Nothing Special   »   [go: up one dir, main page]

WO2007141980A1 - Drive system for electrically driven dump truck - Google Patents

Drive system for electrically driven dump truck Download PDF

Info

Publication number
WO2007141980A1
WO2007141980A1 PCT/JP2007/059456 JP2007059456W WO2007141980A1 WO 2007141980 A1 WO2007141980 A1 WO 2007141980A1 JP 2007059456 W JP2007059456 W JP 2007059456W WO 2007141980 A1 WO2007141980 A1 WO 2007141980A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
maximum
operation amount
horsepower
Prior art date
Application number
PCT/JP2007/059456
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Tanaka
Tomohiko Yasuda
Takashi Yagyu
Yutaka Watanabe
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to DE112007000379T priority Critical patent/DE112007000379T5/en
Priority to AU2007256116A priority patent/AU2007256116B2/en
Priority to US12/279,476 priority patent/US8265849B2/en
Publication of WO2007141980A1 publication Critical patent/WO2007141980A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/10Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for automatic control superimposed on human control to limit the acceleration of the vehicle, e.g. to prevent excessive motor current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • B60P1/04Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive system for an electric drive dump truck, and in particular, drives a generator with a prime mover, drives an electric motor for traveling with electric power generated by the generator, and drives a large dump truck for traveling. About the system.
  • a drive system for an electrically driven dump truck includes a prime mover, an electronic governor that controls the rotational speed and torque of the prime mover, an AC generator driven by the prime mover, Power is supplied by this AC generator to drive, for example, two electric motors that drive the left and right rear wheels, and two AC motors that are connected to the AC generator and control two electric motors (for example, induction motors) 2
  • the electronic governor controls the electronic governor, calculates the torque command values of the two electric motors according to the operation amount of the accelerator pedal, and calculates the torque command
  • a control device for controlling the two inverters based on the values and for controlling the respective electric motors is provided.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-107762
  • a torque command value of an electric motor is calculated according to an operation amount of an accelerator pedal, and based on this torque command value.
  • the inverter is controlled to control the torque of the electric motor.
  • the target output horsepower of the electric motor is calculated according to the amount of operation of the accelerator pedal, and the target output horsepower is divided by the number of revolutions of the electric motor at that time to obtain the target of the electric motor. It is conceivable to calculate the torque (torque command value).
  • the dump truck traveling operation includes a traveling operation in which the dump truck is moved at a low speed and positioned, such as when the dump truck is stopped at the loading position near the excavator or the dump truck is placed on a load meter. is there.
  • the object of the present invention is to obtain a good operational feeling in which the relationship between the amount of operation of the accelerator pedal and the output horsepower of the electric motor coincides with each other during normal traveling, and enhances the controllability during low-speed traveling. It is an object to provide a control system for an electrically driven dump truck that can be easily positioned.
  • the present invention provides a motor, an AC generator driven by the motor, and at least 2 for driving driven by electric power supplied from the AC generator.
  • a motor that is connected to the AC generator, controls at least two inverters that control the electric motor, and controls the inverter according to the amount of operation of an accelerator pedal, respectively.
  • a motor target output horsepower calculating means for calculating a motor target output horsepower according to an operation amount of the accelerator pedal, and a motor target output horsepower.
  • Motor target torque calculating means for calculating a motor target torque based on the rotational speeds of the two electric motors; and the accelerator pedal Acceleration torque limit value calculating means for calculating an acceleration torque limit value of the two electric motors according to the operation amount, and when the acceleration torque limit value is larger than the motor target torque, the motor target torque is converted into a motor torque. When the acceleration torque limit value is smaller than the motor target torque, the acceleration torque limit value is selected as the motor torque command value.
  • Motor torque command value determining means and inverter control means for controlling the inverter based on the motor torque command value are provided.
  • the acceleration torque limit value calculation means The acceleration torque that is larger than the motor target torque with respect to the amount of operation of the accelerator pedal during normal traveling is determined. A limit value is calculated, and an acceleration torque limit value that is smaller than the motor target torque is calculated for the amount of accelerator pedal operation during slow speed travel. The target torque is selected as the motor torque command value, and the acceleration torque limit value is selected as the motor torque command value during slow speed travel.
  • a good operational feeling is achieved in which the relationship between the amount of operation of the accelerator pedal and the output horsepower of the electric motor is matched by running control based on the motor target output horsepower calculated by the motor target output horsepower calculation means.
  • good controllability can be obtained by traveling control based on the acceleration torque limit value calculated by the acceleration torque limit value calculating means, and delicate positioning can be easily performed.
  • the acceleration torque limit value calculating means lowers the acceleration torque limit value suitable for low-speed running when the accelerator pedal operation amount is zero.
  • the acceleration torque limit value increases as the accelerator pedal operation amount increases.
  • the acceleration torque limit is set so that the acceleration torque limit value increases to the maximum torque as the minimum torque force increases to a higher torque in the torque range suitable for low speed driving and the accelerator pedal operation amount further increases. Based on the value characteristic, the acceleration torque limit value is calculated.
  • the motor target torque is selected as the motor torque command value during normal travel
  • the acceleration torque limit value is selected as the motor torque command value during slow speed travel. Is done.
  • the lower torque in the torque range suitable for the low speed running is a motor allowable maximum torque of 15 preset in accordance with the rotational speed of the electric motor.
  • the higher torque in the torque range suitable for the low speed running is 30% to 50% of the motor allowable maximum torque, and the intermediate operation amount is 40% to 6% of the maximum operation amount. 0%.
  • the motor target torque is selected as the motor torque command value during normal running and the acceleration torque limit is set during slow speed running.
  • the value is selected as the motor torque command value.
  • the acceleration torque limit value calculation means calculates a motor acceleration torque corresponding to an operation amount of the accelerator pedal as the acceleration torque limit value, and
  • the motor torque command value determining means compares the motor target torque, the motor acceleration torque, and a motor allowable maximum torque set in advance according to the rotation speed of the electric motor, and selects the minimum value thereof.
  • the motor torque command value determining means selects the motor target torque as the motor torque command value during normal running and the acceleration torque limit during slow speed running within the range of the maximum allowable motor torque. The value is selected as the motor torque command value.
  • the acceleration torque limit value calculating means calculates a motor torque limit ratio according to an operation amount of the accelerator pedal, and the motor torque limit ratio is calculated based on the motor torque limit ratio.
  • the motor torque command value determining means may calculate the motor maximum torque, which is a value obtained by multiplying a preset motor allowable maximum torque according to the motor rotation speed, as the acceleration torque limit value. The motor target torque is compared with the motor maximum torque, and the minimum value thereof is selected.
  • the motor target torque is selected as the motor torque command value during normal running and the motor target torque is selected as the motor torque command value during normal running within the range of the maximum allowable motor torque.
  • the acceleration torque limit value is selected as the motor torque command value.
  • a maximum horsepower calculating means for calculating a maximum horsepower usable by the electric motor for traveling according to the number of rotations of the prime mover.
  • a motor output for limiting the motor target output horsepower calculated by the motor target output horsepower calculating means so as not to exceed the maximum horsepower calculated by the maximum horsepower calculating means.
  • the motor target torque calculating means calculates the motor target torque from the motor target output horsepower from the motor output horsepower limiting means and the rotation speeds of the two electric motors.
  • the motor speed is not sufficiently increased so that the motor target output horsepower calculated by the motor target output horsepower calculating means exceeds the maximum horsepower calculated by the maximum horsepower calculating means. Even in such a case, the motor target output horsepower is limited to the maximum horsepower, so that the motor stall can be prevented.
  • FIG. 1 is a diagram showing an overall configuration of an electric drive dump truck drive system according to an embodiment of the present invention.
  • FIG. 2 is a functional block diagram showing a processing procedure of the drive system according to the present embodiment.
  • FIG. 3 is a flowchart showing a processing procedure.
  • FIG. 4 is a flowchart showing a processing procedure.
  • FIG. 5 is a diagram showing a function Nrl (p) of the first target rotational speed when not traveling.
  • FIG. 6 is a diagram showing a function Nr2 (p) of the second target rotational speed during traveling.
  • FIG. 7 is a view showing a modification of the function Nr2 (p) of the second target rotational speed during traveling.
  • FIG. 8 is a diagram showing another modification of the function Nr2 (p) of the second target rotational speed during traveling.
  • FIG. 9 is a diagram showing a function Pmax (Ne) of motor maximum output horsepower.
  • Fig. 10 shows a data map of the speed vs. maximum motor output horsepower represented by the function f (Ne) and a data map of the speed vs. other motor load loss horsepower represented by the function g (Ne). It is a figure.
  • FIG. 11 is a diagram showing a function Pml (p) of a first motor target output horsepower during forward movement.
  • FIG. 12 is a diagram showing a function Pm2 (p) of the second motor target output horsepower during reverse travel.
  • FIG. 13 is a diagram showing a relationship between a motor output target horsepower Pm, an electric motor rotational speed coR, coL, and a motor target torque TrlR, TrlL.
  • FIG. 14 is a diagram showing a data map of motor rotation speed vs. motor maximum torque represented by a function Trmaxl ( ⁇ ) of motor maximum torque.
  • FIG. 15 is a diagram showing a function Trmax2 (p) of motor acceleration torque.
  • FIG. 16 is a diagram showing a selection result of minimum values of motor target torques TrlR, TrlL and motor acceleration torque Trmax2.
  • FIG. 17 is a functional block diagram showing a processing procedure of the drive system according to the second embodiment of the present invention.
  • FIG. 18 is a flowchart showing a processing procedure of the second embodiment.
  • FIG. 19 is a diagram showing a function Kmax (p) of a motor torque limit ratio.
  • TrlR TrlL Motor target torque
  • Trmax2 Motor power high speed Tonerek
  • TrR TrR, TrL Motor torque command value
  • FIG. 1 is a diagram showing an overall configuration of a drive system for an electric drive dump truck according to a first embodiment of the present invention.
  • the drive system of the electric drive dump truck includes an accelerator pedal 1, a retard pedal 2, a shift lever 16, an overall control device 3, a prime mover 4, an alternator 5, and other prime mover loads 18.
  • the barter control device 7 includes torque command calculation units 71R and 71L, motor control calculation units 72R and 72L, and inverters (switching elements) 73R and 73L for the left and right electric motors 12R and 12L, respectively.
  • the operation signal p of the accelerator pedal 1 and the operation signal q of the retard pedal 2 are input to the overall control device 3, and are signals for controlling the magnitudes of the driving force and the retarding force, respectively.
  • the general control device 3 issues a command for the target rotational speed Nr to the prime mover 4. And the signal of the actual rotational speed Ne is returned from the prime mover 4 to the control device 3.
  • the prime mover 4 is a diesel engine equipped with an electronic governor 4a. When the electronic governor 4a receives a command for the target rotational speed Nr, the fuel injection amount is controlled so that the prime mover 4 rotates at the target rotational speed Nr.
  • An AC generator 5 is connected to the prime mover 4 to perform AC power generation.
  • the electric power generated by the AC power generation is rectified by the rectifier circuit 6, stored in the capacitor 10, and the DC voltage value becomes V.
  • the AC generator 5 is controlled by the overall controller 3 so that the voltage value obtained by dividing the DC voltage V by the detection resistor 11 is feed-knocked so that the voltage value becomes a predetermined constant voltage VO.
  • the electric power generated by the AC generator 5 is supplied to the left and right electric motors 12R and 12L via the inverter control device 7.
  • the overall control device 3 controls the AC generator 5 so that the DC voltage V rectified by the rectifier circuit 6 becomes a predetermined constant voltage VO, so that necessary electric power is supplied to the electric motors 12R and 12L. Control it.
  • Command horsepower MR, ML of left and right electric motors 12R and 12L from overall control device 3 Rotational speeds coR and coL of electric motors 12R and 12L detected by electromagnetic pickup 15R and 15L and force inverter control
  • the inverter control device 7 is input to the device 7, and the torque command calculation unit 7 1R, 71L, the motor control calculation unit 72R, 72L, and the inverter (switching element) 73R, 73L with each slip motor> 0 Drives 12R and 12L.
  • Left and right rear wheels (tires) 14R, 14L are connected to the electric motors 12R, 12L via speed reducers 13R, 13L, respectively.
  • the electromagnetic pickups 15R and 15L are usually sensors that detect the peripheral speed of one tooth of the gears in the reduction gears 13R and 13L.
  • a detection gear may be attached to the drive shaft inside the electric motor 12R or the drive shaft connecting the speed reducer 13R and the tire 14R, and installed at that position.
  • the overall control device 3 controls so that the AC generator 5 does not generate power. Further, the horsepower commands MR and ML from the overall control device 3 are negative values, and the inverter control device 7 applies braking force to the traveling vehicle body by driving the electric motors 12R and 12L with a slip rate ⁇ 0. At this time, each of the electric motors 12R and 12L acts as a generator and charges the capacitor 10 by a rectification function built in the inverter control device 7.
  • the chopper circuit 8 operates so that the DC voltage value V is less than or equal to the preset DC voltage value VI, and current is passed through the grid resistor 9 to convert the electrical energy into heat energy.
  • the prime mover 4 is a hydraulic pump for driving a hydraulic system for raising and lowering the vessel of the dump truck and performing a steering operation (hereinafter referred to as a working hydraulic pump).
  • a working hydraulic pump for driving a hydraulic system for raising and lowering the vessel of the dump truck and performing a steering operation
  • 18a a cooling fan (not shown) for sending air to the radiator
  • an AC generator 5 grid resistor 9, electric motors 12R, 12L, control devices 3, 7 etc.
  • a second generator or the like is driven.
  • Figure 1 shows these as other prime mover loads 18.
  • FIG. 2 is a functional block diagram showing the processing procedure
  • FIGS. 3 and 4 are flowcharts showing the processing procedure.
  • the processing procedure will be described mainly using the functional block diagram of FIG. 2 in accordance with the flowcharts shown in FIGS.
  • step 101 the state amount S indicating the switching position of the shift lever 16, the operation amount of the accelerator pedal 1 (hereinafter referred to as the accelerator operation amount) p, the actual rotational speed Ne of the prime mover 4, and the electric motor 12R for traveling , 12L rotation speed (hereinafter referred to as motor rotation speed) coR, co L is read. Shift There are three positions for switching the bar 16: N (neutral), F (forward), and R (reverse).
  • step 102 the accelerator operation amount p read in step 101 is calculated as the accelerator operation amount vs. the prime mover target rotation number expressed by the function Nrl (p) of the first target rotation speed during non-travel shown in FIG. Referring to the data map, the corresponding first target rotational speed Nrl is calculated (block 2 01 in FIG. 2).
  • the function Nrl (p) is the first target rotational speed characteristic suitable for driving the working hydraulic pump 18a.
  • the function Nrl (p) indicates that the operation amount of the accelerator pedal 1 is not operated.
  • the first target speed Nrl is the minimum speed Nrlmin (corresponding to the idling speed) of the prime mover 4, and the accelerator operation amount p is from 0 to the operation amount pa before the maximum operation amount pmax.
  • the first target speed Nrl increases from the minimum speed Nrlmin to the maximum speed Nrlmax as the operation amount p of the accelerator pedal 1 increases, and the accelerator operation amount p decreases the operation amount pa. If exceeded, the first target speed Nrl is set to be constant at the maximum speed Nrmlax.
  • the minimum rotation speed Nrlmin is, for example, a rotation speed within a range of 700 rpm to 800 rpm, and is 750 rpm in the illustrated example.
  • the maximum rotational speed Nrlmax is preferably the maximum rated rotational speed of the prime mover 4 and is, for example, a rotational speed within a range of 1800 rpm to 2100 rpm, and is 1900 rpm in the illustrated example.
  • the operation amount pa before the maximum operation amount pmax is preferably an operation amount of 80% to 95% of the maximum operation amount pmax, and is 90% of the maximum operation amount pmax in the illustrated example.
  • step 103 the accelerator operation amount p read in step 101 is set to a value of the accelerator operation amount vs. the prime mover target rotation number represented by the function Nr2 (p) of the second target rotation speed during traveling shown in FIG.
  • the corresponding second target rotational speed Nr2 is calculated with reference to the data map (block 202 in FIG. 2).
  • the function Nr2 (p) is a second target rotational speed characteristic suitable for driving the electric motors 12R and 12L.
  • the function Nr2 (p) is the 0 when the operation amount of the accelerator pedal 1 is not operated.
  • the second target rotational speed Nr2 is the minimum rotational speed Nr2min (equivalent to the idle rotational speed) and the operating amount of the accelerator pedal 1 becomes the micro operating amount Pb 1.
  • the second target rotational speed increases stepwise up to the medium speed rotational speed Nr2mid, and when the accelerator operation amount p is within the range from the slight operation amount Pb1 to the intermediate operation amount Pb2, the accelerator operation amount is As the speed increases, the second target speed Nr2 increases from the medium speed Nr2mid to the maximum speed Nr2max, and when the accelerator operation amount p exceeds the intermediate operation amount Pb2, the second target speed Nr2 becomes the maximum speed Nr2max.
  • the minimum rotational speed Nr2min is, for example, a rotational speed within a range of 700 rpm to 800 rpm, and is 750 rpm in the illustrated example.
  • the maximum rotation speed Nr2max is preferably a rotation speed within a range of 1800 rpm to 21 OO rpm, and in the illustrated example, is the same as the maximum rotation speed Nrlma X of the function Nrl (p), which is 1900 rpm which is the maximum rated rotation speed.
  • the medium speed rotation speed Nr2mid is preferably a rotation speed within a range of 900 rpm to 1600 rpm, and in the illustrated example, 1300 rpm. Even if the minimum speed Nr2min and the maximum speed Nr2max are values other than 750 rpm and 1900 rpm, the medium speed Nrm2id can be set to a speed within the range of 900 rpm to 1600 rpm.
  • the minute operation amount Pb 1 is preferably an operation amount within a range of 2 to 8% of the maximum operation amount Pmax of the accelerator pedal, and is 5% of the maximum operation amount pmax in the illustrated example.
  • the intermediate operation amount Pb2 is preferably an operation amount within the range of 30 to 70% of the maximum operation amount Pmax, and in the example shown in the figure, it is 40% of the maximum operation amount Pmax.
  • FIG. 7 and FIG. 8 are diagrams showing modifications of the function Nr2 (p) during travel.
  • the maximum speed Nrlmax of the running function Nr2 (p) is the force set to the same value as the maximum speed Nrlmax of the non-traveling function Nrl (p). It may be a value lower than the maximum rotational speed Nr max (maximum rated rotational speed) of p), for example, 1800 rpm.
  • the second target speed Nr2 is set to the minimum speed Nr2min when the operation amount of the accelerator pedal 1 is in the range from 0 to the minute operation amount Pbl. As shown in FIG. 6, the operation amount range in which the second target rotational speed Nr2 is the minimum rotational speed Nrmin may be eliminated.
  • the second target rotation speed Nr when the operation amount of accelerator pedal 1 is 0, the second target rotation speed Nr immediately becomes a medium speed rotation speed Nr2mid higher than the idle rotation speed, and thereafter, the accelerator operation amount p is 0 to the intermediate operation amount.
  • the second target rotational speed Nr2 is set to increase from the medium speed rotational speed Nr2 mid to the maximum rotational speed Nr2max as it increases to Pb2.
  • step 111 the actual rotational speed Ne of prime mover 4 read in step 101 is the data of engine rotational speed vs. motor maximum output horsepower represented by the function Mr (Ne) of the motor maximum output horsepower shown in FIG. Referring to the map, calculate the corresponding maximum horsepower Mr that can be used with the electric motors 12R, 12L, and multiply this by 1Z2 to calculate the output horsepower upper limit value Pmax per electric motor 12R, 12L ( (Blocks 211, 212 in Figure 2).
  • Mr (Ne) is the maximum horsepower that can be used by the electric motors 12R and 12L as the Ne increases (hereinafter referred to as the engine speed) (hereinafter referred to as the motor maximum output horsepower). Mr. and Mr. are set to increase.
  • FIG. 10 shows a data map of the speed vs. maximum motor output horsepower represented by the function f (Ne) and a data map of the speed vs. other motor load loss horsepower represented by the function g (Ne).
  • the function f (Ne) is the maximum output horsepower that can be generated by the prime mover 4, and is a synthesis of the function fl (Ne), the function f2 (Ne), and the function f3 (Ne).
  • the maximum output horsepower f (Ne) that the prime mover 4 can output changes to the minimum value Fmin force to the maximum value Fmax. This is a characteristic diagram unique to the prime mover 4.
  • the prime mover 4 drives other prime mover loads 18 in addition to the AC generator 5.
  • Other prime mover loads 18 include a hydraulic pump 18a for driving the hydraulic system for raising and lowering the vessel of the dump truck and steering operation, a cooling fan (not shown) for sending air to the radiator, and an AC generator 5, grid resistance 9, electric motor 12R, 12L, control A second generator (not shown) for driving an electric fan (not shown) for cooling the control devices 3, 7 and the like.
  • the value of the horsepower assigned in advance to drive the other prime mover load 18 is g (Ne) in FIG. This horsepower g (Ne) is set to a large value with a margin with respect to the horsepower value actually consumed by the other motor load 18. In this specification, this horsepower is referred to as lost horsepower.
  • the loss horsepower function g (Ne) is a synthesis of the function gl (Ne), the function g2 (Ne), and the function g3 (Ne), like the function (Ne).
  • the loss horsepower gl (Ne) changes from the minimum value Gmin to the maximum value Gmax.
  • step 112 the accelerator operation amount p read in step 101 is the data map of accelerator operation amount vs. motor target output horsepower represented by the function Pml (p) of the first motor target output horsepower during forward movement shown in FIG. Then, the corresponding first motor target output horsepower Pml is calculated (block 213 in FIG. 2).
  • the maximum horsepower Pmlmax that can be generated by the electric motors 12R and 12L is set at the previous X3 point.
  • the accelerator operation amount px3 at point X3 in Fig. 11 is about 95% of the maximum operation amount pma X, for example.
  • step 113 the accelerator operation amount p read in step 101 is converted into a data map of the accelerator operation amount versus the motor target output horsepower represented by the function Pm2 (p) of the second motor target output horsepower during reverse travel.
  • the corresponding second motor target output horsepower Pm2 is calculated (block 214 in FIG. 2).
  • the function Pm2 (p) is the force that the second motor target output horsepower Pm2 increases as the accelerator operation amount p increases.
  • the maximum value of the second motor target output horsepower Pm2max is the forward function Pml.
  • the maximum value in (p) is set to be smaller than Pmlmax.
  • the reverse motor target output horsepower may be obtained by multiplying the motor target output horsepower obtained by the forward function Pml (p) by a positive constant smaller than 1.
  • step 118 the smaller value of the motor output horsepower upper limit value Pmax and the motor target output horsepower PmO is selected as the motor output target horsepower Pm (block 217 in FIG. 4).
  • step 118 the final motor output target horsepower Pm force Pmax given to the electric motors 12R and 12L is limited so as not to exceed.
  • TrlL Kl X Pm / co L
  • Kl Constant for calculating torque from horsepower and rotation speed.
  • FIG. 13 is a diagram showing the relationship between the motor output target horsepower Pm, the rotational speeds coR and coL of the electric motors 12R and 12L, and the motor target torques TrlR and TrlL.
  • step 122 the rotation speed coR, ⁇ L of each of the electric motors 12R, 12L read in step 101 is converted into the motor rotation speed vs. motor maximum represented by the function Trmaxl ( ⁇ ) of the motor maximum torque shown in FIG. Referring to the torque data map, calculate the corresponding maximum motor torque Trmaxl (blocks 223, 224 in Fig. 4).
  • Trmaxl (co) is the maximum current value that the inverters 73R and 73L can flow to the electric motors 12R and 12L, the output limits of driving elements such as IGBTs and GTOs in the inverters 73R and 73L, This is set based on the specifications of the devices that make up the drive system, such as the strength of the motor shaft. As shown in FIG. 14, for example, when the motor rotational speeds coR and coL are ⁇ 1, the motor maximum torque Trmaxl is Trmaxl ( ⁇ 1). The maximum value of the motor maximum torque Trmaxl is Trmax.
  • step 123 the accelerator operation amount p read in step 101 is referred to the accelerator operation amount vs. motor acceleration torque data map represented by the motor acceleration torque function Trmax2 (p), and the corresponding motor Calculate the acceleration torque Trmax2 (block 225 in Fig. 4).
  • the function Trmax2 (p) is the acceleration torque limit value characteristic. In FIG. 15, the function Trmax2 (p) is the motor acceleration torque when the operation amount p of the accelerator pedal 1 is 0 (no operation).
  • Trmax2 is a lower torque in the torque range suitable for slow speed driving, preferably the minimum torque Trmax2a, and when the accelerator pedal operation amount p is in the range including the fine operation range from 0 to the intermediate operation amount pc 1, As the accelerator operation amount p increases, the motor acceleration torque Trmax2 increases from the minimum torque Trmax2a to a higher torque range Trmax2b suitable for slow speed operation, and the accelerator operation amount p becomes the maximum operation amount pmax from the intermediate operation amount pel. When the accelerator operation amount p increases, the motor acceleration torque Trmax2 increases from the torque Trmax2b to the maximum torque that is the maximum motor maximum torque Trmaxl shown in Fig. 14.
  • Trmax2 Until Trmax, increased at a rate higher than the range of operation amount 0 ⁇ Pcl, ⁇ click cell operation amount P is the motor acceleration torque Trmax2 exceeds pc2 is set to so that constant and a maximum value Trmax.
  • the torque range suitable for low-speed driving is considered to be about 15% to 50% of the maximum value Trmax (maximum allowable motor torque) Trmaxl shown in Fig. 14.
  • the minimum torque Trmax2a is preferably Is 15% to 30% of the maximum value Trmax, and is 20% in the illustrated example.
  • the higher torque T rmax2b in the torque range suitable for slow speed traveling is preferably 30% to 50% of the maximum value Trmax, and 40% in the illustrated example.
  • the intermediate manipulated variable pel is preferably 40% to 60% of the maximum manipulated variable pmax, and is 50% in the illustrated example.
  • the operation amount pc2 at which the motor acceleration torque Trmax2 is maximized is preferably 70% to 95% of the maximum operation amount pmax, and is 80% in the illustrated example.
  • step 124 the motor target torques TrlR and TrlL obtained in step 121 are compared with the motor maximum torque Trmaxl obtained in step 122 and the motor acceleration torque Trmax2 obtained in step 123. Select a value and use it as motor torque command values TrR and TrL (blocks 226 and 227 in Fig. 4). That is,
  • TrR mm (Tr 1R, Trmaxl, Trmax2)
  • TrL min (Tr 1 L, Trmaxl, Trmax2)
  • Step 125 the engine target speed Nr obtained in Step 105 or 106 is commanded to the electronic governor 4a of the prime mover 4.
  • step 126 the motor torque command values TrR and TrL obtained in step 123 by the motor control arithmetic units 72R and 72L in the inverter controller 7 are commanded to the inverters 73R and 73L, and the electric motors 12R and 12L Torque control is performed.
  • steps 101 to 118 (blocks 201 to 217 in FIG. 4), the processing in step 123 (block 225 in FIG. 3), and the processing in step 125 are performed by the overall control device 3.
  • the processes of 12 1, 122, 124 (blocks 221 to 224, blocks 226, 227 in FIG. 4) and step 126 are processes performed by the torque command calculation units 71R, 71L of the inverter control device 7.
  • steps 112 to 117 constitutes a motor target output horsepower calculation means for calculating the motor target output horsepower PmO corresponding to the operation amount of the accelerator pedal 1, and the procedure 121
  • the processing of (blocks 221, 222) constitutes motor target torque calculation means for calculating the motor target torque TrlR, TrlL based on the motor target output horsepower PmO and the rotational speeds coR, coL of the electric motors 12R, 12L.
  • the process of step 123 (block 225) constitutes an acceleration torque limit value calculation means for calculating the acceleration torque limit value (motor acceleration torque Trm ax 2) of the electric motors 12R and 12L according to the operation amount of the accelerator pedal 1.
  • step 124 (blocks 226 and 227) is performed using the motor target torque as the motor torque command value. Selected as TrR, TrL
  • the motor torque command value determining means selects the acceleration torque limit value as the motor torque command values TrR, TrL.
  • the torque command calculation units 71R and 71L and the motor control calculation units 72R and 72L of the inverter control device 7 are based on the motor torque command values TrR and TrL. Inverter control means for controlling is configured.
  • the acceleration torque limit value calculating means calculates the motor acceleration torque Trmax2 corresponding to the operation amount of the accelerator pedal 1 as the acceleration torque limit value
  • the motor torque command value determining means compares the motor target torque TrlR, TrlL, the motor acceleration torque Trmax2, and the motor allowable maximum torque Trmax set in advance according to the rotation speed of the electric motors 12R, 12L. Select the minimum value of.
  • the processing of step 111 constitutes a maximum horsepower calculating means for calculating the maximum horsepower Pmax that can be used by the electric motors 12R and 12L according to the rotational speed of the prime mover 4.
  • step 118 is a motor output that limits the motor target output horsepower PmO calculated by the motor target output horsepower calculating means (steps 11 to 117, blocks 213 to 216) so as not to exceed the maximum horsepower Pmax.
  • the motor target torque calculating means (procedure 121, blocks 221, 222) is composed of the motor output horsepower limiting means, the motor target output horsepower Pm and the rotational speeds of the electric motors 12R, 12L coR, co Calculate motor target torque TrlR, TrlL from L and force.
  • the data map of the function Nrl (p) of the first target rotational speed at non-travel shown in FIG. 5 is selected, and the first target rotational speed Nrl by the function Nrl (p) is It is given as the target speed Nr.
  • the target speed Nr of the prime mover 4 is 750 rp, which is the idling speed, and fuel consumption can be minimized and fuel consumption can be reduced.
  • the target speed Nr of the prime mover 4 increases from 750 rpm to the rated speed of 1900 rpm according to the depression amount, and the rotational speed of the prime mover 4 varies in a wide range from the minimum to the maximum. Therefore, when the work is performed with the dump truck stopped and only the hydraulic system operated, such as on a vessel, the prime mover 4 is operated stably and the maximum flow rate of the hydraulic pump 18a is ensured. The working speed can be adjusted.
  • shift lever 16 is in the F (forward) position.
  • the first motor target output horsepower Pml by the function Pml (p) is given as the motor target output horsepower PmO.
  • the data map of the function Nr2 (p) of the second target rotational speed at the time of traveling shown in FIG. 6 is selected, and the second target rotational speed Nr2 by the function Nr2 (p) It is given as a target speed Nr of 4.
  • the target speed Nr of the prime mover 4 is set to the idle speed 750 rp, and the fuel consumption can be minimized and the fuel consumption can be reduced.
  • the target rotational speed Nr of the prime mover 4 immediately increases to the medium speed rotational speed of 1300 rpm, and then the target rotational speed of the prime mover 4 according to the depression amount of the accelerator pedal. Nr increases from 1300rpm to the maximum speed (rated speed) of 1900rpm.
  • the rotational speed of the prime mover 4 changes with high response from the medium speed rotational speed to the maximum rotational speed, so that the responsiveness when the accelerator pedal 1 is depressed is improved, and good acceleration performance can be obtained.
  • the second target rotational speed Nr is immediately set to a medium speed rotational speed Nr2mid higher than the idle rotational speed. Even if the dull is not operated, the prime mover 4 is controlled by the medium speed Nr2mid, so the fuel consumption increases compared to the example in Fig. 6. However, in this case, the response when the accelerator pedal 1 is depressed is further improved, and the effect of further improving the acceleration performance during driving can be obtained.
  • step 123! / From the data map of motor acceleration torque function Trmax2 (p) shown in FIG. Since the maximum value Trmax of the maximum motor torque Trmaxl is obtained as the motor acceleration torque Trmax2, the motor acceleration torque Trmax2 is not a limitation for the control (running control) of the electric motors 12R and 12L. Therefore, the first motor target output calculated by step 112 is used. Since the electric motors 12R and 12L are controlled based on the horsepower Pml (motor target output horsepower PmO), there is a good operational feeling in which the relationship between the operation amount of the accelerator pedal 1 and the output horsepower of the electric motors 12R and 12L is consistent. can get.
  • horsepower Pml motor target output horsepower PmO
  • step 111 the maximum horsepower Pmax that can be used in the electric motors 12R and 12L according to the rotational speed of the prime mover 4 is calculated.
  • step 118 the motor target output horsepower PmO is calculated. In order to limit the maximum horsepower Pmax so that it does not exceed the maximum horsepower Pmax, the motor target output can be increased even when the motor 4 output speed is not sufficiently increased and the motor target output horsepower PmO exceeds the maximum horsepower Pmax. Since the horsepower PmO is limited to its maximum horsepower Pmax, the stall of the prime mover 4 can be prevented.
  • the shift lever 16 When driving at a slow speed, set the shift lever 16 to the F (forward) position and depress the accelerator pedal 1 slightly.
  • the first motor target output horsepower Pml is obtained as the motor target output horsepower PmO by the function Pml (p) of the first motor target output horsepower at the time of forward movement shown in FIG.
  • the first target rotational speed Nrl obtained from the function Nrl (p) of the first target rotational speed during non-travel shown in FIG. 6 is obtained as the target rotational speed Nr of the prime mover 4 in the same manner as during normal travel.
  • the depression amount is, for example, about 0 to 50%
  • the function of the motor acceleration torque shown in FIG. In Trmax2 (p) 20 to 40% of the maximum value Trmax of the maximum motor torque Trm axl is obtained as the motor acceleration torque Trmax2, and the target torque TrlR, TrlL, the maximum motor torque Trmaxl, and the maximum motor torque Trmax2
  • the motor acceleration torque Trmax2 is selected as the motor torque command values TrR and TrL.
  • FIG. 16 is a diagram showing a selection result of the minimum values of the motor target torques TrlR and TrlL and the motor acceleration torque Trmax2 in the procedure 124 (blocks 226 and 227).
  • A, B, C, D, and E correspond to points A, B, C, D, and E in FIGS. 11 and 15, respectively.
  • the accelerator operation amount is at points A, B, C, D, and E in FIG. 11, in step 121 (blocks 22 and 222), the values of A, B, C, D, and E in FIG.
  • the motor target torques TrlRA, TrlLA to TrlRE, TrlLE shown by the solid and dashed hyperbolic curves in Fig.
  • TrlE the function of the motor target output horsepower and the first motor target output horsepower corresponding to each point ⁇ (Abbreviated as TrlE).
  • TrlE the function of Trmax2 (p) force of the motor acceleration torque is also shown by the solid line in Fig. 16 in step 123 (block 225).
  • the motor acceleration torques Trmax2A to Trmax2E shown are calculated.
  • step 124 blocks 226, 227), the smaller one of these values is selected, and the motor torque command values Tr R, TrL become the values shown by the solid lines in FIG.
  • the motor torque command values indicated by solid lines A, B, and C are those when the accelerator operation amount p is 50% or less, and the maximum values thereof are motor acceleration torques Trmax2A to Trmax2C. This keeps the motor maximum torque Trmaxl at a small value in the range of 20% to 40% of the maximum value Trmax.
  • the change in the motor torque command value with respect to the change in the accelerator operation amount when the accelerator pedal is operated is also compared with, for example, ⁇ 1 and ⁇ 2 ( ⁇ TAB1 and ⁇ 2), ATBC1 and ATBC2 (ATBC1 and ATBC2) As can be seen, the motor target torque TrlA to TrlE is reduced compared to the amount of change in the motor torque command value.
  • the maximum torque for driving the electric motors 12R and 12L is suppressed to 20 to 40%.
  • the maximum torque is increased, and the limit value of the maximum torque is set to 100% before 100%, so that the operation amount of the accelerator pedal 1 and the output of the electric motors 12 R, 12L during normal driving A good sense of operation with the same relationship with horsepower is obtained, and when the amount of operation of the accelerator pedal 1 is small, the torque and torque change are limited to a low level, and good control is achieved at low speeds. Control can be obtained, and delicate positioning can be easily performed.
  • the target rotational speed is, for example, 750 to 1900 rpm depending on the amount of operation of the accelerator pedal 1
  • the target rotational speed of the prime mover 4 is given in the range of 1300 to 1900 rpm, for example, depending on the accelerator pedal 1.
  • the engine can be operated stably and the maximum flow rate of the hydraulic pump can be secured, and the working speed can be adjusted over a wide range, and the responsiveness when the accelerator pedal is depressed during driving improves the acceleration. Can be obtained.
  • the target rotational speed of the prime mover 4 is the minimum rotational speed, so that fuel consumption can be improved.
  • FIG. 17 is a functional block diagram similar to FIG. 2, showing the processing procedure of the drive system according to the present embodiment.
  • FIG. 18 is a flowchart showing the processing procedure, and corresponds to FIG. 4 in the first embodiment.
  • the control procedure on the prime mover side (procedures 101 to 106 in Fig. 3) and the procedure up to calculation of the motor maximum torque Tmaxl on the electric motor side (procedure in Fig. 3)
  • the processing procedure from 111 to 122 in FIG. 4 is the same as that of the first embodiment.
  • the accelerator With reference to the data map of the accelerator operation amount to motor torque limit ratio represented by the function Kmax (p) of the motor torque limit ratio shown in FIG. Calculate (Block 225A in Figure 17).
  • the function Kmax (p) is obtained by changing the vertical axis of the motor acceleration torque function shown in FIG. 15 to a limit ratio (100 fraction), and dividing the value into the motor allowable maximum torque Trmax. (%).
  • step 132 motor maximum torque Trmax2 is calculated by multiplying motor maximum torque Trmaxl by motor torque limit ratio Kmax obtained in step 131 (blocks 231, 232 in FIG. 17).
  • step 133 the motor target torques TrlR and TrlL are compared with the maximum motor torque Trmax2 obtained in step 132, and the minimum value thereof is selected and set as the motor torque command values T rR and TrL (Fig. 17 blocks 233, 234). That is,
  • TrR min (Tr 1R, Trmax2)
  • TrL min (Tr 1 L, Trmax2)
  • Subsequent steps 125 and 126 are the same as those in the first embodiment shown in FIG. 4.
  • the engine target speed Nr is commanded to the electronic governor 4a of the prime mover 4, and the motor torque command values TrR and TrL are set to the inverter 73R. , Command 73L.
  • the processing of Tegawa pages 131, 132 (blocks 225A, 231, 232) is the same as the processing of step 123 (block 225) in the first embodiment.
  • Configure the acceleration torque limit value calculation means to calculate the acceleration torque limit value (motor maximum torque Trmax2) of the electric motors 12R and 12L according to the operation amount of 1.
  • step 133 (blocks 233, 234) Similar to the processing in step 124 (blocks 226, 227) in the above embodiment, when the acceleration torque limit value (motor maximum torque Trmax2) is larger than the motor target torque TrlR, TrlL, the motor target torque is If the acceleration torque limit value (motor maximum torque Trmax2) is smaller than the motor target torque TrlR, TrlL, the acceleration torque limit value (motor maximum torque Trmax2) is set as the motor torque command value TrR, TrL.
  • Configuring the torque command value determining means Similar to the processing in step 124 (blocks 226, 227) in the above embodiment, when the acceleration torque limit value (motor maximum torque Trmax2) is larger than the motor target torque TrlR, TrlL, the motor target torque is If the acceleration torque limit value (motor maximum torque Trmax2) is smaller than the motor target torque TrlR, TrlL, the acceleration torque limit value (motor maximum torque Trmax2) is set as the motor torque command value TrR, TrL.
  • the actual rotational speed N e of the prime mover 4 is referred to the function Mr (Ne) of the motor maximum output horsepower and can be used in the electric motors 12R and 12L.
  • the actual speed Ne of the prime mover 4 is almost equal to the target speed Nr. Therefore, instead of the actual speed Ne of the prime mover 4, the target speed
  • the maximum horsepower Mr that can be used with the electric motors 12R and 12L may be obtained using several Nr.
  • the maximum horsepower Mr is set to 1Z2, and the output horsepower upper limit value Pmax per unit of the electric motors 12R and 12L is calculated.
  • the power output value Pmax and the motor target output horsepower PmO After selecting the smaller value, the value may be halved to set the motor output target horsepower Pm.
  • the electric motors 12R and 12L are induction motors, they may be synchronous motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

A drive system for an electrically driven dump truck provides, when it normally travels, the operator with good operation feeling where the relationship between the amount of operation of an accelerator pedal and output horse power of an electric motor matches requirements, and the system has improved controllability when the truck travels in creeping speed to facilitate delicate positioning of the truck. Blocks (213-216) calculate target motor output horse power (Pm0) corresponding to operation of the accelerator pedal (1), blocks (221, 222) calculate target motor torque (Tr1R, Tr1L) based on the target motor output horse power (Pm0) and rotational speeds (ωR, ωL) of electric motors (12R, 12L), block (225) calculates a limitation value of acceleration torque (motor acceleration torque Trmax2) of the electric motors (12R, 12L) according the amount of operation of the accelerator pedal (1), and blocks (226, 227) select, as a motor torque command value (TrR, TrL), a smaller value of the acceleration limitation value and the target torque (Tr1R, Tr1L) and controls inverters (73R, 73L).

Description

明 細 書  Specification
電気駆動ダンプトラックの駆動システム  Electric drive truck drive system
技術分野  Technical field
[0001] 本発明は電気駆動ダンプトラックの駆動システムに係わり、特に、原動機で発電機 を駆動し、発電機で発生した電力で走行用電動モータを駆動し、走行を行う大型ダ ンプトラックの駆動システムに関する。  TECHNICAL FIELD [0001] The present invention relates to a drive system for an electric drive dump truck, and in particular, drives a generator with a prime mover, drives an electric motor for traveling with electric power generated by the generator, and drives a large dump truck for traveling. About the system.
背景技術  Background art
[0002] 電気駆動ダンプトラックの駆動システムは、例えば特許文献 1に記載のように、原動 機と、この原動機の回転数とトルクを制御する電子ガバナと、原動機により駆動される 交流発電機と、この交流発電機により電力が供給されて駆動し、例えば左右の後輪 を駆動する 2つの電動モータと、交流発電機に接続され、それぞれ、 2つの電動モー タ(例えば誘導モータ)を制御する 2つのインバータと、アクセルペダルの操作量に応 じた目標回転数を計算し、電子ガバナを制御するとともに、アクセルペダルの操作量 に応じて 2つの電動モータのトルク指令値を演算し、このトルク指令値に基づ 、て 2つ のインバータを制御し、それぞれの電動モータを制御する制御装置とを備えて 、る。  [0002] As described in Patent Document 1, for example, a drive system for an electrically driven dump truck includes a prime mover, an electronic governor that controls the rotational speed and torque of the prime mover, an AC generator driven by the prime mover, Power is supplied by this AC generator to drive, for example, two electric motors that drive the left and right rear wheels, and two AC motors that are connected to the AC generator and control two electric motors (for example, induction motors) 2 Calculates the target rotational speed according to the operation amount of the two inverters and the accelerator pedal, controls the electronic governor, calculates the torque command values of the two electric motors according to the operation amount of the accelerator pedal, and calculates the torque command A control device for controlling the two inverters based on the values and for controlling the respective electric motors is provided.
[0003] 特許文献 1 :特開 2001— 107762号公報  [0003] Patent Document 1: Japanese Patent Laid-Open No. 2001-107762
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 従来の電気駆動のダンプトラックにお 、ては、特許文献 1に記載のように、アクセル ペダルの操作量に応じて電動モータのトルク指令値を演算し、このトルク指令値に基 づいてインバータを制御し、電動モータのトルク制御を行うのが一般的である。しかし 、このように電動モータを制御した場合は、アクセルペダルの操作量が電動モータの 出力馬力と直接連動しないため、アクセルペダルを踏み込んだときの操作感覚が良 好でなカゝつた。このような問題を解決するためには、アクセルペダルの操作量に応じ た電動モータの目標出力馬力を演算し、この目標出力馬力をそのときの電動モータ の回転数で除して電動モータの目標トルク(トルク指令値)を演算することが考えられ る。しかし、このようにした場合は次のような問題がある。 [0005] ダンプトラックを別の場所に移動させる場合のような通常走行時は、アクセルペダル の操作量に応じた電動モータの目標出力馬力を演算して電動モータを制御すること により、アクセルペダルの操作量と電動モータの出力馬力との関係が一致するように なり、良好な操作感覚が得られる。しかし、ダンプトラックの走行操作には、ダンプトラ ックを掘削機の近くの積荷位置に止めたり、ダンプトラックを荷重計にのせる場合のよ うに、ダンプトラックを微速走行させ、位置決めする走行操作がある。このような走行 操作時には、アクセルペダルの操作量に応じた電動モータの目標出力馬力を演算し て電動モータを制御した場合は、モータトルク及びそのトルク変化が過大となり、その ため微速走行時の制御性が悪ィ匕し、ダンプトラックを微速走行させ、所望の位置に位 置決めすることが困難となる。 [0004] In a conventional electrically driven dump truck, as described in Patent Document 1, a torque command value of an electric motor is calculated according to an operation amount of an accelerator pedal, and based on this torque command value. In general, the inverter is controlled to control the torque of the electric motor. However, when the electric motor is controlled in this way, the amount of operation of the accelerator pedal is not directly linked to the output horsepower of the electric motor, so that the operation feeling when the accelerator pedal is depressed is good. In order to solve such a problem, the target output horsepower of the electric motor is calculated according to the amount of operation of the accelerator pedal, and the target output horsepower is divided by the number of revolutions of the electric motor at that time to obtain the target of the electric motor. It is conceivable to calculate the torque (torque command value). However, if this is done, there are the following problems. [0005] During normal travel, such as when the dump truck is moved to another location, by calculating the target output horsepower of the electric motor according to the amount of operation of the accelerator pedal and controlling the electric motor, The relationship between the amount of operation and the output horsepower of the electric motor becomes the same, and a good operation feeling can be obtained. However, the dump truck traveling operation includes a traveling operation in which the dump truck is moved at a low speed and positioned, such as when the dump truck is stopped at the loading position near the excavator or the dump truck is placed on a load meter. is there. During such a driving operation, if the electric motor is controlled by calculating the target output horsepower of the electric motor according to the amount of operation of the accelerator pedal, the motor torque and its torque change will be excessive, so control during slow speed driving It becomes difficult to move the dump truck at a low speed and to position it at a desired position.
[0006] 本発明の目的は、通常走行時にアクセルペダルの操作量と電動モータの出力馬力 との関係が一致した良好な操作感覚が得られるとともに、微速走行時の制御性を高 め、微妙な位置決めを容易に行うことができる電気駆動ダンプトラックの制御システム を提供することである。  [0006] The object of the present invention is to obtain a good operational feeling in which the relationship between the amount of operation of the accelerator pedal and the output horsepower of the electric motor coincides with each other during normal traveling, and enhances the controllability during low-speed traveling. It is an object to provide a control system for an electrically driven dump truck that can be easily positioned.
課題を解決するための手段  Means for solving the problem
[0007] (1)上記目的を達成するために、本発明は、原動機と、この原動機により駆動され る交流発電機と、前記交流発電機により電力が供給されて駆動する走行用の少なく とも 2つの電動モータと、前記交流発電機に接続され、それぞれ、前記電動モータを 制御する少なくとも 2つのインバータと、アクセルペダルの操作量に応じて前記インバ ータを制御し、前記電動モータを制御するモータ制御手段とを有する電気駆動ダン プトラックの駆動システムにおいて、前記モータ制御手段は、前記アクセルペダルの 操作量に応じたモータ目標出力馬力を計算するモータ目標出力馬力計算手段と、 前記モータ目標出力馬力と前記 2つの電動モータの回転数とに基づいてモータ目標 トルクを計算するモータ目標トルク計算手段と、前記アクセルペダルの操作量に応じ た前記 2つの電動モータの加速トルク制限値を計算する加速トルク制限値計算手段 と、前記加速トルク制限値が前記モータ目標トルクよりも大きいときは、前記モータ目 標トルクをモータトルク指令値として選択し、前記加速トルク制限値が前記モータ目 標トルクよりも小さくなると前記加速トルク制限値をモータトルク指令値として選択する モータトルク指令値決定手段と、前記モータトルク指令値に基づ!/、て前記インバータ を制御するインバータ制御手段とを備えるものとする。 [0007] (1) In order to achieve the above object, the present invention provides a motor, an AC generator driven by the motor, and at least 2 for driving driven by electric power supplied from the AC generator. A motor that is connected to the AC generator, controls at least two inverters that control the electric motor, and controls the inverter according to the amount of operation of an accelerator pedal, respectively. And a motor target output horsepower calculating means for calculating a motor target output horsepower according to an operation amount of the accelerator pedal, and a motor target output horsepower. Motor target torque calculating means for calculating a motor target torque based on the rotational speeds of the two electric motors; and the accelerator pedal Acceleration torque limit value calculating means for calculating an acceleration torque limit value of the two electric motors according to the operation amount, and when the acceleration torque limit value is larger than the motor target torque, the motor target torque is converted into a motor torque. When the acceleration torque limit value is smaller than the motor target torque, the acceleration torque limit value is selected as the motor torque command value. Motor torque command value determining means and inverter control means for controlling the inverter based on the motor torque command value are provided.
[0008] このように構成した本発明にお 、ては、加速トルク制限値計算手段にお!、て、通常 走行時のアクセルペダルの操作量に対しては、モータ目標トルクより大きな加速トル ク制限値が計算され、微速走行時のアクセルペダルの操作量に対しては、モータ目 標トルクより小さな加速トルク制限値が計算され、モータトルク指令値決定手段にお いては、通常走行時はモータ目標トルクがモータトルク指令値として選択され、微速 走行時は加速トルク制限値がモータトルク指令値として選択される。これにより通常走 行時は、モータ目標出力馬力計算手段により計算されたモータ目標出力馬力に基 づく走行制御により、アクセルペダルの操作量と電動モータの出力馬力との関係が 一致した良好な操作感覚が得られ、微速走行時は、加速トルク制限値計算手段によ り計算された加速トルク制限値に基づく走行制御により良好な制御性が得られ、微妙 な位置決めを容易に行うことができる。  [0008] In the present invention configured as described above, the acceleration torque limit value calculation means! The acceleration torque that is larger than the motor target torque with respect to the amount of operation of the accelerator pedal during normal traveling is determined. A limit value is calculated, and an acceleration torque limit value that is smaller than the motor target torque is calculated for the amount of accelerator pedal operation during slow speed travel. The target torque is selected as the motor torque command value, and the acceleration torque limit value is selected as the motor torque command value during slow speed travel. As a result, during normal running, a good operational feeling is achieved in which the relationship between the amount of operation of the accelerator pedal and the output horsepower of the electric motor is matched by running control based on the motor target output horsepower calculated by the motor target output horsepower calculation means. When the vehicle is traveling at a low speed, good controllability can be obtained by traveling control based on the acceleration torque limit value calculated by the acceleration torque limit value calculating means, and delicate positioning can be easily performed.
[0009] (2)上記(1)において、好ましくは、前記加速トルク制限値計算手段は、前記ァクセ ルペダルの操作量が 0のときは、加速トルク制限値が微速走行に適したトルク範囲の 低めのトルクであり、前記アクセルペダルの操作量が 0から中間操作量までの微操作 領域を含む範囲にあるときは、前記アクセルペダルの操作量が増加するにしたがつ て前記加速トルク制限値が前記最小トルク力ゝら微速走行に適したトルク範囲の高め のトルクまで増加し、前記アクセルペダルの操作量が更に増加すると前記加速トルク 制限値が最大トルクまで増加するように設定された加速トルク制限値特性に基づいて 、前記加速トルク制限値を計算する。  [0009] (2) In the above (1), preferably, the acceleration torque limit value calculating means lowers the acceleration torque limit value suitable for low-speed running when the accelerator pedal operation amount is zero. When the accelerator pedal operation amount is in a range including a fine operation region from 0 to an intermediate operation amount, the acceleration torque limit value increases as the accelerator pedal operation amount increases. The acceleration torque limit is set so that the acceleration torque limit value increases to the maximum torque as the minimum torque force increases to a higher torque in the torque range suitable for low speed driving and the accelerator pedal operation amount further increases. Based on the value characteristic, the acceleration torque limit value is calculated.
[0010] これによりモータトルク指令値決定手段においては、通常走行時はモータ目標トル クがモータ目標トルクがモータトルク指令値として選択され、微速走行時は加速トルク 制限値がモータトルク指令値として選択される。  [0010] Thereby, in the motor torque command value determining means, the motor target torque is selected as the motor torque command value during normal travel, and the acceleration torque limit value is selected as the motor torque command value during slow speed travel. Is done.
[0011] (3)また、上記(1)において、好ましくは、前記微速走行に適したトルク範囲の低め のトルクは、前記電動モータの回転数に応じて予め設定されたモータ許容最大トルク の 15%〜30%であり、前記微速走行に適したトルク範囲の高めのトルクは前記モー タ許容最大トルクの 30%〜50%であり、前記中間操作量は最大操作量の 40%〜6 0%である。 [0011] (3) In the above (1), it is preferable that the lower torque in the torque range suitable for the low speed running is a motor allowable maximum torque of 15 preset in accordance with the rotational speed of the electric motor. The higher torque in the torque range suitable for the low speed running is 30% to 50% of the motor allowable maximum torque, and the intermediate operation amount is 40% to 6% of the maximum operation amount. 0%.
[0012] これによりモータトルク指令値決定手段においては、モータ許容最大トルクの範囲 内において、通常走行時はモータ目標トルクがモータ目標トルクがモータトルク指令 値として選択され、微速走行時は加速トルク制限値がモータトルク指令値として選択 される。  Thus, in the motor torque command value determining means, within the range of the maximum allowable motor torque, the motor target torque is selected as the motor torque command value during normal running and the acceleration torque limit is set during slow speed running. The value is selected as the motor torque command value.
[0013] (4)また、上記(1)において、好ましくは、前記加速トルク制限値計算手段は、前記 加速トルク制限値として前記アクセルペダルの操作量に応じたモータ加速トルクを計 算し、前記モータトルク指令値決定手段は、前記モータ目標トルクと前記モータ加速 トルクと前記電動モータの回転数に応じて予め設定されたモータ許容最大トルクとを 比較して、それらの最小値を選択する。  [0013] (4) In the above (1), preferably, the acceleration torque limit value calculation means calculates a motor acceleration torque corresponding to an operation amount of the accelerator pedal as the acceleration torque limit value, and The motor torque command value determining means compares the motor target torque, the motor acceleration torque, and a motor allowable maximum torque set in advance according to the rotation speed of the electric motor, and selects the minimum value thereof.
[0014] これによりモータトルク指令値決定手段においては、モータ許容最大トルクの範囲 内において、通常走行時はモータ目標トルクがモータ目標トルクがモータトルク指令 値として選択され、微速走行時は加速トルク制限値がモータトルク指令値として選択 される。  Thus, the motor torque command value determining means selects the motor target torque as the motor torque command value during normal running and the acceleration torque limit during slow speed running within the range of the maximum allowable motor torque. The value is selected as the motor torque command value.
[0015] (5)上記(1)にお 、て、前記加速トルク制限値計算手段は、前記アクセルペダルの 操作量に応じたモータトルク制限比率を計算し、このモータトルク制限比率を前記電 動モータの回転数に応じて予め設定されたモータ許容最大トルクに乗じた値である モータ最大トルクを前記加速トルク制限値として計算してもよぐこの場合、前記モー タトルク指令値決定手段は、前記モータ目標トルクと前記モータ最大トルクとを比較し て、それらの最小値を選択する。  [0015] (5) In the above (1), the acceleration torque limit value calculating means calculates a motor torque limit ratio according to an operation amount of the accelerator pedal, and the motor torque limit ratio is calculated based on the motor torque limit ratio. In this case, the motor torque command value determining means may calculate the motor maximum torque, which is a value obtained by multiplying a preset motor allowable maximum torque according to the motor rotation speed, as the acceleration torque limit value. The motor target torque is compared with the motor maximum torque, and the minimum value thereof is selected.
[0016] これによつてもモータトルク指令値決定手段においては、モータ許容最大トルクの 範囲内において、通常走行時はモータ目標トルクがモータ目標トルクがモータトルク 指令値として選択され、微速走行時は加速トルク制限値がモータトルク指令値として 選択される。  Accordingly, in the motor torque command value determining means, the motor target torque is selected as the motor torque command value during normal running and the motor target torque is selected as the motor torque command value during normal running within the range of the maximum allowable motor torque. The acceleration torque limit value is selected as the motor torque command value.
[0017] (6)更に、上記(1)〜(5)において、好ましくは、更に、前記原動機の回転数に応じ て前記走行用の電動モータで使用可能な最大馬力を計算する最大馬力計算手段と 、前記モータ目標出力馬力計算手段により計算した前記モータ目標出力馬力が、前 記最大馬力計算手段により計算した最大馬力を超えないように制限するモータ出力 馬力制限手段とを有し、前記モータ目標トルク計算手段は、前記モータ出力馬力制 限手段からのモータ目標出力馬力と前記 2つの電動モータの回転数とから前記モー タ目標トルクを計算する。 (6) Further, in the above (1) to (5), preferably, a maximum horsepower calculating means for calculating a maximum horsepower usable by the electric motor for traveling according to the number of rotations of the prime mover. And a motor output for limiting the motor target output horsepower calculated by the motor target output horsepower calculating means so as not to exceed the maximum horsepower calculated by the maximum horsepower calculating means. The motor target torque calculating means calculates the motor target torque from the motor target output horsepower from the motor output horsepower limiting means and the rotation speeds of the two electric motors.
[0018] これにより例えば走行加速時等において、原動機回転数が十分に上がりきらず、モ ータ目標出力馬力計算手段により計算したモータ目標出力馬力が最大馬力計算手 段により計算した最大馬力を超えるような場合でも、モータ目標出力馬力はその最大 馬力に制限されるため、原動機のストールを防止することができる。 [0018] Thereby, for example, at the time of traveling acceleration, the motor speed is not sufficiently increased so that the motor target output horsepower calculated by the motor target output horsepower calculating means exceeds the maximum horsepower calculated by the maximum horsepower calculating means. Even in such a case, the motor target output horsepower is limited to the maximum horsepower, so that the motor stall can be prevented.
発明の効果  The invention's effect
[0019] 本発明によれば、通常走行時にアクセルペダルの操作量と電動モータの出力馬力 との関係が一致した良好な操作感覚が得られ、微速走行時は良好な制御性が得ら れ、微妙な位置決めを容易に行うことができる。  [0019] According to the present invention, it is possible to obtain a good operation feeling in which the relationship between the operation amount of the accelerator pedal and the output horsepower of the electric motor coincides during normal running, and good controllability can be obtained during slow running, Subtle positioning can be easily performed.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]図 1は本発明の一実施の形態による電気駆動ダンプトラックの駆動システムの 全体構成を示す図である。  FIG. 1 is a diagram showing an overall configuration of an electric drive dump truck drive system according to an embodiment of the present invention.
[図 2]図 2は本実施の形態による駆動システムの処理手順を示す機能ブロック図であ る。  FIG. 2 is a functional block diagram showing a processing procedure of the drive system according to the present embodiment.
[図 3]図 3は処理手順を示すフローチャートである。  FIG. 3 is a flowchart showing a processing procedure.
[図 4]図 4は処理手順を示すフローチャートである。  FIG. 4 is a flowchart showing a processing procedure.
[図 5]図 5は非走行時の第 1目標回転数の関数 Nrl (p)を示す図である。  FIG. 5 is a diagram showing a function Nrl (p) of the first target rotational speed when not traveling.
[図 6]図 6は走行時の第 2目標回転数の関数 Nr2 (p)を示す図である。  FIG. 6 is a diagram showing a function Nr2 (p) of the second target rotational speed during traveling.
[図 7]図 7は走行時の第 2目標回転数の関数 Nr2 (p)の変形例を示す図である。  FIG. 7 is a view showing a modification of the function Nr2 (p) of the second target rotational speed during traveling.
[図 8]図 8は走行時の第 2目標回転数の関数 Nr2 (p)の他の変形例を示す図である。  FIG. 8 is a diagram showing another modification of the function Nr2 (p) of the second target rotational speed during traveling.
[図 9]図 9はモータ最大出力馬力の関数 Pmax (Ne)を示す図である。  FIG. 9 is a diagram showing a function Pmax (Ne) of motor maximum output horsepower.
[図 10]図 10は関数 f (Ne)で表される回転数対原動機最大出力馬力のデータマップ と、関数 g (Ne)で表される回転数対その他原動機負荷損失馬力のデータマップを示 す図である。  [Fig. 10] Fig. 10 shows a data map of the speed vs. maximum motor output horsepower represented by the function f (Ne) and a data map of the speed vs. other motor load loss horsepower represented by the function g (Ne). It is a figure.
[図 11]図 11は前進時の第 1モータ目標出力馬力の関数 Pml (p)を示す図である。  FIG. 11 is a diagram showing a function Pml (p) of a first motor target output horsepower during forward movement.
[図 12]図 12は後進時の第 2モータ目標出力馬力の関数 Pm2 (p)を示す図である。 [図 13]図 13はモータ出力目標馬力 Pmと電動モータの回転速度 coR, co Lとモータ 目標トルク TrlR, TrlLとの関係を示す図である。 FIG. 12 is a diagram showing a function Pm2 (p) of the second motor target output horsepower during reverse travel. FIG. 13 is a diagram showing a relationship between a motor output target horsepower Pm, an electric motor rotational speed coR, coL, and a motor target torque TrlR, TrlL.
[図 14]図 14はモータ最大トルクの関数 Trmaxl ( ω )で表されるモータ回転数対モー タ最大トルクのデータマップを示す図である。  FIG. 14 is a diagram showing a data map of motor rotation speed vs. motor maximum torque represented by a function Trmaxl (ω) of motor maximum torque.
[図 15]図 15はモータ加速トルクの関数 Trmax2 (p)を示す図である。  FIG. 15 is a diagram showing a function Trmax2 (p) of motor acceleration torque.
[図 16]図 16はモータ目標トルク TrlR, TrlLとモータ加速トルク Trmax2との最小値 の選択結果を示す図である。  [FIG. 16] FIG. 16 is a diagram showing a selection result of minimum values of motor target torques TrlR, TrlL and motor acceleration torque Trmax2.
[図 17]図 17は本発明の第 2の実施の形態による駆動システムの処理手順を示す機 能ブロック図である。  FIG. 17 is a functional block diagram showing a processing procedure of the drive system according to the second embodiment of the present invention.
[図 18]図 18は第 2の実施の形態の処理手順を示すフローチャートである。  FIG. 18 is a flowchart showing a processing procedure of the second embodiment.
[図 19]図 19はモータトルク制限比率の関数 Kmax (p)を示す図である。 FIG. 19 is a diagram showing a function Kmax (p) of a motor torque limit ratio.
符号の説明 Explanation of symbols
1 アクセルペダル 1 Accelerator pedal
2 リタードペダル 2 retard pedal
3 全体制御装置 3 Overall control unit
4 原動機(ディーゼルエンジン) 4 prime mover (diesel engine)
5 交流発電機 5 Alternator
6 整流回路 6 Rectifier circuit
7 インバータ制御装置 7 Inverter controller
8 チヨッパ回路 8 Chopper circuit
9 グリッド抵抗 9 Grid resistance
10 コンデンサ 10 capacitors
11 整流後の電圧を検出するための抵抗  11 Resistance for detecting the voltage after rectification
12R, 12L 左右の電動モータ(誘導モータ)  12R, 12L Left and right electric motors (induction motors)
13R, 13L 減速機  13R, 13L reducer
14R, 14L 左右の後輪 (タイヤ)  14R, 14L Left and right rear wheels (tires)
15R, 15L 電磁ピックアップセンサ  15R, 15L electromagnetic pickup sensor
16 シフトレバー 18 その他の原動機負荷 16 Shift lever 18 Other prime mover loads
71R, 71L トルク指令演算部  71R, 71L Torque command calculator
72R, 72L モータ制御演算部  72R, 72L Motor control calculation part
73R, 73L インバータ(スイッチング素子)  73R, 73L Inverter (switching element)
Nrl 第 1目標回転数  Nrl 1st target speed
Nr2 第 2目標回転数  Nr2 Second target speed
Nr 目標回転数  Nr target speed
Pml 第 1モータ目標出力馬力  Pml 1st motor target output horsepower
Pm2 第 2モータ目標出力馬力  Pm2 Second motor target output horsepower
PmO モータ目標出力馬力  PmO motor target output horsepower
Pmax モータ出力馬力上限値  Pmax Motor output horsepower upper limit
Pm モータ目標出力馬力  Pm Motor target output horsepower
TrlR, TrlL モータ目標トルク  TrlR, TrlL Motor target torque
Trmax2 モータ力卩速トノレク  Trmax2 Motor power high speed Tonerek
Trmax モータ許容最大トノレク  Trmax Motor maximum allowable torque
TrR, TrL モータトルク指令値  TrR, TrL Motor torque command value
関数 Nrl (p) 第 1目標回転数特性  Function Nrl (p) First target speed characteristics
関数 Nr2 (p) 第 2目標回転数特性  Function Nr2 (p) Second target speed characteristics
関数 Trmax2 (p) 加速トルク制限値特性  Function Trmax2 (p) Acceleration torque limit value characteristics
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の一実施の形態を図面を用いて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0023] 図 1は、本発明の第 1の実施の形態による電気駆動ダンプトラックの駆動システムの 全体構成を示す図である。  FIG. 1 is a diagram showing an overall configuration of a drive system for an electric drive dump truck according to a first embodiment of the present invention.
[0024] 図 1において、電気駆動ダンプトラックの駆動システムは、アクセルペダル 1、リタ一 ドペダル 2、シフトレバー 16、全体制御装置 3、原動機 4、交流発電機 5、その他の原 動機負荷 18、整流回路 6、インバータ制御装置 7、チヨツバ回路 8、グリッド抵抗 9、コ ンデンサ 10、抵抗 11、左右の電動モータ (例えば誘導モータ) 12R, 12L、減速機 1 3R, 13L、タイヤ 14R, 14L、電磁ピックアップセンサ 15R, 15Lを備えている。イン バータ制御装置 7は、左右の電動モータ 12R, 12Lのそれぞれに対するトルク指令 演算部 71R, 71L、モータ制御演算部 72R, 72L、インバータ (スイッチング素子) 73 R, 73Lを有している。 [0024] In Fig. 1, the drive system of the electric drive dump truck includes an accelerator pedal 1, a retard pedal 2, a shift lever 16, an overall control device 3, a prime mover 4, an alternator 5, and other prime mover loads 18. Circuit 6, Inverter controller 7, Chitsutsuba circuit 8, Grid resistor 9, Capacitor 10, Resistor 11, Left and right electric motors (eg induction motor) 12R, 12L, Reducer 1 3R, 13L, Tires 14R, 14L, Electromagnetic pickup Sensors 15R and 15L are provided. Inn The barter control device 7 includes torque command calculation units 71R and 71L, motor control calculation units 72R and 72L, and inverters (switching elements) 73R and 73L for the left and right electric motors 12R and 12L, respectively.
[0025] アクセルペダル 1の操作信号 pとリタードペダル 2の操作信号 qは全体制御装置 3の 入力となり、それぞれ駆動力、リタード力の大きさを制御する信号となる。  [0025] The operation signal p of the accelerator pedal 1 and the operation signal q of the retard pedal 2 are input to the overall control device 3, and are signals for controlling the magnitudes of the driving force and the retarding force, respectively.
[0026] ダンプトラックを前進又は後進させるときは、シフトレバー 16を前進位置又は後進位 置にしてアクセルペダル 1を踏み込むと、全体制御装置 3は原動機 4に対して目標回 転数 Nrの指令を出力し、実際の回転数 Neの信号が原動機 4から制御装置 3に戻さ れる。原動機 4は電子ガバナ 4aを装着したディーゼルエンジンであり、電子ガバナ 4a は目標回転数 Nrの指令を受け取ると、原動機 4が目標回転数 Nrで回転するように 燃料噴射量を制御する。  [0026] When the dump truck moves forward or backward, when the accelerator lever 1 is depressed with the shift lever 16 in the forward position or the reverse position, the general control device 3 issues a command for the target rotational speed Nr to the prime mover 4. And the signal of the actual rotational speed Ne is returned from the prime mover 4 to the control device 3. The prime mover 4 is a diesel engine equipped with an electronic governor 4a. When the electronic governor 4a receives a command for the target rotational speed Nr, the fuel injection amount is controlled so that the prime mover 4 rotates at the target rotational speed Nr.
[0027] 原動機 4には交流発電機 5が接続されており、交流発電を行う。交流発電により発 生した電力は整流回路 6によって整流され、コンデンサ 10に蓄電され、直流電圧値 は Vとなる。交流発電機 5は直流電圧 Vを検出抵抗 11で分圧された電圧値をフィード ノ ックして当該電圧値が所定の一定電圧 VOとなるように全体制御装置 3によって制 御される。  [0027] An AC generator 5 is connected to the prime mover 4 to perform AC power generation. The electric power generated by the AC power generation is rectified by the rectifier circuit 6, stored in the capacitor 10, and the DC voltage value becomes V. The AC generator 5 is controlled by the overall controller 3 so that the voltage value obtained by dividing the DC voltage V by the detection resistor 11 is feed-knocked so that the voltage value becomes a predetermined constant voltage VO.
[0028] 交流発電機 5により発生した電力はインバータ制御装置 7を介して左右の電動モー タ 12R, 12Lに供給される。全体制御装置 3は、整流回路 6によって整流された直流 電圧 Vが所定の一定電圧 VOとなるように交流発電機 5を制御することで、電動モータ 12R, 12Lに必要な電力が供給されるよう制御して 、る。  [0028] The electric power generated by the AC generator 5 is supplied to the left and right electric motors 12R and 12L via the inverter control device 7. The overall control device 3 controls the AC generator 5 so that the DC voltage V rectified by the rectifier circuit 6 becomes a predetermined constant voltage VO, so that necessary electric power is supplied to the electric motors 12R and 12L. Control it.
[0029] 全体制御装置 3からの左右の電動モータ 12R, 12Lの指令馬力 MR, MLと電磁ピ ックアップ 15R, 15Lにより検出される各電動モータ 12R, 12Lの回転速度 coR、 co L と力インバータ制御装置 7に入力され、インバータ制御装置 7は、トルク指令演算部 7 1R, 71L、モータ制御演算部 72R, 72L、インバータ(スイッチング素子) 73R, 73L を介してすベり率 > 0で各電動モータ 12R, 12Lを駆動する。  [0029] Command horsepower MR, ML of left and right electric motors 12R and 12L from overall control device 3 Rotational speeds coR and coL of electric motors 12R and 12L detected by electromagnetic pickup 15R and 15L and force inverter control The inverter control device 7 is input to the device 7, and the torque command calculation unit 7 1R, 71L, the motor control calculation unit 72R, 72L, and the inverter (switching element) 73R, 73L with each slip motor> 0 Drives 12R and 12L.
[0030] 各電動モータ 12R, 12Lにはそれぞれ減速機 13R, 13Lを介して左右の後輪 (タイ ャ) 14R, 14Lが接続されている。電磁ピックアップ 15R, 15Lは通常は減速機 13R , 13L内のギアの 1枚の歯の周速を検出するセンサである。また、例えば、右側駆動 系を例に取ると、電動モータ 12R内部の駆動軸や減速機 13Rとタイヤ 14Rを接続す る駆動軸に検出用の歯車をつけ、その位置に設置しても構わな 、。 [0030] Left and right rear wheels (tires) 14R, 14L are connected to the electric motors 12R, 12L via speed reducers 13R, 13L, respectively. The electromagnetic pickups 15R and 15L are usually sensors that detect the peripheral speed of one tooth of the gears in the reduction gears 13R and 13L. Also, for example, right drive Taking the system as an example, a detection gear may be attached to the drive shaft inside the electric motor 12R or the drive shaft connecting the speed reducer 13R and the tire 14R, and installed at that position.
[0031] 走行中にアクセルペダル 1を戻し、リタードペダル 2を踏み込んだときは、交流発電 機 5が発電しないよう全体制御装置 3は制御する。また、全体制御装置 3からの馬力 指令 MR, MLは負の値となり、インバータ制御装置 7はすべり率 < 0で各電動モータ 12R, 12Lを駆動して走行する車体にブレーキ力を与える。この時、各電動モータ 1 2R, 12Lは発電機として作用し、インバータ制御装置 7に内蔵された整流機能によつ てコンデンサ 10を充電するように働く。直流電圧値 Vは予め設定された直流電圧値 VI以下になるようにチヨッパ回路 8が作動し、電流をグリッド抵抗 9に流して電気エネ ルギーを熱エネルギーに変換する。  [0031] When the accelerator pedal 1 is returned and the retard pedal 2 is depressed during traveling, the overall control device 3 controls so that the AC generator 5 does not generate power. Further, the horsepower commands MR and ML from the overall control device 3 are negative values, and the inverter control device 7 applies braking force to the traveling vehicle body by driving the electric motors 12R and 12L with a slip rate <0. At this time, each of the electric motors 12R and 12L acts as a generator and charges the capacitor 10 by a rectification function built in the inverter control device 7. The chopper circuit 8 operates so that the DC voltage value V is less than or equal to the preset DC voltage value VI, and current is passed through the grid resistor 9 to convert the electrical energy into heat energy.
[0032] 原動機 4は交流発電機 5の他にも、ダンプトラックのベッセルを上下させたり、ステア リング操作するための油圧系を駆動するための油圧ポンプ(以下、作業用の油圧ポ ンプという) 18aや、ラジェータに送風するための図示しない冷却ファンや、交流発電 機 5、グリッド抵抗 9、電動モータ 12R, 12L、制御装置 3, 7などを冷却するための図 示しな 、電動ファンを駆動するための図示しな 、第 2の発電機などを駆動して 、る。 図 1ではこれらをその他の原動機負荷 18として示している。  [0032] In addition to the AC generator 5, the prime mover 4 is a hydraulic pump for driving a hydraulic system for raising and lowering the vessel of the dump truck and performing a steering operation (hereinafter referred to as a working hydraulic pump). 18a, a cooling fan (not shown) for sending air to the radiator, an AC generator 5, grid resistor 9, electric motors 12R, 12L, control devices 3, 7 etc. For example, a second generator or the like is driven. Figure 1 shows these as other prime mover loads 18.
[0033] 以上は、通常の電気駆動ダンプトラックの基本構成と動作である。  [0033] The above is the basic configuration and operation of a normal electric drive dump truck.
[0034] 次に、本発明の特徴となる部分について説明する。  [0034] Next, the parts that characterize the present invention will be described.
[0035] 本発明にお 、て、各構成機器の動作は全体制御装置 3及びインバータ制御装置 7 内にそれぞれ組み込まれた、図示しな!、メモリ内の処理手順に従って演算処理され る。図 2はその処理手順を示す機能ブロック図であり、図 3及び図 4はその処理手順 を示すフローチャートである。以下に、その処理手順を、主として図 3及び図 3に示す フローチャートに従い、補助的に図 2の機能ブロック図を用いて説明する。  In the present invention, the operation of each component device is calculated according to a processing procedure in a memory, not shown, incorporated in the overall control device 3 and the inverter control device 7. FIG. 2 is a functional block diagram showing the processing procedure, and FIGS. 3 and 4 are flowcharts showing the processing procedure. Hereinafter, the processing procedure will be described mainly using the functional block diagram of FIG. 2 in accordance with the flowcharts shown in FIGS.
[0036] 図 3及び図 4において、 STARTから処理が始まり、 ENDまで処理すると再び STA RTに戻るという処理フローになる。  In FIG. 3 and FIG. 4, the processing flow starts from START and returns to STA RT again when processing up to END.
[0037] 手順 101では、シフトレバー 16の切り替え位置を示す状態量 S、アクセルペダル 1 の操作量 (以下アクセル操作量という) p、原動機 4の実回転数 Ne、走行用の電動モ ータ 12R, 12Lの回転数(以下モータ回転数という) coR, co Lを読み込む。シフトレ バー 16の切り替え位置には N (中立)、 F (前進)、 R (後進)の 3位置がある。 [0037] In step 101, the state amount S indicating the switching position of the shift lever 16, the operation amount of the accelerator pedal 1 (hereinafter referred to as the accelerator operation amount) p, the actual rotational speed Ne of the prime mover 4, and the electric motor 12R for traveling , 12L rotation speed (hereinafter referred to as motor rotation speed) coR, co L is read. Shift There are three positions for switching the bar 16: N (neutral), F (forward), and R (reverse).
[0038] 手順 102では、手順 101で読み込んだアクセル操作量 pを、図 5に示す非走行時の 第 1目標回転数の関数 Nrl (p)で表されるアクセル操作量対原動機目標回転数の データマップに参照して、対応する第 1目標回転数 Nrlを算出する(図 2のブロック 2 01)。 [0038] In step 102, the accelerator operation amount p read in step 101 is calculated as the accelerator operation amount vs. the prime mover target rotation number expressed by the function Nrl (p) of the first target rotation speed during non-travel shown in FIG. Referring to the data map, the corresponding first target rotational speed Nrl is calculated (block 2 01 in FIG. 2).
[0039] 関数 Nrl (p)は作業用の油圧ポンプ 18aの駆動に適した第 1目標回転数特性であ り、図 5において、関数 Nrl (p)は、アクセルペダル 1の操作量が無操作の 0であると きは第 1目標回転数 Nrlが原動機 4の最小回転数 Nrlmin (アイドル回転数に相当) であり、アクセル操作量 pが 0から最大操作量 pmaxの手前の操作量 paまでの範囲に あるときは、アクセルペダル 1の操作量 pが増加するにしたがって第 1目標回転数 Nrl が最小回転数 Nrlminカゝら最大回転数 Nrlmaxまで増加し、アクセル操作量 pが操 作量 paを超えると第 1目標回転数 Nrlが最大回転数 Nrmlaxで一定となるように設 定されている。最小回転数 Nrlminは例えば 700rpm〜800rpmの範囲内の回転数 であり、図示の例では 750rpmである。最大回転数 Nrlmaxは好ましくは原動機 4の 最大の定格回転数であって、例えば 1800rpm〜2100rpmの範囲内の回転数であ り、図示の例では 1900rpmである。  [0039] The function Nrl (p) is the first target rotational speed characteristic suitable for driving the working hydraulic pump 18a. In FIG. 5, the function Nrl (p) indicates that the operation amount of the accelerator pedal 1 is not operated. The first target speed Nrl is the minimum speed Nrlmin (corresponding to the idling speed) of the prime mover 4, and the accelerator operation amount p is from 0 to the operation amount pa before the maximum operation amount pmax. When it is within the range, the first target speed Nrl increases from the minimum speed Nrlmin to the maximum speed Nrlmax as the operation amount p of the accelerator pedal 1 increases, and the accelerator operation amount p decreases the operation amount pa. If exceeded, the first target speed Nrl is set to be constant at the maximum speed Nrmlax. The minimum rotation speed Nrlmin is, for example, a rotation speed within a range of 700 rpm to 800 rpm, and is 750 rpm in the illustrated example. The maximum rotational speed Nrlmax is preferably the maximum rated rotational speed of the prime mover 4 and is, for example, a rotational speed within a range of 1800 rpm to 2100 rpm, and is 1900 rpm in the illustrated example.
[0040] また、最大操作量 pmaxの手前の操作量 paは好ましくは最大操作量 pmaxの 80% 〜95%の操作量であり、図示の例では最大操作量 pmaxの 90%である。  [0040] Further, the operation amount pa before the maximum operation amount pmax is preferably an operation amount of 80% to 95% of the maximum operation amount pmax, and is 90% of the maximum operation amount pmax in the illustrated example.
[0041] 手順 103では、手順 101で読み込んだアクセル操作量 pを、図 6に示す走行時の第 2目標回転数の関数 Nr2 (p)で表されるアクセル操作量対原動機目標回転数のデ ータマップに参照して、対応する第 2目標回転数 Nr2を算出する(図 2のブロック 202 [0041] In step 103, the accelerator operation amount p read in step 101 is set to a value of the accelerator operation amount vs. the prime mover target rotation number represented by the function Nr2 (p) of the second target rotation speed during traveling shown in FIG. The corresponding second target rotational speed Nr2 is calculated with reference to the data map (block 202 in FIG. 2).
) o ) o
[0042] 関数 Nr2 (p)は電動モータ 12R, 12Lの駆動に適した第 2目標回転数特性であり、 図 6において、関数 Nr2 (p)は、アクセルペダル 1の操作量が無操作の 0から微少操 作量 Pblまでの範囲にあるときは、第 2目標回転数 Nr2が最小回転数 Nr2min (アイ ドル回転数に相当)であり、アクセルペダル 1の操作量が微少操作量 Pb 1になると第 2目標回転数は中速回転数 Nr2midまでステップ的に増加し、アクセル操作量 pが微 少操作量 Pb 1から中間操作量 Pb2までの範囲内にあるときは、アクセル操作量 が 増加するにしたがって第 2目標回転数 Nr2は中速回転数 Nr2midから最大回転数 N r2maxまで増加し、アクセル操作量 pが中間操作量 Pb2を超えると第 2目標回転数 N r2は最大回転数 Nr2maxで一定となるように設定されて!ヽる。最小回転数 Nr2min は、関数 Nrl (p)の場合と同様、例えば 700rpm〜800rpmの範囲内の回転数であ り、図示の例では 750rpmである。最大回転数 Nr2maxは好ましくは 1800rpm〜21 OOrpmの範囲内の回転数であり、図示の例では関数 Nrl (p)の最大回転数 Nrlma Xと同じ、最大の定格回転数である 1900rpmである。最小回転数 Nr2minが 750rp mで、最大回転数 Nr2maxが 1900rpmである場合、中速回転数 Nr2midは好ましく は 900rpm〜 1600rpmの範囲内の回転数であり、図示の例では 1300rpmである。 最小回転数 Nr2min及び最大回転数 Nr2maxがそれぞれ 750rpm, 1900rpm以 外の値である場合でも、中速回転数 Nrm2idは 900rpm〜 1600rpmの範囲内の回 転数とすることができる。 [0042] The function Nr2 (p) is a second target rotational speed characteristic suitable for driving the electric motors 12R and 12L. In FIG. 6, the function Nr2 (p) is the 0 when the operation amount of the accelerator pedal 1 is not operated. When the second target rotational speed Nr2 is the minimum rotational speed Nr2min (equivalent to the idle rotational speed) and the operating amount of the accelerator pedal 1 becomes the micro operating amount Pb 1. The second target rotational speed increases stepwise up to the medium speed rotational speed Nr2mid, and when the accelerator operation amount p is within the range from the slight operation amount Pb1 to the intermediate operation amount Pb2, the accelerator operation amount is As the speed increases, the second target speed Nr2 increases from the medium speed Nr2mid to the maximum speed Nr2max, and when the accelerator operation amount p exceeds the intermediate operation amount Pb2, the second target speed Nr2 becomes the maximum speed Nr2max. Is set to be constant! As in the case of the function Nrl (p), the minimum rotational speed Nr2min is, for example, a rotational speed within a range of 700 rpm to 800 rpm, and is 750 rpm in the illustrated example. The maximum rotation speed Nr2max is preferably a rotation speed within a range of 1800 rpm to 21 OO rpm, and in the illustrated example, is the same as the maximum rotation speed Nrlma X of the function Nrl (p), which is 1900 rpm which is the maximum rated rotation speed. When the minimum rotation speed Nr2min is 750 rpm and the maximum rotation speed Nr2max is 1900 rpm, the medium speed rotation speed Nr2mid is preferably a rotation speed within a range of 900 rpm to 1600 rpm, and in the illustrated example, 1300 rpm. Even if the minimum speed Nr2min and the maximum speed Nr2max are values other than 750 rpm and 1900 rpm, the medium speed Nrm2id can be set to a speed within the range of 900 rpm to 1600 rpm.
[0043] また、微少操作量 Pb 1は好ましくはアクセルペダルの最大操作量 Pmaxの 2〜8% の範囲内の操作量であり、図示の例では最大操作量 pmaxの 5%である。中間操作 量 Pb2は好ましくは最大操作量 Pmaxの 30〜70%の範囲内の操作量であり、図示 の例では最大操作量 Pmaxの 40%である。  Further, the minute operation amount Pb 1 is preferably an operation amount within a range of 2 to 8% of the maximum operation amount Pmax of the accelerator pedal, and is 5% of the maximum operation amount pmax in the illustrated example. The intermediate operation amount Pb2 is preferably an operation amount within the range of 30 to 70% of the maximum operation amount Pmax, and in the example shown in the figure, it is 40% of the maximum operation amount Pmax.
[0044] 図 7および図 8は走行時の関数 Nr2 (p)の変形例を示す図である。図 6の例では、 走行時関数 Nr2 (p)の最大回転数 Nrlmaxは非走行時の関数 Nrl (p)の最大回転 数 Nrlmaxと同じ値に設定した力 図 7に示すように、関数 Nrl (p)の最大回転数 Nr max (最大の定格回転数)より低めの値の例えば 1800rpmであってもよい。また、図 6の例では、アクセルペダル 1の操作量が 0から微少操作量 Pblまでの範囲にあると きは第 2目標回転数 Nr2が最小回転数 Nr2minとなるように設定したが、図 8に示す ように、第 2目標回転数 Nr2が最小回転数 Nrminとなる操作量範囲を無くしてもよい 。図 10の例は、アクセルペダル 1の操作量が 0のときは第 2目標回転数 Nrは直ちに アイドル回転数より高い中速回転数 Nr2midとなり、その後、アクセル操作量 pが 0か ら中間操作量 Pb2まで増加するにしたがって第 2目標回転数 Nr2は中速回転数 Nr2 midから最大回転数 Nr2maxまで増加するように設定されて!、る。  FIG. 7 and FIG. 8 are diagrams showing modifications of the function Nr2 (p) during travel. In the example of Fig. 6, the maximum speed Nrlmax of the running function Nr2 (p) is the force set to the same value as the maximum speed Nrlmax of the non-traveling function Nrl (p). It may be a value lower than the maximum rotational speed Nr max (maximum rated rotational speed) of p), for example, 1800 rpm. In the example of FIG. 6, the second target speed Nr2 is set to the minimum speed Nr2min when the operation amount of the accelerator pedal 1 is in the range from 0 to the minute operation amount Pbl. As shown in FIG. 6, the operation amount range in which the second target rotational speed Nr2 is the minimum rotational speed Nrmin may be eliminated. In the example of Fig. 10, when the operation amount of accelerator pedal 1 is 0, the second target rotation speed Nr immediately becomes a medium speed rotation speed Nr2mid higher than the idle rotation speed, and thereafter, the accelerator operation amount p is 0 to the intermediate operation amount. The second target rotational speed Nr2 is set to increase from the medium speed rotational speed Nr2 mid to the maximum rotational speed Nr2max as it increases to Pb2.
[0045] 手順 104〜106では、手順 101で読み込んだシフトレバー 16の状態量 Sが N (中 立)であれば、原動機 4の目標回転数 Nrを Nr=Nrlと置き、シフトレバー 16の状態 量 Sが F (前進)又は R (後進)であれば、原動機 4の目標回転数 Nrを Nr=Nr2と置く (図 2のブロック 203)。 [0045] In steps 104 to 106, the state quantity S of the shift lever 16 read in step 101 is N (medium If the state quantity S of the shift lever 16 is F (forward) or R (reverse), set the target speed Nr of the prime mover 4 to Nr. Put = Nr2 (block 203 in Figure 2).
[0046] 手順 111では、手順 101で読み込んだ原動機 4の実回転数 Neを、図 9に示すモー タ最大出力馬力の関数 Mr (Ne)で表されるエンジン回転数対モータ最大出力馬力 のデータマップに参照して、電動モータ 12R, 12Lで使用可能な対応する最大馬力 Mrを算出し、これに 1Z2を乗じて電動モータ 12R, 12Lの 1台当たりの出力馬力上 限値 Pmaxを計算する(図 2のブロック 211, 212)。  [0046] In step 111, the actual rotational speed Ne of prime mover 4 read in step 101 is the data of engine rotational speed vs. motor maximum output horsepower represented by the function Mr (Ne) of the motor maximum output horsepower shown in FIG. Referring to the map, calculate the corresponding maximum horsepower Mr that can be used with the electric motors 12R, 12L, and multiply this by 1Z2 to calculate the output horsepower upper limit value Pmax per electric motor 12R, 12L ( (Blocks 211, 212 in Figure 2).
[0047] 図 9において、関数 Mr (Ne)は、原動機 4の実回転数 (以下エンジン回転数という) Neが増大するにしたがって電動モータ 12R, 12Lので使用可能な最大馬力(以下 モータ最大出力馬力と 、う) Mrが増大するように設定されて 、る。  In FIG. 9, the function Mr (Ne) is the maximum horsepower that can be used by the electric motors 12R and 12L as the Ne increases (hereinafter referred to as the engine speed) (hereinafter referred to as the motor maximum output horsepower). Mr. and Mr. are set to increase.
[0048] モータ最大出力馬力の関数 Mr (Ne)の設定方法を説明する。  A method for setting the function Mr (Ne) of the motor maximum output horsepower will be described.
[0049] 図 10は、関数 f (Ne)で表される回転数対原動機最大出力馬力のデータマップと、 関数 g (Ne)で表される回転数対その他原動機負荷損失馬力のデータマップを示す 図である。  [0049] FIG. 10 shows a data map of the speed vs. maximum motor output horsepower represented by the function f (Ne) and a data map of the speed vs. other motor load loss horsepower represented by the function g (Ne). FIG.
[0050] 関数 f (Ne)は原動機 4の出し得る最大出力馬力であり、関数 fl (Ne)と関数 f2 (Ne )と関数 f3 (Ne)の合成である。関数 f 1 (Ne)は原動機 4の目標回転数 Nrと出力馬力 との関数 fr=f (Nr)に相当するものであり、エンジン回転数 Neが Nrmin (例えば 750 rpm)から Nrmax (例えば 2000rpm)まで変化すると、原動機 4の出し得る最大出力 馬力 f (Ne)は最小値 Fmin力も最大値 Fmaxまで変化する。これは、原動機 4に固有 な特性線図である。関数 f2 (Ne)は、 0≤Neく Nrminの範囲において、原動機 4の 最大出力馬力 f (Ne)を f2=Fminの一定値としたものであり、関数 f3 (Ne)は、 Nrma x<Ne≤ Nemaxの範囲にお!、て、原動機 4の最大出力馬力 f (Ne)を f 3 = Fmaxの 一定値としたものである。  [0050] The function f (Ne) is the maximum output horsepower that can be generated by the prime mover 4, and is a synthesis of the function fl (Ne), the function f2 (Ne), and the function f3 (Ne). The function f 1 (Ne) corresponds to the function fr = f (Nr) of the target speed Nr of the prime mover 4 and the output horsepower, and the engine speed Ne is changed from Nrmin (for example, 750 rpm) to Nrmax (for example, 2000 rpm). The maximum output horsepower f (Ne) that the prime mover 4 can output changes to the minimum value Fmin force to the maximum value Fmax. This is a characteristic diagram unique to the prime mover 4. The function f2 (Ne) is the constant of f2 = Fmin with the maximum output horsepower f (Ne) of the prime mover 4 in the range of 0≤Ne Nrmin, and the function f3 (Ne) is Nrma x <Ne Within the range of ≤ Nemax! The maximum output horsepower f (Ne) of prime mover 4 is a constant value of f 3 = Fmax.
[0051] 原動機 4は、交流発電機 5の他にもその他の原動機負荷 18を駆動している。その 他の原動機負荷 18は、ダンプトラックのベッセルを上下させたり、ステアリング操作す るための油圧系を駆動するための油圧ポンプ 18aや、ラジェータに送風するための 図示しない冷却ファンや、交流発電機 5、グリッド抵抗 9、電動モータ 12R, 12L、制 御装置 3, 7などを冷却するための図示しない電動ファンを駆動するための図示しな い第 2の発電機などである。このその他の原動機負荷 18を駆動するために予め割り 当てた馬力の値が図 10の g (Ne)である。この馬力 g (Ne)はその他の原動機負荷 18 が実際に消費する馬力値に対して余裕を持って大きめに設定してある。本明細書中 では、この馬力を損失馬力という。 The prime mover 4 drives other prime mover loads 18 in addition to the AC generator 5. Other prime mover loads 18 include a hydraulic pump 18a for driving the hydraulic system for raising and lowering the vessel of the dump truck and steering operation, a cooling fan (not shown) for sending air to the radiator, and an AC generator 5, grid resistance 9, electric motor 12R, 12L, control A second generator (not shown) for driving an electric fan (not shown) for cooling the control devices 3, 7 and the like. The value of the horsepower assigned in advance to drive the other prime mover load 18 is g (Ne) in FIG. This horsepower g (Ne) is set to a large value with a margin with respect to the horsepower value actually consumed by the other motor load 18. In this specification, this horsepower is referred to as lost horsepower.
[0052] 損失馬力の関数 g (Ne)は、関数 (Ne)と同様、関数 gl (Ne)と関数 g2 (Ne)と関数 g3 (Ne)の合成である。関数 gl (Nr)は、エンジン回転数 Neが Nrmin (例えば 750r pm)から Nrmax (例えば 2000rpm)まで変化すると、損失馬力 gl (Ne)は最小値 G minから最大値 Gmaxまで変化する。関数 g2 (Ne)は、 0≤Neく Nrminの範囲にお いて、損失馬力 g (Ne)を g2 = Gminの一定値としたものであり、関数 g3 (Ne)は、 Nr maxく Ne≤ Nemaxの範囲にお!、て、損失馬力 g (Ne)を g3 = Gmaxの一定値とし たものである。 [0052] The loss horsepower function g (Ne) is a synthesis of the function gl (Ne), the function g2 (Ne), and the function g3 (Ne), like the function (Ne). In the function gl (Nr), when the engine speed Ne changes from Nrmin (for example, 750 rpm) to Nrmax (for example, 2000 rpm), the loss horsepower gl (Ne) changes from the minimum value Gmin to the maximum value Gmax. The function g2 (Ne) is obtained by setting the loss horsepower g (Ne) to a constant value of g2 = Gmin in the range of 0≤Ne and Nrmin, and the function g3 (Ne) is Nr max and Ne≤ Nemax. In this range, the loss horsepower g (Ne) is a constant value of g3 = Gmax.
[0053] 図 10にお!/、て、 f (Ne)と g (Ne)との差分(f (Ne)— g (Ne) )である Mrが電動モータ 12R, 12Lに与えてよい合計の有効最大馬力となる。換言すれば、 Mr = f (Ne)— g ( Ne)は、原動機 4が出し得る最大出力馬力 f (Ne)のうち走行用の電動モータ 12R, 1 2Lで使用可能な最大馬力(馬力の割当値)であり、電動モータ 12R, 12Lの最大出 力馬力はその値、つまり Mr = f (Ne)— g (Ne)を超えることはできない。  [0053] In FIG. 10,! / Is the difference between f (Ne) and g (Ne) (f (Ne)-g (Ne)), and Mr is the total that Mr can give to the electric motors 12R and 12L. Effective maximum horsepower. In other words, Mr = f (Ne) —g (Ne) is the maximum horsepower (horsepower allocation) that can be used by the electric motors 12R, 12L for traveling out of the maximum output horsepower f (Ne) that the prime mover 4 can produce. Value), and the maximum output horsepower of the electric motors 12R, 12L cannot exceed that value, ie Mr = f (Ne)-g (Ne).
[0054] モータ最大出力馬力の関数 Mr (Ne)は以上のような考えに基づいて設定されてお り、電動モータ 12R, 12Lの 1台当たりの出力馬力上限値 Pmaxは下記の式により与 えられる。  [0054] The function Mr (Ne) of the motor maximum output horsepower is set based on the above concept, and the output horsepower upper limit value Pmax per electric motor 12R, 12L is given by the following equation. It is done.
[0055] Pmax = Mr/2 = (f (Ne) -g (Ne) ) /2  [0055] Pmax = Mr / 2 = (f (Ne) -g (Ne)) / 2
手順 112では、手順 101で読み込んだアクセル操作量 pを、図 11に示す前進時の 第 1モータ目標出力馬力の関数 Pml (p)で表されるアクセル操作量対モータ目標出 力馬力のデータマップに参照して、対応する第 1モータ目標出力馬力 Pmlを算出す る(図 2のブロック 213)。  In step 112, the accelerator operation amount p read in step 101 is the data map of accelerator operation amount vs. motor target output horsepower represented by the function Pml (p) of the first motor target output horsepower during forward movement shown in FIG. Then, the corresponding first motor target output horsepower Pml is calculated (block 213 in FIG. 2).
[0056] 図 11において、関数 Pml (p)は、アクセル操作量 p = 0では第 1モータ目標出力馬 力 Pml = 0で、少し踏み込んだ状態、すなわち図 11中の XI点から Pmlが増加し、 X2点付近力 Pmlの増加の比率を上げて、アクセル操作量が最大値 pmaxより手 前の X3点で、電動モータ 12R, 12Lで発生可能な最大馬力 Pmlmaxとなるように設 定されている。図 11の X3点におけるアクセル操作量 px3は例えば最大操作量 pma Xの 95%程度である。 [0056] In FIG. 11, the function Pml (p) is the first motor target output horsepower Pml = 0 when the accelerator operation amount p = 0, and Pml increases from the point XI in FIG. Increase the rate of increase in the force Pml near the point X2, so that the accelerator operation amount is less than the maximum value pmax. The maximum horsepower Pmlmax that can be generated by the electric motors 12R and 12L is set at the previous X3 point. The accelerator operation amount px3 at point X3 in Fig. 11 is about 95% of the maximum operation amount pma X, for example.
[0057] 手順 113では、手順 101で読み込んだアクセル操作量 pを、後進時の第 2モータ目 標出力馬力の関数 Pm2 (p)で表されるアクセル操作量対モータ目標出力馬力のデ ータマップに参照して、対応する第 2モータ目標出力馬力 Pm2を算出する(図 2のブ ロック 214)。  [0057] In step 113, the accelerator operation amount p read in step 101 is converted into a data map of the accelerator operation amount versus the motor target output horsepower represented by the function Pm2 (p) of the second motor target output horsepower during reverse travel. Referring to FIG. 2, the corresponding second motor target output horsepower Pm2 is calculated (block 214 in FIG. 2).
[0058] 図 12において、関数 Pm2 (p)は、アクセル操作量 pが増加するに従い第 2モータ目 標出力馬力 Pm2が増加する力 第 2モータ目標出力馬力の最大値 Pm2maxは前進 用の関数 Pml (p)における最大値 Pmlmaxより小さい値となるように設定されている 。なお、前進用の関数 Pml (p)で求めたモータ目標出力馬力に 1より小さい正の定 数を乗じて後進用のモータ目標出力馬力を求めてもよい。  [0058] In FIG. 12, the function Pm2 (p) is the force that the second motor target output horsepower Pm2 increases as the accelerator operation amount p increases. The maximum value of the second motor target output horsepower Pm2max is the forward function Pml. The maximum value in (p) is set to be smaller than Pmlmax. The reverse motor target output horsepower may be obtained by multiplying the motor target output horsepower obtained by the forward function Pml (p) by a positive constant smaller than 1.
[0059] 手順 114〜117では、手順 101で読み込んだシフトレバー 16の状態量 Sが N (中 立)であれば、電動モータ 12R, 12Lの目標馬力(以下モータ目標出力馬力という) P mOを PmO = 0と置き、シフトレバー 16の状態量 Sが F (前進)であれば、電動モータ 1 2R, 12Lの目標馬力(以下モータ目標出力馬力という) PmOを PmO = Pmlと置き、 シフトレバー 16の状態量 Sが R (後進)であれば、モータ目標出力馬力 PmOを PmO = Pm2と置く(図 2のブロック 215, 216)。  [0059] In steps 114 to 117, if the state quantity S of the shift lever 16 read in step 101 is N (neutral), the target horsepower (hereinafter referred to as the motor target output horsepower) P mO of the electric motors 12R and 12L is calculated. If PmO = 0 and the state quantity S of the shift lever 16 is F (forward), the target horsepower of the electric motor 1 2R, 12L (hereinafter referred to as the motor target output horsepower) PmO is set as PmO = Pml, and the shift lever 16 If the state quantity S is R (reverse), the motor target output horsepower PmO is set as PmO = Pm2 (blocks 215 and 216 in FIG. 2).
[0060] 手順 118では、そのモータ出力馬力上限値 Pmaxとモータ目標出力馬力 PmOとの 小さい方の値を選択し、モータ出力目標馬力 Pmとする(図 4のブロック 217)。  In step 118, the smaller value of the motor output horsepower upper limit value Pmax and the motor target output horsepower PmO is selected as the motor output target horsepower Pm (block 217 in FIG. 4).
[0061] Pm=min (Pmax, PmO)  [0061] Pm = min (Pmax, PmO)
つまり、手順 118 (図 4のブロック 217)では、電動モータ 12R, 12Lに与えられる最 終的なモータ出力目標馬力 Pm力Pmax以上にならないように制限する。このモータ 出力目標馬力 Pmは、図 1に示した指令馬力 MR, MLに対応する(MR=ML = Pm That is, in step 118 (block 217 in FIG. 4), the final motor output target horsepower Pm force Pmax given to the electric motors 12R and 12L is limited so as not to exceed. This motor output target horsepower Pm corresponds to the command horsepower MR, ML shown in Fig. 1 (MR = ML = Pm
) o ) o
[0062] 手順 121では、モータ出力目標馬力 Pmと手順 101で読み込んだ各電動モータ 12 R, 12Lの回転数 coR, co Lとから下記の式によりモータ目標トルク TrlR, TrlLを計 算する(図 4のブロック 221, 222)。 [0063] TrlR=Kl X PmZ oR [0062] In step 121, the motor target torques TrlR and TrlL are calculated from the motor output target horsepower Pm and the rotational speeds coR and coL of the electric motors 12 R and 12L read in step 101 by the following formula (Fig. 4 blocks 221, 222). [0063] TrlR = Kl X PmZ oR
TrlL=Kl X Pm/ co L  TrlL = Kl X Pm / co L
Kl :馬力と回転数からトルクを算出するための定数。  Kl: Constant for calculating torque from horsepower and rotation speed.
[0064] 図 13は、モータ出力目標馬力 Pmと電動モータ 12R, 12Lの回転速度 coR, co Lと モータ目標トルク TrlR, TrlLとの関係を示す図である。モータ出力目標馬力 Pmが 決まると、そのときのモータ回転速度 coR, co Lに応じたモータ目標トルク TrlR, Trl Lが定まる。例えば、モータ回転速度 coR, co Lが ω 1であるとき、モータ目標トルクは TrlR=Pm ( co l) , TrlL = Pm ( ω 1)となる。また、例えばダンプトラックが坂道にさ し力かるなどして電動モータ 12R, 12Lの負荷トルクが増加し、モータ回転速度 coR, co Lが低下すると、それに応じてモータ目標トルク TrlR, TrlLが増加する。モータ 負荷トルクが減少した場合は、逆に、モータ目標トルク TrlR, TrlLを減少させる。一 方、モータ出力目標馬力 Pmが増加すれば、それに応じてモータ目標トルク TrlR, TrlLが増加し、そのときのモータ負荷トルクが一定であればモータ回転速度 coR, co Lが増加する。モータ出力目標馬力 Pmが減少した場合は、逆に、モータ負荷トル クが一定であればモータ回転速度 coR, co Lは減少する。  FIG. 13 is a diagram showing the relationship between the motor output target horsepower Pm, the rotational speeds coR and coL of the electric motors 12R and 12L, and the motor target torques TrlR and TrlL. When the motor output target horsepower Pm is determined, the motor target torques TrlR and Trl L corresponding to the motor rotational speeds coR and coL at that time are determined. For example, when the motor rotation speeds coR and co L are ω 1, the motor target torques are TrlR = Pm (co l) and TrlL = Pm (ω 1). Also, for example, when the load torque of the electric motors 12R, 12L increases due to the force of the dump truck hitting the slope, and the motor rotation speed coR, co L decreases, the motor target torques TrlR, TrlL increase accordingly. . Conversely, when the motor load torque decreases, the motor target torque TrlR, TrlL is decreased. On the other hand, if the motor output target horsepower Pm increases, the motor target torques TrlR and TrlL increase accordingly. If the motor load torque at that time is constant, the motor rotational speeds coR and coL increase. Conversely, when the motor output target horsepower Pm decreases, the motor speed coR, coL decreases if the motor load torque is constant.
[0065] 手順 122では、手順 101で読み込んだ各電動モータ 12R, 12Lの回転数 coR, ω Lを、図 14に示すモータ最大トルクの関数 Trmaxl ( ω )で表されるモータ回転数対 モータ最大トルクのデータマップに参照して、対応するモータ最大トルク Trmaxlを 計算する(図 4のブロック 223, 224)。  [0065] In step 122, the rotation speed coR, ω L of each of the electric motors 12R, 12L read in step 101 is converted into the motor rotation speed vs. motor maximum represented by the function Trmaxl (ω) of the motor maximum torque shown in FIG. Referring to the torque data map, calculate the corresponding maximum motor torque Trmaxl (blocks 223, 224 in Fig. 4).
[0066] 図 14において、関数 Trmaxl ( co )は、インバータ 73R, 73Lが各電動モータ 12R , 12Lに流せる最大電流値、インバータ 73R, 73L内の IGBTや GTOなどの駆動素 子の出力限界、各モータ軸の強度など、駆動システムを構成する機器の仕様に基づ いて設定したものである。図 14に示すように、例えば、モータ回転速度 coR, co Lが ω 1であるとき、モータ最大トルク Trmaxlは Trmaxl ( ω 1)となる。モータ最大トルク Trmaxlの最大値は Trmaxである。  In FIG. 14, the function Trmaxl (co) is the maximum current value that the inverters 73R and 73L can flow to the electric motors 12R and 12L, the output limits of driving elements such as IGBTs and GTOs in the inverters 73R and 73L, This is set based on the specifications of the devices that make up the drive system, such as the strength of the motor shaft. As shown in FIG. 14, for example, when the motor rotational speeds coR and coL are ω 1, the motor maximum torque Trmaxl is Trmaxl (ω 1). The maximum value of the motor maximum torque Trmaxl is Trmax.
[0067] 手順 123では、手順 101で読み込んだアクセル操作量 pを、モータ加速トルクの関 数 Trmax2 (p)で表されるアクセル操作量対モータ加速トルクのデータマップに参照 して、対応するモータ加速トルク Trmax2を計算する(図 4のブロック 225)。 [0068] 関数 Trmax2 (p)は加速トルク制限値特性であり、図 15にお 、て、関数 Trmax2 (p )は、アクセルペダル 1の操作量 pが無操作の 0のときは、モータ加速トルク Trmax2 は微速走行に適したトルク範囲の低めのトルク、好ましくは最小トルク Trmax2aであ り、アクセルペダルの操作量 pが 0から中間操作量 pc 1までの微操作領域を含む範囲 にあるときは、アクセル操作量 pが増加するにしたがってモータ加速トルク Trmax2は 最小トルク Trmax2aから微速走行に適したトルク範囲の高めのトルク Trmax2bまで 増加し、アクセル操作量 pが中間操作量 pelカゝら最大操作量 pmaxの手前の操作量 pc2までの範囲にあるときは、アクセル操作量 pが増加するにしたがってモータ加速ト ルク Trmax2はトルク Trmax2bから図 14に示したモータ最大トルク Trmaxlの最大 値である最大トルク Trmaxまで、操作量 0〜pclの範囲よりも高い割合で増加し、ァク セル操作量 Pが pc2を超えるとモータ加速トルク Trmax2は最大値 Trmaxで一定とな るように設定されている。微速走行に適したトルク範囲は図 14に示したモータ最大ト ルク Trmaxlの最大値 Trmax (モータ許容最大トルク)の 15%〜50%程度であると 考えられており、その最小トルク Trmax2aは、好ましくは、最大値 Trmaxの 15%〜3 0%であり、図示の例では 20%である。微速走行に適したトルク範囲の高めのトルク T rmax2bは、好ましくは、最大値 Trmaxの 30%〜50%であり、図示の例では 40%で ある。 [0067] In step 123, the accelerator operation amount p read in step 101 is referred to the accelerator operation amount vs. motor acceleration torque data map represented by the motor acceleration torque function Trmax2 (p), and the corresponding motor Calculate the acceleration torque Trmax2 (block 225 in Fig. 4). [0068] The function Trmax2 (p) is the acceleration torque limit value characteristic. In FIG. 15, the function Trmax2 (p) is the motor acceleration torque when the operation amount p of the accelerator pedal 1 is 0 (no operation). Trmax2 is a lower torque in the torque range suitable for slow speed driving, preferably the minimum torque Trmax2a, and when the accelerator pedal operation amount p is in the range including the fine operation range from 0 to the intermediate operation amount pc 1, As the accelerator operation amount p increases, the motor acceleration torque Trmax2 increases from the minimum torque Trmax2a to a higher torque range Trmax2b suitable for slow speed operation, and the accelerator operation amount p becomes the maximum operation amount pmax from the intermediate operation amount pel. When the accelerator operation amount p increases, the motor acceleration torque Trmax2 increases from the torque Trmax2b to the maximum torque that is the maximum motor maximum torque Trmaxl shown in Fig. 14. Until Trmax, increased at a rate higher than the range of operation amount 0~Pcl, § click cell operation amount P is the motor acceleration torque Trmax2 exceeds pc2 is set to so that constant and a maximum value Trmax. The torque range suitable for low-speed driving is considered to be about 15% to 50% of the maximum value Trmax (maximum allowable motor torque) Trmaxl shown in Fig. 14. The minimum torque Trmax2a is preferably Is 15% to 30% of the maximum value Trmax, and is 20% in the illustrated example. The higher torque T rmax2b in the torque range suitable for slow speed traveling is preferably 30% to 50% of the maximum value Trmax, and 40% in the illustrated example.
[0069] 中間操作量 pelは、好ましくは、最大操作量 pmaxの 40%〜60%であり、図示の 例では 50%である。モータ加速トルク Trmax2が最大になる操作量 pc2は、好ましく は、最大操作量 pmaxの 70%〜95%であり、図示の例では 80%である。  [0069] The intermediate manipulated variable pel is preferably 40% to 60% of the maximum manipulated variable pmax, and is 50% in the illustrated example. The operation amount pc2 at which the motor acceleration torque Trmax2 is maximized is preferably 70% to 95% of the maximum operation amount pmax, and is 80% in the illustrated example.
[0070] 手順 124では、手順 121で求めたモータ目標トルク TrlR, TrlLと、手順 122で求 めたモータ最大トルク Trmaxlと、手順 123で求めたモータ加速トルク Trmax2との 比較を行い、それらの最小値を選択し、モータトルク指令値 TrR, TrLとする(図 4の ブロック 226, 227)。すなわち、 [0070] In step 124, the motor target torques TrlR and TrlL obtained in step 121 are compared with the motor maximum torque Trmaxl obtained in step 122 and the motor acceleration torque Trmax2 obtained in step 123. Select a value and use it as motor torque command values TrR and TrL (blocks 226 and 227 in Fig. 4). That is,
TrR = mm (Tr 1R, Trmaxl, Trmax2)  TrR = mm (Tr 1R, Trmaxl, Trmax2)
TrL = min (Tr 1 L , Trmaxl, Trmax2)  TrL = min (Tr 1 L, Trmaxl, Trmax2)
手順 125では、手順 105又は 106で求めたエンジン目標回転数 Nrを原動機 4の電 子ガバナ 4aに指令する。 [0071] 手順 126では、インバータ制御装置 7内のモータ制御演算部 72R, 72Lによって手 順 123で求めたモータトルク指令値 TrR, TrLをインバータ 73R, 73Lに指令し、各 電動モータ 12R, 12Lのトルク制御がなされる。 In Step 125, the engine target speed Nr obtained in Step 105 or 106 is commanded to the electronic governor 4a of the prime mover 4. In step 126, the motor torque command values TrR and TrL obtained in step 123 by the motor control arithmetic units 72R and 72L in the inverter controller 7 are commanded to the inverters 73R and 73L, and the electric motors 12R and 12L Torque control is performed.
[0072] 手順 101〜118 (図 4のブロック 201〜217)の処理、手順 123の処理(図 3のブロッ ク 225)、及び手順 125の処理は全体制御装置 3により行われる処理であり、手順 12 1, 122, 124 (図 4のブロック 221〜224、ブロック 226, 227)及び手順 126の処理 はインバータ制御装置 7のトルク指令演算部 71R, 71Lにより行われる処理である。  [0072] The processing in steps 101 to 118 (blocks 201 to 217 in FIG. 4), the processing in step 123 (block 225 in FIG. 3), and the processing in step 125 are performed by the overall control device 3. The processes of 12 1, 122, 124 (blocks 221 to 224, blocks 226, 227 in FIG. 4) and step 126 are processes performed by the torque command calculation units 71R, 71L of the inverter control device 7.
[0073] 以上において、手順112〜117 (ブロック213〜216)の処理は、アクセルペダル 1 の操作量に応じたモータ目標出力馬力 PmOを計算するモータ目標出力馬力計算手 段を構成し、手順 121 (ブロック 221, 222)の処理は、モータ目標出力馬力 PmOと電 動モータ 12R, 12Lの回転数 coR, co Lとに基づいてモータ目標トルク TrlR, TrlL を計算するモータ目標トルク計算手段を構成し、手順 123 (ブロック 225)の処理は、 アクセルペダル 1の操作量に応じた電動モータ 12R, 12Lの加速トルク制限値(モー タ加速トルク Trmax2)を計算する加速トルク制限値計算手段を構成し、手順 124 (ブ ロック 226, 227)の処理は、前記加速トルク制限値(モータ加速トルク Trmax2)が前 記モータ目標トルク TrlR, TrlLよりも大きいときは、前記モータ目標トルクをモータト ルク指令値 TrR, TrLとして選択し、前記加速トルク制限値 (モータ加速トルク Trmax 2)が前記モータ目標トルク TrlR, TrlLよりも小さくなると前記加速トルク制限値をモ 一タトルク指令値 TrR, TrLとして選択するモータトルク指令値決定手段を構成し、手 順 126の処理と、インバータ制御装置 7のトルク指令演算部 71R, 71L及びモータ制 御演算部 72R, 72Lは、前記モータトルク指令値 TrR, TrLに基づいてインバータ 7 3R, 73Lを制御するインバータ制御手段を構成する。 In the above, the processing of steps 112 to 117 (blocks 213 to 216) constitutes a motor target output horsepower calculation means for calculating the motor target output horsepower PmO corresponding to the operation amount of the accelerator pedal 1, and the procedure 121 The processing of (blocks 221, 222) constitutes motor target torque calculation means for calculating the motor target torque TrlR, TrlL based on the motor target output horsepower PmO and the rotational speeds coR, coL of the electric motors 12R, 12L. The process of step 123 (block 225) constitutes an acceleration torque limit value calculation means for calculating the acceleration torque limit value (motor acceleration torque Trm ax 2) of the electric motors 12R and 12L according to the operation amount of the accelerator pedal 1. If the acceleration torque limit value (motor acceleration torque Trmax2) is greater than the motor target torques TrlR and TrlL, the process of step 124 (blocks 226 and 227) is performed using the motor target torque as the motor torque command value. Selected as TrR, TrL When the acceleration torque limit value (motor acceleration torque Trmax 2) becomes smaller than the motor target torque TrlR, TrlL, the motor torque command value determining means selects the acceleration torque limit value as the motor torque command values TrR, TrL. The torque command calculation units 71R and 71L and the motor control calculation units 72R and 72L of the inverter control device 7 are based on the motor torque command values TrR and TrL. Inverter control means for controlling is configured.
[0074] 前記加速トルク制限値計算手段 (手順 123,ブロック 225)は、前記加速トルク制限 値としてアクセルペダル 1の操作量に応じたモータ加速トルク Trmax2を計算し、前 記モータトルク指令値決定手段(手順 124,ブロック 226, 227)は、モータ目標トルク TrlR, TrlLとモータ加速トルク Trmax2と電動モータ 12R, 12Lの回転数に応じて 予め設定されたモータ許容最大トルク Trmaxとを比較して、それらの最小値を選択 する。 [0075] また、手順 111 (ブロック 211, 212)の処理は、原動機 4の回転数に応じて電動モ ータ 12R, 12Lで使用可能な最大馬力 Pmaxを計算する最大馬力計算手段を構成 し、手順 118 (ブロック 217)の処理は、前記モータ目標出力馬力計算手段 (手順 11 2〜117、ブロック 213〜216)により計算したモータ目標出力馬力 PmOが最大馬力 Pmaxを超えないように制限するモータ出力馬力制限手段を構成し、前記モータ目 標トルク計算手段 (手順 121、ブロック 221, 222)は、そのモータ出力馬力制限手段 力ものモータ目標出力馬力 Pmと電動モータ 12R, 12Lの回転数 coR, co Lと力らモ ータ目標トルク TrlR, TrlLを計算する。 [0074] The acceleration torque limit value calculating means (procedure 123, block 225) calculates the motor acceleration torque Trmax2 corresponding to the operation amount of the accelerator pedal 1 as the acceleration torque limit value, and the motor torque command value determining means (Procedure 124, Block 226, 227) compares the motor target torque TrlR, TrlL, the motor acceleration torque Trmax2, and the motor allowable maximum torque Trmax set in advance according to the rotation speed of the electric motors 12R, 12L. Select the minimum value of. [0075] Further, the processing of step 111 (blocks 211 and 212) constitutes a maximum horsepower calculating means for calculating the maximum horsepower Pmax that can be used by the electric motors 12R and 12L according to the rotational speed of the prime mover 4. The process of step 118 (block 217) is a motor output that limits the motor target output horsepower PmO calculated by the motor target output horsepower calculating means (steps 11 to 117, blocks 213 to 216) so as not to exceed the maximum horsepower Pmax. The motor target torque calculating means (procedure 121, blocks 221, 222) is composed of the motor output horsepower limiting means, the motor target output horsepower Pm and the rotational speeds of the electric motors 12R, 12L coR, co Calculate motor target torque TrlR, TrlL from L and force.
[0076] 次に、本実施の形態の動作を説明する。  Next, the operation of the present embodiment will be described.
[0077] 1.非走行時  [0077] 1. When not driving
非走行時は、シフトレバー 16を N (中立)位置にする。シフトレバー 16を N (中立)位 置にしたとき、電動モータ 12R, 12Lの目標馬力 PmOは PmO = 0であり、モータ駆動 は行われない。  When not driving, set the shift lever 16 to the N (neutral) position. When the shift lever 16 is in the N (neutral) position, the target horsepower PmO of the electric motors 12R and 12L is PmO = 0, and the motor is not driven.
[0078] 原動機側では、図 5に示した非走行時の第 1目標回転数の関数 Nrl (p)のデータ マップが選択され、関数 Nrl (p)による第 1目標回転数 Nrlが原動機 4の目標回転数 Nrとして与えられる。このためアクセルペダル 1を踏み込まない無操作時は、原動機 4の目標回転数 Nrはアイドル回転数の 750rpとなり、燃料消費量を最少限に止めて 燃費を低減することができる。また、アクセルペダル 1を踏み込みと、その踏み込み量 に応じて原動機 4の目標回転数 Nrは 750rpmから定格回転数の 1900rpmまで増加 し、原動機 4の回転数が最小から最大までの広い範囲で変化するため、ベッセル上 げのようにダンプトラックを停止させて油圧系のみを操作して作業を行うときは、原動 機 4を安定に作動させかつ油圧ポンプ 18aの最大流量を確保し、広 、範囲で作業速 度を調整することができる。  [0078] On the prime mover side, the data map of the function Nrl (p) of the first target rotational speed at non-travel shown in FIG. 5 is selected, and the first target rotational speed Nrl by the function Nrl (p) is It is given as the target speed Nr. For this reason, when the accelerator pedal 1 is not depressed, the target speed Nr of the prime mover 4 is 750 rp, which is the idling speed, and fuel consumption can be minimized and fuel consumption can be reduced. When the accelerator pedal 1 is depressed, the target speed Nr of the prime mover 4 increases from 750 rpm to the rated speed of 1900 rpm according to the depression amount, and the rotational speed of the prime mover 4 varies in a wide range from the minimum to the maximum. Therefore, when the work is performed with the dump truck stopped and only the hydraulic system operated, such as on a vessel, the prime mover 4 is operated stably and the maximum flow rate of the hydraulic pump 18a is ensured. The working speed can be adjusted.
[0079] 2.通常走行時  [0079] 2. During normal driving
通常走行時は、シフトレバー 16を F (前進)位置とする。シフトレバー 16を F (前進) 位置にしたとき、電動モータ側では、手順 112により計算された図 11に示した前進時 の第 1モータ目標出力馬力の関数 Pml (p)のデータマップが選択され、関数 Pml (p )による第 1モータ目標出力馬力 Pmlがモータ目標出力馬力 PmOとして与えられる。 [0080] 原動機側では、図 6に示した走行時の第 2目標回転数の関数 Nr2 (p)のデータマツ プが選択され、関数 Nr2 (p)〖こよる第 2目標回転数 Nr2が原動機 4の目標回転数 Nr として与えられる。このためアクセルペダル 1を踏み込まない無操作時は、原動機 4の 目標回転数 Nrはアイドル回転数の 750rpとなり、燃料消費量を最少限に止めて燃費 を低減することができる。また、走行始動時に、アクセルペダル 1を少しでも踏み込む と、原動機 4の目標回転数 Nrは直ちに中速回転数の 1300rpmまで増加し、その後 、アクセルペダルの踏み込み量に応じて原動機 4の目標回転数 Nrは 1300rpmから 最大回転数 (定格回転数)の 1900rpmまで増加する。これにより原動機 4の回転数 は中速回転数カゝら最大回転数まで応答良く変化するため、アクセルペダル 1を踏み 込んだときの応答性が良くなり、良好な加速性を得ることができる。 During normal driving, shift lever 16 is in the F (forward) position. When the shift lever 16 is set to the F (forward) position, the data map of the function Pml (p) of the first motor target output horsepower at the time of forward movement shown in FIG. The first motor target output horsepower Pml by the function Pml (p) is given as the motor target output horsepower PmO. [0080] On the prime mover side, the data map of the function Nr2 (p) of the second target rotational speed at the time of traveling shown in FIG. 6 is selected, and the second target rotational speed Nr2 by the function Nr2 (p) It is given as a target speed Nr of 4. For this reason, when the accelerator pedal 1 is not depressed, the target speed Nr of the prime mover 4 is set to the idle speed 750 rp, and the fuel consumption can be minimized and the fuel consumption can be reduced. In addition, if the accelerator pedal 1 is depressed even slightly at the start of driving, the target rotational speed Nr of the prime mover 4 immediately increases to the medium speed rotational speed of 1300 rpm, and then the target rotational speed of the prime mover 4 according to the depression amount of the accelerator pedal. Nr increases from 1300rpm to the maximum speed (rated speed) of 1900rpm. As a result, the rotational speed of the prime mover 4 changes with high response from the medium speed rotational speed to the maximum rotational speed, so that the responsiveness when the accelerator pedal 1 is depressed is improved, and good acceleration performance can be obtained.
[0081] また、図 7のように、関数 Nr2 (p)の最大回転数を定格回転数の 1900rpmより低め の例えば 1800rpmに設定した場合は、原動機 4の出力馬力は少し落ち走行速度は 少し下がるが、走行時の燃料消費量を減らことができる。鉱山の道路の条件で、べッ セルに土砂や採鉱対象物を積載して登り道路を走行する場合、その傾斜が小さく 5 〜7%位しかないというケースも多い。このような場合には、ユーザによっては、走行 速度は少し落ちても燃料消費量が減少する方が良いという要求もある。最大回転数 を定格回転数より低めの回転数に設定することにより、このようなユーザの要求に応 えることができる。  [0081] Also, as shown in Fig. 7, when the maximum speed of the function Nr2 (p) is set to 1800rpm, which is lower than the rated speed of 1900rpm, for example, the output horsepower of the prime mover 4 falls slightly and the running speed drops slightly. However, fuel consumption during running can be reduced. There are many cases where the slope is small and only 5 to 7% when traveling on an uphill road with sediment and mining objects loaded on the vessel under conditions of the mine road. In such a case, some users demand that it is better to reduce the fuel consumption even if the traveling speed drops slightly. By setting the maximum speed to a speed lower than the rated speed, it is possible to meet such user requirements.
[0082] 図 8のように、アクセルペダル 1の操作量が 0のときに第 2目標回転数 Nrが直ちにァ ィドル回転数より高い中速回転数 Nr2midとなるように設定した場合は、アクセルぺ ダルが無操作であっても原動機 4は中速回転数 Nr2midで制御されるため図 6例に 比べて燃料消費量は増加する。しかし、この場合は、アクセルペダル 1を踏み込んだ ときの応答性は更に良好となり、走行時の加速性を更に高める効果が得られる。  [0082] As shown in FIG. 8, when the operation amount of the accelerator pedal 1 is 0, the second target rotational speed Nr is immediately set to a medium speed rotational speed Nr2mid higher than the idle rotational speed. Even if the dull is not operated, the prime mover 4 is controlled by the medium speed Nr2mid, so the fuel consumption increases compared to the example in Fig. 6. However, in this case, the response when the accelerator pedal 1 is depressed is further improved, and the effect of further improving the acceleration performance during driving can be obtained.
[0083] また、電動モータ側では、アクセルペダル 1を最大付近まで踏み込んだときは、手 順 123にお!/、て、図 15に示したモータ加速トルクの関数 Trmax2 (p)のデータマップ からモータ加速トルク Trmax2としてモータ最大トルク Trmaxlの最大値 Trmaxが求 められるため、電動モータ 12R, 12Lの制御(走行制御)に対してモータ加速トルク T rmax2は制限とはならない。このため手順 112により計算された第 1モータ目標出力 馬力 Pml (モータ目標出力馬力 PmO)に基づいて電動モータ 12R, 12Lは制御され るため、アクセルペダル 1の操作量と電動モータ 12R, 12Lの出力馬力との関係が一 致した良好な操作感覚が得られる。 [0083] On the electric motor side, when accelerator pedal 1 is depressed to the maximum, step 123! /, From the data map of motor acceleration torque function Trmax2 (p) shown in FIG. Since the maximum value Trmax of the maximum motor torque Trmaxl is obtained as the motor acceleration torque Trmax2, the motor acceleration torque Trmax2 is not a limitation for the control (running control) of the electric motors 12R and 12L. Therefore, the first motor target output calculated by step 112 is used. Since the electric motors 12R and 12L are controlled based on the horsepower Pml (motor target output horsepower PmO), there is a good operational feeling in which the relationship between the operation amount of the accelerator pedal 1 and the output horsepower of the electric motors 12R and 12L is consistent. can get.
[0084] 更に、電動モータ側では、手順 111において、原動機 4の回転数に応じた電動モ ータ 12R, 12Lで使用可能な最大馬力 Pmaxを計算し、手順 118において、モータ 目標出力馬力 PmOがその最大馬力 Pmaxを超えないように制限するため、走行起動 時の加速時に、原動機 4の回転数が十分に上がりきらず、モータ目標出力馬力 PmO が最大馬力 Pmaxを超えるような場合でも、モータ目標出力馬力 PmOはその最大馬 力 Pmaxに制限されるため、原動機 4のストールを防止することができる。  [0084] Further, on the electric motor side, in step 111, the maximum horsepower Pmax that can be used in the electric motors 12R and 12L according to the rotational speed of the prime mover 4 is calculated. In step 118, the motor target output horsepower PmO is calculated. In order to limit the maximum horsepower Pmax so that it does not exceed the maximum horsepower Pmax, the motor target output can be increased even when the motor 4 output speed is not sufficiently increased and the motor target output horsepower PmO exceeds the maximum horsepower Pmax. Since the horsepower PmO is limited to its maximum horsepower Pmax, the stall of the prime mover 4 can be prevented.
[0085] 3.微速走行時  [0085] 3. At low speed
微速走行時は、シフトレバー 16を F (前進)位置とし、アクセルペダル 1を少しだけ踏 み込む。このとき、電動モータ側では、図 11に示した前進時の第 1モータ目標出力 馬力の関数 Pml (p)による第 1モータ目標出力馬力 Pmlがモータ目標出力馬力 P mOとして求められ、原動機側では、図 6に示した非走行時の第 1目標回転数の関数 Nrl (p)による第 1目標回転数 Nrlが原動機 4の目標回転数 Nrとして求められるの は、通常走行時と同じである。  When driving at a slow speed, set the shift lever 16 to the F (forward) position and depress the accelerator pedal 1 slightly. At this time, on the electric motor side, the first motor target output horsepower Pml is obtained as the motor target output horsepower PmO by the function Pml (p) of the first motor target output horsepower at the time of forward movement shown in FIG. The first target rotational speed Nrl obtained from the function Nrl (p) of the first target rotational speed during non-travel shown in FIG. 6 is obtained as the target rotational speed Nr of the prime mover 4 in the same manner as during normal travel.
[0086] また、電動モータ側にお!、て、アクセルペダル 1を少しだけ踏み込んだときは、その 踏み込み量が例えば 0から 50%程度であるとすると、図 15に示したモータ加速トルク の関数 Trmax2 (p)において、モータ加速トルク Trmax2としてモータ最大トルク Trm axlの最大値 Trmaxの 20〜40%の値が求められ、 目標トルク TrlR, TrlLと、モー タ最大トルク Trmaxlと、モータ加速トルク Trmax2の最小値を選択する手順 124で は、モータトルク指令値 TrR, TrLとしてモータ加速トルク Trmax2が選択される。こ のためアクセルペダル 1を微操作したときの走行トルク及びトルク変化が小さく押さえ られるため、微速走行時は良好な制御性が得られ、微妙な位置決めを容易に行うこ とがでさる。  [0086] Further, when the accelerator pedal 1 is slightly depressed on the electric motor side, if the depression amount is, for example, about 0 to 50%, the function of the motor acceleration torque shown in FIG. In Trmax2 (p), 20 to 40% of the maximum value Trmax of the maximum motor torque Trm axl is obtained as the motor acceleration torque Trmax2, and the target torque TrlR, TrlL, the maximum motor torque Trmaxl, and the maximum motor torque Trmax2 In step 124 for selecting the minimum value, the motor acceleration torque Trmax2 is selected as the motor torque command values TrR and TrL. For this reason, since the running torque and torque change when the accelerator pedal 1 is finely operated are suppressed, good controllability can be obtained during slow speed running, and delicate positioning can be easily performed.
[0087] 図 16は、手順 124 (ブロック 226, 227)におけるモータ目標トルク TrlR, TrlLとモ ータ加速トルク Trmax2との最小値の選択結果を示す図である。図中、 A, B, C, D , Eは、それぞれ、図 11及び図 15の A, B, C, D, Eの各点に対応している。 [0088] アクセル操作量が図 11の A, B, C, D, Eの各点にあるとき、手順 121 (ブロック 22 1, 222)では、図 11の A, B, C, D, Eの各点に対応する第 1モータ目標出力馬力と 第 1モータ目標出力馬力の関数 Pml (p)とから図 16の実線と破線の双曲線で示さ れるモータ目標トルク TrlRA, TrlLA〜TrlRE, TrlLE (以下 TrlA〜TrlEと略 す)が計算される。また、アクセル操作量が図 15の A, B, C, D, Eの各点にあるとき、 手順 123 (ブロック 225)では、モータ加速トルクの関数 Trmax2 (p)力も図 16の実線 の直線で示されるモータ加速トルク Trmax2A〜Trmax2Eが計算される。手順 124 ( ブロック 226, 227)では、それらの値の小さい方が選択され、モータトルク指令値 Tr R, TrLは図 16に実線で示されるような値となる。 FIG. 16 is a diagram showing a selection result of the minimum values of the motor target torques TrlR and TrlL and the motor acceleration torque Trmax2 in the procedure 124 (blocks 226 and 227). In the figure, A, B, C, D, and E correspond to points A, B, C, D, and E in FIGS. 11 and 15, respectively. [0088] When the accelerator operation amount is at points A, B, C, D, and E in FIG. 11, in step 121 (blocks 22 and 222), the values of A, B, C, D, and E in FIG. The motor target torques TrlRA, TrlLA to TrlRE, TrlLE (hereinafter referred to as TrlA) shown by the solid and dashed hyperbolic curves in Fig. 16 from the function Pml (p) of the first motor target output horsepower and the first motor target output horsepower corresponding to each point ~ (Abbreviated as TrlE). In addition, when the accelerator operation amount is at points A, B, C, D, and E in Fig. 15, the function Trmax2 (p) force of the motor acceleration torque is also shown by the solid line in Fig. 16 in step 123 (block 225). The motor acceleration torques Trmax2A to Trmax2E shown are calculated. In step 124 (blocks 226, 227), the smaller one of these values is selected, and the motor torque command values Tr R, TrL become the values shown by the solid lines in FIG.
[0089] この図 16において、実線 A, B, Cで示されるモータトルク指令値は、アクセル操作 量 pが 50%以下にあるときのものであり、その最大値は、モータ加速トルク Trmax2A 〜Trmax2Cによりモータ最大トルク Trmaxlの最大値 Trmaxの 20%から 40%の範 囲の小さな値に押さえられている。また、アクセルペダル操作時のアクセル操作量の 変化に対するモータトルク指令値の変ィ匕も、例えば ΔΤΑΒ1と ΔΤΑΒ2との比較(Δ TAB1く ΔΤΑΒ2)、 ATBC1と ATBC2との比較( ATBC1く ATBC2)力ら分かる ように、モータ目標トルク TrlA〜TrlEのモータトルク指令値の変化量に比べて小さ く抑えられている。  In FIG. 16, the motor torque command values indicated by solid lines A, B, and C are those when the accelerator operation amount p is 50% or less, and the maximum values thereof are motor acceleration torques Trmax2A to Trmax2C. This keeps the motor maximum torque Trmaxl at a small value in the range of 20% to 40% of the maximum value Trmax. In addition, the change in the motor torque command value with respect to the change in the accelerator operation amount when the accelerator pedal is operated is also compared with, for example, ΔΤΑΒ1 and ΔΤΑΒ2 (ΔTAB1 and ΔΤΑΒ2), ATBC1 and ATBC2 (ATBC1 and ATBC2) As can be seen, the motor target torque TrlA to TrlE is reduced compared to the amount of change in the motor torque command value.
[0090] このようにアクセル操作量 pが 50%以下の範囲で、モータトルク指令値の最大値が 小さく抑えられ、かつアクセルペダル操作時のアクセル操作量の変化に対するモー タトルク指令値の変化が小さく押さえられることにより、アクセルペダル操作時の電動 モータ 12R, 12Lによる走行トルク及び走行トルク変化が小さくなり、走行速度の変化 も小さくなつて、微速走行時の制御性を高めることができる。  [0090] Thus, when the accelerator operation amount p is in the range of 50% or less, the maximum value of the motor torque command value is kept small, and the change of the motor torque command value with respect to the change of the accelerator operation amount when the accelerator pedal is operated is small. By being pressed down, the running torque and running torque change by the electric motors 12R and 12L when the accelerator pedal is operated are reduced, and the change in running speed is also reduced, so that the controllability during slow speed running can be improved.
[0091] 以上のように本実施の形態によれば、アクセルペダル 1の操作量が 0〜50%までは 電動モータ 12R, 12Lの駆動の最大トルクを 20〜40%に抑え、アクセルペダル 1の 操作量が 50%以上では最大トルクを上げて、 100%より手前で最大トルクの制限値 を 100%にすることにより、通常走行時はアクセルペダル 1の操作量と電動モータ 12 R, 12Lの出力馬力との関係が一致した良好な操作感覚が得られ、アクセルペダル 1 の操作量が小さ ヽときはトルク及びトルク変化を低く制限し、微速走行時に良好な制 御性が得られ、微妙な位置決めを容易に行うことができる。 [0091] As described above, according to the present embodiment, when the operation amount of the accelerator pedal 1 is 0 to 50%, the maximum torque for driving the electric motors 12R and 12L is suppressed to 20 to 40%. When the operation amount is 50% or more, the maximum torque is increased, and the limit value of the maximum torque is set to 100% before 100%, so that the operation amount of the accelerator pedal 1 and the output of the electric motors 12 R, 12L during normal driving A good sense of operation with the same relationship with horsepower is obtained, and when the amount of operation of the accelerator pedal 1 is small, the torque and torque change are limited to a low level, and good control is achieved at low speeds. Control can be obtained, and delicate positioning can be easily performed.
[0092] また、シフトレバー 15が N位置にあり、走行しないでベッセルを上下させる場合など 非走行時の油圧系の駆動時には、アクセルペダル 1の操作量に応じて例えば 750〜 1900rpmという目標回転数を与え、シフトレバー 16が F位置又は R位置にある走行 時は、アクセルペダル 1に応じて例えば 1300〜1900rpmの範囲で原動機 4の目標 回転数を与えるため、非走行時の油圧系の駆動時には、原動機を安定に作動させ かつ油圧ポンプの最大流量を確保し、広 、範囲で作業速度を調整することができ、 走行時には、アクセルペダルを踏み込んだときの応答性が良くなり、良好な加速性を 得ることができる。また、シフトレバー 16が F位置又は R位置にある走行時であっても 、アクセルペダル 1の非操作時は原動機 4の目標回転数は最小回転数となるため、 燃費を向上することができる。  [0092] When the shift lever 15 is at the N position and the vessel is moved up and down without traveling, such as when driving the hydraulic system during non-traveling, the target rotational speed is, for example, 750 to 1900 rpm depending on the amount of operation of the accelerator pedal 1 And when the shift lever 16 is in the F or R position, the target rotational speed of the prime mover 4 is given in the range of 1300 to 1900 rpm, for example, depending on the accelerator pedal 1. The engine can be operated stably and the maximum flow rate of the hydraulic pump can be secured, and the working speed can be adjusted over a wide range, and the responsiveness when the accelerator pedal is depressed during driving improves the acceleration. Can be obtained. Even when the shift lever 16 is traveling in the F position or the R position, when the accelerator pedal 1 is not operated, the target rotational speed of the prime mover 4 is the minimum rotational speed, so that fuel consumption can be improved.
[0093] 本発明の第 2の実施の形態を図 17〜図 19を用いて説明する。本実施の形態は、 アクセル操作量力 モータ加速トルクを求める代わりにモータトルク制限比率を求め るものである。  A second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, instead of obtaining the accelerator operation amount force motor acceleration torque, the motor torque limit ratio is obtained.
[0094] 図 17は、本実施の形態に係わる駆動システムの処理手順を示す、図 2と同様な機 能ブロック図である。図 18は、同処理手順をフローチャートで示す図であり、第 1の実 施の形態における図 4に対応するものである。  FIG. 17 is a functional block diagram similar to FIG. 2, showing the processing procedure of the drive system according to the present embodiment. FIG. 18 is a flowchart showing the processing procedure, and corresponds to FIG. 4 in the first embodiment.
[0095] 本実施の形態において、原動機側の制御の処理手順(図 3の手順 101〜106の処 理手順)及び電動モータ側のモータ最大トルク Tmaxlを算出するまでの処理手順 ( 図 3の手順 111〜図 4の手順 122までの処理手順)は、第 1の実施の形態と同じであ る。本実施の形態では、手順 122において、各電動モータ 12R, 12Lの回転数 coR, ω Lとモータ最大トルクの関数 Trmaxl ( ω )とからモータ最大トルク Trmaxlを計算し た後、手順 131において、アクセルペダル 1の操作量 pを、図 19に示すモータトルク 制限比率の関数 Kmax (p)で表されるアクセル操作量対モータトルク制限比率のデ ータマップに参照して、対応するモータトルク制限比率 Kmaxを計算する(図 17のブ ロック 225A)。  [0095] In the present embodiment, the control procedure on the prime mover side (procedures 101 to 106 in Fig. 3) and the procedure up to calculation of the motor maximum torque Tmaxl on the electric motor side (procedure in Fig. 3) The processing procedure from 111 to 122 in FIG. 4 is the same as that of the first embodiment. In the present embodiment, after calculating the motor maximum torque Trmaxl from the rotational speed coR, ωL of each electric motor 12R, 12L and the function Trmaxl (ω) of the motor maximum torque in step 122, in step 131, the accelerator With reference to the data map of the accelerator operation amount to motor torque limit ratio represented by the function Kmax (p) of the motor torque limit ratio shown in FIG. Calculate (Block 225A in Figure 17).
[0096] 図 19において、関数 Kmax(p)は、図 15に示したモータ加速トルクの関数の縦軸 を制限比率(100分率)に変え、その数値をモータ許容最大トルク Trmaxに対する割 合(%)に置き換えたものである。 [0096] In FIG. 19, the function Kmax (p) is obtained by changing the vertical axis of the motor acceleration torque function shown in FIG. 15 to a limit ratio (100 fraction), and dividing the value into the motor allowable maximum torque Trmax. (%).
[0097] 手順 132では、モータ最大トルク Trmaxlと手順 131において求めたモータトルク 制限比率 Kmaxとを乗算してモータ最大トルク Trmax2を算出する(図 17のブロック 231, 232)。  In step 132, motor maximum torque Trmax2 is calculated by multiplying motor maximum torque Trmaxl by motor torque limit ratio Kmax obtained in step 131 (blocks 231, 232 in FIG. 17).
[0098] 手順 133では、モータ目標トルク TrlR, TrlLと、手順 132において求めたモータ 最大トルク Trmax2との比較を行い、それらの最小値を選択し、モータトルク指令値 T rR, TrLとする(図 17のブロック 233, 234)。すなわち、  [0098] In step 133, the motor target torques TrlR and TrlL are compared with the maximum motor torque Trmax2 obtained in step 132, and the minimum value thereof is selected and set as the motor torque command values T rR and TrL (Fig. 17 blocks 233, 234). That is,
TrR = min (Tr 1R, Trmax2)  TrR = min (Tr 1R, Trmax2)
TrL = min (Tr 1 L , Trmax2)  TrL = min (Tr 1 L, Trmax2)
以後の手順 125, 126は図 4に示した第 1の実施の形態と同じであり、エンジン目標 回転数 Nrを原動機 4の電子ガバナ 4aに指令するとともに、モータトルク指令値 TrR, TrLをインバータ 73R, 73Lに指令する。  Subsequent steps 125 and 126 are the same as those in the first embodiment shown in FIG. 4. The engine target speed Nr is commanded to the electronic governor 4a of the prime mover 4, and the motor torque command values TrR and TrL are set to the inverter 73R. , Command 73L.
[0099] 以上【こお!ヽて、手川頁 131, 132 (ブロック 225A, 231, 232)の処理 ίま、第 1の実施 の形態における手順 123 (ブロック 225)の処理と同様、アクセルペダル 1の操作量に 応じた電動モータ 12R, 12Lの加速トルク制限値(モータ最大トルク Trmax2)を計算 する加速トルク制限値計算手段を構成し、手順 133 (ブロック 233, 234)の処理は、 第 1の実施の形態における手順 124 (ブロック 226, 227)の処理の処理と同様、加速 トルク制限値(モータ最大トルク Trmax2)がモータ目標トルク TrlR, TrlLよりも大き いときは、モータ目標トルクをモータトルク指令値 TrR, TrLとして選択し、加速トルク 制限値 (モータ最大トルク Trmax2)がモータ目標トルク TrlR, TrlLよりも小さくなる と加速トルク制限値(モータ最大トルク Trmax2)をモータトルク指令値 TrR, TrLとし て選択するモータトルク指令値決定手段を構成する。  [0099] As described above, the processing of Tegawa pages 131, 132 (blocks 225A, 231, 232) is the same as the processing of step 123 (block 225) in the first embodiment. Configure the acceleration torque limit value calculation means to calculate the acceleration torque limit value (motor maximum torque Trmax2) of the electric motors 12R and 12L according to the operation amount of 1. The process of step 133 (blocks 233, 234) Similar to the processing in step 124 (blocks 226, 227) in the above embodiment, when the acceleration torque limit value (motor maximum torque Trmax2) is larger than the motor target torque TrlR, TrlL, the motor target torque is If the acceleration torque limit value (motor maximum torque Trmax2) is smaller than the motor target torque TrlR, TrlL, the acceleration torque limit value (motor maximum torque Trmax2) is set as the motor torque command value TrR, TrL. To select Configuring the torque command value determining means.
[0100] 以上のよう【こ本実施の形態【こお ヽても、手川頁 131, 132 (ブロック 225A, 231, 232 )及び手順 133 (ブロック 233, 234)の処理機能は第 1の実施の形態における手順 1 23 (ブロック 225)及び手順 124 (ブロック 226, 227)の処理機能と同じであり、通常 走行時にアクセルペダルの操作量と電動モータの出力馬力との関係が一致した良 好な操作感覚が得られ、微速走行時は良好な制御性が得られ、微妙な位置決めを 容易に行うことができる。 [0101] 以上において、本発明の一実施の形態を説明したが、本発明の精神の範囲内で 種々の変形が可能である。以下にその幾つかを説明する。 [0100] As described above [this embodiment], the processing functions of Tegawa pages 131, 132 (blocks 225A, 231, 232) and procedure 133 (blocks 233, 234) are the first This is the same as the processing function of step 1 23 (block 225) and step 124 (block 226, 227), and the relationship between the amount of operation of the accelerator pedal and the output horsepower of the electric motor coincides during normal driving. Operation feeling can be obtained, good controllability can be obtained during low-speed running, and delicate positioning can be easily performed. [0101] While one embodiment of the present invention has been described above, various modifications can be made within the spirit of the present invention. Some of them will be described below.
[0102] 例えば、上記実施の形態では、手順 111 (ブロック 211)で、原動機 4の実回転数 N eをモータ最大出力馬力の関数 Mr (Ne)に参照して電動モータ 12R, 12Lで使用可 能な最大馬力 Mrを求めたが、通常はアクセルペダルを急激に操作せず、原動機 4 の実回転数 Neは目標回転数 Nrにほぼ等しいので、原動機 4の実回転数 Neに代え 、 目標回転数 Nrを用いて電動モータ 12R, 12Lで使用可能な最大馬力 Mrを求めて もよい。また、最大馬力 Mrを 1Z2にして電動モータ 12R, 12Lの 1台当たりの出力 馬力上限値 Pmaxを算出した力 手匿 118 (ブロック 217)でモータ出力馬力上限値 Pmaxとモータ目標出力馬力 PmOとの小さい方の値を選択した後、その値を 1/2に してモータ出力目標馬力 Pmとしてもよい。  [0102] For example, in the above embodiment, in step 111 (block 211), the actual rotational speed N e of the prime mover 4 is referred to the function Mr (Ne) of the motor maximum output horsepower and can be used in the electric motors 12R and 12L. However, the actual speed Ne of the prime mover 4 is almost equal to the target speed Nr. Therefore, instead of the actual speed Ne of the prime mover 4, the target speed The maximum horsepower Mr that can be used with the electric motors 12R and 12L may be obtained using several Nr. In addition, the maximum horsepower Mr is set to 1Z2, and the output horsepower upper limit value Pmax per unit of the electric motors 12R and 12L is calculated. The power output value Pmax and the motor target output horsepower PmO After selecting the smaller value, the value may be halved to set the motor output target horsepower Pm.
[0103] また、電動モータ 12R, 12Lは誘導モータとしたが、同期モータであってもよい。  [0103] Although the electric motors 12R and 12L are induction motors, they may be synchronous motors.

Claims

請求の範囲 The scope of the claims
[1] 原動機 (4)と、  [1] Motor (4),
この原動機により駆動される交流発電機 (5)と、  An alternator driven by this prime mover (5),
前記交流発電機により電力が供給されて駆動する走行用の少なくとも 2つの電動モ ータ(12R, 12L)と、  At least two electric motors (12R, 12L) for driving driven by power supplied from the AC generator;
前記交流発電機に接続され、それぞれ、前記電動モータを制御する少なくとも 2つ のインノ ータ(73R, 73L)と、  At least two inverters (73R, 73L) connected to the AC generator and controlling the electric motor, respectively;
アクセルペダル(1)の操作量 (p)に応じて前記インバータを制御し、前記電動モー タを制御するモータ制御手段(3, 7)とを有する電気駆動ダンプトラックの駆動システ ム【しお!、て、  A drive system for an electrically driven dump truck having motor control means (3, 7) for controlling the inverter according to the operation amount (p) of the accelerator pedal (1) and controlling the electric motor. ,
前記モータ制御手段(3, 7)は、  The motor control means (3, 7)
前記アクセルペダル(1)の操作量 (p)に応じたモータ目標出力馬力(Pm)を計算 するモータ目標出力馬力計算手段(112, 113, 213, 214)と、  Motor target output horsepower calculating means (112, 113, 213, 214) for calculating a motor target output horsepower (Pm) corresponding to the operation amount (p) of the accelerator pedal (1);
前記モータ目標出力馬力と前記 2つの電動モータ(12R, 12L)の回転数(coR, ω L)とに基づ 、てモータ目標トルク (TrlR, TrlL)を計算するモータ目標トルク計算手 段(121, 221, 222)と、  Based on the motor target output horsepower and the rotation speeds (coR, ωL) of the two electric motors (12R, 12L), a motor target torque calculation means (121) that calculates the motor target torque (TrlR, TrlL) , 221, 222) and
前記アクセルペダル(1)の操作量 (p)に応じた前記 2つの電動モータの加速トルク 制限値 (Trmax2)を計算する加速トルク制限値計算手段(123, 225)と、  Acceleration torque limit value calculating means (123, 225) for calculating an acceleration torque limit value (Trmax2) of the two electric motors according to the operation amount (p) of the accelerator pedal (1);
前記加速トルク制限値が前記モータ目標トルクよりも大き 、ときは、前記モータ目標 トルクをモータトルク指令値 (TrR, TrL)として選択し、前記加速トルク制限値が前記 モータ目標トルクよりも小さくなると前記加速トルク制限値をモータトルク指令値 (TrR , TrL)として選択するモータトルク指令値決定手段(124, 226, 227)と、  When the acceleration torque limit value is larger than the motor target torque, the motor target torque is selected as a motor torque command value (TrR, TrL), and the acceleration torque limit value becomes smaller than the motor target torque. Motor torque command value determining means (124, 226, 227) for selecting the acceleration torque limit value as the motor torque command value (TrR, TrL);
前記モータトルク指令値に基づいて前記インバータを制御するインバータ制御手段 (126, 71R, 71L, 72R, 72L)とを備えることを特徴とする駆動システム。  A drive system comprising inverter control means (126, 71R, 71L, 72R, 72L) for controlling the inverter based on the motor torque command value.
[2] 請求項 1記載の電気駆動ダンプトラックの駆動システムにお 、て、 [2] In the drive system for an electrically driven dump truck according to claim 1,
前記加速トルク制限値計算手段(123, 225)は、前記アクセルペダル (1)の操作 量 (P)が 0のときは、加速トルク制限値 (Trmax2)が微速走行に適したトルク範囲の 低めのトルクであり、前記アクセルペダルの操作量が 0から中間操作量までの微操作 領域を含む範囲にあるときは、前記アクセルペダルの操作量が増加するにしたがつ て前記加速トルク制限値 (Trmax2)が前記最小トルク力ゝら微速走行に適したトルク範 囲の高めのトルクまで増加し、前記アクセルペダルの操作量が更に増加すると前記 加速トルク制限値 (Trmax2)が最大トルクまで増加するように設定された加速トルク 制限値特性 (Trmax2 (p) )に基づ ヽて、前記加速トルク制限値 (Trmax2)を計算す ることを特徴とする駆動システム。 The acceleration torque limit value calculation means (123, 225) has a lower acceleration torque limit value (Trmax2) suitable for low speed driving when the operation amount (P) of the accelerator pedal (1) is 0. It is torque, and the operation amount of the accelerator pedal is fine operation from 0 to the intermediate operation amount When the accelerator pedal operation amount increases, the acceleration torque limit value (Trmax2) is a torque that is higher in the torque range suitable for low speed driving than the minimum torque force. Based on the acceleration torque limit value characteristic (Trmax2 (p)) set so that the acceleration torque limit value (Trmax2) increases to the maximum torque when the accelerator pedal operation amount further increases, A drive system that calculates the acceleration torque limit value (Trmax2).
[3] 請求項 2記載の電気駆動ダンプトラックの駆動システムにお 、て、 [3] In the drive system of the electric drive dump truck according to claim 2,
前記微速走行に適したトルク範囲の低めのトルクは、前記電動モータ(12R, 12L) の回転数( ω R, ω L)に応じて予め設定されたモータ許容最大トルク (Trmax)の 15 %〜30%であり、前記微速走行に適したトルク範囲の高めのトルクは前記モータ許 容最大トルク (Trmax)の 30%〜50%であり、前記中間操作量は最大操作量の 40 %〜60%であることを特徴とする駆動システム。  The lower torque in the torque range suitable for the low speed running is 15% to the maximum allowable motor torque (Trmax) set in advance according to the rotation speed (ωR, ωL) of the electric motor (12R, 12L). The higher torque in the torque range suitable for the low-speed driving is 30% to 50% of the maximum motor allowable torque (Trmax), and the intermediate operation amount is 40% to 60% of the maximum operation amount. The drive system characterized by being.
[4] 請求項 1記載の電気駆動ダンプトラックの駆動システムにお 、て、 [4] In the drive system of the electric drive dump truck according to claim 1,
前記加速トルク制限値計算手段(123, 225)は、前記加速トルク制限値 (Trmax2 )として前記アクセルペダル(1)の操作量 (p)に応じたモータ加速トルクを計算し、 前記モータトルク指令値決定手段(124, 226, 227)は、前記モータ目標トルク (Tr 1R, TrlL)と前記モータ加速トルク (Trmax2)と前記電動モータの回転数に応じて 予め設定されたモータ許容最大トルク (Trmax)とを比較して、それらの最小値を選 択することを特徴とする駆動システム。  The acceleration torque limit value calculating means (123, 225) calculates a motor acceleration torque corresponding to the operation amount (p) of the accelerator pedal (1) as the acceleration torque limit value (Trmax2), and the motor torque command value The determination means (124, 226, 227) is configured to set a motor allowable maximum torque (Trmax) set in advance according to the motor target torque (Tr 1R, TrlL), the motor acceleration torque (Trmax2), and the rotational speed of the electric motor. A drive system characterized in that the minimum value is selected.
[5] 請求項 1記載の電気駆動ダンプトラックの駆動システムにお 、て、 [5] In the drive system of the electric drive dump truck according to claim 1,
前記加速トルク制限値計算手段(131, 225A)は、前記アクセルペダル (1)の操作 量 (P)に応じたモータトルク制限比率 (Kmax)を計算し、このモータトルク制限比率を 前記電動モータ(12R, 12L)の回転数(coR, co L)に応じて予め設定されたモータ 許容最大トルク (Trmax)に乗じた値であるモータ最大トルクを前記加速トルク制限値 (Trmax2)として計算し、  The acceleration torque limit value calculating means (131, 225A) calculates a motor torque limit ratio (Kmax) corresponding to the operation amount (P) of the accelerator pedal (1), and calculates the motor torque limit ratio to the electric motor ( 12R, 12L) is calculated as the acceleration torque limit value (Trmax2), which is a value obtained by multiplying the preset motor allowable maximum torque (Trmax) according to the rotation speed (coR, coL).
前記モータトルク指令値決定手段(133, 233, 234)は、前記モータ目標トルク (Tr 1R, TrlL)と前記モータ最大トルクとを比較して、それらの最小値を選択することを特 徴とする駆動システム。 請求項 1〜5の 、ずれか 1項記載の電気駆動ダンプトラックの駆動システムにお!/ヽ て、 The motor torque command value determining means (133, 233, 234) compares the motor target torque (Tr 1R, TrlL) with the motor maximum torque and selects the minimum value thereof. Driving system. In the drive system of the electric drive dump truck according to claim 1 or claim 1!
更に、  Furthermore,
前記原動機 (4)の回転数に応じて前記走行用の電動モータ( 12R, 12L)で使用可 能な最大馬力(Mr)を計算する最大馬力計算手段(111, 211, 212)と、  Maximum horsepower calculating means (111, 211, 212) for calculating the maximum horsepower (Mr) that can be used by the electric motor (12R, 12L) for traveling according to the rotational speed of the prime mover (4);
前記モータ目標出力馬力計算手段(112, 113, 213, 214)により計算した前記モ ータ目標出力馬力(Pm)が、前記最大馬力計算手段により計算した最大馬力を超え ないように制限するモータ出力馬力制限手段(118, 217)とを有し、  Motor output for limiting the motor target output horsepower (Pm) calculated by the motor target output horsepower calculating means (112, 113, 213, 214) so as not to exceed the maximum horsepower calculated by the maximum horsepower calculating means. Horsepower limiting means (118, 217),
前記モータ目標トルク計算手段(121, 221, 222)は、前記モータ出力馬力制限 手段からのモータ目標出力馬力と前記 2つの電動モータ(12R, 12L)の回転数(coR , co L)とから前記モータ目標トルク (TrlR, TrlL)を計算することを特徴とする駆動シ ステム。  The motor target torque calculation means (121, 221, 222) is calculated from the motor target output horsepower from the motor output horsepower limiting means and the rotational speeds (coR, coL) of the two electric motors (12R, 12L). Drive system characterized by calculating motor target torque (TrlR, TrlL).
PCT/JP2007/059456 2006-06-06 2007-05-07 Drive system for electrically driven dump truck WO2007141980A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112007000379T DE112007000379T5 (en) 2006-06-06 2007-05-07 Drive system for electrically driven dump truck
AU2007256116A AU2007256116B2 (en) 2006-06-06 2007-05-07 Drive system for electrically driven dump truck
US12/279,476 US8265849B2 (en) 2006-06-06 2007-05-07 Drive system for electrically driven dump truck

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006157679A JP4440232B2 (en) 2006-06-06 2006-06-06 Electric drive truck drive system
JP2006-157679 2006-06-06

Publications (1)

Publication Number Publication Date
WO2007141980A1 true WO2007141980A1 (en) 2007-12-13

Family

ID=38801245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059456 WO2007141980A1 (en) 2006-06-06 2007-05-07 Drive system for electrically driven dump truck

Country Status (5)

Country Link
US (1) US8265849B2 (en)
JP (1) JP4440232B2 (en)
AU (1) AU2007256116B2 (en)
DE (1) DE112007000379T5 (en)
WO (1) WO2007141980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2318230A1 (en) * 2008-08-29 2011-05-11 Byd Company Limited Accelerator accelerating control device of four-wheel drive electric vehicle and method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440232B2 (en) * 2006-06-06 2010-03-24 日立建機株式会社 Electric drive truck drive system
US8793002B2 (en) * 2008-06-20 2014-07-29 Caterpillar Inc. Torque load control system and method
JP4557187B2 (en) * 2008-02-29 2010-10-06 有限会社エイチワイ Electric motor control device
WO2012053594A1 (en) * 2010-10-22 2012-04-26 日野自動車株式会社 Vehicle, control method, and program
KR101284293B1 (en) 2011-05-24 2013-07-08 기아자동차주식회사 Method and system for controlling torque of motor drive vehicle
DE102012209000A1 (en) * 2012-05-29 2013-12-05 Siemens Aktiengesellschaft Driver assistance system and method for driver assistance
FR2993842B1 (en) * 2012-07-25 2015-10-16 Renault Sas SYSTEM AND METHOD FOR CONTROLLING TORQUE OF A TRACTION ENGINE OF A MOTOR VEHICLE BASED ON ROTATION SPEED AND ACCELERATION PEDAL ENSEMBLE.
US9244464B2 (en) * 2013-01-28 2016-01-26 Caterpillar Inc. Machine control system having autonomous edge dumping
US8880334B2 (en) * 2013-01-28 2014-11-04 Caterpillar Inc. Machine control system having autonomous edge dumping
US9298188B2 (en) 2013-01-28 2016-03-29 Caterpillar Inc. Machine control system having autonomous edge dumping
WO2014157114A1 (en) * 2013-03-29 2014-10-02 日立建機株式会社 Engine rotation control system
JPWO2016163035A1 (en) * 2015-04-07 2018-03-01 株式会社Doog Mobile enclosure control interface
JP2017189067A (en) * 2016-04-08 2017-10-12 シナノケンシ株式会社 Motor drive unit
SE544431C2 (en) * 2018-03-29 2022-05-24 Scania Cv Ab Method and system for electrical proulsion of a commercial vehicle at low speed
CN112406532B (en) * 2019-08-20 2022-12-06 森源汽车股份有限公司 Power takeoff control method and electric automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107762A (en) * 1999-10-08 2001-04-17 Tcm Corp Running drive device for industrial vehicle
JP2001295676A (en) * 2000-04-17 2001-10-26 Toyota Motor Corp Slip control for vehicle
JP2002369314A (en) * 2001-06-11 2002-12-20 Aisin Aw Co Ltd Controller of hybrid vehicle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719361A (en) * 1986-08-18 1988-01-12 Dresser Industries, Inc. Mobile, off-road, heavy-duty haulage vehicle
JP3379107B2 (en) * 1991-12-10 2003-02-17 アイシン・エィ・ダブリュ株式会社 Electric motor type vehicle drive system
US5280223A (en) * 1992-03-31 1994-01-18 General Electric Company Control system for an electrically propelled traction vehicle
JP3094745B2 (en) * 1993-09-24 2000-10-03 トヨタ自動車株式会社 Hybrid vehicle power generation control device
US5890992A (en) * 1994-02-23 1999-04-06 Luk Getriebe-Systeme Gmbh Method of and apparatus for regulating the transmission of torque in power trains
EP0743209B1 (en) * 1995-05-19 2001-08-29 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle power output apparatus and method of driving auxiliary machinery
US5939846A (en) * 1997-09-04 1999-08-17 General Electric Company AC motorized wheel control system
JP3412544B2 (en) * 1999-02-04 2003-06-03 トヨタ自動車株式会社 Power output device and control method thereof
JP3721088B2 (en) * 2001-03-01 2005-11-30 株式会社日立製作所 Control device for hybrid vehicle
US6734647B2 (en) * 2001-10-30 2004-05-11 Honda Giken Kogyo Kabushiki Kaisha Working machine
WO2004018877A1 (en) * 2002-08-26 2004-03-04 Hitachi Construction Machinery Co., Ltd. Signal processing device of construction machinery
JP2004150304A (en) * 2002-10-29 2004-05-27 Komatsu Ltd Controller of engine
JP4230493B2 (en) * 2006-05-24 2009-02-25 日立建機株式会社 Electric drive truck drive system
JP4440232B2 (en) * 2006-06-06 2010-03-24 日立建機株式会社 Electric drive truck drive system
JP4230494B2 (en) * 2006-06-06 2009-02-25 日立建機株式会社 Electric drive truck drive system
JP2007326404A (en) * 2006-06-06 2007-12-20 Hitachi Constr Mach Co Ltd Drive system of power-driven dump truck

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107762A (en) * 1999-10-08 2001-04-17 Tcm Corp Running drive device for industrial vehicle
JP2001295676A (en) * 2000-04-17 2001-10-26 Toyota Motor Corp Slip control for vehicle
JP2002369314A (en) * 2001-06-11 2002-12-20 Aisin Aw Co Ltd Controller of hybrid vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2318230A1 (en) * 2008-08-29 2011-05-11 Byd Company Limited Accelerator accelerating control device of four-wheel drive electric vehicle and method thereof
EP2318230A4 (en) * 2008-08-29 2012-08-22 Byd Co Ltd Accelerator accelerating control device of four-wheel drive electric vehicle and method thereof

Also Published As

Publication number Publication date
JP4440232B2 (en) 2010-03-24
AU2007256116A1 (en) 2007-12-13
US20090048064A1 (en) 2009-02-19
JP2007326411A (en) 2007-12-20
US8265849B2 (en) 2012-09-11
AU2007256116B2 (en) 2010-06-03
DE112007000379T5 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
WO2007141980A1 (en) Drive system for electrically driven dump truck
WO2007141979A1 (en) Drive system for electrically driven dump truck
JP4230493B2 (en) Electric drive truck drive system
US7071642B2 (en) Method and apparatus for adaptive control of traction drive units in a hybrid vehicle
US6781251B2 (en) Control apparatus for transmission-equipped hybrid vehicle, and control method for the same
WO2007142012A1 (en) Drive system for electrically driven dump truck
JP2994590B2 (en) Control device for hybrid vehicle
US20130006456A1 (en) Systems and methods for engine load management for electric drive vehicles
JP3976225B2 (en) Control device for front and rear wheel drive vehicle
US6692403B2 (en) Series hybrid vehicle capable of operating without a battery
JPH0787615A (en) Generator control method for hybrid vehicle
WO2006006985A1 (en) Continuously variable transmission system with power boost
JP4424407B2 (en) Control device for in-vehicle internal combustion engine
JP4059242B2 (en) Hybrid vehicle and control method thereof
JP3624774B2 (en) Vehicle driving force control device
JP3914520B2 (en) Hybrid work vehicle
JP2003070107A (en) Motor controller for electric vehicle
US7389838B2 (en) Hybrid powered vehicle
JP2008044410A (en) Drive system of electrically driven dump truck
JP4311681B2 (en) Electric drive truck drive system
JP4814202B2 (en) Electric drive truck drive system
JP2007313994A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007256116

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2007256116

Country of ref document: AU

Date of ref document: 20070507

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12279476

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112007000379

Country of ref document: DE

Date of ref document: 20081218

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07742891

Country of ref document: EP

Kind code of ref document: A1