Nothing Special   »   [go: up one dir, main page]

WO2007125676A1 - Magnetic induction drug delivery system - Google Patents

Magnetic induction drug delivery system Download PDF

Info

Publication number
WO2007125676A1
WO2007125676A1 PCT/JP2007/053479 JP2007053479W WO2007125676A1 WO 2007125676 A1 WO2007125676 A1 WO 2007125676A1 JP 2007053479 W JP2007053479 W JP 2007053479W WO 2007125676 A1 WO2007125676 A1 WO 2007125676A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetic
drug delivery
delivery system
branch position
Prior art date
Application number
PCT/JP2007/053479
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Sasaki
Norihide Saho
Hisashi Isogami
Hiroyuki Tanaka
Noriyo Nishijima
Hiroshi Iseki
Yoshihiro Muragaki
Shigehiro Nishijima
Shinichi Takeda
Original Assignee
Hitachi Medical Corporation
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation, Osaka University filed Critical Hitachi Medical Corporation
Priority to JP2008513096A priority Critical patent/JP5062764B2/en
Publication of WO2007125676A1 publication Critical patent/WO2007125676A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • A61B2034/733Arrangement of the coils or magnets arranged only on one side of the patient, e.g. under a table
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to a magnetic induction type drug delivery technique for guiding a therapeutic agent injected into a patient's body to a desired region such as an affected area using magnetism.
  • a technique that does not require as much skill as a catheter and is commonly used to administer a therapeutic agent to an affected area is a method of injecting the therapeutic agent into a blood vessel of a patient.
  • this method since the drug is administered intravenously, it is difficult to concentrate the drug on the affected area.
  • a method of guiding a drug to an affected area using magnetic force has been proposed.
  • Non-Patent Document 1 when a magnet is placed outside a tube having a branching portion and a drug containing ferromagnetic particles is caused to flow into the tube, many of the drugs containing ferromagnetic particles are intended by the magnet.
  • Non-Patent Document 1 THA12P009 "Three-Dimensional Motion Control System of Ferromag netic Particle for Magnetical ly Targeted Drug Delivery System F. Misnima et al. 1 9th International Conference on Magnet Technology, September, 2005, pl47 Disclosure of Invention
  • Non-Patent Document 1 shows the possibility of flowing a larger amount in the intended direction by a magnet in a blood vessel that branches a therapeutic agent containing magnetic particles.
  • problems to be solved for clinical application for example, a method for identifying a blood vessel bifurcation in a patient's body and a method for positioning a magnet with respect to the patient.
  • the present invention has been made in view of the above technical background, and an object of the present invention is a clinical method capable of efficiently guiding a drug administered into a patient's body to a desired region such as an affected area with magnetic force. It is an object of the present invention to provide a magnetic induction type drug delivery system suitable for the above.
  • the present invention has been made to solve such a problem, and is a magnetic induction type drag equipped with a magnetic field generation device that guides a magnetic drug administered into a blood vessel of a subject in a desired direction.
  • an intravascular branch position extracting means for extracting a branch position (intravascular branch position) in the blood vessel, and the intravascular branch position extracting means.
  • Intravascular vessel position information acquisition means for obtaining position information of the intravascular branch position in real space coordinates; and position information in real space coordinates of the intravascular branch position information obtained by the intravascular branch position information acquisition means.
  • a magnetic field generation device position setting means for setting the position of the magnetic field generation device in the vicinity of the intravascular branch position.
  • a nuclear magnetic resonance imaging apparatus (MRI apparatus), an X-ray CT apparatus, an X-ray imaging apparatus, an ultrasonic apparatus, or the like may be used as a medical image diagnostic apparatus that acquires a three-dimensional blood flow image.
  • the magnetic field generator can use a superconducting magnet or a normal conducting magnet.
  • a superconducting magnet is used as the magnet, and a magnet that can form a long and strong magnetic field outside the magnet, such as a magnet using a superconducting bulk material, is used. It is desirable.
  • FIG. 1 is a diagram for explaining the configuration of the magnetic induction type drug delivery system 1000 of the present embodiment.
  • a magnetic induction type drug delivery system 1000 includes an image analysis device 1100, a magnetic field generation device 1200, and a control device 220.
  • the image analysis device 1100 calculates the real space coordinates of the branch position of the arterial blood vessel connecting the heart and the affected area using the three-dimensional blood flow image of the patient imaged by the image diagnostic device 100.
  • a blood vessel branch position extraction processing unit 1110 that extracts an arterial blood vessel connecting a heart and an affected part from a 3D blood flow image of a patient, identifies a branch position of the extracted arterial blood vessel, and generates a blood vessel branch position information;
  • a coordinate conversion processing unit 1120 that converts the branch position information of the blood vessel generated by the intravascular branch position extraction processing unit 1110 into real space coordinates based on the position of a reference position marker provided on a part of the patient's body; Prepare.
  • the diagnostic imaging apparatus 100 an apparatus capable of three-dimensional blood flow imaging such as a nuclear magnetic resonance imaging apparatus (MRI apparatus), an X-ray CT apparatus, an X-ray imaging apparatus, and an ultrasonic apparatus is used. Can do.
  • MRI apparatus nuclear magnetic resonance imaging apparatus
  • X-ray CT apparatus an X-ray CT apparatus
  • ultrasonic apparatus an apparatus capable of three-dimensional blood flow imaging
  • the image analysis apparatus 1100 is assumed to be included in the control unit of the MRI apparatus.
  • the image analysis apparatus 1100 may be configured to be independent of the image diagnostic apparatus and connected to the image diagnostic apparatus 100. Also, it can be integrated with the control device 220! /.
  • the magnetic field generation device 1200 includes a magnet and applies a magnetic field to the blood vessel bifurcation to guide the magnetic drug administered into the blood vessel of the patient toward the affected area.
  • a superconducting magnet or a normal conducting magnet can be used as the magnet.
  • a magnet that is a superconducting magnet and can form a strong and long magnetic field outside the magnet such as a magnet using a superconducting bulk material, is used. It is desirable. Details of the magnet will be described later.
  • the magnetic field generator 1200 includes a magnet holding mechanism 200 that supports a magnet and can freely change the position and orientation of the magnet.
  • the control device 220 guides the magnetic drug administered into the blood vessel of the patient toward the affected area. Therefore, the position and orientation in which the magnet included in the magnetic field generator 1200 should be arranged are determined using the branching position of the blood vessel calculated by the image analysis apparatus 1100, and the magnet holding mechanism 200 is arranged so that the magnet is arranged in the determined position and orientation. Control. Details of the control device 220 will be described later.
  • FIG. 2 is a perspective view of the MRI apparatus 100.
  • the MRI apparatus 100 generally images a body tissue of a patient 2 as a subject using a nuclear magnetic resonance phenomenon, and is a space of a predetermined size in a space that accommodates the patient 2.
  • a gantry 110 including a radiation system and three sets of gradient magnetic field coils for generating a gradient magnetic field that gives a magnetic field gradient in three directions orthogonal to each other in the measurement space, and a patient 2 are mounted. And a bed 120 that is transported to and positioned in the measurement space. The operations of the irradiation coil, the gradient coil, and the bed 120 are controlled by a control unit 130 having a central processing unit (CPU).
  • Reference numeral 71 is a marker for specifying the position on the patient 2. Details of the marker 71 will be described later.
  • the control unit 130 includes an operation console 140 for an operator to input imaging parameters and operation commands, a display 150 as a display device for outputting processing results by the CPU, a mouse trackball and a joystick.
  • the position information input operation device 160 is connected.
  • the control unit 130 includes a receiving system including an amplifying unit, an AD converting unit, and a quadrature detecting unit, and a Fourier transform for imaging an MR signal acquired by MR measurement.
  • An image reconstruction unit comprising a plurality of units, and a storage unit for storing the various pulse sequences and the acquired MR signals and the reconstructed MR images.
  • the MRI apparatus 100 is provided with a gradient magnetic field power source for supplying electric power to the gradient coil, as a separate body from the gantry 110, the bed 120, and the control unit 130.
  • various pulse sequences including the RF pulse, the generation and application timing of the gradient magnetic field, and combinations thereof are stored as software.
  • the familiar pulse sequence is for 2D imaging, which is used to image 2D sections.
  • the MRI apparatus 100 is a pulse sequence for blood flow imaging that images the blood flow flowing through the body of the patient 2, for example, a phase sensitive method (PS method) pulse sequence, a phase contrast method (Phase Contrast method: PC method).
  • PS method phase sensitive method
  • Phase Contrast method Phase Contrast method: PC method.
  • Pulse sequence and other pulse sequences for landscape MRA landscape MR angiography: Contrast-enhanced MRA
  • multi-station MRA pulse sequence etc.
  • the arrangement of the magnetic induction type drug delivery system 1000 and the diagnostic imaging apparatus 100 is not particularly limited. However, it is desirable to have a configuration in which both of them are arranged adjacent to each other and the subject patient 2 can move smoothly between them.
  • FIG. 3 is a configuration diagram of the superconducting magnet 7 provided in the magnetic field generator 1200 of the present embodiment.
  • Superconducting magnet 7 is YBCO (oxide superconductor; YBa Cu
  • the coil wire 20a of the high-temperature superconducting conductor whose main component is O) is made of copper with a diameter of about 25 mm.
  • the bobbin 20b is composed of a solenoid magnet 21 having a large number of coils attached to the outside of the bobbin 20b.
  • the coil wire 20a composing the superconducting magnet 7 is fixed between the coil wires 20a by impregnation of the grease and is fixed to the bobbin 20b with an adhesive or the like.
  • the bobbin 20b is coupled to the heat transfer flange 22 made of copper, for example, with a bolt (not shown) or the like through a soft sheet having a high thermal conductivity such as indium, and is thermally integrated.
  • the heat transfer flange 22 is hermetically sealed with a material having a low heat conductivity, for example, a stainless steel cylindrical body 23 by welding, silver brazing, or the like, thereby realizing vacuum airtightness.
  • the other end of the heat transfer flange 23 is hermetically joined to the flange 24 by welding or the like, and the flange 24 is hermetically fixed with a bolt (not shown) through the flange 25 and 0 ring.
  • a refrigerator fixing flange 26 is hermetically integrated with the flange 25 by metallurgical bonding, and a gas flow path switching mechanism (not shown) between the refrigerator fixing flange 26 and the high-pressure gas and the low-pressure gas via a bellows 27 having a vacuum-tightness.
  • a Gifuord 'McMahon helium refrigerator 28 with a built-in ring is hermetically fixed with a 0 ring and a bolt (not shown).
  • the helium refrigerator 28 includes a helium gas compressor 29, a high pressure helium gas pipe 30, a low pressure helium gas Connected via pipe 31.
  • Connected to the helium refrigerator 28 are a cylinder 32 in which helium gas is adiabatically compressed and thermally expanded, and a cold stage 33 in a cold generating part.
  • a vacuum vessel cover 34 is disposed on the outer periphery of the solenoid magnet 21 for vacuum insulation.
  • the vacuum vessel cover 34 is hermetically fixed to the flanges 24 and 25 by a flange 35 via bolts (not shown).
  • a magnet position detector (position sensor) 61 for detecting the position of the superconducting magnet 7 and the direction of the magnetic flux generated by the solenoid magnet 21 is attached to the outer peripheral surface of the vacuum vessel cover 34.
  • this position sensor 61 a known magnetic sensor or optical sensor capable of detecting the center position and the three-axis directions is used.
  • a touch sensor 64 for detecting that the vacuum container cover 34 is in contact with a human body or a bed is attached to the outer surface of the vacuum container cover 34 facing the solenoid magnet 21.
  • the touch sensor 64 has a structure in which a conductive rubber is sandwiched between copper plates and when a predetermined pressure is applied to the conductive rubber, the copper plates sandwiching the rubber are electrically connected to generate a signal, or a light emitting diode. It is possible to use a structure in which photodiodes are arranged so as to face each other, and when an object is positioned between the light emitting diode and the phototransistor, light emitted from the light emitting diode is blocked and a signal is emitted.
  • the space 38 is evacuated, whereby the helium refrigerator 28 is pressed against the heat transfer flange 22 by atmospheric pressure.
  • a heat transfer medium such as an indium sheet or grease is provided, and the heat transfer flange 22 is cooled well by the cold of the cold stage 33 by the pressing force of the atmospheric pressure.
  • the superconducting magnet 21 is cooled to a very low temperature.
  • the magnet is driven.
  • a magnetic field of 5 Tesla is continuously applied to the solenoid center of the solenoid magnet 21. Can be generated.
  • the magnetic field distribution around the superconducting magnet 7 of the present embodiment is as shown in FIG. 7, and the axial direction of the magnet having the strongest magnetic field is near the center of the tip of the container housing the superconducting magnet 7. And the strength of the magnetic field decreases with increasing distance from the radial direction. That is, a magnetic gradient is generated in the axial direction and the radial direction of the superconducting magnet 7.
  • the flange 24 and the flange 35 can be integrated with the bolt 25 (not shown) independently of the flange 25.
  • the structural members attached to both the flanges 24 and 35 can be integrally formed and can be attached to and detached from the flange 25. That is, according to the magnet structure of the present embodiment, the structure on the superconducting magnet 7 side and the structure on the helium refrigerator 29 side for cooling can be separated. Therefore, even if the superconducting magnets 7 have different specifications, they can be used by being attached to the same helium refrigerator 29 as long as they are superconducting magnets that can be fixed to the same flange 24 (heat transfer part).
  • a superconducting magnet 7 is provided for each blood vessel branch portion in order to perform magnetic induction of the magnetic drug in each blood vessel branch portion.
  • Fig. 1 shows an example in which there are three branches of blood vessels up to the affected area. That is, the magnetic field generator 1200 of this embodiment includes three sets of the superconducting magnets 7 in order to perform magnetic induction of the magnetic drug at the three blood vessel branch portions.
  • Each superconducting magnet 7 includes a rail 10 laid on the floor of a treatment room on which a treatment bed 210 is placed, a drive unit storage box 11 movable on the rail 10 by drive wheels 12, and a drive It is supported by a magnet holding mechanism 200 comprising a column 80 standing upright on the upper surface of the section storage box 11 and a free arm 90 extending from the upper end of the column 80.
  • a magnet holding mechanism 200 comprising a column 80 standing upright on the upper surface of the section storage box 11 and a free arm 90 extending from the upper end of the column 80.
  • the drive unit storage button 11 stores a drive unit (not shown) including an electromagnetic brake motor for driving the drive wheels 12, a drive circuit, and a gear mechanism in the internal space.
  • the drive unit storage box 11 drives the motor by applying a noise voltage to the motor, and measures the rotation speed or rotation angle with an encoder, so that the moving distance of the drive unit storage box 11 is increased. You can control! /
  • the support column 80 is a hollow pillar fixed to the upper surface of the drive unit storage box 11 by screwing or welding or the like, and has a length so that the tip thereof is positioned at a predetermined height on the floor surface force. Is set.
  • an arm drive unit storage box 13 storing a free arm drive control mechanism (not shown) that controls the drive of the free arm 90 is disposed.
  • the self-arm 90 includes a first arm 14, a first rotary joint 15, a second arm 16, a second rotary joint 17, a third arm 18, and a third arm. And a superconducting magnet container holder 19 provided at the tip of 18.
  • the support column 80 may have a structure that can be expanded and contracted, and the height can be controlled by a drive control mechanism.
  • the expandable structure for example, a double cylindrical structure having a mechanism in which the inner cylinder moves up and down with respect to the outer cylinder by hydraulic pressure or the like can be adopted.
  • the support column 80 may be configured to be manually movable. In this case, the control device 220 described later detects the movement amount from the rotation amount of the wheel of the drive unit storage box 11 to which the support column 80 is screwed.
  • FIG. 1 Helium refrigerator 29, vacuum pump 39, excitation power supply 44 and magnet drive control shown in FIG.
  • the circuit (not shown) is arranged in the drive unit storage box 11, and the high-pressure helium gas pipe 30, the low-pressure helium gas pipe 31, and the power lead wire 45 pass through the arm drive unit storage box 13 in the column 80 and at the top of the column, They are bundled and stored in a protective tube 46 made of, for example, a bellows-like polymer material having flexibility, and connected to the superconducting magnet container 7.
  • the protection tube 46 is held by a support ring 47 installed on each arm.
  • a magnet that supports the superconducting magnet 7 located in the patient's lower limb direction among the total three sets of superconducting magnets 7 provided for each extracted or identified blood vessel bifurcation, a magnet that supports the superconducting magnet 7 located in the patient's lower limb direction.
  • the height of the support 80 of the holding mechanism 200 is set lower than the others, but the height of each support 80 may be set as necessary, or the height of the support 80 is changed.
  • the arm drive unit storage box 13 may be provided so as to be movable in the vertical direction on the side of the column, so that the movable range of the own arm 90 can be expanded.
  • the control device 220 receives the position information of the blood vessel bifurcation in the patient obtained by the image analysis device 1100, determines the arrangement position and direction of the superconducting magnet 7 attached to the universal arm 90, and determines the determined position.
  • the position of the drive unit storage box 11 (the column 80) and the movement of the universal arm 90 are controlled so as to be arranged in the direction.
  • a cable is connected from the control device 220 to the drive unit storage box 11 to supply power and control signals from the control unit 220 to the drive unit storage box 11 and the arm drive unit storage box 13.
  • Supply of power and control signals to the arm drive unit storage box 13 is relayed by the drive unit storage box 11 and is performed through a cable extending to the arm drive unit storage box 13 along the inner wall or outer wall of the support column 80. Is called.
  • signal transmission by radio signals between the control device 220, the drive unit storage box 11 and the arm drive unit storage box 13 is performed for the supply of control signals regardless of the power supply.
  • a mechanism such as a signal transmission mechanism using electromagnetic waves or infrared rays can be used.
  • the control device 220 includes a memory and a CPU, and each control is realized by the CPU executing a program stored in the memory in advance.
  • FIG. 11 is a flow of magnetic induction drug delivery processing realized by the operation of the magnetic induction type drug delivery system 1000 of the present embodiment.
  • This implementation In the form, it is assumed that the diseased part of the patient has already been identified by the image diagnosis and pathological diagnosis performed in advance. If it is not specified, the patient is imaged in advance using a diagnostic imaging device such as an MRI device, X-ray CT device, X-ray imaging device, ultrasound diagnostic device, or PET (Positron Emission Tomography) device. In addition, pathological diagnosis is also performed to identify the diseased part.
  • a diagnostic imaging device such as an MRI device, X-ray CT device, X-ray imaging device, ultrasound diagnostic device, or PET (Positron Emission Tomography) device.
  • pathological diagnosis is also performed to identify the diseased part.
  • a 3D blood flow image of the region from the heart to the affected part is acquired (3D blood flow image acquisition process: step 2000).
  • This processing is performed by the diagnostic imaging apparatus 1100.
  • the MRI apparatus 100 is used. Since the magnetic drug injected intravenously flows through the route of vein ⁇ heart ⁇ lung ⁇ heart ⁇ artery ⁇ blood vessel bifurcation ⁇ affected area, the operator can determine the position of the blood vessel bifurcation between the heart and the affected area. This is because it is required to grasp it as spatial data.
  • the operator places the patient 2 on the bed 120 of the MRI apparatus 100, and allows the patient 2 to statically image the region from the heart to the diseased part as an ROI (Region of Interest). Determine the position of the magnetic field generating magnet in the measurement space. Then select the 3D blood flow imaging pulse sequence and prepare for MR imaging. 3D blood flow imaging only needs to be able to depict blood vessels up to the heart force disease area and blood vessels branching between them, so an MR contrast agent containing gadolinium can be applied to the patient prior to imaging. You can inject it into your mouth and don't pour it.
  • ROI Region of Interest
  • the maximum FOV (FieldofView) in one imaging of the MRI apparatus 100 is limited by the size of the uniform magnetic field of the static magnetic field generating magnet, the ROI of 3D blood flow imaging exceeds the maximum FOV of the MRI apparatus 100 In this case, it is necessary to divide the imaging into multiple times. In such a case, imaging techniques such as the multi-station MRA method and MOTSA (Multi-Overlapping thin Slab Acquisition) method can be used.
  • the imaging parameters (FOV, slab thickness, image matrix size, T1 or T2 etc.) are set, and the superconducting magnet 7 described later (in real space) is controlled.
  • the marker 71 is composed of a thin tubular body 72 enclosing a medium suitably sensitive to the nuclear magnetic resonance phenomenon, for example, water, and a position information transmitting device 73 coupled to the tubular body 72.
  • the position information transmitter 73 for example, a magnetic transmitter of a magnetic sensor or an infrared transmitter of an optical sensor can be used. Further, the position information transmission device 73 may be configured to be detachable from the marker 71.
  • the tubular body 72 in which water is sealed is within the FOV of MR imaging, and when the patient is viewed in plan (synonymous with imaging in the supine position) The affected part and the tubular body 72 are placed in such a position that they do not overlap with each other so that they are reflected in the three-dimensional blood flow image.
  • the operator inputs an imaging start command from the operation console 140.
  • the control unit 130 controls the irradiation system, the gradient magnetic field power source, and the reception system, and performs irradiation of the RF pulse, application of the gradient magnetic field, and reception of the MR signal.
  • Imaging performed in advance according to the pulse sequence 3D MR signal measurement for 3D blood flow imaging (3D blood flow measurement), that is, MR signal, phase encoding, frequency encoding, scanning Performs 3D measurement with rice encoding.
  • MR signals obtained by 3D blood flow measurement are stored for each measurement in the memory area corresponding to 3D k-space.
  • the control unit 130 performs 3D Fourier transform on the MR signal stored in the memory space, and performs image reconstruction.
  • a three-dimensional blood flow image is obtained as described above.
  • the three encoding directions are the body axis direction of the patient placed in the real space, the two directions orthogonal to the body axis, for example, the direction parallel to the bed and the direction orthogonal thereto.
  • the three-dimensional position information corresponding to the real space is obtained by making them correspond to the three directions.
  • the distance in the 3D image can be easily converted to the distance in the real space using the predetermined length of the real space for one pixel (pixel) in the 3D blood flow image.
  • the image analysis apparatus 1100 identifies the vascular system that is connected to the affected area from the heart on the acquired three-dimensional blood flow image, and extracts the vascular bifurcation on the identified vascular system (vascular divergence). Part extraction processing: step 2010).
  • the 3D blood flow image is sent to the image analysis apparatus 1100 built in the control unit 130 of the MRI apparatus 100 and displayed on the screen of the display 150.
  • the 3D blood flow image is displayed on the display screen of Display 150.
  • the control device 130 gives the three-dimensional blood flow image a three-dimensional coordinate system that is orthogonal to the real space coordinate system where the magnetic induction type drug delivery system 1000 is placed.
  • FIG. 4 shows a 3D blood flow image of patient 2 obtained by the MRI apparatus 100. The procedure of the blood vessel bifurcation extraction process will be described with reference to FIG.
  • the image analysis device 1100 When the 3D blood flow image is sent to the image analysis device 1100, the image analysis device 1100 first identifies and extracts a blood vessel system connecting the heart 300 and the affected area 310 on the 3D blood flow image.
  • the image analysis apparatus 1100 identifies and extracts the vascular system that connects the heart 300 and the affected part 310, and extracts a known blood flow region between two points, the point A near the heart 300 and the point B near the affected part 310. For example, it is performed by the region expansion method (the region growing method).
  • the points A and B are designated by the operator visually observing the three-dimensional blood flow image displayed on the display 150 and manually operating the position information input operator 160. For example, specify with the cursor or enter the coordinates of point A and B.
  • the image analysis apparatus 1100 extracts and specifies the branch (blood vessel branch) in the extracted blood vessel system. .
  • the blood vessel branch portion specified here becomes a target of the superconducting magnet 7.
  • One is a method in which an operator extracts and identifies a blood vessel bifurcation while observing a three-dimensional blood flow image displayed on the display 150.
  • the blood vessel bifurcation is extracted by the operator visually observing the three-dimensional blood flow image, and using the position information input device 160, the blood vessel bifurcations Nl and N2 are moved with the cursor as shown in FIG. Or, specify by inputting coordinate points Nl and N2.
  • the image analysis apparatus 1100 receives the designation of the blood vessel bifurcation from the operator and stores the coordinates. Note that it may be difficult to view even if the 3D blood flow image data is displayed at normal magnification. In that case, you may enlarge the small area including the blood vessel bifurcation to facilitate the above input operation.
  • the operator specifies the marker by visual observation on the three-dimensional blood flow image displayed on the screen of the display 150, and uses the position information input device 160 to locate the marker position with the cursor. Or, specify by inputting the coordinate point X that specifies the marker position.
  • the image analysis device 1100 receives the marker position specified by the operator and coordinates Remember.
  • the extraction and specification of the blood vessel bifurcation may be performed by the image analysis apparatus 1100 itself. This method will be described with reference to FIG. First, as described above, the blood vessel (blood flow) system connecting the heart 300 and the affected part 310 is specified and extracted by the points A and B as described above. The center line extraction processing of all blood vessels including the branch blood vessels of the extracted blood vessels is executed. Then, from all the points (this is a branch point) where the arterial line connecting the heart 300 and the affected part 310 intersects the branch line, for example, branch points Ml, M2, and M3 shown in FIG. Only the branch points Ml and M2 located on the blood vessel connecting 300 and the affected part 310 are selectively left as a blood vessel branch part, and the remaining branch points are excluded. Through the above processing, the necessary blood vessel bifurcation can be extracted and specified in the present embodiment. A technique for extracting a blood vessel bifurcation by centerline processing is disclosed in Patent Document 3.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2006-42969
  • the image analysis device 1100 When the blood vessel branch is extracted and specified by the image analysis device 1100, the image analysis device 1100 performs the above-described processing when receiving an instruction for the operator force to also extract and specify the blood vessel branch, and this embodiment Extract and identify necessary blood vessel bifurcations and store them. Also in this case, the image analysis apparatus 1100 accepts and stores the input of the marker position as the reference position.
  • the image analysis apparatus 1100 may be configured to detect the marker position.
  • a marker is composed of a member that shows a specific signal intensity on the screen (having a characteristic shape such as a triangle or quadrangle filled with a substance such as water or magnetic substance), and its position is automatically processed by image processing. recognize.
  • the analysis device 1100 calculates the coordinates of the blood vessel bifurcation Nl, N2, ⁇ or Ml, M2, ⁇ on the 3D blood flow image space with reference to the coordinate X of the marker in the real space (Real space coordinate transformation processing: Step 2020).
  • the blood vessel bifurcation located at, that is, the target of the superconducting magnet 7 can be extracted and identified on the 3D blood flow image.
  • the obtained coordinates in the real space of each blood vessel branch are stored in association with information for specifying the blood vessel branch.
  • the reference coordinate may be configured to directly input a real space coordinate at a position corresponding to the position of the marker 71.
  • the image analysis apparatus 1100 calculates the real space coordinates of each blood vessel bifurcation using the coordinates received by the operator.
  • the marker 71 tubular body 72
  • the marker 71 does not have to be provided when photographing a three-dimensional blood flow image.
  • the image analysis device 1100 transmits the extracted information of each blood vessel branching unit to the control unit 220.
  • the control unit 220 determines the direction (arrangement direction) of the superconducting magnet 7 for each blood vessel bifurcation using the received information, that is, the direction of the center of the magnetic flux by the superconducting magnet 7 (arrangement direction determination process: step 2030). ).
  • the control unit 220 determines the direction (arrangement direction) of the superconducting magnet 7 for each blood vessel bifurcation using the received information, that is, the direction of the center of the magnetic flux by the superconducting magnet 7 (arrangement direction determination process: step 2030). ).
  • information on the traveling direction of the blood vessel at each blood vessel branching portion is required. This is because the superconducting magnet 7 attracts the magnetic drug in the blood vessel branching direction toward the affected blood vessel.
  • processing performed by the control unit 220 to determine the arrangement direction of the superconducting magnet 7 will be described with reference to FIG.
  • the control unit 220 determines the center point of the blood vessel located at a predetermined distance from the blood vessel branching portion Nn upstream and downstream of the blood vessel branching portion Nn. They are defined as Un and Dn, respectively. Then, an isosceles triangular plane including three points (Un, Nn, Dn) is specified.
  • a straight line that bisects the angle (vertical angle) between the side (Un, Nn) and the side (Dn, Nn) forming the isosceles triangular plane is obtained on the isosceles triangular plane, and the side (Un, Dn Let Cn be the point that intersects).
  • the direction of the straight line (Nn, Cn) is determined as the arrangement direction of the superconducting magnet 7, that is, the center direction of the magnetic flux by the superconducting magnet 7 ⁇ .
  • the superconducting magnet 7 has its magnetic flux center aligned with the straight line (Nn, Cn) and approaches the body surface of the patient 2 on the extension of the straight line (Nn, Cn) on the point Cn side on the 3D blood flow image. (Fn: Arrangement position) will be arranged. Note that Un and Dn may be configured to be input by the operator. Alternatively, the operator may designate the arrangement direction of the superconducting magnet 7 on the screen.
  • the control unit 220 receives an operator input and determines the arrangement position Fn and the arrangement direction of the superconducting magnet 7.
  • the force on which the superconducting magnet 7 is desirably arranged so that the straight line (Nn, Cn) coincides with the magnetic flux center of the superconducting magnet 7 is formed by the three-dimensional unevenness on the human body surface. Therefore, if the superconducting magnet 7 is arranged on the straight line (Nn, Cn), the distance between the superconducting magnet 7 and the blood vessel branch may be too far. In such a case, considering that the direction of the superconducting magnet 7 is directed to the blood vessel bifurcation, the magnetic flux center may be slightly shifted by a straight (Nn, Cn) force.
  • the control unit 220 executes the above processing for all the blood vessel branch portions on the blood vessel connecting from the heart 300 to the affected part 310, and determines the arrangement direction of the superconducting magnet 7 in each blood vessel branch portion.
  • the control unit 220 stores the determined arrangement direction in association with information and coordinates that specify each blood vessel branch portion Nn.
  • each superconducting magnet 7 is determined by the distance between the initial position of each superconducting magnet 7 and the position Fn, and is determined by the operator's instruction. May be.
  • the one where the initial position of the superconducting magnet 7 in the real space is closest is assigned to each blood vessel bifurcation or each arrangement position Fn.
  • the control device 220 arranges each superconducting magnet 7 in the determined position and direction. (Positioning process: Step 2040). Hereinafter, the positioning process will be described.
  • Patient 2 is placed on the bed 210 of the magnetically guided drug delivery system 1000 shown in FIG. 1 in the same position as when the 3D blood flow image was acquired, and the magnetically guided drug delivery system 1000 is powered on.
  • the magnetic induction type drug delivery system 1000 The control device 220 operates, and data relating to the target, arrangement position, and arrangement direction of the superconducting magnet 7 is acquired from the image analysis apparatus 1100.
  • the data regarding the target of the superconducting magnet 7 to be captured specifies the arrangement position Fn of the superconducting magnet 7 in the real space and the direction (straight line (Nn, Cn)) in which the magnetic flux center of the superconducting magnet 7 is directed.
  • Each vector is data based on the marker 72.
  • the control device 220 generates control data for moving each superconducting magnet 7 from the current position and orientation to the arrangement position and arrangement direction obtained by the arrangement direction determination process. Therefore, first, the control device 220 determines the current position (initial position) of the superconducting magnet 7 in the real space coordinate system with the marker 72 provided on the body of the patient 2 as the reference position (coordinate origin) and the superconducting magnet 7. Direction (initial direction) is detected. The detection is performed by the position sensor 61 attached to the container of the superconducting magnet 7 shown in FIG. 3 detecting its own position and direction with respect to the position sensor (for reference position) 73 provided on the marker 72.
  • the control device 2 20 calculates the difference between the output (initial position and initial direction) of the position sensor 61 of the superconducting magnet 7 and the data (coordinates of the blood vessel bifurcation and the arrangement direction of the superconducting magnet 7) acquired from the image analysis device 1100. Control data is generated.
  • the control device 220 controls the superconducting magnet 7 so that the position and orientation of the superconducting magnet 7 are set to the placement position and orientation determined by the image analysis device 1100 according to the generated control data. Specifically, by controlling the universal arm drive control mechanism, the position of the support 80 and the position and direction of the superconducting magnet 7 attached to the universal arm 90 are controlled, and the superconducting magnet 7 is brought into the arrangement position. The direction is close and the direction is the arrangement direction.
  • the control detects the current position (initial position) and direction (initial direction) of the superconducting magnet 7 at predetermined time intervals, and takes the difference between the coordinates of the arrangement position and the vector indicating the arrangement direction, respectively. Thus, the control data is generated, and the superconducting magnet 7 is repeatedly moved according to the control data. When the difference becomes 0, the control device 220 determines that the positioning has been completed and ends the control.
  • a touch sensor (contact detector) 64 provided at the tip of the container of the superconducting magnet 7 is used. These outputs are also used to control the position and direction of the superconducting magnet 7. For example, in the range where first the superconducting magnet 7 does not contact the patient, only the arrangement direction is matched by feedback control, and then the superconducting magnet 7 is moved closer to the blood vessel bifurcation until there is an output from the touch sensor 64. Move and control the arm 90.
  • Step 2050 the control device 220 operates the superconducting magnet 7.
  • a signal for operating superconducting magnet 7 is output from control device 220 to a magnet drive control circuit provided in drive unit storage box 11.
  • the magnet drive control circuit receives the signal, operates the helium refrigerator 28, cools the inside of the superconducting magnet 7, and supplies current from the excitation power source 44 to the coil 20a of the superconducting magnet 7, thereby superconducting.
  • a magnetic field (magnetic flux) is generated in the magnet 7. Magnetic flux generated from the superconducting magnet 7 penetrates into the body of the patient 2 and causes a magnetic gradient in the depth direction of the body at the blood vessel bifurcation.
  • the control device 220 notifies the operator by an indicator that the superconducting magnet 7 is operated and the magnetic induction type drug delivery system 1000 is on standby.
  • the operator confirmed by the indicator injects the magnetic drug from the predetermined vein position of the patient 2.
  • the magnetic drug injected intravenously flows in the order of the injection position ⁇ the vein ⁇ the heart ⁇ the lung ⁇ the heart ⁇ the plurality of arteries including the target artery.
  • FIG. 7 when the magnetic drug 6 diverted to the target artery 4 approaches the blood vessel bifurcation 5 where the superconducting magnet 7 is placed, it is affected by the magnetic field (magnetic flux) 8 by the superconducting magnet 7.
  • the magnetic induction type drug delivery system 1000 of the present embodiment a magnetic drug can be guided toward a desired branched blood vessel at a blood vessel branching portion.
  • the magnetic drug 6 flowed while changing the position to the blood vessel wall side on the side where the superconducting magnet 7 is located in the blood vessel 4 Some are super It has been confirmed that the magnetic agent 6 is attracted by the magnetism of the conductive magnet 7 and stays on the wall surface in the blood vessel 4 facing the surface of the superconducting magnet 7 on the touch sensor 64 side, and the remaining magnetic drug 6 flows along with the blood toward the affected area.
  • the first portion of the magnetic drug 6 reaches the blood vessel bifurcation 5 and a certain amount of time has passed, the amount of the magnetic drug 6 that stays increases.
  • the first method is a method in which the superconducting magnet 7 is moved away from the blood vessel branching portion 5 (in the direction of arrow E in FIG. 7) to remove or weaken the magnetic gradient in the blood vessel branching portion 5.
  • a superconducting magnet 7 positioned at the blood vessel bifurcation 5 is moved along the blood vessel in the direction of the affected area or in a straight line substantially parallel to the blood vessel, or in an arc shape (in the direction of arrow F or arrow G in FIG.
  • the magnetic drug 6 staying in the blood vessel bifurcation 5 is caused to flow into the blood vessel 4a connected to the affected area by the suction force generated by the superconducting magnet 7. Whether these two methods are adopted can be appropriately selected depending on the blood flow rate.
  • the method of V and deviation is also realized by incorporating software for instructing the superconducting magnet 7 to perform each operation in the self-arm drive control mechanism.
  • the first arm 14, the second arm 16, the third arm 18, the first rotary joint portion 15, and the second rotary joint portion 16 of the free arm 90 are attached to each other.
  • Software that repeats the operation of moving the superconducting magnet 7 toward and away from the blood vessel branching portion in the direction of the straight line (Nn, Cn) in a predetermined time cycle is incorporated in the free arm drive control mechanism.
  • the second method the above-described components of the free arm 90 are driven and controlled to draw a circular arc parallel to a straight line (Nn, Dn) on the isosceles triangular plane.
  • the path for returning the superconducting magnet 7 to the original blood vessel bifurcation 5 may be the same as the forward path, but if possible, the superconducting magnet 7 should be made to be the largest distance comprising the blood vessel bifurcation 5. It is preferable to move the carriage back and forth.
  • the retraction and proximity movement of the superconducting magnet 7, the linear movement and return, or A blood flow pulsation cycle is preferably used as a time cycle for performing each of the arc movement and return operations.
  • the superconducting magnet 7 is held close to the blood vessel bifurcation 5 during a period when the blood flow is slow during the pulsation cycle of the blood flow, and the superconducting magnet 7 is attached to the blood vessel bifurcation 5 when the blood flow becomes fast.
  • the magnetic drug 6 can be effectively guided toward the affected area. This has been confirmed experimentally by the present inventors.
  • the reason for this is that when the blood flow is delayed, the superconducting magnet 7 is held close to the blood vessel bifurcation 5 so that the magnetic drug 6 stays near the superconducting magnet 7 on the side of the blood vessel wall, It is thought that by moving the superconducting magnet 7 when the blood flow becomes fast, the staying magnetic drug 6 is pushed away toward the blood vessel connected to the affected part by the fast-flowing part in the center of the blood flow. It is done.
  • the stop holding period and the movement start timing in the movement cycle of the superconducting magnet 7 can be set by combining an electrocardiograph and an ultrasonic device with a Doppler measurement function. For example, by measuring the R wave of the electrocardiogram of patient 2 with an electrocardiograph and measuring the blood flow in the blood vessel bifurcation 5 depicted by the probe of the ultrasonic device, the R wave measurement time point The time until high-speed blood flow arrives at the blood vessel bifurcation 5 can be measured.
  • an electrocardiographic probe is attached to the patient 2 to perform electrocardiogram measurement, and the R-wave measurement time force measured by the electrocardiograph is also measured.
  • the control unit 220 is notified of the result.
  • the control device 220 is incorporated in the universal arm control mechanism so that the time delayed by the arrival time of the high-speed blood flow measured by the electrocardiograph becomes the movement start time of the superconducting magnet 7. Control the software to work.
  • the system is configured to be controllable so that the magnetic induction process is continuously performed for a predetermined time. For example, if the blood circulation cycle time is several tens of seconds, the blood circulates through the lower extremity with the most heart force and returns to the heart. The range is about the cycle.
  • the control device 220 is provided with a timer capable of setting the time for which the magnetic induction process is continued, so that the time for which the magnetic induction process is continued can be variably set.
  • the drug that has flowed to the organ other than the affected part at the beginning of the injection also flows into the affected part over time while repeating the circulation in the body.
  • the drug is taken up so that it accumulates in the affected cancer cells and tumor cells.
  • a predetermined magnetic field can be generated at one or more branch points on the blood flow path based on the information on the three-dimensional position of the blood vessel at each branch point, the size of the blood vessel, and the blood flow velocity. Since the position and angle (arrangement direction) of the correct magnet can be calculated and the magnet can be set at the calculated position and angle, the induction rate of magnetic drug particles to a predetermined affected area such as cancer cells can be increased. it can.
  • a magnet is placed on the side of the blood vessel branch before the blood vessel branch, and the target blood vessel branch is in the blood. You may comprise so that it may attract to the near side.
  • the magnetic susceptibility and volume of the magnetic drug to be administered may be considered.
  • the magnet is shifted from the branch position to the downstream side and the magnetic field gradient is set to face the downstream side.
  • the magnet is placed near the branching position.
  • the magnetic field is applied so as to induce the magnetic drug in one direction at the branching portion of the blood vessel, rather than concentratedly applying the magnetic field directly to the affected part. Therefore, the magnetic induction rate of the drug can be improved, and the induction rate of the magnetic drug to the affected area of a predetermined cancer cell can be increased by using a small solenoid coil magnet.
  • the helium refrigerator can be shared as a plurality of superconducting magnet coolers, so there is no need to provide a helium refrigerator for each superconducting magnet. Therefore, since the system can be realized with a small number of helium refrigerators, the magnetic induction type drug delivery system 1000 can be reduced in size.
  • the magnetic induction type drag delivery system 1000 of this embodiment is different from the first embodiment in that a superconducting magnet is formed of a superconducting Baltha body.
  • the following description will focus on differences from the first embodiment.
  • FIG. 8 shows a configuration of a superconducting magnet 7 (hereinafter referred to as a superconducting Balta magnet 7 in this embodiment) used in the magnetic induction type drug delivery system 1000 according to the second embodiment of the present invention.
  • the high temperature superconducting Balta body 48 of YBCO system is used as the magnetic field generating means instead of the solenoid coil used in the first embodiment, and the high temperature directly in a small refrigerator.
  • a structure for cooling the superconducting Balta body 48 is employed.
  • the outer periphery of the high-temperature superconducting Balta body 48 is integrated with a stainless steel or aluminum ring 49 with an adhesive or the like, and when the high-temperature superconducting Balta body 48 is magnetized, a crack is generated by its own magnetic force. To prevent that.
  • the high-temperature superconducting Balta body 48 and the ring 49 are thermally integrated by being bonded to a heat transfer flange 50 made of copper or aluminum-um with an adhesive or the like.
  • the heat transfer flange 50 and the heat transfer flange 43 are They are joined together with bolts (not shown) via an indium sheet or grease (not shown) and are thermally integrated!
  • the cooling method of the high-temperature superconducting Balta body 48 by the helium refrigerator cold stage 33 is the same as the method of cooling the solenoid magnet 21 described in the first embodiment.
  • a magnetizing superconducting magnet that generates a predetermined magnetic field to be magnetized, for example, a magnetic field of 10 Tesla.
  • the generated magnetic field force and a normal conducting magnet are required, and these are prepared separately (both magnets are not shown).
  • the superconducting Balta magnet 7 incorporating the high-temperature superconducting bulk body 48 is inserted into the magnetic field of the magnetizing magnet, and then the helium refrigeration is performed.
  • the high-temperature superconducting Balta body 48 is cooled below the superconducting temperature by the machine 28.
  • the direction of the cylindrical axis of the superconducting Balta body 48 and the direction of the main magnetic field by the magnetizing magnet must be matched.
  • the high-temperature superconducting Balta body 48 that continues to be cooled As long as the magnetic field is captured in 48 and cooling is maintained, the high-temperature superconducting Balta body 48 becomes a superconducting Balta magnet that generates a magnetic field equivalent to the magnetic field generated by the magnetizing magnet.
  • the high temperature superconducting bulk material 48 that captures a high magnetic field of 5 to 10 Tesla, for example, is used as the magnetic field generating means.
  • the magnetic field distribution of the superconducting Balta magnet magnetized in this way is formed by a group of micro magnetic fluxes distributed almost uniformly.
  • the magnetic field distribution on the surface thereof is substantially conical, and becomes almost zero at the outer peripheral portion where the magnetic field at the center is strongest. That is, the central force of the high-temperature superconducting Balta body 48 is also directed in the radial direction to form a very large magnetic gradient.
  • the central axis of the superconducting Balta magnet 7 is set in the arrangement direction determined in the first embodiment.
  • the magnetic agent 6 that has flowed into the magnetic field 8 formed by the high-temperature superconducting Balta body 48 is naturally magnetically induced toward the center of the high-temperature superconducting Balta body 48 having a large magnetic gradient.
  • the administration rate of the administered magnetic drug 6 to the affected area such as a predetermined cancer cell is high. There is an effect that can be guided with.
  • the superconducting Balta body 48 is used as the magnetic field generating means.
  • the superconducting Balta body 48 can be easily magnetized to the vicinity of 10 Tesla, and has a large magnetic field decay rate in the direction away from the surface. That is, since the superconducting Balta magnet 48 is used for the superconducting Balta magnet 7, the superconducting Balta magnet 7 of the present embodiment has a large magnetic field attenuation rate with respect to the direction in which the surface force of the superconducting Balta body 48 moves away, and the magnetic field strength. Is much larger than other magnets such as permanent magnets.
  • the magnetic field distribution on the surface of the superconducting Balta magnet 7 can be made equal in intensity, and the magnetic field distribution in the space near the superconducting Balta magnet 7 can be made conical.
  • the superconducting Balta magnet 7 can form a magnetic field with a high strength and a narrow region where the strength is maximized. Therefore, the magnetic drug 6 in the blood is accurately guided in the guiding direction at the blood vessel bifurcation 5. The effect that can be sucked is born.
  • each of three-dimensional blood flow image acquisition processing, blood vessel bifurcation extraction processing, real space coordinate application processing, placement direction determination processing, positioning processing, and magnetic guidance processing is performed in the same manner as in the first embodiment, using the superconducting Balta magnet 7 instead of the superconducting magnet 7.
  • the magnetic induction type drug delivery system of this embodiment is different from that of the second embodiment in the cooling structure of the superconducting Balta magnet. That is, in the superconducting Balta magnet 7 of this embodiment, as shown in FIG. 10, the YBCO-based high-temperature superconducting Balta body 48 and the helium refrigerator 52 are separated. In the present embodiment, the helium gas power of the working refrigerant is cooled by the cooling heat exchange stage 56 of the helium refrigerator 52 and transported through the flexible vacuum insulation pipe 51 to cool the high-temperature superconducting Balta body 48. It has a structure. Only the differences from the second embodiment will be described below.
  • the helium refrigerator 52 is connected to the helium gas compressor 53 through a high pressure gas pipe 54 and a low pressure gas pipe 55, and the cooling stage 56 is cooled to an extremely low temperature by the operation of the helium gas compressor 53.
  • the helium gas of the working refrigerant is pressurized by the helium gas compressor 57, controlled to a predetermined flow rate by the flow rate adjusting valve 58, passes through the high-pressure pipe 59, and is exchanged in the vacuum heat insulating container 60. Flows into vessel 81.
  • the working refrigerant cooled to a low temperature in the heat exchanger 81 is further cooled in a heat exchanger thermally integrated with the cooling stage 56, and is a cryogenic working refrigerant having a temperature of minus 240 degrees Celsius. It becomes.
  • the working refrigerant having reached a very low temperature passes through a pipe 63 disposed in the vacuum space in the vacuum heat insulating pipe 51, and cools the cooling heat exchange stage 64 to a cryogenic temperature.
  • the working refrigerant whose temperature has risen passes through the pipe 65 and flows into the heat exchanger 81, cools the working refrigerant in the high-pressure pipe 59, and connects the low-pressure pipe 66. Return to the helium gas compressor 57 and pressurize again.
  • a laminated heat insulating material 67 is wound around the pipes 63 and 65 to prevent radiant heat.
  • the cooling heat exchange stage 64 is supported by, for example, an oleaginous cylinder 69 fixedly supported by a flange 68 that hermetically fixes an end of the vacuum heat insulating pipe 51.
  • the cylindrical body 69 is elastic in its axial direction, and the cooling heat exchange stage 64 is thermally pressed against the heat transfer flange 22 through a heat conductor such as indium or grease.
  • a heat conductor such as indium or grease.
  • the container of the superconducting magnet 7 can be used closer to the body surface of the patient 2 even in a part where the installation space of the superconducting magnet 7 is limited, such as a part having the concave and convex portions of the patient 2, such as the neck. it can.
  • the magnetic force acting on the magnetic drug 6 can be increased even when there is a blood vessel branch in the uneven part of the body, so that the magnetic drug 6 is guided to the affected area. Probability can be increased, and the proportion of magnetic drug 6 that can be guided to the affected area can be increased.
  • each process of 3D blood flow image acquisition processing, real space coordinate addition processing, blood vessel branching portion extraction processing, arrangement direction determination processing, positioning processing, and magnetic guidance processing The superconducting Balta magnet 7 is used instead of the superconducting magnet 7 and is performed in the same manner as in the first embodiment.
  • the target of the superconducting magnet is a blood vessel branch portion extracted and specified by the method described in each embodiment.
  • the superconducting magnet target position should be set upstream or downstream of the blood vessel bifurcation depending on the blood flow velocity, not necessarily the blood vessel bifurcation.
  • the position to be the target of the superconducting magnet may be determined by experiment or the like, the difference from the actual position of the blood vessel bifurcation may be obtained as a correction value, and the obtained correction value may be applied.
  • a case where a Gifud-McMahon type refrigerator is used as a refrigerator that cools a superconducting solenoid magnet or a high-temperature superconducting Baltha body directly or via a working refrigerant is taken as an example.
  • an electronic refrigerator, a solvey refrigerator, a pulse tube refrigerator, a Stirling refrigerator, an acoustic refrigerator, or the like can be used as a refrigerator.
  • the present invention is not limited thereto.
  • a high-temperature superconducting material made of Gd-based material is used for a coil wire or a balta body It is possible to provide the same or higher magnetic force, and further increase the proportion of the magnetic drug that can be guided to the affected area by further improving the magnetic force.
  • the superconducting magnet is described as an example where the superconducting magnet is attached to a free arm supported by a pillar mounted on a carriage traveling on the floor. It is also possible to adopt a structure that supports the above.
  • a 3D blood flow image of a patient is acquired by an MRI apparatus.
  • an image acquired by the MRI apparatus has some distortion due to the magnetic field uniformity of the measurement space.
  • the ability to take countermeasures against it, or the patient's 3D blood flow image is acquired with an X-ray imaging device, X-ray CT device or ultrasonic diagnostic device without image distortion.
  • image distortion corrected value
  • the correction value is removed from the acquired three-dimensional blood flow image.
  • FIG. 1 is a perspective view showing a configuration of a magnetic induction type drug delivery system in a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a configuration of a nuclear magnetic resonance imaging apparatus that acquires a three-dimensional blood flow image of a patient in the first embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view showing a configuration of a superconducting magnet used in the magnetic induction type drug delivery system according to the first embodiment of the present invention.
  • FIG. 4 is a view for explaining an example of a process for extracting and specifying a blood vessel bifurcation portion of a patient according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining an example of a process for automatically extracting and specifying a blood vessel bifurcation portion of a patient's three-dimensional blood flow image.
  • FIG. 6 is a diagram for explaining an example of a process for setting the arrangement direction of the superconducting magnet according to the first embodiment of the present invention.
  • FIG. 7 is a view for explaining the action of a superconducting magnet on the magnetic drug flowing in the blood vessel according to the first embodiment of the present invention.
  • FIG. 8 is used in the magnetic induction drug delivery system according to the second embodiment of the present invention.
  • FIG. 9 is a view showing a state where magnetism generated by the superconducting Balta magnet according to the second embodiment of the present invention acts on a magnetic drug at a blood vessel branching portion.
  • FIG. 10 is a diagram for explaining the structure of a superconducting Balta magnet system from which a refrigerator according to a third embodiment of the present invention is separated.
  • FIG. 11 is a flow of magnetic induction drug delivery processing of the magnetic induction type drug delivery system according to the first embodiment of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Robotics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

It is intended to provide a magnetic induction drug delivery system appropriately usable for clinical purposes by which a magnetic drug intravenously administered to a patient can be induced to an affected part in the patient’s body. To induce a magnetic drug to the affected part in the patient’s body, blood vessels from the heart to the affected part are extracted from a three-dimensional blood flow image picked up with a diagnostic imaging system and the branching points of the extracted vessels are specified. By using the data of the blood vessel branching points having been specified on the three-dimensional blood flow image as described above, a magnetic field generator is located while controlling the migration thereof at such a position as inducing the magnetic drug into a blood vessel toward the affected part at a branching point of the patient’s blood vessels as described above.

Description

明 細 書  Specification
磁気誘導型ドラッグデリバリーシステム  Magnetic induction type drug delivery system
技術分野  Technical field
[0001] 本発明は、患者の体内に注入された治療薬剤を、磁気を利用して患部等の所望の 領域へ誘導する磁気誘導型ドラッグデリバリー技術に関するものである。  [0001] The present invention relates to a magnetic induction type drug delivery technique for guiding a therapeutic agent injected into a patient's body to a desired region such as an affected area using magnetism.
背景技術  Background art
[0002] 生体内の癌や腫瘍を薬剤療法によって治療するためには、治療薬剤を患部等の 所望の領域へ集中的に投与することが効果的であるとされている。患部に治療薬剤 を集中的に高密度で投与する方法には、細長いカテーテルを用いるものがある。細 長いカテーテルを、例えば大腿部の血管から挿入し、画像診断装置上の画像で血 管内部のカテーテル先端の位置を確認しながら患部へ進め、カテーテルを通じて治 療薬剤を患部に高密度で投与する。しかし、カテーテルを患者の体内で患部へ進め るには高度の熟練が必要である。  [0002] In order to treat cancers and tumors in a living body by drug therapy, it is considered effective to concentrate a therapeutic drug on a desired region such as an affected area. One method of intensively administering a therapeutic agent to an affected area at a high density uses an elongated catheter. Insert a long and narrow catheter from the thigh blood vessel, for example, and proceed to the affected area while confirming the position of the catheter tip inside the blood vessel using the image on the diagnostic imaging device, and administer the therapeutic drug to the affected area through the catheter at high density. To do. However, advanced skills are required to advance the catheter to the affected area within the patient.
[0003] カテーテルほどの熟練を必要としないもので、治療薬剤を患部へ投与するために 一般的に行われているのは、患者の血管に治療薬剤を注射する方法である。しかし 、この方法では、薬剤を静脈注射で投与するため、薬剤を患部に集中的に投与する ことはむずかしい。これを解決するものとして、磁気力を利用して薬を患部へ誘導す る方法が提案されている。非特許文献 1には、分岐部を有するチューブの外部に磁 石を配置し、チューブ内へ強磁性粒子を含んだ薬剤を流すと、磁石によって強磁性 粒子を含んだ薬剤の多くを意図した方向へ流すことができることが報告されている。 非特許文献 1 : THA12P009 "Three-Dimensional Motion ControlSystem of Ferromag netic Particle for Magnetical ly Targeted Drug DeliverySystem F. Misnima et al. 1 9th International Conference on Magnet Technology, September,2005, pl47 発明の開示  [0003] A technique that does not require as much skill as a catheter and is commonly used to administer a therapeutic agent to an affected area is a method of injecting the therapeutic agent into a blood vessel of a patient. However, in this method, since the drug is administered intravenously, it is difficult to concentrate the drug on the affected area. As a solution to this problem, a method of guiding a drug to an affected area using magnetic force has been proposed. In Non-Patent Document 1, when a magnet is placed outside a tube having a branching portion and a drug containing ferromagnetic particles is caused to flow into the tube, many of the drugs containing ferromagnetic particles are intended by the magnet. It has been reported that Non-Patent Document 1: THA12P009 "Three-Dimensional Motion Control System of Ferromag netic Particle for Magnetical ly Targeted Drug Delivery System F. Misnima et al. 1 9th International Conference on Magnet Technology, September, 2005, pl47 Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 非特許文献 1に開示された技術は、磁性粒子を含んだ治療薬剤を分岐する血管内 で磁石によって意図する方向へより多くの分量を流す可能性を示したものである。し かし、例えば、患者の体内の血管分岐部の特定方法、患者に対する磁石の位置決 め方法など、臨床に適用するためには解決すべき課題がある。 [0004] The technology disclosed in Non-Patent Document 1 shows the possibility of flowing a larger amount in the intended direction by a magnet in a blood vessel that branches a therapeutic agent containing magnetic particles. Shi However, there are problems to be solved for clinical application, for example, a method for identifying a blood vessel bifurcation in a patient's body and a method for positioning a magnet with respect to the patient.
[0005] 本発明は上記技術背景に鑑みて成されたものであり、本発明の目的は、患者の体 内に投与された薬剤を磁気力で患部等の所望の領域へ効率よく誘導できる臨床に 好適な磁気誘導型ドラッグデリバリーシステムを提供することにある。  [0005] The present invention has been made in view of the above technical background, and an object of the present invention is a clinical method capable of efficiently guiding a drug administered into a patient's body to a desired region such as an affected area with magnetic force. It is an object of the present invention to provide a magnetic induction type drug delivery system suitable for the above.
課題を解決するための手段  Means for solving the problem
[0006] 本発明はこのような課題を解決するためになされたもので、被検者の血管内へ投与 された磁性薬剤を所望の方向へ誘導する磁場発生装置を備えた磁気誘導型ドラッ グデリバリーシステムにおいて、前記被検者の 3次元血流イメージを用いて、前記血 管内の分岐位置 (血管内分岐位置)を抽出する血管内分岐位置抽出手段と、前記 血管内分岐位置抽出手段によって抽出された前記血管内分岐位置の実空間座標 における位置情報を求める血管内分岐位置情報取得手段と、前記血管内分岐位置 情報取得手段によって求められた前記血管内分岐位置の実空間座標における位置 情報を用いて、前記血管内分岐位置の近傍に前記磁場発生装置の位置を設定する 磁場発生装置位置設定手段と、を備えたことを特徴とする磁気誘導型ドラッグデリバ リーシステムを提供する。  [0006] The present invention has been made to solve such a problem, and is a magnetic induction type drag equipped with a magnetic field generation device that guides a magnetic drug administered into a blood vessel of a subject in a desired direction. In the delivery system, using the three-dimensional blood flow image of the subject, extraction is performed by an intravascular branch position extracting means for extracting a branch position (intravascular branch position) in the blood vessel, and the intravascular branch position extracting means. Intravascular vessel position information acquisition means for obtaining position information of the intravascular branch position in real space coordinates; and position information in real space coordinates of the intravascular branch position information obtained by the intravascular branch position information acquisition means. And a magnetic field generation device position setting means for setting the position of the magnetic field generation device in the vicinity of the intravascular branch position. To provide a system.
[0007] 上記構成において、 3次元血流イメージを取得する医用画像診断装置としては、核 磁気共鳴イメージング装置 (MRI装置)、 X線 CT装置、 X線撮影装置、超音波装置 等を用いることができる。また、上記構成において、磁場発生装置は、超電導磁石、 常電導磁石を用いることができる。さらに、血管分岐部において磁性薬剤を患部方 向へ効率よく誘導するために、磁石として超電導磁石であって、磁石外部へ細長い 強力な磁場を形成できる磁石、例えば超電導バルク材を用いた磁石を用いることが 望ましい。  [0007] In the above configuration, a nuclear magnetic resonance imaging apparatus (MRI apparatus), an X-ray CT apparatus, an X-ray imaging apparatus, an ultrasonic apparatus, or the like may be used as a medical image diagnostic apparatus that acquires a three-dimensional blood flow image. it can. In the above configuration, the magnetic field generator can use a superconducting magnet or a normal conducting magnet. Furthermore, in order to efficiently guide the magnetic drug toward the affected area at the blood vessel bifurcation, a superconducting magnet is used as the magnet, and a magnet that can form a long and strong magnetic field outside the magnet, such as a magnet using a superconducting bulk material, is used. It is desirable.
発明の効果  The invention's effect
[0008] 本発明によれば、磁性薬剤を患者の患部等の所望の領域へ効率よく誘導すること ができる磁気誘導型ドラッグデリバリーシステムを提供することができる。また本発明 によれば、臨床に好適な磁気誘導型ドラッグデリバリーシステムを提供することができ る。 発明を実施するための最良の形態 [0008] According to the present invention, it is possible to provide a magnetic induction type drug delivery system capable of efficiently guiding a magnetic drug to a desired region such as an affected area of a patient. Further, according to the present invention, a magnetic induction type drug delivery system suitable for clinical use can be provided. BEST MODE FOR CARRYING OUT THE INVENTION
[0009] < <第 1の実施形態 > >  [0009] <First Embodiment>
以下、本発明の第 1の実施形態を、図面を参照して説明する。図 1は、本実施形態 の磁気誘導型ドラッグデリバリーシステム 1000の構成を説明するための図である。  Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining the configuration of the magnetic induction type drug delivery system 1000 of the present embodiment.
[0010] 本図に示すように、本実施形態の磁気誘導型ドラッグデリバリーシステム 1000は、 画像解析装置 1100と、磁場発生装置 1200と、制御装置 220とを備える。  [0010] As shown in the figure, a magnetic induction type drug delivery system 1000 according to the present embodiment includes an image analysis device 1100, a magnetic field generation device 1200, and a control device 220.
[0011] 画像解析装置 1100は、画像診断装置 100によって撮像された患者の 3次元血流 イメージを用いて、心臓と患部とつなぐ動脈血管の分岐位置の実空間座標を算出す るものであり、患者の 3次元血流イメージから、心臓と患部とを繋ぐ動脈血管を抽出し 、抽出した動脈血管の分岐位置を特定して、血管の分岐位置情報を生成する血管 分岐位置抽出処理部 1110と、血管内分岐位置抽出処理部 1110が生成した血管の 分岐位置情報を、患者の体の一部に設けられた基準位置マーカの位置を基準とした 実空間座標に変換する座標変換処理部 1120とを備える。  [0011] The image analysis device 1100 calculates the real space coordinates of the branch position of the arterial blood vessel connecting the heart and the affected area using the three-dimensional blood flow image of the patient imaged by the image diagnostic device 100. A blood vessel branch position extraction processing unit 1110 that extracts an arterial blood vessel connecting a heart and an affected part from a 3D blood flow image of a patient, identifies a branch position of the extracted arterial blood vessel, and generates a blood vessel branch position information; A coordinate conversion processing unit 1120 that converts the branch position information of the blood vessel generated by the intravascular branch position extraction processing unit 1110 into real space coordinates based on the position of a reference position marker provided on a part of the patient's body; Prepare.
[0012] ここで、画像診断装置 100としては、核磁気共鳴イメージング装置 (MRI装置)、 X 線 CT装置、 X線撮影装置、超音波装置等の 3次元血流イメージングが可能な装置を 用いることができる。以下、本実施形態では、画像診断装置 100として MRI装置を用 いる場合を例にあげて説明する。また、本実施形態では、画像解析装置 1100は、 M RI装置の制御部内に包含されているものとする。画像解析装置 1100は、画像診断 装置から独立し、画像診断装置 100に接続されているよう構成してもよい。また、制 御装置 220と一体であってもよ!/、。  Here, as the diagnostic imaging apparatus 100, an apparatus capable of three-dimensional blood flow imaging such as a nuclear magnetic resonance imaging apparatus (MRI apparatus), an X-ray CT apparatus, an X-ray imaging apparatus, and an ultrasonic apparatus is used. Can do. Hereinafter, in the present embodiment, a case where an MRI apparatus is used as the diagnostic imaging apparatus 100 will be described as an example. In the present embodiment, the image analysis apparatus 1100 is assumed to be included in the control unit of the MRI apparatus. The image analysis apparatus 1100 may be configured to be independent of the image diagnostic apparatus and connected to the image diagnostic apparatus 100. Also, it can be integrated with the control device 220! /.
[0013] 磁場発生装置 1200は、磁石を備え、患者の血管内に投与された磁性薬剤を患部 方向へ誘導するために血管分岐部に磁場を印加する。磁石として、超電導磁石、常 電導磁石を用いることができる。なお、血管分岐部において磁性薬剤を患部方向へ 効率よく誘導するために、磁石として、超電導磁石であって、磁石外部へ細長い強力 な磁場を形成できる磁石、例えば超電導バルク材を用いた磁石を用いることが望まし い。磁石の詳細は後述する。また、磁場発生装置 1200は、磁石を支持するとともに、 磁石の位置および向きを自在に変化させることができる磁石保持機構 200を備える。  [0013] The magnetic field generation device 1200 includes a magnet and applies a magnetic field to the blood vessel bifurcation to guide the magnetic drug administered into the blood vessel of the patient toward the affected area. A superconducting magnet or a normal conducting magnet can be used as the magnet. In order to efficiently guide the magnetic drug toward the affected area at the blood vessel bifurcation, a magnet that is a superconducting magnet and can form a strong and long magnetic field outside the magnet, such as a magnet using a superconducting bulk material, is used. It is desirable. Details of the magnet will be described later. The magnetic field generator 1200 includes a magnet holding mechanism 200 that supports a magnet and can freely change the position and orientation of the magnet.
[0014] 制御装置 220は、患者の血管内に投与された磁性薬剤を患部方向へ誘導するた め、画像解析装置 1100が算出した血管の分岐位置を用いて磁場発生装置 1200が 備える磁石を配置すべき位置および向きを決定し、決定した位置および向きに磁石 を配置するよう磁石保持機構 200を制御する。制御装置 220の詳細は後述する。 [0014] The control device 220 guides the magnetic drug administered into the blood vessel of the patient toward the affected area. Therefore, the position and orientation in which the magnet included in the magnetic field generator 1200 should be arranged are determined using the branching position of the blood vessel calculated by the image analysis apparatus 1100, and the magnet holding mechanism 200 is arranged so that the magnet is arranged in the determined position and orientation. Control. Details of the control device 220 will be described later.
[0015] 次に、上記患者の体内の血流を 3次元血流イメージとして画像化する画像診断装 置 100について説明する。上述のように、本実施形態では、画像診断装置 100として MRI装置を用いる。以下、 MRI装置 100と呼ぶ。図 2は、 MRI装置 100の斜視図で ある。 MRI装置 100は、一般的に被検体である患者 2の体内組織を、核磁気共鳴現 象を利用して画像ィ匕するものであり、患者 2を収容する空間内の所定の大きさの空間 領域 (計測空間)へ所定強度の均一な静磁場を発生する磁石と、患者 2の体内組織 を構成する原子の原子核へ核磁気共鳴現象を起こさせる電磁波 (RFパルス)を照射 する照射コイルを含む照射系と、前記計測空間内において直交する 3方向に対して 磁場勾配を与える傾斜磁場を発生する 3組の傾斜磁場コイルとから成るガントリー 11 0と、患者 2を搭載し、患者 2の患部を前記計測空間へ搬送し、位置決めする寝台 12 0と、を備えている。これらの照射コイル、傾斜磁場コイル及び寝台 120の動作は中 央演算処理ユニット (CPU)を備えた制御部 130によって制御される。なお、 71は患 者 2上の位置を特定するためのマーカである。マーカ 71の詳細は後述する。  Next, the diagnostic imaging apparatus 100 that images the blood flow in the patient's body as a three-dimensional blood flow image will be described. As described above, in this embodiment, an MRI apparatus is used as the diagnostic imaging apparatus 100. Hereinafter, it is referred to as the MRI apparatus 100. FIG. 2 is a perspective view of the MRI apparatus 100. The MRI apparatus 100 generally images a body tissue of a patient 2 as a subject using a nuclear magnetic resonance phenomenon, and is a space of a predetermined size in a space that accommodates the patient 2. Includes a magnet that generates a uniform static magnetic field of a predetermined intensity in the region (measurement space) and an irradiation coil that irradiates electromagnetic waves (RF pulses) that cause nuclear magnetic resonance to the atomic nuclei that make up the body tissue of patient 2. A gantry 110 including a radiation system and three sets of gradient magnetic field coils for generating a gradient magnetic field that gives a magnetic field gradient in three directions orthogonal to each other in the measurement space, and a patient 2 are mounted. And a bed 120 that is transported to and positioned in the measurement space. The operations of the irradiation coil, the gradient coil, and the bed 120 are controlled by a control unit 130 having a central processing unit (CPU). Reference numeral 71 is a marker for specifying the position on the patient 2. Details of the marker 71 will be described later.
[0016] 制御部 130には、術者が撮像のためのパラメータや動作指令を入力する操作用コ ンソール 140、 CPUでの処理結果を出力する表示装置としてディスプレイ 150、マウ スゃトラックボールやジョイスティックのような位置情報入力操作器 160が接続されて いる。また、制御部 130には、画像解析装置 1100の他に、 MR計測により取得され た MR信号を画像ィ匕するための、増幅部と AD変換部と直交検波部とから成る受信 系、フーリエ変換部から成る画像再構成部、前記各種パルスシーケンス並びに取得 された MR信号や再構成された MR画像を保存する記憶部が設けられる。また、 MRI 装置 100には傾斜磁場コイルに対し電力を供給する傾斜磁場電源がガントリー 110 、寝台 120、制御部 130とは別体として設けられている。  [0016] The control unit 130 includes an operation console 140 for an operator to input imaging parameters and operation commands, a display 150 as a display device for outputting processing results by the CPU, a mouse trackball and a joystick. The position information input operation device 160 is connected. In addition to the image analysis device 1100, the control unit 130 includes a receiving system including an amplifying unit, an AD converting unit, and a quadrature detecting unit, and a Fourier transform for imaging an MR signal acquired by MR measurement. An image reconstruction unit comprising a plurality of units, and a storage unit for storing the various pulse sequences and the acquired MR signals and the reconstructed MR images. Further, the MRI apparatus 100 is provided with a gradient magnetic field power source for supplying electric power to the gradient coil, as a separate body from the gantry 110, the bed 120, and the control unit 130.
[0017] 制御部 130には、前記 RFパルスと傾斜磁場の発生並びに印加タイミングと、それら の組合せとからなる種々のパルスシーケンスがソフトウェアとして格納されている。周 知のパルスシーケンスには、 2次元断面を撮像するために使用される 2次元撮像用 パルスシーケンスと、患者を 3次元的に撮像するために使用される 3次元撮像用パル スシーケンスとがあり、上記 MRI装置 100にもそれらがインストールされている。さらに 、 MRI装置 100は、患者 2の体内を流れる血流をイメージングする血流イメージング 用パルスシーケンス、例えば位相感応法(Phase Sensitive法: PS法)パルスシー ケンス、位相コントラスト法(Phase Contrast法: PC法)パルスシーケンスや、その 他に造景 MRA (造景 MRアンジォグラフィ: Contrast - enhanced MRA)用パル スシーケンス、さらにはマルチステーション MRA用パルスシーケンス等が搭載されて いる。これらのパルスシーケンスは必要に応じて、選択的に用いられる。 [0017] In the control unit 130, various pulse sequences including the RF pulse, the generation and application timing of the gradient magnetic field, and combinations thereof are stored as software. The familiar pulse sequence is for 2D imaging, which is used to image 2D sections. There are a pulse sequence and a 3D imaging pulse sequence used to image a patient three-dimensionally, and these are also installed in the MRI apparatus 100. Furthermore, the MRI apparatus 100 is a pulse sequence for blood flow imaging that images the blood flow flowing through the body of the patient 2, for example, a phase sensitive method (PS method) pulse sequence, a phase contrast method (Phase Contrast method: PC method). ) Pulse sequence and other pulse sequences for landscape MRA (landscape MR angiography: Contrast-enhanced MRA), multi-station MRA pulse sequence, etc. are installed. These pulse sequences are selectively used as necessary.
[0018] なお、磁気誘導型ドラッグデリバリーシステム 1000と画像診断装置 100との配置は 特に限定されない。しかし、両者が隣接して配置され、被検体である患者 2が両者間 をスムーズに移動できる構成が望まし 、。  [0018] The arrangement of the magnetic induction type drug delivery system 1000 and the diagnostic imaging apparatus 100 is not particularly limited. However, it is desirable to have a configuration in which both of them are arranged adjacent to each other and the subject patient 2 can move smoothly between them.
[0019] 次に、磁場発生装置 1200が備える磁石について説明する。本実施形態では、磁 石として、超電導磁石を用いる。図 3は、本実施形態の磁場発生装置 1200が備える 超電導磁石 7の構成図である。超電導磁石 7は、 YBCO (酸化物超電導体; YBa Cu  Next, the magnet provided in the magnetic field generator 1200 will be described. In this embodiment, a superconducting magnet is used as the magnet. FIG. 3 is a configuration diagram of the superconducting magnet 7 provided in the magnetic field generator 1200 of the present embodiment. Superconducting magnet 7 is YBCO (oxide superconductor; YBa Cu
2 2
O )を主成分とした高温超電導導体のコイル線 20aを、直径約 25mm程度の銅製The coil wire 20a of the high-temperature superconducting conductor whose main component is O) is made of copper with a diameter of about 25 mm.
3 7 3 7
のボビン 20bの外部にコイル状に多数層卷付けたソレノイド磁石 21により構成される 。超電導磁石 7を構成するコイル線 20aは、榭脂含侵によりコイル線 20a間が固定さ れるとともに、ボビン 20bへ接着剤等で固定される。ボビン 20bは、例えば銅製の伝 熱フランジ 22に、インジウム等の熱伝導率が大きい柔らかなシートを介してボルト(図 示せず)等により結合され、熱的に一体化されている。前記伝熱フランジ 22は、熱伝 導率の小さな材料、例えばステンレス鋼製の円筒体 23に溶接や銀ロウ等で気密接 合され、真空気密を実現している。伝熱フランジ 23の他端部はフランジ 24に溶接等 で気密接合され、フランジ 24はフランジ 25と 0リングを介しボルト(図示せず)で気密 固定される。フランジ 25には冷凍機固定フランジ 26が冶金接合によって気密一体ィ匕 され、真空気密性を有するベローズ 27を介して冷凍機固定フランジ 26と、高圧ガスと 低圧ガスのガス流路切り替え機構(図示せず)を内蔵した例えばギフオード'マクマホ ン式のヘリウム冷凍機 28とが 0リング、ボルト(図示せず)で気密固定される。ヘリウム 冷凍機 28には、ヘリウムガス圧縮機 29が高圧ヘリウムガス配管 30、低圧へリウムガ ス配管 31を介して接続される。ヘリウム冷凍機 28には、ヘリウムガスが断熱圧縮、断 熱膨張するシリンダ 32および寒冷発生部のコールドステージ 33が接続されている。 The bobbin 20b is composed of a solenoid magnet 21 having a large number of coils attached to the outside of the bobbin 20b. The coil wire 20a composing the superconducting magnet 7 is fixed between the coil wires 20a by impregnation of the grease and is fixed to the bobbin 20b with an adhesive or the like. The bobbin 20b is coupled to the heat transfer flange 22 made of copper, for example, with a bolt (not shown) or the like through a soft sheet having a high thermal conductivity such as indium, and is thermally integrated. The heat transfer flange 22 is hermetically sealed with a material having a low heat conductivity, for example, a stainless steel cylindrical body 23 by welding, silver brazing, or the like, thereby realizing vacuum airtightness. The other end of the heat transfer flange 23 is hermetically joined to the flange 24 by welding or the like, and the flange 24 is hermetically fixed with a bolt (not shown) through the flange 25 and 0 ring. A refrigerator fixing flange 26 is hermetically integrated with the flange 25 by metallurgical bonding, and a gas flow path switching mechanism (not shown) between the refrigerator fixing flange 26 and the high-pressure gas and the low-pressure gas via a bellows 27 having a vacuum-tightness. For example, a Gifuord 'McMahon helium refrigerator 28 with a built-in ring) is hermetically fixed with a 0 ring and a bolt (not shown). The helium refrigerator 28 includes a helium gas compressor 29, a high pressure helium gas pipe 30, a low pressure helium gas Connected via pipe 31. Connected to the helium refrigerator 28 are a cylinder 32 in which helium gas is adiabatically compressed and thermally expanded, and a cold stage 33 in a cold generating part.
[0020] 一方、ソレノイド磁石 21の外周には、真空断熱のために真空容器カバー 34が配置 されている。真空容器カバー 34はフランジ 35により、フランジ 24、 25に 0リングを介し てボルト(図示せず)で気密固定される。真空容器カバー 34の外周面には、超電導 磁石 7の位置およびソレノイド磁石 21が発生する磁束の方向を検出する磁石位置検 出器 (位置センサ) 61が取り付けられている。この位置センサ 61は、中心位置と 3軸 方向とが検出できる周知の磁気センサまたは光学的センサが用いられる。また、真空 容器カバー 34のソレノイド磁石 21に対向する面の外面には、真空容器カバー 34と 人体や寝台とが接触したことを検出するタツチセンサ 64が取り付けられている。このタ ツチセンサ 64としては、導電性ゴムを銅板で挟み導電性ゴムへ所定圧力が作用する と、ゴムを挟んでいる銅板間が電気的に導通し信号を発する構造のものや、発光ダイ オードとフォトダイオードを対向して配置し、発光ダイオードとフォトトランジスタの間に 物体が位置すると発光ダイオードから発せられる光が遮断され信号を発する構造の ものを用いることができる。  On the other hand, a vacuum vessel cover 34 is disposed on the outer periphery of the solenoid magnet 21 for vacuum insulation. The vacuum vessel cover 34 is hermetically fixed to the flanges 24 and 25 by a flange 35 via bolts (not shown). A magnet position detector (position sensor) 61 for detecting the position of the superconducting magnet 7 and the direction of the magnetic flux generated by the solenoid magnet 21 is attached to the outer peripheral surface of the vacuum vessel cover 34. As this position sensor 61, a known magnetic sensor or optical sensor capable of detecting the center position and the three-axis directions is used. A touch sensor 64 for detecting that the vacuum container cover 34 is in contact with a human body or a bed is attached to the outer surface of the vacuum container cover 34 facing the solenoid magnet 21. The touch sensor 64 has a structure in which a conductive rubber is sandwiched between copper plates and when a predetermined pressure is applied to the conductive rubber, the copper plates sandwiching the rubber are electrically connected to generate a signal, or a light emitting diode. It is possible to use a structure in which photodiodes are arranged so as to face each other, and when an object is positioned between the light emitting diode and the phototransistor, light emitted from the light emitting diode is blocked and a signal is emitted.
[0021] 温度約摂氏マイナス 230度の極低温となるボビン 20、ソレノイド磁石 21、伝熱フラ ンジ 22、コールドステージ 33の周りには、室温の構成材からの輻射熱の侵入を防止 するために積層輻射断熱材 36が卷付けられている。空間 37, 38は、真空ポンプ 39 により、真空配管 40、弁 41、真空配管 42、弁 43を通じて真空排気され、真空断熱空 間を形成する。ヘリウム冷凍機 28でソレノイド磁石 21が極低温に冷却された後は、弁 41, 43が閉じられ、超電導磁石 7と真空配管 40, 42を分離することができる。  [0021] Around the bobbin 20, solenoid magnet 21, heat transfer flange 22, and cold stage 33, which are extremely low temperatures of minus 230 degrees Celsius, are laminated around the room temperature to prevent intrusion of radiant heat from components at room temperature. Radiant insulation 36 is brazed. The spaces 37 and 38 are evacuated by the vacuum pump 39 through the vacuum pipe 40, the valve 41, the vacuum pipe 42, and the valve 43 to form a vacuum insulation space. After the solenoid magnet 21 is cooled to a cryogenic temperature by the helium refrigerator 28, the valves 41 and 43 are closed, and the superconducting magnet 7 and the vacuum pipes 40 and 42 can be separated.
[0022] また、空間 38が真空排気されることにより、ヘリウム冷凍機 28は伝熱フランジ 22へ 大気圧により押し付けられる。コールドステージ 33と伝熱フランジ 22との間にはイン ジゥムシートやグリース等の熱伝導媒体が設けられており、前記大気圧の押し付け力 により伝熱フランジ 22はコールドステージ 33の寒冷で良好に冷却される。  Further, the space 38 is evacuated, whereby the helium refrigerator 28 is pressed against the heat transfer flange 22 by atmospheric pressure. Between the cold stage 33 and the heat transfer flange 22, a heat transfer medium such as an indium sheet or grease is provided, and the heat transfer flange 22 is cooled well by the cold of the cold stage 33 by the pressing force of the atmospheric pressure. The
[0023] 図示を省略された磁石駆動制御回路によって、真空ポンプ 39を運転することで空 間 37、 38を真空排気しながらヘリウム冷凍機 28を運転すると、超電導磁石 21が極 低温に冷却される。そして、超電導磁石 21が極低温に冷却された時点で磁石駆動 制御回路の制御によって励磁電源 44からパワーリード線 45を介してソレノイド磁石 2 1のコイル線 20aへ通電することにより、ソレノイド磁石 21のソレノイド中心部に、例え ば 5テスラの磁界を連続的〖こ発生させることができる。 [0023] When the helium refrigerator 28 is operated while evacuating the spaces 37 and 38 by operating the vacuum pump 39 by the magnet drive control circuit (not shown), the superconducting magnet 21 is cooled to a very low temperature. . When the superconducting magnet 21 is cooled to a cryogenic temperature, the magnet is driven. By energizing the coil wire 20a of the solenoid magnet 21 from the excitation power supply 44 through the power lead wire 45 by the control of the control circuit, a magnetic field of 5 Tesla, for example, is continuously applied to the solenoid center of the solenoid magnet 21. Can be generated.
[0024] 本実施形態の超電導磁石 7の周囲の磁界分布は図 7のようになり、超電導磁石 7を 収容する容器の先端部の中心部付近が最も磁界の強さが強ぐ磁石の軸方向及び 半径方向に対し離れるに従って磁界の強さが弱くなる。すなわち、超電導磁石 7の軸 方向及び半径方向に対し磁気傾斜が発生する。  [0024] The magnetic field distribution around the superconducting magnet 7 of the present embodiment is as shown in FIG. 7, and the axial direction of the magnet having the strongest magnetic field is near the center of the tip of the container housing the superconducting magnet 7. And the strength of the magnetic field decreases with increasing distance from the radial direction. That is, a magnetic gradient is generated in the axial direction and the radial direction of the superconducting magnet 7.
[0025] 本実施形態の磁石構造によれば、フランジ 24とフランジ 35とをボルト(図示せず)で 、フランジ 25とは独立して一体化することができる。このため、この両フランジ 24、 35 に付随する構成部材を一体として構成し、フランジ 25に着脱可能とできる。すなわち 、本実施形態の磁石構造によれば、超電導磁石 7側の構造と、冷却を行うヘリウム冷 凍機 29側の構造とを分離可能とすることができる。従って、異なる仕様の超電導磁石 7であっても、同じフランジ 24 (伝熱部位)に固定可能な超電導磁石であれば、同じ ヘリウム冷凍機 29に取り付けて使用することができる。直径や磁石軸長、磁界強さ等 が異なる超電導磁石 7であって、同じフランジ 24に固定可能な超電導磁石 7を多種 類製作し、その中から必要な仕様の超電導磁石 7をフランジ 25に取り付けられたヘリ ゥム冷凍機 29に組み合わせて使用することができる。この場合、ヘリウム冷凍機 29は 共用できるので磁気誘導型ドラッグデリバリーシステム 1000構築に力かる費用を低 減できる。  [0025] According to the magnet structure of the present embodiment, the flange 24 and the flange 35 can be integrated with the bolt 25 (not shown) independently of the flange 25. For this reason, the structural members attached to both the flanges 24 and 35 can be integrally formed and can be attached to and detached from the flange 25. That is, according to the magnet structure of the present embodiment, the structure on the superconducting magnet 7 side and the structure on the helium refrigerator 29 side for cooling can be separated. Therefore, even if the superconducting magnets 7 have different specifications, they can be used by being attached to the same helium refrigerator 29 as long as they are superconducting magnets that can be fixed to the same flange 24 (heat transfer part). A variety of superconducting magnets 7 with different diameters, magnet shaft lengths, magnetic field strengths, etc., that can be fixed to the same flange 24, are manufactured, and superconducting magnets 7 with the required specifications are attached to the flange 25. It can be used in combination with the helium refrigerator 29. In this case, since the helium refrigerator 29 can be shared, the cost for constructing the magnetic induction type drug delivery system 1000 can be reduced.
[0026] 次に、磁場発生装置 1200の詳細について図 1を用いて説明する。なお、本実施形 態では、各血管分岐部において磁性薬剤の磁気誘導を行うため、血管分岐部毎に 超電導磁石 7を設ける。図 1は、患部までの血管の分岐部が 3箇所である場合の例で ある。すなわち、本実施形態の磁場発生装置 1200は、 3箇所の血管分岐部におい て磁性薬剤の磁気誘導を行なうために、前記超電導磁石 7を 3セット備えて ヽる。  Next, details of the magnetic field generator 1200 will be described with reference to FIG. In this embodiment, a superconducting magnet 7 is provided for each blood vessel branch portion in order to perform magnetic induction of the magnetic drug in each blood vessel branch portion. Fig. 1 shows an example in which there are three branches of blood vessels up to the affected area. That is, the magnetic field generator 1200 of this embodiment includes three sets of the superconducting magnets 7 in order to perform magnetic induction of the magnetic drug at the three blood vessel branch portions.
[0027] 各超電導磁石 7は、治療用ベッド 210が置かれた治療室の床に敷設されたレール 10と、このレール 10上を駆動車輪 12によって移動可能な駆動部収納ボックス 11と、 この駆動部収納ボックス 11の上面に立設された支柱 80と、この支柱 80の上端部から 延びる自在アーム 90とから成る磁石保持機構 200によって支持される。 [0028] 磁石保持機構 200を構成する構成要件の詳細を説明する。前記レール 10は、治 療用ベッド 210の長手方向に沿って、ベッド 210に隣接して治療室の床面へ配置さ れ、駆動部収納ボックス 11の駆動車輪 12の移動方向を規制する。駆動部収納ボッ タス 11は、内部空間に駆動車輪 12を駆動する電磁ブレーキ付モータとその駆動回 路と歯車機構とから成る駆動部(図示省略)を収納するものである。この駆動部収納 ボックス 11は、前記モータへノ ルス電圧を印加することによりモータを駆動するととも に、その回転数又は回転角度をエンコーダにて計測することで、駆動部収納ボックス 11の移動距離を制御できるようになって!/、る。 [0027] Each superconducting magnet 7 includes a rail 10 laid on the floor of a treatment room on which a treatment bed 210 is placed, a drive unit storage box 11 movable on the rail 10 by drive wheels 12, and a drive It is supported by a magnet holding mechanism 200 comprising a column 80 standing upright on the upper surface of the section storage box 11 and a free arm 90 extending from the upper end of the column 80. [0028] Details of the constituent elements constituting the magnet holding mechanism 200 will be described. The rail 10 is disposed on the floor surface of the treatment room adjacent to the bed 210 along the longitudinal direction of the treatment bed 210 and regulates the moving direction of the drive wheels 12 of the drive unit storage box 11. The drive unit storage button 11 stores a drive unit (not shown) including an electromagnetic brake motor for driving the drive wheels 12, a drive circuit, and a gear mechanism in the internal space. The drive unit storage box 11 drives the motor by applying a noise voltage to the motor, and measures the rotation speed or rotation angle with an encoder, so that the moving distance of the drive unit storage box 11 is increased. You can control! /
[0029] 支柱 80は、駆動部収納ボックス 11の上面へネジ止め、又は溶接等で固定された中 空状の柱であり、その先端が床面力 所定の高さに位置するように長さが設定されて いる。そして、支柱 80の上端には、自在アーム 90の駆動制御を司る自在アーム駆動 制御機構(図示省略)を収納したアーム駆動部収納ボックス 13が配置されて 、る。自 在アーム 90は、図 1に示すように、第 1アーム 14と、第 1回転関節部 15と、第 2アーム 16と、第 2回転関節部 17と、第 3アーム 18と、第 3アーム 18の先端へ設けられた超電 導磁石容器ホルダー 19とからなる。第 1アーム 14の軸中心周りの回転と、第 1回転関 節部 15の平面的回転(円筒の中心軸周りの回転)と、第 2回転関節部 17の平面的回 転との 3つの動作を自在アーム駆動制御機構によって制御することで、自在アーム 9 0は、実空間において、第 3アームの先端へ取り付けられた超電導磁石 7の先端の中 心位置を任意の位置へ、かつ、超電導磁石 7の軸中心の方向を任意の方向へ移動 制御する。このような自在アーム 90は、溶接ロボットや組立ロボットの技術を転用する ことで実現が可能であるので、ここでは詳細な説明は省略する。  [0029] The support column 80 is a hollow pillar fixed to the upper surface of the drive unit storage box 11 by screwing or welding or the like, and has a length so that the tip thereof is positioned at a predetermined height on the floor surface force. Is set. At the upper end of the support 80, an arm drive unit storage box 13 storing a free arm drive control mechanism (not shown) that controls the drive of the free arm 90 is disposed. As shown in FIG. 1, the self-arm 90 includes a first arm 14, a first rotary joint 15, a second arm 16, a second rotary joint 17, a third arm 18, and a third arm. And a superconducting magnet container holder 19 provided at the tip of 18. Three motions: rotation around the axis of the first arm 14, planar rotation of the first rotation joint 15 (rotation around the central axis of the cylinder), and rotation of the second rotation joint 17 Is controlled by the universal arm drive control mechanism, so that the universal arm 90 can move the center position of the superconducting magnet 7 attached to the tip of the third arm to an arbitrary position in the real space and the superconducting magnet. Move and control the direction of the axis center of 7 in any direction. Such a universal arm 90 can be realized by diverting the technology of a welding robot or an assembly robot, and therefore detailed description thereof is omitted here.
[0030] なお、支柱 80は、伸縮可能な構造を有し、駆動制御機構により高さを制御可能な 構成であってもよい。伸縮可能な構造として、例えば、 2重の円筒構造であって、内 側円筒が外側円筒に対して油圧などにより上下する機構を有するものを採用すること ができる。また、支柱 80は、手動で移動可能なように構成してもよい。この場合、後述 する制御装置 220は、支柱 80がネジ止めされている駆動部収納ボックス 11の車輪 の回転量から移動量を検出する。  [0030] It should be noted that the support column 80 may have a structure that can be expanded and contracted, and the height can be controlled by a drive control mechanism. As the expandable structure, for example, a double cylindrical structure having a mechanism in which the inner cylinder moves up and down with respect to the outer cylinder by hydraulic pressure or the like can be adopted. Further, the support column 80 may be configured to be manually movable. In this case, the control device 220 described later detects the movement amount from the rotation amount of the wheel of the drive unit storage box 11 to which the support column 80 is screwed.
[0031] 図 3に示したヘリウム冷凍機 29、真空ポンプ 39、励磁電源 44及び磁石駆動制御 回路(図示省略)は駆動部収納ボックス 11内に配置され、高圧ヘリウムガス配管 30、 低圧ヘリウムガス配管 31、パワーリード線 45は、支柱 80内および支柱上部のアーム 駆動部収納ボックス 13を通り、束ねて可撓性を有する例えば蛇腹状の高分子材料で 製作された保護チューブ 46に収納され、超電導磁石容器 7に連結されている。保護 チューブ 46は、各アームに設置した支持リング 47によって保持される。 [0031] Helium refrigerator 29, vacuum pump 39, excitation power supply 44 and magnet drive control shown in FIG. The circuit (not shown) is arranged in the drive unit storage box 11, and the high-pressure helium gas pipe 30, the low-pressure helium gas pipe 31, and the power lead wire 45 pass through the arm drive unit storage box 13 in the column 80 and at the top of the column, They are bundled and stored in a protective tube 46 made of, for example, a bellows-like polymer material having flexibility, and connected to the superconducting magnet container 7. The protection tube 46 is held by a support ring 47 installed on each arm.
[0032] 図 1に示す実施形態では、抽出又は特定された血管分岐部毎に設けられた合計 3 セットの超電導磁石 7のうち、患者の最も下肢方向に位置する超電導磁石 7を支持す る磁石保持機構 200の支柱 80の高さを他のものよりも低く設定して ヽるが、各支柱 8 0の高さは必要に応じて設定してもよいし、または支柱 80の高さを変更する変わりに 、アーム駆動部収納ボックス 13を支柱の側面で上下方向へ移動可能に設けて、自 在アーム 90の移動可能な範囲を拡大してもよ 、。  [0032] In the embodiment shown in Fig. 1, among the total three sets of superconducting magnets 7 provided for each extracted or identified blood vessel bifurcation, a magnet that supports the superconducting magnet 7 located in the patient's lower limb direction. The height of the support 80 of the holding mechanism 200 is set lower than the others, but the height of each support 80 may be set as necessary, or the height of the support 80 is changed. Instead, the arm drive unit storage box 13 may be provided so as to be movable in the vertical direction on the side of the column, so that the movable range of the own arm 90 can be expanded.
[0033] 制御装置 220は、画像解析装置 1100が求めた患者体内の血管分岐部の位置情 報を受けとり、自在アーム 90に取り付けられた超電導磁石 7の配置位置および方向 を決定し、決定した位置および方向に配置するよう前記駆動部収納ボックス 11 (支柱 80)の位置と前記自在アーム 90の移動とを制御する。制御装置 220から駆動部収納 ボックス 11及びアーム駆動部収納ボックス 13への電源供給並びに制御信号の供給 のために、制御装置 220から駆動部収納ボックス 11へケーブルが接続されて 、る。 アーム駆動部収納ボックス 13への電源供給及び制御信号の供給は、駆動部収納ボ ックス 11にて中継され、支柱 80の内壁又は外壁に沿ってアーム駆動部収納ボックス 13へ延伸されるケーブルを通じて行われる。なお、他の形態として、電源供給にかか わらない制御信号の供給には、制御装置 220と、駆動部収納ボックス 11並びにァー ム駆動部収納ボックス 13との間での無線信号による信号伝達機構、例えば電磁波、 赤外線を用いた信号伝達機構を用いることができる。なお、制御装置 220は、メモリと CPUとを備え、予めメモリに格納されたプログラムを CPUが実行することにより各制 御を実現する。  [0033] The control device 220 receives the position information of the blood vessel bifurcation in the patient obtained by the image analysis device 1100, determines the arrangement position and direction of the superconducting magnet 7 attached to the universal arm 90, and determines the determined position. The position of the drive unit storage box 11 (the column 80) and the movement of the universal arm 90 are controlled so as to be arranged in the direction. A cable is connected from the control device 220 to the drive unit storage box 11 to supply power and control signals from the control unit 220 to the drive unit storage box 11 and the arm drive unit storage box 13. Supply of power and control signals to the arm drive unit storage box 13 is relayed by the drive unit storage box 11 and is performed through a cable extending to the arm drive unit storage box 13 along the inner wall or outer wall of the support column 80. Is called. As another form, signal transmission by radio signals between the control device 220, the drive unit storage box 11 and the arm drive unit storage box 13 is performed for the supply of control signals regardless of the power supply. A mechanism such as a signal transmission mechanism using electromagnetic waves or infrared rays can be used. The control device 220 includes a memory and a CPU, and each control is realized by the CPU executing a program stored in the memory in advance.
[0034] 次に、本第 1の実施形態による磁気誘導型ドラッグデリバリーシステム 1000の動作 を説明する。図 11は、本実施形態の磁気誘導型ドラッグデリバリーシステム 1000の 動作により実現される磁気誘導ドラッグデリバリー処理のフローである。なお、本実施 形態では、患者の疾患部は既に前もって行なわれた画像診断及び病理診断によつ て特定されているものとする。それが特定されていない場合には、事前に画像診断 装置、例えば MRI装置、 X線 CT装置、 X線撮影装置、超音波診断装置、 PET(Posi tronEmissionTomography)装置等で患者を撮像し、画像診断並びに病理診断を 合わせて行い、疾患部を特定する。 Next, the operation of the magnetic induction drug delivery system 1000 according to the first embodiment will be described. FIG. 11 is a flow of magnetic induction drug delivery processing realized by the operation of the magnetic induction type drug delivery system 1000 of the present embodiment. This implementation In the form, it is assumed that the diseased part of the patient has already been identified by the image diagnosis and pathological diagnosis performed in advance. If it is not specified, the patient is imaged in advance using a diagnostic imaging device such as an MRI device, X-ray CT device, X-ray imaging device, ultrasound diagnostic device, or PET (Positron Emission Tomography) device. In addition, pathological diagnosis is also performed to identify the diseased part.
[0035] 患者の疾患部が特定された後、心臓から患部までの領域の 3次元血流イメージを 取得する(3次元血流イメージ取得処理:ステップ 2000)。本処理は、画像診断装置 1100で行う。本実施形態では、 MRI装置 100である。静脈注射された磁性薬剤は、 静脈→心臓→肺→心臓→動脈→血管分岐部→患部という経路を通って流れるため 、操作者は心臓から患部までの間の血管分岐部の位置を患者の実空間データとして 把握することが求められるためである。 [0035] After the diseased part of the patient is identified, a 3D blood flow image of the region from the heart to the affected part is acquired (3D blood flow image acquisition process: step 2000). This processing is performed by the diagnostic imaging apparatus 1100. In the present embodiment, the MRI apparatus 100 is used. Since the magnetic drug injected intravenously flows through the route of vein → heart → lung → heart → artery → blood vessel bifurcation → affected area, the operator can determine the position of the blood vessel bifurcation between the heart and the affected area. This is because it is required to grasp it as spatial data.
[0036] 操作者は、患者 2を MRI装置 100の寝台 120に乗せ、心臓から前記疾患部までの 領域を ROI (Region of Interest:関心領域)として撮像することができるように患 者 2の静磁場発生磁石の計測空間内での位置を決める。そして、 3次元血流イメージ ング用パルスシーケンスを選択して、 MR撮像の準備を行なう。 3次元血流イメージン グは、心臓力 疾患部までの間の血管の描出並びにそれらの間の血管の分岐の描 出ができればよ!、ので、撮像に先立ってガドリニウムを含む MR造影剤を患者へ注入 してちよいし、注人しなくてちょい。  [0036] The operator places the patient 2 on the bed 120 of the MRI apparatus 100, and allows the patient 2 to statically image the region from the heart to the diseased part as an ROI (Region of Interest). Determine the position of the magnetic field generating magnet in the measurement space. Then select the 3D blood flow imaging pulse sequence and prepare for MR imaging. 3D blood flow imaging only needs to be able to depict blood vessels up to the heart force disease area and blood vessels branching between them, so an MR contrast agent containing gadolinium can be applied to the patient prior to imaging. You can inject it into your mouth and don't pour it.
[0037] MRI装置 100の 1回の撮像における最大 FOV(FieldofView)は静磁場発生磁石 の均一磁場のサイズによる制限を受けるので、 3次元血流イメージングの前記 ROIが MRI装置 100の最大 FOVを超える場合には、撮像を複数回に分けて行う必要があ る。このような場合には、前記マルチステーション MRA法や MOTSA (Multi— Over lapping thin Slab Acquisition)法等の撮影テクニックを用いることができる。  [0037] Since the maximum FOV (FieldofView) in one imaging of the MRI apparatus 100 is limited by the size of the uniform magnetic field of the static magnetic field generating magnet, the ROI of 3D blood flow imaging exceeds the maximum FOV of the MRI apparatus 100 In this case, it is necessary to divide the imaging into multiple times. In such a case, imaging techniques such as the multi-station MRA method and MOTSA (Multi-Overlapping thin Slab Acquisition) method can be used.
[0038] 上記撮像パルスシーケンスの選択の他に、撮像パラメータ(FOV、スラブ厚、画像 マトリクスサイズ、 T1又は T2etc. )を設定するとともに、後述する超電導磁石 7の(実 空間上での)位置制御のための基準位置となるマーカ 71を患者 2の体の表面に配置 する。このマーカ 71は、核磁気共鳴現象に好適に感応する媒体、例えば水を封入し た細い管状体 72と、この管状体 72に結合された位置情報発信装置 73とから成る。 位置情報発信装置 73は、例えば磁気センサの磁気発信器や光学的センサの赤外 線発信器を用いることができる。また、位置情報発信装置 73は、マーカ 71から着脱 可能な構成としてもよい。 [0038] In addition to the selection of the imaging pulse sequence described above, the imaging parameters (FOV, slab thickness, image matrix size, T1 or T2 etc.) are set, and the superconducting magnet 7 described later (in real space) is controlled. Place a marker 71 on the surface of patient 2 as a reference position. The marker 71 is composed of a thin tubular body 72 enclosing a medium suitably sensitive to the nuclear magnetic resonance phenomenon, for example, water, and a position information transmitting device 73 coupled to the tubular body 72. As the position information transmitter 73, for example, a magnetic transmitter of a magnetic sensor or an infrared transmitter of an optical sensor can be used. Further, the position information transmission device 73 may be configured to be detachable from the marker 71.
[0039] このマーカ 71のうち、水を封入した管状体 72は、 MR撮像の FOV内であって、患 者を平面視したとき (仰臥位で撮像したときと同義)に撮像対象の血管や患部と管状 体 72とが重複しな 、ような位置に置かれ、 3次元血流イメージに写し込まれるように する。 [0039] Among the markers 71, the tubular body 72 in which water is sealed is within the FOV of MR imaging, and when the patient is viewed in plan (synonymous with imaging in the supine position) The affected part and the tubular body 72 are placed in such a position that they do not overlap with each other so that they are reflected in the three-dimensional blood flow image.
[0040] 患者の撮影位置決めを含む撮像準備が完了すると、操作者は撮像開始指令を操 作用コンソール 140から入力する。操作用コンソール 140を介して撮像開始指令を 受け付けると、制御部 130は、前記照射系、傾斜磁場電源並びに受信系を制御し、 RFパルスの照射と傾斜磁場の印加と、 MR信号の受信とを予め指示されて ヽる撮像 パルスシーケンスに則って行 ヽ、 3次元血流イメージングのための 3次元 MR信号計 測(3次元血流計測)、すなわち、 MR信号に、位相エンコード、周波数エンコード、ス ライスエンコードを付与する 3次元計測を行なう。 3次元血流計測により得られた MR 信号は、 3次元 k空間に対応するメモリ領域に計測毎に格納される。そして、 3次元血 流計測が完了すると、制御部 130は、メモリ空間に記憶された MR信号を 3次元フー リエ変換し、画像再構成を行う。以上により 3次元血流イメージが得られる。  [0040] When imaging preparation including imaging and positioning of the patient is completed, the operator inputs an imaging start command from the operation console 140. When the imaging start command is received via the operation console 140, the control unit 130 controls the irradiation system, the gradient magnetic field power source, and the reception system, and performs irradiation of the RF pulse, application of the gradient magnetic field, and reception of the MR signal. Imaging performed in advance according to the pulse sequence 3D MR signal measurement for 3D blood flow imaging (3D blood flow measurement), that is, MR signal, phase encoding, frequency encoding, scanning Performs 3D measurement with rice encoding. MR signals obtained by 3D blood flow measurement are stored for each measurement in the memory area corresponding to 3D k-space. When the 3D blood flow measurement is completed, the control unit 130 performs 3D Fourier transform on the MR signal stored in the memory space, and performs image reconstruction. A three-dimensional blood flow image is obtained as described above.
[0041] この 3次元血流イメージは、前記 3つのエンコード方向を、実空間に置かれた患者 の体軸方向と、体軸に直交する 2方向、例えば寝台に平行な方向とそれに直行する 方向の 2方向との 3方向にそれぞれ対応させることで、実空間に対応した 3次元位置 情報を有している。また、予め定められている、 3次元血流イメージ内の 1画素(ピクセ ル)に対する実空間の長さを用い、 3次元イメージ内の距離は、実空間における距離 に容易に変換できる。  [0041] In this three-dimensional blood flow image, the three encoding directions are the body axis direction of the patient placed in the real space, the two directions orthogonal to the body axis, for example, the direction parallel to the bed and the direction orthogonal thereto. The three-dimensional position information corresponding to the real space is obtained by making them correspond to the three directions. In addition, the distance in the 3D image can be easily converted to the distance in the real space using the predetermined length of the real space for one pixel (pixel) in the 3D blood flow image.
[0042] 次に、画像解析装置 1100は、取得した 3次元血流イメージ上で、心臓から患部に 連なる血管系統を特定し、特定された血管系統上の血管分岐部の抽出を行う(血管 分岐部抽出処理:ステップ 2010)。なお、 3次元血流イメージは、 MRI装置 100の制 御部 130に内蔵された画像解析装置 1100へ送られるとともにディスプレイ 150の画 面に表示される。ディスプレイ 150の表示画面に 3次元血流イメージが表示されるに 際して、制御装置 130は、 3次元血流イメージに磁気誘導型ドラッグデリバリーシステ ム 1000の置かれた実空間座標系と同じく直交する 3次元座標系を付与する。図 4は MRI装置 100によって得られた患者 2の 3次元血流イメージを示している。本図を用 いて、血管分岐部抽出処理の手順を説明する。 [0042] Next, the image analysis apparatus 1100 identifies the vascular system that is connected to the affected area from the heart on the acquired three-dimensional blood flow image, and extracts the vascular bifurcation on the identified vascular system (vascular divergence). Part extraction processing: step 2010). The 3D blood flow image is sent to the image analysis apparatus 1100 built in the control unit 130 of the MRI apparatus 100 and displayed on the screen of the display 150. The 3D blood flow image is displayed on the display screen of Display 150. At this time, the control device 130 gives the three-dimensional blood flow image a three-dimensional coordinate system that is orthogonal to the real space coordinate system where the magnetic induction type drug delivery system 1000 is placed. FIG. 4 shows a 3D blood flow image of patient 2 obtained by the MRI apparatus 100. The procedure of the blood vessel bifurcation extraction process will be described with reference to FIG.
[0043] 画像解析装置 1100へ 3次元血流イメージが送られると、画像解析装置 1100は、ま ず、 3次元血流イメージ上で心臓 300と患部 310とを繋ぐ血管系統を特定及び抽出 する。画像解析装置 1100は、この心臓 300と患部 310とを繋ぐ血管系統の特定及 び抽出を、心臓 300近傍の A点と患部 310近傍の B点との 2点間の公知の血流領域 抽出法、例えば領域拡張法 (リージヨングローイング法)により行なう。なお、上記 A点 と B点とは、操作者がディスプレイ 150に表示された 3次元血流イメージを目視観察し 、位置情報入力操作器 160を手動操作することにより指定される。例えば、カーソル で指定する、または、 A点、 B点の座標を入力するなどである。  [0043] When the 3D blood flow image is sent to the image analysis device 1100, the image analysis device 1100 first identifies and extracts a blood vessel system connecting the heart 300 and the affected area 310 on the 3D blood flow image. The image analysis apparatus 1100 identifies and extracts the vascular system that connects the heart 300 and the affected part 310, and extracts a known blood flow region between two points, the point A near the heart 300 and the point B near the affected part 310. For example, it is performed by the region expansion method (the region growing method). The points A and B are designated by the operator visually observing the three-dimensional blood flow image displayed on the display 150 and manually operating the position information input operator 160. For example, specify with the cursor or enter the coordinates of point A and B.
[0044] 心臓 300と患部 310とを繋ぐ血流 (血管系統)の特定および抽出を終えると、画像 解析装置 1100は、抽出した血管系統中の分岐部 (血管分岐部)を抽出及び特定す る。ここで特定される血管分岐部は超電導磁石 7のターゲットとなる。  [0044] When the identification and extraction of the blood flow (blood vessel system) connecting the heart 300 and the affected area 310 is completed, the image analysis apparatus 1100 extracts and specifies the branch (blood vessel branch) in the extracted blood vessel system. . The blood vessel branch portion specified here becomes a target of the superconducting magnet 7.
[0045] 血管分岐部を抽出し、特定するする方法としては幾つかの方法が考えられる。その  [0045] There are several possible methods for extracting and specifying the blood vessel bifurcation. That
1つは、操作者がディスプレイ 150に表示された 3次元血流イメージを観察しながら血 管分岐部を抽出し特定する方法である。この場合、血管分岐部の抽出は操作者が 3 次元血流イメージを目視観察し、前記の位置情報入力装置 160を用いて、図 4に示 すように血管分岐部 Nl, N2をカーソルにより、または、座標点 Nl, N2を入力すること により指定する。画像解析装置 1100は、操作者から血管分岐部の指定を受け付け、 その座標を記憶する。なお、 3次元血流イメージの撮像データを通常倍率で表示して も見にくいことがある。その場合には、血管分岐部を含む小領域を拡大表示して上記 入力操作が容易にできるようにしてもょ 、。  One is a method in which an operator extracts and identifies a blood vessel bifurcation while observing a three-dimensional blood flow image displayed on the display 150. In this case, the blood vessel bifurcation is extracted by the operator visually observing the three-dimensional blood flow image, and using the position information input device 160, the blood vessel bifurcations Nl and N2 are moved with the cursor as shown in FIG. Or, specify by inputting coordinate points Nl and N2. The image analysis apparatus 1100 receives the designation of the blood vessel bifurcation from the operator and stores the coordinates. Note that it may be difficult to view even if the 3D blood flow image data is displayed at normal magnification. In that case, you may enlarge the small area including the blood vessel bifurcation to facilitate the above input operation.
[0046] また、操作者は、ディスプレイ 150の画面に表示された 3次元血流イメージ上で、前 記マーカを目視観察により特定し、前記位置情報入力装置 160を用いてマーカ位置 をカーソルにより、または、マーカ位置を特定する座標点 Xを入力することにより指定 する。画像解析装置 1100は、操作者が指定したマーカ位置を受け付け、その座標 を記憶する。 [0046] Further, the operator specifies the marker by visual observation on the three-dimensional blood flow image displayed on the screen of the display 150, and uses the position information input device 160 to locate the marker position with the cursor. Or, specify by inputting the coordinate point X that specifies the marker position. The image analysis device 1100 receives the marker position specified by the operator and coordinates Remember.
[0047] また血管分岐部の抽出および特定は画像解析装置 1100自身で行なわせるように することもできる。この方法を図 5を用いて説明する。まず、前述のように、心臓 300と 患部 310とを繋ぐ血管(血流)系統を前述の如ぐ A点と B点とにより特定および抽出 する。その抽出された血管の分枝血管を含めた全ての血管の中心線抽出処理を実 行する。そして、心臓 300と患部 310とを繋ぐ動脈と分枝血管との中心線同士が交わ る点(これが分岐点である)の全て、例えば図 5に示す分岐点 Ml、 M2、 M3から、心 臓 300と患部 310とを繋ぐ血管上に位置する分岐点 Ml、 M2のみを選択的に残して 血管分岐部とし、残余の分岐点を除外する処理を行う。以上の処理により、本実施形 態で必要な血管分岐部を抽出および特定できる。なお、中心線処理による血管分岐 部を抽出する技術は、特許文献 3に開示されている。  [0047] The extraction and specification of the blood vessel bifurcation may be performed by the image analysis apparatus 1100 itself. This method will be described with reference to FIG. First, as described above, the blood vessel (blood flow) system connecting the heart 300 and the affected part 310 is specified and extracted by the points A and B as described above. The center line extraction processing of all blood vessels including the branch blood vessels of the extracted blood vessels is executed. Then, from all the points (this is a branch point) where the arterial line connecting the heart 300 and the affected part 310 intersects the branch line, for example, branch points Ml, M2, and M3 shown in FIG. Only the branch points Ml and M2 located on the blood vessel connecting 300 and the affected part 310 are selectively left as a blood vessel branch part, and the remaining branch points are excluded. Through the above processing, the necessary blood vessel bifurcation can be extracted and specified in the present embodiment. A technique for extracting a blood vessel bifurcation by centerline processing is disclosed in Patent Document 3.
特許文献 3 :特開 2006— 42969号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2006-42969
[0048] 画像解析装置 1100により血管分岐部を抽出および特定する場合、画像解析装置 1100は、操作者力も血管分岐部の抽出および特定を行うよう指示を受け付けると、 上記処理を行い、本実施形態で必要な血管分岐部を抽出および特定し、記憶する。 この場合も、画像解析装置 1100は、基準位置となるマーカ位置の入力を操作者力 受け付け、記憶する。  When the blood vessel branch is extracted and specified by the image analysis device 1100, the image analysis device 1100 performs the above-described processing when receiving an instruction for the operator force to also extract and specify the blood vessel branch, and this embodiment Extract and identify necessary blood vessel bifurcations and store them. Also in this case, the image analysis apparatus 1100 accepts and stores the input of the marker position as the reference position.
[0049] なお、血管分岐部の抽出および特定の処理において、マーカ位置の検出を画像 解析装置 1100が行うよう構成してもよい。すなわち、画面上で特異的な信号強度を 示す部材 (水、磁性体などの物質を充填した三角形、四角形などの特徴的な形状を 有するもの)でマーカを構成し、その位置を画像処理により自動認識する。また、マー 力ではなぐ生体の特徴部位、例えば、肋骨弓下等を、位置を特定する指標として用 いるよう構成してちょい。  [0049] It should be noted that in the extraction and specific processing of the blood vessel bifurcation, the image analysis apparatus 1100 may be configured to detect the marker position. In other words, a marker is composed of a member that shows a specific signal intensity on the screen (having a characteristic shape such as a triangle or quadrangle filled with a substance such as water or magnetic substance), and its position is automatically processed by image processing. recognize. In addition, it should be configured so that a characteristic part of the living body that is not the merging force, such as under the radial arch, is used as an index for specifying the position.
[0050] 以上のように、血管分岐部 Nl, N2, · · ·又は Ml, M2, · · ·と、 3次元血流イメージ の基準点としてのマーカの位置 Xとが特定されると、画像解析装置 1100は、 3次元 血流イメージ空間上における血管分岐部 Nl, N2, · · ·又は Ml, M2, · · ·の、実空間 上のマーカの位置 Xの座標を基準とした座標を計算する (実空間座標変換処理:ス テツプ 2020)。以上の過程を経ることによって、心臓 300と患部 310とを繋ぐ血管上 に位置する血管分岐部、すなわち超電導磁石 7のターゲットを 3次元血流イメージ上 力 抽出し特定することができる。なお、得られた各血管分岐部の実空間上の座標は 、それぞれ、血管分岐部を特定する情報に対応付けて記憶される。なお、実空間座 標に変換する際、基準とする座標は、マーカ 71の位置に相当する位置の実空間座 標を直接入力するよう構成してもよい。画像解析装置 1100は、操作者カゝら受け付け た座標を用いて各血管分岐部の実空間座標を計算する。この場合は、 3次元血流ィ メージを撮影する際、マーカ 71 (管状体 72)を設けなくてもよい。 [0050] As described above, when the blood vessel bifurcation Nl, N2, ··· or Ml, M2, ··· and the marker position X as the reference point of the three-dimensional blood flow image are specified, The analysis device 1100 calculates the coordinates of the blood vessel bifurcation Nl, N2, ··· or Ml, M2, ··· on the 3D blood flow image space with reference to the coordinate X of the marker in the real space (Real space coordinate transformation processing: Step 2020). By going through the above process, on the blood vessels connecting the heart 300 and the affected area 310 The blood vessel bifurcation located at, that is, the target of the superconducting magnet 7 can be extracted and identified on the 3D blood flow image. The obtained coordinates in the real space of each blood vessel branch are stored in association with information for specifying the blood vessel branch. Note that when converting to a real space coordinate, the reference coordinate may be configured to directly input a real space coordinate at a position corresponding to the position of the marker 71. The image analysis apparatus 1100 calculates the real space coordinates of each blood vessel bifurcation using the coordinates received by the operator. In this case, the marker 71 (tubular body 72) does not have to be provided when photographing a three-dimensional blood flow image.
[0051] 実空間座標変換処理後、画像解析装置 1100は、抽出した各血管分岐部の情報を 制御部 220に送信する。制御部 220は、受信した情報を用いて各血管分岐部つい て、超電導磁石 7の向き(配置方向)、すなわち、超電導磁石 7による磁束の中心方 向を決定する(配置方向決定処理:ステップ 2030)。超電導磁石 7による磁束の中心 方向を決めるには、各血管分岐部における血管の走行方向の情報が必要である。 超電導磁石 7によって磁性薬剤を血管分岐部で患部へ連なる血管方向へ吸引する ためである。以下、超電導磁石 7の配置方向を決定するために、制御部 220が行う処 理について、図 6を参照して説明する。  [0051] After the real space coordinate conversion processing, the image analysis device 1100 transmits the extracted information of each blood vessel branching unit to the control unit 220. The control unit 220 determines the direction (arrangement direction) of the superconducting magnet 7 for each blood vessel bifurcation using the received information, that is, the direction of the center of the magnetic flux by the superconducting magnet 7 (arrangement direction determination process: step 2030). ). In order to determine the center direction of the magnetic flux by the superconducting magnet 7, information on the traveling direction of the blood vessel at each blood vessel branching portion is required. This is because the superconducting magnet 7 attracts the magnetic drug in the blood vessel branching direction toward the affected blood vessel. Hereinafter, processing performed by the control unit 220 to determine the arrangement direction of the superconducting magnet 7 will be described with reference to FIG.
[0052] ここでは、抽出された血管分岐部は N個(Nは自然数。 )と仮定する。制御部 220は 、 n番目(nは N以下の自然数。)の血管分岐部 Nnにおいて、血管分岐部 Nnの上流 側及び下流側の、血管分岐部 Nnから所定距離に位置する血管の中心点をそれぞ れ Un及び Dnと定める。そして、 3点(Un, Nn, Dn)を含む 2等辺三角平面を特定す る。そして、 2等辺三角平面をなす辺 (Un, Nn)と辺(Dn, Nn)とのなす角度 (頂角) を 2等分する直線を前記 2等辺三角平面上で求め、辺 (Un, Dn)と交わる点を Cnと する。直線 (Nn, Cn)の方向を超電導磁石 7の配置方向、すなわち超電導磁石 7〖こ よる磁束の中心方向と決定する。超電導磁石 7は、その磁束中心を、直線 (Nn、 Cn) に一致させて、 3次元血流イメージ上で直線 (Nn, Cn)の点 Cn側の延長上で、患者 2の体表面に接近した位置 (Fn:配置位置)〖こ配置されることとなる。なお、 Un、 Dn は、操作者が入力するよう構成してもよい。また、超電導磁石 7の配置方向自体を操 作者が画面上で指定するよう構成してもよい。制御部 220は、操作者の入力を受け 付け、超電導磁石 7の配置位置 Fnおよび配置方向を決定する。 [0053] なお、直線 (Nn, Cn)が超電導磁石 7の磁束中心に一致するように超電導磁石 7を 配置することが望ましいと考えられる力 人体表面は 3次元的な凹凸が入り組んで形 成されているので、直線 (Nn, Cn)上に超電導磁石 7を配置すると超電導磁石 7と血 管分岐部との間の距離が離れすぎることがあり得る。そのような場合には、超電導磁 石 7の方向を血管分岐部へ向けることを優先的に考慮して、その磁束中心を若干直 線 (Nn, Cn)力 ずらす調整を行なってもよい。制御部 220は、以上の処理を心臓 3 00から患部 310に繋がる血管上の血管分岐部全てについて実行し、各血管分岐部 における超電導磁石 7の配置方向をそれぞれ決定する。制御部 220は、決定した配 置方向を、各血管分岐部 Nnを特定する情報および座標に対応づけてそれぞれ記 憶する。 Here, it is assumed that the number of extracted blood vessel bifurcations is N (N is a natural number). In the n-th (n is a natural number less than or equal to N) blood vessel branching portion Nn, the control unit 220 determines the center point of the blood vessel located at a predetermined distance from the blood vessel branching portion Nn upstream and downstream of the blood vessel branching portion Nn. They are defined as Un and Dn, respectively. Then, an isosceles triangular plane including three points (Un, Nn, Dn) is specified. Then, a straight line that bisects the angle (vertical angle) between the side (Un, Nn) and the side (Dn, Nn) forming the isosceles triangular plane is obtained on the isosceles triangular plane, and the side (Un, Dn Let Cn be the point that intersects). The direction of the straight line (Nn, Cn) is determined as the arrangement direction of the superconducting magnet 7, that is, the center direction of the magnetic flux by the superconducting magnet 7 磁石. The superconducting magnet 7 has its magnetic flux center aligned with the straight line (Nn, Cn) and approaches the body surface of the patient 2 on the extension of the straight line (Nn, Cn) on the point Cn side on the 3D blood flow image. (Fn: Arrangement position) will be arranged. Note that Un and Dn may be configured to be input by the operator. Alternatively, the operator may designate the arrangement direction of the superconducting magnet 7 on the screen. The control unit 220 receives an operator input and determines the arrangement position Fn and the arrangement direction of the superconducting magnet 7. [0053] It should be noted that the force on which the superconducting magnet 7 is desirably arranged so that the straight line (Nn, Cn) coincides with the magnetic flux center of the superconducting magnet 7 is formed by the three-dimensional unevenness on the human body surface. Therefore, if the superconducting magnet 7 is arranged on the straight line (Nn, Cn), the distance between the superconducting magnet 7 and the blood vessel branch may be too far. In such a case, considering that the direction of the superconducting magnet 7 is directed to the blood vessel bifurcation, the magnetic flux center may be slightly shifted by a straight (Nn, Cn) force. The control unit 220 executes the above processing for all the blood vessel branch portions on the blood vessel connecting from the heart 300 to the affected part 310, and determines the arrangement direction of the superconducting magnet 7 in each blood vessel branch portion. The control unit 220 stores the determined arrangement direction in association with information and coordinates that specify each blood vessel branch portion Nn.
[0054] 以上の処理が抽出された各血管分岐部について行われ、それぞれ、 3次元血流ィ メージ上での超電導磁石 7の先端を配置する配置位置 Fnと配置方向とが決定される 。なお、各超電導磁石 7がいずれの血管分岐部をターゲットとするかは、各超電導磁 石 7の初期の位置と配置位置 Fnとの距離で決定してもよ ヽし、操作者の指示により 決定してもよい。距離で決定する場合は、例えば、各血管分岐部または各配置位置 Fnに、実空間上の超電導磁石 7の初期位置が最も接近しているものを割り当てる。 そして、各超電導磁石 7に割り当てられた配置位置 Fnと配置方向(磁束中心を向け る直線 (Nn, Cn) )が定まると、ターゲットとなる血管分岐部、配置位置および配置方 向は、患者の体に設けられた基準点用マーカに対する実空間上の座標またはべタト ルに変換される。この変換処理は、 3次元血流イメージの画素 1ピクセルの実空間上 におけるサイズ、すなわち「1ピクセルの所定方向サイズ =FOVZ所定方向のェンコ ード数」を元に行なわれる。  [0054] The above processing is performed for each extracted blood vessel bifurcation, and the arrangement position Fn and the arrangement direction in which the tip of the superconducting magnet 7 is arranged on the three-dimensional blood flow image are determined. It should be noted that which vessel bifurcation target each superconducting magnet 7 is determined by the distance between the initial position of each superconducting magnet 7 and the position Fn, and is determined by the operator's instruction. May be. When determining by distance, for example, the one where the initial position of the superconducting magnet 7 in the real space is closest is assigned to each blood vessel bifurcation or each arrangement position Fn. When the placement position Fn assigned to each superconducting magnet 7 and the placement direction (straight line (Nn, Cn) toward the magnetic flux center) are determined, the target blood vessel bifurcation, placement position, and placement direction are determined by the patient. Converted to coordinates or solids in real space with respect to the reference point marker provided on the body. This conversion process is performed based on the size of one pixel of the 3D blood flow image in the real space, that is, “the predetermined direction size of one pixel = FOVZ the number of encodings in the predetermined direction”.
[0055] 以上のように、 3次元血流イメージ上で、各超電導磁石 7の配置位置 Fnと配置方向 とが定まると、制御装置 220は、各超電導磁石 7を定められた位置および方向に配置 する (位置決め処理:ステップ 2040)。以下、位置決め処理について説明する。  [0055] As described above, when the arrangement position Fn and the arrangement direction of each superconducting magnet 7 are determined on the three-dimensional blood flow image, the control device 220 arranges each superconducting magnet 7 in the determined position and direction. (Positioning process: Step 2040). Hereinafter, the positioning process will be described.
[0056] 図 1に示す磁気誘導型ドラッグデリバリーシステム 1000の寝台 210に患者 2が、 3 次元血流イメージの取得時と同じ体位で寝カゝされ、磁気誘導型ドラッグデリバリーシ ステム 1000の電源が投入されると、磁気誘導型ドラッグデリバリーシステム 1000の 制御装置 220が作動し、画像解析装置 1100から超電導磁石 7のターゲット、配置位 置および配置方向に関するデータが取り込まれる。ここで、取り込まれる超電導磁石 7のターゲットに関するデータは、実空間上での超電導磁石 7の配置位置 Fnと、超電 導磁石 7の磁束中心を向ける方向(直線 (Nn, Cn) )を特定するベクトルであり、それ ぞれ、マーカ 72を基準としたデータである。 [0056] Patient 2 is placed on the bed 210 of the magnetically guided drug delivery system 1000 shown in FIG. 1 in the same position as when the 3D blood flow image was acquired, and the magnetically guided drug delivery system 1000 is powered on. When introduced, the magnetic induction type drug delivery system 1000 The control device 220 operates, and data relating to the target, arrangement position, and arrangement direction of the superconducting magnet 7 is acquired from the image analysis apparatus 1100. Here, the data regarding the target of the superconducting magnet 7 to be captured specifies the arrangement position Fn of the superconducting magnet 7 in the real space and the direction (straight line (Nn, Cn)) in which the magnetic flux center of the superconducting magnet 7 is directed. Each vector is data based on the marker 72.
[0057] 制御装置 220は、各超電導磁石 7を現在の位置および向きから、配置方向決定処 理によって求めた配置位置および配置方向に移動させるための制御データを生成 する。このため、まず、制御装置 220は、患者 2の体に設けられたマーカ 72を基準位 置 (座標原点)とする実空間座標系における超電導磁石 7の現在の位置 (初期位置) と超電導磁石 7の向き(初期方向)とを検出する。検出は、図 3に示す超電導磁石 7の 容器に取り付けられた位置センサ 61が、マーカ 72に設けられた位置センサ (基準位 置用) 73に対する自身の位置および方向を検出することにより行われる。制御装置 2 20は、超電導磁石 7の位置センサ 61の出力(初期位置および初期方向)と画像解析 装置 1100から取り込んだデータ (血管分岐部の座標と超電導磁石 7の配置方向)と の差分をとることにより制御データを生成する。  The control device 220 generates control data for moving each superconducting magnet 7 from the current position and orientation to the arrangement position and arrangement direction obtained by the arrangement direction determination process. Therefore, first, the control device 220 determines the current position (initial position) of the superconducting magnet 7 in the real space coordinate system with the marker 72 provided on the body of the patient 2 as the reference position (coordinate origin) and the superconducting magnet 7. Direction (initial direction) is detected. The detection is performed by the position sensor 61 attached to the container of the superconducting magnet 7 shown in FIG. 3 detecting its own position and direction with respect to the position sensor (for reference position) 73 provided on the marker 72. The control device 2 20 calculates the difference between the output (initial position and initial direction) of the position sensor 61 of the superconducting magnet 7 and the data (coordinates of the blood vessel bifurcation and the arrangement direction of the superconducting magnet 7) acquired from the image analysis device 1100. Control data is generated.
[0058] 制御装置 220は、生成した制御データに従って、超電導磁石 7の位置および向き を、画像解析装置 1100が決定した配置位置及び配置方向にするよう制御する。具 体的には、自在アーム駆動制御機構を制御することにより、支柱 80の位置と自在ァ ーム 90に取り付けられた超電導磁石 7の位置及び方向とを制御し、超電導磁石 7を 配置位置に近づけ、かつ、その向きを配置方向とする。なお、制御は、所定時間ごと に、現在の超電導磁石 7の位置 (初期位置)および向き (初期方向)を検出し、それぞ れ、配置位置の座標と配置方向を示すベクトルとの差分をとることにより制御データを 生成し、制御データに従って超電導磁石 7を移動させることを繰り返す、フィードバッ ク制御により行う。差分が 0となった場合、制御装置 220は、位置決めが完了したもの と判断し、制御を終了する。  The control device 220 controls the superconducting magnet 7 so that the position and orientation of the superconducting magnet 7 are set to the placement position and orientation determined by the image analysis device 1100 according to the generated control data. Specifically, by controlling the universal arm drive control mechanism, the position of the support 80 and the position and direction of the superconducting magnet 7 attached to the universal arm 90 are controlled, and the superconducting magnet 7 is brought into the arrangement position. The direction is close and the direction is the arrangement direction. The control detects the current position (initial position) and direction (initial direction) of the superconducting magnet 7 at predetermined time intervals, and takes the difference between the coordinates of the arrangement position and the vector indicating the arrangement direction, respectively. Thus, the control data is generated, and the superconducting magnet 7 is repeatedly moved according to the control data. When the difference becomes 0, the control device 220 determines that the positioning has been completed and ends the control.
[0059] ここで、この超電導磁石 7の位置決め処理の制御過程において、超電導磁石 7の 容器が患者に接触或いは患者を圧迫することを防止する必要がある。これらを防止 するため、超電導磁石 7の容器の先端に設けられたタツチセンサ (接触検出器) 64か らの出力も、超電導磁石 7の位置および方向の制御に用いる。例えば、最初に超電 導磁石 7が患者に接触しない範囲で配置方向のみをフィードバック制御により合致さ せ、その後、タツチセンサ 64からの出力があるまで、超電導磁石 7を血管分岐部に近 づける方向に自在アーム 90を移動制御する。 [0059] Here, in the control process of the positioning process of the superconducting magnet 7, it is necessary to prevent the container of the superconducting magnet 7 from contacting or pressing the patient. To prevent these, a touch sensor (contact detector) 64 provided at the tip of the container of the superconducting magnet 7 is used. These outputs are also used to control the position and direction of the superconducting magnet 7. For example, in the range where first the superconducting magnet 7 does not contact the patient, only the arrangement direction is matched by feedback control, and then the superconducting magnet 7 is moved closer to the blood vessel bifurcation until there is an output from the touch sensor 64. Move and control the arm 90.
[0060] 以上のように超電導磁石 7の位置決めが完了すると、所望の位置および方向に配 置された各超電導磁石 7を用いて、磁性薬剤の磁気誘導による患者の治療が行われ る(磁気誘導処理:ステップ 2050)。まず、制御装置 220は、超電導磁石 7を動作さ せる。ここでは、制御装置 220から、超電導磁石 7を動作させる信号が駆動部収納ボ ックス 11内に設けられる磁石駆動制御回路へ出力される。磁石駆動制御回路は、そ の信号を受け、ヘリウム冷凍機 28を作動させ、超電導磁石 7の容器内を冷却するとと もに、励磁電源 44から超電導磁石 7のコイル 20aへ電流を供給させ、超電導磁石 7 に磁場 (磁束)を発生させる。超電導磁石 7から発生する磁束は患者 2の体内に浸透 し、血管分岐部において体内深度方向へ磁気傾斜を生じさせる。  [0060] When positioning of the superconducting magnet 7 is completed as described above, the patient is treated by magnetic induction of the magnetic drug using each superconducting magnet 7 arranged in a desired position and direction (magnetic induction). Processing: Step 2050). First, the control device 220 operates the superconducting magnet 7. Here, a signal for operating superconducting magnet 7 is output from control device 220 to a magnet drive control circuit provided in drive unit storage box 11. The magnet drive control circuit receives the signal, operates the helium refrigerator 28, cools the inside of the superconducting magnet 7, and supplies current from the excitation power source 44 to the coil 20a of the superconducting magnet 7, thereby superconducting. A magnetic field (magnetic flux) is generated in the magnet 7. Magnetic flux generated from the superconducting magnet 7 penetrates into the body of the patient 2 and causes a magnetic gradient in the depth direction of the body at the blood vessel bifurcation.
[0061] その後、制御装置 220は、超電導磁石 7が動作して磁気誘導型ドラッグデリバリー システム 1000がスタンバイしたことをインジケータにより操作者に通知する。インジケ ータにより確認した操作者は、患者 2の所定の静脈位置カゝら磁性薬剤を注入する。 静脈注射された磁性薬剤は、注入位置→静脈→心臓→肺→心臓→対象動脈を含 む複数の動脈の順に流れる。そして、図 7に示すように、対象動脈 4へ分流された磁 性薬剤 6は、超電導磁石 7の置かれた血管分岐部 5へ近づくと、超電導磁石 7による 磁場 (磁束) 8の影響を受けて、血管 4内で超電導磁石 7の位置する側の側面へ位置 を変えながら流れる。これは、超電導磁石 7による磁場の強さが、血管 4内では、超電 導磁石 7側の方がその反対側より大きい (磁気傾斜を生じている)ことによる。そして、 血管分岐部 5において、磁性薬剤 6は患部へ繋がる血管 4a方向へその多くが流れ、 患部に繋がらない血管 4b方向へは少量しか流れない。このように、本実施形態の磁 気誘導型ドラッグデリバリーシステム 1000によれば、血管分岐部において、所望の 分枝血管の方に磁性薬剤を誘導することができる。  Thereafter, the control device 220 notifies the operator by an indicator that the superconducting magnet 7 is operated and the magnetic induction type drug delivery system 1000 is on standby. The operator confirmed by the indicator injects the magnetic drug from the predetermined vein position of the patient 2. The magnetic drug injected intravenously flows in the order of the injection position → the vein → the heart → the lung → the heart → the plurality of arteries including the target artery. Then, as shown in FIG. 7, when the magnetic drug 6 diverted to the target artery 4 approaches the blood vessel bifurcation 5 where the superconducting magnet 7 is placed, it is affected by the magnetic field (magnetic flux) 8 by the superconducting magnet 7. Thus, it flows while changing the position to the side surface on the side where the superconducting magnet 7 is located in the blood vessel 4. This is because the strength of the magnetic field generated by the superconducting magnet 7 is larger in the blood vessel 4 on the superconducting magnet 7 side than on the opposite side (causing a magnetic gradient). In the blood vessel bifurcation 5, the magnetic drug 6 flows mostly in the direction of the blood vessel 4a connected to the affected area, and only a small amount flows in the direction of the blood vessel 4b not connected to the affected area. Thus, according to the magnetic induction type drug delivery system 1000 of the present embodiment, a magnetic drug can be guided toward a desired branched blood vessel at a blood vessel branching portion.
[0062] 本願発明の発明者の実験によると、血流速にもよるが、血管 4内で超電導磁石 7の 位置する側の血管壁面側へ位置を変えながら流された磁性薬剤 6は、その一部が超 電導磁石 7の磁気によって吸着され、超電導磁石 7のタツチセンサ 64側の面に対面 する血管 4内の壁面に滞留し、残りの磁性薬剤 6が患部方向へ血液とともに流される ことが確認されている。磁性薬剤 6の最初の部分が血管分岐部 5に到達して力 ある 時間を経過すると、滞留する磁性薬剤 6が増えてくる。すると、磁性薬剤 6の患部方 向へ流れが阻害されるようになるので、血管分岐部 5に滞留している磁性薬剤 6を患 部方向へ誘導すること (滞留薬剤誘導処理)が必要となる。このために、本願発明の 発明者は 2つの方法を案出した。 According to the experiment of the inventor of the present invention, although depending on the blood flow velocity, the magnetic drug 6 flowed while changing the position to the blood vessel wall side on the side where the superconducting magnet 7 is located in the blood vessel 4 Some are super It has been confirmed that the magnetic agent 6 is attracted by the magnetism of the conductive magnet 7 and stays on the wall surface in the blood vessel 4 facing the surface of the superconducting magnet 7 on the touch sensor 64 side, and the remaining magnetic drug 6 flows along with the blood toward the affected area. When the first portion of the magnetic drug 6 reaches the blood vessel bifurcation 5 and a certain amount of time has passed, the amount of the magnetic drug 6 that stays increases. Then, since the flow of the magnetic drug 6 toward the affected area is inhibited, it is necessary to guide the magnetic drug 6 staying in the blood vessel bifurcation 5 toward the affected area (residual drug induction process). . For this purpose, the inventors of the present invention have devised two methods.
[0063] その第 1の方法は、超電導磁石 7を血管分岐部 5から遠ざける方向(図 7の矢印 E方 向)へ移動させ、血管分岐部 5における磁気傾斜を除去又は弱める方法である。第 2 の方法は、血管分岐部 5に位置決めされた超電導磁石 7を患部方向へ血管に沿って 又は血管とほぼ平行に直線的に、または、円弧状(図 7の矢印 F方向または矢印 G方 向)に移動させ、血管分岐部 5に滞留している磁性薬剤 6を超電導磁石 7によって生 ずる吸引力によって患部方向へ連なる血管 4aへ流し込む方法である。これらの 2つ の方法の 、ずれを採用するかは血流速に応じて適宜選択することができる。 V、ずれ の方法も、超電導磁石 7にそれぞれの動作を行わせる指示を出すソフトウェアを、自 在アーム駆動制御機構に組み込むことにより実現する。  [0063] The first method is a method in which the superconducting magnet 7 is moved away from the blood vessel branching portion 5 (in the direction of arrow E in FIG. 7) to remove or weaken the magnetic gradient in the blood vessel branching portion 5. In the second method, a superconducting magnet 7 positioned at the blood vessel bifurcation 5 is moved along the blood vessel in the direction of the affected area or in a straight line substantially parallel to the blood vessel, or in an arc shape (in the direction of arrow F or arrow G in FIG. The magnetic drug 6 staying in the blood vessel bifurcation 5 is caused to flow into the blood vessel 4a connected to the affected area by the suction force generated by the superconducting magnet 7. Whether these two methods are adopted can be appropriately selected depending on the blood flow rate. The method of V and deviation is also realized by incorporating software for instructing the superconducting magnet 7 to perform each operation in the self-arm drive control mechanism.
[0064] 例えば、前記第 1の方法を採用する場合には、自在アーム 90の第 1アーム 14、第 2 アーム 16、第 3アーム 18及び第 1回転関節部 15、第 2回転関節部 16を駆動制御し て、超電導磁石 7を血管分岐部に対して前述の直線 (Nn, Cn)方向に近接および退 避させる動作を所定の時間サイクルで繰り返すソフトウェアを自在アーム駆動制御機 構に組み込む。また、前記第 2の方法を採用する場合には、自在アーム 90の上記構 成要素を駆動制御して、前記 2等辺三角平面上で直線 (Nn、 Dn)に平行に、または 、円弧を描くように所定距離だけ超電導磁石 7を移動させる動作を所定の時間サイク ルで繰り返すソフトウェアを自在アーム駆動制御機構に組み込む。なお、この場合、 超電導磁石 7を元の血管分岐部 5へ復帰させる経路は、往路と同じであってもよいが 、でき得るならば、超電導磁石 7を血管分岐部 5からなるベく大きな距離を隔てて復 帰移動させることが好まし 、。  For example, when the first method is adopted, the first arm 14, the second arm 16, the third arm 18, the first rotary joint portion 15, and the second rotary joint portion 16 of the free arm 90 are attached to each other. Software that repeats the operation of moving the superconducting magnet 7 toward and away from the blood vessel branching portion in the direction of the straight line (Nn, Cn) in a predetermined time cycle is incorporated in the free arm drive control mechanism. When the second method is adopted, the above-described components of the free arm 90 are driven and controlled to draw a circular arc parallel to a straight line (Nn, Dn) on the isosceles triangular plane. In this way, software that repeats the operation of moving the superconducting magnet 7 by a predetermined distance in a predetermined time cycle is incorporated in the free arm drive control mechanism. In this case, the path for returning the superconducting magnet 7 to the original blood vessel bifurcation 5 may be the same as the forward path, but if possible, the superconducting magnet 7 should be made to be the largest distance comprising the blood vessel bifurcation 5. It is preferable to move the carriage back and forth.
[0065] また、超電導磁石 7の前記退避および近接動、前記直線移動および復帰、または、 円弧移動および復帰の各動作を行なう時間サイクルとして、血流の拍動サイクルを用 いるとよい。この場合、血流の拍動サイクル中の血流が遅い期間に超電導磁石 7を血 管分岐部 5に接近した状態で保持し、血流が速くなつた時点で超電導磁石 7を血管 分岐部 5から離す方向への移動を開始し、血流の遅い期間になるまでに血管分岐部 5に接近した状態に戻すよう制御すると、磁性薬剤 6を患部方向へ効果的に誘導す ることができることが本願発明者によって実験的に確認されている。この理由は、血流 が遅 ヽ期間にお!ヽて超電導磁石 7を血管分岐部 5へ接近させて保持することで、磁 性薬剤 6が超電導磁石 7に近 ヽ血管壁面側に滞留し、血流が速くなつた時点で超電 導磁石 7を移動させることで、滞留していた磁性薬剤 6が血流の中心部の特に流れ の速い部分によって患部へ繋がる血管方向へ押し流されるためと考えられる。 [0065] Further, the retraction and proximity movement of the superconducting magnet 7, the linear movement and return, or A blood flow pulsation cycle is preferably used as a time cycle for performing each of the arc movement and return operations. In this case, the superconducting magnet 7 is held close to the blood vessel bifurcation 5 during a period when the blood flow is slow during the pulsation cycle of the blood flow, and the superconducting magnet 7 is attached to the blood vessel bifurcation 5 when the blood flow becomes fast. By starting the movement away from the blood vessel and controlling it to return to the state where the blood vessel bifurcation 5 is approached by the time when the blood flow is slow, the magnetic drug 6 can be effectively guided toward the affected area. This has been confirmed experimentally by the present inventors. The reason for this is that when the blood flow is delayed, the superconducting magnet 7 is held close to the blood vessel bifurcation 5 so that the magnetic drug 6 stays near the superconducting magnet 7 on the side of the blood vessel wall, It is thought that by moving the superconducting magnet 7 when the blood flow becomes fast, the staying magnetic drug 6 is pushed away toward the blood vessel connected to the affected part by the fast-flowing part in the center of the blood flow. It is done.
[0066] 従って、超電導磁石 7の移動サイクルにおける停止保持期間と移動開始タイミング とは、心電計とドプラ計測機能付き超音波装置とを組合せることで設定することができ る。例えば、心電計により患者 2の心電図の R波を計測するとともに、前記超音波装 置の探触子により描出された血管分岐部 5の血流をドプラ計測することで、 R波計測 時点から血管分岐部 5へ高速血流が到来するまでの時間を計測することができる。  Therefore, the stop holding period and the movement start timing in the movement cycle of the superconducting magnet 7 can be set by combining an electrocardiograph and an ultrasonic device with a Doppler measurement function. For example, by measuring the R wave of the electrocardiogram of patient 2 with an electrocardiograph and measuring the blood flow in the blood vessel bifurcation 5 depicted by the probe of the ultrasonic device, the R wave measurement time point The time until high-speed blood flow arrives at the blood vessel bifurcation 5 can be measured.
[0067] 磁性薬剤 6の磁気誘導処理時に、患者 2へ心電プローブを取り付けて心電計測を 行うとともに、心電計で計測された R波計測時点力も計測された前記高速血流の到 来する時間を計測し、その結果を制御装置 220に通知する。制御装置 220は、心電 計で計測された R波観測時点力 高速血流の到来する時間分遅延させた時刻が超 電導磁石 7の移動開始時刻となるよう、自在アーム制御機構に組み込まれたソフトゥ アを動作させるよう制御する。  [0067] At the time of magnetic induction processing of the magnetic drug 6, an electrocardiographic probe is attached to the patient 2 to perform electrocardiogram measurement, and the R-wave measurement time force measured by the electrocardiograph is also measured. The control unit 220 is notified of the result. The control device 220 is incorporated in the universal arm control mechanism so that the time delayed by the arrival time of the high-speed blood flow measured by the electrocardiograph becomes the movement start time of the superconducting magnet 7. Control the software to work.
[0068] なお、以上の磁性薬剤 6の磁気誘導処理手順を血液の体内循環 1サイクルの時間 のみについて実行しても、静脈へ注入された磁性薬剤 6は、心臓から、頭部、腕、腹 部、下肢等の様々な部位へ分配されてしまい、患部へ誘導される磁性薬剤 6は注入 された磁性薬剤 6の数%程度に過ぎないと考えられる。そこで、本実施形態では、さ らに、前記磁気誘導処理を所定時間継続して行うようにシステムを制御可能に構成 する。所定時間とは、例えば、血液が心臓力も一番遠い下肢を循環して心臓へ戻る 血液循環サイクル時間が数十秒であると仮定した場合には、その数サイクルから 10 サイクル程度の範囲である。例えば、制御装置 220に、磁気誘導処理を継続する時 間を設定可能なタイマを設ける等により、磁気誘導処理を継続する時間を可変に設 定可能とする。 [0068] Even if the magnetic induction processing procedure for the magnetic drug 6 described above is executed for only one cycle of blood circulation in the blood, the magnetic drug 6 injected into the vein does not move from the heart to the head, arms, and stomach. It is considered that the magnetic drug 6 that is distributed to various parts such as the head and lower limbs and is guided to the affected area is only about several percent of the injected magnetic drug 6. Therefore, in the present embodiment, the system is configured to be controllable so that the magnetic induction process is continuously performed for a predetermined time. For example, if the blood circulation cycle time is several tens of seconds, the blood circulates through the lower extremity with the most heart force and returns to the heart. The range is about the cycle. For example, the control device 220 is provided with a timer capable of setting the time for which the magnetic induction process is continued, so that the time for which the magnetic induction process is continued can be variably set.
[0069] 以上のようにして、所定時間、磁気誘導動作を継続すると、注入当初は患部以外の 臓器へ流れていた薬剤も体内循環を繰り返すうちに時間の経過とともに患部へ流入 するようになり、患部であるがん細胞や腫瘍細胞に薬剤が累積するように取り込まれ る。この結果、従来カゝら行なわれているがん治療薬の静脈注射法と比較し、本実施 形態によれば、治療効果が著しく向上することが期待される。  [0069] As described above, if the magnetic induction operation is continued for a predetermined time, the drug that has flowed to the organ other than the affected part at the beginning of the injection also flows into the affected part over time while repeating the circulation in the body. The drug is taken up so that it accumulates in the affected cancer cells and tumor cells. As a result, it is expected that the therapeutic effect will be remarkably improved according to the present embodiment as compared with the conventional intravenous injection method for cancer therapeutic agents.
[0070] 本実施形態によれば、血流路上の単数もしくは複数の分岐点において、各分岐点 の血管の 3次元位置、血管のサイズ、血流速度の情報により、所定の磁場を発生可 能な磁石の位置、角度 (配置方向)を計算により算出し、算出された位置および角度 に磁石を設定できるので、磁性薬剤の粒子の、癌細胞などの所定の患部への誘導 率を高めることができる。なお、血流内の磁性粒子を目的とする血管分岐部へ誘導 するため、血管分岐部手前で血管内の分岐部側に磁石を配置し、血液内の磁性粒 子を目的とする血管分岐部の手前側に誘引するよう構成してもよい。また、磁石の位 置および角度の設定にあたり、投与される磁性薬剤の磁化率、体積を考慮するよう 構成してもよい。例えば、磁ィ匕率が大きく体積が小さい磁性薬剤の場合、磁場にひき つけられやすく流れやすいため、磁石を分岐位置から下流側にずらして磁場勾配が 下流側に向くよう設定する。逆に磁化率が小さく体積が大きい磁性薬剤の場合、磁 石を分岐位置近傍に配置する。  [0070] According to the present embodiment, a predetermined magnetic field can be generated at one or more branch points on the blood flow path based on the information on the three-dimensional position of the blood vessel at each branch point, the size of the blood vessel, and the blood flow velocity. Since the position and angle (arrangement direction) of the correct magnet can be calculated and the magnet can be set at the calculated position and angle, the induction rate of magnetic drug particles to a predetermined affected area such as cancer cells can be increased. it can. In order to guide the magnetic particles in the bloodstream to the target blood vessel branch, a magnet is placed on the side of the blood vessel branch before the blood vessel branch, and the target blood vessel branch is in the blood. You may comprise so that it may attract to the near side. Further, in setting the position and angle of the magnet, the magnetic susceptibility and volume of the magnetic drug to be administered may be considered. For example, in the case of a magnetic agent having a large magnetic field ratio and a small volume, it is easily attracted to a magnetic field and easily flows. Therefore, the magnet is shifted from the branch position to the downstream side and the magnetic field gradient is set to face the downstream side. Conversely, in the case of a magnetic drug having a small magnetic susceptibility and a large volume, the magnet is placed near the branching position.
[0071] また、本実施形態では、患部に直接磁場を集中印加するのではなぐ血管の分岐 部で一方向に磁性薬剤を誘導するよう磁場を印加する。従って、薬剤の磁気誘導率 を向上させることができ、また、小型のソレノイドコイル式磁石を使用することにより、 所定の癌細胞の患部へ磁性薬剤の誘導率を高めることができる効果がある。  [0071] In this embodiment, the magnetic field is applied so as to induce the magnetic drug in one direction at the branching portion of the blood vessel, rather than concentratedly applying the magnetic field directly to the affected part. Therefore, the magnetic induction rate of the drug can be improved, and the induction rate of the magnetic drug to the affected area of a predetermined cancer cell can be increased by using a small solenoid coil magnet.
[0072] また、本実施形態の構成によれば、ヘリウム冷凍機を複数の超電導磁石の冷却機 として共有できるので、超電導磁石毎にヘリウム冷凍機を設ける必要がない。従って 、少ないヘリウム冷凍機でシステムを実現できるため、磁気誘導型ドラッグデリバリー システム 1000を小型化できる効果がある。 [0073] < <第 2の実施形態 > > [0072] Further, according to the configuration of the present embodiment, the helium refrigerator can be shared as a plurality of superconducting magnet coolers, so there is no need to provide a helium refrigerator for each superconducting magnet. Therefore, since the system can be realized with a small number of helium refrigerators, the magnetic induction type drug delivery system 1000 can be reduced in size. [0073] <Second Embodiment>
次に、本発明の第 2の実施形態について説明する。本実施形態の磁気誘導型ドラ ッグデリバリーシステム 1000は、超電導磁石を、超電導バルタ体により形成した点が 第 1の実施形態と異なる。以下、第 1の実施形態と異なる点に主眼をおいて説明する  Next, a second embodiment of the present invention will be described. The magnetic induction type drag delivery system 1000 of this embodiment is different from the first embodiment in that a superconducting magnet is formed of a superconducting Baltha body. The following description will focus on differences from the first embodiment.
[0074] 図 8に本発明の第 2の実施形態の磁気誘導型ドラッグデリバリーシステム 1000に用 いられる超電導磁石 7 (以下、本実施形態では、超電導バルタ磁石 7と呼ぶ。)の構 成を示す。本実施形態の磁気誘導型ドラッグデリバリーシステム 1000では、磁場発 生手段として、第一の実施形態で用いたソレノイドコイルの代わりに YBCO系の高温 超電導バルタ体 48を使用し、小型冷凍機で直接高温超電導バルタ体 48を冷却する 構成が採用されて 、る。高温超電導バルタ体 48の外周はステンレス製やアルミ-ュ ゥム製のリング 49と接着剤等で一体化され、高温超電導バルタ体 48が着磁される際 に自身の磁気力で割れが発生することを防止している。高温超電導バルタ体 48とリ ング 49とは銅やアルミ-ユウム製の伝熱フランジ 50に接着剤等で接着されて熱的に 一体化され、伝熱フランジ 50と、伝熱フランジ 43とは、インジウムシートやグリース(図 示せず)を介してボルト(図示せず)等で結合されて熱的に一体化されて!/、る。へリウ ム冷凍機コールドステージ 33による高温超電導バルタ体 48の冷却方法は、第一の 実施形態において説明したソレノイド磁石 21を冷却する方法と同一である。 FIG. 8 shows a configuration of a superconducting magnet 7 (hereinafter referred to as a superconducting Balta magnet 7 in this embodiment) used in the magnetic induction type drug delivery system 1000 according to the second embodiment of the present invention. . In the magnetic induction type drug delivery system 1000 of this embodiment, the high temperature superconducting Balta body 48 of YBCO system is used as the magnetic field generating means instead of the solenoid coil used in the first embodiment, and the high temperature directly in a small refrigerator. A structure for cooling the superconducting Balta body 48 is employed. The outer periphery of the high-temperature superconducting Balta body 48 is integrated with a stainless steel or aluminum ring 49 with an adhesive or the like, and when the high-temperature superconducting Balta body 48 is magnetized, a crack is generated by its own magnetic force. To prevent that. The high-temperature superconducting Balta body 48 and the ring 49 are thermally integrated by being bonded to a heat transfer flange 50 made of copper or aluminum-um with an adhesive or the like. The heat transfer flange 50 and the heat transfer flange 43 are They are joined together with bolts (not shown) via an indium sheet or grease (not shown) and are thermally integrated! The cooling method of the high-temperature superconducting Balta body 48 by the helium refrigerator cold stage 33 is the same as the method of cooling the solenoid magnet 21 described in the first embodiment.
[0075] 一般に実施されて!ヽるように、高温超電導バルタ体 48を着磁させるためには、着磁 させたい所定の磁界、例えば 10テスラの磁界を発生させる着磁用の超電導磁石、も しくは発生磁場力 、さな常電導磁石が必要であり、これらは別途用意される(両磁石 は図示せず)。  [0075] As is generally practiced, in order to magnetize the high-temperature superconducting Balta body 48, a magnetizing superconducting magnet that generates a predetermined magnetic field to be magnetized, for example, a magnetic field of 10 Tesla, is also included. In addition, the generated magnetic field force and a normal conducting magnet are required, and these are prepared separately (both magnets are not shown).
[0076] 本実施形態では、高温超電導バルタ体 48を冷却する前に、前記高温超電導バル ク体 48を組み込んだ超電導バルタ磁石 7を着磁用磁石による磁場中に挿入し、その 後、ヘリウム冷凍機 28で高温超電導バルタ体 48を超電導温度以下に冷却する。ここ で、超電導バルタ体 48の円筒軸方向と着磁用磁石による主磁場方向とは一致させる 必要がある。  In the present embodiment, before cooling the high-temperature superconducting bulk body 48, the superconducting Balta magnet 7 incorporating the high-temperature superconducting bulk body 48 is inserted into the magnetic field of the magnetizing magnet, and then the helium refrigeration is performed. The high-temperature superconducting Balta body 48 is cooled below the superconducting temperature by the machine 28. Here, the direction of the cylindrical axis of the superconducting Balta body 48 and the direction of the main magnetic field by the magnetizing magnet must be matched.
[0077] その後、着磁用磁石による磁場を消磁すると、冷却され続ける高温超電導バルタ体 48内に磁場が捕捉され、冷却が維持される限り、高温超電導バルタ体 48は着磁用 磁石による磁場と同等の磁場を発生させる超電導バルタ磁石となる。本実施形態で は、このようにして、高い、例えば 5テスラ〜 10テスラの磁場を捕捉した高温超電導バ ルク体 48が、磁場発生手段として使用される。なお、一般に、このようにして着磁され た超電導バルタ磁石の磁界分布はほぼ均一に分布するミクロな磁束の集団で形成さ れる。このため、例えば、高温超電導バルタ体 48が円形の場合、その表面の磁界分 布はほぼ円錐状となり、中央部の磁界が最も強ぐ外周部でほぼゼロとなる。つまり、 高温超電導バルタ体 48の中央力も半径方向に向力つて非常に大きな磁気勾配が形 成される。 [0077] After that, when the magnetic field by the magnetizing magnet is demagnetized, the high-temperature superconducting Balta body that continues to be cooled As long as the magnetic field is captured in 48 and cooling is maintained, the high-temperature superconducting Balta body 48 becomes a superconducting Balta magnet that generates a magnetic field equivalent to the magnetic field generated by the magnetizing magnet. In the present embodiment, the high temperature superconducting bulk material 48 that captures a high magnetic field of 5 to 10 Tesla, for example, is used as the magnetic field generating means. In general, the magnetic field distribution of the superconducting Balta magnet magnetized in this way is formed by a group of micro magnetic fluxes distributed almost uniformly. Therefore, for example, when the high-temperature superconducting Balta body 48 is circular, the magnetic field distribution on the surface thereof is substantially conical, and becomes almost zero at the outer peripheral portion where the magnetic field at the center is strongest. That is, the central force of the high-temperature superconducting Balta body 48 is also directed in the radial direction to form a very large magnetic gradient.
[0078] このことから、患部へ連なる血管 4の各血管分岐部 5において、図 9に示すように超 電導バルタ磁石 7の中心軸を、第 1の実施形態で決定した配置方向に設定すること で、高温超電導バルタ体 48が形成する磁界 8内に流入した磁性薬剤 6が自ずと磁気 勾配の大きい高温超電導バルタ体 48の中央部方向に磁気誘導される。このため、血 管分岐部 5において、より多くの磁性薬剤 6を磁気誘導で所定の血管路 4a側に誘導 できるので、投与された磁性薬剤 6を所定の癌細胞等の患部へ高 ヽ誘導率を持って 誘導することができる効果がある。  From this, in each blood vessel branching portion 5 of the blood vessel 4 connected to the affected area, as shown in FIG. 9, the central axis of the superconducting Balta magnet 7 is set in the arrangement direction determined in the first embodiment. Thus, the magnetic agent 6 that has flowed into the magnetic field 8 formed by the high-temperature superconducting Balta body 48 is naturally magnetically induced toward the center of the high-temperature superconducting Balta body 48 having a large magnetic gradient. For this reason, since more magnetic drug 6 can be guided to the predetermined vascular tract 4a side by magnetic induction at the blood vessel bifurcation 5, the administration rate of the administered magnetic drug 6 to the affected area such as a predetermined cancer cell is high. There is an effect that can be guided with.
[0079] 本実施形態によれば、磁場発生手段として超電導バルタ体 48を使用する。超電導 バルタ体 48は、その表面を 10テスラ近傍まで容易に着磁でき、また、その表面から 遠ざかる方向に対して磁場減衰率が大きい。すなわち、超電導バルタ磁石 7に超電 導バルタ体 48を用いるため、本実施形態の超電導バルタ磁石 7は、超電導バルタ体 48の表面力 遠ざ力る方向に対する磁場減衰率が大きぐかつ、磁場強度が永久磁 石等の他の磁石に比べ格段に大きい。従って、超電導バルタ磁石 7の表面の磁場分 布は等強度に、超電導バルタ磁石 7の近傍空間における磁場分布は円錐状にできる 。つまり、超電導バルタ磁石 7は、強度が大きぐかつ、強度が極大化する領域が狭 い磁界を形成することができるため、血管分岐部 5において、血液中の磁性薬剤 6を 的確に誘導方向に吸引することができる効果が生まれる。  [0079] According to this embodiment, the superconducting Balta body 48 is used as the magnetic field generating means. The superconducting Balta body 48 can be easily magnetized to the vicinity of 10 Tesla, and has a large magnetic field decay rate in the direction away from the surface. That is, since the superconducting Balta magnet 48 is used for the superconducting Balta magnet 7, the superconducting Balta magnet 7 of the present embodiment has a large magnetic field attenuation rate with respect to the direction in which the surface force of the superconducting Balta body 48 moves away, and the magnetic field strength. Is much larger than other magnets such as permanent magnets. Therefore, the magnetic field distribution on the surface of the superconducting Balta magnet 7 can be made equal in intensity, and the magnetic field distribution in the space near the superconducting Balta magnet 7 can be made conical. In other words, the superconducting Balta magnet 7 can form a magnetic field with a high strength and a narrow region where the strength is maximized. Therefore, the magnetic drug 6 in the blood is accurately guided in the guiding direction at the blood vessel bifurcation 5. The effect that can be sucked is born.
[0080] なお、本実施形態にお!、ても、 3次元血流イメージ取得処理、血管分岐部抽出処 理、実空間座標付与処理、配置方向決定処理、位置決め処理、磁気誘導処理の各 処理は、超電導磁石 7の代わりに超電導バルタ磁石 7を用い、第一の実施形態と同 様に行われる。 [0080] Note that in this embodiment, each of three-dimensional blood flow image acquisition processing, blood vessel bifurcation extraction processing, real space coordinate application processing, placement direction determination processing, positioning processing, and magnetic guidance processing The processing is performed in the same manner as in the first embodiment, using the superconducting Balta magnet 7 instead of the superconducting magnet 7.
[0081] < <第 3の実施形態 > >  [0081] <Third Embodiment>
次に、本発明の第 3の実施形態について説明する。本実施形態の磁気誘導型ドラ ックデリバリーシステムは、超電導バルタ磁石の冷却構造が第 2の実施形態と異なる 。すなわち、本実施形態の超電導バルタ磁石 7は、図 10に示すように、 YBCO系の 高温超電導バルタ体 48とへリウム冷凍機 52とが分離されている。本実施形態は、作 動冷媒のヘリウムガス力 ヘリウム冷凍機 52の冷却熱交換ステージ 56で冷却され、 可撓性を有した真空断熱配管内 51を通して輸送され、高温超電導バルタ体 48を冷 却する構造を有している。以下、第 2の実施形態と異なる点のみ説明する。  Next, a third embodiment of the present invention will be described. The magnetic induction type drug delivery system of this embodiment is different from that of the second embodiment in the cooling structure of the superconducting Balta magnet. That is, in the superconducting Balta magnet 7 of this embodiment, as shown in FIG. 10, the YBCO-based high-temperature superconducting Balta body 48 and the helium refrigerator 52 are separated. In the present embodiment, the helium gas power of the working refrigerant is cooled by the cooling heat exchange stage 56 of the helium refrigerator 52 and transported through the flexible vacuum insulation pipe 51 to cool the high-temperature superconducting Balta body 48. It has a structure. Only the differences from the second embodiment will be described below.
[0082] ヘリウム冷凍機 52は、ヘリウムガス圧縮機 53に高圧ガス配管 54と低圧ガス配管 55 とにより接続され、冷却ステージ 56はヘリウムガス圧縮機 53の運転によって極低温 度に冷却される。  The helium refrigerator 52 is connected to the helium gas compressor 53 through a high pressure gas pipe 54 and a low pressure gas pipe 55, and the cooling stage 56 is cooled to an extremely low temperature by the operation of the helium gas compressor 53.
[0083] 作動冷媒のへリウムガスは、ヘリウムガス圧縮機 57で加圧され、流量調整弁 58で 所定の流量に制御され、高圧配管 59を通り、真空断熱容器 60内に配置された熱交 換器 81に流入する。  [0083] The helium gas of the working refrigerant is pressurized by the helium gas compressor 57, controlled to a predetermined flow rate by the flow rate adjusting valve 58, passes through the high-pressure pipe 59, and is exchanged in the vacuum heat insulating container 60. Flows into vessel 81.
[0084] 熱交換器 81内で低温に冷却された作動冷媒は、冷却ステージ 56に熱的に一体ィ匕 された熱交 内でさらに冷却され、温度摂氏マイナス 240度の極低温の作動冷 媒となる。極低温となった作動冷媒は、真空断熱配管 51内の真空空間内に配置され た配管 63を通り、冷却熱交換ステージ 64を極低温に冷却する。冷却熱交換ステー ジ 64を極低温に冷却した後の、温度が上昇した作動冷媒は、配管 65を通り熱交換 器 81に流入し、高圧配管 59内の作動冷媒を冷却し、低圧配管 66を通り、ヘリウムガ ス圧縮機 57に戻り、再び加圧される。なお、配管 63, 65の周りには輻射熱を防止す るため積層断熱材 67が巻き付けられている。  [0084] The working refrigerant cooled to a low temperature in the heat exchanger 81 is further cooled in a heat exchanger thermally integrated with the cooling stage 56, and is a cryogenic working refrigerant having a temperature of minus 240 degrees Celsius. It becomes. The working refrigerant having reached a very low temperature passes through a pipe 63 disposed in the vacuum space in the vacuum heat insulating pipe 51, and cools the cooling heat exchange stage 64 to a cryogenic temperature. After the cooling heat exchange stage 64 is cooled to a very low temperature, the working refrigerant whose temperature has risen passes through the pipe 65 and flows into the heat exchanger 81, cools the working refrigerant in the high-pressure pipe 59, and connects the low-pressure pipe 66. Return to the helium gas compressor 57 and pressurize again. A laminated heat insulating material 67 is wound around the pipes 63 and 65 to prevent radiant heat.
[0085] 冷却熱交換ステージ 64は、真空断熱配管 51の端部を気密固定するフランジ 68に 固定支持された、例えば榭脂性の円筒体 69で支持されている。円筒体 69はその軸 方向に弾力性を有し、冷却熱交換ステージ 64はインジウムやグリース等の熱伝導体 を介して、伝熱フランジ 22に熱的に良好に押し付けられている。 [0086] 本実施形態によれば、ヘリウム冷凍機 52を超電導磁石 7の容器から離して設置で きるので、超電導磁石 7の容器を小型、軽量とすることができる。従って、患者 2の凹 凸を有する部位、例えば首部等のように、超電導磁石 7の設置空間が限られる部位 においても、患者 2の体表面に超電導磁石 7の容器をより近づけて使用することがで きる。 [0085] The cooling heat exchange stage 64 is supported by, for example, an oleaginous cylinder 69 fixedly supported by a flange 68 that hermetically fixes an end of the vacuum heat insulating pipe 51. The cylindrical body 69 is elastic in its axial direction, and the cooling heat exchange stage 64 is thermally pressed against the heat transfer flange 22 through a heat conductor such as indium or grease. According to the present embodiment, since the helium refrigerator 52 can be installed separately from the container of the superconducting magnet 7, the container of the superconducting magnet 7 can be made small and light. Therefore, the container of the superconducting magnet 7 can be used closer to the body surface of the patient 2 even in a part where the installation space of the superconducting magnet 7 is limited, such as a part having the concave and convex portions of the patient 2, such as the neck. it can.
[0087] したがって、本実施形態によれば、体の凹凸部位に血管分岐部が存在する場合で あっても、磁性薬剤 6に作用する磁気力を大きくできるので、磁性薬剤 6を患部に誘 導できる確率が高まり、患部に誘導できる磁性薬剤 6の割合を高めることができる。  [0087] Therefore, according to the present embodiment, the magnetic force acting on the magnetic drug 6 can be increased even when there is a blood vessel branch in the uneven part of the body, so that the magnetic drug 6 is guided to the affected area. Probability can be increased, and the proportion of magnetic drug 6 that can be guided to the affected area can be increased.
[0088] なお、本実施形態にお!、ても、 3次元血流イメージ取得処理、実空間座標付与処 理、血管分岐部抽出処理、配置方向決定処理、位置決め処理、磁気誘導処理の各 処理は、超電導磁石 7の代わりに超電導バルタ磁石 7を用い、第一の実施形態と同 様に行われる。  [0088] Note that in this embodiment, each process of 3D blood flow image acquisition processing, real space coordinate addition processing, blood vessel branching portion extraction processing, arrangement direction determination processing, positioning processing, and magnetic guidance processing The superconducting Balta magnet 7 is used instead of the superconducting magnet 7 and is performed in the same manner as in the first embodiment.
[0089] 以上の本発明を適用する各実施形態を説明したが、本発明はその要旨を変更しな い範囲で、種々の変形が可能である。例えば、上記各実施形態では、超電導磁石の ターゲットは、各実施形態において説明した方法で抽出、特定された血管分岐部とし ている。しかし、超電導磁石のターゲットとすべき位置は、必ずしも血管分岐部ではな ぐ血流の速度によって血管分岐部の上流又は下流に設定したほうがよい場合があ る。例えば、実験等によって、超電導磁石のターゲットにすべき位置を決定し、実際 の血管分岐部の位置との差を補正値として求め、求めた補正値を適用するよう構成 してちよい。  Each embodiment to which the present invention is applied has been described, but the present invention can be variously modified without departing from the scope of the present invention. For example, in each of the above embodiments, the target of the superconducting magnet is a blood vessel branch portion extracted and specified by the method described in each embodiment. However, in some cases, the superconducting magnet target position should be set upstream or downstream of the blood vessel bifurcation depending on the blood flow velocity, not necessarily the blood vessel bifurcation. For example, the position to be the target of the superconducting magnet may be determined by experiment or the like, the difference from the actual position of the blood vessel bifurcation may be obtained as a correction value, and the obtained correction value may be applied.
[0090] また、上記各実施形態では、超電導ソレノイド磁石や高温超電導バルタ体を直接も しくは作動冷媒を介して冷却する冷凍機として、ギフオード ·マクマホン式冷凍機を使 用した場合を例にあげて説明したが、冷凍機として例えば電子式冷凍機、ソルべィ 式冷凍機、パルス管式冷凍機、スターリング式冷凍機、音響式冷凍機等を使用して も、同等の効果を提供できる。  Further, in each of the above embodiments, a case where a Gifud-McMahon type refrigerator is used as a refrigerator that cools a superconducting solenoid magnet or a high-temperature superconducting Baltha body directly or via a working refrigerant is taken as an example. However, for example, an electronic refrigerator, a solvey refrigerator, a pulse tube refrigerator, a Stirling refrigerator, an acoustic refrigerator, or the like can be used as a refrigerator.
[0091] また、上記各実施形態では、高温超電導線材および超電導バルタ体として YBCO を主成分としたものを使用する場合を例にあげて説明しているが、これに限られない 。例えば、 Gd系の材質で構成した高温超電導材をコイル線、バルタ体に使用しても 、同等または同等以上の磁気力を提供でき、磁気力がさらに向上して患部に誘導で きる磁性薬剤の割合をさらに高めることができる。 Further, in each of the above-described embodiments, the case where the high-temperature superconducting wire and the superconducting barter body using YBCO as a main component is described as an example, but the present invention is not limited thereto. For example, even if a high-temperature superconducting material made of Gd-based material is used for a coil wire or a balta body It is possible to provide the same or higher magnetic force, and further increase the proportion of the magnetic drug that can be guided to the affected area by further improving the magnetic force.
[0092] さらに、上記各実施形態では超電導磁石は床上を走行する台車に搭載された支柱 で支持された自在アームに取り付けられる場合を例に挙げて説明しているが、支柱を 天井走行型台車によって支持する構造を採用することもできる。  [0092] Furthermore, in each of the above embodiments, the superconducting magnet is described as an example where the superconducting magnet is attached to a free arm supported by a pillar mounted on a carriage traveling on the floor. It is also possible to adopt a structure that supports the above.
[0093] また、上記各実施形態では、患者の 3次元血流イメージを MRI装置によって取得 する場合を例に挙げて説明している。周知のように MRI装置で取得される画像には 、計測空間の磁場均一度によつて多少の歪が生じる。歪を避けるため、それに対す る対策を講じる力 または、患者の 3次元血流イメージを画像歪がない X線撮影装置 、 X線 CT装置又は超音波診断装置で取得する。対策には、例えば 3次元立方格子 を有するファントムにて予め画像歪 (補正値)を求め、その補正値を取得された 3次元 血流イメージから除去するなどがある。  Further, in each of the above-described embodiments, a case where a 3D blood flow image of a patient is acquired by an MRI apparatus is described as an example. As is well known, an image acquired by the MRI apparatus has some distortion due to the magnetic field uniformity of the measurement space. In order to avoid distortion, the ability to take countermeasures against it, or the patient's 3D blood flow image is acquired with an X-ray imaging device, X-ray CT device or ultrasonic diagnostic device without image distortion. As countermeasures, for example, image distortion (correction value) is obtained in advance with a phantom having a three-dimensional cubic lattice, and the correction value is removed from the acquired three-dimensional blood flow image.
図面の簡単な説明  Brief Description of Drawings
[0094] [図 1]本発明の第 1の実施形態における磁気誘導型ドラッグデリバリーシステムの構 成を示す斜視図。  [0094] FIG. 1 is a perspective view showing a configuration of a magnetic induction type drug delivery system in a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態における患者の 3次元血流イメージを取得する核磁気 共鳴イメージング装置の構成を示す斜視図。  FIG. 2 is a perspective view showing a configuration of a nuclear magnetic resonance imaging apparatus that acquires a three-dimensional blood flow image of a patient in the first embodiment of the present invention.
[図 3]本発明の第 1の実施形態の磁気誘導型ドラッグデリバリーシステムに用いられる 超電導磁石の構成を一部断面にて示した図。  FIG. 3 is a partial cross-sectional view showing a configuration of a superconducting magnet used in the magnetic induction type drug delivery system according to the first embodiment of the present invention.
[図 4]本発明の第 1の実施形態の患者の 3次元血流イメージ力 血管分岐部を抽出、 特定するプロセスの一例を説明する図。  FIG. 4 is a view for explaining an example of a process for extracting and specifying a blood vessel bifurcation portion of a patient according to the first embodiment of the present invention.
[図 5]患者の 3次元血流イメージ力 血管分岐部を自動的に抽出、特定するプロセス の一例を説明する図。  FIG. 5 is a diagram for explaining an example of a process for automatically extracting and specifying a blood vessel bifurcation portion of a patient's three-dimensional blood flow image.
[図 6]本発明の第 1の実施形態の超電導磁石の配置方向を設定するプロセスの一例 を説明する図。  FIG. 6 is a diagram for explaining an example of a process for setting the arrangement direction of the superconducting magnet according to the first embodiment of the present invention.
[図 7]本発明の第 1の実施形態の血管中を流れる磁性薬剤に対する超電導磁石の作 用を説明する図。  FIG. 7 is a view for explaining the action of a superconducting magnet on the magnetic drug flowing in the blood vessel according to the first embodiment of the present invention.
[図 8]本発明の第 2の実施形態の磁気誘導型ドラッグデリバリーシステムに用いられる 超電導バルタ磁石の構成を一部断面にて示した図。 FIG. 8 is used in the magnetic induction drug delivery system according to the second embodiment of the present invention. The figure which showed the structure of the superconducting Balta magnet in the partial cross section.
[図 9]本発明の第 2の実施形態の超電導バルタ磁石が発生する磁気が血管分岐部 で磁性薬剤へ作用する様子を示す図。  FIG. 9 is a view showing a state where magnetism generated by the superconducting Balta magnet according to the second embodiment of the present invention acts on a magnetic drug at a blood vessel branching portion.
[図 10]本発明の第 3の実施形態の冷凍機を分離した超電導バルタ磁石システムの構 造を説明する図。  FIG. 10 is a diagram for explaining the structure of a superconducting Balta magnet system from which a refrigerator according to a third embodiment of the present invention is separated.
[図 11]本実施形態発明の第 1の実施形態の磁気誘導型ドラッグデリバリーシステムの 磁気誘導ドラッグデリバリー処理のフロー。  FIG. 11 is a flow of magnetic induction drug delivery processing of the magnetic induction type drug delivery system according to the first embodiment of the present invention.
符号の説明 Explanation of symbols
2:患者、 4:血管、 5:血管分岐部、 6:磁性薬剤、 7:超電導磁石、 8:磁界、 11:駆動 部収納ボックス、 13:アーム駆動部収納ボックス、 14, 16, 18:アーム、 15, 17:回転 関節部、 21:ソレノイド磁石、 28:ヘリウム冷凍機、 33:コールドステージ、 48:高温超 電導バルタ体、 61:磁石位置検出器、 64:タツチセンサ、 71:マーカ、 80:支柱、 90: 自在アーム、 120:寝台、 130:制御部、 140:操作用コンソール、 150:ディスプレイ、 160:位置情報入力操作器、 200:磁石保持機構、 210:治療用ベッド、 220:制御装 置 2: Patient, 4: Blood vessel, 5: Blood vessel branch, 6: Magnetic drug, 7: Superconducting magnet, 8: Magnetic field, 11: Drive unit storage box, 13: Arm drive unit storage box, 14, 16, 18: Arm 15, 17: Rotating joint, 21: Solenoid magnet, 28: Helium refrigerator, 33: Cold stage, 48: High-temperature superconducting Balta body, 61: Magnet position detector, 64: Touch sensor, 71: Marker, 80: Prop, 90: Swivel arm, 120: Sleeper, 130: Control unit, 140: Operation console, 150: Display, 160: Position information input controller, 200: Magnet holding mechanism, 210: Treatment bed, 220: Control equipment Place

Claims

請求の範囲 The scope of the claims
[1] 被検者の血管内へ投与された磁性薬剤を所望の方向へ誘導する磁場発生装置を 備えた磁気誘導型ドラッグデリバリーシステムにおいて、  [1] In a magnetic induction type drug delivery system equipped with a magnetic field generator for guiding a magnetic drug administered into a blood vessel of a subject in a desired direction,
前記被検者の 3次元血流イメージを用いて、血管内の分岐位置 (血管内分岐位置) を抽出する血管内分岐位置抽出手段と、  An intravascular branch position extracting means for extracting a branch position in the blood vessel (intravascular branch position) using the three-dimensional blood flow image of the subject;
前記血管内分岐位置抽出手段によって抽出された前記血管内分岐位置の実空間 座標における位置情報を求める血管内分岐位置情報取得手段と、  Intravascular branch position information acquisition means for obtaining position information in real space coordinates of the intravascular branch position extracted by the intravascular branch position extraction means;
前記血管内分岐位置情報取得手段によって求められた前記血管内分岐位置の実 空間座標における位置情報を用いて、前記血管内分岐位置の近傍に前記磁場発生 装置の位置を設定する磁場発生装置位置設定手段と、を備えたこと  Magnetic field generator position setting for setting the position of the magnetic field generator in the vicinity of the intravascular branch position using position information in real space coordinates of the intravascular branch position obtained by the intravascular branch position information acquisition means And provided with means
を特徴とする磁気誘導型ドラッグデリバリーシステム。  Magnetic induction type drug delivery system characterized by
[2] 前記血管内分岐位置情報取得手段は、前記血管内分岐位置抽出手段によって抽 出された血管内分岐位置を前記被検者の一部に設けられた基準位置マーカの位置 を基準とした実空間座標の位置に変換する座標変換手段を含むこと [2] The intravascular branch position information acquisition means uses the intravascular branch position extracted by the intravascular branch position extraction means based on the position of a reference position marker provided in a part of the subject. Including coordinate conversion means for converting to real space coordinate position
を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein:
[3] 前記磁場発生装置位置設定手段は、所定周期で前記磁場発生装置の設定位置 を変えること [3] The magnetic field generator position setting means changes the setting position of the magnetic field generator at a predetermined cycle.
を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein:
[4] 前記磁場発生装置位置設定手段は、前記所定周期で前記磁場発生装置を前記 血管内分岐位置に対し近接及び退避動をさせること [4] The magnetic field generator position setting means causes the magnetic field generator to move close to and retract from the intravascular branch position at the predetermined period.
を特徴とする請求項 3に記載の磁気誘導型ドラッグデリバリーシステム。  The magnetic induction type drug delivery system according to claim 3, wherein:
[5] 前記磁場発生装置位置設定手段は、前記所定周期の第一の期間では前記磁場 発生装置を前記血管内分岐位置の近傍に接近した状態で保持し、前記所定周期の 第二の期間では前記磁場発生装置を前記血管内分岐位置の近傍から退避させるこ と [5] The magnetic field generator position setting means holds the magnetic field generator close to the intravascular branch position in the first period of the predetermined cycle, and in the second period of the predetermined cycle. Retracting the magnetic field generator from the vicinity of the intravascular branch position.
を特徴とする請求項 4に記載の磁気誘導型ドラッグデリバリーシステム。  The magnetic induction type drug delivery system according to claim 4, wherein:
[6] 前記磁場発生装置位置設定手段は、前記所定周期で前記磁場発生装置を前記 血管内分岐位置の近傍から所望の方向へ、血管に沿って又は円弧状に移動させる こと [6] The magnetic field generator position setting means moves the magnetic field generator at a predetermined cycle from the vicinity of the intravascular branch position in a desired direction along the blood vessel or in an arc shape. thing
を特徴とする請求項 3に記載の磁気誘導型ドラッグデリバリーシステム。  The magnetic induction type drug delivery system according to claim 3, wherein:
[7] 前記磁場発生装置位置設定手段は、前記所定周期の第一の期間では前記磁場 発生装置を前記血管内分岐位置の近傍に接近した状態で保持し、前記所定周期の 第二の期間では前記磁場発生装置を前記血管内分岐位置から前記血管に沿って 移動させる、又は、前記円弧移動させること [7] The magnetic field generator position setting means holds the magnetic field generator close to the intravascular branch position in the first period of the predetermined cycle, and in the second period of the predetermined cycle. Moving the magnetic field generator from the intravascular branch position along the blood vessel or moving the arc.
を特徴とする請求項 6に記載の磁気誘導型ドラッグデリバリーシステム。  The magnetic induction type drug delivery system according to claim 6, wherein:
[8] 前記所定周期は、血流の脈動周期であり、 [8] The predetermined cycle is a pulsation cycle of blood flow,
前記第一の期間は血流速度の遅!、期間であり、  The first period is a slow blood flow rate!
前記第二の期間は前記第一の期間の血流速度よりも血流速度の速い期間であるこ と  The second period is a period in which the blood flow velocity is faster than the blood flow velocity in the first period.
を特徴とする請求項 5又は請求項 7に記載の磁気誘導型ドラッグデリバリーシステム  The magnetic induction type drug delivery system according to claim 5 or 7, characterized in that
[9] 前記磁場発生装置位置設定手段は、血液の体内循環サイクルの複数サイクルに わたり、前記磁場発生装置を前記血管内分岐位置に対し近接または退避させること を所定時間間隔で繰返し行うこと [9] The magnetic field generator position setting means repeatedly performs the movement of the magnetic field generator close to or away from the intravascular branch position at predetermined time intervals over a plurality of cycles of blood circulation in the body.
を特徴とする請求項 4又は請求項 5に記載の磁気誘導型ドラッグデリバリーシステム  The magnetic induction type drug delivery system according to claim 4 or 5, characterized in that
[10] 前記磁場発生装置位置設定手段は、血液の体内循環サイクルの複数サイクルに わたり、前記磁場発生装置の前記血管内分岐位置から前記血管に沿った移動又は 円弧状移動を所定時間間隔で繰返し行うこと [10] The magnetic field generation device position setting means repeats movement along the blood vessel from the intravascular branch position of the magnetic field generation device or an arcuate movement at predetermined time intervals over a plurality of cycles of blood circulation in the body. To do
を特徴とする請求項 6又は請求項 7に記載の磁気誘導型ドラッグデリバリーシステム  The magnetic induction type drug delivery system according to claim 6 or claim 7,
[11] 前記磁場発生装置を超電導磁石で構成したこと [11] The magnetic field generator is composed of a superconducting magnet.
を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein:
[12] 前記磁場発生装置を超電導バルタ磁石で構成したこと  [12] The magnetic field generator is composed of a superconducting Balta magnet
を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein:
[13] 前記磁場発装置は、超電導部材部、冷却部材部、および、前記超電導部材部と前 記冷却部材部とをつなぐ伝熱部を備え、 [13] The magnetic field generator includes a superconducting member, a cooling member, and the superconducting member. A heat transfer section connecting the cooling member section,
前記伝熱部は、複数種類の前記超電導部材部に共通の形状を有すること を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein the heat transfer section has a shape common to a plurality of types of the superconducting member sections.
[14] 前記磁場発生装置は、超電導部材部と、冷却部材部と、両部間を連結して冷媒を 循環させる断熱構造を有する配管とを備え、 [14] The magnetic field generation device includes a superconducting member portion, a cooling member portion, and a pipe having a heat insulating structure that connects both portions to circulate the refrigerant,
前記冷却部材部は冷凍機であること  The cooling member is a refrigerator
を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein:
[15] 位置入力手段と表示手段とをさらに備え、 [15] It further comprises a position input means and a display means,
前記血管内分岐位置抽出手段は、前記表示手段に表示された前記被検者の 3次 元血流イメージ上で、前記血管内分岐位置を指定するための入力を前記位置入力 手段を介して受け付けること  The intravascular branch position extracting means accepts an input for designating the intravascular branch position on the three-dimensional blood flow image of the subject displayed on the display means via the position input means. thing
を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein:
[16] 前記血管内分岐位置抽出手段は、前記被検者の 3次元血流イメージ中にて前記 所望の領域に連なる血流系統を特定し、当該特定された血管系統において血流の 中心線処理を実行するとともに、各血流の中心線が交わる点を前記血管内分岐位置 として抽出すること [16] The intravascular branch position extracting means identifies a blood flow system connected to the desired region in the subject's three-dimensional blood flow image, and a blood flow centerline in the identified blood vessel system Execute the process and extract the point where the center lines of each blood flow intersect as the intravascular branch position
を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein:
[17] 位置入力手段と表示手段とをさらに備え、 [17] It further comprises a position input means and a display means,
前記血管内分岐位置抽出手段は、前記表示手段に表示された前記被検者の 3次 元血流イメージ上で、前記所望の領域に連なる血管系統を特定するための少なくと も 2点を指定する入力を前記位置入力手段を介して受け付け、前記少なくとも 2点に 基づ 、て前記所望の領域に連なる血管系統を特定すること  The intravascular branch position extracting means designates at least two points for specifying the vascular system connected to the desired region on the three-dimensional blood flow image of the subject displayed on the display means. An input to be received via the position input means, and a vascular system connected to the desired region is specified based on the at least two points.
を特徴とする請求項 16に記載の磁気誘導型ドラッグデリバリーシステム。  The magnetic induction type drug delivery system according to claim 16, wherein:
[18] 前記磁場発生装置は、前記抽出された血管内分岐位置毎に 1セット設けられること を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。 18. The magnetic induction type drug delivery system according to claim 1, wherein one set of the magnetic field generation device is provided for each of the extracted intravascular branch positions.
[19] 前記血管内分岐位置を流れる血流の血流情報を取得する血流情報取得手段を備 え、 [19] Blood flow information acquisition means for acquiring blood flow information of the blood flow flowing through the intravascular branch position,
前記磁場発生装置位置設定手段は、前記血管内分岐位置の位置情報と前記血管 内分岐位置の血流情報とに基づいて、前記磁場発生装置が発生する磁束方向の方 向設定をすること The magnetic field generator position setting means includes position information on the intravascular branch position and the blood vessel. Based on the blood flow information at the inner branch position, the direction of the magnetic flux direction generated by the magnetic field generator is set.
を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein:
[20] 前記磁場発生装置位置設定手段は、前記血管内分岐位置と、当該血管内分岐位 置力 等距離離れた血管内の 2点を結ぶ線分の中点とを結ぶ方向に前記磁場発生 装置が発生する磁束方向の方向設定をすること [20] The magnetic field generator position setting means generates the magnetic field in a direction connecting the intravascular branch position and a midpoint of a line segment connecting two points in the blood vessel that are equidistant from the intravascular branch position. Setting the direction of the magnetic flux generated by the device
を特徴とする請求項 16に記載の磁気誘導型ドラッグデリバリーシステム。  The magnetic induction type drug delivery system according to claim 16, wherein:
[21] 前記磁場発生装置位置設定手段は、前記磁場発生装置を位置設定可能に保持 する保持部と、前記保持部を支持する支持部と、前記支持部を移動させる移動部と、 を備え、 [21] The magnetic field generation device position setting means includes: a holding unit that holds the magnetic field generation device so that the position of the magnetic field generation device can be set; a support unit that supports the holding unit; and a moving unit that moves the support unit.
前記保持部は、複数のアームと、 2つのアームを回転自在に連結する間接部とを備 えること  The holding portion includes a plurality of arms and an indirect portion that rotatably connects the two arms.
を特徴とする請求項 1に記載の磁気誘導型ドラッグデリバリーシステム。  2. The magnetic induction type drug delivery system according to claim 1, wherein:
[22] 前記保持部は、前記関節部を駆動する関節駆動部をさらに備え、 [22] The holding unit further includes a joint drive unit that drives the joint unit,
前記磁場発生装置位置設定手段は、前記関節駆動部と前記支持部と前記移動部 との内の少なくとも 1つを記血管内分岐位置の位置情報に基づいて駆動して前記磁 場発生装置の位置設定を制御する駆動制御部をさらに備えていること  The magnetic field generating device position setting means drives at least one of the joint driving unit, the support unit, and the moving unit based on positional information of the intravascular branch position to position the magnetic field generating device. A drive control unit for controlling the setting is further provided.
を特徴とする請求項 21に記載の磁気誘導型ドラッグデリバリーシステム。  The magnetic induction type drug delivery system according to claim 21, wherein
[23] 被検者の血管内へ投与された磁性薬剤を所望の方向へ誘導する磁場発生装置を 備えた磁気誘導型ドラッグデリバリーシステムにおけるドラッグデリバリー方法であつ て、 [23] A drug delivery method in a magnetic induction type drug delivery system comprising a magnetic field generator for guiding a magnetic drug administered into a blood vessel of a subject in a desired direction,
前記被検者の 3次元血流イメージを用いて、血管内分岐位置を抽出する血管内分 岐位置抽出ステップと、  An intravascular branch position extraction step for extracting an intravascular branch position using the subject's three-dimensional blood flow image;
抽出された前記血管内分岐位置の実空間座標における位置情報を求める血管内 分岐位置情報取得ステップと、  An intravascular branch position information acquisition step for obtaining position information in real space coordinates of the extracted intravascular branch position;
前記血管内分岐位置の実空間座標における位置情報を用いて、前記血管内分岐 位置の近傍に前記磁場発生装置の位置を設定する磁場発生装置位置設定ステップ と、を備えたこと を特徴とするドラッグデリバリー方法。 And a magnetic field generator position setting step for setting a position of the magnetic field generator near the intravascular branch position using position information in real space coordinates of the intravascular branch position. A drug delivery method characterized by the above.
前記血管内分岐位置情報取得ステップは、前記血管内分岐位置抽出ステップによ つて抽出された血管内分岐位置を前記被検者の一部に設けられた基準位置マーカ の位置を基準とした実空間座標の位置に変換する座標変換ステップを含むこと を特徴とする請求項 23記載のドラッグデリバリー方法。  In the intravascular branch position information acquisition step, the real space based on the position of a reference position marker provided in a part of the subject, the intravascular branch position extracted in the intravascular branch position extraction step. 24. The drug delivery method according to claim 23, further comprising a coordinate conversion step of converting to a coordinate position.
PCT/JP2007/053479 2006-04-26 2007-02-26 Magnetic induction drug delivery system WO2007125676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008513096A JP5062764B2 (en) 2006-04-26 2007-02-26 Magnetic induction type drug delivery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-121574 2006-04-26
JP2006121574 2006-04-26

Publications (1)

Publication Number Publication Date
WO2007125676A1 true WO2007125676A1 (en) 2007-11-08

Family

ID=38655214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053479 WO2007125676A1 (en) 2006-04-26 2007-02-26 Magnetic induction drug delivery system

Country Status (2)

Country Link
JP (1) JP5062764B2 (en)
WO (1) WO2007125676A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077750A1 (en) * 2009-12-25 2011-06-30 株式会社Ihi Magnet body and drug delivery control device using magnet body
JP2012045032A (en) * 2010-08-24 2012-03-08 Fujifilm Corp Stereoscopic image displaying method and device
WO2013161910A1 (en) * 2012-04-24 2013-10-31 株式会社東芝 Pet-mri device
WO2015052922A1 (en) * 2013-10-07 2015-04-16 学校法人近畿大学 Image processing device, image processing method, and computer program
JP2018089397A (en) * 2013-03-15 2018-06-14 セント・ジュード・メディカル・インターナショナル・ホールディング・エスエーアールエルSt. Jude Medical International Holding S.a,r.l. Medical device navigation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102017597B1 (en) * 2017-10-19 2019-09-03 전남대학교산학협력단 Autonomous navigation system for medical micro/nano robot using superconducting quantum interference device
KR102044872B1 (en) * 2017-10-19 2019-11-14 전남대학교산학협력단 Electromagnetic drive system for medical micro/nano robot using superconducting electromagnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522623A (en) * 1997-11-12 2001-11-20 ステリオタクシス インコーポレイテツド Movable magnetic guidance system and device and method of using same for magnetic assisted surgery
JP2002252380A (en) * 2001-02-27 2002-09-06 Sumitomo Heavy Ind Ltd Superconducting magnet device and monitoring method therefor
US20040102697A1 (en) * 2000-10-18 2004-05-27 Rami Evron Method and system for positioning a device in a tubular organ
JP2005027743A (en) * 2003-07-08 2005-02-03 Hiroya Shiomi Radiotherapy positioning device
JP2006042969A (en) * 2004-08-02 2006-02-16 Hitachi Medical Corp Medical image displaying device
WO2006035550A1 (en) * 2004-09-28 2006-04-06 Osaka University Three-dimensional guidance system and method, and medicine delivery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652257A (en) * 1985-03-21 1987-03-24 The United States Of America As Represented By The Secretary Of The Navy Magnetically-localizable, polymerized lipid vesicles and method of disrupting same
US8615289B2 (en) * 2004-02-20 2013-12-24 Koninklijke Philips N.V. Drug application during a CT scan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522623A (en) * 1997-11-12 2001-11-20 ステリオタクシス インコーポレイテツド Movable magnetic guidance system and device and method of using same for magnetic assisted surgery
US20040102697A1 (en) * 2000-10-18 2004-05-27 Rami Evron Method and system for positioning a device in a tubular organ
JP2002252380A (en) * 2001-02-27 2002-09-06 Sumitomo Heavy Ind Ltd Superconducting magnet device and monitoring method therefor
JP2005027743A (en) * 2003-07-08 2005-02-03 Hiroya Shiomi Radiotherapy positioning device
JP2006042969A (en) * 2004-08-02 2006-02-16 Hitachi Medical Corp Medical image displaying device
WO2006035550A1 (en) * 2004-09-28 2006-04-06 Osaka University Three-dimensional guidance system and method, and medicine delivery system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5372178B2 (en) * 2009-12-25 2013-12-18 株式会社Ihi Drug delivery control device
US9314602B2 (en) 2009-12-25 2016-04-19 Ihi Corporation Magnetic body and drug delivery control device using magnetic body
US20120259155A1 (en) * 2009-12-25 2012-10-11 Ihi Corporation Magnetic body and drug delivery control device using magnetic body
CN102791323A (en) * 2009-12-25 2012-11-21 株式会社Ihi Magnet body and drug delivery control device using magnet body
RU2525509C2 (en) * 2009-12-25 2014-08-20 АйЭйчАй КОРПОРЕЙШН Magnetic body and drug delivery control unit using magnetic body
EP2517752A4 (en) * 2009-12-25 2015-08-12 Ihi Corp Magnet body and drug delivery control device using magnet body
WO2011077750A1 (en) * 2009-12-25 2011-06-30 株式会社Ihi Magnet body and drug delivery control device using magnet body
JP2012045032A (en) * 2010-08-24 2012-03-08 Fujifilm Corp Stereoscopic image displaying method and device
WO2013161910A1 (en) * 2012-04-24 2013-10-31 株式会社東芝 Pet-mri device
JP2013240585A (en) * 2012-04-24 2013-12-05 Toshiba Corp Pet-mri device
US10197654B2 (en) 2012-04-24 2019-02-05 Toshiba Medical Systems Corporation PET-MRI device
JP2018089397A (en) * 2013-03-15 2018-06-14 セント・ジュード・メディカル・インターナショナル・ホールディング・エスエーアールエルSt. Jude Medical International Holding S.a,r.l. Medical device navigation system
WO2015052922A1 (en) * 2013-10-07 2015-04-16 学校法人近畿大学 Image processing device, image processing method, and computer program
JPWO2015052922A1 (en) * 2013-10-07 2017-03-09 学校法人近畿大学 Image processing apparatus, image processing method, and computer program

Also Published As

Publication number Publication date
JP5062764B2 (en) 2012-10-31
JPWO2007125676A1 (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5020533B2 (en) Drug delivery system and computer program for controlling the same
JP5062764B2 (en) Magnetic induction type drug delivery system
Heunis et al. Flexible instruments for endovascular interventions: Improved magnetic steering, actuation, and image-guided surgical instruments
US9057759B2 (en) Method for positioning the focus of a gradient field and treatment facility
EP2255743A2 (en) Open field system for magnetic surgery
US20050119556A1 (en) Catheter navigation within an MR imaging device
CN102481118B (en) For equipment that is mobile and Activation Activity agent
US20100063384A1 (en) Local intra-body delivery system
Zamecnik et al. Automated real-time needle-guide tracking for fast 3-T MR-guided transrectal prostate biopsy: a feasibility study
JP5688661B2 (en) Magnetic guidance system and its operating method
Kagadis et al. Emerging technologies for image guidance and device navigation in interventional radiology
US10674933B2 (en) Enlargement of tracking volume by movement of imaging bed
Vogl et al. Hybrid MR interventional imaging system: combined MR and angiography suites with single interactive table. Feasibility study in vascular liver tumor procedures
Shi et al. A piezoelectric robotic system for MRI targeting assessments of therapeutics during dipole field navigation
Li et al. Quantification and 3D localization of magnetically navigated superparamagnetic particles using MRI in phantom and swine chemoembolization models
JP6235601B2 (en) Magnetic element for MPI device
JP4807830B2 (en) Diagnostic imaging apparatus and treatment support system
Cepek et al. Development of an MRI-compatible device for prostate focal therapy
JP4514438B2 (en) Treatment device control system
Van Vaals Interventional MR with a hybrid high-field system
Martel Introduction: medical micro-and nanorobotics
WO2023018612A1 (en) Control of motion for micro-robot using commercial grade mri
Hetts Interventional magnetic resonance imaging: The revolution begins.
Mankewich et al. Sylvain Martel, Ouajdi Felfoul, Jean-Baptiste Mathieu, Arnaud Chanu, Samer Tamaz, Mahmood Mohammadi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008513096

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714911

Country of ref document: EP

Kind code of ref document: A1