Nothing Special   »   [go: up one dir, main page]

WO2007128842A1 - Transalquilación catalítica de dialquilbencenos - Google Patents

Transalquilación catalítica de dialquilbencenos Download PDF

Info

Publication number
WO2007128842A1
WO2007128842A1 PCT/ES2006/000218 ES2006000218W WO2007128842A1 WO 2007128842 A1 WO2007128842 A1 WO 2007128842A1 ES 2006000218 W ES2006000218 W ES 2006000218W WO 2007128842 A1 WO2007128842 A1 WO 2007128842A1
Authority
WO
WIPO (PCT)
Prior art keywords
monoalkylbenzenes
transalkylation
polyalkylaromatic
obtaining
compounds according
Prior art date
Application number
PCT/ES2006/000218
Other languages
English (en)
French (fr)
Inventor
José Luis GONCALVES ALMEIDA
José Luis Berna Tejero
Original Assignee
Petroquímica Española, S.A. (Petresa)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroquímica Española, S.A. (Petresa) filed Critical Petroquímica Española, S.A. (Petresa)
Priority to CA2651560A priority Critical patent/CA2651560C/en
Priority to US12/299,871 priority patent/US8148592B2/en
Priority to PCT/ES2006/000218 priority patent/WO2007128842A1/es
Priority to EP06743466A priority patent/EP2022773A4/en
Priority to CN2006800545242A priority patent/CN101448770B/zh
Priority to BRPI0621702-8A priority patent/BRPI0621702B1/pt
Publication of WO2007128842A1 publication Critical patent/WO2007128842A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/126Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of more than one hydrocarbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates generally to catalytic transalkylation reactions and in particular to smectite-type catalysts.
  • Alkylaromatic compounds are an important family of substances that are used as raw materials in many industrial fields, such as plasticizers, polymeric materials, insecticides, in agriculture to prevent the agglomeration of fertilizers, in the manufacture of textiles and fibers, in the leather and fur industry, herbicides, industrial cleaning processes, in the photography industry, in the manufacture of adhesives and in fire-fighting products such as humidifying agents, in electrochemical processes for dirt removal and fats on the surface of a substrate, and in biodegradable detergents ⁇ Surfactants in Consumers Products, Theory, Technology, and Application, Edited by J. Falbe, Springer Verlag, 1987).
  • the usual process used by the petrochemical industry to produce alkylaromatic compounds, especially for detergent applications, consists of dehydrogenating linear paraffins to obtain linear mono-olefins and then carrying out the alkylation of benzene with said mono-olefins.
  • Linear Alkylbenzene Sulfonate (LAS) is produced by sulfonation of Linear Alkylbenzene (LAB) and subsequent neutralization of the corresponding sulfonic acids (HLAS).
  • the linear olefins used in the process have between nine and sixteen carbon atoms.
  • the alkylation step occurs in the liquid phase, in the presence of Friedel-Cra ⁇ type catalysts, for example, hydrofluoric acid.
  • the HF process is well known and used commercially, producing a high yield (> 99% by weight) in LAB with a relatively low selectivity to the 2-phenyl isomer, less than 20%.
  • the integrated process for the production of LAB is described in the Petroleum Re ⁇ ning Process Handbook, edited by Robert A. Meyers, 1986, pl- 23, which is incorporated herein by reference.
  • the US Pat. No. 5,276,231 describes the intermediate stages of the LAB production process, such as the selective hydrogenation of the diolefinic by-products formed in the dehydrogenation of paraffins and the removal of non-linear by-products from the stream of the dehydrogenation stage.
  • the use of HF presents some disadvantages, since it requires very careful handling and special equipment due to its corrosivity, which translates into an increase in fixed and operating costs, which is why we have tried to develop alternative catalysts based on acidic solids
  • zeolitic solids mentioned herein as catalysts are defined in the Atlas classification of Zeolite Framework Types, WM Meier, DH Olson and CH Baerlocher, 5 th revised edition, 2001, Elsevier, to which the present invention refers.
  • the effluent from the reactor consisting of monoalkylbenzenes, unreacted benzene, paraffins and dialkylbenzenes, is fed to the benzene distillation column (unit 201), in which the benzene is separated by the head and recirculated (stream 50 ).
  • the bottoms products (stream 60) are fed to the paraffin separation column (unit 301), in which the paraffins are separated by head (stream 70) and recirculated to the dehydrogenation step.
  • the bottoms stream from unit 301 (stream 80), primarily composed of monoalkylbenzenes and dialkylbenzenes, is fed to the final purification unit (unit 401), in which the monoalkylbenzenes are separated from the heavier by-products by a distillation process and subsequently purified by a clay treater, thus obtaining a stream of high purity monoalkylbenzenes (stream 90).
  • Dialkylbenzenes and other heavy by-products leave the process through stream 100.
  • one of the main disadvantages associated with the alkylation process when linear olefins are used to produce alkylbenzenes in the detergent range is the generation of polyalkylbenzene compounds in the alkylation stage.
  • Isomerization and transalkylation are the two main reactions that take place when di or trialkylbenzenes are passed over solids based on silica-alumina or on zeolites exchanged with metals.
  • the positional isomerization of polyalkylbenzenes can be developed through two mechanisms: 1,2 intramolecular elimination and transalkylation. Below 200 0 C, isomerization predominates via transalkylation as stated in The Chemistt ⁇ ofCatalytic Hydrocarhon Conversions, H.Pines, l st Edition (1981), Academic Press.
  • the TA-4 zeolitic catalyst is used in the Tatoray process (originated by Toray Industries TM and developed and licensed by UOP TM), in which the zeolites have two fundamental missions: the disproportionation of toluene to obtain benzene and xylene mixtures and also transalkylation of trimethylbenzenes to obtain xylene mixtures (Jeanneret, J., Handbook of Petroleum Refining Processes. Myers R A., editor.
  • Zeolite Y has been used in the transalkylation of toluene with eumene, as reported by Mavrodinova V. et al, Transalkylation oftoluene with cum ⁇ ne over zeolites Y dealuminated in solid-state. Par ⁇ L Effect ofthe alteration ofBronsted acidity, Applied catalysis. A, General, 2003, 248 (1-2), 181-196.
  • EP No.l, 059,277-Al proposes the use of a zeolite Y to transalkylate polyethylbenzene with benzene to obtain ethylbenzene.
  • the transalkylation reaction takes place in the alkylation reactor, by means of a double catalytic system or by means of a differentiated transalkylation reactor, as stated in US patents. Pat. No. 3,751,504, US Pat. No. 4,547,605 and US Pat. No. 4,016,218.
  • US Pat. No. 5,902,917 and US Pat. No. 6,096,935 describe processes for the transalkylation of alkylaromatic compounds in which the food is introduced into a transalkylation zone and its effluent is then introduced into an alkylation step in the presence of an olefinic alkylating agent. Another possibility is to pass portions of the transalkylation effluent to a reactor. multi-stage alkylation, as set forth in US Pat. No. 6,232,515.
  • indices such as: conversion, selectivity to monoalkylbenzenes, homolog distribution, and isomer distribution:
  • Fractional conversion in transalkylation In the transalkylation reaction considered in this patent, the aromatic compound (benzene) is always used in excess of the stoichiometry of the transalkylation reaction (assuming a stoichiometric ratio of benzene to dialkylbenzenes of 1: one). Fractional conversion can be defined as the fraction of the limiting reagent that is consumed in the reaction to generate all associated products:
  • N a0 is the initial number of moles of the limiting reagent (dialkylbenzenes), and N a is the number of moles of these compounds at the reactor outlet.
  • W oaiquiibenceno mon is the mass of monoalkyl benzene produced, preferably in the phenyl-Qo rank phenyl-C ⁇
  • Wii ger I is the mass of all the lighter components generated the phenyl-Cio
  • W a i qu iiato pe sado is the mass of all those compounds generated heavier than phenyl-C 13
  • the percentages by weight of said compounds can be used equivalently.
  • iip Homolog distribution The homolog distribution can be understood as the percentage by weight of each monoalkylbenzene homolog (same chain alkyl) produced. We can distinguish between phenyl-Cg, phenyl-C 10 , phenyl-C ⁇ , phenyl-Cn ... up to phenyl-C 16 .
  • Distribution of isomers Among the monoalkylbenzenes produced, the distribution of isomers can be defined as the percentage by weight of each type of isomer produced, such as 2-phenyl, 3-phenyl ... 7-phenyl isomers, and also the branched alkylate.
  • isomers plays a very important role in the global economic feasibility of the production process, in the quality of the final sulphonated product and also in its rate of biodegradation.
  • 2-phenyl isomers are those molecules in which the aromatic ring is attached to the alkyl chain through carbon at position 2 of said chain.
  • LAB mixtures with external (2/3-phenyl) isomer contents greater than 60% provide, upon sulfonation and neutralization, a LAS with superior detersive properties, but very viscous, not very stable and of low solubility.
  • Branched isomers are those alkylbenzene molecules in which the alkyl chain is not linear. If there are non-terminal quaternary carbons (internal, such as 5-metü, 5-phenylalkan) in these chains, the resulting alkylbenzene sulfonates show a lower biodegradation rate than linear sulfonates, as reported in "Iso-branching of LAS biodegradation study of two model compounds ", L. Cavalli, G. Cassani, M. Lazzarin, C. Maraschin, G. Nuzzi, JL Berna, J. Bravo, J. Ferrer, A. Moreno, Toxicology & Environmental Chemistry. VoI. 54, p.
  • This invention relates to a process in which the transalkylation catalyst is very active, stable and selective to monoalkylbenzenes when it catalyzes the reaction between the dialkylbenzenes obtained as by-products of the alkylation step and benzene.
  • Said monoalkylbenzenes can be mixed with the monoalkylbenzenes produced in the alkylation process in which the transalkylation would be integrated, thus increasing the overall yield of the process to monoalkylbenzenes.
  • the present invention relates to a process for obtaining monoalkylbenzenes from polyalkylbenzenes by means of a catalytic transalkylation reaction, as catalyst a modified acidity smectite is used that is in the solid state and has improved properties when transalkylating polyalkylbenzenes of long alkyl chain with aromatic hydrocarbon to obtain monoalkylbenzenes.
  • a modified acidity smectite is used that is in the solid state and has improved properties when transalkylating polyalkylbenzenes of long alkyl chain with aromatic hydrocarbon to obtain monoalkylbenzenes.
  • a first aspect of the present invention relates to a process for obtaining monoalkylbenzene compounds by catalytic transalkylation of polyalkylaromatic compounds, comprising the following steps: i) mixing polyalkylaromatic hydrocarbons with aromatic hydrocarbons; ii) catalytic transalkylation of the mixture obtained in step i) in a transalkylation reactor comprising a catalyst; iii) separating the product obtained in step ii) into a fraction comprising unreacted aromatic hydrocarbon, into a fraction comprising unreacted polyalkylaromatics and into a fraction comprising the generated monoalkylaromatics; iv) mixing the polyalkylaromatic compounds obtained in stage iii) with fresh polyalkylaromatics; v) recirculating the mixture obtained in step iv) to step i); vi) mixing the aromatic hydrocarbons obtained in stage iii) with fresh aromatic hydrocarbons; and vii) recirculating the mixture obtained in stage vi) to stage
  • the alkyl chains present in the polyalkylaromatic hydrocarbons contain between 5 and 20 carbon atoms, preferably between 9 and 16 carbon atoms.
  • the aromatic hydrocarbon and the polyalkylaromatic hydrocarbon are mixed in a molar ratio between 1: 1 and 100: 1, preferably 60: 1.
  • the catalyst of step ii) is arranged in the reactor in an arrangement selected from the group consisting of: a fluidized bed, in a slurry reactor or in at least one catalytic fixed bed.
  • the transalkylation reaction of step ii) is carried out in a reactor configuration comprising at least one of the reactor configurations selected from the group consisting of: an independent fixed bed reactor, at least two parallel fixed-bed reactors, at least two fixed-bed reactors in series, and combinations thereof.
  • separation step iii) is carried out by distillation and / or selective decomposition of by-products and / or selective adsorption.
  • the catalyst present in step ii) is of the smectite type with modified acidity.
  • the catalyst from step ii) comprises: a) a total silicon: aluminum ratio of between 2.0: 1.0-10.0: 1.0, preferably about 5.6: 1.0 b) between 0.5-4% by weight of magnesium, preferably 1.2% c) between 0.2-3% by weight of iron, preferably 0.9% d) between 0.1-2% by weight of calcium, preferably 0.4% e) between 0.1-2% by weight of sulfur, preferably 0.5% f) between 0.01-0.5 % by weight of fluorine g) between 0.0001% -0.005% by weight of sodium.
  • the catalyst of step ii) comprises: a) a powder x-ray diffraction pattern characterized in that the strongest diffraction peak appears at angle 2 theta corresponding to 5.74 ° and the rest of the main peaks appear at diffraction angles of 2 theta corresponding to 19.77 ° -26.33 ° -54, l 1 ° -61.85 ° -68.1 I or and 76.33 ° b) total specific area (BET) of between 200 to 800 m2 / g, preferably around 390 m2 / g; c) total pore volume between 0.1 to 1 ml / g, preferably 0.5 ml / gd) distribution of macropores with a diameter between 20 to 2000 angstroms, preferably between 20 to 60 angstroms, more preferably 40 angstroms .
  • BET total specific area
  • the acidity of the catalyst from step ii) has a total concentration of acid centers of 100 to 900 micromoles per gram, preferably between 130 to 400 micromoles per gram.
  • the optimum reaction temperature is between 150-250 ° C, preferably 180-225 0 C.
  • the optimal reaction pressure is between 15-50 kgf / cm 2 , preferably between 30-45 kgf / cm 2 .
  • the optimal liquid hourly space velocity is between 0.5-5 h "1 .
  • Figure 1 represents the usual procedure for carrying out the fixed-bed alkylation of benzene with definas Ci 0 -C 13 .
  • the mixture of linear monolefins and paraffins (stream 00), is mixed with benzene (stream 20) obtained by mixing fresh benzene (stream 10) with recirculated benzene (stream 50) obtained in the benzene distillation column (stream 201).
  • the resulting reaction mixture (stream 30) is fed to the fixed bed catalytic reactor (unit 101), in which the alkylation of benzene by olefins takes place.
  • the effluent from the reactor consisting of monoalkylbenzenes, unreacted benzene, paraffins and dialkylbenzenes, is fed to the benzene distillation column (unit 201), in which the benzene is separated by the head and recirculated (stream 50 ).
  • the bottoms products (stream 60) are fed to the paraffin separation column (unit 301), where the paraffins are separated by the head (stream 70) and recirculated to the dehydrogenation step.
  • the bottoms stream from unit 301 (stream 80), primarily composed of monoalkylbenzenes and dialkylbenzenes, is fed to the final purification unit (unit 401), in which the monoalkylbenzenes are separated to the heavier by-products by a distillation process and subsequently purified by a clay treater, thus obtaining a stream of high purity monoalkylbenzenes (stream 90).
  • Dialkylbenzenes and other heavy by-products leave the process through stream 100.
  • Figure 2 shows a schematic of the reaction of the present invention in flow diagram form.
  • FIG. 2 represents a non-limiting scheme for the practice of this invention.
  • the mixture of linear monolefins and paraffins from the dehydrogenation, diolefin conversion and purification steps (stream 0O) 5 is mixed with a suitable amount of benzene (stream 30), obtained by taking a part of the benzene stream (stream 20) generated by mixing fresh benzene (stream 10) with recycle benzene (stream 70).
  • the resulting reagent mixture (stream 40) is fed to the fixed bed alkylation reactor (unit 101), in the that alkylation of benzene by olefins takes place.
  • Stream 60 is fed to the benzene distillation column (unit 201), in which benzene is separated at the top of the column and is recirculated (stream 70) to be mixed with the fresh benzene supply (stream 10) .
  • the bottoms stream from the benzene column (stream 80) is fed to the paraffin distillation column (unit 301), in which the paraffins are separated by the head and recirculated (stream 90) to the process dehydrogenation unit alkylation.
  • unit 301 which is composed primarily of monoalkylbenzenes and dialkylbenzenes (stream 100), is fed to the final purification stage (unit 401), in which the monoalkylbenzenes are separated from the heavy by-products that make up the dialkylbenzenes by of a distillation step, followed by purification with a clay bed, thus obtaining high purity monoalkylbenzenes (stream 110).
  • the by-products obtained in the purification of the monoalkylbenzenes are mainly dialkylbenzenes, which emerge from the purification unit 401 through stream 120.
  • This stream is mixed with a stream of benzene (stream 130), thus generating a mixture of benzene and dialkylbenzenes. with an adequate molar ratio (current 140).
  • This stream is fed to the transalkylation reactor (unit 501), in which the transalkylation reaction takes place.
  • the transalkylation effluent (stream 150) is sent to a purification step (unit 201) together with the effluent from the alkylation reactor, in which unreacted benzene is recovered.
  • the spatial velocity of the transalkylation stage is controlled to be able to transform the dialkylbenzenes generated in the alkylation stage.
  • This example illustrates the behavior of the selected catalyst when employed in the transalkylation of long chain dialkylbenzenes with benzene to produce the corresponding monoalkylbenzenes.
  • the selected catalyst is based on a modified acidity smectite.
  • the reaction was carried out in a pilot plant scale stainless steel reactor, in which the catalyst was located in a fixed bed.
  • the dialkylbenzenes which contained a minimal amount of monoalkylbenzenes, came from a benzene alkylation process with linear olefins in the C 10 -C 13 range that used an acidic solid as a catalyst.
  • dialkylbenzenes were mixed with dry benzene until a suitable benzene / dialkylbenzene molar ratio was achieved.
  • the weight percentage of dialkylbenzenes and monoalkylbenzenes in the feed prior to mixing with benzene is detailed in Table 1:
  • dialkylbenzenes used as food is summarized in Table 2. Since the dialkylbenzenes came from a process of alkylation of benzene with linear olefins in the Ci O -Ci 3 range , said dialkylbenzenes had a content of carbon atoms comprised in the range between C 26 (didecylbenzene) and C 32 (dithridebenzene), because all combinations between alkyl chains are possible.
  • the operating temperature has been selected in the environment of 200 0 C to optimize, from an energy point of view, the transalkylation process when it is integrated into a larger alkylation process.
  • the dialkylbenzenes come from a separation stage based on a sequential distillation process.
  • the distillation columns operate at bottom temperatures in the order of 200 0 C, therefore, considering that the food from the transalkylation unit comes in part from these columns and that the transalkylation effluent will be separated in this distillation system, it would be interesting that its temperature was slightly lower than said 200 0 C to avoid intermediate heating / cooling stages before introducing it into the columns, since this minimizes the associated energy costs.
  • Table 6 The average for the effluent composition generated at 195 0 C in terms of homolog distribution of monoalkyl and average molecular weight is summarized in Table 6. Table 6 also incorporates the 15 industrial specifications typical of the monoalkyl benzenes produced in a alkylation process (in terms of homolog distribution) in which this transalkylation process would be integrated, to see if both types of monoalkylbenzenes (those produced in the alkylation stage and those generated in the transalkylation stage) are similar:
  • This example illustrates the stability over time of the activity of the catalyst used in the claimed transalkylation process, which is a fundamental parameter when considering its industrial application.
  • the same reactor, feed mix and operating conditions as in Example 1 have been used.
  • the reaction temperature has been varied in the range of 185 0 C to 200 0 C.
  • 42 reaction cycles have been carried out (each one followed by its corresponding washing cycle) to analyze the potential deactivation of the catalyst.
  • Most of the Reaction cycles developed lasted 24 hours, but some 48-hour cycles were also performed.
  • Table 8 shows the average conversion of dialkylbenzenes obtained during the groups of equivalent cycles in temperature and reaction time (called sequences) against the temperature of each sequence:
  • the reaction system shows high activity during the first eleven cycles (sequence 1), providing an average conversion of dialkylbenzenes of 70%.
  • sequence 1 When the reaction cycle is extended to 48 hours (sequence 3), a decrease in activity is observed, probably due to fouling of the catalyst. Thereafter, stabilization of activity is observed at about 51-52% average conversion, regardless of temperature and cycle length. It seems to mean stabilization of the catalyst. Therefore, this catalyst provides a stable process that shows an appreciable thermal tolerance and that allows operating even in reaction cycles of 48 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La presente invención se refiere a un proceso para realizar la transalquilación catalítica entre dialquilbencenos de cadena larga y benceno, para obtener monoalquilbencenos. Este proceso emplea como fuente de dialquilbencenos los subproductos de un proceso de alquilación de benceno con mono olefinas lineales del rango C9-C16.

Description

TRANSALQUILACIÓN CATALÍTICA DE DIALQUILBENCENOS
Campo de la invención La presente invención se refiere en general a las reacciones de transalquilación catalítica y en particular a los catalizadores tipo esmectita.
Estado de Ia técnica
Los compuestos alquilaromáticos son una importante familia de sustancias que se usan como materias primas en numerosos campos industriales, tales como el de los plastificantes, materiales poliméricos, insecticidas, en la agricultura para prevenir la aglomeración de fertilizantes, en la manufactura de textiles y fibras, en la industria del cuero y las pieles, herbicidas, procesos de limpieza industrial, en la industria de la fotografía, en la manufactura de adhesivos y en los productos para combatir el fuego tales como los agentes humidificantes, en procesos electroquímicos para la remoción de suciedad y grasas de la superficie de un sustrato, y en detergentes biodegradables {Surfactants in Consumers Products, Theory, Technology, y Application, Edited by J. Falbe, Springer Verlag, 1987).
El proceso habitual usado por la industria petroquímica para producir compuestos alquilaromáticos, especialmente para aplicaciones en detergentes, consiste en deshidrogenar parafinas lineales para obtener mono-olefinas lineales y luego efectuar la alquilación del benceno con dichas mono-olefinas. El Sulfonato de Alquilbenceno Lineal (LAS) es producido por sulfonación del Alquilbenceno Lineal (LAB) y subsecuente neutralización de los correspondientes ácidos sulfónicos (HLAS). Las olefinas lineales usadas en el proceso tienen entre nueve y dieciséis átomos de carbono. La etapa de alquilación ocurre en fase líquida, en presencia de catalizadores del tipo Friedel-Crañ, por ejemplo, ácido fluorhídrico. El proceso HF es bien conocido y usado comercialmente, produciendo un elevado rendimiento (>99% en peso) en LAB con una selectividad al isómero 2-fenilo relativamente baja, menor del 20%. El proceso integrado para la producción de LAB está descrito en Handbook de Petroleum Reβning Process, editado por Robert A. Meyers, 1986, p.l- 23, que se incorpora aquí como referencia. La U.S. Pat. No. 5,276,231, describe las etapas intermedias del proceso de producción de LAB, tal como la hidrogenación selectiva de los sub-productos diolefínicos formados en la deshidrogenación de parafinas y la remoción de sub-productos no lineales de la corriente de la etapa de deshidrogenación. El uso de HF presenta algunas desventajas, ya que requiere de un manejo muy cuidadoso y de equipos especiales debido a su corrosividad, lo que se traduce en un encarecimiento de los costes fijos y de operación, por lo que se ha tratado de desarrollar catalizadores alternativos basados en sólidos con carácter ácido
La técnica anterior reporta el uso de numerosos catalizadores ácidos sólidos para la producción de fenil aléanos, tales como faujasitas sintéticas (zeolitas X y Y), zeolita L, ZSM-5, ZSM-18, ZSM-20, mordenita y ofertita. Al fluorar sólidos ácidos se incrementa su acidez, incrementando por tanto su actividad catalítica en procesos de alquilación de compuestos aromáticos, como se propone en la patente U.S. Pat. No. 5,196,574, en la que se patenta un alumino silicato fluorado para la alquilación de benceno con olefinas, y en la patente U.S. Pat. No. 6,133,492, en la que se patenta el empleo de una mordenita fluorada para llevar a cabo la misma reacción. Los sólidos zeolíticos mencionados aquí como catalizadores están definidos en la clasificación del Atlas de Zeolita Framework Types, W. M. Meier, D. H. Olson y C. H. Baerlocher, 5th revised edition, 2001, Elsevier, al cual hace referencia la presente invención.
El procedimiento habitual para llevar a cabo la alquilación de benceno con olefinas C10-C13, tal como se menciona en las referencias originales sobre alquilación en lecho fijo (J. L. Berna Tejero, A. Moreno Danvila U.S. Pat. No. 5,157,158, 1992; and J. L. G. De Almeida, M. Dufaux, Y. Ben Taarit y C. Naccache, Journal of the American OiI Chemist's Society, Vo. 71, N°7, 675-694, 1994), se lleva a cabo en un proceso en el que la etapa de alquilación tiene una configuración tal y como se muestra simplificadamente en la figura I5 en la cual se puede observar como la mezcla de monoolefmas lineales y parafinas (corriente 00), es mezclada con benceno (corriente 20) obtenido al mezclar benceno fresco (corriente 10) con benceno recirculado (corriente 50) obtenido en la columna de destilación de benceno (201). La mezcla reactiva resultante (corriente 30) es alimentada al reactor catalítico de lecho fijo (unidad 101), en el que la alquilación del benceno por las olefinas tiene lugar. El efluente del reactor (corriente 40), compuesto por monoalquilbencenos, benceno sin reaccionar, parafinas y dialquilbencenos, es alimentado a la columna de destilación de benceno (unidad 201), en la que el benceno es separado por la cabeza y recirculado (corriente 50). Los productos de fondos (corriente 60) son alimentados a la columna de separación de parafinas (unidad 301), en la que las parafinas son separadas por a cabeza (corriente 70) y recirculadas a la etapa de deshidrogenación. La corriente de fondos de la unidad 301 (corriente 80), principalmente compuesta por monoalquilbencenos y dialquilbencenos, es alimentada a la unidad de purificación final (unidad 401), en la que los monoalquilbencenos son separados de los subproductos más pesados mediante un proceso de destilación y posteriormente purificados mediante un tratador de arcillas, obteniéndose así una corriente de monoalquilbencenos de elevada pureza (corriente 90). Los dialquilbencenos y otros subproductos pesados abandonan el proceso a través de la corriente 100. En este mismo sentido, una de las principales desventajas asociadas al proceso de alquilación cuando se emplean olefinas lineales para producir alquilbencenos en el rango detergente, es la generación de compuestos polialquilbencénicos en la etapa de alquilación. Estos subproductos indeseables se generan debido a que los alquilbencenos son más reactivos frente a las olefinas que el propio benceno, debido a la mayor estabilidad de sus correspondientes intermedios catiónicos proporcionada por el efecto inductivo +1 de la cadena alquílica. Por ello, son fácilmente polialquilables. Este es el motivo por el que, para minimizar las reacciones indeseadas de polialquilación, las condiciones de operación habituales a nivel industrial implican altas razones molares de benceno a olefinas (por encima de 3:1). Pero, aunque minimizadas, las reacciones de polialquilación tienen lugar, resultando en un uso ineficiente de las materias primas (una fracción apreciable del benceno y las olefinas se "pierde" en forma de dialquilbencenos con bajo valor comercial) y en unos costes de operación elevados (debido a la necesidad de separar y recircular grandes cantidades de benceno). Este es el motivo por el que un proceso de transalquilación controlada sería deseable, ya que permitiría transformar dialquilbencenos de escaso valor en monoalquilbencenos, mucho más apreciados comercialmente.
La isomerización y la transalquilación son las dos reacciones principales que tienen lugar cuando se hacen pasar di o trialquilbencenos sobre sólidos basados en sílice-alúmina o en zeolitas intercambiadas con metales. La isomerización de posición de polialquilbencenos puede desarrollarse mediante dos mecanismos: eliminación intramolecular 1,2 y transalquilación. Por debajo de 2000C, predomina la isomerización vía transalquilación, tal como se recoge en The Chemisttγ ofCatalytic Hydrocarhon Conversions, H.Pines, lst Edition (1981), Academic Press. El estado de la técnica en procesos de transalquilación / desproporción y dealquilación ha sido resumida por Ueda Y. , "Aromatic hydrocarbon production process - 2.Dealkylation, disproportionation, and transalkylation processes", Petrotech 27/3 244-248, (2004). Estos procesos de transalquilación han sido ampliamente estudiados para polialquilbencenos de cadena corta, como el xileno, eumeno y trimetilbencenos asociados, polietilbencenos y polipropilbencenos. La preparación de hidrocarburos aromáticos monoalquilados a través de la transalquilación de hidrocarburos aromáticos polialquilados con sustratos aromáticos, en la cual se emplean catalizadores zeolíticos con poros pequeños, medianos y grandes, está descrita en las patentes U.S. Pat. No. 3,385,906, U.S. Pat. No. 4,169,111 y E.P. No. 308,097. Otros óxidos ácidos sólidos empleados en la transalquilación catalítica de compuestos polialquílicos de cadena corta son los SAPOs y los SAPOs en base zirconio modificados con wolframio, tal como se describe en las patentes U.S. Pat. No. 5,114,563 y U.S. Pat. No. 4,440,871. En las patentes E.P. No. 439,632, E.P. No. 687,500, E.P. No. 847,802 y U.S. Pat. No. 5,902,917, se propone la alquilación de benceno con etileno o propileno y la transalquilación de dietilbenceno o diisopropilbenceno con benceno empleando zeolitas Beta. El catalizador zeolítico TA-4 se emplea en el proceso Tatoray (originado por Toray Industries™ y desarrollado y licenciado por UOP™), en el cual las zeolitas tienen dos misiones fundamentales: la desproporción del tolueno para obtener benceno y mezclas de xilenos y también la transalquilación de trimetilbencenos para obtener mezclas de xilenos (Jeanneret, J., Handbook of Petroleum Refining Processes. Myers R A., editor. New York: McGraw-Hill; 1997. p. 2.55.). La zeolita Y ha sido empleada en la transalquilación de tolueno con eumeno, tal como recogen Mavrodinova V. et al, Transalkylation oftoluene with cumβne over zeolites Y dealuminated in solid-state. Parí L Effect ofthe alteration ofBronsted acidity, Applied catalysis. A, General, 2003, 248 (1-2),181-196. La E.P. No.l,059,277-Al propone el uso de una zeolita Y para transalquilar polietilbenceno con benceno para obtener etilbenceno. La mayoría de estos procesos se lleva a cabo en fase vapor. Respecto a la transalquilación de dialquilbencenos de cadena larga, existe poca literatura sobre catalizadores adecuados. La patente brasileña PI 0200458-5 A propone la transalquilación de polialquilbencenos de cadena larga con benceno, empleando ácidos sólidos como la zircona modificada con wolframio, la zircona sulfatada, las zeolitas y el AlCl3 como catalizadores.
Una vez analizados los catalizadores que han sido propuestos para llevar a cabo la transalquilación de compuestos poliaromáticos de cadena corta con moléculas aromáticas para obtener compuestos monoalquilaromáticos, procedemos a analizar las configuraciones habituales de los procesos en los que se emplean. Cuando estos se encuentran integrados en un proceso de alquilación, la etapa de transalquilación tiene como misión incrementar el rendimiento global del proceso hacia compuestos monoalquilaromáticos. Como en el caso de los catalizadores, el estado de la técnica en este campo se encuentra centrado en configuraciones para transalquilar compuestos polialquilaromáticos de cadena corta. En el caso del proceso Mobil-Badger con etilbenceno en fase vapor, la reacción de transalquilación tiene lugar en el reactor de alquilación, por medio de un doble sistema catalítico o mediante un reactor de transalquilación diferenciado, tal y como se recoge en las patentes U.S. Pat. No. 3,751,504, U.S. Pat. No. 4,547,605 y U.S. Pat. No. 4,016,218. Las patentes U.S. Pat. No. 5,902,917 y U.S. Pat. No. 6,096,935 describen procesos para la transalquilación de compuestos alquilaromáticos en los que el alimento es introducido en una zona de transalquilación y su efluente se introduce luego en una etapa de alquilación en presencia de un agente alquilante olefínico. Otra posibilidad consiste en pasar porciones del efluente de transalquilación a un reactor de alquilación multietapa, tal y como se recoge en la patente U.S. Pat. No. 6,232,515.
Para poder evaluar con claridad los beneficios del proceso de transalquilación de la presente invención, es útil definir unos índices tales como: conversión, selectividad a monoalquilbencenos, distribución de homólogos y distribución de isómeros:
i) Conversión fraccional en la transalquilación: En la reacción de transalquilación considerada en esta patente, el compuesto aromático (benceno) siempre es usado en exceso respecto a la estequiometría de la reacción de transalquilación (asumiendo una razón estequiométrica de benceno a dialquilbencenos de 1:1). La conversión fraccional puede definirse como la fracción del reactivo limitante que es consumida en la reacción para generar todos los productos asociados:
Conversión = A°~ A X 100 NA0
Donde Na0 es el número inicial de moles del reactivo limitante (dialquilbencenos), y Na es el número de moles de estos compuestos a la salida del reactor.
ii) Selectividad a monoalquilbencenos: Puede definirse como:
o ? W monoalqmlbenceno * 1 flO ύ hnonoalqmlbβnceno - w -^. „- IUU
' ligeros ' ' ' monoalqmlbenceno alqmlatopωado
Donde Wmonoaiquiibenceno es la masa de monoalquilbenceno producido, preferiblemente en el rango fenil-Qo a fenil-Cπ, Wiigeros es la masa de todos los compuestos generados más ligeros que el fenil-Cio, y Waiquiiato pesado es la masa de todos aquellos compuestos generados más pesados que el fenil-C13 Pueden emplearse de manera equivalente los porcentajes en peso de dichos compuestos. iipDistribución de homólogos: La distribución de homólogos puede entenderse como el porcentaje en peso de cada homólogo de monoalquilbenceno (igual cadena alquílica) producido. Podemos distinguir entre fenil-Cg, fenil-C10, fenil-Cπ, fenil-Cn ...hasta fenil-C16.
iv) Distribución de isómeros: Entre los monoalquilbencenos producidos, la distribución de isómeros puede ser definida como el porcentaje en peso de cada tipo de isómero producido, tal como isómeros 2-fenilo, 3-fenilo...7-fenilo, y también el alquilato ramificado.
R-CH-CH3 isómero 2-fenilo lineal (R=lineal)
Ph
R-CH- CH2-CH3 isómero 3-fenilo lineal (R=lineal)
Ph
R-CH-(CH2)2-CH3 isómero 7-fenilo lineal (R=lineal)
Ph
R-CH-R' isómero n-fenilo ramificado
Ph (R y/o R' ramificado, n=2-7)
La distribución de isómeros juega un papel muy importante en la factibilidad económica global del proceso de producción, en la calidad del producto sulfonado final y también en su velocidad de biodegradación. De estos isómeros, dos grupos resultan de especial interés cuando los alquilbencenos se utilizan en la producción de detergentes. Los isómeros 2-fenilo son aquellas moléculas en las que el anillo aromático se encuentra unido a la cadena alquílica a través del carbono en la posición 2 de dicha cadena. Las mezclas de LAB con contenidos en isómeros externos (2/3-fenilo) superiores al 60% proporcionan, al sulfonar y neutralizar, un LAS con propiedades detersivas superiores, pero muy viscoso, poco estable y de baja solubilidad.
Los isómeros ramificados son aquellas moléculas alquilbencénicas en las que la cadena alquílica no es lineal. Si existen en dichas cadenas carbonos cuaternarios no terminales (internos, como el 5-metü, 5-fenilalcano), los sulfonatos de alquilbenceno resultantes muestran una tasa de biodegradación inferior que los sulfonatos lineales, como se recoge en "Iso-branching of LAS biodegradation study of two model compounds", L. Cavalli, G. Cassani, M. Lazzarin, C. Maraschin, G. Nuzzi, J. L. Berna, J. Bravo, J. Ferrer, A. Moreno, Toxicology & Environmental Chemistry. VoI. 54, pag. 167-186, 1966 y "Biodegradation of co-products of commercial LAS", A. M. Nielsen, L. N. Britton, L. Cavalli, J. L. Berna, The Cler Review, Vol.2, N0I, pag.14-27,1996.
Puede verse que la distribución de isómeros juega un papel importante en el comportamiento de los detergentes derivados de los sulfonatos de monoalquilbencenos, a nivel de sus propiedades detersivas y también a nivel medioambiental. Como los dialquilbencenos se forman fundamentalmente por dialquilación de benceno en la etapa de alquilación, sería deseable que los monoalquilbencenos producidos en la etapa de transalquilación mantuviesen la misma distribución de isómeros y peso molecular que los monoalquilbencenos de interés en la etapa de alquilación. Así, ambos grupos de monoalquilbencenos podrían ser mezclados sin afectar a ninguna propiedad final del producto, pero incrementando apreciablemente el rendimiento global de monoalquilbencenos del proceso.
Esta invención se refiere a un proceso en el que el catalizador de transalquilación es muy activo, estable y selectivo a monoalquilbencenos cuando cataliza la reacción entre los dialquilbencenos obtenidos como subproductos de la etapa de alquilación y el benceno. Dichos monoalquilbencenos pueden ser mezclados con los monoalquilbencenos producidos en el proceso de alquilación en el que la transalquilación estaría integrada, incrementando así el rendimiento global del proceso a monoalquilbencenos. Existe pues la necesidad de encontrar un procedimiento para obtener monoalquilbencenos con propiedades detersivas maximizadas, con un comportamiento ambiental óptimo y en condiciones de máxima eficacia en el uso de las materias primas, y cuyo proceso de fabricación tenga unos costes económicos asociados muy bajos.
Descripción de la invención
La presente invención se refiere a un procedimiento para la obtención de monoalquilbencenos a partir de polialquilbencenos mediante una reacción de transalquilación catalítica, como catalizador se utiliza una esmectita de acidez modificada que se encuentra en estado sólido y tiene propiedades mejoradas a la hora de transalquilar polialquilbencenos de cadena alquílica larga con hidrocarburo aromático para obtener monoalquilbencenos. De tal forma que se superan los problemas descritos en el estado de la técnica. Así pues un primer aspecto de la presente invención se refiere a un procedimiento para obtener compuestos monoalquilbencénicos mediante transalquilación catalítica de compuestos polialquilaromáticos que comprende las siguientes etapas: i) mezclar hidrocarburos polialquilaromáticos con hidrocarburos aromáticos; ii) transalquilación catalítica de la mezcla obtenida en la etapa i) en un reactor de transalquilación que comprende un catalizador; iii) separar el producto obtenido en la etapa ii) en una fracción que comprende hidrocarburo aromático no reaccionado, en una fracción que comprende polialquilaromáticos no reaccionados y en unaJxacción que comprende los monoalquilaromáticos generados; iv) mezclar los compuestos polialquilaromáticos obtenidos en la etapa iii) con polialquilaromáticos frescos; v) recircuíar la mezcla obtenida en la etapa iv) a la etapa i); vi) mezclar los hidrocarburos aromáticos obtenidos en la etapa iii) con hidrocarburos aromáticos frescos; y vii) recircular la mezcla obtenida en la etapa vi) a la etapa i) En una realización particular de la presente invención los hidrocarburos polialquilaromáticos son hidrocarburos dialquilaromáticos, en una realización más particular, son hidrocarburos dialquilbencénicos. En una realización particular de la presente invención, el hidrocarburo aromático es benceno.
En una realización particular de la presente invención, las cadenas alquílicas presentes en los hidrocarburos polialquilaromáticos, contienen entre 5 y 20 átomos de carbono, preferentemente entre 9 y 16 átomos de carbono. En una realización particular de la presente invención, el hidrocarburo aromático y el hidrocarburo polialquilaromático se mezclan en una razón molar comprendida entre 1 :1 y 100:1, preferentemente 60:1.
En una realización particular, el catalizador de la etapa ii) está dispuesto en el reactor en una disposición seleccionada del grupo consistente en: un lecho fluidizado, en un reactor de slurry o en al menos un lecho fijo catalítico.
En una realización particular de la presente invención, la reacción de transalquilación de la etapa ii) se lleva a cabo en una configuración de reactores que comprende al menos una de las configuraciones de reactores seleccionadas del grupo consistente en: un reactor de lecho fijo independiente, al menos dos reactores de lecho fijo en paralelo, al menos dos reactores de lecho fijo en serie y combinaciones de los mismos.
En una realización particular de la presente invención, la etapa iii) de separación se realiza mediante destilación y/o descomposición selectiva de subproductos y/o adsorción selectiva. En una realización particular de la presente invención, el catalizador presente en la etapa ii) es de tipo esmectita con acidez modificada.
En una realización particular, el catalizador de la etapa ii) comprende: a) una razón silicio: aluminio total de entre 2,0:1,0-10,0:1,0, preferentemente alrededor de 5,6:1,0 b) entre 0,5-4% en peso de magnesio, preferentemente de 1,2% c) entre 0,2-3% en peso de hierro, preferentemente de 0,9% d) entre 0,1-2% en peso de calcio, preferentemente de 0,4% e) entre 0,1-2% en peso de azufre, preferentemente de 0,5% f) entre 0,01-0,5% en peso de flúor g) entre 0,0001%-0,005% en peso de sodio. En una realización particular de la presente invención, el catalizador de la etapa ii) comprende: a) un patrón de difracción de rayos x en polvo caracterizado porque el pico de difracción más intenso aparece en el ángulo 2 theta correspondiente a 5,74° y el resto de picos principales aparecen en ángulos de difracción 2 theta correspondientes a 19,77°-26,33°-54,l 1°-61,85°-68,1 Io y 76,33° b) área específica total (BET) de entre 200 a 800 m2/g, preferentemente alrededor de 390 m2/g; c) volumen de poro total de entre 0,1 a 1 ml/g, preferentemente 0,5 ml/g d) distribución de macroporos con diámetro de entre 20 a 2000 ángstrom, preferentemente de entre 20 a 60 ángstrom, más preferentemente de 40 ángstrom.
En una realización particular de la presente invención, la acidez del catalizador de la etapa ii) tiene una concentración total de centros ácidos de 100 a 900 micromoles por gramo, preferentemente de entre 130 a 400 micromoles por gramo.
En una realización particular de la presente invención, la temperatura óptima de reacción está comprendida entre 150-250°C, preferentemente entre 180-2250C.
En una realización particular de la presente invención, la presión óptima de reacción está comprendida^ entre 15-50 kgf/cm2, preferentemente entre 30-45 kgf/cm2.
En una realización particular de la presente invención la velocidad espacial horaria del líquido (LHSV) óptima está comprendida entre 0,5-5 h"1.
Breve descripción de las figuras La figura 1 representa el procedimiento habitual para llevar a cabo la alquilación en lecho fijo de benceno con definas Ci0-C13. La mezcla de monolefinas lineales y parafinas (corriente 00), es mezclada con benceno (corriente 20) obtenido al mezclar benceno fresco (corriente 10) con benceno recirculado (corriente 50) obtenido en la columna de destilación de benceno (corriente 201). La mezcla reactiva resultante (corriente 30) es alimentada al reactor catalítico de lecho fijo (unidad 101), en el que la alquilación del benceno por las olefínas tiene lugar. El efluente del reactor (corriente 40), compuesto por monoalquilbencenos, benceno sin reaccionar, parafinas y dialquilbencenos, es alimentado a la columna de destilación de benceno (unidad 201), en la que el benceno es separado por la cabeza y recirculado (corriente 50). Los productos de fondos (corriente 60) son alimentados a la columna de separación de parafinas (unidad 301), en la que las parafinas son separadas por la cabeza (corriente 70) y recirculadas a la etapa de deshidrogenación. La corriente de fondos de la unidad 301 (corriente 80), principalmente compuesta por monoalquilbencenos y dialquilbencenos, es alimentada a la unidad de purificación final (unidad 401), en la que los monoalquilbencenos son separados a los subproductos más pesados mediante un proceso de destilación y posteriormente purificados mediante un tratador de arcillas, obteniéndose así una corriente de monoalquilbencenos de elevada pureza (corriente 90). Los dialquilbencenos y otros subproductos pesados abandonan el proceso a través de la corriente 100. La figura 2, muestra un esquema de la reacción de la presente invención en forma de diagrama de corrientes.
Descripción detallada de la invención
La figura 2 representa un esquema no limitante, para la práctica de esta invención.
La mezcla de monolefinas lineales y parafinas de las etapas de deshidrogenación, conversión de diolefinas y purificación (corriente 0O)5 es mezclada con una cantidad adecuada de benceno (corriente 30), obtenida al tomar una parte de la corriente de benceno (corriente 20) generada al mezclar benceno fresco (corriente 10) con benceno de reciclo (corriente 70). La mezcla de reactivos resultante (corriente 40) es alimentada al reactor de alquilación en lecho fijo (unidad 101), en el que la alquilación del benceno por las olefinas tiene lugar. El efluente de la alquilación (comente 50), compuesto por monoalquilbencenos, benceno sin reaccionar, parafinas y dialquilbencenos, es mezclada con el efluente (corriente 150) de la reacción de transalquilación (unidad 501), generándose una corriente (corriente 60) compuesta por monoalquilbencenos, benceno sin reaccionar, parafinas y dialquilbencenos no reaccionados en la reacción de transalquilación, más los formados en la reacción de alquilación (unidad 101). La corriente 60 es alimentada a la columna de destilación de benceno (unidad 201), en la que el benceno se separa por la cabeza de la columna y es recirculado (corriente 70) para ser mezclado con el aporte de benceno fresco (corriente 10). La corriente de fondos de la columna de benceno (corriente 80) es alimentada a la columna de destilación de parafinas (unidad 301), en la que las parafinas son separadas por la cabeza y recirculadas (corriente 90) a la unidad de deshidrogenación del proceso de alquilación. El fondo de la unidad 301, que está compuesto fundamentalmente por monoalquilbencenos y dialquilbencenos (corriente 100), es alimentado a la etapa final de purificación (unidad 401), en la que los monoalquilbencenos son separados de los subproductos pesados que constituyen los dialquilbencenos por medio de una etapa de destilación, seguida de una purificación con un lecho de arcillas, obteniéndose así monoalquilbencenos de elevada pureza (corriente 110). Los subproductos obtenidos en la purificación de los monoalquilbencenos son fundamentalmente dialquilbencenos, que emergen de la unidad de purificación 401 a través de la corriente 120. Esta corriente es mezclada con una corriente de benceno (corriente 130), generándose así una mezcla de benceno y dialquilbencenos con una razón molar adecuada (corriente 140). Esta corriente es alimentada al reactor de transalquilación (unidad 501), en el que la reacción de transalquilación tiene lugar. El efluente de la transalquilación (corriente 150) es enviado a una etapa de purificación (unidad 201) junto con el efluente del reactor de alquilación, en la que se recupera el benceno no reaccionado. La velocidad espacial de la etapa de transalquilación está controlada para poder transformar los dialquilbencenos generados en la etapa de alquilación. Esta invención está adicionalmente descrita, solo con fines ilustrativos, a través de los siguientes ejemplos, que nunca deberían ser considerados como limitantes del alcance de esta patente.
Ejemplos
Ejemplo 1
Este ejemplo ilustra el comportamiento del catalizador seleccionado cuando es empleado en la transalquilación de dialquilbencenos de cadena larga con benceno para producir los correspondientes monoalquilbencenos. El catalizador seleccionado tiene como base una esmectita de acidez modificada. La reacción se llevó a cabo en un reactor de acero inoxidable a escala planta piloto, en el cual se encontraba el catalizador dispuesto en un lecho fijo. Los dialquilbencenos, que contenían una mínima cantidad de monoalquilbencenos, procedían de un proceso de alquilación de benceno con olefinas lineales en el rango C10-C13 que empleaba un sólido ácido como catalizador. Estos dialquilbencenos fueron mezclados con benceno seco hasta conseguir una razón molar benceno / dialquilbencenos adecuada. El porcentaje en peso de dialquilbencenos y monoalquilbencenos en la alimentación previa a la mezcla con benceno se detalla en la tabla 1:
Figure imgf000016_0001
Tabla 1
La distribución de homólogos en los dialquilbencenos empleados como alimento se encuentra resumida en la tabla 2. Como los dialquilbencenos procedían de un proceso de alquilación de benceno con olefinas lineales en el rango CiO-Ci3, dichos dialquilbencenos tenían un contenido en átomos carbono comprendido en el rango entre C26 (didecilbenceno) y C32 (ditridecibenceno), porque todas las combinaciones entre cadenas alquílicas son posibles. Además, existen dialquilbencenos más ligeros (<C26), procedentes de la alquilación de alquilbencenos de cadena corta generados en la etapa de deshidrogenación con monolefinas C1O-C13, así como dialquilbencenos más pesados (>C32), originados por procesos de transalquilación ocurridos en la etapa de alquilación:
Figure imgf000017_0001
Tabla 2
Una vez mezclados con el benceno, la mezcla resultante de dialquilbencenos y benceno fue calentada hasta la temperatura adecuada, y después fue alimentada al reactor de transalquilación a una velocidad espacial de líquido adecuada (LHSV), presión y razón molar de reactivos. Cada ciclo de transalquilación implicaba 24 horas de reacción, seguidas de un ciclo de lavado de 24 horas con benceno. Las condiciones de operación tanto de la etapa de reacción como de lavado se encuentran resumidas en la tabla 3:
Figure imgf000018_0001
Tabla 3
La temperatura operativa ha sido seleccionada en el entorno de 2000C para optimizar, desde un punto de vista energético, el proceso de transalquilación cuando estuviese integrado en un proceso mayor de alquilación. Como ha sido comentado previamente, en un proceso de alquilación los dialquilbencenos proceden de una etapa de separación basada en un proceso de destilación secuencial. Las columnas de destilación operan a temperaturas de fondos en el orden de 2000C por lo que, considerando que el alimento de la unidad de transalquilación procede en parte de estas columnas y que el efluente de transalquilación será separado en este sistema de destilación, interesaría que su temperatura fuese ligeramente inferior a dichos 2000C para evitar etapas intermedias de calentamiento/enfriamiento antes de introducirlo en las columnas, puesto que así se minimizan los costes energéticos asociados.
Se han llevado a cabo cuatro ciclos de reacción (cada uno seguido de su ciclo de lavado correspondiente), variando la temperatura de reacción. Los resultados, expresados en términos de conversión promedio de dialquilbencenos en cada ciclo, se encuentran resumidos en la tabla 4:
Figure imgf000019_0001
Tabla 4
Como puede verse en la tabla 4, la conversión promedio de dialquilbencenos aumenta ligeramente al aumentar la temperatura. Como ha sido considerado antes, es preferible una temperatura algo inferior a 2000C, por lo que se ha seleccionado la temperatura de 195°C para analizar la distribución de los productos de reacción mostradas a continuación. La composición promedio a la temperatura señalada de los productos de transalquilación y su comparación con la alimentación se encuentra resumida en la tabla 5:
10
Figure imgf000019_0002
Tabla 5
La composición promedio correspondiente al efluente generado a 1950C en términos de distribución de homólogos de los monoalquilbencenos y peso molecular promedio se encuentra resumida en la tabla 6. En la tabla 6 se incorporan también las 15 especificaciones industriales típicas de los monoalquilbencenos producidos en un proceso de alquilación (en términos de distribución de homólogos) en el que este proceso de transalquilación estaría integrado, para ver si ambos tipos de monoalquilbencenos (los producidos en la etapa de alquilación y los generados en la etapa de transalquilación) son semejantes:
Figure imgf000020_0001
Tabla 6
Otros parámetros que deben ser considerados cuando se analiza la calidad de los monoalquilbencenos producidos en el proceso de transalquilación son el contenido en isómeros 2-fenilo (condiciona el comportamiento tensioactivo final del producto, así como su biodegradabilidad) y la cantidad de alquilato ramificado producida (afecta a la biodegradabilidad final del producto). En la tabla 7 se muestran dichos parámetros, correspondientes tanto al alimento y al efluente de la reacción de transalquilación como a las especificaciones industriales habituales relativas a los monoalquilbencenos lineales del rango fenil-Cio a fenil-C13 que se obtendrían en el proceso de alquilación en el que estaría integrada la unidad de transalquilación objeto de esta patente:
Figure imgf000021_0001
Tabla 7
Cuando se analizan las tablas 5, 6 y 7, puede verse que los monoalquilbencenos producidos mediante la transalquilación de dialquilbencenos con benceno son casi idénticos, en términos de sus parámetros más representativos, a los monoalquilbencenos producidos en el proceso de alquilación del que proceden los dialquilbencenos empleados. Solo su contenido en subproductos ligeros (más ligeros que el fenil-Cio) y monoalquilbencenos ramificados (aun siendo estos reducidos en gran medida en comparación con el alimento) es ligeramente superior al de los monoalquilbencenos deseados. Sin embargo, como la producción de dialquilbencenos en un proceso de alquilación de benceno con monolefinas lineales C10-C13 supone alrededor del 5% de la producción total, las mezclas de ambos monoalquilbencenos cumplen las especificaciones industriales requeridas.
Ejemplo 2
Este ejemplo ilustra la estabilidad en el tiempo de la actividad del catalizador empleado en el proceso de transalquilación reclamado, que es un parámetro fundamental a la hora de considerar su aplicación industrial. Se han empleado el mismo reactor, mezcla de alimentación y condiciones de operación que en el ejemplo 1. La temperatura de reacción ha sido variada en el rango de 1850C a 2000C. Se han llevado a cabo 42 ciclos de reacción (cada uno seguido de su correspondiente ciclo de lavado) para analizar la potencial desactivación del catalizador. La mayoría de los ciclos de reacción desarrollados duraron 24 horas, pero también se realizaron algunos ciclos de 48 horas. En la tabla 8 se muestra la conversión promedio de dialquilbencenos obtenida durante los grupos de ciclos equivalentes en temperatura y tiempo de reacción (denominados secuencias) frente a la temperatura de cada secuencia:
Figure imgf000022_0001
Tabla 8
Como puede verse en la tabla 8, el sistema de reacción muestra una elevada actividad durante los primeros once ciclos (secuencia 1), proporcionando una conversión promedio de dialquilbencenos del 70%. Cuando el ciclo de reacción es extendido a 48 horas (secuencia 3), se observa una disminución de la actividad, probablemente debida a un ensuciamiento del catalizador. Después, se observa una estabilización de la actividad en alrededor de un 51-52% de conversión promedia, independientemente de la temperatura y de la duración del ciclo. Parece significar una estabilización del catalizador. Por lo tanto, este catalizador proporciona un proceso estable que muestra una tolerancia térmica apreciable y que permite operar incluso en ciclos de reacción de 48 horas.

Claims

REIVINDICACIONES
1. Procedimiento para obtener compuestos monoalquilbencénicos mediante transalquüación catalítica de compuestos polialquilaromáticos, que comprende las siguientes etapas: i) mezcla de los hidrocarburos polialquilaromáticos con los hidrocarburos aromáticos; ii) transalquüación catalítica de la mezcla obtenida en la etapa i) en un reactor de transalquüación que comprende un catalizador iii) separación del producto obtenido en la etapa ii) en una fracción que comprende los hidrocarburos aromáticos no reaccionados, en una fracción que comprende los compuestos polialquilaromáticos no reaccionados y en una fracción que comprende los monoalquilaromáticos generados; iv) mezcla de los compuestos polialquilaromáticos obtenidos en la etapa iii) con polialquilaromáticos frescos; v) recirculación de la mezcla obtenida en la etapa iv) a la etapa i); vi) mezcla de los hidrocarburos aromáticos obtenidos en la etapa iii) con hidrocarburos aromáticos frescos; y vii) recirculación de la mezcla obtenida en la etapa vi) a la etapa i)
2. Procedimiento para obtener monoalquilbencenos mediante transalquüación catalítica de compuestos polialquilaromáticos según la reivindicación 1, donde los hidrocarburos polialquilaromáticos son hidrocarburos dialquilaromáticos
3. Procedimiento para obtener monoalquilbencenos mediante transalquüación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1-2, los hidrocarburos polialquilaromáticos son hidrocarburos dialquilbencénicos.
4. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1-3, donde el hidrocarburo aromático es benceno.
5. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1-4, donde las cadenas alquílicas contenidas en los hidrocarburos polialquilaromáticos contienen entre 5-20 átomos de carbono.
6. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 5, donde el hidrocarburo aromático y el hidrocarburo polialquilaromático se encuentran en una razón molar comprendida entre 1:1 y 100:1
7. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 7, donde el catalizador de la etapa ii) está dispuesto en el reactor en una disposición seleccionada del grupo consistente en: un lecho fluidizado, en un reactor de slurry o en al menos un lecho fijo catalítico.
8. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 7, donde la reacción de transalquilación de la etapa ii) se lleva a cabo en una configuración de reactores que comprende al menos una de las configuraciones de reactores seleccionadas del grupo consistente en: un reactor de lecho fijo independiente, al menos dos reactores de lecho fijo en paralelo, al menos dos reactores de lecho fijo en serie y combinaciones de los mismos.
9. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 8, donde la etapa iii) de separación se realiza mediante destilación y/o descomposición selectiva de subproductos y/o adsorción selectiva.
10. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 9, donde el catalizador presente en la etapa ii) es de tipo esmectita con acidez modificada.
11. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 10, donde el catalizador de la etapa ii) comprende: a) una razón silicio: aluminio total de entre 2,0:1,0-10,0:1,0; b) entre 0,5-4% en peso de magnesio; c) entre 0,2-3% en peso de hierro; d) entre 0, 1 -2% en peso de calcio : e) entre 0,1-2% en peso de azufre; f) entre 0,01-0,5% en peso de flúor; y g) entre 0,0001-0,005% en peso de sodio.
12. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 11, donde el catalizador comprende: a) un patrón de difracción de rayos x en polvo caracterizado porque el pico de difracción más intenso aparece en el ángulo 2 theta correspondiente a 5,74° y el resto de picos principales aparecen en ángulos de difracción 2 theta correspondientes a 19,77°-26,330-54,i r-61,850-68,l l° y 76,33°; b) área específica total (BET) de entre 200 a 800 m2/g; c) volumen de poro total de entre 0,1 a 1 ml/g; y d) distribución de macroporos con diámetro de entre 20 a 2000 angstrom.
13. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 12, donde la temperatura óptima de reacción está comprendida entre 150-2500C.
14. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 13, donde la acidez del catalizador de la etapa ii) tiene una concentración total de centros ácidos de 100 a 900 micromoles por gramo.
15. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 14, donde la presión óptima de reacción está comprendida entre 10-50 kgf/cm2.
16. Procedimiento para obtener monoalquilbencenos mediante transalquilación catalítica de compuestos polialquilaromáticos según cualquiera de las reivindicaciones 1 a 15, donde la velocidad espacial horaria del líquido (LHSV) óptima está comprendida entre 0,5-5 h"1.
PCT/ES2006/000218 2006-05-08 2006-05-08 Transalquilación catalítica de dialquilbencenos WO2007128842A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2651560A CA2651560C (en) 2006-05-08 2006-05-08 Catalytic transalkylation of dialkyl benzenes
US12/299,871 US8148592B2 (en) 2006-05-08 2006-05-08 Catalytic transalkylation of dialkyl benzenes
PCT/ES2006/000218 WO2007128842A1 (es) 2006-05-08 2006-05-08 Transalquilación catalítica de dialquilbencenos
EP06743466A EP2022773A4 (en) 2006-05-08 2006-05-08 CATALYTIC TRANSALCYLATION OF DIALKYL BENZENES
CN2006800545242A CN101448770B (zh) 2006-05-08 2006-05-08 精制烷基芳香烃化合物的方法
BRPI0621702-8A BRPI0621702B1 (pt) 2006-05-08 2006-05-08 Método para obter compostos de monoalquil benzeno com uma cadeia alquílica tendo um tamanho de c10 a c20 por meio da transalquilação catalítica de compostos de dialquil benzeno, as cadeias alquílicas dos mesmos tendo um tamanho de c10 a c20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/000218 WO2007128842A1 (es) 2006-05-08 2006-05-08 Transalquilación catalítica de dialquilbencenos

Publications (1)

Publication Number Publication Date
WO2007128842A1 true WO2007128842A1 (es) 2007-11-15

Family

ID=38667459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000218 WO2007128842A1 (es) 2006-05-08 2006-05-08 Transalquilación catalítica de dialquilbencenos

Country Status (6)

Country Link
US (1) US8148592B2 (es)
EP (1) EP2022773A4 (es)
CN (1) CN101448770B (es)
BR (1) BRPI0621702B1 (es)
CA (1) CA2651560C (es)
WO (1) WO2007128842A1 (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8350110B2 (en) * 2010-11-02 2013-01-08 Uop Llc Heavy alkylbenzene transalkylation operating cost reduction
US10791924B2 (en) 2014-08-10 2020-10-06 Autonomix Medical, Inc. ANS assessment systems, kits, and methods
TW201623195A (zh) 2014-11-07 2016-07-01 信賴工業有限公司 基於離子液體化合物之轉烷化方法
US10392321B2 (en) 2017-12-27 2019-08-27 Uop Llc Processes for transalkylating aromatic hydrocarbons

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385906A (en) 1965-05-25 1968-05-28 Union Carbide Corp Production of cumene
US3751504A (en) 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst with separate transalkylation
US4016218A (en) 1975-05-29 1977-04-05 Mobil Oil Corporation Alkylation in presence of thermally modified crystalline aluminosilicate catalyst
US4169111A (en) 1978-02-02 1979-09-25 Union Oil Company Of California Manufacture of ethylbenzene
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4547605A (en) 1983-09-28 1985-10-15 Mobil Oil Corporation Catalyst for alkylation of aromatic hydrocarbons
US4599470A (en) * 1982-11-18 1986-07-08 The British Petroleum Company P.L.C. Process for the transalkylation or dealkylation of alkyl aromatic hydrocarbons
EP0308097A1 (en) 1987-09-02 1989-03-22 Mobil Oil Corporation Transalkylation of polyalkylaromatic hydrocarbons
EP0439632A1 (en) 1987-12-17 1991-08-07 CHEVRON U.S.A. Inc. Process for the alkylation of an aromatic hydrocarbon
US5114563A (en) 1982-07-26 1992-05-19 Uop Hydrocarbon conversions using catalysts silicoaluminophosphates
US5157158A (en) 1988-08-03 1992-10-20 Petroquimica Espanola, S.A. Petresa Alkylation of aromatic hydrocarbons
US5196574A (en) 1991-12-23 1993-03-23 Uop Detergent alkylation process using a fluorided silica-alumina
US5276231A (en) 1992-07-27 1994-01-04 Uop Alkylaromatic process with removal of aromatic by-products
EP0687500A1 (en) 1994-06-16 1995-12-20 ENICHEM SYNTHESIS S.p.A. Catalytic composition and process for the alkylation or transalkylation of aromatic compounds
EP0847802A1 (en) 1996-12-12 1998-06-17 ENICHEM S.p.A. Catalytic composition and process for the alkylation and/or transalkylation of aromatic compounds
US5902917A (en) 1997-11-26 1999-05-11 Mobil Oil Corporation Alkylaromatics production
US5959168A (en) * 1996-10-02 1999-09-28 The Dow Chemical Company Zeolite-based ethylabenzene process adaptable to an aluminum chloride-based ethylbenzene plant
US6096935A (en) 1998-07-28 2000-08-01 Uop Llc Production of alkyl aromatics by passing transalkylation effluent to alkylation zone
US6133492A (en) 1996-02-08 2000-10-17 Huntsman Petrochemical Corporation Alkylation of benzene to form linear alkylbenzenes using fluorine-containing mordenites
EP1059277A1 (en) 1999-06-10 2000-12-13 Fina Technology, Inc. Aromatic conversion process
US6232515B1 (en) 1997-07-28 2001-05-15 Uop Llc Production of ethyl aromatics by passing portions of transalkylation effluent to a multi-bed alkylation zone
WO2002062734A1 (en) * 2001-02-07 2002-08-15 Exxonmobil Chemical Patents Inc. Production of alkylaromatic compounds
US6888037B2 (en) * 2001-07-11 2005-05-03 Exxonmobil Chemical Patents Inc. Process for producing cumene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0204568A (pt) 2002-10-01 2004-09-28 Univ Rio De Janeiro Processo catalìtico para transformação de alquilados pesados em linear alquil benzeno e utilização de catalisadores sólidos ácidos

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385906A (en) 1965-05-25 1968-05-28 Union Carbide Corp Production of cumene
US3751504A (en) 1972-05-12 1973-08-07 Mobil Oil Corp Vapor-phase alkylation in presence of crystalline aluminosilicate catalyst with separate transalkylation
US4016218A (en) 1975-05-29 1977-04-05 Mobil Oil Corporation Alkylation in presence of thermally modified crystalline aluminosilicate catalyst
US4169111A (en) 1978-02-02 1979-09-25 Union Oil Company Of California Manufacture of ethylbenzene
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US5114563A (en) 1982-07-26 1992-05-19 Uop Hydrocarbon conversions using catalysts silicoaluminophosphates
US4599470A (en) * 1982-11-18 1986-07-08 The British Petroleum Company P.L.C. Process for the transalkylation or dealkylation of alkyl aromatic hydrocarbons
US4547605A (en) 1983-09-28 1985-10-15 Mobil Oil Corporation Catalyst for alkylation of aromatic hydrocarbons
EP0308097A1 (en) 1987-09-02 1989-03-22 Mobil Oil Corporation Transalkylation of polyalkylaromatic hydrocarbons
EP0439632A1 (en) 1987-12-17 1991-08-07 CHEVRON U.S.A. Inc. Process for the alkylation of an aromatic hydrocarbon
US5157158A (en) 1988-08-03 1992-10-20 Petroquimica Espanola, S.A. Petresa Alkylation of aromatic hydrocarbons
US5196574A (en) 1991-12-23 1993-03-23 Uop Detergent alkylation process using a fluorided silica-alumina
US5276231A (en) 1992-07-27 1994-01-04 Uop Alkylaromatic process with removal of aromatic by-products
EP0687500A1 (en) 1994-06-16 1995-12-20 ENICHEM SYNTHESIS S.p.A. Catalytic composition and process for the alkylation or transalkylation of aromatic compounds
US6133492A (en) 1996-02-08 2000-10-17 Huntsman Petrochemical Corporation Alkylation of benzene to form linear alkylbenzenes using fluorine-containing mordenites
US5959168A (en) * 1996-10-02 1999-09-28 The Dow Chemical Company Zeolite-based ethylabenzene process adaptable to an aluminum chloride-based ethylbenzene plant
EP0847802A1 (en) 1996-12-12 1998-06-17 ENICHEM S.p.A. Catalytic composition and process for the alkylation and/or transalkylation of aromatic compounds
US6232515B1 (en) 1997-07-28 2001-05-15 Uop Llc Production of ethyl aromatics by passing portions of transalkylation effluent to a multi-bed alkylation zone
US5902917A (en) 1997-11-26 1999-05-11 Mobil Oil Corporation Alkylaromatics production
US6096935A (en) 1998-07-28 2000-08-01 Uop Llc Production of alkyl aromatics by passing transalkylation effluent to alkylation zone
EP1059277A1 (en) 1999-06-10 2000-12-13 Fina Technology, Inc. Aromatic conversion process
WO2002062734A1 (en) * 2001-02-07 2002-08-15 Exxonmobil Chemical Patents Inc. Production of alkylaromatic compounds
US6888037B2 (en) * 2001-07-11 2005-05-03 Exxonmobil Chemical Patents Inc. Process for producing cumene

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Handbook of Petroleum Refining Process", 1986, pages: 1 - 23
"Surfactants- in Consumers Products, Theory, Technology, and Application", 1987, SPRINGER VERLAG
A. M. NIELSEN ET AL.: "Biodegradation of co-products of commercial LAS", THE CLER REVIEW, vol. 2, no. 1, 1996, pages 14 - 27
H.PINES: "The Chemistry of Catalytic Hydrocarbon Conversions", 1981, ACADEMIC PRESS
J. L. G. DE ALMEIDA ET AL., JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, vol. 71, no. 7, 1994, pages 675 - 694
JEANNERET, J.: "Handbook of Petroleum Refining Processes", 1997, MCGRAW-HILL, pages: 255
L. CAVALLI ET AL.: "Iso-branching of LAS biodegradation study of two model compounds", TOXICOLOGY & ENVIRONMENTAL CHEMISTRY, vol. 54, 1966, pages 167 - 186
MAVRODINOVA V. ET AL.: "Transalkylation of toluene with cumene over zeolites Y dealuminated in solid-state. Part I. Effect of the alteration of Bronsted acidity", APPLIED CATALYSIS. A, GENERAL, vol. 248, no. 1-2, 2003, pages 181 - 196, XP004443498, DOI: doi:10.1016/S0926-860X(03)00161-3
See also references of EP2022773A4
UEDA Y.: "Aromatic hydrocarbon production process 2.Dealkylation, disproportionation, and transalkylation processes", PETROTECH, vol. 27/3, 2004, pages 244 - 248
W. M. MEIER; D. H. OLSON; C. H. BAERLOCHER: "Atlas of Zeolite Framework Types", 2001, ELSEVIER

Also Published As

Publication number Publication date
CN101448770B (zh) 2012-07-11
CA2651560A1 (en) 2007-11-15
EP2022773A1 (en) 2009-02-11
US8148592B2 (en) 2012-04-03
US20100022814A1 (en) 2010-01-28
BRPI0621702A2 (pt) 2011-12-20
EP2022773A4 (en) 2011-04-27
CN101448770A (zh) 2009-06-03
CA2651560C (en) 2013-07-16
BRPI0621702B1 (pt) 2021-07-27

Similar Documents

Publication Publication Date Title
ES2363106T3 (es) Procesos para producción de alquilbencenos sobre catalizador sólido ácido a relaciones bajas de benceno a olefina y que producen una baja proporción de colas pesadas.
US8034973B2 (en) Process for obtaining highly soluble linear alkylbenzene sulfonates
RU2447052C2 (ru) Способ получения фенилалканов с заданным содержанием 2-фенилов
CA2708018C (en) Process for obtention of highly-lineal, adjustable-isomery monoalkylated aromatic compounds
JP2008544986A (ja) Uzm−8ゼオライトを用いたアルキル化法
WO2007128842A1 (es) Transalquilación catalítica de dialquilbencenos
ES2601981T3 (es) Procedimiento para la preparación de compuestos de alquilarilo y sus sulfonatos
ITMI980735A1 (it) Processo per la preparazione di composti aromatici monoalchilati
ES2216686B1 (es) Procedimiento de produccion de fenilalcanos utilizando un catalizador que contiene al menos un heteropoliacido.
ES2363029T3 (es) Procedimiento para la purificación de compuestos alquilaromáticos.
RU2396254C2 (ru) Способ получения высокорастворимых линейных алкилбензолсульфонатов
CA2819801C (en) Method to adjust 2-phenyl content of an alkylation process for the production of linear alkyl benzene

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680054524.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06743466

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006743466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2651560

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 6053/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008143453

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12299871

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0621702

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081107