Nothing Special   »   [go: up one dir, main page]

WO2007142091A1 - Ofdm受信装置とこれを用いたofdm受信機器 - Google Patents

Ofdm受信装置とこれを用いたofdm受信機器 Download PDF

Info

Publication number
WO2007142091A1
WO2007142091A1 PCT/JP2007/060967 JP2007060967W WO2007142091A1 WO 2007142091 A1 WO2007142091 A1 WO 2007142091A1 JP 2007060967 W JP2007060967 W JP 2007060967W WO 2007142091 A1 WO2007142091 A1 WO 2007142091A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
transmission path
reception
output
Prior art date
Application number
PCT/JP2007/060967
Other languages
English (en)
French (fr)
Inventor
Yasunobu Tsukio
Hiroaki Ozeki
Sigeru Soga
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006158187A external-priority patent/JP2007329626A/ja
Priority claimed from JP2006240992A external-priority patent/JP4905003B2/ja
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP07744381.0A priority Critical patent/EP1914918A4/en
Priority to CN200780001384.7A priority patent/CN101356758B/zh
Priority to US12/066,403 priority patent/US7944996B2/en
Publication of WO2007142091A1 publication Critical patent/WO2007142091A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain

Definitions

  • the present invention relates to an OFDM receiver that receives an orthogonal frequency division multiplexing (hereinafter abbreviated as “OFDM”) signal, estimates transmission path characteristics, and improves reception performance, and an OFDM receiver using the same About.
  • OFDM orthogonal frequency division multiplexing
  • the mobile terminal reception system is a system that receives data using a small-sized antenna. Therefore, it is necessary to receive a signal at a position where the ground height is lower than that of a large domestic antenna used in a home fixed reception system.
  • the reception environment of the mobile terminal reception system is greatly degraded.
  • the signal waveform at the time of transmission is restored from the received signal waveform, and the broadcast program is played back. There is a need to.
  • the transmission path correction technique is a technique for correcting the waveform distortion caused by the transmission path and correcting the received signal distortion.
  • pilot signals known between transmission and reception are arranged at predetermined intervals in the frequency axis direction and the time axis direction. Therefore, the receiver can calculate the differential force amplitude fluctuation amount and phase rotation amount between the received pilot signal and the pilot signal generated inside the receiver, and can know the waveform distortion and time fluctuation generated in the transmission path. Therefore, by performing interpolation processing based on this information, it is possible to estimate waveform distortion and temporal fluctuations of data signal positions other than the noise signal, and to perform correction processing to improve multi-nos resistance and fading resistance. it can.
  • Non-Patent Document 1 is known as prior art document information related to the invention of this application.
  • reception characteristics vary greatly depending on the position of the pilot signal used in the estimation process. For example, when transmission path estimation processing is performed using pilot signals that are separated by a first interval in the time axis direction (symbol direction), and pilot signals that are separated by a second interval that is shorter than the first interval
  • the transmission path estimation process is performed using, the results are different in the tracking accuracy with respect to the time variation of the received signal and the estimation accuracy with respect to the frequency selective distortion. Therefore, the multipath tolerance and fading tolerance of the OFDM receiver differ.
  • Non-Patent Literature 1 Kunori Iguchi Zyo Ryosuke Z Zhu Koda Kazuhei Kamino, Channel Estimation using Oblique Interpolation Method in Digital Terrestrial Broadcasting Receivers, Proceedings of the IEICE Conference, VOL. 2005 Society 1, Page 531
  • the OFDM receiver of the present invention includes a receiving unit that receives an OFDM signal, a first transmission path estimation unit that estimates transmission path distortion using a signal at a first time interval output from the receiving unit, Receiving unit force A second transmission path estimator that estimates the transmission path distortion using the output signal having a second time interval shorter than the first time interval, and a control signal based on the receiving state of the receiving unit! And a control unit for outputting. Also, the OFDM receiver selects and outputs one of the transmission path estimation signal from the first transmission path estimation section and the transmission path estimation signal from the second transmission path estimation section based on the control signal based on the control signal. And a correction unit that corrects the received signal whose reception unit power is also output based on the transmission path estimation signal from the selection unit.
  • the OFDM receiver of the present invention uses a transmission path estimation method with excellent multipath resistance as the first transmission path estimation section, and a transmission with excellent fading resistance as the second transmission path estimation section. Use the route estimation method. In this manner, depending on the reception state of the receiving unit, by selectively using one of the estimation results and performing the correction process, both fading resistance and multipath resistance can be achieved.
  • the OFDM receiver of the present invention includes a first receiver that receives an OFDM signal, a first transmission path correction unit connected to the first receiver, and a second receiver that receives the OFDM signal. And this The second transmission path correction section connected to the second reception section, and the diversity section connected to the first transmission path correction section and the second transmission path correction section. Further, the first transmission path correction unit corrects the reception signal also output with the first reception unit force by estimating transmission path distortion using the first time interval signal output with the first reception unit power. In addition, the second transmission path correction unit estimates the transmission path distortion using the signal of the second time interval shorter than the first time interval output from the second reception unit power, and corrects the reception signal output from the second reception unit. To do.
  • the OFDM receiver of the present invention performs correction using the transmission path estimation method having excellent fading resistance as the first transmission path correction section, and serves as the second transmission path correction section. Correction is performed using a transmission path estimation method with excellent multipath tolerance. In this manner, fading resistance and multipath resistance can both be achieved by performing synthesis by diversity for each output signal.
  • FIG. 1 is a block diagram of an OFDM receiving apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram of time axis interpolation in the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of frequency axis interpolation in the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of oblique interpolation in the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of frequency axis interpolation in the first embodiment of the present invention.
  • FIG. 6 is a block diagram of an OFDM receiving apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 is a block diagram of an OFDM receiving apparatus according to Embodiment 3 of the present invention.
  • FIG. 8 is a block diagram of another example of an OFDM receiving apparatus according to Embodiment 3 of the present invention.
  • FIG. 9 is a block diagram of an OFDM receiving apparatus in Embodiment 4 of the present invention.
  • FIG. 10 is a block diagram of another example of an OFDM receiving apparatus according to Embodiment 4 of the present invention.
  • FIG. 11 is a block diagram of an OFDM receiving apparatus according to Embodiment 5 of the present invention.
  • FIG. 12 is a block diagram of another example of an OFDM receiving apparatus according to Embodiment 5 of the present invention.
  • FIG. 13 is a block diagram of an OFDM receiving apparatus in Embodiment 6 of the present invention.
  • FIG. 14 is a block diagram of another example of an OFDM receiver according to Embodiment 6 of the present invention.
  • FIG. 1 is a block diagram of OFDM receiver 71 in Embodiment 1 of the present invention.
  • the OFDM receiver 19 includes a receiver 2 that receives an OFDM signal, and a first transmission path that estimates a transmission path distortion using a signal at a first time interval output from the receiver 2.
  • An estimation unit 3 and a second transmission path estimation unit 4 that estimates transmission path distortion using a signal having a second time interval shorter than the first time interval output from the reception unit 2 are included.
  • the OFDM receiver 19 also selects one of the transmission path estimation signal from the first transmission path estimation section 3 and the transmission path estimation signal from the second transmission path estimation section 4 based on the control signal from the control section 5. Selector 6 for selecting and outputting.
  • the OFDM receiver 19 includes a correction unit 7 that corrects the reception signal output from the reception unit 2 based on the transmission path estimation signal from the selection unit 6.
  • the receiving unit 2 includes an antenna 8 that receives an OFDM signal transmitted as a high-frequency signal, and a tuner unit 9 that converts the high-frequency signal received by the antenna 8 into an intermediate frequency signal.
  • the receiving unit 2 also converts the intermediate frequency signal, which is an analog signal output from the tuner unit 9, into a digital signal, and performs quadrature detection processing on the digital signal output from the AD converting unit 10. And a quadrature detection unit 11 for performing.
  • the receiving unit 2 includes a fast Fourier transform unit 12 that converts a time axis signal into a frequency axis signal by performing a digital Fourier transform process on the signal output from the quadrature detection unit 11.
  • the control unit 5 is connected to the tuner unit 9, and the frequency of the OFDM signal received by the receiving unit 2 Set. Further, a control signal for controlling the selection unit 6 is output based on the reception state of the reception unit 2.
  • the control unit 5 may be configured to provide a control unit for the tuner unit 9 and a control unit for controlling the selection unit 6 and perform communication as necessary. A method for outputting the control signal will be described later.
  • the OF DM receiving device 71 equipped with the OFDM receiver 19 includes a signal processing unit 61 connected to the output side of the correction unit 7 and a display unit 63 connected to the output side of the signal processing unit 61.
  • Figure 2 shows the signal layout of the OFDM signal. Note that the arrangement of pilot signals in FIG. 2 is an example, and the present invention is not limited to this arrangement.
  • a pilot signal is arranged at a position indicated by a double circle, and a data signal is arranged at a position indicated by a white circle. Since the nolot signal is a known signal between transmission and reception, the OFDM receiver 19 can perform transmission path estimation using the received pilot signal and perform correction processing on the data signal.
  • time axis interpolation is performed.
  • time axis interpolation will be described.
  • the data signals located between them are interpolated using the no-lot signals arranged in the time axis direction in the same carrier.
  • the signal supplemented in this way is shown as a circle with a diagonal line in Fig. 3.
  • pilot signals and time-axis interpolated signals are obtained every three carriers in the same symbol.
  • the first method performs frequency axis interpolation.
  • interpolation is performed in the frequency axis direction (the direction indicated by the dotted arrow) using these pilot signals and the signals subjected to time axis interpolation.
  • the remaining data indicated by white circles is complemented. Therefore, transmission path estimation values (not shown) for all data signals are obtained.
  • interpolation is performed in an oblique direction.
  • the signals that have been diagonally complemented in this way are shown as circles with diagonal lines in FIG.
  • pilot signals and signals that have been diagonally interpolated are obtained for the same symbol.
  • the second method performs frequency axis interpolation. That is, these parameters Using the pilot signal and the diagonally interpolated signal, interpolation is performed in the frequency axis direction (direction indicated by the dotted arrow). As a result, the remaining data indicated by white circles is complemented. Therefore, transmission path estimation values (not shown) for all data signals are obtained.
  • the first method and the second method are compared.
  • the first method uses pilot signals arranged every 4 symbols as the first time interval in the time axis direction, whereas the second method arranges every 3 symbols as the second time interval in the diagonal direction. Interpolation is performed using the pilot signal. Therefore, the second method is superior in follow-up performance with respect to time fluctuations, and the improvement in fading resistance is great.
  • the first method uses a pilot signal or time axis interpolated signal arranged every three carriers in the frequency axis direction
  • the second method uses a pilot signal arranged every four carriers or An oblique interpolation signal is used. Therefore, the first method is better for frequency selective distortion, and the improvement of multipath tolerance is great! /.
  • the first transmission path estimation unit 3 outputs the estimation result using the first method described above
  • the second transmission path estimation unit 4 performs the estimation using the second method described above. Output the result.
  • the control unit 5 outputs a control signal for selecting the first transmission path estimation unit 3 when the received signal quality deteriorates due to the large frequency selectivity distortion based on the reception state of the reception unit 2. To do. If the received signal quality deteriorates due to large time fluctuation, a control signal for selecting the second transmission path estimation unit 4 is output. Then, the selector 6 selects and outputs one of the transmission path estimation signals according to the control signal from the controller 5. Then, the correction unit 7 corrects the reception signal output from the reception unit 2 using the transmission channel estimation signal input from the selection unit 6, thereby selecting an optimal transmission channel estimation method according to the reception state. In addition, both multipath resistance and fading resistance can be achieved.
  • the maximum moving speed of the OFDM receiver 19 capable of receiving a signal is closely related to the speed of time fluctuation of the received signal, that is, the fusing frequency. Assuming that the reception frequency is fc, the maximum fusing frequency at which signals can be received is fdmax, and the speed of light is c, the maximum moving speed vmax of the OFDM receiver 19 capable of receiving signals is expressed by (Equation 1). [0026] [Equation 1] fd max
  • the reception frequency fc and the maximum moving speed vmax of the OFDM receiver 19 are in an inversely proportional relationship.
  • the maximum fading frequency receivable by the first method is fdmax 1 and the maximum fading frequency receivable by the second method is fdmax2 (> fdmaxl)
  • fc-tl and fc-2 are obtained by calculating the maximum fading frequency by fdmaxl, fdmax 2 and the maximum moving speed vmax of the OFDM receiver 19, respectively.
  • the relationship of fc-tl and fc-2 is established.
  • the control unit 5 performs control so that the first transmission path estimation unit 3 that performs transmission path estimation by the first method is selected when the reception frequency is less than the predetermined value fc ⁇ tl, and the reception frequency is the predetermined value.
  • control may be performed so that the second transmission path estimation unit 4 that performs transmission path estimation by the second method is selected.
  • desired mobile reception performance can be ensured in a wide reception frequency range, and multipath tolerance can be ensured when the reception frequency is low.
  • the first transmission path estimation unit 3 is selected to Can be improved.
  • first transmission path estimation units 3 and second transmission path estimation units 4 depending on the reception frequency fc.
  • the transmission path estimation method may be changed. That is, by controlling the first time interval and the second time interval to be switched according to the reception frequency fc, both fading resistance and multipath resistance can be achieved.
  • FIG. 6 is a block diagram of OFDM receiver 21 in the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences will be described in detail.
  • an OFDM receiver 21 is connected between the AD conversion unit 10 and the quadrature detection unit 11 of the reception unit 2 and detects a signal level of the reception signal 13.
  • a fading frequency estimation unit 14 that is connected to the reception level detection unit 13 and estimates the fading frequency of the received signal and outputs the estimation result to the control unit 5.
  • the control unit 5 sends the input signal from the first transmission path estimation unit 3 to the selection unit 6 when the fading frequency to which the fading frequency estimation unit 14 is also input is less than a predetermined value.
  • the control signal to be selected is output.
  • control is performed so that the selection unit 6 outputs a control signal for selecting the input signal from the second transmission path estimation unit 4.
  • the control unit 5 is controlled by setting a predetermined value of the force fading frequency that is expected to be about 100 Hz during normal reception.
  • the first transmission path estimator 3 or 3 is determined according to the reception frequency of the receiver 2 from (Equation 2) and (Equation 3). Which of the second transmission path estimation units 4 should be selected by the control unit 5 can be determined. By setting in this way, one of the first transmission path estimation unit 3 and the second transmission path estimation unit 4 can be selected more accurately, and both fading resistance and multipath resistance can be achieved. wear. Note that fading resistance varies depending on the performance improvement of the receiver and the transmission path estimation method. Force The present invention is characterized by the use of two transmission path estimators having different characteristics, and is not limited to this specific value.
  • fading frequency estimation in fading frequency estimation unit 14 can be performed by analyzing temporal fluctuations of the reception level. For example, it is possible to estimate the fading frequency by holding the past reception level value in a memory and calculating the variance of the reception level value.
  • FIG. 7 is a block diagram of OFDM receiver 31 in Embodiment 3 of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and differences will be described in detail.
  • the OFDM receiver 31 further includes a signal quality measurement unit 15 connected to the correction unit 7 and outputting the signal quality of the received signal to the control unit 5 in addition to the configuration of FIG.
  • control unit 5 causes the selection unit 6 to select a signal from the other transmission path estimation unit when the signal quality output from the signal quality measurement unit 15 is deteriorated below a predetermined value.
  • CN ratio a ratio between the carrier level and the noise level of the received signal
  • the first transmission path estimation unit 3 for example, when the CN ratio deteriorates to 10 dB or less, the moving speed may increase and the fading frequency may increase.
  • the second transmission path estimation unit 4 performs control to select the second transmission path estimator 4 with excellent fading resistance.
  • the second transmission path estimation unit 4 for example, when the CN ratio deteriorates to 10 dB or less, the multipath may increase and the frequency selective distortion may increase.
  • Unit 5 performs control to select the first transmission path estimation unit 3 having excellent multipath tolerance. With the above control, a more optimal transmission path estimation method can be selected according to the reception state, and both multipath resistance and fusing resistance can be achieved.
  • a predetermined value of CN ratio is 10 Power set to dB It may be changed appropriately according to the modulation parameters of the broadcasting system. Further, the signal level or error rate of the received signal may be used as the signal quality. As the error rate, for example, a bit error rate or a packet error rate can be used.
  • the predetermined value as the signal quality of the signal level of the received signal may be, for example, ⁇ 80 dBm.
  • the predetermined value as a signal quality of a bit error rate of the received signal may be, for example, 2 X 10- 4.
  • the control unit 5 switches the selection of the transmission path estimation unit, the characteristics can be further improved by maintaining the state of the control signal to the selection unit 6 for a certain period of time.
  • the control unit 5 since the estimation process in the transmission path estimation unit uses the pilot signal at a predetermined time interval, the control unit 5 performs switching control over the selection unit 6 with a period sufficiently larger than the time interval.
  • the fixed time may be set to 500 milliseconds, for example.
  • the control unit 5 cannot perform the switching with respect to the time interval and performs the switching control in the cycle, the correction unit 7 causes the reception quality deterioration due to the switching.
  • the control unit 5 does not control the selection unit 6 for a certain period of time, and the switching period can be set small by maintaining the state of the control signal. At the same time, it is possible to suppress reception quality deterioration due to switching.
  • the fixed time differs depending on the broadcasting system and the processing method of the demodulator, etc., so it may be selected as appropriate.
  • FIG. 8 is a block diagram of another example of OFDM receiver 35 in Embodiment 3 of the present invention.
  • the OFDM receiver 35 includes N transmission path estimators, and the figure shows the Nth Nth transmission path estimator 34 with the third and subsequent parts omitted.
  • the selection unit 6 performs the other first transmission path estimation unit 3 and The correction process is performed using the estimation result of any one of N different transmission path estimation units, including the second transmission path estimation unit 4. Therefore, it is possible to simultaneously realize three or more characteristics according to the characteristics of the transmission path estimation unit.
  • a third transmission path estimation unit (not shown) that performs transmission path estimation at a third time interval shorter than the first transmission path estimation section 3 and the second transmission path estimation section 4 is provided.
  • the fading frequency is 150 Hz or more
  • correction processing is performed using the estimation result of the third transmission path estimation unit at the third time interval.
  • the fading frequency is 100 Hz or more and less than 150 Hz
  • correction processing is performed using the estimation result of the second transmission path estimation unit 4 at the second time interval.
  • the fusing frequency is less than 100 Hz
  • correction processing is performed using the estimation result of the first transmission path estimation unit 3 at the first time interval.
  • FIG. 9 is a block diagram of OFDM receiving apparatus 271 according to Embodiment 4 of the present invention.
  • the OFDM receiver 219 includes a first receiving unit 202 that receives an OFDM signal, and a first transmission path correction unit 203 connected to the first receiving unit 202.
  • the OFDM receiver 219 includes a second receiver 204 that receives the OFDM signal, and a second transmission path correction unit 205 connected to the second receiver 204.
  • the first receiving unit 202 and the second receiving unit 204 have the same configuration and function.
  • the OFDM receiver 219 includes a diversity unit 206 connected to the first transmission path correction unit 203 and the second transmission path correction unit 205.
  • the first receiving unit 202 and the second receiving unit 204 have the same configuration as that of the receiving unit 2 shown in FIG. 1 in the first embodiment, and fast Fourier transform units (see FIG. Not shown).
  • an OFDM receiver 271 equipped with an OFDM receiver 219 includes a signal processing unit 261 connected to the output side of the diversity unit 206 and a display unit 263 connected to the output side of the signal processing unit 261. Have. Then, the first transmission path correction unit 203 outputs from the first reception unit 202. The first transmission path estimation unit 207 that estimates the transmission path state from the received signal and the correction unit 208 that corrects the reception signal based on the estimation result of the first transmission path estimation unit 207. . The second transmission path correction unit 205 is also based on the estimation results of the second transmission path estimation unit 209 and the second transmission path estimation unit 209 that also estimate the transmission path state based on the received signal power output from the second reception unit 204.
  • the correction unit 210 corrects the received signal.
  • the first transmission path estimation unit 207 has the same configuration and function as the first transmission path estimation unit 3 in the first embodiment.
  • second transmission path estimation section 209 has the same configuration and function as second transmission path estimation section 4 in the first embodiment. Therefore, a detailed description of the equivalent parts is omitted.
  • the first transmission path correction unit 203 performs transmission path estimation using the received signal of the first time interval output from the first reception unit 202. Based on the result, the correction unit 208 outputs the correction result to the diversity unit 206.
  • the second transmission path correction unit 205 estimates the transmission path using the received signal output from the second reception unit 204 and having a second time interval shorter than the first time interval. Based on the result, the correction unit 210 outputs the result of correction to the diversity unit 206.
  • Diversity unit 206 further receives the signal quality calculated by a signal quality calculator (not shown) in diversity unit 206 with respect to the input signals from first channel correction unit 203 and second channel correction unit 205. The composition is performed based on.
  • the synthesis ratio may be determined based on the ratio (CZN) of the carrier level and the noise level of each output signal of the first transmission path correction unit 203 and the second transmission path correction unit 205. .
  • CZN ratio of the carrier level and the noise level of each output signal of the first transmission path correction unit 203 and the second transmission path correction unit 205.
  • the synthesis method is not limited to this method, and other methods may be used.
  • the transmission path distortion is estimated and the received signal is corrected in the same manner as described with reference to FIGS. 2 to 5 in the first embodiment.
  • the first transmission path correction unit 203 uses the first method described in Embodiment 1, and is included in the reception signal output from the first reception unit 202 and includes a first symbol interval (every four symbols). )
  • the transmission path distortion is estimated using the pilot signal arranged in (1).
  • the reception signal output from the first reception unit 202 is corrected.
  • the second transmission path correction unit 205 uses the second method described in Embodiment 1, and is included in the received signal output from the second reception unit 204 and is shorter than the first symbol interval and has a second symbol interval.
  • the transmission path distortion is estimated using the pilot signal arranged (every 3 symbols). Then, the received signal output from the second receiving unit 204 is corrected.
  • first transmission path correction section 203 outputs a received signal corrected by first transmission path estimation section 207 based on the result estimated using the first method.
  • Second transmission path correction section 205 outputs a received signal corrected based on the result of estimation using second method by second transmission path estimation section 209. Then, the diversity unit 206 combines the signals from the first transmission path correction unit 203 and the second transmission path correction unit 205, thereby providing multipath tolerance obtained by the frequency selective distortion characteristics of the first method, The fading tolerance obtained by the time tracking characteristics of the two methods can be achieved.
  • FIG. 10 is a block diagram of OFDM reception apparatus 221 of another example according to Embodiment 4 of the present invention.
  • the OFDM receiver 221 includes a series connection body of N reception units and a transmission path correction unit.
  • the third and subsequent parts are omitted and the Nth series connection body is omitted.
  • An N receiver 251 and an Nth transmission path correction unit 253 are shown.
  • the N-th transmission line correction unit 253 also uses the received signal power output from the N-th reception unit 251 as an estimation result of the N-th transmission line estimation unit 259 and the N-th transmission line estimation unit 259 for estimating the transmission line state. Based on this, the correction unit 260 corrects the received signal. Then, correction is performed by using different transmission path estimation methods in the respective transmission path correction sections, and the respective outputs are combined in the diversity section 226, so that a further characteristic improvement effect can be obtained.
  • FIG. 11 is a block diagram of OFDM receiving apparatus 231 according to Embodiment 5 of the present invention. Components similar to those in the fourth embodiment are denoted by the same reference numerals, description thereof is omitted, and differences will be described in detail.
  • the OFDM receiver 231 supports the configuration of FIG. 9, and further starts or stops the operation of the control unit 211 and the second reception unit 204 according to the control signal input from the control unit 211. And an enable circuit 212 for performing control.
  • the OFDM receiver 231 is connected to each of the first receiver 202 and the second receiver 204, and either the first receiver 202 or the second receiver 204 according to the control signal input from the controller 211.
  • a signal selection unit 213 that outputs one of the input signals to the second transmission path correction unit 205 is provided.
  • the OFDM receiver 231 includes an error correction unit 214 connected to the diversity unit 206, and an error rate measurement unit 215 connected between the error correction unit 214 and the control unit 211.
  • the error rate measurement unit 215 may be connected to the diversity unit 206 to measure the CN ratio before error correction.
  • the control unit 211 when the error rate measured by the error rate measuring unit 215 is smaller than a predetermined value, the control unit 211 outputs a control signal for stopping the operation to the enable circuit 212 and the signal. A control signal for selecting an input signal from the first reception unit 202 is output to the selection unit 213. Further, when the error rate is equal to or higher than a predetermined value, the control unit 211 outputs a control signal for starting operation to the enable circuit 212 and also receives an input signal from the second reception unit 204 to the signal selection unit 213. Control is performed so as to output a control signal for selecting.
  • the error rate for example, a bit error rate or a packet error rate can be used. Then, a predetermined value of the bit error rate of the received signal may be, for example 2 X 10_ 4.
  • the enable circuit 212 stops the operation of the second reception unit 204 in order to reduce power consumption.
  • the signal selection unit 213 selects an input signal from the first reception unit 202.
  • the first transmission path correction section 203 corrects the signal received by the first reception section 202 but also the second transmission path correction section 205 performs correction using a different transmission path estimation method. .
  • the output signals from the first transmission path correction unit 203 and the second transmission path correction unit 205 are diced. Combining with the capacity unit 206 makes it possible to achieve both low power consumption, fading resistance, and multipath resistance.
  • the reception sensitivity can be improved. That is, the diversity unit 206 synthesizes the signals received by the antennas (not shown) included in the first receiving unit 202 and the second receiving unit 204, respectively. In the case of correlation, reception sensitivity is improved. For example, if the signal received by each antenna has a non-correlated correlation number of 0), the reception sensitivity is improved by 3 dB.
  • the OFDM receiver 231 of Embodiment 5 achieves low power consumption by stopping the operation of the second receiver 204 when the reception environment is good, and the first Since the correction is performed using the transmission path correction unit 203 and the second transmission path correction unit 205, it is possible to suppress deterioration of the reception characteristics.
  • the reception environment is poor, it is possible to ensure the reception sensitivity characteristic by starting the operation of the second reception unit 204.
  • FIG. 12 is a block diagram of OFDM receiving apparatus 233 of another example according to Embodiment 5 of the present invention.
  • OFDM receiving apparatus 233 includes CN ratio measuring section 255 instead of error rate measuring section 215 shown in FIG.
  • the CN ratio measuring unit 255 can measure the CN ratio from the signal output from the diversity unit 206. By performing control using the CN ratio as an indicator of signal quality in this way, the time required for signal quality detection can be shortened.
  • the predetermined value of the CN ratio of the received signal may be 10 dB.
  • FIG. 13 is a block diagram of OFDM receiving apparatus 273 in Embodiment 6 of the present invention. Components similar to those in the fourth embodiment are denoted by the same reference numerals, description thereof is omitted, and differences will be described in detail.
  • the OFDM receiver 241 receives the OFDM signal. 302, first transmission path correction section 203 connected to reception section 302, second transmission path correction section 205 connected to reception section 302, first transmission path correction section 203, and second transmission path correction. And a diversity unit 206 connected to the unit 205.
  • Receiving section 302 has the same configuration and function as first receiving section 202 in the fourth embodiment.
  • the OFDM receiver 273 equipped with the OFDM receiver 241 includes a signal processing unit 261 connected to the output side of the diversity unit 206 and a display unit 263 connected to the output side of the signal processing unit 261. .
  • first transmission path correction section 203 estimates transmission path distortion using pilot signals included in the received signal output from receiving section 302 and arranged at first symbol intervals. Then, the received signal output from receiving section 302 is corrected.
  • Second transmission path correction section 205 estimates transmission path distortion using a pilot signal that is included in the received signal output from reception section 302 and that is shorter than the first symbol interval and arranged at the second symbol interval. Then, the received signal output from receiving section 302 is corrected.
  • the first transmission line correction unit 203 corrects the reception signal output from the reception unit 302 by estimating transmission line distortion using the first method described above, and the second transmission line correction unit 205. Corrects the received signal output from the receiver 302 by estimating the transmission path distortion using the second method described above. Then, the diversity unit 206 combines the signals input from the first transmission path correction unit 203 and the second transmission path correction unit 205 to obtain the multipath tolerance obtained by the first method and the second method. It is possible to achieve both fading resistance.
  • the second receiver 204 may be omitted in the OFDM receiver 241 shown in Fig. 13 in the sixth embodiment, compared to the OFDM receiver 219 shown in Fig. 9 in the fourth embodiment. Therefore, further downsizing and low power consumption can be achieved.
  • FIG. 14 is a block diagram of OFDM receiver 254 of another example according to the sixth embodiment of the present invention.
  • the OFDM receiver 254 includes N transmission path correction units, and in the figure, the Nth and Nth transmission path correction units 253 are shown with the third and subsequent omitted.
  • the receiving unit 302 and the receiving unit 302 Three or more connected transmission path correction units are provided, and each transmission path correction unit performs correction by using a different transmission path estimation method. Further, by combining the respective outputs in the diversity unit 206, a further characteristic improvement effect can be obtained.
  • the OFDM receiver of the present invention has a plurality of transmission path estimation means, and each has different characteristics, thereby making it possible to achieve a plurality of characteristics such as fading performance and multipath tolerance. It is particularly useful for OFDM receivers such as mobile terminals and in-vehicle terminals that need to receive while moving in various environments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)

Abstract

 OFDM受信装置は、信号を受信する受信部と、この受信部から出力された第1時間間隔の信号を用いて伝送路歪みを推定する第1伝送路推定部と、受信部から出力された第1時間間隔より短い第2時間間隔の信号を用いて伝送路歪みを推定する第2伝送路推定部と、第1伝送路推定部からの信号と第2伝送路推定部からの信号のうち制御部からの制御信号に基づいていずれか一方を選択し出力する選択部と、この選択部からの伝送路推定信号に基づいて受信部から出力された受信信号を補正する補正部とを有する。そして、制御部は受信部の受信状態に基づいて選択部への制御信号を決定する。

Description

OFDM受信装置とこれを用いた OFDM受信機器
技術分野
[0001] 本発明は、直交周波数分割多重 (以下、「OFDM」と略記する)信号を受信し、伝 送路特性を推定して受信性能を向上させる OFDM受信装置とこれを用いた OFDM 受信機器に関する。
背景技術
[0002] 近年、 OFDM変調方式を採用したデジタル放送が開始された。
[0003] しかし携帯端末受信システムは、小型サイズのアンテナを用いて受信するシステム である。従って、家庭用の固定受信システムで用いられる家庭用大型アンテナに比 ベて地上高が低い位置で信号を受信する必要がある。また、利用者が移動しながら 視聴するので、携帯端末受信システムでは受信環境が大幅に劣化する。特に、マル チパスに起因する周波数選択性の伝送路歪みや、移動受信に起因するフ ージン グなど、劣悪な受信環境において、受信した信号波形から送信時の信号波形を復元 し、放送番組を再生する必要がある。
[0004] 従来、このような劣悪な受信環境においては伝送路補正技術が有効であることが 知られている。
[0005] 伝送路補正技術とは、伝送路によって生じる波形歪みを推定し、受信信号の歪み を除去することにより補正する技術である。デジタル放送は送受信間で既知であるパ ィロット信号を周波数軸方向および時間軸方向に所定の間隔で配置している。その ため、受信装置は受信したパイロット信号と受信機内部で生成したパイロット信号の 差分力 振幅変動量および位相回転量を算出し、伝送路で発生した波形歪みや時 間変動を知ることができる。従って、この情報を基に補間処理を行うことにより、ノイロ ット信号以外のデータ信号位置の波形歪みおよび時間変動を推定し、補正処理を行 うことによりマルチノス耐性やフェージング耐性を改善することができる。
[0006] なお、この出願の発明に関連する先行技術文献情報としては、例えば、非特許文 献 1が知られている。 [0007] パイロット信号を用いた伝送路推定においては、推定処理に用いるパイロット信号 位置によって受信特性が大きく変化する。例えば、時間軸方向(シンボル方向)に第 1間隔だけ離れて配置されたパイロット信号を用いて伝送路推定処理を行った場合と 、第 1間隔より短い第 2間隔だけ離れて位置されたパイロット信号を用いて伝送路推 定処理を行った場合とでは、受信信号の時間変動に対する追従性および周波数選 択性歪みに対する推定精度が異なった結果が得られる。そのため OFDM受信装置 のマルチパス耐性やフェージング耐性が異なったものとなる。
[0008] 従来は 、ずれか一方の伝送路推定方法を用いた補間処理を行って!/、たため、マ ルチパス耐性とフェージング耐性とを両立させることが困難であった。
非特許文献 1:井口貨敬 Z森良輔 Z木曽田晃 Z神野一平、地上デジタル放送受信 器における斜め補間方式を用いた伝送路推定、電子情報通信学会大会講演論文 集、 VOL. 2005 ソサイエティ 1、 531ページ
発明の開示
[0009] 本発明の OFDM受信装置は、 OFDM信号を受信する受信部と、この受信部から 出力された第 1時間間隔の信号を用いて伝送路歪みを推定する第 1伝送路推定部と 、受信部力 出力された前記第 1時間間隔より短い第 2時間間隔の信号を用いて伝 送路歪みを推定する第 2伝送路推定部と、受信部の受信状態に基づ!、て制御信号 を出力する制御部とを有する。また、 OFDM受信装置は、第 1伝送路推定部からの 伝送路推定信号と第 2伝送路推定部からの伝送路推定信号のうち制御信号に基づ V、て 、ずれか一方を選択し出力する選択部と、選択部からの伝送路推定信号に基 づいて受信部力も出力された受信信号を補正する補正部とを有する。
[0010] このような構成により、本発明の OFDM受信装置は、第 1伝送路推定部としてマル チパス耐性に優れた伝送路推定手法を用い、第 2伝送路推定部としてフェージング 耐性に優れた伝送路推定手法を用いる。このようにして、受信部の受信状態に応じ て!、ずれか一方の推定結果を選択的に用 、て補正処理を行うことにより、フェージン グ耐性とマルチパス耐性とを両立させることができる。
[0011] また、本発明の OFDM受信装置は、 OFDM信号を受信する第 1受信部と、この第 1受信部に接続された第 1伝送路補正部と、 OFDM信号を受信する第 2受信部と、こ の第 2受信部に接続された第 2伝送路補正部と、第 1伝送路補正部および第 2伝送 路補正部に接続されたダイバシティ部とから少なくとも構成される。さらに、第 1伝送 路補正部は、第 1受信部力 出力された第 1時間間隔の信号を用いて伝送路歪みを 推定することにより第 1受信部力も出力された受信信号を補正する。また、第 2伝送路 補正部は第 2受信部力 出力された第 1時間間隔より短い第 2時間間隔の信号を用 いて伝送路歪みを推定し第 2受信部から出力された受信信号を補正する。
[0012] このような構成により、本発明の OFDM受信装置は、第 1伝送路補正部としてフエ 一ジング耐性に優れた伝送路推定手法を用いて補正を行 、、第 2伝送路補正部とし てマルチパス耐性に優れた伝送路推定手法を用いて補正を行う。このようにして、そ れぞれの出力信号に対してダイバシティによる合成を行うことにより、フェージング耐 性とマルチパス耐性とを両立させることができる。
図面の簡単な説明
[0013] [図 1]図 1は本発明の実施の形態 1における OFDM受信機器のブロック図である。
[図 2]図 2は本発明の実施の形態 1における時間軸補間の説明図である。
[図 3]図 3は本発明の実施の形態 1における周波数軸補間の説明図である。
[図 4]図 4は本発明の実施の形態 1における斜め補間の説明図である。
[図 5]図 5は本発明の実施の形態 1における周波数軸補間の説明図である。
[図 6]図 6は本発明の実施の形態 2における OFDM受信装置のブロック図である。
[図 7]図 7は本発明の実施の形態 3における OFDM受信装置のブロック図である。
[図 8]図 8は本発明の実施の形態 3における他の例の OFDM受信装置のブロック図 である。
[図 9]図 9は本発明の実施の形態 4における OFDM受信機器のブロック図である。
[図 10]図 10は本発明の実施の形態 4における他の例の OFDM受信装置のブロック 図である。
[図 11]図 11は本発明の実施の形態 5における OFDM受信装置のブロック図である。
[図 12]図 12は本発明の実施の形態 5における他の例の OFDM受信装置のブロック 図である。
[図 13]図 13は本発明の実施の形態 6における OFDM受信装置のブロック図である。 [図 14]図 14は本発明の実施の形態 6における他の例の OFDM受信装置のブロック 図である。
符号の説明
2, 302 受信部
3, 207 第 1伝送路推定部
4, 209 第 2伝送路推定部
5, 211 制御部
6 選択部
7, 208, 210 補正部
8 アンテナ
9 チューナ部
10 AD変換部
11 直交検波部
12 高速フーリエ変換部
13 受信レベル検出部
14 フ ージング周波数推定部
15 信号品質計測部
19, 21, 31, 35, 219, 221, 231, 233, 241, 254 OFDM受信装置
34, 259 第 N伝送路推定部
61, 261 信号処理部
63, 263 表示部
71, 271, 273 OFDM受信機器
202 第 1受信部
204 第 2受信部
203 第 1伝送路補正部
205 第 2伝送路補正部
206, 226 ダイノ シティ部
208, 210, 260 補正部 212 ィネーブル回路
213 信号選択部
214 誤り訂正部
215 誤り率計測部
251 第 N受信部
253 第 N伝送路補正部
255 CN比計測部
発明を実施するための最良の形態
[0015] 以下、本発明の実施の形態について、図面を用いて説明する。
[0016] (実施の形態 1)
以下、本発明における実施の形態 1について、図 1から図 4を用いて説明する。図 1 は、本発明の実施の形態 1における OFDM受信機器 71のブロック図である。図 1に 示すように、 OFDM受信装置 19は、 OFDM信号を受信する受信部 2と、この受信部 2から出力された第 1時間間隔の信号を用いて伝送路歪みを推定する第 1伝送路推 定部 3と、受信部 2から出力された第 1時間間隔より短い第 2時間間隔の信号を用い て伝送路歪みを推定する第 2伝送路推定部 4とを有する。また OFDM受信装置 19 は、第 1伝送路推定部 3からの伝送路推定信号と第 2伝送路推定部 4からの伝送路 推定信号のうち制御部 5からの制御信号に基づいていずれか一方を選択し出力する 選択部 6を有する。さらに OFDM受信装置 19は、選択部 6からの伝送路推定信号に 基づいて受信部 2から出力された受信信号を補正する補正部 7を有する。
[0017] また受信部 2は、高周波信号にて送信された OFDM信号を受信するアンテナ 8と、 このアンテナ 8が受信した高周波信号を中間周波信号に変換するチューナ部 9とを 有する。また受信部 2は、チューナ部 9から出力されたアナログ信号である中間周波 信号をデジタル信号に変換する AD変換部 10と、この AD変換部 10から出力された デジタル信号に対して直交検波処理を行う直交検波部 11とを有する。さらに受信部 2は、直交検波部 11から出力された信号にデジタルフーリエ変換処理を行うことによ り、時間軸信号を周波数軸信号に変換する高速フーリエ変換部 12を有する。
[0018] 制御部 5は、チューナ部 9に接続され、受信部 2が受信する OFDM信号の周波数 を設定する。また、受信部 2の受信状態に基づいて、選択部 6を制御する制御信号を 出力する。ここで、制御部 5は、チューナ部 9を制御するものと選択部 6を制御するも のとをそれぞれ設け、それらが必要に応じて通信を行う構成としてもよい。なお、制御 信号を出力する方法については後述する。また、 OFDM受信装置 19を搭載した OF DM受信機器 71は、補正部 7の出力側に接続された信号処理部 61と、信号処理部 61の出力側に接続された表示部 63とを有する。
[0019] 次に、第 1伝送路推定部 3および第 2伝送路推定部 4が、 OFDM信号のパイロット 信号を用いて、伝送路歪みを推定する手法について図を用いて説明する。図 2は O FDM信号の信号配置を示している。なお、図 2のパイロット信号の配置は例示であり 、本願発明はこの配置に限定されるものではない。 2重丸で示した位置にはパイロッ ト信号が配置され、白丸で示した位置にはデータ信号が配置されている。ノ ィロット 信号は送受信間で既知の信号であるため、 OFDM受信装置 19は、受信したパイ口 ット信号を用いて伝送路推定を行い、データ信号に対して補正処理を行うことができ る。ここで伝送路推定の処理方法として!/、くつかの手法がある。
[0020] 第 1手法は、まず、時間軸補間を行う。図 2を用いて、時間軸補間について説明す る。図 2に点線矢印にて示すように、同一キャリア内の時間軸方向に並んだノ ィロット 信号を用いて、その間に位置するデータ信号を補間する。このようにして時間軸補完 された信号を、図 3では斜線を付加した丸で示している。ところで、周波数軸方向に ついては、図 3に点線矢印にて示すように、同一シンボルにおいてパイロット信号お よび時間軸補間された信号が 3キャリアおきに得られている。次に、第 1手法は、周波 数軸補間を行う。すなわち、これらのパイロット信号および時間軸補間された信号を 用いて周波数軸方向(点線矢印にて示す方向)に補間を行う。その結果、白丸で示 されている残されたデータが補完される。従って、全てのデータ信号における伝送路 推定値 (図示せず)が得られる。
[0021] 第 2手法は、図 4に点線矢印にて示すように、まず、斜め方向に補間を行う。このよ うにして斜め補完された信号を、図 5では斜線を付加した丸で示している。図 5に点 線矢印にて示すように、同一シンボルにおいてパイロット信号および斜め補間された 信号が得られている。次に、第 2手法は、周波数軸補間を行う。すなわち、これらのパ ィロット信号および斜め補間された信号を用いて周波数軸方向(点線矢印にて示す 方向)に補間を行う。その結果、白丸で示されている残されたデータが補完される。 従って、全てのデータ信号における伝送路推定値(図示せず)が得られる。
[0022] ここで、第 1手法と第 2手法を比較する。第 1手法は時間軸方向に第 1時間間隔とし ての 4シンボル毎に配置されたパイロット信号を用いているのに対し、第 2手法は斜め 方向に第 2時間間隔としての 3シンボル毎に配置されたパイロット信号を用いて補間 を行っている。従って、時間変動に対する追従性は第 2手法の方が優れており、フエ 一ジング耐性の改善が大き 、。
[0023] 一方、第 1手法は周波数軸方向に 3キャリア毎に配置されたパイロット信号または時 間軸補間信号を用いているのに対し、第 2手法は 4キャリア毎に配置されたパイロット 信号または斜め補間信号を用いている。従って、周波数選択性歪みに対しては第 1 手法の方が優れており、マルチパス耐性の改善が大き!/、。
[0024] このようにして、第 1伝送路推定部 3は前述の第 1手法を用いて推定した結果を出 力し、第 2伝送路推定部 4は前述の第 2手法を用いて推定した結果を出力する。そし て、制御部 5は、受信部 2の受信状態に基づいて、周波数選択性歪みが大きいため に受信信号品質が劣化する場合には第 1伝送路推定部 3を選択する制御信号を出 力する。また、時間変動が大きいために受信信号品質が劣化する場合には第 2伝送 路推定部 4を選択する制御信号を出力する。そして、選択部 6は制御部 5からの制御 信号に従って、いずれか一方の伝送路推定信号を選択して出力する。そして、補正 部 7は選択部 6から入力される伝送路推定信号を用いて受信部 2から出力された受 信信号の補正を行うことにより、受信状態に応じて最適な伝送路推定手法を選択し、 マルチパス耐性とフェージング耐性とを両立させることができる。
[0025] 制御部 5における簡易な制御方法として、受信する高周波信号の周波数に応じて、 伝送路推定手法を選択する方法があり、これについて以下説明する。信号を受信可 能な OFDM受信装置 19の最大移動速度は、受信信号の時間変動の速度すなわち フ ージング周波数と密接な関係がある。受信周波数を fc、信号を受信可能な最大 フ ージング周波数を fdmax、光速を cとすると、信号を受信可能な OFDM受信装 置 19の最大移動速度 vmaxは (数 1)で表される。 [0026] [数 1] fd max
max = c
fc
[0027] すなわち、受信周波数 fcと OFDM受信装置 19の最大移動速度 vmaxは反比例の 関係にある。ここで、前述の第 1手法で受信可能な最大フェージング周波数を fdmax 1とし、第 2手法で受信可能な最大フェージング周波数を fdmax2 ( >fdmaxl)とす ると、第 1手法では、
[0028] [数 2] fc tl = fd max!
v max
[0029] で表される受信周波数の所定値 fc—tlまで受信可能である。また、第 2手法では、 [0030] [数 3] r
fc ΐ 2 fd max 2
v max
[0031] で表される受信周波数の所定値 fc—t2まで受信可能である。数 2、数 3で示されるよ うに、 fc— tl、及び fc— 2は、それぞれ最大フェージング周波数を fdmaxl、 fdmax 2、及び OFDM受信装置 19の最大移動速度 vmaxにより求められる。ここで、 fc—tl く fc— 2の関係が成立している。前述の通り、マルチパス耐性については第 1手法 の方が優れている。従って、制御部 5は、受信周波数が所定値 fc—tl未満の場合に は第 1手法による伝送路推定を行う第 1伝送路推定部 3が選択されるように制御し、 受信周波数が所定値 fc—tl以上の場合には第 2手法による伝送路推定を行う第 2 伝送路推定部 4が選択されるように制御を行えば良い。これにより、広い受信周波数 範囲で所望の移動受信性能を確保することができ、また受信周波数が低 、場合には マルチパス耐性を確保することが可能となる。例えば、車載受信などあら力じめ OFD M受信装置 19が移動する最高速度が分力つている用途において、受信周波数 fcが 小さい場合に、第 1伝送路推定部 3を選択することにより、マルチノス耐性を高めるこ とがでさる。
[0032] なお、受信周波数 fcによって 2つの第 1伝送路推定部 3および第 2伝送路推定部 4 の伝送路推定手法を変化させても良い。即ち、上記第 1時間間隔と第 2時間間隔とを 受信周波数 fcによって切り替えるように制御することにより、更にフェージング耐性と マルチパス耐性との両立を図ることができる。
[0033] 尚、伝送路推定の手法としては様々なものが提案されており、システムによっては 伝送情報量を増やすためにパイロット信号を用いずに推定する手法も検討されて 、 る。このようなシステムにおいても、本発明にかかる OFDM受信手法は有効な効果を 持つものである。
[0034] (実施の形態 2)
以下、本発明における実施の形態 2について図 6を用いて説明する。図 6は、本発 明の実施の形態 2における OFDM受信装置 21のブロック図である。実施の形態 1と 同様の構成については、同一符号を付してその説明を省略し、相違点について詳述 する。図 6において OFDM受信装置 21は、図 1の構成に加え、受信部 2の AD変換 部 10と直交検波部 11との間に接続され受信信号の信号レベルを検出する受信レべ ル検出部 13と、受信レベル検出部 13に接続され受信信号のフェージング周波数を 推定し制御部 5に出力するフェージング周波数推定部 14とを有する。
[0035] この構成において、制御部 5はフェージング周波数推定部 14力も入力されるフエ一 ジング周波数が所定値未満の場合には選択部 6に対して第 1伝送路推定部 3からの 入力信号を選択する制御信号を出力する。また、フ ージング周波数推定部 14から 入力されるフェージング周波数が所定値以上の場合には選択部 6に対して第 2伝送 路推定部 4からの入力信号を選択する制御信号を出力するよう制御を行う。なお、フ エージング周波数は、例えば、通常受信時には 100Hz程度までが見込まれる力 フ エージング周波数の所定値を 80Hz程度に設定して、制御部 5を制御すればょ 、。 実施の形態 1で述べたように、 OFDM受信装置 19の最大移動速度 vmaxを決めると (数 2)、及び (数 3)より、受信部 2の受信周波数により、第 1伝送路推定部 3または第 2伝送路推定部 4のどちらを制御部 5により選択すべきかを決定できる。このように設 定することにより、更に的確に第 1伝送路推定部 3と第 2伝送路推定部 4のいずれか 一方を選択することができ、フェージング耐性とマルチパス耐性を両立させることがで きる。なお、フェージング耐性は、受信部の性能改善や伝送路推定方式により変わる 力 本願発明は特性の異なる 2つの伝送路推定部を用いるところに特徴を有するた め、この具体値に限定されるものではない。
[0036] ここで、フェージング周波数推定部 14におけるフェージング周波数推定は受信レ ベルの時間変動を分析することにより行うことが可能である。例えば、過去の受信レ ベル値をメモリに保持しておき、受信レベル値の分散を計算することにより、フェージ ング周波数を推定することが可能である。
[0037] (実施の形態 3)
以下、本発明における実施の形態 3について図 7を用いて説明する。図 7は、本発 明の実施の形態 3における OFDM受信装置 31のブロック図である。実施の形態 1と 同様の構成については、同一符号を付してその説明を省略し、相違点について詳述 する。図 7において OFDM受信装置 31は、図 1の構成に加え、補正部 7に接続され 受信信号の信号品質を制御部 5に対して出力する信号品質計測部 15を更に有する
[0038] この構成において、制御部 5は信号品質計測部 15から出力される信号品質が所定 値よりも劣化した場合に、選択部 6に他方の伝送路推定部からの信号を選択させる 制御信号を出力することにより、マルチパス耐性とフェージング耐性を両立させること が可能となる。
[0039] 信号品質計測部 15における信号品質として、受信信号のキャリアレベルとノイズレ ベルの比(以下、 CN比)を用いることができる。すなわち、第 1伝送路推定部 3を選択 している場合に、例えば CN比が 10dB以下に劣化した場合には、移動速度が大きく なりフェージング周波数が大きくなつた可能性があるので、制御部 5はフェージング耐 性に優れた第 2伝送路推定部 4を選択する制御を行う。他方、第 2伝送路推定部 4を 選択している場合に、例えば CN比が 10dB以下に劣化した場合には、マルチパスが 大きくなり周波数選択性歪みが大きくなつた可能性があるので、制御部 5はマルチパ ス耐性に優れた第 1伝送路推定部 3を選択する制御を行う。以上の制御により、受信 状態に応じて更に最適な伝送路推定手法を選択し、マルチパス耐性とフ ージング 耐性を両立させることができる。
[0040] なお、実施の形態 3における OFDM信号の信号品質として、 CN比の所定値を 10 dBとした力 放送システムの変調パラメータによって適宜、変更すればよい。また、信 号品質として、受信信号の信号レベルや誤り率を用いてもよい。なお、誤り率は、例 えば、ビット誤り率やパケット誤り率を用いることができる。そして、受信信号の信号レ ベルの信号品質としての所定値は、例えば、— 80dBmとしてもよい。また、受信信号 のビット誤り率の信号品質としての所定値は、例えば、 2 X 10—4としてもよい。
[0041] さらに、制御部 5が伝送路推定部の選択を切り換えた場合には、一定時間は選択 部 6への制御信号の状態を保持することにより、さらに特性改善することが可能となる 。すなわち、伝送路推定部における推定処理は所定の時間間隔のパイロット信号を 利用して補間処理を行っているため、当該時間間隔よりも十分大きな周期で制御部 5が選択部 6に対して切り換え制御を行う場合には切り換えに伴う補正処理の劣化は 問題にならない。したがって、一定時間は、例えば 500ミリ秒とすればよい。制御部 5 が伝送路推定部の選択を切り換えた場合には、切り替え後の約 500ミリ秒間は切替 えに伴う処理遅延及び計測遅延の影響により信号品質の計測が一時的に信頼性の 低いものとなる。したがって、一定時間は選択部 6への制御信号の状態を保持するこ とにより、上記影響を受けないようにすることができる。このように、制御部 5が当該時 間間隔に対して無視できな 、周期で切り換え制御を行う場合には、補正部 7にお 、 て切り換えに伴う受信品質劣化が発生する。一方、切換周期を小さく設定することに より受信環境の変化に対する追従性が良くなる。従って、一旦切り換え制御を行った 場合には、一定時間は制御部 5が選択部 6に対して制御を行わず、制御信号の状態 を保持することにより、切換周期を小さく設定することができ、同時に切り換えに伴う 受信品質劣化を抑えることが可能となる。ただし、放送システムや復調部の処理方法 などにより一定時間は異なるので、適宜選択すればよい。
[0042] また、以上の説明においては 2つの第 1伝送路推定部 3および第 2伝送路推定部 4 を用いて、それぞれ異なる伝送路推定部を用いた力 図 8に示すように異なる 3以上 の伝送路推定部を有する構成とてもよい。図 8は、本発明の実施の形態 3における他 の例の OFDM受信装置 35のブロック図である。図に示すように OFDM受信装置 35 は、 N個の伝送路推定部を備えており、図には、 3番目以降を省略して N番目の第 N 伝送路推定部 34を示している。そして、選択部 6が他の第 1伝送路推定部 3および 第 2伝送路推定部 4の 2つを含め、 N個のそれぞれ異なる伝送路推定部のいずれか 1つの推定結果を利用して補正処理を行う。従って、伝送路推定部の特性に応じた 3 以上の複数特性を同時に実現することが可能となる。
[0043] 例えば、 3個の伝送路推定部を有する場合について述べる。第 1伝送路推定部 3、 第 2伝送路推定部 4よりさらに短い第 3時間間隔で伝送路推定を行う第 3伝送路推定 部(図示せず)を備えているものとする。ここで、例えば、フェージング周波数が 150H z以上の場合に、第 3時間間隔の第 3伝送路推定部の推定結果を利用して補正処理 を行う。また、フェージング周波数が 100Hz以上、かつ 150Hz未満の場合に、第 2 時間間隔の第 2伝送路推定部 4の推定結果を利用して補正処理を行う。さらに、フエ 一ジング周波数が 100Hz未満の場合に、第 1時間間隔の第 1伝送路推定部 3の推 定結果を利用して補正処理を行う。このようにすることにより、信号品質に応じて 3つ の中力 選択し、切換えを行うことによりさらにきめ細かい制御を行うことが可能となる
[0044] (実施の形態 4)
以下、本発明における実施の形態 4について図 9から図 10を用いて説明する。図 9 は、本発明の実施の形態 4における OFDM受信機器 271のブロック図である。図 9 に示すように、 OFDM受信装置 219は、 OFDM信号を受信する第 1受信部 202と、 第 1受信部 202に接続された第 1伝送路補正部 203とを有する。また OFDM受信装 置 219は、 OFDM信号を受信する第 2受信部 204と、この第 2受信部 204に接続さ れた第 2伝送路補正部 205とを有する。なお第 1受信部 202と第 2受信部 204は同様 な構成および機能を備えている。また、 OFDM受信装置 219は第 1伝送路補正部 2 03および第 2伝送路補正部 205に接続されたダイバシティ部 206を有する。そして、 第 1受信部 202及び第 2受信部 204は、実施の形態 1において図 1に示した受信部 2 と同様な構成を備えており、それぞれ受信信号をフーリエ変換する高速フーリエ変換 部(図示せず)を有する。
[0045] 尚、 OFDM受信装置 219を搭載した OFDM受信機器 271は、ダイバシティ部 206 の出力側に接続された信号処理部 261と、信号処理部 261の出力側に接続された 表示部 263とを有する。そして、第 1伝送路補正部 203は、第 1受信部 202から出力 された受信信号から伝送路状態を推定する第 1伝送路推定部 207と、第 1伝送路推 定部 207の推定結果に基づ ヽて受信信号を補正する補正部 208で構成されて ヽる 。また、第 2伝送路補正部 205は、第 2受信部 204から出力された受信信号力も伝送 路状態を推定する第 2伝送路推定部 209と、第 2伝送路推定部 209の推定結果に基 づいて受信信号を補正する補正部 210で構成されている。尚、第 1伝送路推定部 20 7は、実施の形態 1における第 1伝送路推定部 3と同様の構成および機能を有してい る。同様に第 2伝送路推定部 209は、実施の形態 1における第 2伝送路推定部 4と同 様の構成および機能を有して 、る。従って同等な部分の詳細な説明につ 、ては省略 する。
[0046] このような構成において、第 1伝送路補正部 203は第 1受信部 202から出力された 第 1時間間隔の受信信号を用いて伝送路推定を行う。そして、その結果を基に補正 部 208は補正を行った結果をダイバシティ部 206に出力する。また、第 2伝送路補正 部 205は第 2受信部 204から出力され第 1時間間隔より短い第 2時間間隔の受信信 号を用いて伝送路推定を行う。そして、その結果を基に補正部 210は補正を行った 結果をダイバシティ部 206に出力する。さらにダイバシティ部 206は第 1伝送路補正 部 203および第 2伝送路補正部 205からの入力信号に対し、ダイバシティ部 206の 内部の信号品質算出器 (図示せず)にて算出するそれぞれの信号品質に基づいて 合成を行う。合成を行うには、例えば第 1伝送路補正部 203および第 2伝送路補正 部 205のそれぞれの出力信号のキャリアレベルとノイズレベルの比(CZN)に基づい て合成比を決めるようにしてもよい。これにより、第 1伝送路補正部 203によるマルチ パス耐性および第 2伝送路補正部 205によるフェージング耐性の両立を実現すること ができる。ただし、合成方法はこの方法に限定されるものではなく他の方法を用いて ちょい。
[0047] ノ ィロット信号を有する場合の具体例についても、実施の形態 1において図 2から 図 5を用いて述べたと同様にして伝送路歪みの推定を行い、受信信号の補正を行う
[0048] すなわち、第 1伝送路補正部 203は実施の形態 1で述べた第 1手法を用いており、 第 1受信部 202から出力された受信信号に含まれ第 1シンボル間隔 (4シンボル毎) で配置されたパイロット信号を用いて伝送路歪みを推定する。そして、第 1受信部 20 2から出力された受信信号を補正する。また、第 2伝送路補正部 205は実施の形態 1 で述べた第 2手法を用いており、第 2受信部 204から出力された受信信号に含まれ 第 1シンボル間隔より短 、第 2シンボル間隔(3シンボル毎)で配置されたパイロット信 号を用いて伝送路歪みを推定する。そして、第 2受信部 204から出力された受信信 号を補正する。
[0049] 従って、第 1伝送路補正部 203は、第 1伝送路推定部 207により、第 1手法を用い て推定した結果を基に補正した受信信号を出力する。また、第 2伝送路補正部 205 は、第 2伝送路推定部 209により、第 2手法を用いて推定を行った結果を基に補正し た受信信号を出力する。そして、ダイバシティ部 206はこれら第 1伝送路補正部 203 および第 2伝送路補正部 205からの信号を合成することにより、第 1手法の周波数選 択性歪み特性によって得られるマルチパス耐性と、第 2手法の時間追従特性によつ て得られるフェージング耐性の両立を行うことができる。
[0050] さらに、図 9に示した構成にカ卩えて、図 10に示すように受信部と伝送路補正部の直 列接続体を N系統設けてもよい。図 10は本発明の実施の形態 4における他の例の O FDM受信装置 221のブロック図である。図に示すように OFDM受信装置 221は、 N 個の受信部と伝送路補正部の直列接続体を備えており、図には、 3番目以降を省略 して N番目の直列接続体である第 N受信部 251と第 N伝送路補正部 253を示してい る。また、第 N伝送路補正部 253は、第 N受信部 251から出力された受信信号力も伝 送路状態を推定する第 N伝送路推定部 259と、第 N伝送路推定部 259の推定結果 に基づいて受信信号を補正する補正部 260で構成されている。そして、各伝送路補 正部においてそれぞれ異なる伝送路推定手法を用いることにより補正を行い、それ ぞれの出力をダイバシティ部 226にて合成を行うことによりさらなる特性改善効果が 得られる。
[0051] 尚、伝送路推定の手法としては様々なものが提案されており、システムによっては 伝送情報量を増やすためにパイロット信号を用いずに推定する手法も検討されて 、 る。このようなシステムにおいても、本願に力かる OFDM受信方法は有効な効果を持 つものである。 [0052] (実施の形態 5)
以下、本発明における実施の形態 5について図 11を用いて説明する。図 11は、本 発明の実施の形態 5における OFDM受信装置 231のブロック図である。実施の形態 4と同様の構成については、同一符号を付してその説明を省略し、相違点について 詳述する。図 11において、 OFDM受信装置 231は、図 9の構成にカ卩え、さらに、制 御部 211と、制御部 211から入力される制御信号に従って第 2受信部 204を動作開 始または動作停止する制御を行うイネ一ブル回路 212とを有する。また OFDM受信 装置 231は、第 1受信部 202および第 2受信部 204にそれぞれ接続されると共に制 御部 211から入力される制御信号に従って第 1受信部 202と第 2受信部 204のいず れか一方の入力信号を第 2伝送路補正部 205に出力する信号選択部 213を有する 。さらに OFDM受信装置 231は、ダイバシティ部 206に接続された誤り訂正部 214と 、誤り訂正部 214と制御部 211との間に接続された誤り率計測部 215とを有する。
[0053] また、図 11に点線で示したように誤り率計測部 215は、ダイバシティ部 206に接続し て誤り訂正前の CN比を計測してもよ 、。
[0054] この構成において、制御部 211は、誤り率計測部 215が計測する誤り率が所定値よ り小さい場合には、ィネーブル回路 212に対して動作停止とする制御信号を出力す ると共に信号選択部 213に対して第 1受信部 202からの入力信号を選択する制御信 号を出力する。また制御部 211は、誤り率が所定値以上の場合には、ィネーブル回 路 212に対して動作開始とする制御信号を出力すると共に信号選択部 213に対して 第 2受信部 204からの入力信号を選択する制御信号を出力するように制御を行う。な お、誤り率は、例えば、ビット誤り率やパケット誤り率を用いることができる。そして、受 信信号のビット誤り率の所定値は、例えば 2 X 10_4としてもよい。
[0055] この制御により、受信環境が良好で誤り率が所定値より小さい場合には、イネーブ ル回路 212が、低消費電力化を図るため、第 2受信部 204の動作を停止させる。また 、信号選択部 213が第 1受信部 202からの入力信号を選択する。これにより、第 1受 信部 202が受信した信号に対して第 1伝送路補正部 203による補正を行うのみでな ぐ第 2伝送路補正部 205においても異なる伝送路推定手法にて補正を行う。そして 、これら第 1伝送路補正部 203および第 2伝送路補正部 205からの出力信号をダイ バシティ部 206にて合成することにより、低消費電力化と、フェージング耐性及びマ ルチパス耐性を両立させることが可能となる。
[0056] 一方、受信環境が劣悪で誤り率が所定値以上の場合には、第 2受信部 204の動作 を開始させると共に、信号選択部 213が第 2受信部 204からの入力信号を選択する ことにより、受信感度を向上させることができる。すなわち、第 1受信部 202と第 2受信 部 204がそれぞれ有するアンテナ(図示せず)にて受信した信号に対してダイバシテ ィ部 206で合成を行う場合であって、これらアンテナ 2系統がノイズ非相関である場合 に受信感度が向上する。例えば、それぞれのアンテナで受信する信号が非相関湘 関係数が 0)であれば、受信感度が 3dB向上する。
[0057] 以上の制御を行うことにより、実施の形態 5の OFDM受信装置 231は、受信環境が 良好な場合には第 2受信部 204の動作を停止させることにより低消費電力とし、かつ 第 1伝送路補正部 203および第 2伝送路補正部 205の 2つを用いて補正を行うため 受信特性も劣化を抑えることができる。また、一方、受信環境が劣悪な場合には、第 2受信部 204の動作を開始させることにより受信感度特性を確保することが可能とな る。
[0058] また、制御部 211は、誤り率ではなぐ CN比などの信号品質を表す指標を用いて 制御を行ってもよい。図 12は本発明の実施の形態 5における他の例の OFDM受信 装置 233のブロック図である。図 12に示すように OFDM受信装置 233は、図 11に示 した誤り率計測部 215に替えて、 CN比計測部 255を備えている。 CN比計測部 255 は、ダイバシティ部 206から出力された信号から、 CN比を計測することができる。この ようにして CN比を信号品質を表す指標として用いて制御を行うことにより、信号品質 の検出に要する時間を短縮することができる。なお、受信信号の CN比の所定値は例 えば 10dBとしてもよい。
[0059] (実施の形態 6)
以下、本発明における実施の形態 6について図 13を用いて説明する。図 13は、本 発明の実施の形態 6における OFDM受信機器 273のブロック図である。実施の形態 4と同様の構成については、同一符号を付してその説明を省略し、相違点について 詳述する。図 13において、 OFDM受信装置 241は、 OFDM信号を受信する受信 部 302と、受信部 302に接続された第 1伝送路補正部 203と、受信部 302に接続さ れた第 2伝送路補正部 205と、第 1伝送路補正部 203及び第 2伝送路補正部 205に 接続されたダイバシティ部 206とを有する。なお、受信部 302は実施の形態 4におけ る第 1受信部 202と同様な構成および機能を備えている。また、 OFDM受信装置 24 1を搭載した OFDM受信機器 273は、ダイバシティ部 206の出力側に接続された信 号処理部 261と、信号処理部 261の出力側に接続された表示部 263とを有する。
[0060] この構成において、第 1伝送路補正部 203は、受信部 302から出力された受信信 号に含まれ第 1シンボル間隔で配置されたパイロット信号を用いて伝送路歪みを推 定する。そして、受信部 302から出力された受信信号を補正する。また、第 2伝送路 補正部 205は、受信部 302から出力された受信信号に含まれ第 1シンボル間隔より 短 、第 2シンボル間隔で配置されたパイロット信号を用いて伝送路歪みを推定する。 そして、受信部 302から出力された受信信号を補正する。
[0061] 第 1伝送路補正部 203は、前述の第 1手法を用いて伝送路歪みを推定することによ り受信部 302から出力された受信信号を補正し、第 2伝送路補正部 205は前述の第 2手法を用いて伝送路歪みを推定することにより受信部 302から出力された受信信 号を補正する。そして、ダイバシティ部 206において第 1伝送路補正部 203および第 2伝送路補正部 205から入力された信号を合成することにより、第 1手法によって得ら れるマルチパス耐性と、第 2手法によって得られるフェージング耐性とを両立させるこ とがでさる。
[0062] なお、実施の形態 4における図 9に示した OFDM受信装置 219に比べ、実施の形 態 6における図 13に示した OFDM受信装置 241では、第 2受信部 204を省略するこ とができるため、より小型化、低消費電力化を図ることができる。
[0063] また、以上の説明においては 2つの第 1伝送路補正部 203および第 2伝送路補正 部 205を用いて、それぞれ異なる伝送路推定部を用いた力 図 14に示すように異な る 3以上の伝送路補正部を有する構成とてもよい。図 14は本発明の実施の形態 6〖こ おける他の例の OFDM受信装置 254のブロック図である。図に示すように OFDM受 信装置 254は、 N個の伝送路補正部を備えており、図には、 3番目以降を省略して N 番目の第 N伝送路補正部 253を示している。このように受信部 302と、受信部 302に 接続された 3つ以上の伝送路補正部を設け、各伝送路補正部においてそれぞれ異 なる伝送路推定手法を用いることにより補正を行う。そして、それぞれの出力をダイバ シティ部 206にて合成を行うことによりさらなる特性改善効果が得られる。
産業上の利用可能性
本発明の OFDM受信装置は、複数の伝送路推定手段を有し、それぞれ異なる特 性を持たせることにより、フェージング性能とマルチパス耐性の両立などの複数特性 を両立させることが可能となる。様々な環境で移動しながら受信する必要のある携帯 端末や車載端末などの OFDM受信機器用に、特に有用である。

Claims

請求の範囲
[1] OFDM信号を受信する受信部と、
前記受信部力 出力された第 1時間間隔の信号を用いて伝送路歪みを推定する第 1 伝送路推定部と、
前記受信部力 出力された前記第 1時間間隔より短い第 2時間間隔の信号を用いて 伝送路歪みを推定する第 2伝送路推定部と、
前記受信部の受信状態に基づいて制御信号を出力する制御部と、
前記第 1伝送路推定部からの伝送路推定信号と前記第 2伝送路推定部からの伝送 路推定信号のうち前記制御信号に基づいていずれか一方を選択し出力する選択部 と、
前記選択部からの前記伝送路推定信号に基づいて前記受信部から出力された受信 信号を補正する補正部とを有する OFDM受信装置。
[2] 前記制御部は、前記受信部が受信する前記 OFDM信号の周波数を設定すると共に 設定した前記 OFDM信号の周波数が所定値未満の場合には前記選択部に対し て前記第 1伝送路推定部からの前記伝送路推定信号を選択する前記制御信号を出 力し、
設定した前記 OFDM信号の周波数が所定値以上の場合には前記選択部に対し て前記第 2伝送路推定部からの前記伝送路推定信号を選択する前記制御信号を出 力する請求項 1に記載の OFDM受信装置。
[3] 前記受信部が受信した前記 OFDM信号の受信レベルを検出する受信レベル検出 部と、
前記受信レベル検出部から出力された前記 OFDM信号の前記受信レベルに基づ いて前記 OFDM信号のフェージング周波数を推定し前記制御部に出力するフエ一 ジング周波数推定部とをさらに有し、
前記制御部は、
前記フ ージング周波数推定部力 出力された前記フ ージング周波数が所定 値未満の場合には前記選択部に対して前記第 1伝送路推定部からの前記伝送路推 定信号を選択する前記制御信号を出力し、
前記フ ージング周波数推定部力 出力された前記フ ージング周波数が所定 値以上の場合には前記選択部に対して前記第 2伝送路推定部からの前記伝送路推 定信号を選択する前記制御信号を出力する請求項 1に記載の OFDM受信装置。
[4] 前記受信部が受信した前記 OFDM信号の信号品質を計測する信号品質計測部を さらに有し、
前記制御部は、前記信号品質計測部から出力された前記信号品質が所定値よりも 劣化した場合に、前記選択部に他方の伝送路推定部からの信号を選択させる制御 信号を出力する請求項 1に記載の OFDM受信装置。
[5] 前記信号品質計測部が計測する前記信号品質は、前記受信部が受信した前記 OF
DM信号の信号レベルである請求項 4に記載の OFDM受信装置。
[6] 前記信号品質計測部が計測する前記信号品質は、前記受信部が受信した前記 OF
DM信号のキャリアレベルとノイズレベルとの比である請求項 4に記載の OFDM受信 装置。
[7] 前記信号品質計測部が計測する前記信号品質は、前記受信部が受信した前記 OF
DM信号の誤り率である請求項 4に記載の OFDM受信装置。
[8] 前記制御部は前記選択部に出力する前記制御信号を変化させた場合には、一定時 間は前記選択部への前記制御信号の状態を保持するようにした請求項 1に記載の O
FDM受信装置。
[9] 前記受信部に接続された伝送路推定部を 3以上有し、前記選択部は前記制御部か らの前記制御信号に基づ!/、て前記伝送路推定部からの信号の!/、ずれか 1つを選択 する請求項 1に記載の OFDM受信装置。
[10] OFDM信号を受信する受信部と、
前記受信部力 出力された第 1時間間隔の信号を用いて伝送路歪みを推定する第 1 伝送路推定部と、
前記受信部力 出力された第 1時間間隔より短い第 2時間間隔の信号を用いて伝送 路歪みを推定する第 2伝送路推定部と、
前記受信部の受信状態に基づいて制御信号を出力する制御部と、 前記第 1伝送路推定部からの伝送路推定信号と前記第 2伝送路推定部からの伝送 路推定信号のうち前記制御信号に基づいていずれか一方を選択し出力する選択部 と、
前記選択部からの前記伝送路推定信号に基づいて前記受信部から出力された受信 信号を補正する補正部と、
前記補正部の出力側に接続された信号処理部と、
前記信号処理部の出力側に接続された表示部とを有する OFDM受信機器。
[11] OFDM信号を受信する第 1受信部と、
前記第 1受信部に接続された第 1伝送路補正部と、
前記 OFDM信号を受信する第 2受信部と、
前記第 2受信部に接続された第 2伝送路補正部と、
前記第 1伝送路補正部および前記第 2伝送路補正部に接続されたダイバシティ部と を有し、
前記第 1伝送路補正部は、前記第 1受信部から出力された第 1時間間隔の信号を用 いて伝送路歪みを推定することにより前記第 1受信部から出力された受信信号を補 正し、
前記第 2伝送路補正部は、前記第 2受信部から出力された前記第 1時間間隔より短 い第 2時間間隔の信号を用いて伝送路歪みを推定することにより前記第 2受信部か ら出力された受信信号を補正する OFDM受信装置。
[12] 前記 OFDM信号はパイロット信号を有し、
前記第 1伝送路補正部は、前記第 1受信部から出力された前記受信信号に含まれ 第 1シンボル間隔で配置されたパイロット信号を用いて伝送路歪みを推定することに より前記第 1受信部から出力された前記受信信号を補正し、
前記第 2伝送路補正部は、前記第 2受信部から出力された前記受信信号に含まれ 前記第 1シンボル間隔より短 、第 2シンボル間隔で配置されたパイロット信号を用い て伝送路歪みを推定することにより前記第 2受信部から出力された前記受信信号を 補正する請求項 11に記載の OFDM受信装置。
[13] 前記受信部および前記伝送路補正部が直列接続された直列接続体が 3つ以上設け られ、各々の前記直列接続体の前記伝送路補正部はそれぞれ異なる時間間隔の信 号を用いて伝送路歪みを推定し前記受信部から出力された前記受信信号を補正す る請求項 11に記載の OFDM受信装置。
[14] 制御部と、
前記制御部から入力される制御信号に従って前記第 2受信部の動作開始または動 作停止とする制御を行うイネ一ブル回路と、
前記第 1受信部および前記第 2受信部にそれぞれ接続されるとともに前記制御部か ら入力される前記制御信号に従って前記第 1受信部からの前記受信信号と前記第 2 受信部からの前記受信信号のいずれか一方の前記受信信号を前記第 2伝送路補正 部に出力する信号選択部と、
前記ダイバシティ部に接続された誤り訂正部と、
前記誤り訂正部と前記制御部との間に接続され誤り率を計測する誤り率計測部とをさ らに有し、
前記制御部は、
前記誤り率が所定値より小さい場合に、前記イネ一ブル回路に対して動作停止と する前記制御信号を出力すると共に前記信号選択部に対して前記第 1受信部から の前記受信信号を選択する前記制御信号を出力し、
前記誤り率が前記所定値以上の場合に、前記イネ一ブル回路に対して動作開始 とする前記制御信号を出力すると共に前記信号選択部に対して前記第 2受信部から の前記受信信号を選択する前記制御信号を出力する請求項 11または請求項 12に 記載の OFDM受信装置。
[15] 制御部と、
前記制御部から入力される制御信号に従って前記第 2受信部の動作開始または動 作停止とする制御を行うイネ一ブル回路と、
前記第 1受信部および前記第 2受信部にそれぞれ接続されるとともに前記制御部か ら入力される前記制御信号に従って前記第 1受信部からの前記受信信号と前記第 2 受信部からの前記受信信号のいずれか一方の前記受信信号を前記第 2伝送路補正 部に出力する信号選択部と、 前記ダイバシティ部に接続された CN比を計測する CN比計測部とをさらに有し、 前記制御部は、
前記 CN比が所定値よりも大きい場合に、前記イネ一ブル回路に対して動作停止 とする前記制御信号を出力すると共に前記信号選択部に対して前記第 1受信部から の前記受信信号を選択する前記制御信号を出力し、
前記 CN比が前記所定値以下の場合は、前記イネ一ブル回路に対して動作開始 とする前記制御信号を出力すると共に前記信号選択部に対して前記第 2受信部から の前記受信信号を選択する前記制御信号を出力する請求項 11または請求項 12に 記載の OFDM受信装置。
[16] OFDM信号を受信する受信部と、
前記受信部に接続された第 1伝送路補正部と、
前記受信部に接続された第 2伝送路補正部と、
前記第 1伝送路補正部及び前記第 2伝送路補正部に接続されたダイバシティ部とを 有し、
前記第 1伝送路補正部は、前記受信部力 出力された第 1時間間隔の信号を用いて 伝送路歪みを推定することにより前記受信部から出力された受信信号を補正し、 前記第 2伝送路補正部は、前記受信部から出力された前記第 1時間間隔より短い第 2時間間隔の信号を用いて伝送路歪みを推定し前記受信部力 出力された受信信 号を補正する OFDM受信装置。
[17] 前記 OFDM信号はパイロット信号を有し、
前記第 1伝送路補正部は、前記受信部から出力された信号に含まれ第 1シンボル間 隔で配置されたパイロット信号を用いて伝送路歪みを推定することにより前記受信部 力 出力された受信信号を補正し、
前記第 2伝送路補正部は、前記受信部から出力された前記受信信号に含まれ前記 第 1シンボル間隔より短 、第 2シンボル間隔で配置されたノ ィロット信号を用いて伝 送路歪みを推定することにより前記受信部から出力された前記受信信号を補正する 請求項 16に記載の OFDM受信装置。
[18] 前記伝送路補正部が 3つ以上設けられ、 各々の前記伝送路補正部は、前記受信部から出力されそれぞれ異なる時間間隔の 信号を用いて伝送路歪みを推定し前記受信部から出力された前記受信信号を補正 する請求項 16に記載の OFDM受信装置。
[19] OFDM信号を受信する第 1受信部と、
前記第 1受信部に接続された第 1伝送路補正部と、
前記 OFDM信号を受信する第 2受信部と、
前記第 2受信部に接続された第 2伝送路補正部と、
前記第 1伝送路補正部および前記第 2伝送路補正部に接続されたダイバシティ部と 前記ダイバシティ部の出力側に接続された信号処理部と、
前記信号処理部の出力側に接続された表示部とを有し、
前記第 1伝送路補正部は、前記第 1受信部から出力された第 1時間間隔の信号を用 いて伝送路歪みを推定することにより前記第 1受信部から出力された受信信号を補 正し、
前記第 2伝送路補正部は、前記第 2受信部から出力された前記第 1時間間隔より短 い第 2時間間隔の信号を用いて伝送路歪みを推定し前記第 2受信部から出力された 受信信号を補正する OFDM受信機器。
[20] OFDM信号を受信する受信部と、
前記受信部に接続された第 1伝送路補正部と、
前記受信部に接続された第 2伝送路補正部と、
前記第 1伝送路補正部及び前記第 2伝送路補正部に接続されたダイバシティ部と、 前記ダイバシティ部の出力側に接続された信号処理部と、
前記信号処理部の出力側に接続された表示部とを有し、
前記第 1伝送路補正部は、前記受信部力 出力された第 1時間間隔の信号を用いて 伝送路歪みを推定することにより前記受信部から出力された受信信号を補正し、 前記第 2伝送路補正部は、前記受信部から出力された前記第 1時間間隔より短い第 2時間間隔の信号を用いて伝送路歪みを推定し前記受信部力 出力された前記受 信信号を補正する OFDM受信機器。
PCT/JP2007/060967 2006-06-07 2007-05-30 Ofdm受信装置とこれを用いたofdm受信機器 WO2007142091A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07744381.0A EP1914918A4 (en) 2006-06-07 2007-05-30 OFDM RECEIVER AND RECEIVER
CN200780001384.7A CN101356758B (zh) 2006-06-07 2007-05-30 Ofdm接收装置和使用其的ofdm接收设备
US12/066,403 US7944996B2 (en) 2006-06-07 2007-05-30 OFDM reception device and OFDM receiver using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-158187 2006-06-07
JP2006158187A JP2007329626A (ja) 2006-06-07 2006-06-07 Ofdm受信装置とこれを用いたofdm受信機器
JP2006-240992 2006-09-06
JP2006240992A JP4905003B2 (ja) 2006-09-06 2006-09-06 Ofdm受信装置とこれを用いたofdm受信機器

Publications (1)

Publication Number Publication Date
WO2007142091A1 true WO2007142091A1 (ja) 2007-12-13

Family

ID=38801349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060967 WO2007142091A1 (ja) 2006-06-07 2007-05-30 Ofdm受信装置とこれを用いたofdm受信機器

Country Status (3)

Country Link
US (1) US7944996B2 (ja)
EP (1) EP1914918A4 (ja)
WO (1) WO2007142091A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232439A (ja) * 2008-02-29 2009-10-08 Sony Corp 受信装置、受信方法、およびプログラム
JP2010056748A (ja) * 2008-08-27 2010-03-11 Fujitsu Ltd 伝搬路推定方法および装置並びに無線受信装置
JP2011151587A (ja) * 2010-01-21 2011-08-04 Nec Corp 通信システム、監視装置、監視装置の制御方法、及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320675B2 (ja) * 2012-12-03 2018-05-09 株式会社Nttドコモ 無線基地局、ユーザ端末及びフェージング周波数推定方法
JP6481292B2 (ja) * 2014-09-03 2019-03-13 株式会社ソシオネクスト 受信回路及び受信方法
CN112671685B (zh) 2015-06-22 2023-12-22 瑞典爱立信有限公司 用于混合模式多载波调制的定时的控制

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282613A (ja) * 2003-03-18 2004-10-07 Sony Corp 等化装置およびこれを有する受信装置
JP2005064581A (ja) * 2003-08-12 2005-03-10 Fujitsu Ten Ltd ダイバーシティ受信回路
WO2005048546A2 (en) * 2003-11-13 2005-05-26 Telefonaktiebolaget Lm Ericsson (Publ) Channel estimation by adaptive interpolation
JP2005160033A (ja) * 2003-10-27 2005-06-16 Casio Comput Co Ltd Ofdm復調装置、ofdm復調用集積回路、及びofdm復調方法
JP2005260331A (ja) * 2004-03-09 2005-09-22 Hitachi Kokusai Electric Inc Ofdm受信装置
JP2005286636A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd デジタル放送受信装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128355A (en) * 1997-05-21 2000-10-03 Telefonaktiebolget Lm Ericsson Selective diversity combining
JP3099796B2 (ja) * 1998-02-19 2000-10-16 日本電気株式会社 自動等化方法及び自動等化器
US6442222B1 (en) * 1998-12-24 2002-08-27 At&T Wireless Services, Inc. Method for error compensation in an OFDM system with diversity
US6487259B1 (en) * 1999-08-24 2002-11-26 Motorola, Inc. Partially-parrallel trellis decoder apparatus and method
GB2364210A (en) * 2000-06-30 2002-01-16 Nokia Oy Ab Diversity receiver and method of receiving a multi carrier signal
US6850481B2 (en) * 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
US6888878B2 (en) * 2001-03-12 2005-05-03 Motorola, Inc. Signal combining within a communication system
US6940914B1 (en) * 2001-06-11 2005-09-06 Cingular Wireless Ii, Llc Turbo channel estimation for OFDM systems
US20030012308A1 (en) * 2001-06-13 2003-01-16 Sampath Hemanth T. Adaptive channel estimation for wireless systems
JP3888189B2 (ja) * 2002-03-12 2007-02-28 松下電器産業株式会社 適応アンテナ基地局装置
US7436757B1 (en) * 2002-06-21 2008-10-14 Nortel Networks Limited Scattered pilot and filtering for channel estimation
US7310503B2 (en) * 2002-10-28 2007-12-18 Mitsubishi Denki Kabushiki Kaisha Diversity reception device and diversity reception method
KR100922980B1 (ko) 2003-05-02 2009-10-22 삼성전자주식회사 다중 안테나를 사용하는 직교주파수분할다중 시스템에서 채널 추정 장치 및 방법
US7039370B2 (en) * 2003-10-16 2006-05-02 Flarion Technologies, Inc. Methods and apparatus of providing transmit and/or receive diversity with multiple antennas in wireless communication systems
JP4447372B2 (ja) * 2004-05-13 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線通信装置、無線受信装置、無線通信方法及びチャネル推定方法
US7672383B2 (en) * 2004-09-17 2010-03-02 Qualcomm Incorporated Noise variance estimation in wireless communications for diversity combining and log-likelihood scaling
ITVA20040054A1 (it) * 2004-11-23 2005-02-23 St Microelectronics Srl Metodo per stimare coefficienti di attenuazione di canali, metodo di ricezione di simboli e relativi ricevitore e trasmettitore a singola antenna o multi-antenna
US8811273B2 (en) * 2005-02-22 2014-08-19 Texas Instruments Incorporated Turbo HSDPA system
WO2006091916A2 (en) * 2005-02-23 2006-08-31 Wionics Research Ultrawideband architecture
TWI266489B (en) * 2005-06-07 2006-11-11 Realtek Semiconductor Corp Apparatus and method for increasing signal estimation accuraccy
US7630450B2 (en) * 2005-06-16 2009-12-08 Motorola, Inc. OFDM channel estimator
US20070110140A1 (en) * 2005-11-14 2007-05-17 Ipwireless, Inc. Automatic selection of coherent and noncoherent transmission in a wireless communication system
US7729433B2 (en) * 2006-03-07 2010-06-01 Motorola, Inc. Method and apparatus for hybrid CDM OFDMA wireless transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282613A (ja) * 2003-03-18 2004-10-07 Sony Corp 等化装置およびこれを有する受信装置
JP2005064581A (ja) * 2003-08-12 2005-03-10 Fujitsu Ten Ltd ダイバーシティ受信回路
JP2005160033A (ja) * 2003-10-27 2005-06-16 Casio Comput Co Ltd Ofdm復調装置、ofdm復調用集積回路、及びofdm復調方法
WO2005048546A2 (en) * 2003-11-13 2005-05-26 Telefonaktiebolaget Lm Ericsson (Publ) Channel estimation by adaptive interpolation
JP2005260331A (ja) * 2004-03-09 2005-09-22 Hitachi Kokusai Electric Inc Ofdm受信装置
JP2005286636A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd デジタル放送受信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IGUCHI N. ET AL.: "Chijo Digital Hoso Jushinki ni okeru Naname Hokan Hoshiki o Mochiita Densoro Suitei", 2005 NEN IEICE COMMUNICATIONS SOCIETY CONFERENCE KOEN RONBUNSHU 1, 7 September 2005 (2005-09-07), pages 531, XP003019368 *
NORITAKA IGUCHI ET AL.: "Channel Estimation using Diagonal Interpolation in Digital Terrestrial Broadcasting Receiver", THE INSTITUTE OF ELECTRONICS, INFORMATION, AND COMMUNICATION ENGINEERS CONFERENCE COLLECTED PAPERS, vol. 2005, pages 531
See also references of EP1914918A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232439A (ja) * 2008-02-29 2009-10-08 Sony Corp 受信装置、受信方法、およびプログラム
US8045945B2 (en) 2008-02-29 2011-10-25 Sony Corporation Reception apparatus, reception method and program
JP2010056748A (ja) * 2008-08-27 2010-03-11 Fujitsu Ltd 伝搬路推定方法および装置並びに無線受信装置
JP2011151587A (ja) * 2010-01-21 2011-08-04 Nec Corp 通信システム、監視装置、監視装置の制御方法、及びプログラム

Also Published As

Publication number Publication date
EP1914918A1 (en) 2008-04-23
US20090074092A1 (en) 2009-03-19
EP1914918A4 (en) 2013-11-13
US7944996B2 (en) 2011-05-17

Similar Documents

Publication Publication Date Title
US20090207927A1 (en) Receiving apparatus
WO2005109711A1 (ja) Ofdm受信装置及びofdm受信方法
JPWO2004038956A1 (ja) ダイバーシチ受信装置およびダイバーシチ受信方法
WO2001091330A1 (fr) Systeme de calibrage pour un appareil recevant une antenne reseau
US8483339B2 (en) Communication apparatus and communication process method
WO2007142091A1 (ja) Ofdm受信装置とこれを用いたofdm受信機器
JP4516489B2 (ja) 受信装置
JP2001036952A (ja) Cdma移動通信システムにおけるcdma受信装置および受信信号電力測定方法
US7924954B2 (en) Frequency correction
US8908785B2 (en) Receiving apparatus and communication apparatus, and communication system
JP5085269B2 (ja) 無線通信装置
JPWO2007148452A1 (ja) ダイバーシティ受信装置およびダイバーシティ受信方法
JP2005260331A (ja) Ofdm受信装置
JPWO2007058193A1 (ja) マルチキャリア受信装置、マルチキャリア通信システムおよび復調方法
JP2003018081A (ja) 移動無線端末
JP2007329626A (ja) Ofdm受信装置とこれを用いたofdm受信機器
JP4905003B2 (ja) Ofdm受信装置とこれを用いたofdm受信機器
JP5747173B2 (ja) アンテナ切替受信システム
JP2010010966A (ja) 無線通信装置、及びmimo無線通信における信号送信方法
JP5306111B2 (ja) Ofdm受信装置
JP3813972B2 (ja) マルチキャリア通信装置
JP2007089067A (ja) 無線通信方法及び無線通信装置
JP2002271294A (ja) Ofdm通信装置及びofdm通信方法
JP2006345428A (ja) デジタル通信・放送に関する受信装置、受信方法、受信回路、およびプログラム
JP4313225B2 (ja) Ofdm信号受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001384.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12066403

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007744381

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744381

Country of ref document: EP

Kind code of ref document: A1