Nothing Special   »   [go: up one dir, main page]

WO2008052421A1 - Stent valve with inner tongue structure and weaving method of the stent thereof - Google Patents

Stent valve with inner tongue structure and weaving method of the stent thereof Download PDF

Info

Publication number
WO2008052421A1
WO2008052421A1 PCT/CN2007/003016 CN2007003016W WO2008052421A1 WO 2008052421 A1 WO2008052421 A1 WO 2008052421A1 CN 2007003016 W CN2007003016 W CN 2007003016W WO 2008052421 A1 WO2008052421 A1 WO 2008052421A1
Authority
WO
WIPO (PCT)
Prior art keywords
tongue
free
stent
inner layer
stent body
Prior art date
Application number
PCT/CN2007/003016
Other languages
English (en)
French (fr)
Inventor
Ning Wen
Original Assignee
Ning Wen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ning Wen filed Critical Ning Wen
Publication of WO2008052421A1 publication Critical patent/WO2008052421A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped

Definitions

  • the present invention relates to an alternative to human tissue, and more particularly to a method of weaving a stent valve with an inner layer tongue structure and a stent thereof.
  • the heart is the most important organ of the human body.
  • the heart is divided into two parts, each part including the atria and the ventricle.
  • the left and right atrium and the left and right ventricles are separated by atrial septum and a septal compartment, respectively.
  • There are four cardiac valves in the heart namely the tricuspid valve, the pulmonary valve, the mitral valve, and the aortic valve.
  • four heart valves play a vital role.
  • the hypoxic blood of the systemic circulation enters the right atrium through the vena cava, and then enters the right ventricle through the tricuspid valve.
  • the right ventricle contracts to press the blood into the pulmonary circulation through the pulmonary valve.
  • the aortic valve has a left and right coronary artery opening.
  • the structure of the four heart valves ensures that the valve opens when the blood is in the forward direction and closes in the opposite direction, preventing the heart burden from being aggravated by the reflux of the blood.
  • it may lead to acquired damage or lesions of the heart valve, such as rheumatism, atherosclerosis and the like.
  • congenital heart disease such as tetralogy of Fallot can also produce pulmonary valve disease in the long-term after surgery. After valvular lesions, the valve function is gradually lost. For example, valvular insufficiency leads to blood regurgitation. Valve stenosis leads to poor blood circulation, or the combination of incomplete and stenosis, which increases the burden on the heart and leads to heart failure.
  • the traditional treatment method is to open the chest, after the heart stops, under the support of hypothermia cardiopulmonary bypass, open the heart for surgical repair of the diseased valve or replacement with artificial heart valve.
  • Existing artificial heart valves fall into two broad categories: metal mechanical valves and biological valves.
  • the biological valve is made of animal materials such as bovine pericardium, bovine jugular vein valve and porcine aortic valve.
  • the above-mentioned method of open surgery has a long operation time, high cost, large trauma, and high risk. After metal mechanical valve replacement, the patient needs long-term anticoagulant therapy, and the life of the biological valve is limited, and usually requires surgery.
  • the balloon-expandable artificial heart valve biological valve is inserted into a plastically deformable stent to fix the biological valve, and the diameter is reduced by radial compression on a balloon, transcutaneously delivered, and then the ball is given.
  • the bladder pressurizes the stent to a 3 ⁇ 4 solid state and reaches the working state.
  • the diameter is determined by the diameter of the balloon. If the diameter of the prosthetic valve is not selected at first, or after some physiological changes, such as natural growth, pathological vasodilation, etc. The diameter of the natural valve may increase, and the diameter of the prosthetic valve cannot be adaptively increased. The prosthetic valve may be loose or slipped, and only the secondary balloon may be re-expanded.
  • the prosthetic valve is provided with an elastically deformable stent that expands radially after compression.
  • FIG. 1 Chinese Patent Application No. CN200510110144. 3 and CN200510110145, 8 show a stent valve which is radially compressible and radially expandable.
  • the bracket can be a single-wire braided bracket or a tubular cutting bracket.
  • the leaflets and the membrane may be 4 petals and a 'film, or may be biological leaflets and biofilms.
  • the fixation between the synthetic leaflets and the synthetic membrane and the radially deformable stent is achieved by directly shaping the elastic polymer material constituting the leaflets and the membrane on the stent.
  • the stent valve is compared to a conventional non-radially compressible surgical bioprosthetic valve (such as US Pat. No. 4,084,268, US Pat. No. 4,106,129, US Pat. No. 4,439, 009), between a sheet-like synthetic leaflet or a flap-shaped biological valve leaflet or an animal valve and a radially deformable stent.
  • the stitching fixation problem
  • a sheet-like synthetic leaflet or a biological valve leaflet or an animal natural valve is directly sutured to a staggered point and a braided line of a braided stent through a series of suture points, or a strut of a cutting stent, during the leaflet switching process
  • the stress concentration of the sutured part of the leaflet causes the valve leaf to be damaged and the life is reduced.
  • the leaflet joint line of the stent valve is usually a square pocket shaped by the stent structure rather than a round pocket like a natural valve or a surgical valve.
  • the square-pocket leaflet cup has a dead space that increases the chance of thrombus formation. Summary of the invention
  • the object of the present invention is to overcome the above problems existing in the prior art and to provide a novel structure.
  • a stent valve having an inner layer tongue structure comprising a radially deformable tubular mesh stent body and leaflets and a coating, and further comprising an inner side of the stent body
  • Layered tongue structure, inner layer tongue structure together with the stent body constitutes a stent with an inner layer tongue structure, the inner layer tongue structure contains at least one inner free tongue which can move to the inner side of the stent, and the inner free tongue constitutes the leaflet And the connecting edge of the membrane, the leaflet and the membrane are connected to the inner free tongue, or connected to the branch body through the inner free tongue.
  • the tubular mesh stent body comprises a straight tube type mesh bracket, a drum type mesh bracket with a drum structure in the middle section or a radially protruding mesh bracket with a radial protruding structure or an outer tongue structure in the middle section;
  • a stent with a radially projecting structure is preferred, the middle section of which is provided with three outwardly projecting hemispherical radial projections.
  • the tubular mesh stent body is made of an elastic metal wire interlaced and woven, and a plurality of closed wire eyes are arranged on the bracket body; the inner layer structure is woven on the inner side of the bracket body by an elastic metal wire. Together with the stent body, the woven stent is formed with an inner layer tongue structure; the inner free tongue contains at least one free tongue tip, and at least one free tongue root is connected to the stent body, and the free tongue tip constitutes a connecting edge of the leaflet connection point.
  • the tubular mesh stent body is woven from an elastic metal wire;
  • the inner layer tongue structure is an independent annular structure formed by cutting a pipe material or deformed by a plate material, and the ring structure is formed.
  • the inner layer tongue structure is an independent annular structure formed by cutting a pipe material or deformed by a plate material, and the ring structure is formed.
  • three free tongue tips and three free semi-circular arc lines are woven by an elastic metal wire constituting the stent body on the inner side of the stent body to form a composite structural stent with an inner layer tongue-like structure;
  • the free tongue tip constitutes the connecting edge of the leaflet connection point, and the 3 ⁇ 4 free semi-circular arc line constitutes the connecting edge of the leaflet membrane connecting line. .. :
  • the tubular mesh stent body is a pipe cutting bracket; the inner layer tongue structure is woven on the inner side of the pipe cutting bracket by an elastic metal wire, and forms a composite structural bracket with an inner layer tongue structure together with the pipe cutting bracket.
  • the inner free tongue contains at least one free tongue tip, and at least one free tongue root is connected to the stent body, and the free tongue tip constitutes a connecting edge of the leaflet connection point.
  • the tubular mesh stent body and the inner layer tongue structure are respectively woven by elastic metal wires; the tubular mesh stent body and the inner free tongue of the inner layer tongue structure are sleeved with a knitting sleeve;
  • the inner layer tongue structure is passed through a knitting sleeve which is sleeved on the inner free tongue and a knitted sleeve seam which is sleeved on the bracket body Together, they form a composite structural stent with an inner layer of tongue-like structure;
  • the inner free tongue contains at least one free tongue tip, and the free tongue tip constitutes a connecting edge of the leaflet connection point.
  • the tubular mesh stent body is a pipe cutting bracket;
  • the inner layer tongue structure is an independent ring structure formed by cutting a pipe material or deformed by a plate material, and the ring structure has three independent structures.
  • Free tongue tip and three free semi-circular arc lines are welded on the inner side of the tube cutting bracket to form a composite structure truss with an inner layer tongue structure;
  • the free tongue tip in the ring structure constitutes the connection of the leaflet connection points
  • the edge, the free semi-circular arc line constitutes the connecting edge of the leaflet film connecting line.
  • the inner free tongue is provided with at least one closed line eye.
  • the inner free tongue is connected to the stent body through at least one closed wire eye on the stent body, and the same closed eyelet on the stent body is passed through at least one inner free tongue.
  • the braided wire constituting the inner free tongue is sleeved with a knitted 3 ⁇ 4 tube, and both ends of the knitted sleeve are stitched at the intersection of the braided wire of the stent body or the closed wire eye, and the leaflets and the film respectively are respectively.
  • the suture is attached to the inner free tongue by suturing with the knitting sleeve, and is sewn to the stent body.
  • the inner layer tongue structure has three inner free tongues; each inner free tongue has a free tongue tip facing the downstream direction, two root portions are opposite to the upstream section of the stent body; and the weaving between the adjacent two inner free tongue roots
  • the wire is woven on the stent body and forms a wire turn toward the upstream direction.
  • the inner layer tongue structure has three inner free tongues; each inner free tongue has a free tongue tip facing the downstream direction, and two inner root portions are connected to the upstream portion of the stent body; between the two inner free tongue roots spaced apart
  • the braided wire is woven on the stent body and forms a wire turn toward the downstream direction.
  • Said inner tongue structure having three free inner tongue;; free tongue each have two free downstream direction of the tongue, each having a root portion connected to the upstream section of the bracket body of each of the free tongue, two free tongue Connected by a free semi-circular arc line toward the upstream direction, the free semi-circular arc line constitutes the connecting edge of the leaflet membrane connecting line; the adjacent two inner free tongues each have a free tongue tip meeting at the same corner; A braided wire between the adjacent two inner free tongue roots is woven on the stent body and forms a wire turn toward the upstream direction. ... '''"'
  • the inner layer tongue structure has only one inner free tongue, which has a 360 degree rotation angle, and the inner free tongue has four free tongue tips facing the downstream direction, and the first and fourth free tongue tips are at the same corner, adjacent to the free tongue tip.
  • the inner layer tongue structure comprises two inner free tongues, each having a 360 degree angle, wherein one inner free tongue is located downstream of the other inner free tongue; the two inner free tongues each have four free tongue tips facing the downstream direction
  • the first and fourth free tongue tips are on the same corner, and the adjacent free tongue tips are connected by a free semi-circular arc line toward the upstream direction, and the free semi-circular arc line constitutes a connecting edge of the leaflet membrane connecting line;
  • the fourth free tongue tip has a root portion connected to the upstream portion of the stent body, and the free tongue tips of the two inner free tongues and the free semi-circular arc lines are arranged one by one in the same rotation angle.
  • a weaving method for a woven support having an inner layer tongue structure is woven by a single or a plurality of elastic metal wires, and the inner free tongue of the inner layer tongue structure is directly woven on the inner side of the support body.
  • a method of weaving a braided stent with an inner layer tongue structure comprising the steps of:
  • the single or multiple elastic metal wires are woven into the stent for the first time, and the inner free tongue of the inner tongue structure is woven on the outer side of the stent body;
  • FIG. 1 is a plan development view of a stent according to a first embodiment of the present invention (A outward looking inward);
  • Figure 2 is a plan view of the stent valve of the embodiment shown in Figure 1 (from the outside to the inside);
  • Figure 3 is a perspective view of the three-dimensional structure of the embodiment shown in Figure 1;
  • Figure 4 is a plan view of the stent according to the second embodiment of the present invention (from the outside to the inside);
  • Figure 5 is a plan view showing the stent valve of the embodiment shown in Figure 4, (from the outside to the inside);
  • Figure 6 is a perspective sectional view showing the three-dimensional structure of the embodiment shown in Figure 4.
  • Figure 7 is a plan view showing the stent in a third embodiment of the present invention (from the outside to the inside);
  • Figure 8 is a plan view of the stent valve of the embodiment shown in Figure 7 (from the outside to the inside);
  • Figure 9 is a perspective sectional view showing the perspective structure of the embodiment shown in Figure 7;
  • Figure 10 is a front view of the support frame of the fourth embodiment of the present invention.
  • Figure 11 is a plan view showing the stent valve of the embodiment shown in Figure 10 (from the outside to the inside);
  • Figure 12 is a perspective sectional view showing the perspective structure of the embodiment shown in Figure 10;
  • Figure 13 is a plan view showing the stent according to the fifth embodiment of the present invention (from the outside to the inside);
  • Figure 14 is a plan view of the stent If film in the embodiment shown in Figure 13 (viewed from the outside to the inside);
  • Figure 15 is a perspective sectional view of the perspective of the embodiment shown in Figure 13;
  • Figure 16 is a schematic view showing the structure of a free tongue tip in the present invention.
  • Figure 17 is a schematic view showing the structure of another free tongue tip in the present invention.
  • FIG. 18 is a schematic structural view of a combination of a free tongue tip and a free semi-circular arc in the present invention
  • FIG. 19 is a schematic view showing a connection relationship between a free tongue tip and a stent in the present invention
  • 20 is a schematic view showing another connection relationship between a free tongue tip and a stent in the present invention.
  • Figure 21 is a schematic illustration of the connection relationship between a free tongue tip and a free semi-arc combination and a stent in the present invention.
  • Fig. 22 is a plan view showing the structure of the stent body and the stent having the radially projecting structure in the present invention (viewed from the downstream end to the upstream end). ' , ⁇ The preferred embodiment of the invention
  • the stent valve with the inner layer tongue structure of the present invention comprises a radially deformable tubular mesh stent body 1, a leaflet 2, a membrane 3 and an inner layer tongue structure. 4.
  • the inner tongue structure 4 is attached to the inner side of the stent body 1 and together with the stent body constitutes a stent with an inner layer tongue structure.
  • the inner layer tongue structure 4 contains at least one inner free tongue that can move toward the inner side of the stent, and the inner free tongue constitutes the connecting edge of the leaflet 2 and the membrane 3, and the leaflet 2 and the membrane 3 are connected to the inner free tongue, or through the inner
  • the free tongue is attached to the body of the stent.
  • the tubular mesh stent body in the present invention may be a straight tube type mesh bracket, a drum type mesh bracket with a drum structure in the middle section, or a radially protruding mesh shape with a radially protruding structure or an outer layer tongue structure in the middle section. support.
  • the stent with the inner layer tongue structure in the invention may have the following structural forms;
  • the tubular mesh bracket body is made of an elastic metal wire interlaced and woven, and a plurality of closed wire eyes are arranged on the bracket body; the inner layer tongue structure is woven on the inner side of the bracket body by an elastic metal wire, and the bracket body
  • the free tongue in the woven scaffold which together constitutes the inner tongue-like structure contains at least one free tongue tip, and at least one free tongue root is connected to the stent body, and the free tongue tip constitutes the connecting edge of the leaflet joint.
  • the tubular mesh bracket body is woven from elastic metal wire; the inner layer tongue structure is an independent ring structure formed by cutting the pipe material or deformed by the plate material, and the ring structure has three free structures.
  • a tongue tip and three free semi-circular arc lines at least one such annular structure is woven by an elastic metal wire constituting the stent body on the inner side of the stent body to form a composite structural stent with an inner layer tongue-like structure; a free tongue tip in the annular structure
  • the connecting edge of the leaflet connection point, the free semi-circular arc line is the connecting edge of the valve leaflet connecting line.
  • the tubular mesh stent body is a pipe cutting bracket; the inner layer tongue structure is woven by the elastic metal wire on the inner side of the pipe cutting bracket, and together with the pipe cutting bracket constitutes a composite structural bracket with an inner layer tongue structure; the inner free tongue Containing at least one free tongue tip and having at least one free tongue root connected to the stent body; the free tongue tip forming the attachment edge of the leaflet attachment point.
  • the tubular mesh stent body and the inner layer tongue structure are respectively woven by the elastic gold morning thread; the tubular mesh stent body and the inner layer tongue structure inner free tongue upper sleeve knitted sleeve, inner layer
  • the tongue structure is stitched together with a knitted sleeve sleeved on the inner free tongue to form a composite structural support with an inner layer tongue structure; the inner free tongue contains at least one free tongue tip; the free tongue tip The connecting edges that make up the connection point of the leaflets.
  • the tubular mesh stent body is a pipe cutting bracket;
  • the inner layer tongue structure is an independent ring structure formed by cutting the pipe material or being deformed by cutting the plate, the ring structure having three free tongue tips and three a free semi-circular arc line; at least one such annular structure is welded to the inner side of the pipe cutting support to form a composite structural support with an inner layer tongue structure;
  • the free tongue tip in the annular structure constitutes a connecting edge of the leaflet connection point, free semicircle
  • the arc forms the connecting edge of the leaflet lamination connecting line.
  • the first structural form is highlighted here, namely a braided stent with an inner layer of tongue-like structure.
  • the tubular mesh support 1 is woven from the elastic metal wire 101, which is a radial direction between the expanded state and the compressed state.
  • the deformed expandable body can be divided into an upstream section 11, a middle section 12 and a downstream section 13 in accordance with a blood flow direction in the blood vessel.
  • a plurality of deformable units are formed between the mesh wires 101 of the mesh support, 1, 4, and a plurality of curved wire turns 15 are formed at both ends of the mesh support, and a plurality of closed wires are formed on the mesh support. Eye 16.
  • the leaflets 2 are disposed inside the middle section 12 of the stent body 1, and the membrane 3 is disposed in the upstream section 11 of the stent body.
  • the inner tongue structure 4 may be woven from the same elastic metal wire of the woven bracket body, or may be woven from another elastic metal wire, and has at least one inner free tongue movable to the inner side of the bracket. Inside At least one closed line eye can be provided on the free tongue.
  • Fig. 1, Fig. 2, Fig. 3 are schematic views showing the structure of a first embodiment of a stent valve having an inner layer tongue structure of the present invention.
  • the inner layer tongue structure 4 has three inner free tongues 41, 42, 43 , and the three inner free tongues are distributed at a 120 degree angle; each inner free tongue has a free tongue tip 411, 421 And 431 are oriented in the downstream direction, each having two roots 412, 412', 422, 422', 432, 432' connected to the upstream section of the bracket body; the braided wire between the adjacent two inner free tongue roots is woven on the bracket body And forming the turns 413, 423, 433 toward the upstream direction.
  • the inner layer tongue structure 4 has three inner free tongues 41, 42 and 43, and the three inner free tongues are distributed at a 120 degree angle; each inner free tongue has a free tongue tip 411, 421 , 431 facing in the downstream direction, each having two roots 412, 412', 422, 422', 432, 432' connected to the upstream section of the stent body; between the two inner free tongues (eg, 41, 43) spaced apart ( A braided wire such as between 412 and 432' is woven on the stent body and forms a turn 413, 423, 433 toward the downstream direction.
  • Fig. 7, Fig. 8, and Fig. 9 are schematic views showing the structure of a third embodiment of the stent valve having the inner layer tongue structure of the present invention.
  • the inner layer tongue structure 4 has three inner free tongues 41, 42 and 43, and the three inner free tongues are distributed at a 120 degree angle; each inner free tongue has two free tongue tips 411.
  • the inner layer tongue structure 4 has only one inner free tongue 44, which has a 360 degree angle, and the inner free tongue 44 has four free tongues missing 441, 442, 443, 444 facing the downstream direction, the first free
  • the tongue tip 441 and the fourth free tongue tip 444 are at the same corner, and the adjacent free tongue tips have a 120 degree angle and are connected by a free semi-circular arc line 445, 446, 447 toward the upstream direction, the first free tongue tip 441 and
  • the fourth free tongue tip 444 has a root portion 4411, 4441 and a bracket The upstream section of the body is connected.
  • Figures 13, 14, and 15 are schematic views showing the structure of a fifth embodiment of the stent valve having the inner layer tongue structure of the present invention.
  • the inner layer tongue structure 4 includes two inner free tongues 45, 46 each having a 360 degree turn, wherein one inner free tongue 46 is located on the downstream side of the other inner free tongue 45.
  • the inner free tongue 45 has four free tongue tips 451, 452, 453, 454 facing in the downstream direction, wherein the first free tongue tip 451 and the fourth free tongue tip 454 are at the same corner, and the adjacent free tongue tip has a 120 degree angle.
  • the inner free tongue 46 has four free tongue tips 461., 462, 463, 464 facing the downstream direction, wherein the first free tongue tip 461 and the fourth free tongue tip 464 are at the same corner, and there is a 120 degree angle between adjacent free tongue tips.
  • first free tongue tip 461 and the fourth free tongue tip 464 each have a root portion 4611, 4641 connected to the upstream section of the stent body, wherein 4611 and The root portion 4541 of the inner free tongue 45 is the same length of braided wire.
  • the free tongue tips of the two inner free tongues 45, 46 and the respective free semi-circular lines are arranged one-to-one in the same rotation angle.
  • a closed eyelet 16 may be provided on the free tongue tip of each inner free tongue.
  • At least one closed line eye 16 may also be provided on the free semicircular arc line of each inner free tongue.
  • the free tongue tip can also be designed as a convoluted structure 17 (snake) or 18 (oblong) as shown in Figures 19 and 20, and the inner free tongue with the convoluted structure can pass through one or more stent bodies.
  • Each of the inner free tongues may be connected to the stent body through one or a closed eye of the stent body, and the closed eyelet on the same stent body may also be passed by one or more inner free tongues.
  • the braided wire constituting the inner free tongue may be covered with a knitting sleeve 5 (see Fig. 9, Fig. 12, Fig. 15), which may be knitted or woven by a textile material such as Dacron (Weaving). ) The way is made. Both ends of the knitting sleeve are sewn at the intersection of the braided wire of the bracket body or the closed wire to prevent it from sliding. ⁇ ⁇ "
  • the stent with the inner layer tongue structure in the invention may be woven by one or more (preferably single) elastic metal wires at one time, and the inner free tongue of the inner tongue structure is directly woven in the stent body. Inside.
  • a secondary weaving method in which a single or multiple (preferably single) elastic metal wires are first woven into a stent, and the inner tongue of the inner layer tongue structure is woven in the stent body.
  • the inner layer of the tongue structure is woven for the second time, and the inner free tongue of the inner layer tongue structure is woven on the inner side of the bracket body.
  • the inner diameter of the inner free tongue formed by the second weaving is larger than the inner diameter of the bracket body, so that it is placed at the top
  • the inside of the stent body facilitates the clamping of the valve between the inner free tongue and the stent body.
  • the stent body of the present invention is preferably a stent having a radially projecting structure.
  • the middle portion of the stent is provided with three outwardly projecting hemispherical radial projection structures, and the three radial projection structures are distributed at a 120 degree angle.
  • the bracket body 1 is a bracket having a radially protruding structure
  • the downward viewing structure viewed from the downstream end to the upstream end is as shown in Fig. 22.
  • the respective free tongue tips 7 of the inner layer tongue-like structure 4 are placed inside the joint portions of the adjacent radial projecting structures 6.
  • Adjacent free tongue tips 7' have a 120 degree angle and are connected by a free semicircular arc line 445, 446, 447 towards the upstream direction, free semicircular arc lines 445, 446, 447 and a semilunar upstream of the radially protruding structure 6.
  • the perimeter is parallel.
  • the leaflets and the membrane in the present invention can be picked; (i , ,
  • leaflets and the membrane are composed of the same piece of biomaterial (such as animal pericardium) at the same angle of the same circle. There are three circumferentially symmetrically distributed on one stent valve.
  • the leaflet leaf patch shown in Figure 14 is this approach).
  • Animal natural valves such as porcine aortic valves (including leaflets and their vascular walls).
  • porcine aortic valves including leaflets and their vascular walls.
  • the positional relationship between the leaflets and the membrane and the inner tongue structure and the stent body in the present invention are as follows:
  • the inner free tongue can be on the inner side of the leaflet membrane (on Swim); also on the outer side (downstream side) of the leaflet membrane.
  • the inner free tongue is on the inner side (upstream surface) of the leaflet membrane, and the membrane part of the leaflet membrane is sandwiched between the stent body and the inner free tongue (as shown in Fig. 5), and the entire inner free tongue flap
  • the coating portion of the leaf film is placed on the inner side of the stent body to form a leaf edge switch without a stress concentrated turning edge.
  • the inner free tongue is on the outer side (downstream side) of the leaflet, and the free tongue tip clamps the two adjacent leaflets at the joint point of the leaflet, so that the leaflet and the leaflet close together, and the free semicircular line will be the leaflet
  • the upstream film of the film is sandwiched between the stent body and the inner free tongue in the downstream extension of the leaflet connecting line (as shown in Fig. 8, Fig. 11), and the entire inner free tongue covers the leaf of the valve leaf.
  • Part of the top is on the inner side of the bracket body to form a leaflet switch without stress concentrated turning edge.
  • At least one inner free tongue is on the inner side (upstream side) of the leaflet membrane or at least one on the outer side (downstream side):
  • the inner free tongue of the inner layer of the tongue is located on the outer side of the leaflet (the downstream side of the leaflet).
  • One of the suture ends of two adjacent leaflets passes together through and is clamped by the inner free tongue tip of an inner layer of tongue.
  • the leaflet suture edge bypasses the free semicircular arc line of the inner layer of the tongue structure, and is located on the downstream side of the leaflet joint line, partially forming a downstream membrane (as shown in Figs. 8 and 11).
  • the upstream material There may be three sheets of upstream material on the inside or outside of the stent body.
  • the two axial seam edges of two adjacent upstream patches are relatively stitched.
  • the downstream edge of the upstream patch is sewn together with the needle sleeve and the leaflet suture edge of the inner layer of the tongue.
  • the upstream end of the upstream diaphragm is sewn to the upstream end of the stent. .,:' . . ,
  • the inner free tongue and the leaflet leaf coating there may be suture between the inner free tongue and the leaflet leaf coating, and 'they may not be sutured. If the stitching is generally not to be directly stitched, the stress is concentrated at the seamless joint.
  • the method is to put a knitted sleeve 5 on the elastic braided line of the inner free tongue (see Fig. 9, Fig. 12, 'Fig. 15), on the opposite side of the rotational edge of the leaflet, the upstream film or the downstream side of the leaflet and The knitting sleeves are stitched together.
  • each adjacent leaflet patch is sutured and can be simultaneously sutured on the stent.
  • the upstream edge of the leaflet patch is sutured to the upstream end of the stent.
  • An inner layer tongue structure is arranged inside the bracket body, and the inner layer tongue structure can exist simultaneously with the outer layer tongue structure.
  • the inner tongue structure and the bracket body can be woven from the same single elastic braided wire.
  • the inner tongue structure and the stent body and the outer tongue structure can be woven from the same single elastic braided wire.
  • the inner layer of the tongue is part of a single braided stent.
  • the free tip of the tongue has a certain free movement in the direction of the centripetal direction, and the stress at the point of the leaflet connection can be reduced when the leaflet is switched. , ,
  • the inner free tongue of the inner layer of the tongue-like structure is placed on the upstream or downstream surface of the valve leaf joint line and the upstream section membrane without stress concentration.
  • the inner free tongue of the inner layer of the tongue structure can also clamp the two leaflets at the joint of the leaflets at the downstream side of the leaflet, so that it is closed under tension.
  • the braid can be removed partially or completely.
  • some structures such as the position of the free tongue of the inner layer of the tongue structure, can be changed, such as from the outside of the stent body (larger natural straight) to the inner side (less restrictive straightness), so that the inner layer of the tongue structure
  • the free tongue is placed on the inner wall of the stent under its own resilience.
  • materials that cannot withstand heat treatment such as valves made of biomaterials, or a separate natural straight-through ring with three free tongue tips and three free semi-circular arcs can be added.
  • One- or more-line braided braided wires can be fitted with one or more knitted sleeves that match each other without stitching.
  • the stent valve with the inner layer tongue structure of the invention has an inner layer tongue structure disposed on the inner side of the radially deformable bracket.
  • the support and fixing structure corresponding to the biological valve connection point and the connecting line are formed, and the leaflets pass through the inside.
  • the free tongue is fixed, instead of being directly fixed on the stent body, avoiding the switch active portion of the leaflet directly at the suture portion of the leaflet and the stent when the biological leaflet is switched: 1. No stress concentration when the leaflets are switched, reducing wear and prolonging the service life.
  • the inner free tongue of the inner layer tongue structure has a larger natural straightness than the stent body, so that the inner free tongue of the inner layer tongue structure can be closely attached to the inner wall of the stent.
  • the valve is stitched on the knitting sleeve to realize the connection and fixing of the valve to the inner tongue tongue structure, and the textile sheet is wrapped in the prior art.
  • This method of coaxially encasing the knit sleeve over the braided wire is simplified, reduced in size, and increased in strength and reliability, as compared to stitching into a cannula along the braided wire.
  • Elastic braided wire wraps with materials such as Dacron to reduce thrombus formation, reduce friction between the metal braid and the biomaterial, and facilitate the fixation between the biomaterial and the elastic braided wire.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

带内层舌状结构的支架瓣膜及其支架的编织方法 技术领域
本发明涉及一种人体组织的替代品, 尤其涉及一种带内层舌状结构的支架 瓣膜及其支架的编织方法。
背景技术
心脏是人体最重要的器官, 心脏分为左右两部分, 每一部分又包括心房和 心室。 左右心房和左右心室分别由房间隔和室间隔分开。 在心脏内存在四个心 脏瓣膜, 即三尖瓣、 肺动脉瓣、 二尖瓣和主动脉瓣。 在人体血液循环机构中, 四个心脏瓣膜起着至关重要的作用。 体循环机构的缺氧血液经腔静脉进入右心 房, 然后通过三尖瓣进入右心室, 右心室收缩将血液通过肺动脉瓣压入肺循环 机构, 经过肺氧饱和后的血液经肺静脉回到左心房, 再经二尖瓣到达左心室, 左心室收缩将血液通过主动脉瓣排入主动脉而重返体循环机构。 主动脉瓣膜下 游有左右冠状动脉开口。 四个心脏瓣膜的结构保证了血液顺方向时瓣膜开放, 逆方向时关闭, 防止了血液返流而引起的心脏负担加重。但是, 由于各种原因, 可以导致心脏瓣膜的后天性损伤或病变, 如风湿, 动脉粥样硬化等。 此外, 先 天性心脏病如法乐氏四联症, 术后远期也可产生肺动脉瓣膜病变。 瓣膜病变后 表现为瓣膜功能逐渐丧失, 如瓣膜关闭不全导致血液返流, 瓣膜狭窄导致血液 流通不畅, 或关闭不全和狭窄二者兼并, 以至加重心脏负担,导致心脏功能衰 竭。对于心脏瓣膜的后天性损伤或病变,传统的治疗方法是开胸,心脏停跳后, 在低温体外循环支持下, 打开心脏进行病变瓣膜的外科修复或用人工心脏瓣膜 置换。 现有的人工心脏瓣膜分两大类: 金属机械瓣膜和生物瓣膜。 生物瓣膜由 牛心包、 牛颈静脉瓣、 猪主动脉瓣等动物材料处理后制成。 上述开心手术的方 法, 手术时间长, 费用高, 创伤大, 风险大, 金属机械瓣膜置换后病人需要长 期抗凝治疗, 生物瓣膜的材料寿命有限, 通常需要再手术。
为了解决上述开心手术治疗心脏瓣膜存在的问题, 现在已有人尝试不作开 心手术, 而采用经皮介入方法或微创手术输放人工心脏瓣膜。 现有技术的人工 心脏瓣膜有二种: 1、 球囊扩张型 ;
这种球囊扩张型人工心脏瓣膜 生物瓣膜, 其介入方法是在一个可塑性变 形的支架上分别固定生物瓣膜, 通过径向压缩在一个球囊上后直径变小, 经皮 输放, 然后给球囊加压使支架扩 ¾固¾, 达到工作状态。
球囊扩张型人工瓣膜存在的缺点和问题是: 其直径由球囊直径所决定, 如 果人工瓣膜的直径一开始没选择好, 或某些生理变化后, 如自然生长、 病理性 血管扩张等, 自然瓣膜的口径大小可能增大, 而人工瓣膜的口径不能适应性增 大, 人工瓣膜有松动或滑脱的危险, 只能进行二次球囊再扩张。
2、 自扩张型
这种人工瓣膜设有一个弹性变形支架, 径向压縮后可自行扩张。
申请号为 CN200510110144. 3和 CN200510110145, 8的中国专利展示了一种 可径向压缩和可径向扩张的支架瓣膜。 支架可以是单线编织支架, 也可以是管 材切割支架。 瓣叶和覆膜可以是 4成瓣叶和合'成覆膜, 也可以是生物瓣叶和生 物覆膜。 合成瓣叶和合成覆膜与可径向变形支架之间固定是通过构成瓣叶和覆 膜的弹性高分子材料直接塑形在支架上来达到的。 上述支架瓣膜与传统的不可 径向压缩的手术型生物瓣膜(如美国专利 US4084268、 US4106129, US4340091) 相比, 片状合成瓣叶或片状生物瓣叶或动物瓣膜与可径向变形支架之间的缝合 固定问题没有很好地解决。 主要存在以下问题:
1、 编织支架或切割支架上没有明确特定的固定部位供给片状合成瓣叶或 生物瓣叶或动物自然瓣膜的连接点(commissure)和连接线相缝合。
2、 如片状合成瓣叶或生物瓣叶或动物自然瓣膜通过一系列缝合点直接缝 合到编织支架的交错点和编织线上, 或切割支架的梁(Strut)上, 在瓣叶开关 过程中瓣叶缝合部位的应力集中, 会导致此处瓣叶损伤, 寿命降低。
3、 支架瓣膜的瓣叶联合线受支架结构影响通常为方口袋形而不是象自然 瓣膜或外科瓣膜那样为圆口袋形。 方口袋形的瓣叶杯有死角, 会在此处增加血 栓形成机会。 发明内容
本发明的目的, 在于克服现有 ¾术存在的上述问题, 提供一种新型结构的 带内层舌状结构的支架瓣膜及其支架的编织方法。
本发明的目的是这样实现的: 一种带内层舌状结构的支架瓣膜, 包括一个 可以径向变形的管形网状支架本体以及瓣叶和覆膜, 还包括连接在支架本体内 侧的内层舌状结构, 内层舌状结构..与支架本体共同构成带内层舌状结构的支 架, 内层舌状结构含有至少一个可以向支架内侧移动的内游离舌, 内游离舌构 成瓣叶和覆膜的连接缘, 所述的瓣叶和覆膜与内游离舌相连, 或通过内游离舌 与支桀本体相连。
所述的管形网状支架本体包括直管型网状支架、 中段有鼓型结构的鼓型网 状支架或中段带径向突出结构或外层舌状结构的径向突出型网状支架; 优选带 径向突出结构的支架, 该支架的中段设有三个向外突出的半球形的径向突出结 构。
所述的管形网状支架本体由弹性金属线上下交错编织而成, 在支架本体上 设有多个封闭式线眼; 所述的内层 状结构由弹性金属线编织在支架本体的内 侧, 与支架本体共同构成带内层舌状结构的编织支架; 所述的内游离舌含有至 少一个游离舌尖, 并有至少一个游离舌根部与支架本体相连, 游离舌尖构成瓣 叶连接点的连接缘。
所述的管形网状支架本体由弹性金属线编织而成; 所述的内层舌状结构是 由管材切割而成或由板材切割后变形而成的独立的环状结构, 该环状结构带有 三个游离舌尖和三个游离半圆弧线; 至少一个这样的环状结构被构成支架本体 的弹性金属线编织在支架体的内侧构成带内层舌状结构的复合结构支架; 环状 结构中的游离舌尖构成瓣叶连接点的连接缘, ¾游离半圆弧线构成瓣叶覆膜连接 线的连接缘。 .. :
所述的管形网状支架本体为管材切割支架; 所述的内层舌状结构由弹性金 属线编织在管材切割支架的内侧, 与管材切割支架共同构成带内层舌状结构的 复合结构支架; 所述的内游离舌含有至少一个游离舌尖, 并有至少一个游离舌 根部与支架本体相连, 游离舌尖构成瓣叶连接点的连接缘。
所述的管形网状支架本体和内层舌状结构分别由弹性金属线编织而成; 所 述的管形网状支架本体和内层舌状结构的内游离舌上套有针织套管; 所述的内 层舌状结构通过套在内游离舌上的针织套管与套在支架本体上的针织套管缝 合在一起构成带内层舌状结构的复合结构支架; 所述的内游离舌含有至少一个 游离舌尖, 游离舌尖构成瓣叶连接点的连接缘。
所述的管形网状支架本体为管材切割支架; 所述的内层舌状结构是由管材 切割而成或由板材切割后变形而成的独立的环状结构, 该环状结构带有三个游 离舌尖和三个游离半圆弧线; 至少一个这样的环状结构焊接在管材切割支架的 内侧构成带内层舌状结构的复合结构玄架; 环 结构中的游离舌尖构成瓣叶连 接点的连接缘, 游离半圆弧线构成瓣叶覆膜连接线的连接缘。
所述的内游离舌上设有至少一个封闭式线眼。
所述的内游离舌穿过支架本体上的至少一个封闭式线眼与支架本体相连, 支架本体上的同一个封闭式线眼被至少一个内游离舌穿过。
所述的构成内游离舌的编织线上套有针织 ¾管, 该针织套管的两端缝合在 支架本体编织线的交叉点上或封闭式线眼上, 所述的瓣叶和覆膜分别通过与针 织套管的缝合与内游离舌相连, 并缝合于支架本体上。
所述的内层舌状结构含有三个内游离舌; 每个内游离舌有一个游离舌尖朝 向下游方向, 有两个根部与支架本体上游段相淳; 相邻两个内游离舌根部之间 的编织线编织在支架本体上并形成朝向上游方向的线拐。
所述的内层舌状结构含有三个内游离舌; 每个内游离舌有一个游离舌尖朝 向下游方向, 有两个根部与支架本体上游段相连; 相间隔的两个内游离舌根部 之间的编织线编织在支架本体上并形成朝向下游方向的线拐。
所述的内层舌状结构含有三个内游离舌; ;每个内游离舌各有两个游离舌尖 朝向下游方向, 每个游离舌尖各有一个根部与支架本体上游段相连, 两个游离 舌尖之间通过一个朝向上游方向的游离半圆弧线相连, 该游离半圆弧线构成瓣 叶覆膜连接线的连接缘; 相邻的两个内游离舌各有一个游离舌尖在同一转角上 相会; 相邻两个内游离舌根部之间的编织线编织在支架本体上并形成朝向上游 方向的线拐。 ... ' ' ' "'
所述的内层舌状结构只有一个内游离舌, 呈 360度转角, 该内游离舌有四 个游离舌尖朝向下游方向, 第一和第四个游离舌尖处于同一转角上, 相邻游离 舌尖之间通过一个朝向上游方向的游离半圆弧线相连, 该游离半圆弧线构成瓣 叶覆膜连接线的连接缘; 第 和第四 游离舌尖各有 个根部与支架本体上游 段相连。
所述的内层舌状结构包括两个内游离舌, 各呈 360度转角, 其中一个内游 离舌位于另一个内游离舌的下游恻; 两个内游离舌各有四个游离舌尖朝向下游 方向, 第一和第四个游离舌尖处于同一转角上, 相邻游离舌尖之间通过一个朝 向上游方向 游离半圆弧线相连, 该游离半圆弧线构成瓣叶覆膜连接线的连接 缘; 第一和第四个游离舌尖各有一个根部与支架本体上游段相连, 两个内游离 舌的各游离舌尖和各游离半圆弧线一一对应设置在同一旋转角度上。
一种带内层舌状结构的编织支架的编织方法, 由单根或多根弹性金属线一 次编织而成, 内层舌状结构的内游离舌直接编织在支架体的内侧。
一种带内层舌状结构的编织支架的编织方法, 包括以下步骤:
a、 由单根或多根弹性金属线第一次编织成支架, 并将内层舌状结构的内 游离舌编织在支架体的外侧;
b、 将编织好的支架进行形状记忆的热处理, 将支架形状记忆下来; c、 将经过热处理后的支架沿第 ~τ次编织的相反 向拆开内层舌状结构; d、 将已拆开的内层舌状结构进行第二次编织, 并将内层舌状结构的内游
Figure imgf000007_0001
图 1为本发明第一实施例的支架平面展开图 (A外向内看) ;
图 2为图 1所示实施例的支架瓣膜平面展开图 (从外向内看) ;
图 3为图 1所示实施例的立体结构透 ¾¾剖视图;
图 4为本发明第二实施例的支架平面展开图 (从外向内看) ;
图 5为图 4所示实施例的支架瓣膜平面展幵图,(从外向内看) ;
图 6为图 4所示实施例的立体结构透视剖视图;
图 7为本发明第三实施例的支架平面展开图 (从外向内看) ;
图 8为图 7所示实施例的支架瓣膜平面展开图 (从外向内看) ;
图 9为图 7所示实施例的立体结构透视剖视图;
图 10为本发明第四实施例的支.架 面展 图' 外向内 '看) ;
图 11为图 10所示实施例的支架瓣膜平面展开图 (从外向内看) ; 图 12为图 10所示实施例的立体结构透视剖视图;
图 13为本发明第五实施例的支架平面展开图 (从外向内看) ;
图 14为图 13所示实施例的支架 If膜平面展开图 '(从外向内看) ; 图 15为图 13所示实施例的立体结构透视剖视图;
图 16为本发明中的一种游离舌尖的结构示意图;
图 17为本发明中的另一种游离舌尖的结构示意图;
图 18为本发明中的一种游离舌尖和游离半圆弧组合的结构示意图; 图 19为本发明中的一种游离舌尖与支架的连接关系示意图;
图 20为本发明中的另一种游离舌尖与支架的连接关系示意图;
图 21为本发明中的一种游离舌尖和游离半圆弧组合与支架的连接关系示 意图。
图 22为本发明中的支架本体禾用带径向突出结构的支架时的俯视结构示 意图 (从下游端往上游端看) 。 ' , ■ 本发明的最佳实施方式
参见图 1, 配合参见其余各图, 本发明带内层舌状结构的支架瓣膜, 包括 一个可以径向变形的管形网状支架本体 1、 瓣叶 2、 覆膜 3和内层舌状结构 4。 内层舌状结构 4连接在支架本体 1的内'侧, 与支架本体共同构成带内层舌状结 构的支架。 内层舌状结构 4含有至少一个可以向支架内侧移动的内游离舌, 内 游离舌构成瓣叶 2和覆膜 3的连接缘, 瓣叶 2和覆膜 3与内游离舌相连, 或通 过内游离舌与支架本体相连。
本发明中的管形网状支架本体可以是直管型网状支架、 中段有鼓型结构的 鼓型网状支架或中段带径向突出结构或外层舌状结构的径向突出型网状支架。
本发明中的带内层舌状结构的支架可以有以下几种结构形式;
1、 管形网状支架本体由弹性金属线上下交错编织而成, 在支架本体上设 有多个封闭式线眼; 内层舌状结构由弹性金属线编织在支架本体的内侧, 与支 架本体共同构成带内层舌状结构的编织支架 内游离舌含有至少一个游离舌 尖, 并有至少一个游离舌根部与支架本体相连, 游离舌尖构成瓣叶连接点的连 接缘。 2、 管形网状支架本体由弹性金属线编织而成; 内层舌状结构是由管材切 割而成或由板材切割后变形而成的独立的环状结构, 该环状结构带有三个游离 舌尖和三个游离半圆弧线; 至少一个这样的环状结构被构成支架本体的弹性金 属线编织在支架体的内侧构成带内层舌状结构的复合结构支架; 环状结构中的 游离舌尖构成瓣叶连接点的连接缘, 游离半圆弧线 成瓣叶覆膜连接线的连接 缘。 ··'
3、 管形网状支架本体为管材切割支架; 内层舌状结构由弹性金属线编织 在管材切割支架的内侧, 与管材切割支架共同构成带内层舌状结构的复合结构 支架; 内游离舌含有至少一个游离舌尖, 并有至少一个游离舌根部与支架本体 相连; 游离舌尖构成瓣叶连接点的连接缘。
4、、 管形网状支架本体和内层舌状结构分别由.弹性金晨线编织而成; 管形 网状支架本体和内层舌状结构的内游离舌上套 针织套管, 内层舌状结构通过 套在内游离舌上的针织套管与套在支架本体上的针织套管缝合在一起构成带 内层舌状结构的复合结构支架; 内游离舌含有至少一个游离舌尖; 游离舌尖构 成瓣叶连接点的连接缘。
5、 管形网状支架本体为管材切割支架; 内层舌状结构是由管材切割而成 或由板材切割后变形而成的独立的环状结构, 该环状结构带有三个游离舌尖和 三个游离半圆弧线; 至少一个这样的环状结构焊接在管材切割支架的内侧构成 带内层舌状结构的复合结构支架; 环状结构中的游离舌尖构成瓣叶连接点的连 接缘, 游离半圆弧线构成瓣叶覆膜连接线的连接缘。 ,
这里重点介绍第一种结构形式, 即带内层舌状结构的编织支架。 请参见图 1, 配合参见图 4、 图 7、 图 10、 图 13和图 22, 管形网状支架 1由弹性金属线 材 101编织而成, 是一个可以在扩张状态和压缩状态之间径向变形的伸缩体, 该网状支架 1可以按照在血管内的血流方向分为上游段 11、 中段 12和下游段 13。 网状支架各网线 101之间围成多个可变形单元, 1,4,,、在网状支架的两端形成 多个弧形线拐 15, 在网状支架上还形成多个封闭式线眼 16。 瓣叶 2设置在支 架本体 1的中段 12内侧, 覆膜 3设置在支架本体的上游段 11。 内层舌状结构 4可以由编织支架本体的同一根弹性金属线编织而成, 也可以由不同的另一根 弹性金属线编织而成, 它含有至少一个可以向支架内侧移动的内游离舌, 该内 游离舌上可以设有至少一个封闭式线眼。
图 1、 图 2、 图 3是本发明带内层舌状结构的支架瓣膜的第一实施例的结 构示意图。 在本实施例中, 内层舌状结构 4含有三个内游离舌 41、 42、 43 , 三 个内游离舌之间呈 120度转角分布;每个内游离舌各有一个游离舌尖 411、421、 431朝向下游方向, 各有两个根部 412、 412'、 422、 422', 432、 432'与支架 本体上游段相连; 相邻两个内游离舌根部之间的编织线编织在支架本体上并形 成朝向上游方向的线拐 413、 423、 433。
图 4、 图 5、 图 6是本发明带内层舌状结构的支架瓣膜的第二实施例的结 构示意图。 在本实施例中, 内层舌状结构 4含有三个内游离舌 41、 42、 43, 三 个内游离舌之间呈 120度转角分布;每个内游离舌各有一个游离舌尖 411、 421、 431朝向下游方向, 各有两个根部 412、 412'、 422、 422'、 432、 432'与支架 本体上游段相连; 相间隔的两个内游离舌 (例如 41、 43 ) 根部之间 (例如 412 与 432'之间)的编织线编织在支架本体上并形成朝向下游方向的线拐 413、423、 433。
图 7、 图 8、 图 9是本发明带内层舌状结构的支架瓣膜的第三实施例的结 构示意图。 在本实施例中, 内层舌状结构 4含有三个内游离舌 41、 42、 43, 三 个内游离舌之间呈 120度转角分布;.每个内游离舌各有两个游离舌尖 411、411'、 421、 421'、 431、 431 '朝向下游方向, 各有两个根部 412、 412'、 422、 422'、 432、 432'与支架本体上游段相连; 同一.内游 i离舌的两个游离舌 fe之间呈 120 度转角并通过一个朝向上游方向的游离半圆弧线 414、 424、 434相连; 相邻的 两个内游离舌各有一个游离舌尖在同一转角上相会(例如 411'与 421位于同一 转角) , 相邻两个内游离舌(例如 41、 43 )根部之间 (例如 412'与 432 ) 的编 织线编织在支架本体上并形成朝向上游方向的线拐 413、 423、 433 ο
图 10、 图 11、 图 12是本发明带内层舌状结构的支架瓣膜的第四实施例的 结构示意图。 在本实施例中, 内层舌状结构 4只有一个内游离舌 44, 呈 360度 转角, 该内游离舌 44有四个游离舌失 441、 442、 443、 444朝向下游方向, 第 一个游离舌尖 441和第四个游离舌尖 444处于同一转角上, 相邻游离舌尖之间 有 120度转角, 并通过一个朝向上游方向的游离半圆弧线 445、 446、 447相连, 第一个游离舌尖 441和第四个游离舌尖 444各有一个根部 4411、 4441与支架 本体上游段相连。
图 13、 图 14、 图 15是本发明带内层舌状结构的支架瓣膜的第五实施例的 结构示意图。 在本实施例中, 内层舌状结构 4包括两个内游离舌 45、 46, 各呈 360度转角, 其中一个内游离舌 46位于另一个内游离舌 45的下游侧。 内游离 舌 45有四个游离舌尖 451、 452、 453、 454朝向下游方向, 其中第一个游离舌 尖 451和第四个游离舌尖 454处于同一转角上, 相邻游离舌尖之间有 120度转 角, 并通过一个朝向上游方向的游离半圆弧线 455、 456、 457相连, 其中第一 个游离舌尖 451和第四个游离舌尖 454各有一个根部 4511、 4541与支架本体 上游段相连。 内游离舌 46有四个游离舌尖 461.、 462、 463、 464朝向下游方向, 其中第一个游离舌尖 461和第四个游离舌尖 464处于同一转角上, 相邻游离舌 尖之间有 120度转角,并通过一个朝向上游方向的游离半圆弧线 465、 466、 467 相连,其中第一个游离舌尖 461和第四个游离舌尖 464各有一个根部 4611、4641 与支架本体上游段相连, 其中 4611与内游离舌 45的根部 4541是同一段编织 线。 两个内游离舌 45、 46 的各游离舌尖和各游离半圆弧线一一对应设置在同 一旋转角度上。
上述实施例只是本发明的几个代表性实施例, 本发明的带内层舌状结构的 支架瓣膜不限于上述实施例。 在上述实施例中, 如图 16、 图 17、 图 18、 图 19、 图 20、 图 21所示, 各内游离舌的游离舌尖上可以设有至 一^ h封闭式线眼 16。 各内游离舌的游离半圆弧线上也可以设有至少一个封闭式线眼 16 (图 18、 图 21 ) 。 游离舌尖还可以设计成如图 19、 图 20所示的回旋形结构 17 (蛇形) 或 18 (长圆形) , 这种带回旋形结构的内游离舌可以穿过一个或一个以上支架体上 的封闭式线眼 16。 回旋形结构编织线可以补偿支架径向压缩和扩张时的长度变 化。 各内游离舌可以穿过支架本体上的一个或 ^个以 J 的封闭式线眼与支架本 体相连, 同一个支架本体上的封闭式线眼也可以被一个或一个以上内游离舌穿 过。
构成内游离舌的编织线上可套有针织套管 5 (参见图 9、 图 12、 图 15) , 这 种针织套管可用涤纶 (Dacron ) 等纺织材料通过针织 (knitting ) 或梭织 (Weaving) 方式做成。 该针织套管的两端缝备在支架本体编织线的交叉点上 或封闭式线眼上, 以防止其滑动。 · · " 本发明中的带内层舌状结构的支架,可以采用单根或多根(优选采用单根) 弹性金属线一次编织而成, 将内层舌状结构的内游离舌直接编织在支架体的内 侧。 也可以采用二次编织方法, 即首先用单根或多根 (优选釆用单根) 弹性金 属线第一次编织成支架, 并将内层舌状结构的内游辜舌编织在支架体的外侧; 接着将编织好的支架进行形状记忆 ¾ (热处理, 将支架形状记忆下来; 再将经过 热处理后的支架沿第一次编织的相反方向拆开内层舌状结构; 最后将已拆开的 内层舌状结构进行第二次编织, 并将內层舌状结构的内游离舌编织在支架体的 内侧。 二次编织构成的内游离舌的自然直径大于支架体的内径, 使其顶在支架 体内侧, 有利于将瓣膜夹在内游离舌与支架体之间。
本发明中的支架本体优选带径向突出结构的支架, 这种支架的中段设有三 个向外突出的半球形的径向突出结构, 三个径向突出结构呈 120度转角分布。 当支架本体 1采用带径向突出结构的支架时, 其从下游端往上游端看过去的俯 视结构如图 22所示。 内层舌状结构 4的各游离舌尖 7 置在各相邻径向突出结构 6的结合部的内侧。 相邻游离舌尖 7' 间有 120度转角, 并通过一个朝向上游方 向的游离半圆弧线 445、 446、 447相连, 游离半圆弧线 445、 446、 447与径向突 出结构 6的半月形的上游周边平行。
本发明中的瓣叶和覆膜可以采甩; ( i 、 ,
1、 三个对称的瓣叶覆膜片, 即在同一圆 ½角度上瓣叶和覆膜由同一张片 状生物材料(如动物心包)构成, 一个支架瓣膜上共有三个按圆周对称分布的瓣 叶覆膜片 (图 14所示即是采用这种方案) 。
2、 一个整体的瓣叶覆膜片, 将按圆周对称分布的三张瓣叶覆膜片由周长 总和相等的一张整片代替;:这样只有" f个纵向鏠合 将伺—片的两个缝合缘对 合缝在一起构成一个圆筒 (图 2, 图 5所示即是采用这种方案) 。
3、 三个对称的瓣叶片和三个对称的覆膜片, 支架瓣膜上连接有三个片状 材料瓣叶和另外三个片状材料覆膜。 (图 8、 图 11所示即是采用这种方案) 。
4、 动物自然瓣膜, 如猪主动脉瓣膜 (包括瓣叶和其血管壁构成覆膜) 。 本发明中的瓣叶和覆膜与内层舌状结构'及支架本体的位置关系有以下几 种:
1、当支架只有一层内层舌状结构时,内游离舌可在瓣叶覆膜的内侧面(上 游面) ; 也可在瓣叶覆膜的外侧面 (下游面) 。
内游离舌在瓣叶覆膜的内侧面 (上游面) , 将瓣叶覆膜的覆膜部份夹在支 架本体与内游离舌之间 (如图 5所示) , 整个内游离舌将瓣叶覆膜的覆膜部份 顶在支架本体内侧面上构成瓣叶开关时无应力集中的转动缘。
内游离舌在瓣叶的外侧面(下游面) , 游离舌尖将两个相邻的瓣叶在瓣叶 联合点夹住, 使瓣叶与瓣叶之间靠拢关闭, 游离半圆弧线将瓣叶覆膜的上游覆 膜在瓣叶连接线向下游方向延伸部 夹在支架本体与内游离舌之间 (如图 8, 图 1 1所示) , 整个内游离舌将瓣叶覆膜的覆膜部份顶在支架本体内侧面上构 成瓣叶开关时无应力集中的转动缘。
2、 当支架有二层或多层内层舌状结构时, 至少一个内游离舌在瓣叶覆膜 的内侧面 (上游面) 或和至少一个在外侧面 (下游面) :
在同一旋转角度上可以有二个或二个以上平行的内层舌状结构。至少一个 大弧度的内游离舌(游离半圆弧线)在瓣叶覆膜片的内侧面(瓣叶上游侧面), 将瓣叶覆膜片的覆膜部份夹在支架本体与内游离舌之间。 至少一个平行的较小 弧度的内游离舌(游离舌尖)在瓣叶覆膜片的外侧面 (瓣叶下游侧面) , 将两个 相邻的瓣叶在瓣叶联合点夹住, 使 |1叶与瓣 Bt之间靠拢关闭 (如图 14所示) 。
例如: 在支架体内侧有三个片状材料瓣叶。 内层舌状结构的内游离舌位于 瓣叶外侧面 (瓣叶下游面) 。 两个相邻的瓣叶的各一个缝合末端一起穿过一个 内层舌状结构的内游离舌尖, 并被其夹住。 瓣叶缝合缘绕过内层舌状结构的游 离半圆弧线, 而位于瓣叶联合线的下游侧, 局部构成下游覆膜 (如图 8、 图 11 所示) 。 ' . I '■ ' : 1 '
在支架体内侧或外侧可有三个片状材料上游覆膜。 两个相邻的上游覆膜片 的两个轴向缝合缘相对缝合。 上游覆膜片的下游缘与内层舌状结构上套有的针 织套管及瓣叶缝合缘三者缝合在一起。 上游覆膜片的上游端与支架上游端缝合 在一起。 .,:' . . ,
本发明中内游离舌与瓣叶覆膜之间可有缝合,, '也可不缝合。 如要缝合一般 趋向于不直接缝合, 这样无缝合点处应力集中。 办法是, 在内游离舌的弹性编 织线上套上针织套管 5 (见图 9、 图 12、 '图 15 ) , 在瓣叶转动缘对侧, 上游覆膜 或瓣叶下游侧覆膜与针织套管之间缝合。 然后, (a) 、 不与支架本体相连; (b) 、 瓣叶覆膜通过针织套管缝^ 1'在支架本体上; (c) 、 瓣叶覆膜通过针织 套管缝合在支架体的外层舌状结构上。
各相邻瓣叶覆膜片的纵向缝合缘之伺相缝合, 还可同时缝合在支架上。 瓣叶覆膜片的上游缘与支架上游端缝合。
本发明的创新点在于:
1、 在支架体内侧设置内层舌状结构, 内层舌状结构可以与外层舌状结构 两者同时存在。 内层舌状结构与支架体可由同一单根弹性编织线编织而成。 内 层舌状结构与支架体和外层舌状结构可由同一单根弹性编织线编织而成。 内层 舌状结构为单根编织支架整体的一部分。 游离舌尖有一定的向心方向活动自 由, 在瓣叶开关时可以减少瓣叶连接.点上的应力。, ,
2、 在两层支架或多层支架的支架体内侧, 内层舌状结构的内游离舌将瓣 叶联合线和上游段覆膜的上游面或和下游面以无应力集中的方式顶在支架体 内侧面上。 内层舌状结构的内游离舌还可在瓣叶下游面将瓣叶联合点处两瓣叶 夹住, 使其在无张力情况下呈关闭状态。
3、 生产工艺上, 单线或多线支架编织好并经热处理形状记忆成形后, 可 以局部或全部拆除编织。 再编织时某些结构, 如内层舌状结构的游离舌的位置 可以变动, 如从支架体外侧(较大自然直经)换到内侧(较小限制直经), 使内层 舌状结构的游离舌在自身回弹力作用下顶在支架体内壁上。 再编织时可以加入 不能经受热处理的材料, 如生物材料制成的瓣膜, 或加入独立的自然直经较大 的有三个游离舌尖和三个游离半圆弧线的环。 单线支架全部拆除编织后, 再编 织时可以从单编织线的一头穿, 可以从单编织线的两头穿。
4、 单线或多线支架编织线上可以套有一个或多个口径相互配合的针织套 管, 而不需缝合。 工业应用性
本发明带内层舌状结构的支架瓣膜由于在可径向变形的支架内侧设 置了内层舌状结构., 形成了对应于生物瓣膜连接点和连接线的支撑和固定结 构, 瓣叶通过内游离舌固定, 而不是直接固定在支架本体上, 避免了生物瓣叶 开关时瓣叶的开关活动部位直接位于瓣叶与支架的缝合部位: 1、 使瓣叶开关时无应力集中, 减少了磨损, 延长了使用寿命。
2、 连接点上两瓣叶在瓣膜关闭时对合更好。
3、 使支架瓣膜经向压缩时或轴.向对拉时, 瓣叶轴向牵拉相对减少。
4、 使返流血液冲击瓣叶使其关闭时, 内游离舌在瓣叶连接点处弹性内移, 瓣叶连接点应力相对减少。
另外, 由于采用二次编织方法, 内层舌状结构的内游离舌有较支架体更大 的自然直经, 可使内层舌状结构的内游离舌紧贴支架体内壁。
由于在内层舌状结构的编织线上套上了针织套管, 通过将瓣膜缝合在针织 套管上实现瓣膜与内层舌状结构的连接固定, 与在先技术将纺织片材包在编织 线上, 然后沿编织线缝合成筒相比, 这种将针织套管同轴套在编织线上的方法 简化了工艺,减少了体积,增加了强度和可靠性。弹性编织线包上涤纶(Dacron) 等材料后还可以减少血栓形成, 减少金属编织线与生物材料之间的磨擦, 方便 生物材料与弹性编织线之间的固定。

Claims

权 利 要 求
1. 一种带内层舌状结构的支架瓣膜, 包括一个可以径向变形的管形网状 支架本体以及瓣叶和覆膜, 其特征在于: 还包括连接在支架本体内侧的内层舌 状结构, 内层舌状结构与支架本体共同构成带内层 状结构的支架, 内层舌状 结构含有至少一个可以向支架内侧 ¾动的内游离舌, 内游离舌构成瓣叶和覆膜 的连接缘, 所述的瓣叶和覆膜与内游离舌相连, 或通过内游离舌与支架本体相 连。
2. 如权利要求 1所述的带内层舌状结构的支架瓣膜, 其特征在于: 所述 的管形网状支架本体包括直管型网状支架、 中段有鼓型结构的鼓型网状支架或 中段带径向突出结构或外层舌状结构的径向突出型网状支架; 优选带径向突出 结构的支架, 该支架的中段设有 H.个向外突出,的半球形的径向突出结构。
3. 如权利要求 1或 2所述的带内层舌状结构的支架瓣膜, 其特征在于: 所述的管形网状支架本体由弹性金属线上下交错编织而成, 在支架本体上设有 多个封闭式线眼; 所述的内层舌状结构由弹性金属线编织在支架本体的内侧, 与支架本体共同构成带内层舌状结构的编织支架; 所述的内游离舌含有至少一 个游离舌尖, 并有至少一个游离舌根部与支架本体相连, 游离舌尖构成瓣叶连 接点的连接缘。
4. 如权利要求 1或 2所述的带内层舌状结构的支架瓣膜, 其特征在于: 所述的管形网状支架本体由弹性金属线编织而成; 所述的内层舌状结构是由管 材切割而成或由板材切割后变形而成的独立的环状结构, 该环状结构带有三个 游离舌尖和三个游离半圆弧线; 至少一个这样的环状结构被构成支架本体的弹 性金属线编织在支架体的内侧构成带内层舌状结构的复合结构支架; 环状结构 中的游离舌尖构成瓣叶连接点的连接缘, 游离半圆弧线构成瓣叶覆膜连接线的 连接缘。
5. 如权利要求 1或 2所述的带内层舌状结构的支 I架瓣膜,' 其特征在于: 所 述的管形网状支架本体为管材切割支架; 所述的内层舌状结构由弹性金属线编 织在管材切割支架的内侧, 与管材切割支架共同构成带内层舌状结构的复合结 构支架; 所述的内游离舌含有至少一个游离舌尖, 并有至少一个游离舌根部与 支架本体相连, 游离舌尖构成瓣叶连接点的连接缘。
6. 如权利要求 1或 2所述的带内层舌状结 f勾的支架瓣膜, 其特征在于: 所 述的管形网状支架本体和内层舌状结构分别由弹性金属线编织而成; 所述的管 形网状支架本体和内层舌状结构的内游离舌上套有针织套管; 所述的内层舌状 结构通过套在内游离舌上的针织套管与套在支架本体上的针织套管缝合在一 起构成带内层舌状结构的复合结构支架; 所述的内游离舌含有至少一个游离舌 尖, 游离舌尖构成瓣叶连接点的连接缘。 '
7. 如权利要求 1或 2所述的带内层舌状结构 支架瓣膜, 其特征在于- 所述的管形网状支架本体为管材切 #!]支架; 所述的内层舌状结构是由管材切割 而成或由板材切割后变形而成的独立的环状结构, 该环状结构带有三个游离舌 尖和三个游离半圆弧线; 至少一个这样的环状结构焊接在管材切割支架的内侧 构成带内层舌状结构的复合结构支架 环状结构中的游离舌尖构成瓣叶连接点 的连接缘, 游离半圆弧线构成瓣叶覆膜连接线的连接缘。
8. 如权利要求 3所述的带内层舌状结构的支架瓣膜, 其特征在于: 所述 的内游离舌上设有至少一个封闭式线眼。
9. 如权利要求 3所述的带内层舌.状结构的支架瓣膜, 其特征在于: 所述 的内游离舌穿过支架本体上的至少一个封闭式线眼 "^支架本体相连, 支架本体 上的同一个封闭式线眼被至少一个 游离舌穿过。
10. 如权利要求 3所述的带内层舌状结构的支架瓣膜, 其特征在于: 所述 的构成内游离舌的编织线上套有针织套管, 该针织套管的两端缝合在支架本体 编织线的交叉点上或封闭式线眼上;'所述的瓣叶和覆膜分别通过与针织套管的 缝合与内游离舌相连, 并缝合于支架本体上。
11. 如权利要求 3所述的带内层舌状结构的支架瓣膜, 其特征在于: 所述 的内层舌状结构含有三个内游离舌; 每个内游离舌有一个游离舌尖朝向下游方 向, 有两个根部与支架本体上游段相连; .相邻 个 游离舌根部之间的编织线 编织在支架本体上并形成朝向上游方向的线拐。
12. 如权利要求 3所述的带内层舌状结构的支架瓣膜, 其特征在于: 所述 的内层舌状结构含有三个内游离舌; 每个内游离舌有一个游离舌尖朝向下游方 向, 有两个根部与支架本体上游段相连; 相间隔的两个内游离舌根部之间的编 织线编织在支架本体上并形成朝向下游方向的线拐。
13. 如权利要求 3所述的带内^ 舌状结构的支架瓣膜, 其特征在于: 所述 的内层舌状结构含有三个内游离舌; 每个内游离舌各有两个游离舌尖朝向下游 方向, 每个游离舌尖各有一个根部与支架本体上游段相连, 两个游离舌尖之间 通过一个朝向上游方向的游离半圆弧线相连, 该游离半圆弧线构成瓣叶覆膜连 接线的连接缘; 相邻的两个内游离舌各有一个游离舌尖在周: ^转角上相会; 相 邻两个内游离舌根部之间的编织线编织在支架本体上并形成朝向上游方向的 线拐。
14. 如权利要求 3所述的带内层舌状结构的支架瓣膜, 其特征在于: 所述 的内层舌状结构只有一个内游离舌,.呈 360度转角, 该内游离舌有四个游离舌 尖朝向下游方向, 第一和第四个游离舌尖处于同一转角上, 相邻游离舌尖之间 通过一个朝向上游方向的游离半圆弧线相连, 该游离半圆弧线构成瓣叶覆膜连 接线的连接缘; 第一和第四个游离舌尖各有一个根部与支架本体上游段相连。
15. 如权利要求 3所述的带内层舌状结构的支架瓣膜, 其特征在于: 所述 的内层舌状结构包括两个内游离舌,'各呈 360·度转角, 其中一个内游离舌位于 另一个内游离舌的下游侧; 两个内游离舌各有四个游离舌尖朝向下游方向, 第 一和第四个游离舌尖处于同一转角上, 相邻游离舌尖之间通过一个朝向上游方 向的游离半圆弧线相连, 该游离半圆弧线构成瓣叶覆膜连接线的连接缘; 第一 和第四个游离舌尖各有一个根部与支架本体上游段相连, 两个内游离舌的各游 离舌尖和各游离半圆弧线一一对应设置在同一"旋转角度上。 '
16. 一种带内层舌状结构的编织支架的编织方法, 其特征在于: 由单根或 多根弹性金属线一次编织而成, 内层舌状结构的内游离舌直接编织在支架体的
17. 一种带内层舌状结构的编织支架的编织方法, 其特征在于, 包括以下 步骤:
a、 由单根或多根弹性金属线第一次编织成支架, 并将内层舌状结构的内 游离舌编织在支架体的外侧;
b、 将编织好的支架进行形状记忆的热处理, 将支架形状记忆下来; c、 将经过热处理后的支架沿第一次编织的湘反方向拆开内层舌状结构; d、 将已拆开的内层舌状结构进行第二次编织, 并将内层舌状结构的内游 离舌编织在支架体的内侧。
PCT/CN2007/003016 2006-10-31 2007-10-22 Stent valve with inner tongue structure and weaving method of the stent thereof WO2008052421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610117809.8 2006-10-31
CN 200610117809 CN101172059B (zh) 2006-10-31 2006-10-31 带内层舌状结构的支架瓣膜及其支架的编织方法

Publications (1)

Publication Number Publication Date
WO2008052421A1 true WO2008052421A1 (en) 2008-05-08

Family

ID=39343802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003016 WO2008052421A1 (en) 2006-10-31 2007-10-22 Stent valve with inner tongue structure and weaving method of the stent thereof

Country Status (2)

Country Link
CN (1) CN101172059B (zh)
WO (1) WO2008052421A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3797738A1 (en) * 2012-07-27 2021-03-31 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
US11020221B2 (en) 2017-09-27 2021-06-01 W. L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
US11109963B2 (en) 2017-09-27 2021-09-07 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
US11123183B2 (en) 2017-10-31 2021-09-21 W. L. Gore & Associates, Inc. Prosthetic heart valve
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
US11166809B2 (en) 2012-07-25 2021-11-09 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US11439502B2 (en) 2017-10-31 2022-09-13 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US11471276B2 (en) 2014-09-15 2022-10-18 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US11826248B2 (en) 2012-12-19 2023-11-28 Edwards Lifesciences Corporation Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US11872122B2 (en) 2012-12-19 2024-01-16 Edwards Lifesciences Corporation Methods for improved prosthetic heart valve with leaflet shelving
US11896481B2 (en) 2012-12-19 2024-02-13 Edwards Lifesciences Corporation Truncated leaflet for prosthetic heart valves
US12059344B2 (en) 2017-09-12 2024-08-13 Edwards Lifesciences Corporation Leaflet frame attachment for prosthetic valves
US12064344B2 (en) 2017-10-13 2024-08-20 Edwards Lifesciences Corporation Telescoping prosthetic valve and delivery system
US12133795B2 (en) 2012-12-19 2024-11-05 Edwards Lifesciences Corporation Geometric control of bending character in prosthetic heart valve leaflets
US12178699B2 (en) 2012-12-19 2024-12-31 Edwards Lifesciences Corporation Multi-frame prosthetic heart valve
US12201520B2 (en) 2021-08-04 2025-01-21 Edwards Lifesciences Corporation Prosthetic heart valve

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076724A2 (en) 2011-11-21 2013-05-30 Mor Research Applications Ltd. Device for placement in the tricuspid annulus
EP3229738B1 (en) * 2014-12-14 2023-11-22 Trisol Medical Ltd. Prosthetic valve and deployment system
CN106473840B (zh) * 2016-12-07 2017-12-26 复旦大学附属儿科医院 手工缝制带瓣外管道及该管道缝制用的模具和缝制方法
DE102017101756B3 (de) * 2017-01-30 2018-05-17 Geobrugg Ag Drahtgeflecht und Verfahren zur Herstellung einer Wendel für ein Drahtgeflecht
US10842619B2 (en) * 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
CN107928841B (zh) * 2017-11-27 2020-07-28 上海形状记忆合金材料有限公司 一种分体式主动脉瓣膜支架组件
CN110236738A (zh) * 2019-07-01 2019-09-17 上海长海医院 耐久性增强型带三叶生物瓣移植物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054625A1 (en) * 2000-01-31 2001-08-02 Cook Biotech Incorporated Stent valves and uses of same
US7041126B2 (en) * 2003-05-23 2006-05-09 Taewoong Medical Co., Ltd. Flexible self-expandable stent and method of producing the same
CN1961845A (zh) * 2005-11-09 2007-05-16 温宁 人工心脏支架瓣膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK124690D0 (da) * 1990-05-18 1990-05-18 Henning Rud Andersen Klapprotes til implantering i kroppen for erstatning af naturlig klap samt kateter til brug ved implantering af en saadan klapprotese
CN1160029C (zh) * 2002-03-29 2004-08-04 中南大学湘雅二医院 弹性瓣环心包二尖瓣
CN1745727A (zh) * 2004-09-08 2006-03-15 王蓉珍 介入式人工心脏瓣膜及其植入和回收装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054625A1 (en) * 2000-01-31 2001-08-02 Cook Biotech Incorporated Stent valves and uses of same
US7041126B2 (en) * 2003-05-23 2006-05-09 Taewoong Medical Co., Ltd. Flexible self-expandable stent and method of producing the same
CN1961845A (zh) * 2005-11-09 2007-05-16 温宁 人工心脏支架瓣膜

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11166809B2 (en) 2012-07-25 2021-11-09 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US11950999B2 (en) 2012-07-25 2024-04-09 Edwards Lifesciences Corporation Everting transcatheter valve and methods
EP3797738A1 (en) * 2012-07-27 2021-03-31 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
US12115063B2 (en) 2012-07-27 2024-10-15 Edwards Lifesciences Corporation Multi-frame prosthetic valve apparatus and methods
US12178699B2 (en) 2012-12-19 2024-12-31 Edwards Lifesciences Corporation Multi-frame prosthetic heart valve
US12133795B2 (en) 2012-12-19 2024-11-05 Edwards Lifesciences Corporation Geometric control of bending character in prosthetic heart valve leaflets
US11826248B2 (en) 2012-12-19 2023-11-28 Edwards Lifesciences Corporation Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US11872122B2 (en) 2012-12-19 2024-01-16 Edwards Lifesciences Corporation Methods for improved prosthetic heart valve with leaflet shelving
US11896481B2 (en) 2012-12-19 2024-02-13 Edwards Lifesciences Corporation Truncated leaflet for prosthetic heart valves
US11471276B2 (en) 2014-09-15 2022-10-18 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US12059344B2 (en) 2017-09-12 2024-08-13 Edwards Lifesciences Corporation Leaflet frame attachment for prosthetic valves
US11986387B2 (en) 2017-09-27 2024-05-21 Edwards Lifesciences Corporation Prosthetic valves with mechanically coupled leaflets
US11109963B2 (en) 2017-09-27 2021-09-07 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
US11857412B2 (en) 2017-09-27 2024-01-02 Edwards Lifesciences Corporation Prosthetic valve with expandable frame and associated systems and methods
US11020221B2 (en) 2017-09-27 2021-06-01 W. L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
US12064344B2 (en) 2017-10-13 2024-08-20 Edwards Lifesciences Corporation Telescoping prosthetic valve and delivery system
US12053374B2 (en) 2017-10-31 2024-08-06 Edwards Lifesciences Corporation Medical valve and leaflet promoting tissue ingrowth
US11974916B2 (en) 2017-10-31 2024-05-07 Edwards Lifesciences Corporation Jacket for surgical heart valve
US11439502B2 (en) 2017-10-31 2022-09-13 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
US11123183B2 (en) 2017-10-31 2021-09-21 W. L. Gore & Associates, Inc. Prosthetic heart valve
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US12090046B2 (en) 2019-03-01 2024-09-17 Edwards Lifesciences Corporation Telescoping prosthetic valve with retention element
US12201520B2 (en) 2021-08-04 2025-01-21 Edwards Lifesciences Corporation Prosthetic heart valve

Also Published As

Publication number Publication date
CN101172059B (zh) 2010-12-08
CN101172059A (zh) 2008-05-07

Similar Documents

Publication Publication Date Title
WO2008052421A1 (en) Stent valve with inner tongue structure and weaving method of the stent thereof
CN103153232B (zh) 具有低心室型面的二尖瓣假体
JP7149052B2 (ja) 患者の心臓の移植部位で弁プロテーゼを位置決めし固定するためのステント
JP7150924B2 (ja) 経カテーテル肺動脈球弁アセンブリ
US10231828B2 (en) Reduced profile prosthetic heart valve
US9867699B2 (en) Endoprosthesis for implantation in the heart of a patient
JP5788409B2 (ja) 低侵襲性心臓弁
US9707075B2 (en) Endoprosthesis for implantation in the heart of a patient
US9895225B2 (en) Collapsible valve prosthesis
CN107184292B (zh) 铰接式连合瓣膜支架和方法
US8790395B2 (en) Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8398704B2 (en) Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
CN107920896A (zh) 具有对接部件和假体瓣膜部件的假体瓣膜系统
CN209091745U (zh) 分体式心脏瓣膜支架及其假体
CN108366857A (zh) 具有作为用于自扩张假体的联接机构和展开机构的可收缩线材的递送系统
CN108430395A (zh) 具有流动引导器的假体瓣膜
CN107260366A (zh) 一种人工瓣膜假体
JP2018533455A (ja) 僧帽弁プロテーゼ
WO2007054015A1 (en) An artificial heart valve stent and weaving method thereof
CN102202610A (zh) 用于支架瓣膜制造和组装的方法和系统
JP2008264553A (ja) 交換用心臓弁および弁ホルダ、ならびにその製造方法および使用方法
JP2003505146A (ja) 弾性的に変形可能な維持部材を有する心臓弁プロテーゼ
JP2018509202A (ja) 心嚢膜を用いた人工心臓弁膜及びその製造方法
CA2791090A1 (en) Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
CN101172058B (zh) 支架与生物瓣膜编织成一体的支架瓣膜及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07816629

Country of ref document: EP

Kind code of ref document: A1