segment having the first spherical surface recess, and the second segment having the second spherical surface recess. Combined with other segments,
前記第一のセグメントは、前記揷入体の周囲にアウトサート成形されていることを特 徴とする請求項 1又は 2に記載の球面機械要素。  The spherical machine element according to claim 1, wherein the first segment is outsert-molded around the insert.
[11] 前記外装体は、前記外装体の軸線に直交する断面により分割された、前記第一の 球面部用凹部を有する第一のセグメントと、前記第二の球面部用凹部を有する第二 のセグメントとを結合させてなり、 [11] The exterior body includes a first segment having the first spherical surface recess, and a second segment having the second spherical surface recess, divided by a cross section perpendicular to the axis of the exterior body. Combined with other segments,
前記第一のセグメントは、前記外装体の軸線を含む切断面により分割された分割セ グメントを結合させてなることを特徴とする請求項 1又は 2に記載の球面機械要素。  3. The spherical machine element according to claim 1, wherein the first segment is formed by joining divided segments divided by a cut surface including an axis of the exterior body.
[12] 前記外装体は、前記外装体の軸線に直交する切断面により分割された、前記第一 の球面部用凹部を有する第一のセグメントと、前記第二の球面部用凹部を有する一 対の第二のセグメントとを結合させてなることを特徴とする請求項 4に記載の球面機 械要素。 [12] The exterior body includes a first segment having the first spherical surface recess and a second spherical surface recess, which are divided by a cut surface perpendicular to the axis of the exterior body. 5. The spherical mechanical element according to claim 4, wherein the spherical mechanical element is formed by coupling a pair of second segments.
[13] 前記外装体は、前記外装体の軸線を含む切断面により分割され、前記第一の球面 部用凹部及び前記第二の球面部用凹部の周方向の一部を有する複数の分割体を 結合させてなることを特徴とする請求項 1又は 2に記載の球面機械要素。  [13] The exterior body is divided by a cut surface including an axis of the exterior body, and has a plurality of divided bodies having a part in the circumferential direction of the first spherical surface recess and the second spherical surface recess. The spherical machine element according to claim 1, wherein the spherical machine elements are combined.
[14] 所定の半径の球面の一部からなる第一の球面部と、前記第一の球面部と実質的に 同じ中心を持ち、前記第一の球面部の半径と異なる半径の球面の一部からなる第二 の球面部とを、揷入体の外周面に加工する揷入体加工工程と、  [14] A first spherical surface portion formed of a part of a spherical surface having a predetermined radius, and a spherical surface having a center substantially the same as the first spherical surface portion and having a radius different from the radius of the first spherical surface portion. And a second spherical portion made of a portion to process the outer peripheral surface of the insert,
前記揷入体の周囲に、前記第一の球面部及び前記第二の球面部それぞれに対応 する第一の球面部用凹部及び第二の球面部用凹部を内周面に有する外装体を装 着する外装体装着工程と、を備える球面機械要素の製造方法。 An exterior body having a first spherical surface recess and a second spherical surface recess corresponding to the first spherical surface portion and the second spherical surface portion on the inner peripheral surface is disposed around the insert. A method of manufacturing a spherical machine element, comprising:
[15] 前記外装体装着工程は、 [15] The exterior body mounting step includes:
前記揷入体の前記第一の球面部の周囲に、第一のセグメントをアウトサート成形す る第一のセグメント成形工程と、  A first segment forming step of outsert-molding a first segment around the first spherical portion of the insert;
前記揷入体の前記第二の球面部に対応する第二の球面部用凹部を有する第二の セグメントを、前記揷入体の前記第二の球面部の周囲に嵌めて、前記第一のセグメ ントに結合する第二のセグメント結合工程と、を備えることを特徴とする請求項 14に 記載の球面機械要素の製造方法。  A second segment having a second spherical portion recess corresponding to the second spherical portion of the insert is fitted around the second spherical portion of the insert, and the first 15. The method of manufacturing a spherical machine element according to claim 14, further comprising a second segment coupling step of coupling to the segment.
[16] 前記外装体装着工程は、 [16] The exterior body mounting step includes:
前記揷入体の前記第一の球面部の周囲に、前記外装体の軸線を含む切断面によ り分割された分割セグメントを結合して第一のセグメントを得る分割セグメント結合ェ 程と、  A divided segment joining step for obtaining a first segment by joining divided segments divided by a cut surface including an axis of the exterior body around the first spherical surface portion of the insert;
前記揷入体の前記第二の球面部に対応する第二の球面部用凹部を有する第二の セグメントを、前記揷入体の前記第二の球面部の周囲に嵌めて、前記第一のセグメ ントに結合する第二のセグメント結合工程と、を備えることを特徴とする請求項 14に 記載の球面機械要素の製造方法。  A second segment having a second spherical portion recess corresponding to the second spherical portion of the insert is fitted around the second spherical portion of the insert, and the first 15. The method of manufacturing a spherical machine element according to claim 14, further comprising a second segment coupling step of coupling to the segment.
[17] 前記外装体装着工程は、 [17] The exterior body mounting step includes:
前記外装体の軸線を含む切断面により分割され、前記第一の球面部用凹部及び 前記第二の球面部用凹部の周方向の一部を有する複数の分割体を用意する工程と 複数の分割体間に前記揷入体を組み込んだ後、前記複数の分割体を結合するェ 程と、を備えることを特徴とする請求項 14に記載の球面機械要素の製造方法。  A step of preparing a plurality of divided bodies divided by a cut surface including an axis of the exterior body, and having a part in the circumferential direction of the first spherical surface recess and the second spherical surface recess; 15. The method of manufacturing a spherical machine element according to claim 14, further comprising a step of combining the plurality of divided bodies after the insertion body is assembled between the bodies.
PCT/JP2007/070902 2006-10-31 2007-10-26 Spherical machine element and method of producing the same WO2008053801A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008542079A JP5579988B2 (en) 2006-10-31 2007-10-26 Spherical machine element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-296748 2006-10-31
JP2006296748 2006-10-31
JP2007256279 2007-09-28
JP2007-256279 2007-09-28

Publications (1)

Publication Number Publication Date
WO2008053801A1 true WO2008053801A1 (en) 2008-05-08

Family

ID=39344141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070902 WO2008053801A1 (en) 2006-10-31 2007-10-26 Spherical machine element and method of producing the same

Country Status (2)

Country Link
JP (1) JP5579988B2 (en)
WO (1) WO2008053801A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140233U (en) * 1985-02-20 1986-08-30
JP2003130037A (en) * 2001-10-19 2003-05-08 Fuji Heavy Ind Ltd Bearing bush and bearing structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155327A (en) * 1985-12-26 1987-07-10 Matsushita Electric Ind Co Ltd Bearing device for rotating shaft
JP2002327737A (en) * 2001-04-27 2002-11-15 Ntn Corp Spherical sliding bearing
JP2006029539A (en) * 2004-07-21 2006-02-02 Nsk Ltd Self-aligning roller bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140233U (en) * 1985-02-20 1986-08-30
JP2003130037A (en) * 2001-10-19 2003-05-08 Fuji Heavy Ind Ltd Bearing bush and bearing structure

Also Published As

Publication number Publication date
JPWO2008053801A1 (en) 2010-02-25
JP5579988B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
EP3469221B1 (en) Socket assembly and method of making a socket assembly
JPH0371570B2 (en)
KR20050083573A (en) Elastic chassis bearing for utility vehicles
EP1862695A1 (en) Shaft device
JP2008520918A (en) Joint device and / or bearing device
US5494356A (en) Bearing retainer for a miniature motor
CN211280533U (en) Spherical pin assembly of joint bearing with pressing sleeve structure
CN112128223A (en) Ball joint with multi-piece ball stud
US20080181719A1 (en) Rotating joint
US20160123405A1 (en) Tube yoke assembly and driveshaft assembly formed therewith
US20040223674A1 (en) Method of making a guide bushing
WO2008053801A1 (en) Spherical machine element and method of producing the same
JPH07259838A (en) Manufacture of crankshaft
EP1213502A1 (en) Cross joint
US20090268998A1 (en) Wheel support bearing assembly
JPH04277322A (en) Tripod coupling
US10125824B2 (en) Multi-piece driveshaft assembly
JP5464742B2 (en) Method for manufacturing ball joint device
JPH1178454A (en) Suspension arm
JP2006177528A (en) Ball joint and its socket
JP3649486B2 (en) Sintered bearing and manufacturing method thereof
US20080304902A1 (en) Ball joint
CN217355200U (en) Rod end joint bearing convenient to assembly
CN116100593B (en) Joint module, mechanical arm, mobile platform and robot
CN116292822B (en) Harmonic reducer, joint module, mechanical arm, mobile platform and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542079

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830636

Country of ref document: EP

Kind code of ref document: A1