Nothing Special   »   [go: up one dir, main page]

WO2007132780A1 - Culture vessel and automatic culture apparatus - Google Patents

Culture vessel and automatic culture apparatus Download PDF

Info

Publication number
WO2007132780A1
WO2007132780A1 PCT/JP2007/059763 JP2007059763W WO2007132780A1 WO 2007132780 A1 WO2007132780 A1 WO 2007132780A1 JP 2007059763 W JP2007059763 W JP 2007059763W WO 2007132780 A1 WO2007132780 A1 WO 2007132780A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
lid
culture vessel
hole
container body
Prior art date
Application number
PCT/JP2007/059763
Other languages
French (fr)
Japanese (ja)
Inventor
Kyoji Nakamura
Hiroaki Kii
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2007132780A1 publication Critical patent/WO2007132780A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/50Means for positioning or orientating the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts

Definitions

  • the present invention relates to a culture vessel and an automatic culture apparatus for culturing cells.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-237758
  • the culture container has a container body having a transparent material force for culturing cells and an opening for injecting or discharging a predetermined substance with an open top surface.
  • a cover made of a transparent material that closes the upper surface of the container body, and an index for calculating the position of the hole by image processing is formed on the surface of the container body or the cover.
  • the cell is formed outside the observation range.
  • a screw part may be provided on the peripheral surface of the container body, and the lid may be screwed into the screw part.
  • a plurality of accommodating portions may be provided in the container body, and each accommodating portion may be a closed space independent by a lid that closes the upper surface.
  • the index is also possible to configure the index as a member formed separately from the lid, provide a recess on the surface of the lid, and fit the index into the recess.
  • the automatic culture apparatus calculates the position of the hole based on the above-described culture container, the imaging apparatus that images the upper surface of the culture container, and the image of the captured index. And a nozzle device for injecting or discharging a predetermined substance toward the calculated hole position.
  • the position of the culture vessel can be calculated with high accuracy, and the cells can be cultured automatically.
  • FIG. 1 (a) is a top view of the culture vessel according to the first embodiment, (b) is a sectional view taken along line bb of FIG. 1 (a), and (c) is a bottom view.
  • FIG. 2 is a diagram showing a modification of FIG.
  • FIG. 3 (a) is a plan view of the holder according to the first embodiment, (b) is a plan view showing a state where a culture vessel is set in the holder, and (c) is a plan view of FIG. 3 (b). c—C sectional view.
  • FIG. 4 is a front view showing the overall configuration of the automatic culture apparatus according to the first embodiment.
  • FIG. 5 is a side view showing the overall configuration of the automatic culture apparatus according to the first embodiment.
  • FIG. 6 is a block diagram showing a control configuration of the automatic culture apparatus according to the first embodiment.
  • FIG. 7 (a) is a plan view of the culture vessel according to the second embodiment (with the lid removed), and (b) is a diagram.
  • FIG. 8 is a plan view of a culture vessel according to a second embodiment (with a lid attached).
  • FIG. 9 (a) is a plan view in which the culture vessel of FIG. 8 is set in a holder, and (b) is a cross-sectional view taken along line bb of FIG. 9 (a).
  • FIG. 10 is a view showing a modification of the present invention.
  • FIGS. 1-10 A first embodiment of a culture vessel according to the present invention will be described with reference to FIGS.
  • Fig. 1 (a) is a top view of the culture vessel according to the first embodiment
  • Fig. 1 (b) is a cross-sectional view taken along line bb of Fig. 1 (a)
  • Fig. 1 (c) is a bottom view of the culture vessel. It is.
  • the culture container 10 has a container body 11 and a lid 12 formed by resin molding.
  • the container body 11 has a substantially cylindrical shape with an open top surface and a closed bottom surface, and the top surface of the container body 11 is covered with a lid 12.
  • Container body 11 A screw part 11a is provided on the upper outer peripheral surface of the container, and a lid 12 is screwed into the screw part 11a to close the inside of the container.
  • the cells in the container are observed after being cultured in an automatic culture apparatus (Figs. 4 and 5) described later.
  • the bottom surface of the container body 11 and at least the central part of the lid 12 are made of transparent resin or glass.
  • a positioning projection l ib is provided on the outer peripheral surface of the container body 11.
  • the lid 12 has small-diameter holes 12a to 12c into which nozzles to be described later are inserted. These holes 12a to 12c are opened at positions closer to the outer peripheral side than the center portion of the lid 12 so as not to obstruct the cell observation.
  • a substantially annular black pattern 13 for image processing is printed on the outer peripheral side of the holes 12a to 12c on the upper surface of the lid 12.
  • Pattern 13 is an index for indicating the positions of holes 12a to 12c.
  • Notches 13a to 13c are provided on the inner periphery of pattern 13, and the positions of holes 12a to 12c with reference to the notches 13a to 13c.
  • the hole 12a is for medium injection
  • the hole 12b is for trypsin injection
  • the hole 12c is a hole for medium suction and trypsin suction.
  • the shape of the pattern 13, that is, the positions of the notches 13a to 13c can be grasped by acquiring and processing the image of the surface of the lid 12, and thereby the positions of the holes 12a to 12c can be determined. It can be calculated.
  • the pattern 13 can also be formed by a substantially ring-shaped molded product 14 as shown in FIG. In this case, the concave portion 12d is provided on the upper surface of the lid 12, and the pattern 14 is fitted into the concave portion 12d and bonded. Thus, the pattern 14 can be easily and accurately formed on the upper surface of the lid 12. .
  • Fig. 3 (a) is a plan view of the holder 20
  • Fig. 3 (b) is a plan view showing a state in which a plurality of (five in the figure) culture vessels 10 are set in the holder 20
  • Fig. 3 (c) is a diagram. 3 is a cross-sectional view taken along line cc of FIG.
  • the holder 20 is a shallow dish-shaped container.
  • a template 21 is placed in the holder, and each culture container 10 is held in a substantially circular opening 21 a provided in the template 21.
  • the region in which the culture vessel 10 is accommodated is formed of a transparent resin or glass so that the cells in the vessel can be observed in a state set in the holder 20.
  • the position of the holder 20 on the stage of the automatic culture apparatus is indicated.
  • a positioning part 20b is provided for defining.
  • a pin 20c protrudes from the bottom surface of the holder 20, and the position of the template 21 relative to the holder 20 is defined via the pin 20c.
  • a recess (not shown) is provided in the opening 21a of the template 21 corresponding to the convex portion l ib (FIG. 1) of the container body 11, and the position of the container body 11 with respect to the template 21 is defined.
  • the position of the container body 11 on the stage is defined via the positioning portion 20b, the pin 20c, and the convex portion ib.
  • the positions of the holes 12a to 12c with respect to the container body 11 depend on the screwing amount of the lid 12, and the positions of the holes 12a to 12c are different for each container.
  • FIG. 4 and 5 are a front view and a side view, respectively, showing the overall configuration of the automatic culture apparatus, and FIG. 6 is a block diagram showing a control configuration of the automatic culture apparatus.
  • the holder 20 is stored and stored in a stocker 31 in an incubator 30 in which temperature, humidity, C02 concentration and the like are controlled, and cells are cultured in a predetermined culture environment.
  • the stocker 31 is composed of a plurality of shelves, and the entire stocker is set in the same culture environment. It should be noted that the stocker can be set to a different culture environment for each stage.
  • Each culture vessel 10 is given a unique identification number. The storage location of the culture vessel 10 according to the identification number, that is, the storage location of the holder 20 in which the culture vessel 10 is accommodated, and the position of the culture vessel 10 in the holder Information is managed.
  • Holder 20 is transported onto a stage by a transport device.
  • the transfer device includes a transfer table 32 having an arm capable of holding the holder 20, and a plurality of transfer motors 33 (shown collectively in FIG. 6) that move the table 32 in the horizontal direction and the height direction.
  • the transport motor 33 is driven by a command from the controller 40.
  • the controller 40 controls the operation of the transport motor 33 in various ways.
  • the table 32 is moved by driving the motor 33, and the holder 20 including the culture vessel 10 to which the identification number is assigned. Is taken out from the stock force 31 and conveyed onto the stage.
  • the stage 35 can be moved in the horizontal direction by driving a plurality of stage motors 34 (shown collectively in FIG. 6). Above the stage 35, the imaging device 50, the illumination device 51, and the And a nozzle device 60 is provided.
  • the imaging device 50 is a CCD camera, and the CCD camera 50 is attached to the side wall of a column that supports the illumination device 51.
  • the controller 40 outputs a control signal to the stage motor 34 and moves the stage 35 to a predetermined imaging position directly below the CCD camera 50.
  • the entire upper surface of the holder 20 is imaged by the CCD camera 50, and the pattern image 13 drawn on the pattern of the upper surface of the holder 20, that is, the lid 12 of each culture vessel 10, based on the signal from the CCD camera 50. To get.
  • the controller 40 includes, for example, a coordinate position on the stage corresponding to the origin on the photographing screen of the CCD camera 50, and a relationship between the pattern 13 printed on the lid 12 and the positions of the holes 12a to 12c (for example, Relative coordinates of holes 12a to 12c based on notches 13a to 13c) are stored.
  • the controller 40 calculates the coordinates of the pattern 13 on the stage based on the image captured by the CCD camera 50, acquires the position information of the culture vessel 10 on the stage 35, and positions of the holes 12a to 12c. Get information.
  • the controller 40 When the imaging at the imaging position is completed, the controller 40 outputs a control signal to the stage motor 34 based on the acquired position information of the culture vessel 10, so that the culture vessel 10 is set to the observation position directly below the illumination device 51.
  • a microscope 52 is installed below the observation position, and illumination light is emitted from the illumination device 51 toward the culture vessel 10 on the stage.
  • the image magnified by the microscope 52 is picked up by the CCD camera 53 for the microscope and displayed on the monitor 54 (Fig. 6).
  • the lid 12, the bottom surface of the container body 11, and the bottom surface of the holder 20 are each formed of transparent resin or glass, the cells in the culture container are enlarged and displayed on the monitor 54. Is done. The user observes the cell state displayed on the monitor 54, thereby exchanging the solution in the culture vessel, that is, exchanging the medium or removing some cells in the culture vessel and transferring them to another culture vessel 10. It is determined whether it is necessary to change, that is, passaging. In FIGS. 4 and 5, a force erecting microscope showing an inverted microscope can be used. The magnification of the microscope 52 can also be adjusted by a signal from the controller 40.
  • the nozzle device 60 includes a guide rail 61 attached to a side wall of a column supporting the lighting device 51, a base member 62 supported so as to be movable up and down via the guide rail 61, and a base portion A lifting motor 63 that moves the material 62 up and down, a nozzle support base 64 supported by the base member 62, and a nose support 65 to 67 that are attached to a nose support base 64.
  • Nosnole 65-67 are new medium injection nozzles 65 for injecting medium, trypsin injection nozzles 66 for injecting trypsin during passage, and old nozzles for inhaling and injecting medium and trypsin 67 Of these three nozzles 65 to 67, the selection of the nozzle is switched by driving the switching motor 68, and only the selected nozzle can be moved up and down.
  • the controller 40 selects the suction nozzle 67 by driving the switching motor 68 and outputs a control signal to the stage motor 34 based on the hole position information acquired at the imaging position. Then, the stage 35 is moved so that the position of the medium suction hole 12c is directly below the suction nozzle 67. Next, a control signal is output to the lifting motor 63 to lower the suction nozzle 67, and the tip of the suction nozzle 67 is inserted into the culture vessel through the hole 12c. In this state, pump 69 (Fig. 6) is driven to suck the old medium into the waste tank. Note that the pump 69 has a separate capacity for sucking and injecting the medium.
  • the suction nozzle 67 is raised to the initial position, and then the culture medium injection nozzle 65 is selected.
  • the medium injection nozzle 65 is lowered and the tip of the nozzle 65 is inserted into the culture vessel. .
  • the pump 69 is driven, and a new medium is also injected into the tank for storing the medium.
  • use two nozzles 65 and 67. Use three nozzles 65 to 67 when subculture. In this case, the selection of the nozzles 65 to 67 and the operation of raising and lowering are the same as described above, and a description thereof will be omitted.
  • Holes 12a to 12c for inserting the nozzles 65 to 67 are opened in the lid 12 of the culture vessel 10, and a pattern 13 having a predetermined shape is printed on the upper surface of the lid 12 in association with the hole position. .
  • the hole position can be accurately calculated, and the cells can be easily cultured automatically.
  • the lid 12 of the culture vessel 10, the bottom surface of the container body 11, and the bottom surface of the holder 20 are each formed of transparent grease or the like, and an image obtained by enlarging with the microscope 52 is displayed on the monitor 54.
  • the state of the cells can be observed without removing the culture vessel 10 from the incubator 30.
  • the pattern 13 is printed in the vicinity of the outer periphery of the lid 12 and the nozzle insertion holes 12a to 12c are opened in the vicinity of the pattern 13, so that the cells in the center of the container can be observed without hindrance. I'll do it.
  • the culture vessel is constituted by a well plate.
  • the same parts as those in FIGS. 1 to 6 are denoted by the same reference numerals, and differences from the first embodiment will be mainly described below.
  • FIG. 7 (a) is a plan view showing the configuration of the culture vessel according to the second embodiment, that is, the well plate 70.
  • FIG. 7 (b) is a cross-sectional view of FIG. FIG. 7 (a) shows the container body 71 and template 81 of the well plate 70, and FIG. 7 (b) shows the container body 71, lid 72 and template 81.
  • a plurality of (in the figure, 12) accommodating portions 70a are formed by partition walls 71a, and the container body 71 is covered with a lid 72 so as to cover the upper surface of each accommodating portion 70a. Yes.
  • Grooves 71b and 72b are provided at the side ends of the container body 71 and the lid 72, and the lid 72 is fixed to the container body 71 by a band 74 engaged with the grooves 71b and 72b. It is considered as an independent space.
  • FIG. 8 is a plan view showing a state in which the lid 72 is attached to the container main body 71.
  • the entire surface of the lid 72 and the bottom surface of the container main body 71 are formed of a transparent resin or glass so that the cells in the container 70a can be observed with a microscope.
  • Each lid 70a has a lid 71
  • Nozzle insertion holes 72a to 72c are opened, and a pattern 73 is formed on the upper surface of the lid 71 to serve as a hole position indicator.
  • the pattern 73 has a substantially cross shape.
  • the relative coordinates of the holes 72a to 72c based on the crossing point are stored in advance. It should be noted that the notane 73 is formed avoiding the accommodating portion 70a so as not to disturb the observation of the cells.
  • Fig. 9 (a) is a plan view showing a state in which the well plate 70 is set on the holder 20 via the template 81
  • Fig. 9 (b) is a sectional view taken along the line bb in Fig. 9 (a). It is.
  • the template 81a is provided with a substantially rectangular opening 8la, and the well plate 70 is fitted in the opening 8la.
  • the lid 72 of the well plate 70 is positioned with respect to the holder 20 via the pin 20c and the opening 81a.
  • the holder 20 in which the tool plate 70 is accommodated is accommodated in the incubator 30 of the automatic culture apparatus.
  • the pattern 73 of the lid 72 was imaged by the CCD camera 50, and the position information of the accommodating portion 70a and the position information of the holes 72a to 72c were acquired based on the signal from the CCD camera 50. Later, medium replacement and passage are performed as necessary.
  • the pattern 73 which serves as a reference for the hole position, is formed in the lid 72 of the well plate 70, so that the image processing is performed in the same manner as in the first embodiment.
  • the hole position of the lid 72 can be calculated, and the cells can be cultured automatically.
  • the upper surfaces of the plurality of accommodating portions 70a can be covered with the lid 72 at a time, which is efficient. Since the lid 72 is fixed to the container main body 71 via the band 74, the lid 72 can be easily attached and detached. Since the lid 72 is not screwed, the holes 72a to 72c can be regularly arranged in the lid 72 as shown in FIG. 9, and the pattern of the pattern can be simplified.
  • a reference hole is set in advance from among the plurality of holes 72a to 72c provided in the lid 72, and the relative coordinates of other holes based on this hole are stored, and the reference hole is stored.
  • the position of the other hole can be obtained from the image of the pattern 73, and the position of the other hole can be calculated from the position of the reference hole and the relative coordinates from the reference hole stored in advance. According to this, even if the reference hole position is known by image processing, it is not necessary to photograph the entire lid.
  • holes 12a to 12c and 72a to 72c at three power points are opened in the lid 12 of the culture vessel 10 or the lid 72 on the upper surface of each accommodating portion 70a of the well plate 70, respectively.
  • it may be opened only at one point. In this case, it is only necessary to move the stage 35 according to the selected nozzle 65 to 67 and to insert one nozzle 12a, 72a [all the nozzles 65 to 67].
  • the culture vessels 10 and 70 are positioned with respect to the holder 20.
  • the positioning mechanism Is not necessary.
  • the lid 12 is screwed into the container body 11, but the method for fixing the lid 12 is not limited to this.
  • the shapes of patterns 13 and 73, which are indices for calculating the hole position, are not limited to those described above.
  • the CCD camera 50 is used as an imaging device for imaging the upper surfaces of the culture vessels 10 and 70, other imaging devices can be used. As long as the hole position is calculated based on the captured index image, any processing in the controller 40 may be performed. It is also possible to record the position of the cells in the container pattern 13, which makes it possible to continuously observe specific cells and record the cell growth process.
  • the present invention can be similarly applied to those in which various substances other than the culture medium and trypsin are injected into or discharged from the culture vessel. Therefore, the nozzle device 60 is not limited to that described above. That is, as long as the features and functions of the present invention can be realized, the present invention is not limited to the culture container and the automatic culture apparatus of the embodiment! Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

A culture vessel comprising: a vessel body for culturing a cell therein, which has an opening on its upper surface and is made of a transparent material; and a lid for covering the upper surface of the vessel body, which has a hole for injecting or ejecting a given substance from the outside and is made of a transparent material, wherein the surface of the vessel body or the lid has an indicative marker for calculating the position of the hole by means of image processing.

Description

明 細 書  Specification
培養容器および自動培養装置  Culture container and automatic culture equipment
技術分野  Technical field
[0001] 本発明は、細胞を培養する培養容器および自動培養装置に関する。  [0001] The present invention relates to a culture vessel and an automatic culture apparatus for culturing cells.
背景技術  Background art
[0002] 細胞を培養する培養容器に位置決め機構を設け、ゥエル内に培養容器を位置決 めして支持するようにしたものが知られて 、る(例えば特許文献 1参照)。  [0002] It is known that a culture container for culturing cells is provided with a positioning mechanism so that the culture container is positioned and supported in the well (for example, see Patent Document 1).
[0003] 特許文献 1 :特開平 6— 237758号公報 Patent Document 1: Japanese Patent Laid-Open No. 6-237758
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、位置決め機構には多少のがたつきがあるため、単に位置決め機構を 設けただけでは培養容器の位置を精度良く特定することができず、細胞を自動的に 培養することが困難である。 [0004] However, since the positioning mechanism has some shakiness, it is not possible to accurately identify the position of the culture vessel simply by providing the positioning mechanism, and the cells are cultured automatically. Is difficult.
課題を解決するための手段  Means for solving the problem
[0005] 本発明の第 1の態様によると、培養容器は、上面が開口した、細胞を培養する透明 材料力 なる容器本体と、外部力 所定の物質を注入または排出するための孔が開 口され、容器本体の上面を閉塞する透明材料カゝらなる蓋とを備え、容器本体あるい は蓋の表面には、画像処理により孔の位置を算出するための指標が形成されている 指標は、細胞の観察範囲外に形成されることが好まし 、。 [0005] According to the first aspect of the present invention, the culture container has a container body having a transparent material force for culturing cells and an opening for injecting or discharging a predetermined substance with an open top surface. A cover made of a transparent material that closes the upper surface of the container body, and an index for calculating the position of the hole by image processing is formed on the surface of the container body or the cover. Preferably, the cell is formed outside the observation range.
容器本体の周面にねじ部を設け、蓋をねじ部に螺合することもできる。 容器本体に複数の収容部を設け、各収容部を、上面を閉塞する蓋により独立した 閉塞空間としてもよい。  A screw part may be provided on the peripheral surface of the container body, and the lid may be screwed into the screw part. A plurality of accommodating portions may be provided in the container body, and each accommodating portion may be a closed space independent by a lid that closes the upper surface.
指標を、蓋から分離して形成される部材として構成し、蓋の表面に凹部を設け、この 凹部に指標を嵌合することもできる。  It is also possible to configure the index as a member formed separately from the lid, provide a recess on the surface of the lid, and fit the index into the recess.
また、本発明の第 2の態様によると、自動培養装置は、上述した培養容器と、培養 容器の上面を撮像する撮像装置と、撮像された指標の画像に基づき、孔の位置を算 出する位置算出装置と、算出された孔の位置に向けて、所定の物質を注入または排 出するノズル装置とを備える。 According to the second aspect of the present invention, the automatic culture apparatus calculates the position of the hole based on the above-described culture container, the imaging apparatus that images the upper surface of the culture container, and the image of the captured index. And a nozzle device for injecting or discharging a predetermined substance toward the calculated hole position.
発明の効果  The invention's effect
[0006] 本発明によれば、培養容器の位置を精度良く算出することができ、細胞を自動的に 培養することが可能である。  [0006] According to the present invention, the position of the culture vessel can be calculated with high accuracy, and the cells can be cultured automatically.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1] (a)は第 1の実施の形態に係る培養容器の上面図、(b)は図 1 (a)の b— b線断 面図、(c)は底面図。  [0007] [FIG. 1] (a) is a top view of the culture vessel according to the first embodiment, (b) is a sectional view taken along line bb of FIG. 1 (a), and (c) is a bottom view.
[図 2]図 1の変形例を示す図。  FIG. 2 is a diagram showing a modification of FIG.
[図 3] (a)は第 1の実施の形態に係るホルダの平面図、(b)はホルダに培養容器をセ ットした状態を示す平面図、(c)は図 3 (b)の c— c線断面図。  [FIG. 3] (a) is a plan view of the holder according to the first embodiment, (b) is a plan view showing a state where a culture vessel is set in the holder, and (c) is a plan view of FIG. 3 (b). c—C sectional view.
[図 4]第 1の実施の形態に係る自動培養装置の全体構成を示す正面図。  FIG. 4 is a front view showing the overall configuration of the automatic culture apparatus according to the first embodiment.
[図 5]第 1の実施の形態に係る自動培養装置の全体構成を示す側面図。  FIG. 5 is a side view showing the overall configuration of the automatic culture apparatus according to the first embodiment.
[図 6]第 1の実施の形態に係る自動培養装置の制御構成を示すブロック図。  FIG. 6 is a block diagram showing a control configuration of the automatic culture apparatus according to the first embodiment.
[図 7] (a)は第 2の実施の形態に係る培養容器の平面図(蓋を外した状態)、 (b)は図 [Fig. 7] (a) is a plan view of the culture vessel according to the second embodiment (with the lid removed), and (b) is a diagram.
7 (a)の b— b線断面図。 7 is a cross-sectional view taken along line b-b in (a).
[図 8]第 2の実施の形態に係る培養容器の平面図 (蓋を付けた状態)。  FIG. 8 is a plan view of a culture vessel according to a second embodiment (with a lid attached).
[図 9] (a)は図 8の培養容器をホルダにセットした平面図、(b)は図 9 (a)の b— b線断 面図。  [FIG. 9] (a) is a plan view in which the culture vessel of FIG. 8 is set in a holder, and (b) is a cross-sectional view taken along line bb of FIG. 9 (a).
[図 10]本発明の変形例を示す図。  FIG. 10 is a view showing a modification of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 第 1の実施の形態 [0008] First Embodiment
図 1〜図 6を参照して本発明による培養容器の第 1の実施の形態について説明す る。  A first embodiment of a culture vessel according to the present invention will be described with reference to FIGS.
図 1 (a)は第 1の実施の形態に係る培養容器の上面図、図 1 (b)は図 1 (a)の b— b 線断面図、図 1 (c)は培養容器の底面図である。培養容器 10は、榭脂成形により形 成された容器本体 11と蓋 12とを有する。容器本体 11は、上面が開口され、底面が 閉塞された略円筒形状を呈し、容器本体 11の上面を蓋 12で覆われる。容器本体 11 の上部外周面にはねじ部 11aが設けられ、このねじ部 11aに蓋 12が螺合して容器内 が閉塞される。容器内の細胞は、後述の自動培養装置(図 4, 5)内で培養されて観 察される。この観察を可能にするため、容器本体 11の底面と蓋 12の少なくとも中央 部は、透明な榭脂またはガラスにより形成されている。なお、容器本体 11の外周面に は位置決め用の凸部 l ibが設けられている。 Fig. 1 (a) is a top view of the culture vessel according to the first embodiment, Fig. 1 (b) is a cross-sectional view taken along line bb of Fig. 1 (a), and Fig. 1 (c) is a bottom view of the culture vessel. It is. The culture container 10 has a container body 11 and a lid 12 formed by resin molding. The container body 11 has a substantially cylindrical shape with an open top surface and a closed bottom surface, and the top surface of the container body 11 is covered with a lid 12. Container body 11 A screw part 11a is provided on the upper outer peripheral surface of the container, and a lid 12 is screwed into the screw part 11a to close the inside of the container. The cells in the container are observed after being cultured in an automatic culture apparatus (Figs. 4 and 5) described later. In order to make this observation possible, the bottom surface of the container body 11 and at least the central part of the lid 12 are made of transparent resin or glass. A positioning projection l ib is provided on the outer peripheral surface of the container body 11.
[0009] 蓋 12には、後述するノズルを挿入するための小径の孔 12a〜12cが開口されてい る。これらの孔 12a〜12cは、細胞の観察の際に邪魔にならないように蓋 12の中央部 よりも外周側に寄った位置に開口されている。蓋 12の上面の孔 12a〜12cの外周側 には、略円環形状の画像処理用の黒色のパターン 13が印刷されている。パターン 1 3は孔 12a〜12cの位置を示すための指標であり、パターン 13の内周部に切り欠き 1 3a〜13cが設けられ、切り欠き 13a〜13cを基準にして孔 12a〜12cの位置が決定さ れている。なお、孔 12aは培地注入用、孔 12bはトリプシン注入用、孔 12cは培地吸 込用およびトリプシン吸込用の孔である。  [0009] The lid 12 has small-diameter holes 12a to 12c into which nozzles to be described later are inserted. These holes 12a to 12c are opened at positions closer to the outer peripheral side than the center portion of the lid 12 so as not to obstruct the cell observation. On the outer peripheral side of the holes 12a to 12c on the upper surface of the lid 12, a substantially annular black pattern 13 for image processing is printed. Pattern 13 is an index for indicating the positions of holes 12a to 12c. Notches 13a to 13c are provided on the inner periphery of pattern 13, and the positions of holes 12a to 12c with reference to the notches 13a to 13c. Has been determined. The hole 12a is for medium injection, the hole 12b is for trypsin injection, and the hole 12c is a hole for medium suction and trypsin suction.
[0010] ノターン 13のある箇所とない箇所の明暗の差は顕著である。したがって、後述する ように蓋 12の表面の画像を取得して画像処理することでパターン 13の形状、つまり 切り欠き 13a〜 13cの位置を把握することができ、これにより孔 12a〜 12cの位置を算 出することができる。なお、パターン 13を印刷するのではなく図 2に示すように略リン グ状の成型品 14により形成することもできる。この場合、蓋 12の上面に凹部 12dを設 けて、パターン 14を凹部 12dに嵌合し、接着すればよぐこれにより蓋 12の上面に容 易かつ精度よくパターン 14を形成することができる。  [0010] The difference in brightness between the place with and without Notan 13 is remarkable. Therefore, as will be described later, the shape of the pattern 13, that is, the positions of the notches 13a to 13c can be grasped by acquiring and processing the image of the surface of the lid 12, and thereby the positions of the holes 12a to 12c can be determined. It can be calculated. Instead of printing the pattern 13, it can also be formed by a substantially ring-shaped molded product 14 as shown in FIG. In this case, the concave portion 12d is provided on the upper surface of the lid 12, and the pattern 14 is fitted into the concave portion 12d and bonded. Thus, the pattern 14 can be easily and accurately formed on the upper surface of the lid 12. .
[0011] このように構成された培養容器 10はホルダ 20にセットされる。図 3 (a)はホルダ 20 の平面図であり、図 3 (b)はホルダ 20に複数(図では 5個)の培養容器 10をセットした 状態を示す平面図、図 3 (c)は図 3 (b)の c— c線断面図である。ホルダ 20は浅い皿 状の容器であり、ホルダ内にはテンプレート 21が載置され、テンプレート 21に設けら れた略円形状の開口部 21aに、各培養容器 10がそれぞれ保持されている。ホルダ 2 0の底面のうち、培養容器 10が収容される領域は、ホルダ 20にセットした状態で容器 内の細胞を観察できるように透明な榭脂またはガラスで形成されて 、る。  The culture container 10 configured as described above is set in the holder 20. Fig. 3 (a) is a plan view of the holder 20, Fig. 3 (b) is a plan view showing a state in which a plurality of (five in the figure) culture vessels 10 are set in the holder 20, and Fig. 3 (c) is a diagram. 3 is a cross-sectional view taken along line cc of FIG. The holder 20 is a shallow dish-shaped container. A template 21 is placed in the holder, and each culture container 10 is held in a substantially circular opening 21 a provided in the template 21. Of the bottom surface of the holder 20, the region in which the culture vessel 10 is accommodated is formed of a transparent resin or glass so that the cells in the vessel can be observed in a state set in the holder 20.
[0012] ホルダ 20の側端面には、自動培養装置のステージ上におけるホルダ 20の位置を 規定するための位置決め部 20bが設けられている。ホルダ 20の底面にはピン 20cが 突設され、ピン 20cを介してホルダ 20に対するテンプレート 21の位置が規定されて いる。また、容器本体 11の凸部 l ib (図 1)に対応してテンプレート 21の開口部 21a に凹部 (不図示)が設けられ、テンプレート 21に対する容器本体 11の位置が規定さ れている。これにより位置決め部 20b、ピン 20c、および凸部 l ibを介してステージ上 の容器本体 11の位置が規定される。なお、容器本体 11に対する孔 12a〜12cの位 置は蓋 12のねじ込み量により左右され、孔 12a〜12cの位置は容器ごとに異なって いる。 [0012] On the side end surface of the holder 20, the position of the holder 20 on the stage of the automatic culture apparatus is indicated. A positioning part 20b is provided for defining. A pin 20c protrudes from the bottom surface of the holder 20, and the position of the template 21 relative to the holder 20 is defined via the pin 20c. Further, a recess (not shown) is provided in the opening 21a of the template 21 corresponding to the convex portion l ib (FIG. 1) of the container body 11, and the position of the container body 11 with respect to the template 21 is defined. As a result, the position of the container body 11 on the stage is defined via the positioning portion 20b, the pin 20c, and the convex portion ib. The positions of the holes 12a to 12c with respect to the container body 11 depend on the screwing amount of the lid 12, and the positions of the holes 12a to 12c are different for each container.
[0013] 以上のようにホルダ 20にセットした培養容器 10を用いて、細胞を自動的に培養す る。図 4、 5は、それぞれ自動培養装置の全体構成を示す正面図および側面図であり 、図 6は、自動培養装置の制御構成を示すブロック図である。  [0013] Using the culture vessel 10 set in the holder 20 as described above, cells are automatically cultured. 4 and 5 are a front view and a side view, respectively, showing the overall configuration of the automatic culture apparatus, and FIG. 6 is a block diagram showing a control configuration of the automatic culture apparatus.
[0014] ホルダ 20は、温度、湿度、 C02濃度等が管理されたインキュベータ 30内のストッカ 31に収納、保存され、所定の培養環境の下で細胞が培養される。ストッカ 31は複数 段の棚により構成され、ストッカ内は全体が同一の培養環境に設定されている。なお 、ストッカ内を各段ごとに異なる培養環境に設定することもできる。各培養容器 10に は、それぞれ固有の識別番号が付与され、識別番号により培養容器 10の収納場所 、すなわち培養容器 10が収容されたホルダ 20の収納場所と、そのホルダ内における 培養容器 10の位置情報が管理されて 、る。  [0014] The holder 20 is stored and stored in a stocker 31 in an incubator 30 in which temperature, humidity, C02 concentration and the like are controlled, and cells are cultured in a predetermined culture environment. The stocker 31 is composed of a plurality of shelves, and the entire stocker is set in the same culture environment. It should be noted that the stocker can be set to a different culture environment for each stage. Each culture vessel 10 is given a unique identification number. The storage location of the culture vessel 10 according to the identification number, that is, the storage location of the holder 20 in which the culture vessel 10 is accommodated, and the position of the culture vessel 10 in the holder Information is managed.
[0015] ホルダ 20は、搬送装置によりステージ上に搬送される。搬送装置は、ホルダ 20を保 持可能なアームを有する搬送用テーブル 32と、テーブル 32を水平方向および高さ 方向に移動する複数の搬送用モータ 33 (図 6では 1つにまとめて示す)とを有し、搬 送用モータ 33はコントローラ 40からの指令により駆動される。コントローラ 40は種々 の態様により搬送用モータ 33の動作を制御する。  [0015] Holder 20 is transported onto a stage by a transport device. The transfer device includes a transfer table 32 having an arm capable of holding the holder 20, and a plurality of transfer motors 33 (shown collectively in FIG. 6) that move the table 32 in the horizontal direction and the height direction. The transport motor 33 is driven by a command from the controller 40. The controller 40 controls the operation of the transport motor 33 in various ways.
[0016] 例えばオペレータが操作部 41の操作により任意の培養容器 10の識別番号を入力 すると、モータ 33の駆動によりテーブル 32が移動し、その識別番号の付与された培 養容器 10を含むホルダ 20がストツ力 31から取り出され、ステージ上に搬送される。ス テージ 35は、複数のステージ用モータ 34 (図 6では 1つにまとめて示す)の駆動によ り水平方向に移動可能であり、ステージ 35の上方に撮像装置 50、照明装置 51、お よびノズル装置 60が設けられて!/、る。 [0016] For example, when the operator inputs an identification number of an arbitrary culture vessel 10 by operating the operation unit 41, the table 32 is moved by driving the motor 33, and the holder 20 including the culture vessel 10 to which the identification number is assigned. Is taken out from the stock force 31 and conveyed onto the stage. The stage 35 can be moved in the horizontal direction by driving a plurality of stage motors 34 (shown collectively in FIG. 6). Above the stage 35, the imaging device 50, the illumination device 51, and the And a nozzle device 60 is provided.
[0017] 撮像装置 50は CCDカメラであり、 CCDカメラ 50は照明装置 51を支持する支柱の 側壁に取り付けられている。コントローラ 40は、ステージ用モータ 34に制御信号を出 力し、ステージ 35を CCDカメラ 50の真下の所定の撮像位置に移動する。そして、こ の状態で CCDカメラ 50によりホルダ 20の上面全体を撮像し、 CCDカメラ 50からの 信号に基づき、ホルダ 20の上面の模様、すなわち各培養容器 10の蓋 12に描かれた パターン画像 13を取得する。  The imaging device 50 is a CCD camera, and the CCD camera 50 is attached to the side wall of a column that supports the illumination device 51. The controller 40 outputs a control signal to the stage motor 34 and moves the stage 35 to a predetermined imaging position directly below the CCD camera 50. In this state, the entire upper surface of the holder 20 is imaged by the CCD camera 50, and the pattern image 13 drawn on the pattern of the upper surface of the holder 20, that is, the lid 12 of each culture vessel 10, based on the signal from the CCD camera 50. To get.
[0018] コントローラ 40には、例えば CCDカメラ 50の撮影画面上の原点に対応したステー ジ上の座標位置、および蓋 12に印刷されたパターン 13と各孔 12a〜12cの位置との 関係(例えば切り欠き 13a〜 13cを基準にした孔 12a〜 12cの相対座標)が記憶され ている。これによりコントローラ 40は、 CCDカメラ 50で撮像された画像に基づいてス テージ上のパターン 13の座標を演算し、ステージ 35上の培養容器 10の位置情報を 取得するとともに、孔 12a〜 12cの位置情報を取得する。  [0018] The controller 40 includes, for example, a coordinate position on the stage corresponding to the origin on the photographing screen of the CCD camera 50, and a relationship between the pattern 13 printed on the lid 12 and the positions of the holes 12a to 12c (for example, Relative coordinates of holes 12a to 12c based on notches 13a to 13c) are stored. As a result, the controller 40 calculates the coordinates of the pattern 13 on the stage based on the image captured by the CCD camera 50, acquires the position information of the culture vessel 10 on the stage 35, and positions of the holes 12a to 12c. Get information.
[0019] 撮像位置での撮像が終了すると、コントローラ 40は、取得した培養容器 10の位置 情報に基づきステージ用モータ 34に制御信号を出力し、培養容器 10を照明装置 51 の真下の観察位置に移動する。観察位置の下方には顕微鏡 52が設置され、照明装 置 51からはステージ上の培養容器 10に向けて照明光が照射される。顕微鏡 52で拡 大された画像は顕微鏡用の CCDカメラ 53により撮像され、モニタ 54 (図 6)に表示さ れる。  When the imaging at the imaging position is completed, the controller 40 outputs a control signal to the stage motor 34 based on the acquired position information of the culture vessel 10, so that the culture vessel 10 is set to the observation position directly below the illumination device 51. Moving. A microscope 52 is installed below the observation position, and illumination light is emitted from the illumination device 51 toward the culture vessel 10 on the stage. The image magnified by the microscope 52 is picked up by the CCD camera 53 for the microscope and displayed on the monitor 54 (Fig. 6).
[0020] この場合、蓋 12、容器本体 11の底面、およびホルダ 20の底面はそれぞれ透明な 榭脂またはガラスで形成されて ヽるため、モニタ 54には培養容器内の細胞が拡大し て表示される。使用者は、モニタ 54に表示された細胞状態を観察することで、培養容 器内の溶液の交換、すなわち培地交換や、培養容器内の一部の細胞を取り出して 他の培養容器 10へ移し換える、すなわち継代の必要があるか否かを判定する。なお 、図 4, 5では倒立顕微鏡を示している力 正立顕微鏡を用いることもできる。顕微鏡 52の倍率等もコントローラ 40からの信号により調整可能である。  [0020] In this case, since the lid 12, the bottom surface of the container body 11, and the bottom surface of the holder 20 are each formed of transparent resin or glass, the cells in the culture container are enlarged and displayed on the monitor 54. Is done. The user observes the cell state displayed on the monitor 54, thereby exchanging the solution in the culture vessel, that is, exchanging the medium or removing some cells in the culture vessel and transferring them to another culture vessel 10. It is determined whether it is necessary to change, that is, passaging. In FIGS. 4 and 5, a force erecting microscope showing an inverted microscope can be used. The magnification of the microscope 52 can also be adjusted by a signal from the controller 40.
[0021] ノズル装置 60は、照明装置 51を支持する支柱の側壁に取り付けられたガイドレー ル 61と、ガイドレール 61を介して昇降可能に支持されたベース部材 62と、ベース部 材 62を昇降させる昇降用モータ 63と、ベース部材 62に支持されたノズル支持台 64 と、ノズノレ支持台 64〖こ取り付けられたノズノレ 65〜67とを有する。ノズノレ 65〜67は、 新 、培地を注入する培地注入用ノズル 65、継代を行う際にトリプシンを注入するト リプシン注入用ノズル 66、および古!、培地やトリプシンを吸 、込む吸込用ノズル 67 であり、これら 3本のノズル 65〜67の中から切換モータ 68の駆動によりノズルの選択 を切り換え、選択したノズルのみを昇降可能となって 、る。 [0021] The nozzle device 60 includes a guide rail 61 attached to a side wall of a column supporting the lighting device 51, a base member 62 supported so as to be movable up and down via the guide rail 61, and a base portion A lifting motor 63 that moves the material 62 up and down, a nozzle support base 64 supported by the base member 62, and a nose support 65 to 67 that are attached to a nose support base 64. Nosnole 65-67 are new medium injection nozzles 65 for injecting medium, trypsin injection nozzles 66 for injecting trypsin during passage, and old nozzles for inhaling and injecting medium and trypsin 67 Of these three nozzles 65 to 67, the selection of the nozzle is switched by driving the switching motor 68, and only the selected nozzle can be moved up and down.
[0022] 例えば培地交換を行う際、コントローラ 40は切換モータ 68の駆動により吸込用ノズ ル 67を選択するとともに、撮像位置で取得した孔位置情報に基づきステージ用モー タ 34に制御信号を出力し、培地吸込用の孔 12cの位置が吸込用ノズル 67の真下に くるようにステージ 35を移動する。次いで、昇降用モータ 63に制御信号を出力して 吸込用ノズル 67を下降し、吸込用ノズル 67の先端を孔 12cを介して培養容器内に 挿入する。この状態でポンプ 69 (図 6)を駆動し、古い培地を廃液用タンクに吸い込 む。なお、ポンプ 69は培地の吸込用および注入用を別々〖こ備える力 図 6では 1つ にまとめて示す。 For example, when exchanging the medium, the controller 40 selects the suction nozzle 67 by driving the switching motor 68 and outputs a control signal to the stage motor 34 based on the hole position information acquired at the imaging position. Then, the stage 35 is moved so that the position of the medium suction hole 12c is directly below the suction nozzle 67. Next, a control signal is output to the lifting motor 63 to lower the suction nozzle 67, and the tip of the suction nozzle 67 is inserted into the culture vessel through the hole 12c. In this state, pump 69 (Fig. 6) is driven to suck the old medium into the waste tank. Note that the pump 69 has a separate capacity for sucking and injecting the medium.
[0023] 培地の吸込が終了すると、吸込用ノズル 67を初期位置まで上昇させた後、培地注 入用ノズル 65を選択する。次いで、培地注入用の孔 12aの位置が培地注入用ノズル 65の真下にくるようにステージ 35を移動した後、培地注入用ノズル 65を下降してノズ ル 65の先端を培養容器内に挿入する。この状態で、ポンプ 69を駆動し、培地貯蔵 用のタンク力も新しい培地を注入する。なお、培地交換を行うときは 2本のノズル 65, 67を用いる力 継代を行うときは 3本のノズル 65〜67を用いる。この場合のノズル 65 〜67の選択、昇降の動作は、上述したのと同様であり、説明を省略する。  [0023] When the suction of the culture medium is completed, the suction nozzle 67 is raised to the initial position, and then the culture medium injection nozzle 65 is selected. Next, after moving the stage 35 so that the position of the medium injection hole 12a is directly below the medium injection nozzle 65, the medium injection nozzle 65 is lowered and the tip of the nozzle 65 is inserted into the culture vessel. . In this state, the pump 69 is driven, and a new medium is also injected into the tank for storing the medium. When exchanging medium, use two nozzles 65 and 67. Use three nozzles 65 to 67 when subculture. In this case, the selection of the nozzles 65 to 67 and the operation of raising and lowering are the same as described above, and a description thereof will be omitted.
[0024] 第 1の実施の形態によれば以下のような作用効果を奏することができる。  [0024] According to the first embodiment, the following operational effects can be obtained.
(1)培養容器 10の蓋 12にノズル 65〜67を差し込むための孔 12a〜12cを開口する とともに、この孔位置に対応付けて蓋 12の上面に所定形状のパターン 13を印刷する ようにした。これにより画像処理によりパターン形状を把握することで、孔位置を正確 に算出することができ、細胞を容易に自動培養することができる。  (1) Holes 12a to 12c for inserting the nozzles 65 to 67 are opened in the lid 12 of the culture vessel 10, and a pattern 13 having a predetermined shape is printed on the upper surface of the lid 12 in association with the hole position. . Thus, by grasping the pattern shape by image processing, the hole position can be accurately calculated, and the cells can be easily cultured automatically.
(2)培養容器 10の蓋 12、容器本体 11の底面、およびホルダ 20の底面をそれぞれ 透明な榭脂等により形成し、顕微鏡 52で拡大して得られた画像をモニタ 54に表示す るようにしたので、インキュベータ 30内から培養容器 10を取り出さなくても、細胞の状 態を観察することができる。 (2) The lid 12 of the culture vessel 10, the bottom surface of the container body 11, and the bottom surface of the holder 20 are each formed of transparent grease or the like, and an image obtained by enlarging with the microscope 52 is displayed on the monitor 54. Thus, the state of the cells can be observed without removing the culture vessel 10 from the incubator 30.
(3)パターン 13を蓋 12の外周部近傍に印刷するとともに、パターン 13の近傍にノズ ル揷入用の孔 12a〜12cを開口したので、容器中央部の細胞を支障なく観察するこ とがでさる。  (3) The pattern 13 is printed in the vicinity of the outer periphery of the lid 12 and the nozzle insertion holes 12a to 12c are opened in the vicinity of the pattern 13, so that the cells in the center of the container can be observed without hindrance. I'll do it.
(4)容器本体 11に蓋 12を螺合するので、ステージ 35を移動する際に容器本体 11か ら蓋 12がすれることがなぐ孔 12a〜12cに精度よくノズル 65〜67を挿入することが できる。  (4) Since the lid 12 is screwed onto the container body 11, when moving the stage 35, the nozzles 65 to 67 should be accurately inserted into the holes 12a to 12c through which the lid 12 does not slip from the container body 11. Is possible.
(5)培地交換や継代の際に容器本体 11から蓋 12を外す必要がなぐ培養容器内へ の異物の混入を防ぐことができる。  (5) It is possible to prevent foreign substances from entering the culture vessel without having to remove the lid 12 from the vessel body 11 when exchanging or subculture the medium.
[0025] 第 2の実施の形態  [0025] Second Embodiment
図 7〜図 9を参照して本発明による培養容器の第 2の実施の形態について説明す る。  A second embodiment of the culture vessel according to the present invention will be described with reference to FIGS.
第 1の実施の形態では、略円筒形状の複数の培養容器 10をテンプレート 21を介し てホルダ 20内に収容した力 第 2の実施の形態では、ゥエルプレートにより培養容器 を構成する。なお、図 1〜図 6と同一の箇所には同一の符号を付し、以下では第 1の 実施の形態との相違点を主に説明する。  In the first embodiment, a force that accommodates a plurality of substantially cylindrical culture vessels 10 in the holder 20 via the template 21. In the second embodiment, the culture vessel is constituted by a well plate. The same parts as those in FIGS. 1 to 6 are denoted by the same reference numerals, and differences from the first embodiment will be mainly described below.
[0026] 図 7 (a)は、第 2の実施の形態に係る培養容器、すなわちゥエルプレート 70の構成 を示す平面図であり、図 7 (b)は、図 7 (a)の b— b線断面図である。なお、図 7 (a)はゥ エルプレート 70の容器本体 71とテンプレート 81を、図 7 (b)は容器本体 71と蓋 72と テンプレート 81を示している。略矩形状の容器本体 71には、仕切壁 71aにより複数( 図では 12個)の収容部 70aが形成され、各収容部 70aの上面を覆うように容器本体 7 1に蓋 72が被されている。容器本体 71と蓋 72の側端部には溝 71b, 72bが設けられ 、この溝 71b, 72bに係合したバンド 74により、蓋 72が容器本体 71に固定され、各収 容部 70aはそれぞれ独立した空間とされて 、る。  FIG. 7 (a) is a plan view showing the configuration of the culture vessel according to the second embodiment, that is, the well plate 70. FIG. 7 (b) is a cross-sectional view of FIG. FIG. 7 (a) shows the container body 71 and template 81 of the well plate 70, and FIG. 7 (b) shows the container body 71, lid 72 and template 81. In the substantially rectangular container body 71, a plurality of (in the figure, 12) accommodating portions 70a are formed by partition walls 71a, and the container body 71 is covered with a lid 72 so as to cover the upper surface of each accommodating portion 70a. Yes. Grooves 71b and 72b are provided at the side ends of the container body 71 and the lid 72, and the lid 72 is fixed to the container body 71 by a band 74 engaged with the grooves 71b and 72b. It is considered as an independent space.
[0027] 図 8は、容器本体 71に蓋 72を取り付けた状態を示す平面図である。蓋 72の表面 および容器本体 71の底面は、収容部 70a内の細胞を顕微鏡で観察できるように全 体が透明な榭脂またはガラスにより形成されている。蓋 71には、各収容部 70aごとに それぞれノズル挿入用の孔 72a〜72cが開口され、蓋 71の上面には、孔位置の指 標となるパターン 73が形成されている。図では、パターン 73は略十字形状であり、例 えば十字の交差する点を基準にした各孔 72a〜72cの相対座標が予め記憶されて いる。なお、細胞の観察の邪魔にならないように、ノターン 73は収容部 70aを避けて 形成されている。 FIG. 8 is a plan view showing a state in which the lid 72 is attached to the container main body 71. The entire surface of the lid 72 and the bottom surface of the container main body 71 are formed of a transparent resin or glass so that the cells in the container 70a can be observed with a microscope. Each lid 70a has a lid 71 Nozzle insertion holes 72a to 72c are opened, and a pattern 73 is formed on the upper surface of the lid 71 to serve as a hole position indicator. In the figure, the pattern 73 has a substantially cross shape. For example, the relative coordinates of the holes 72a to 72c based on the crossing point are stored in advance. It should be noted that the notane 73 is formed avoiding the accommodating portion 70a so as not to disturb the observation of the cells.
[0028] 図 9 (a)はゥエルプレート 70をテンプレート 81を介してホルダ 20にセットした状態を 示す平面図であり、図 9 (b)は図 9 (a)の b— b線断面図である。テンプレート 81aには 略矩形状の開口部 8 laが設けられ、この開口部 8 laにゥエルプレート 70が嵌合して いる。これによりゥエルプレート 70の蓋 72は、ピン 20cおよび開口部 81aを介してホ ルダ 20に対して位置決めされている。ゥヱルプレート 70が収容されたホルダ 20は、 自動培養装置のインキュベータ 30内に収容される。そして、第 1の実施の形態と同様 、蓋 72のパターン 73を CCDカメラ 50で撮像し、この CCDカメラ 50からの信号に基 づき収容部 70aの位置および孔 72a〜72cの位置情報を取得した後、必要に応じて 培地交換や継代が行われる。  [0028] Fig. 9 (a) is a plan view showing a state in which the well plate 70 is set on the holder 20 via the template 81, and Fig. 9 (b) is a sectional view taken along the line bb in Fig. 9 (a). It is. The template 81a is provided with a substantially rectangular opening 8la, and the well plate 70 is fitted in the opening 8la. As a result, the lid 72 of the well plate 70 is positioned with respect to the holder 20 via the pin 20c and the opening 81a. The holder 20 in which the tool plate 70 is accommodated is accommodated in the incubator 30 of the automatic culture apparatus. Then, as in the first embodiment, the pattern 73 of the lid 72 was imaged by the CCD camera 50, and the position information of the accommodating portion 70a and the position information of the holes 72a to 72c were acquired based on the signal from the CCD camera 50. Later, medium replacement and passage are performed as necessary.
[0029] このように第 2の実施の形態では、ゥエルプレート 70の蓋 72に孔位置の基準となる ノターン 73を形成するようにしたので、第 1の実施の形態と同様、画像処理により蓋 72の孔位置を算出することができ、細胞の自動培養化が可能である。複数の収容部 70aの上面を蓋 72によって一度に覆うことができ、効率力 い。バンド 74を介して蓋 72を容器本体 71に固定するので、蓋 72の着脱も容易である。蓋 72がねじ込み式で ないため、図 9に示すように蓋 72に孔 72a〜72cを規則的に配列することができ、ノ ターン形状を簡素化できる。  As described above, in the second embodiment, the pattern 73, which serves as a reference for the hole position, is formed in the lid 72 of the well plate 70, so that the image processing is performed in the same manner as in the first embodiment. The hole position of the lid 72 can be calculated, and the cells can be cultured automatically. The upper surfaces of the plurality of accommodating portions 70a can be covered with the lid 72 at a time, which is efficient. Since the lid 72 is fixed to the container main body 71 via the band 74, the lid 72 can be easily attached and detached. Since the lid 72 is not screwed, the holes 72a to 72c can be regularly arranged in the lid 72 as shown in FIG. 9, and the pattern of the pattern can be simplified.
[0030] なお、蓋 72に設けた複数の孔 72a〜72cの中から予め基準の孔を設定するととも に、この孔を基準にした他の孔の相対座標を記憶しておき、基準の孔の位置をバタ ーン 73の画像から求め、この基準の孔の位置と予め記憶した基準の孔からの相対座 標とにより、他の孔の位置を算出することもできる。これによれば基準の孔位置さえ画 像処理によってわかればょ 、ので、蓋全体を撮影する必要がな 、。  [0030] It should be noted that a reference hole is set in advance from among the plurality of holes 72a to 72c provided in the lid 72, and the relative coordinates of other holes based on this hole are stored, and the reference hole is stored. The position of the other hole can be obtained from the image of the pattern 73, and the position of the other hole can be calculated from the position of the reference hole and the relative coordinates from the reference hole stored in advance. According to this, even if the reference hole position is known by image processing, it is not necessary to photograph the entire lid.
[0031] 上記実施の形態では、培養容器 10の蓋 12あるいはゥエルプレート 70の各収容部 70aの上面の蓋 72に、それぞれ 3力所の孔 12a〜12c, 72a〜72cを開口するように したが、図 9に示すように 1力所だけ開口したのでもよい。この場合、選択されたノズル 65〜67【こ応じてステージ 35を移動し、 1つの:?し 12a, 72a【こ全てのノズノレ 65〜67を 挿入可能とすればよい。 [0031] In the embodiment described above, holes 12a to 12c and 72a to 72c at three power points are opened in the lid 12 of the culture vessel 10 or the lid 72 on the upper surface of each accommodating portion 70a of the well plate 70, respectively. However, as shown in Fig. 9, it may be opened only at one point. In this case, it is only necessary to move the stage 35 according to the selected nozzle 65 to 67 and to insert one nozzle 12a, 72a [all the nozzles 65 to 67].
[0032] 上記実施の形態では、ホルダ 20に対して培養容器 10, 70の位置決めをするように したが、 CCDカメラにより孔 12a〜12c, 72a〜72cの位置を算出できるため、位置決 め機構はなくてもよい。第 1の実施の形態では、容器本体 11に蓋 12を螺合するよう にしたが、蓋 12の固定方法はこれに限らない。孔位置を算出するための指標である パターン 13, 73の形状は上述したものに限らない。培養容器 10, 70の上面を撮像 する撮像装置として CCDカメラ 50を用いたが、他の撮像装置を用いることもできる。 撮像された指標の画像に基づき孔位置を算出するのであれば、コントローラ 40にお ける処理は如何なるものでもよい。なお、容器のパターン 13に対し細胞の位置を記 憶させることもでき、これにより特定の細胞を継続的に観察することが可能になり、細 胞の生育過程が記録できる。  [0032] In the above embodiment, the culture vessels 10 and 70 are positioned with respect to the holder 20. However, since the positions of the holes 12a to 12c and 72a to 72c can be calculated by the CCD camera, the positioning mechanism Is not necessary. In the first embodiment, the lid 12 is screwed into the container body 11, but the method for fixing the lid 12 is not limited to this. The shapes of patterns 13 and 73, which are indices for calculating the hole position, are not limited to those described above. Although the CCD camera 50 is used as an imaging device for imaging the upper surfaces of the culture vessels 10 and 70, other imaging devices can be used. As long as the hole position is calculated based on the captured index image, any processing in the controller 40 may be performed. It is also possible to record the position of the cells in the container pattern 13, which makes it possible to continuously observe specific cells and record the cell growth process.
[0033] 本発明は、培養容器内に培地、トリプシン以外の種々の物質を注入または排出す るものにも同様に適用できる。したがって、ノズル装置 60も上述したものに限らない。 すなわち、本発明の特徴、機能を実現できる限り、本発明は実施の形態の培養容器 および自動培養装置に限定されな!、。本発明の技術的思想の範囲内で考えられる その他の態様も本発明の範囲内に含まれる。  [0033] The present invention can be similarly applied to those in which various substances other than the culture medium and trypsin are injected into or discharged from the culture vessel. Therefore, the nozzle device 60 is not limited to that described above. That is, as long as the features and functions of the present invention can be realized, the present invention is not limited to the culture container and the automatic culture apparatus of the embodiment! Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
[0034] 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。  [0034] The disclosure of the following priority application is incorporated herein by reference.
日本国特許出願 2006年第 132487号(2006年 5月 11日出願)  Japanese Patent Application No. 132487 2006 (filed on May 11, 2006)

Claims

請求の範囲 The scope of the claims
[1] 培養容器であって、  [1] a culture vessel,
上面が開口した、細胞を培養する透明材料力もなる容器本体と、  A container body that also has a transparent material power for culturing cells, the upper surface of which is open,
外部力 所定の物質を注入または排出するための孔が開口され、前記容器本体の 上面を閉塞する透明材料力 なる蓋とを備え、  External force A hole for injecting or discharging a predetermined substance is opened, and a lid having a transparent material force for closing the upper surface of the container body is provided,
前記容器本体あるいは前記蓋の表面には、画像処理により前記孔の位置を算出 するための指標が形成されて 、る培養容器。  A culture vessel in which an index for calculating the position of the hole by image processing is formed on the surface of the vessel main body or the lid.
[2] 請求項 1に記載の培養容器において、  [2] In the culture container according to claim 1,
前記指標は、細胞の観察範囲外に形成される培養容器。  The indicator is a culture vessel formed outside the cell observation range.
[3] 請求項 1または 2に記載の培養容器において、 [3] In the culture container according to claim 1 or 2,
前記容器本体の周面にはねじ部が設けられ、前記蓋は前記ねじ部に螺合される培 養容器。  A culture container in which a screw part is provided on a peripheral surface of the container body, and the lid is screwed into the screw part.
[4] 請求項 1または 2に記載の培養容器にぉ 、て、  [4] In the culture container according to claim 1 or 2,
前記容器本体には複数の収容部が設けられ、前記各収容部は、上面を閉塞する 蓋により独立した閉塞空間とされる培養容器。  A culture vessel in which the container body is provided with a plurality of storage portions, and each of the storage portions is formed as an independent closed space by a lid that closes an upper surface.
[5] 請求項 1〜4の 、ずれか 1項に記載の培養容器にお!ヽて、 [5] In the culture container according to claim 1 or 2 of claims 1-4,
前記指標は、前記蓋力 分離して形成される部材であり、前記蓋の表面に凹部が 設けられ、この凹部に前記指標が嵌合される培養容器。  The index is a member formed by separating the lid force, and a culture vessel in which a recess is provided on the surface of the lid and the index is fitted in the recess.
[6] 請求項 1〜5のいずれか 1項に記載の培養容器と、 [6] The culture container according to any one of claims 1 to 5,
前記培養容器の上面を撮像する撮像装置と、  An imaging device for imaging the upper surface of the culture vessel;
前記撮像された指標の画像に基づき、前記孔の位置を算出する位置算出装置と、 前記算出された孔の位置に向けて、所定の物質を注入または排出するノズル装置 とを備える自動培養装置。  An automatic culture apparatus comprising: a position calculating device that calculates the position of the hole based on the imaged index image; and a nozzle device that injects or discharges a predetermined substance toward the calculated hole position.
PCT/JP2007/059763 2006-05-11 2007-05-11 Culture vessel and automatic culture apparatus WO2007132780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-132487 2006-05-11
JP2006132487A JP2007300853A (en) 2006-05-11 2006-05-11 Culture container and automatic culture apparatus

Publications (1)

Publication Number Publication Date
WO2007132780A1 true WO2007132780A1 (en) 2007-11-22

Family

ID=38693873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059763 WO2007132780A1 (en) 2006-05-11 2007-05-11 Culture vessel and automatic culture apparatus

Country Status (2)

Country Link
JP (1) JP2007300853A (en)
WO (1) WO2007132780A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248227A3 (en) * 2022-06-22 2024-02-22 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Microfluidics devices and printing methods therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200888B2 (en) * 2008-11-21 2013-06-05 大日本印刷株式会社 Pattern cell culture instrument
JP6303347B2 (en) * 2013-09-11 2018-04-04 大日本印刷株式会社 Sample image management system and sample image management program
CN110023480B (en) * 2016-12-14 2022-11-11 株式会社日立高新技术 Culture instrument
WO2024154696A1 (en) * 2023-01-16 2024-07-25 阪神化成工業株式会社 Equipment for cell culture and cell culture method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055027A (en) * 2004-08-18 2006-03-02 Nikon Corp Automatic culture apparatus, and automatic culture system
JP2006109714A (en) * 2004-10-12 2006-04-27 Chuo Seiki Kk Cell culture tool for single cell operation supporting robot
JP2007109971A (en) * 2005-10-14 2007-04-26 Hoya Corp Substrate with multilayer reflection film, manufacturing method thereof, reflection type mask blank and reflection type mask
WO2007055317A1 (en) * 2005-11-11 2007-05-18 Nikon Corporation Culture apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055027A (en) * 2004-08-18 2006-03-02 Nikon Corp Automatic culture apparatus, and automatic culture system
JP2006109714A (en) * 2004-10-12 2006-04-27 Chuo Seiki Kk Cell culture tool for single cell operation supporting robot
JP2007109971A (en) * 2005-10-14 2007-04-26 Hoya Corp Substrate with multilayer reflection film, manufacturing method thereof, reflection type mask blank and reflection type mask
WO2007055317A1 (en) * 2005-11-11 2007-05-18 Nikon Corporation Culture apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248227A3 (en) * 2022-06-22 2024-02-22 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Microfluidics devices and printing methods therefor

Also Published As

Publication number Publication date
JP2007300853A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP5285666B2 (en) Cell culture equipment
US8947518B2 (en) Cell observing apparatus and cell incubation method
JP5270967B2 (en) Automatic cell culture equipment
US20100291663A1 (en) Culture apparatus
JP2019195339A (en) Incubator device and method
WO2007132780A1 (en) Culture vessel and automatic culture apparatus
CN107922907B (en) Object moving method and object moving device
US20060166305A1 (en) Animal cell confluence detection method and apparatus
WO2007145198A1 (en) Culture monitoring system
US20110091964A1 (en) Cell manipulation observation apparatus
JP2018093795A (en) Embryo culturing apparatus and imaging device therefor
WO2018063098A1 (en) Apparatus for embryo biopsy
JP2011017964A (en) Culture observation device
JP2006141328A (en) Culturing container and culturing device
JP2018038335A (en) Cell culture method, target cells cultured by cell culture method, and cell culture device
CN115558593A (en) Medium culture observation device and air path control method thereof
US11560540B2 (en) Cell treatment apparatus and method for treating cells with lasers
JP2016198053A (en) Cell culture apparatus
JP2006141326A (en) Culturing device
CN110291186B (en) cell processing device
JP7226556B2 (en) cell picking device
US10844342B2 (en) Incubator apparatus and methods
JP7219912B2 (en) cell delivery system
US20190381495A1 (en) Tubular instrument and manipulation system
JP2010158193A (en) Automatically culturing apparatus, automatically observing method and culture container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743198

Country of ref document: EP

Kind code of ref document: A1