Nothing Special   »   [go: up one dir, main page]

WO2007013125A1 - Image display device and irradiation source device - Google Patents

Image display device and irradiation source device Download PDF

Info

Publication number
WO2007013125A1
WO2007013125A1 PCT/JP2005/013544 JP2005013544W WO2007013125A1 WO 2007013125 A1 WO2007013125 A1 WO 2007013125A1 JP 2005013544 W JP2005013544 W JP 2005013544W WO 2007013125 A1 WO2007013125 A1 WO 2007013125A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
display device
radiation source
light
unit
Prior art date
Application number
PCT/JP2005/013544
Other languages
French (fr)
Japanese (ja)
Inventor
Takeo Iwasaki
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Priority to PCT/JP2005/013544 priority Critical patent/WO2007013125A1/en
Publication of WO2007013125A1 publication Critical patent/WO2007013125A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems

Definitions

  • Image display device and radiation source device are Image display device and radiation source device
  • the present invention relates to a technique for displaying an image using a radiation source part that converts electricity into an electromagnetic wave and emits it, and particularly relates to a technique for improving output characteristics of the radiation source part.
  • Image display devices that display images are already known (see, for example, Japanese Patent No. 3033545).
  • This type of image display device generally uses electricity to generate electromagnetic waves (for example, radio waves, visible light, etc.). Light, invisible light, infrared light, ultraviolet light, radiation), and a radiation source unit that emits the converted electromagnetic wave.
  • electromagnetic waves for example, radio waves, visible light, etc.
  • a radiation source unit that emits the converted electromagnetic wave.
  • image display apparatus configured to further include a projection unit that projects a modulated electromagnetic wave toward a projection target to form an image.
  • a projection unit that projects a modulated electromagnetic wave toward a projection target to form an image.
  • Another application is a flat 'panel display.
  • Yet another application is a light projection display device slide projector.
  • Japanese Patent No. 3033545 discloses a projector.
  • This projector includes a light source unit that emits light as the above-described radiation source unit.
  • the light emitted from the light source part is emitted through the dichroic mirror, the optical head unit having the liquid crystal light valve and the light combining prism as the modulation part, and the projection lens in that order.
  • the image is projected onto the projection target.
  • the light source section is configured so that the electrothermal conversion ratio is high and the arc lamp is the projection light source (the heat generation amount is large). Therefore, such a conventional projector has a problem of heat generation and heat generation when it is difficult to reduce the size.
  • the lamp housing unit is made of heat-resistant glass, heat-resistant ceramic, heat-resistant plastic, It was necessary to construct it with an expensive material such as a heat-resistant magnesium alloy.
  • the dichroic mirror, liquid crystal light valve, color composition prism, and projection lens which are parts for forming the light guide that guides the light emitted from the arc lamp to the exit of the projector, must also have a heat-resistant structure. Met.
  • the present invention has an object to improve output characteristics of a radiation source part in a technique for displaying an image using a radiation source part that converts electricity into an electromagnetic wave and emits it. It was made.
  • An image display device for displaying an image
  • a radiation source unit that converts electricity into electromagnetic waves and emits the converted electromagnetic waves, and a plate-shaped reed having a periodic structure that is provided in association with the radiation source unit and receives electromagnetic waves emitted from the radiation source unit.
  • An image display device An image display device.
  • a reactive element is provided in association with the radiation source unit.
  • This reactive element has a periodic structure in which an electromagnetic wave emitted from the radiation source is incident.
  • the incident electromagnetic wave is affected by the periodic structure.
  • the characteristics of the outgoing electromagnetic wave emitted from the periodic structure (the pointing vector indicating the propagation direction and intensity of the electromagnetic wave are It is known that it can be changed to something different from the incident electromagnetic wave.
  • the periodic structure is configured such that a convex portion and a concave portion are arranged at least in one longitudinal section thereof. Force that is configured so that the convex part and the concave part are aligned at least one-dimensionally. Usually, it is configured to align two-dimensionally or three-dimensionally. Both the convex part and the concave part can take, for example, a linearly extending form or a dotted form.
  • an example of a periodic structure configured to be arranged two-dimensionally is formed on a base material so that a plurality of convex portions are arranged vertically and horizontally.
  • An example of the configured periodic structure is a waveguide (for example, a refractive waveguide) configured such that a plurality of refractive index step portions (for example, air holes) are arranged three-dimensionally in a support body.
  • the periodic structure is, for example, a case where a plurality of wires or lands and a plurality of grooves or slits are arranged concentrically and alternately, or a plurality of protrusions.
  • the starting material for example, pits
  • a plurality of holes may be formed on the substrate so as to be aligned vertically and horizontally.
  • the periodic structure is configured so that a plurality of convex portions are arranged with a period (subwavelength) shorter than the wavelength of the incident electromagnetic wave incident on the periodic structure, for example, the periodic structure becomes an incident electromagnetic wave. Therefore, when the incident angle is perpendicular to the surface forming the periodic structure, no higher-order diffracted wave is generated from the incident electromagnetic wave, and the 0th-order transmitted wave or reflected wave is not generated. Only occurs. This is due to the invisibility of the sub-periodic structure.
  • this periodic structure is further configured so that the convex portion has a taper shape in at least one longitudinal section thereof, in this periodic structure, the refractive index gradually changes in the height direction of the convex portion. Therefore, even a reflected wave is not generated from the incident electromagnetic wave. This is due to the antireflection function of the periodic structure.
  • the characteristics of the radiation source section can be improved by optimizing the periodic structure of the reactive element in relation to the requirements for the radiation source section. Easy.
  • the reactive element provided to improve the output characteristics of the radiation source section has a plate shape, so that the reactive element is added to this image display device. Even so, it is easy to suppress an increase in the size and weight of the image display device.
  • the “reactive element” in this section means an element that passively or actively reacts to the state quantity of the electromagnetic wave and has a certain influence on the electromagnetic wave.
  • passive reactive elements include reflection elements, transmission elements, diffraction elements, deflection elements, scattering elements, light recovery elements, wavelength conversion elements, and waveguides.
  • active reactive elements include, for example, optical switches, modulation elements, transmittance control elements, deflection control elements, scattering control elements, energy recovery elements, wavelength modulation control elements, and the like.
  • periodic structure in this section may be distributed in a manner that the period (that is, the interval between the above-mentioned grooves or slits, also referred to as the lattice interval) is distributed in a whole manner. In some cases, the distribution is not uniform.
  • the expression "provided in association with the radiation source section” in this section means, for example, that the "reactive element” in this section is added as a separate part to the radiation source section, and radiation It may mean that at least a part of the source part is processed to function as the “reactive element” in this section.
  • the reactive element cooperates with the radiation source unit, whereby the electric-electromagnetic wave conversion efficiency of the radiation source unit is increased as compared with the case where the reactive element is not used.
  • the anti-reflection function (described later in detail) of the reactive element causes the electromagnetic wave emitted from the radiation source unit to be affected by the radiation source unit.
  • the deflection function of the reactive element deflects the electromagnetic wave emitted from the radiation source part that is going to deviate obliquely at the target path force at an appropriate angle to the target path.
  • the electromagnetic wave emitted from the radiation source section is further transmitted by the electromagnetic wave confinement function (described later in detail) of the reactive element. Regardless of whether the path is bent or not, there is a mode in which the loss during transmission of the electromagnetic wave immediately after being emitted from the radiation source part is suppressed by transmitting to the next optical element that leaks more. Furthermore, there is a mode in which the diverging electromagnetic waves are made parallel by the refractive function of the reactive element (for example, the wavelength selective polarization function of the grating element described later).
  • the reactive element has an anti-reflection function for preventing reflection of electromagnetic waves incident from the radiation source unit. Therefore, according to this image display device, compared to the above-described conventional projector that does not have such an anti-recurrence function, the loss due to the reflection of the emitted electromagnetic wave of the radiation source force (for example, the loss due to the reflection on the emission surface) ) And the electromagnetic wave conversion ratio of the entire system including the radiation source part and the reactive element (hereinafter simply referred to as “the electric-electromagnetic wave conversion ratio of the radiation source part”) is improved.
  • the electric wave electromagnetic wave conversion ratio of the radiation source section is improved by implementing this image display device, the electromagnetic wave energy that can be generated by the same electric energy increases, so it must be consumed to generate the same electromagnetic wave energy. In addition, the electric energy can be saved, and eventually the radiation source part can be saved.
  • the electric electromagnetic wave conversion ratio of the radiation source section is improved by implementing this image display device, the amount of heat generated accompanying the electromagnetic wave energy is reduced with respect to the same electric energy. It can be completely omitted or even if it is necessary to take measures against heat, it can be mild.
  • the reactive element has a function of deflecting an electromagnetic wave incident on the reactive element, but does not have a function of discriminating polarized light. (1) None. Image display device
  • the reactive element has a function of deflecting the electromagnetic wave incident thereon. Therefore, according to this image display device, for example, when the reactive element is locally arranged while the electromagnetic wave is divergently emitted from the radiation source part, the electromagnetic wave emitted from the radiation source part is: Not only those that enter the reactive element substantially perpendicularly but also those that enter obliquely within the incident aperture angle can be used for image formation by the deflection function of the reactive element.
  • the radiation source unit includes a plurality of reflecting surfaces that face each other across a portion that emits the electromagnetic wave,
  • the reactive element is disposed on at least one of the reflecting surfaces so as to have at least one of a reflecting function and a transmitting function, and utilizes the resonance phenomenon of the electromagnetic waves between the plurality of reflecting surfaces. By doing so, the electric electromagnetic wave conversion efficiency is increased (1), and the image display device according to any one of (4).
  • the radiation source unit includes a plurality of reflecting surfaces that are opposed to each other with a portion that emits an electromagnetic wave interposed therebetween, and at least one of the reflecting surfaces is provided with a reactive surface.
  • the element is arranged so as to have at least a reflection function of a reflection function and a transmission function.
  • the electromagnetic wave force emitted from the radiation source unit travels back and forth along the same path, and thereby resonance (amplification) of the electromagnetic wave is performed.
  • a phenomenon is called a laser if the target electromagnetic wave is light, and a maser if it is a microwave (radio wave).
  • the reactive element cooperates with the radiation source unit, so that the electric electromagnetic wave conversion efficiency of the radiation source unit is increased as compared with the case where the reactive element is not used. It is done.
  • the reactive element includes an incident surface on which the electromagnetic wave is incident and an exit surface from which the electromagnetic wave is incident, and further includes a waveguide structure extending from the incident surface to the exit surface as the periodic structure ( 1) None None The image display device described in (5) above.
  • the reactive element according to any one of the items (1) to (5) has a waveguide structure, particularly a waveguide structure as a periodic structure, the incident surface of the reactive element is arranged on the incident surface. Incident electromagnetic waves are guided to the exit surface without loss. Therefore, according to this image display apparatus, there is no loss when the electromagnetic wave emitted from the radiation source force is transmitted through the reactive element and emitted in a predetermined direction, thereby reducing the total of the reactive element. The transmission efficiency is improved, which means that the electric-electromagnetic wave conversion efficiency of the radiation source part is improved.
  • the periodic structure has a sub-period having a period shorter than the wavelength of the electromagnetic wave to be incident on the periodic structure.
  • the image display device according to any one of (1) and (6), which includes a wavelength periodic structure.
  • the period of the periodic structure that is, the interval between the convex portions in at least one longitudinal section of the periodic structure, that is, the interval between the concave portions is shorter than the wavelength of the incident electromagnetic wave to be incident on the periodic structure.
  • the anti-reflection function is effective. Can be achieved.
  • the reactive element includes a CGH (computer “generated” hologram) element, a grating element, a PBG (photonic 'band' gap) element, and a photonic crystal element.
  • the image display device according to any one of (1) and (8), which includes at least one.
  • the radiation source section includes a field emission element, a plasma light emitting element, a laser element, an inorganic LED element, an organic LED element, an arc lamp, a filament lamp, and a radiation source.
  • the image display device according to any one of (1) and (9), which includes at least one of them.
  • the radiation source unit uses an arc lamp, it is easy to generate a large amount of light for the size of the radiation source unit, and it is easy to realize a bright light source for the size. It is.
  • the radiation source unit uses a filament lamp, it is easy to generate a large amount of light for the device cost of the radiation source unit, and a bright light source is realized for the device cost. Is easy.
  • this image display device it is not indispensable to design the radiation source unit so as to emit an electromagnetic wave having the same wavelength as the electromagnetic wave finally required to display an image.
  • the degree of freedom when selecting the type of the source part is improved.
  • the radiation source unit emits invisible light as the electromagnetic wave, and the reactive element is incident on the reactive element by the wavelength shift function. It is possible to implement in a mode that converts visible light into visible light. According to this aspect, it is possible to select a radiation source unit that emits invisible light even though an image is displayed by visible light.
  • the radiation source unit includes a radiation source element that emits a plurality of electromagnetic waves having different wavelengths as component waves,
  • the reactive element has a multiplexing function for synthesizing the plurality of component waves by deflecting each component wave incident from the radiation source element in a direction corresponding to the wavelength thereof (1) to (12)
  • the image display device according to any one of the items.
  • the deflecting function due to the periodic structure of the plate-like reactive elements is exhibited, so that each component wave incident on the radiation source element force is deflected in the direction according to the wavelength thereof. Thereby, a plurality of component waves are synthesized. Therefore, according to this image display device, the multiplexing function for image display can be exhibited by the plate-like reactive element while avoiding the enlargement of the image display device.
  • the “radiation source element” in this image display device is configured as a combination of a plurality of elements that respectively emit a plurality of electromagnetic waves having different wavelengths, or emits light of a plurality of wavelengths such as a semiconductor laser. It can be configured as a single element.
  • the expression “synthesizes a plurality of component waves” is used to express a plurality of component waves to be combined at each moment. Must exist together Don't ask for it. Given the fact that humans need time to perceive color with their eyes, even when multiple component waves exist without temporally overlapping each other, This is because as long as the location is common, humans will recognize these multiple component waves as synthesized waves. Therefore, the expression “combining a plurality of component waves” can be considered to mean, for example, matching the traveling directions of the plurality of component waves.
  • the multiplexing function for image display has a predetermined function over the entire necessary wavelength band by utilizing the wavelength selection function in each layer by the stacked structure of the reactive elements. It is possible to grant. Furthermore, it is possible to realize the image display device while avoiding an increase in size.
  • the "reactive element" in this image display device is formed by, for example, laminating a second layer that deflects component waves of other wavelengths on a first layer that deflects component waves of a certain wavelength. It is possible to create it.
  • the second layer is formed on the first layer by performing a combination of a well-known film formation method such as a vacuum deposition method or a coating method and a pattern formation method such as photolithography. Is possible.
  • the radiation source section includes:
  • a radiation source element that emits a plurality of electromagnetic waves having different wavelengths as component waves, and a combining unit that combines the plurality of component waves emitted from the radiation source element;
  • the image display device including:
  • the “radiation source element” in this section can be configured in the same manner as the “radiation source element” in the above section (13), for example.
  • the radiation source element includes three radiation source elements that respectively emit three component waves as the plurality of component waves,
  • the multiplexing unit reflects frequency-selective three component waves respectively incident on the three radiation source element forces along three paths that are divergently arranged at an angle to each other.
  • the image display device according to (15), wherein the combined wave is emitted by refraction and refraction, and the combined wave is emitted in a direction away from the combined force along a predetermined path.
  • the radiation source element includes three radiation source elements that respectively emit three component waves as the plurality of component waves,
  • the multiplexing unit is divergently arranged at an angle from one central point, and the three radiation source element forces along the three paths out of the four paths are respectively at the central point.
  • Three component waves incident in the approaching direction are synthesized into one synthesized wave by frequency selective reflection and refraction, and the synthesized wave is synthesized along the remaining one path from the center point.
  • the image display device according to item (15) or (16), which emits light in a direction away from it.
  • An example of the “combining portion” in this section is a cross prism formed by joining a plurality of prisms on at least one surface thereof.
  • a dichroic mirror is formed on the joint surface (reflection surface and transmission surface).
  • the "combining unit" may be configured by a combination of wedge-shaped prisms in which the combining mirror such as a cross prism is not orthogonal, or may be configured by a combination of planar dichroic mirrors.
  • the "four paths" in this section can be arranged on a single plane or three-dimensionally.
  • the "reactive element” in this section refers to, for example, at least one of the surfaces of the radiation source element facing the multiplexing unit and the plane of the multiplexing unit facing the radiation source element. On the other hand, it can be configured by directly forming a specific periodic structure, or can be configured as an element physically independent of the radiation source element and the multiplexing unit.
  • Reactive element in this section refers to, for example, multiplexing as in the above section (18).
  • Part of the part can be configured by directly forming a specific periodic structure on the part from which the synthesized wave is emitted (for example, the exit surface), or the combined force can be configured as a physically independent element. Is possible.
  • the support of the combining unit is configured by a material having a so-called low photoelastic constant
  • the material having a higher photoelastic constant than the material having the low photoelastic constant is used.
  • a state where the combining function of the combining portion is uniform throughout the entire image is ensured regardless of the stress state caused by the temperature rise of the combining portion. Therefore, according to this image display device, even if a factor that changes the stress state of the combining unit, such as a temperature rise of the combining unit, occurs, the contrast of the image does not decrease so much.
  • a modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel is included, and the reactive element and the modulation unit are mutually connected by an adhesive having electromagnetic wave permeability with respect to the electromagnetic wave.
  • the image display device according to any one of (1) and (20), which is integrated.
  • the adhesive that bonds the reactive element and the modulation unit to each other has not only an adhesive function but also an electromagnetic wave transmission function, the reactive element and the modulation unit are spatially separated.
  • the image display device can be easily downsized as a result.
  • the reactive element and the modulation unit are both plate-shaped and stacked on each other, the combination of the reactive element and the modulation unit is downsized, and as a result This makes it easy to downsize the entire image display apparatus.
  • the spatial modulation unit includes:
  • a polarizing beam splitter that separates incident electromagnetic waves into S and P waves
  • Two reflective modulators that reflect the S-wave and the P-wave emitted from the polarization beam splittaka in a state where the rotation of the polarization plane is controlled for each pixel
  • the image display device according to item (22), wherein the polarization beam splitter synthesizes and emits two electromagnetic waves that are respectively reflected by the two reflective modulators and incident on the polarization beam splitter.
  • the "spatial modulation section" in the item (22) includes (a) a polarization beam splitter that separates an incident electromagnetic wave into S waves and P waves, and (b) an S wave emitted from the polarization beam splitter.
  • One reflective modulator that reflects only one of the P-waves in a state in which the rotation of the polarization plane is controlled for each pixel, and the polarizing beam splitter includes the one reflective type Of the electromagnetic wave reflected by the modulator and re-entering the polarization beam splitter, only the component whose polarization plane is rotated can be emitted to the outside.
  • any one of the S wave and P wave emitted from the polarization beam splitter cannot be used for image display.
  • the image display device in the image display device according to this section, two reflections that reflect the S wave and the P wave emitted from the polarization beam splitter in a state in which the rotation of the polarization plane is controlled for each pixel.
  • the polarization beam splitter reflects two electromagnetic waves reflected by the two reflective modulators and re-entering the polarization beam splitter. , Synthesize and emit to the outside.
  • electromagnetic waves incident on the polarizing beam splitter which is less wasted than when not using any one of the S wave and P wave emitted from the polarizing beam splitter, are used for image display. It becomes possible to do. As a result, it is possible to reduce the amount of electromagnetic waves that must be emitted from the radiation source unit in order to achieve the same image brightness, and in turn, it is easy to save power and reduce the size of the radiation source unit.
  • An example of a “reflective modulator” in this section is a liquid 'crystal-on' silicon LCOS It is. Further, the feature described in this section can be implemented independently of the feature described in section (22).
  • this image display device similarly to the image display device according to item (20), there are factors that change the stress state of the polarization beam splitter, such as temperature rise and mechanical stress of the polarization beam splitter. Even if it occurs, the contrast of the image is not greatly reduced.
  • a plate-like spatial modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel is included, and the spatial modulation unit outputs the incident electromagnetic wave to the outside for each pixel.
  • a reflective spatial modulator that reflects and emits light with controlled transmission efficiency is included, and the spatial modulation unit outputs the incident electromagnetic wave to the outside for each pixel.
  • Deformable mirror device in this section is abbreviated as DMD and may also be referred to as a digital micromirror device by its manufacturer.
  • the micromirror In this deformable 'mirror' device, the micromirror is placed in a deformable state for each pixel, that is, in a state where the angle and displacement with respect to the incident electromagnetic wave are variable.
  • the accumulated transmission time for transmitting the incident electromagnetic wave toward the next optical element by reflection or the like (the time integral value of the reflection time corresponds to the luminance) is duty-controlled.
  • the spatial modulation unit includes a transmissive spatial modulator that transmits and emits an incident electromagnetic wave in a state where the transmittance is controlled for each pixel.
  • the reactive element is disposed on an emission surface from which the electromagnetic wave is emitted in the radiation source section, and is not (1). Display device.
  • the “reactive element” in this section is the same as in the above (18), for example, by directly forming a specific periodic structure on the emission surface of the radiation source where the electromagnetic wave is emitted. It can be configured as an element that is physically independent from the radiation source section. In the latter case, the “reactive element” is, for example, a force that is fixed so as to be in close contact with the emission surface or is fixed so as to face the emission surface with a gap.
  • the reactive element force A modulation unit that modulates the emitted electromagnetic wave for each pixel, and a heat dissipation unit that radiates heat from the modulation unit
  • the image display device according to any one of items (1) to (30).
  • a birefringent plate for transmittance compensation may be set upstream or downstream of the modulation unit. This birefringent plate may be realized by a reactive element having a specific periodic structure.
  • the substrate of the substrate of the radiation source section is made of a metal having high heat dissipation
  • the substrate is made of a material that does not have high heat dissipation. In some cases, the temperature rise of the radiation source unit is suppressed.
  • the radiation source unit when it generates heat when it is output, the problem of the heat generation is caused by the output of the radiation source unit (for example, the power or light flux that is the amount of radiant flux).
  • the amount of freedom in selecting the radiation source section is improved as a result.
  • the quantum efficiency at the electron quantum conversion site can be kept high due to the temperature rise suppression effect, and thus high radiation is achieved. It is possible to realize a radiation source part having brightness. (33) The image display device according to item (32), wherein the radiation source section is fixed to the substrate with a paste containing a metal.
  • the paste applied to the radiation source parts to the substrate is made of a metal having high heat dissipation, the paste has so high heat dissipation.
  • the temperature rise of the radiation source part is suppressed as compared with the case where the material is not formed.
  • the quantum efficiency at the electron quantum conversion site is increased due to the temperature rise suppression effect for the performance of the element itself used in the radiation source section. Therefore, it is possible to realize a radiation source part having high radiance.
  • the image display device according to item 3).
  • the “projection target” in this section includes, for example, a dedicated or substitute screen, a photosensitive medium, a wall surface, a human body, and the like.
  • the projection unit of the image display apparatus uses a lens
  • the temperature rise amount of the projection unit decreases, it is not necessary to require high heat resistance for the material constituting the lens.
  • the lens can be formed of a synthetic resin which is a cheaper and lighter material.
  • At least a part of the plurality of lenses in the projection unit is formed of a synthetic resin.
  • the image display device becomes small and light, the image display device can be detachably fixed to an arbitrary object as well as placed on a table as in the past. OK The degree of freedom in selecting the installation position of the image display device and the image display direction is improved.
  • the image display device is such that the direction in which the image is displayed is slightly upward when the image display device is a flat panel display or image projection device. In an inclined state.
  • the image display device is implemented together with a fixture that detachably fixes the image display device to an arbitrary object.
  • the object is an output that outputs at least one of an image signal necessary for the image display device to display an image and electric energy necessary for the operation of the image display device.
  • This image display device is used in a state where it is connected to the output port of the portable device at its connection. Therefore, according to this image display device, connection work with an external device necessary for supplying signals and energy necessary for the image display device is simplified, and the wiring force S for the connection is not increased. It will end.
  • Examples of the “portable device” in this section include, for example, a mopile computer (either a stand-alone type or a network connection type), a mobile phone (including a mobile phone and a PHS), a portable information terminal PDA. Etc.
  • connection unit includes a connection unit connected to at least one of a video output port and a serial communication port having a power supply terminal.
  • the output port of the portable device includes at least a serial communication port having a power supply terminal
  • the image display device according to this section uses, for example, the bus power of the serial communication port. It is possible to share the battery of portable equipment.
  • This type of serial communication port includes RS-232C, USB, IEEE 1394, Bus Power Ethernet (registered trademark), digital RGB terminal, SD flash card interface, and PCMCIA power interface.
  • this image display device may receive power from an outlet using a separate power cable.
  • connection unit includes a connection unit connected to the video output port.
  • connection portion connected to the output port is a connection portion connected to an analog VGA port or a digital video port.
  • This image display apparatus can be universally connected to a plurality of types of portable information devices by using analog video signals.
  • connection unit includes a connection unit that is wirelessly connected to a wireless communication port.
  • a reactive element that converts energy into electromagnetic waves and emits the converted electromagnetic waves and a reactive element having a periodic structure that is provided in association with the radiation source parts and receives electromagnetic waves emitted from the radiation source parts.
  • the periodic structure is a sub-wavelength periodic structure having a period shorter than the wavelength of the electromagnetic wave incident on the periodic structure.
  • the radiation source part is a
  • a radiation source element that emits a plurality of electromagnetic waves having different wavelengths as component waves, and a combining unit that combines the plurality of component waves emitted from the radiation source element into one composite wave,
  • the reactive element is:
  • a plurality of component wave elements disposed between the radiation source element and the combining unit; and a combined wave element disposed in a portion of the combining unit where the combined wave is emitted.
  • Source equipment
  • this radiation source device since the process force that synthesizes and emits a plurality of component waves having different wavelengths into one synthesized wave is performed using a reactive element having a sub-wavelength periodic structure, the image described above is used. Among the display devices, the same effects as those described above regarding the reactive element having the sub-wavelength periodic structure can be obtained.
  • the "reactive element” in this section is, for example, a plate shape (a shape in which the thickness dimension is shorter than the width dimension) or a block shape (a shape in which the thickness dimension and the width dimension are substantially equal). It is possible.
  • the "radiation source device” according to this section is related to the radiation source unit in the image display device described above. It can be carried out in combination with one selected from a plurality of features adopted. Furthermore, the “radiation source device” according to this section can be used for purposes other than image display.
  • the "radiation source section" in this section does not necessarily need to be configured to be supplied with external force energy. That is, for example, it is not indispensable to take in electric energy from the outside and convert the electric energy into electromagnetic waves.
  • this "radiation source section” may be configured, for example, so that the built-in battery power can also extract energy, or has a built-in fuel cell, and hydrogen is added to the fuel cell from the outside. It may be configured to supply a chemical substance such as a fuel and take out the fuel cell power energy.
  • the adhesive for adhering a plurality of component wave elements, the composite wave element and the multiplexing unit to each other has not only an adhesion function but also an electromagnetic wave transmission function, these components It becomes easy to spatially pack and integrate the wave element and the synthesized wave element and the multiplexing unit, and as a result, the radiation source device can be easily downsized.
  • FIG. 1 is an external perspective view showing the image projection apparatus 10 according to the first embodiment of the present invention in a used state.
  • FIG. 2 is a plan view showing an optical configuration of the image projection apparatus 10 in FIG.
  • FIG. 3 is an enlarged side sectional view showing the CGH plate 70 in FIG.
  • FIG. 4 is a side cross-sectional view showing a partially enlarged broadband AR board 76 in FIG. FIG.
  • FIG. 5 is a perspective view showing the sub-wavelength structure refracting plate 78 in FIG. 3 partially enlarged.
  • FIG. 6 is a plan view showing the cross prism 56 in FIG. 2.
  • FIG. 7 is a plan view showing polarizing beam splitter 120 in FIG. 2 together with LCOS 1 and LCOS 2.
  • FIG. 8 is a block diagram conceptually showing the electrical configuration of the image projector 10 in FIG. 1.
  • FIG. 9 is a time chart for explaining temporal transition of various signals in FIG.
  • FIG. 10 is an external perspective view for explaining another example of use of the image projection device 10 in FIG.
  • FIG. 11 is an external perspective view for explaining still another usage example of the image projector 10 in FIG. 1.
  • FIG. 12 is a plan view showing an optical configuration of the image projection apparatus 230 according to the second embodiment of the present invention.
  • FIG. 13 is an enlarged side view and plan view of the grating plate 270 in FIG.
  • FIG. 14 is a side sectional view showing the grating plate 270 in FIG. 13 partially enlarged.
  • FIG. 15 is an enlarged side cross-sectional view showing the position of the polarizing beam splitter in FIG. 12.
  • FIG. 16 is a plan view showing an optical configuration of the image projection apparatus 330 according to the third embodiment of the present invention.
  • FIG. 17 is a side sectional view showing the R light source 350R in FIG. 16 partially enlarged.
  • FIG. 18 is an enlarged side cross-sectional view of the laminated CGH plate 370 in FIG.
  • FIG. 19 shows an optical configuration of an image projection apparatus 400 according to the fourth embodiment of the present invention.
  • FIG. 20 is an enlarged side sectional view showing the laminated CGH plate 452 in FIG.
  • FIG. 21 is a plan view showing an optical configuration of an image projection apparatus 500 according to the fifth embodiment of the present invention.
  • FIG. 22 is an enlarged side cross-sectional view of photonic crystal plate 520 in FIG.
  • FIG. 23 is a plan view showing light source unit 620 of image projection apparatus 610 according to the sixth embodiment of the present invention.
  • FIG. 24 is a plan view showing light source unit 660 of image projection apparatus 650 according to the seventh embodiment of the present invention.
  • FIG. 25 is a plan view showing light source unit 700 of image projection apparatus 690 according to the eighth embodiment of the present invention.
  • FIG. 26 is an enlarged perspective view showing the anti-transmission resonant mirror surface 712 in FIG. 25.
  • FIG. 27 is a plan view showing light source unit 760 of image projection apparatus 750 according to the ninth embodiment of the present invention.
  • FIG. 1 shows a perspective view of an image projection apparatus 10 according to the first embodiment of the present invention.
  • This image projection device 10 is an example of an image display device according to the present invention.
  • the image projection apparatus 10 includes a flat box-shaped apparatus housing 12, and the apparatus housing 12 includes a projection lens unit 14 serving as a projection unit, and the distal end thereof. It is mounted so as to partially protrude from the device housing 12 at the part.
  • this image projector 10 is shown in a state of being fixed and used on a mopile computer 16 as a portable information device!
  • This image projector 10 can be moped; any plate-like part of the computer 16, e.g. on the display 'panel
  • a fixing clip 20 as a fixing tool is detachably attached to the image projection device 10 for fixing to an edge or side edge, or to a desk or a machine element on a desk.
  • the fixing clip 20 is an example of a fixing tool that fixes the image projection device 10 to an arbitrary machine element, and can be configured as, for example, a suction cup, a double-sided tape, a fastener, a string, or the like. As long as it is possible to fix the image projection device 10 to an arbitrary machine element, it functions as a fixture.
  • the fixed clip 20 includes a clip portion 22 that holds an arbitrary plate-like portion with both side forces, and the clip portion 22 and the image projection device 10 at an arbitrary relative angle by relative rotation. And a tilt 'joint 24 that can be fixedly connected to each other.
  • the Mopile 'computer 16 is provided with a USB port 28 and an analog VGA port 30 as output ports, respectively. Connected to connector 34 on device 10 (see Figure 8).
  • the USB port 28 is a serial communication port having a power supply terminal, and this USB port 28 power is also supplied to the connector 34 of the image projection device 10 with electric energy necessary for the operation of the image projection device 10. .
  • the image projection apparatus 10 can have a power supply that depends on the outside, a power supply (for example, a battery), or a combination of both.
  • the analog VGA port 30 is a video output port for outputting a video signal (image signal).
  • An image signal is supplied from the analog VGA port 30 to the connector 34 of the image projection apparatus 10, and based on the supplied image signal, the image projection apparatus 10 projects an image onto a projection target.
  • FIG. 2 shows a plan view of the optical configuration of the image projector 10.
  • the image projection apparatus 10 includes a light source unit 40 as a radiation source unit, a spatial modulation unit 42 as a modulation unit, and the projection lens unit 14 described above as a projection unit.
  • the light source unit 40 generates an arbitrary color by the RGB method, and includes three light sources 50R, 50G, and 50B that emit three component lights (monochromatic lights) having different wavelengths. And a cross prism 56 as a wave portion.
  • Each of the three light sources 50R, 50G, and 50B includes three inorganic LEDs 60R, 60G, and 60B as a plurality of radiation source elements.
  • the LED60R is a double heterostructure inorganic LED composed of Al, In, Ga, and P elements, and emits a red beam radially (divergently).
  • the LED60G is a double heterostructure inorganic LED consisting of three elemental forces of In, Ga, and N, and emits a green beam radially (divergently).
  • the LED60B is an inorganic LED with a double hetero structure consisting of three elements of In, Ga and N, and emits a blue beam radially (divergently).
  • the substrate 64 is configured as a PCB (printed circuit board) by applying an insulating resin to a high heat dissipation aluminum substrate (an example of a metal substrate) and then electrolessly plating copper.
  • a CGH (Computer-Generated 'Hologram) plate 70R, 70G, 70 ⁇ is further supported by a bridge 72 on the corresponding substrate 64.
  • Each CGH plate 70R, 70G, 70mm is directly facing the corresponding substrate 64 with a gap.
  • the CGH plates 70R, 70G, 70 ⁇ for each light source 50R, 50G, 50 ⁇ are for red beam, green beam, and blue beam, respectively.
  • FIG. 3 one CGH plate 70 representing three CGH plates 70R, 70G, and 70mm is shown in a longitudinal sectional view.
  • the CGH plate 70 is configured by laminating a broadband AR plate 76 and a sub-wavelength structural refracting plate 78 alternately in the optical axis direction.
  • the broadband AR board 76 exhibits an anti-reflection (AR) function in broadband, that is, in all wavelength bands.
  • AR anti-reflection
  • the broadband AR plate 76 also exhibits a function of refracting and transmitting incident light.
  • Figure 3 shows that the three light sources 50R, 50G, and 50 ⁇ mentioned above can be approximated as point light sources, that the three point light sources are sequentially driven according to the field sequential method described later, and one point light source.
  • the three light sources 50R, 50G, and 50 ⁇ are expressed as one point light source based on the fact that the light source emits light divergently.
  • the broadband AR plate 76 is configured by two-dimensionally arranging a plurality of tapered convex portions (dot-shaped convex portions) 82 vertically and horizontally on a base material 80 in a close-packed lattice arrangement.
  • a broadband AR layer 84 is formed by the plurality of convex portions 82.
  • the plurality of convex portions 82 constitute a periodic structure having a sub-wavelength period (hereinafter simply referred to as “sub-wavelength structure”).
  • the surface of this broadband AR layer 84 is also referred to as a moth-eye surface.
  • the interval between the convex portions 82 is smaller than the wavelength of the light beam incident on the broadband AR layer 84 (in FIG. 4, the wavelength of the light beam emitted from the LEDs 60R, 60G, and 60B). Therefore, this broadband AR layer 84 is equivalent to a medium having a certain refractive index.
  • each convex portion 82 is tapered, the refractive index gradually changes in the height direction of each convex portion 82. Accordingly, no reflected light is generated from the broadband AR layer 84, and only the 0th-order transmitted light is generated.
  • the broadband AR plate 76 is composed of a borosilicate glass (or silica glass) as a base material 80.
  • a periodic structure with a period of 150 nm and a height of 350 nm is formed. It is possible.
  • the broadband AR plate 76 can also be configured by high precision grinding.
  • the Fresnel reflection of the base material made of silica glass 80 is about 3.5% on one side, but with this periodic structure, the incident angular force in the visible range is more than ⁇ 40 degrees with respect to the normal direction of the incident surface. Within a certain range, a reflectance of 0.1% can be realized.
  • the sub-wavelength structure refracting plate 78 is arranged on the substrate 86 so that a plurality of convex portions 88 are two-dimensionally arranged at intervals shorter than the incident wavelength. It is configured by In the present embodiment, each convex portion 88 extends linearly.
  • monochromatic light having a point light source one light source corresponding to each sub-wavelength structure refracting plate 78
  • transmitted light is reproduced as object light.
  • the sub-wavelength structure refracting plate 78 functions as a positive power element that substantially collimates the diverging light from the point light source.
  • the same point light source power Condensation function that aligns the direction of multiple divergent rays in one direction.
  • the light beam incident on the sub-wavelength structure refracting plate 78 can be refracted in an arbitrary direction by the refracting layer 90 of the sub-wavelength structure refracting plate 78 (see FIG. 3).
  • Both the broadband AR plate 76 and the sub-wavelength structure refracting plate 78 are CGH (computer-generated hologram) elements.
  • CGH computer-generated hologram
  • holography can reproduce a three-dimensional image.
  • CGH uses a computer to diffract light without using any light for recording. This is a method for generating a pattern.
  • CGH is used in a wide range and can be used to manufacture grating elements, cylindrical lenses, spherical lenses, aspherical lenses, special lenses, optical couplers, pattern generators, and the like.
  • CGH includes binary CGH, gray level CGH, and phase level CGH. In general, phase level binary CGH is often used.
  • FIG. 5 shows an example of a surface relief hologram. The convex portion 88 having a height of a sub-wavelength size functions to shift the phase of transmitted light.
  • a two-dimensional pattern is calculated by a computer as a generated phase distribution of object light and reference light at all points on the hologram surface.
  • the calculated two-dimensional pattern is drawn on a mask such as a chrome mask using, for example, an electron beam.
  • the mask is projected onto the photoresist.
  • the photoresist is patterned, and then unevenness is formed on the substrate by a technique such as development, rinsing, and dry etching.
  • the process of drawing a two-dimensional pattern on a substrate can also be performed by a method of performing electron beam lithography directly on the substrate.
  • the process can also be performed by a method of directly grinding a substrate using a high-precision grinding blade.
  • the three light sources 50R, 50G, and 50B are arranged in three directions on the same plane.
  • the cross prism 56 is arranged so as to emit each light beam by directing force to the center of the cross prism 56.
  • These three light sources 50R, 50G, and 50B surround the cross prism 56 on three of its four sides.
  • the cross prism 56 combines the three component lights emitted from the three light sources 50R, 50G, and 50B into one combined light by the action of dichroic mirrors installed on each reflecting surface, which will be described later. It is a vessel.
  • the cross prism 56 is configured by adhering and bonding 45-degree right-angle prisms 94, 96, 98, and 100 at their side surfaces.
  • FIG. 6 [As shown in this figure, out of the four even prisms 94, 96, 98, 100, ED70R [The opposite prism 94 has a red beam from LED70R ("R light” in Figure 6). However, the bottom surface of the prism 94 is used as the entrance surface, and the light enters the entrance surface substantially perpendicularly. Similarly, a green beam (represented by “G light” in FIG. 6) from the LED 70G enters the prism 96 facing the LED 70G with the bottom surface of the prism 96 as an incident surface, and enters the incident surface substantially perpendicularly. Similarly, a blue beam (shown as “B light” in FIG.
  • the red beam reflects and the green and blue beams respectively.
  • Transmitting dichroic mirrors 102 and 104 are formed. Furthermore, the blue beam is reflected and the red and green beams are reflected on each of the pair of slopes of the prism 96 which is joined to the prism 98 and the pair of slopes of the prism 100 which is joined to the prism 94, respectively. Transmitting dichroic mirrors 106 and 108 are formed.
  • the red beam incident on the prism 94 is substantially reflected by the two dichroic mirrors 102 and 104 and emitted from the prism 100.
  • the green beam incident on the prism 96 passes through the four dichroic mirrors 102, 104, 106, and 108 and exits from the prism 100.
  • the blue beam incident on the prism 98 is two dichroic. The light is reflected by the mirrors 106 and 108 and is emitted from the prism 100.
  • the wavelength selective reflection and transmission of these dichroic mirrors 102, 104, 106, and 108 three color beams incident from three directions are combined, and the combined light is emitted from the prism 100.
  • each of the light sources 50R, 50G, 50B and the cross prism 56 includes an exit surface on which a beam exits from both sides of each CGH plate 70R, 70G, 70B, and each prism 94, 96, The 98 incident surfaces are fixed to each other by being bonded to each other by an adhesive 114.
  • the adhesive 114 is a light-transmitting adhesive that is cured by UV irradiation.
  • the light sources 50R, 5OG, 50B and the cross prism 56 are fixed to each other by the adhesive 114 in a state where the relative positions in the plane parallel to the paper surface of FIG.
  • This spatial modulation section 42 described above is installed on the exit side of the cross prism 56.
  • This spatial modulation unit 42 includes a polarizing beam splitter 120, and further includes two LCOS (liquid crystal on silicon) as reflective liquid crystal panels! These two LCOSs are called LCOS1 and LCOS2, respectively.
  • the polarizing beam splitter 120 is configured by joining 122, 124 forces of 45-degree right-angle prisms and joining them together on their inclined surfaces.
  • a broadband polarization beam splitter surface 126 is formed on the joint surface.
  • the outer peripheries of the prisms 122 and 124 are each composed of a slope that is also a joint surface with the other prisms 124 and 122, and two side surfaces that are perpendicular to each other.
  • Each of the prisms 122 and 124 is formed by using a glass having a low photoelastic constant (for example, the above-mentioned ⁇ 56 manufactured by OHARA) as a support.
  • the light source 40 is near! / And the combined light (shown as "RGB light” in FIG. 7) emitted from the light source 40 is incident on the prism 122.
  • Two side surfaces of the prism 122 are composed of a side surface facing the light source unit 40 and a side surface not facing the light source unit 40, and the facing side surface is an incident surface when the combined light is incident on the polarization beam splitter 120. is there.
  • the incident surface and the exit surface of the cross prism 56 are bonded to each other by a light-transmitting adhesive 130 that is hardened by UV irradiation.
  • the polarization beam splitter 120 and the cross prism 56 are fixed to each other by the adhesive 130 in a state where the relative positions in the plane parallel to the paper surface of FIG.
  • the prism 124 far from the light source unit 40 also has an outer periphery that is a joint surface with another prism 122.
  • the bottom surface and two side surfaces perpendicular to each other are formed.
  • the two side surfaces are a side surface facing the light source unit 40 and a side surface not facing each other.
  • the combined light that is, incident light (illumination light emitted from the light source unit 40) incident on the polarization beam splitter 120 is reflected by the broadband polarization beam splitter surface 126 and is incident on the S wave (S polarization).
  • an incident P wave P-polarized light
  • the polarization beam splitter 120 is designed so that its polarization characteristics are substantially the same in the entire wavelength band of illumination light (RGB light), that is, in broadband.
  • LCOS1 is opposed to the prism 124 far from the light source unit 40, and LCOS2 is opposed to the near prism 122.
  • the incident P wave is incident on LCOS1 and the incident S wave is incident on L COS2.
  • LCOS1 and LCOS2 are arranged so as to be orthogonal to each other in the input / output direction.
  • LCOS1 and LCOS2 are both not shown, for example, as disclosed in Japanese Patent Application Laid-Open No. 11-95212, but a plurality of switching elements are arranged in a matrix with built-in aluminum reflecting mirrors.
  • the reflection type active matrix substrate, a liquid crystal layer, and a cover glass that regulates the thickness of the liquid crystal layer are laminated.
  • Each of LCOS1 and LCOS2 modulates the polarization direction of the incident illumination light based on the image signal supplied from the outside so that the image light represented by the image signal is emitted from each LCOS.
  • each LCOS with respect to a pixel having luminance (for example, a bright display pixel), the illumination light incident from the polarization beam splitter 120 is converted into the incident light by leaving this pixel in an electric field. The light is modulated and reflected in the orthogonal polarization direction. Thereafter, the reflected light travels toward the projection lens unit 14.
  • a pixel having no luminance for example, a dark display pixel
  • an electric field is applied to the liquid crystal in this pixel to erect the liquid crystal molecules, and the incident illumination light is polarized in the same polarization direction. reflect. Thereafter, the reflected light returns to the light source unit 40, and the power of the reflected light is consumed in the light source unit 40. Disappear.
  • the reflected light from LCOS1 is S wave, it is reflected on the broadband polarization beam splitter surface 126, and then The reflected light is emitted from the exit surface of the two side surfaces of the prism 124, with the side surface not facing the light source unit 40 being the exit surface.
  • This emitted light is S-wave image signal light.
  • the reflected light from LCOS1 is P wave, so it passes through the broadband polarization beam splitter surface 126 and then the transmitted light. Is emitted from the incident surface of the polarization beam splitter 120 and consumed and lost at any location in the image projection apparatus 10. In other words, this emitted light is P wave disappearance light.
  • the reflected light from LCOS2 is S-wave, so it is reflected by broadband polarization beam splitter surface 126, and then The reflected light is also emitted from the incident surface force of the polarizing beam splitter 120 and consumed and lost at any location in the image projector 10. That is, this outgoing light is S-wave disappearance light.
  • the reflected light from LCOS2 is P-wave, so it passes through the broadband polarization beam splitter surface 126. The light is emitted from the incident surface of the polarization beam splitter 120. The emitted light is P-wave image signal light.
  • the surface of prism 124 and the surface of LCOS 1 are bonded to each other by a light-transmitting adhesive 132 that is cured by UV irradiation.
  • the surface of Prism 122 and the surface of LCOS2 are light-transmitting adhesives that are cured by UV irradiation.
  • Each LCOS and the polarization beam splitter 120 are fixed to each other by adhesives 132 and 134 in a state where the relative positions in the plane parallel to the paper surface of FIG.
  • heat radiation fins 138 as heat radiation portions are mounted on both sides of LCOS1 on the side opposite to polarization beam splitter 120 in contact with LCOS1.
  • the heat radiating fins 140 as heat radiating portions are attached in contact with the LCOS 2.
  • the projection lens unit 14 described above is arranged on the emission side of the spatial modulation unit 42.
  • the projection lens unit 14 includes a plurality of lenses 150, 152, 154, and 156 arranged in series so as to have telecentricity, and a lens barrel 158 that holds the lenses 150, 152, 154, and 156. Yes.
  • Some of the plurality of lenses 150, 152, 154, 156 are plastic lenses, and the rest are glass lenses.
  • This embodiment [Koo, Teorama, of the four even lenses 150, 152, 154, 156, of the device nosing 12, the two lenses 150, 152 are made of glass by optical glass ⁇ 7
  • the lens, the two lenses 154 and 156 on the outside, are plastic lenses made of optical plastic.
  • the lens barrel 158 is attached to the device housing 12 via the focus adjustment screw 160 so as to be movable in the axial direction.
  • the focus adjustment screw 160 adjusts the projection distance from the position of the image projection device 10 to the projection image by the image projection device 10, that is, the focus.
  • FIG. 8 conceptually shows the electrical configuration of the image projector 10 in a block diagram.
  • the image projection apparatus 10 is configured mainly with a microprocessor unit (hereinafter abbreviated as “MPU”) 170.
  • MPU microprocessor unit
  • the image projection apparatus 10 includes a projection switch 172 as an operation unit operated by a user to command the start of image projection. In order to monitor whether or not the projection switch 172 has been operated, the projection switch 172 and the MPU 170 are connected to each other via the key scanning unit 174 !.
  • the MPU 170 samples a power interface unit (represented as “power source if unit” in FIG. 8) 176 and a video signal (image signal) represented by an analog RGB signal.
  • the video sampling unit 178 is connected.
  • the power interface unit 176 and the video sampling unit 178 are connected to the mobile computer 16 via the connection cable 32 described above.
  • the MPU 170 is supplied with electric power (electrical energy) from the mopile computer 16 via the power interface unit 176, and in parallel therewith, the video from the mopile computer 16 via the video sampling unit 178.
  • a signal (video signal) is supplied.
  • the power interface unit 176 uses a bus pipe voltage (5V or 12V) supplied from the mopile computer 16 as at least one required voltage (+ 15V, + 3.3V, + 1.5V, and —7.
  • DC Converts to 5V) —Has a DC converter function.
  • the MPU 170 is also connected to a VRAM (video RAM) 180 as a storage unit.
  • VRAM video RAM
  • the VRAM 180 stores image signals captured from the outside, and further, image signals necessary for image projection are read from the VRAM 180 and captured by the MPU 170.
  • VRAM 180 for example, SDRAM or DDRRAM which is a high-speed RAM is used.
  • the MPU 170 is connected to the aforementioned LCOS 1 and LCOS 2 via the LCD driver 182.
  • the MPU 170 supplies the LCOS signal (indicated as “LCOS” in FIGS. 8 and 9) to the LCD driver 182 in order to control the LCOS 1 and LCOS2.
  • the LCOS signal is supplied to LCOS 1 and LCOS 2 in order to perform the above-described modulation control for each pixel, that is, control of the electric field applied to the liquid crystal for each pixel.
  • three light sources 50R, 50G, 50B that is, red Light source that emits light beam (represented by “R light source” in FIG. 8) 50R and light source that emits green beam (represented by “G light source” in FIG. 8) 50G and light source that emits blue beam (In Fig. 8, “B light source” is used.) 50B and force Flashing is controlled in sequence according to the field sequential method. As shown by the time chart in FIG. 9, the R light source 50R, the G light source 50G, and the B light source 50B are sequentially driven in that order for each frame of the projection image.
  • the field in which the R light source 50R is driven, the field in which the G light source 50G is driven, and the field in which the B light source 50B are driven do not overlap each other in time.
  • the time width of one frame, that is, the frame period is, for example, 1Z60 seconds.
  • the MPU 170 passes through a timing generator 186 and a field sequential driver 188 in the order of the three light sources 50R, 50G, Connected to 50B.
  • the timing generator 186 has a blanking signal (in FIGS. 8 and 9). "BLANKING”) and light source control signals (represented by “R”, “G”, and “B” in Figs. 8 and 9, respectively) that drive each light source 50R, 50G, 50B.
  • the generated blanking signal is supplied to the LCD driver 182 described above.
  • the LCD driver 182 supplies the LCOS signal to LCOS1 and LCOS2 in association with the supplied blanking signal as shown in the time chart of FIG.
  • each generated light source control signal is supplied to the field sequential driver 188.
  • the field sequential driver 188 is required to drive the R light source 50R, the G light source 50G, and the B light source 50B in association with each supplied light source control signal, as shown in the time chart of FIG. Driving voltage (represented by “R”, “G” and “B” in FIG. 9) is applied to the corresponding light source to emit light.
  • FIG. 1 shows an example of use of the image projection apparatus 10.
  • the image projection apparatus 10 is used by being attached to a mopile computer 16.
  • the image projection apparatus 10 can be used for other purposes.
  • the image projection apparatus 10 is connected to a mobile phone 200 as a portable information device by a connection cable 32, so that at least an image signal is transmitted. In a state where it is transmitted to the image projection device 10, it is used so that an image is projected onto a dedicated screen 202 installed on an arbitrary floor.
  • the image projection device 10 is positioned by being placed on a fixed object such as a table. Furthermore, in this usage example, the image projecting device 10 can also capture power from equipment other than the mobile phone 200. Needless to say, if the tilt adjustment function is added to the image projection device 10, the convenience of the tilt can be improved. Instead of the above-described tilt 'joint 24, a known tilt adjustment using simple screw fitting is possible. You can use the mechanism!
  • the image projection device 10 is connected to a part of a portable information terminal PDA as a portable information device by a rotary joint 212 as a mounting tool. In addition, it is electrically connected by a connection cable 32 (see FIG. 1), so that an image is projected on an arbitrary wall 214 with at least an image signal transmitted to the image projection device 10. As used.
  • the PDA 210 is mounted on a fixed object such as a table, and the image projection apparatus 10 is supported by the PDA 210, whereby the image projection apparatus 10 is positioned. Is done.
  • the image projection device 10 can be adjusted by a rotary joint 212 about a horizontal axis fixed to the PDA 2 10 or another rotational axis intersecting the PDA 2 10 with a degree of freedom of at least one axis. This makes it possible to easily adjust the angle at which the image projection device 10 emits image light within a vertical plane.
  • equipment other than the image projection apparatus 10-power PDA 210 can also capture power.
  • FIG. 12 is a plan view showing the optical configuration of the image projector 230 according to the present embodiment. ing.
  • a light source unit 240, a spatial modulation unit 242 and a projection lens unit 14 are mounted on a device housing 232 so as to be arranged in series with each other. Since the electrical configuration of the image projection device 230 is basically the same as that of the image projection device 10 according to the first embodiment, the description thereof is omitted.
  • the light source unit 240 1S cross prism 56 and three of the four side surfaces surrounding the cross prism 56 are included.
  • the light sources 250R, 250G, and 250B are included, and the basic configuration is the same as that of the light source unit 10 of the image projector 10 according to the first embodiment. However, the detailed configuration of each light source 250R, 250G, 250B is different from that of the first embodiment.
  • each light source 250R, 250G, 250B force has a substrate 254 made of borosilicate glass, and each light source 250R, 250G, 250B force is a thin film LED of about lOOnm.
  • the organic LEDs 260R, 260G, and 260B are the main components. Organic LEDs are sometimes referred to as organic EL.
  • organic LEDs 260R, 260G, and 260B are directly formed on the substrate 254.
  • the light sources 250R, 250G, and 250B are mounted on the substrate 254 via the grating plates 270R, 270G, and 270 repulsive forces S, and the bridges 274, respectively.
  • grating means an element having a diffraction function, and is produced by, for example, multi-step etching, the principle of CGH, or machining such as grinding.
  • a grating plate 270 representing the grating plates 270R, 270G, and 270 mm is shown in a side view and a plan view, respectively.
  • the grating plates 270R, 270G, and 270 ⁇ are formed by laminating a grating molded product (material: ⁇ ) 280 and a sub-wavelength structure molded product (material: ⁇ ⁇ ) 282.
  • a sub-wavelength structure AR layer 284 is formed on the surface of the sub-wavelength structure molded product 282.
  • a plurality of grooves are arranged along a plurality of concentric circles.
  • the grating molded product 280 can also have a sub-wavelength size in the grating pitch, which can be said to be a sub-wavelength element in a broad sense.
  • a grating has a sawtooth cross section as shown in Fig. 14 in order to partially increase the diffraction efficiency only for a specific order, and on the cross section.
  • a blazed grating in which the surface of each groove has a blazed angle is used.
  • Figure 14 shows a blazed grating with the groove depth set to the subwavelength size. Such a grating generates a large number of orders of diffracted light, of which the power is concentrated on only the + 1st order diffracted light.
  • the grating When monochromatic light from a point light source is input to such a grating, the grating functions as a positive power element that substantially diverges the divergent light from the point light source, thereby subtracting from the grating.
  • the refracting layer having a wavelength structure performs a light refracting function to refract incident light.
  • a refractive layer (not shown) having a sub-wavelength structure by a grating is formed on the grating molded product 282 shown in Fig. 13, and the above-mentioned light refraction function is achieved by this grating molded product 282. Will be fulfilled.
  • this light refraction function the direction of light beams having various direction vectors emitted from the same point light source power is divergently aligned in one direction. As a result, the light emitted from the same point light source is condensed.
  • a grating is produced by forming a plurality of slopes and grooves on a base material in different patterns depending on positions. However, if observed locally, the multiple slopes and grooves are arranged periodically.
  • a two-dimensional pattern distribution is calculated by a computer or the like, and then, according to the calculated pattern, a mold as a transfer mold is held on a rotary workbench, and fine processing is performed. By using a machine or the like, the mold is directly processed to form a reversed pattern shape.
  • a grating is produced by carrying out a copy production method such as injection molding or casting using the mold.
  • the grating plates 270R, 270G, and 270B are adhered to the cross prism 56 in an accurately positioned state by a light-transmitting adhesive 290 that is hardened by UV irradiation.
  • the spatial modulation section 242 is disposed on the polarization beam splitter plate 300 using the sub-wavelength structure and on the exit side thereof.
  • the transmissive LCD 302 has a cross prism with a polarizing beam splitter plate 300. In a straight line with Mu 56!
  • the polarization beam splitter plate 300 is shown in an enlarged side view.
  • the polarization beam splitter plate 300 is a sub-wavelength structure molded product 304, and a polarizing layer 306 is formed on the surface thereof.
  • the polarizing beam splitter plate 300 transmits linearly polarized light in one direction (P wave in the example of FIG. 15) among the RGB light incident thereon, while transmitting linearly polarized light in a direction orthogonal thereto (P wave).
  • P wave linearly polarized light in one direction
  • the S wave is reflected.
  • the linearly polarized light transmitted through the polarizing beam splitter plate 300 is then transmitted as shown in FIG. Incident on LCD302.
  • the transmissive LCD 302 the polarization direction of the incident linearly polarized light is twisted by 90 degrees for each pixel, or the force that is emitted from the transmissive LCD 302, or 0 degrees to exit from the transmissive LCD 302. Undergoes modulation.
  • the linearly polarized light subjected to the selective modulation action is then discriminated from the image signal light by the polarizing layer provided on the exit surface of the transmissive LCD 302, and selectively transmitted from the transmissive LCD 302 for each pixel.
  • the component reflected by the polarizing beam splitter plate 300 returns to the light source unit 240 side and disappears.
  • the entrance surface of the polarization beam splitter plate 300 and the exit surface of the cross prism 56 are positioned with high accuracy by a light-transmitting adhesive 310 that is cured by UV irradiation. In this state, they are bonded together.
  • the transmissive LCD 302 force is attached to the polarizing beam splitter plate 300 via a bridge 312 in parallel with the polarizing beam splitter plate 300.
  • This transmissive LCD 302 has a plate shape and modulates the transmittance of image light for each pixel.
  • the transmissive LCD 302 is attached with heat radiating fins 314 as heat radiating portions in close contact with each other.
  • the temperature rise of the transmissive LCD 302 is suppressed by the air cooling effect by the heat radiation fins 314 and the heat transfer effect by the bridge 312. As a result, the image contrast is not lowered due to the temperature rise.
  • the projection lens unit 14 is arranged on the light exit side of the transmissive LCD 302. ing.
  • the projection lens unit 14 has a configuration common to the first embodiment.
  • FIG. 16 shows a plan view of the optical configuration of the image projection apparatus 330 according to the present embodiment.
  • the light source 340, the spatial modulation 342, and the projection lens unit 14 are mounted on the device housing 232 so as to be directly aligned with IJ. ing.
  • this embodiment is different from the second embodiment with respect to only a part of the light source unit 340 and the spatial modulation unit 342, only different elements will be described in detail.
  • the electrical configuration of the image projection apparatus 330 according to the present embodiment is the same as that of the image projection apparatus 230 according to the second embodiment, and thus the description thereof is omitted.
  • the light source unit 340 includes three light sources 350R, 35 OG, and 350B, as in the second embodiment.
  • Each of the light sources 350R, 350G, and 350B is configured mainly with double-heterostructure LEDs 360R, 360G, and 360B as in the first and second embodiments.
  • the light source 350R is taken as an example, and the surface of each LED 360R, 360G, 360B and the sub-wavelength AR layer 364 are formed as shown in the enlarged side sectional view in Fig. 17. ing.
  • Each LED360R, 360G, 360mm [This is the AR layer 364 [From here, the loss caused by multiple reflections when passing through the exit surface of each LED360R, 360G, 360mm, that is, the final] In particular, the loss due to the photons consumed in the light source is reduced. As a result, the LED3 60R, 360G, and 360-degree light extraction efficiency can be improved compared to the case where the AR layer 364-force does not exist. In general, since the planar reflectance of the optical semiconductor material is about 30%, suppressing this to 0.1% or less directly leads to an improvement in the electrical-light conversion efficiency of the light source.
  • substrate electrodes 365a and 365b are formed on the substrate 254! LED360R electrode (gold thin film) 366a, another board electrode 365b LED360R another electrode (gold thin film) 366b are connected to each other.
  • the electrode 366b is connected to the transparent electrode layer 368 via the conductor 367! /.
  • the transparent electrode layer 368 and the electrode 366a face each other with the active layer 369 therebetween.
  • the transparent electrode layer 368, the electrode 366a, and the active layer 369 form a laminated structure.
  • the spatial modulation unit 342 is configured to include a transmissive LCD 302 that is common to the second embodiment, and a laminated CGH plate 370 that is different from the second embodiment.
  • the laminated CGH plate 370 is shown in an enlarged side view.
  • This laminated CGH plate 370 consists of an R wavelength discrimination CGH plate 380R that discriminates the wavelength of the red beam, a G wavelength discrimination CGH plate 380G that discriminates the wavelength of the green beam, and a B wavelength discrimination CGH plate that discriminates the wavelength of the blue beam. It is a laminate with 380B.
  • the wavelength discrimination CGH plates 380R, 380G, and 380B are made of CGH, and then laminated and bonded together. In this case, light divergently emitted from each of the LED ED360R, 360G, and 360B forces as the light source travels along the different paths for each color in the cross prism 56 while maintaining the divergent state.
  • the RGB light emitted from the cross prism 56 in this manner may be parallel light or may not be parallel light.
  • Such RGB light is equivalent to white light divergently emitted from a white point light source if the possibility of adjusting the white balance by color is ignored.
  • FIG. 18 shows white light divergently emitted from the RGB light power white point light source emitted from the cross prism 56.
  • RGB light is incident on the laminated CGH plate 370 described above.
  • R wavelength discrimination CGH plate 380R collimates only the red component light (R light) of the incident RGB light by adapting the two-dimensional periodic structure of sub-wavelength to the wavelength of red light, and Refract in the setting direction.
  • the G wavelength discriminating CGH plate 380G makes only the green component light (G light) out of the incident RGB light parallel by adjusting the two-dimensional periodic structure of the sub-wavelength to the wavelength of the green light. Refract in the same refraction direction as the R light.
  • the B wavelength discrimination CGH plate 380B collimates only the blue component light (B light) of the incident RGB light by adapting the two-dimensional periodic structure of the sub-wavelength to the wavelength of the blue light. And refract in the same refraction direction as R light.
  • the light emitted from the laminated CGH plate 370 travels as substantially parallel light in substantially the same direction.
  • the combined light of R light, G light and B light is the combined light of R light, G light and B light.
  • FIG. 19 is a plan view showing the optical configuration of image projection apparatus 400 according to the present embodiment.
  • this image projection apparatus 400 differs from the third embodiment regarding the type of light source, and further differs from the third embodiment in that the cross prism 56 is not used to synthesize three component lights. Is different.
  • this image projection apparatus 400 also uses a transmissive LCD 302 in that a deformable mirror device (hereinafter abbreviated as “DMD”) 402 is used to perform spatial modulation. Different from form.
  • DMD deformable mirror device
  • an image projection apparatus 400 includes an apparatus housing 404, and a light source unit 410 is provided in the apparatus housing 404.
  • the light source section 410 includes a ceramics light source housing 412.
  • the light source housing 412 has three cavities 414R, 414G, and 414B forces S arranged in a row in a row and in the same direction. Is formed. These three cavities 414R, 414G, and 414B are all used in a substantially vacuum state.
  • a carbon nanotube (CNT) 420 is installed at the bottom.
  • the carbon nanotube 420 is an assembly of needles having a nano structure made of carbon. This is an example of an electron emission source and an example of a field 'emission' device.
  • a force sword 422 that is a counter electrode is further installed in the vicinity of the carbon nanotube 420.
  • the R light emitting phosphor 430R, the corresponding cavity 414R, and the carbon nanotube 420 constitute an R light source 440R that emits red component light
  • the carbon nanotube 420 constitute a G light source 440G that emits green component light
  • the B light emitting phosphor 430B and the corresponding cavity 414B and the carbon nanotube 420 constitute a B light source 440B that emits blue component light.
  • the three light sources 350R, 350G, and 350B constitute the light source unit 410.
  • the light source housing 412 is provided in common for the three light sources 35 OR, 350 G, and 350 B.
  • the three light sources 350R, 350G, 350B are electrically connected to the field sequential driver 188 at least in the carbon nanotube 420, and in the same manner as in the first embodiment, Three light sources 350R, 350G, 350B are driven sequentially according to the field sequential method.
  • light source unit 410 is configured to further include multiplexing unit 450.
  • a stacked CGH plate 452 as a multiplexing unit 450 is disposed in front of the light source unit 410 so as to face the light source unit 410.
  • the laminated CGH plate 452 has the same function and structure as the laminated CGH plate 370 in the third embodiment.
  • the laminated CGH plate 452 has a plate-like sub-wavelength structure molded product 456 on which a broadband AR layer 454 is formed, and R light refraction that discriminates and refracts the wavelength of red light.
  • a plate-like sub-wavelength structure molded product 470B on which a B light refraction layer 460B is formed are laminated together and fixed in close contact with each other.
  • the DMD 402 is disposed in front of the laminated CGH plate 452 so as to be obliquely opposed to the laminated CGH plate 452 at a predetermined angle described later.
  • the RGB light (combined light) emitted from the laminated CGH plate 452 travels along the substantially normal direction of the emission surface of the laminated CGH plate 452, and eventually enters the DMD 402.
  • the optical axis at this time is called the incident optical axis S. While there is only one incident optical axis S, there are two or more outgoing optical axes that are the optical axes of image light emitted from the DMD 402. This will be explained in detail below.
  • a plurality of flexible reflection mirrors are arranged in a matrix.
  • one reflection mirror is associated with one pixel.
  • a mirror driver (not shown) that drives a reflection mirror associated with the pixel is turned on, and the reflection mirror is tilted in a predetermined direction.
  • the optical axis of the light emitted from the reflecting mirror in this tilted state is the outgoing optical axis T during bright display.
  • the mirror driver that drives the reflecting mirror associated with the pixel is turned off, and the reflecting mirror is moved in a direction opposite to the predetermined one direction. Tilt to. In this state, the optical axis of the light emitted from the reflecting mirror is the outgoing optical axis L during dark display.
  • the angle formed between the incident optical axis S and the outgoing optical axis T during bright display is ⁇ i
  • the angle formed between the outgoing optical axis T during bright display and the outgoing optical axis L during dark display are shown as ⁇ o respectively.
  • An example of the angle ⁇ i is 10 degrees
  • an example of the angle ⁇ o is 20 degrees.
  • the DMD 402 performs tilt modulation of 5 degrees on both sides of the reflection mirror for each pixel by on / off control.
  • the DMD 402 is directly attached with heat radiation fins 480 as heat radiation portions.
  • the irradiated part may generate heat and be deformed, or stray light may be generated. Therefore, in the present embodiment, an absorber (for example, a carbon black body) 482 that receives emitted light during dark display and absorbs the heat of the emitted light to dissipate it is installed in the apparatus housing 404.
  • an absorber for example, a carbon black body
  • the projection lens unit 14 is arranged in front of the DMD 402 so as to face the surface of the DMD 402.
  • This projection lens unit 14 is the first embodiment This is basically the same as the projection lens unit 14 in this state.
  • a lens made of plastic is provided between the lenses 154 and 156 both made of plastic.
  • the light source unit 410 in the present embodiment can be used to replace the light source units 40, 240, and 340 in the first to third embodiments.
  • the light source unit 410 is mainly composed of the carbon nanotubes 420.
  • the light source unit 510 includes the light source unit 510.
  • the plasma light-emitting element is mainly used.
  • the combining unit 450 is configured to have a two-dimensional sub-wavelength structure.
  • the combining unit 512 has a three-dimensional structure. It is configured to include a photonic crystal plate 520 having a typical subwavelength structure, that is, a waveguide structure! RU
  • FIG. 21 shows a plan view of the light source unit 510 and the photonic crystal plate 520 taken out of the image projection apparatus 500 according to the present embodiment.
  • the light source unit 510 is provided with a ceramic light source housing 530 in the same manner as in the fourth embodiment, and the light source housing 530 has three cavities 532R, 532 G. , 532B are formed side by side in a row and open in the same direction. These three cavities 532R, 532G, and 532B are all used in a state of being filled with plasma gas.
  • the phosphors 540 R, 540G, and 540B are formed in portions other than the openings. Specifically, the R phosphor 540R for emitting red component light is formed in the cavity 532R, and the G phosphor 540G for emitting green component light is formed in the cavity 532G. In this case, B phosphor 540B for emitting blue component light is formed.
  • the bottom of the light source housing 530 has three cavities, common to the 532R, 532G, and 532B.
  • a dielectric substrate 546 is formed.
  • three address electrodes 550R, 550G, and 550B are embedded at positions facing the bottoms of the three cavities 532R, 532G, and 532B.
  • the rear dielectric substrate 546 is covered with a rear glass 556 common to the three cavities 532R, 532G, and 532B on the side opposite to the light source housing 530.
  • three front transparent dielectric layers 560R, 560G, and 560B that respectively close the openings of the three cavities 532R, 532G, and 532B are formed. Yes.
  • an appropriate number of transparent display electrodes 566 are embedded at least in the horizontal direction.
  • These transparent dielectric layers 560R, 560G, and 560B are opposite to the light source nosing 530.
  • the three layers of the transparent dielectric layer 5 32R, 532G, and 532B are covered with this common front glass 568. I'm!
  • the R phosphor 540R, the corresponding cavity 532R, the address electrode 550R, and the transparent display electrode 566 constitute an R light source 570R that emits red component light
  • address electrode 550G and transparent display electrode 566 constitute G light source 570G which emits green component light
  • B phosphor 540B and corresponding cavity 532B, address electrode 550B and transparent display electrode 5 66 constitute the B light source 570B that emits the blue component light
  • the light source unit 510 is configured by the three light sources 570R, 570G, and 570B.
  • the light source housing 530 is provided in common for the three light sources 570R, 570G, and 570B.
  • the three light sources 570R, 570G, and 570B are the same as those in the fourth embodiment, and the address electrodes 550R, 550G, and 550B and the transparent display electrode 566 are not shown! / These are electrically connected to a finalore sequential driver 188, and the three light sources 570R, 570G, and 570B are sequentially driven in accordance with the field sequential method in the same manner as in the fourth embodiment.
  • light source unit 510 is configured to further include multiplexing unit 512. Specifically, as shown in FIG. 21, a photonic crystal plate 520 as a multiplexing unit 512 is disposed in front of the light source unit 510 so as to face the light source unit 510.
  • the photonic crystal plate 520 is enlarged and shown in a side sectional view.
  • Figure 22 shows that the three light sources 570R, 570G, and 570B are each a point light source, that the three light sources 570R, 570G, and 570B are sequentially selected and driven, and that the point light source emits light.
  • the light source unit 510 is simply expressed as a single point light source.
  • the plate-like photonic crystal plate 520 is composed of a waveguide-type photonic crystal 580 having a three-dimensional periodic structure and a broadband AR layer 582 is two-dimensional.
  • the AR plate 584 formed on the substrate is laminated.
  • the broadband AR layer 84 exhibits an anti-reflection function by a sub-wavelength structure in which a plurality of tapered convex portions 82 are arranged at sub-wavelength intervals.
  • Broadband AR layer 84 also exhibits a deflection function for coupling a light beam to incident end 590 of photonic crystal 580.
  • the photonic crystal 580 is an example of a photonic band gap (PBG) element.
  • the PBG element is an element formed so as to have a dielectric periodic structure with a sub-wavelength period from the viewpoint of photon manipulation.
  • the basic structure of the PBG element is a multi-layer stacked SOI (silicon 'on' insulator), and its application is not limited to a small passive optical circuit, but a new functional element represented by an opto-electric active element. Directed.
  • the PBG element can modulate the transmittance of the light source, and can perform polarization control and phase control.
  • the principle that a photonic band gap is formed is that a forbidden band is generated in a photonic crystal like an electron, and the existence of a photon having that energy is prohibited. Therefore, in a crystal with a photonic band gap formed in all directions, photons having energy in the forbidden band cannot exist in the photonic crystal.
  • a waveguide structure is realized using the photonic crystal 580 having such properties. If the optical confinement effect due to the photonic band gap is used, the internal structure of the three-dimensional crystal is changed to a waveguide type, in particular, a waveguide type. At the incident end 590 of the photonic crystal 580, a plurality of waveguides formed in the photonic crystal 580 are coupled with high efficiency. Further, the incident light is guided without loss to the emission end 592 of the photonic crystal 580.
  • the photonic crystal 580 is formed as follows. First, a plurality of air holes are regularly formed at sub-wavelength intervals in the silica glass as a base material. By laminating multiple pieces of this silica glass with accurate alignment, a block with a three-dimensional structure is constructed. Of this block, the pre-formed air holes are removed from the portion where the waveguide is to be formed. Photons are allowed to localize in the missing portion, and as a result, a waveguide is formed in the photonic crystal 580.
  • the three-dimensional waveguide structure can be formed as follows, for example. First, a two-dimensional PBG structure is formed on the base material, and then the second and subsequent base materials are laminated by physical and chemical means such as epitaxial growth and spin coating. Using this same PBG structure formation method (usually electron beam lithography), a three-dimensional structure is formed by repeating processing and laminating sequentially while keeping the workpiece chuck fixed.
  • the light source unit 510 in the present embodiment can be used to replace the light source units 40, 240, 340, 410 in the first to fourth embodiments.
  • the light source unit 510 in the present embodiment can be used to replace the light source units 40, 240, 340, 410 in the first to fourth embodiments.
  • the image projectors 10, 230, 330, 400, 500 according to some embodiments described above generate component light of a plurality of colors (monochromatic light) and generate component light for each color and each pixel.
  • the image projection device 610 according to the present embodiment is a type that projects an image in full color by modulating the intensity, but the image projection device 610 according to the present embodiment generates white light and modulates each color intensity of the white light for each pixel, thereby generating an image. Are projected in monochrome or color.
  • the light source unit 620 of the image projection apparatus 610 is shown in a side sectional view.
  • the light source unit 620 is configured to include an arc lamp 622 as one point light source and a PBG plate 624 as a collimator.
  • the arc lamp 622 includes a lamp housing 626, as is well known! / In which a pair of electrodes 630, 630 are opposed to each other with a gap therebetween. Since arc discharge occurs in the gap, there is a light emitting point where the arc is emitted in a part of the space in the gap. The arc emits light divergently in all directions. A part of the light is shielded by the electrode 630 or the like, and as a result, the arc lamp 622 becomes a light source having a light emission characteristic having a certain radiation pattern.
  • the PBG plate 624 having the above-described PBG function is arranged in front of the arc lamp 622.
  • the 1/0 plate 624 includes a refractive layer 632 having a sub-wavelength structure, and condenses divergent white light incident on the refractive layer from the arc lamp 622 into parallel light.
  • the PBG plate 624 can perform an anti-reflection function by a subwavelength structure.
  • a cold mirror reflector 634 is disposed behind the arc lamp 622. As a result, the entire light omnidirectionally emitted from the arc lamp 622 is effectively directed to the PBG plate 624.
  • the light source unit 620 is mainly composed of the arc lamp 622
  • the light collected from the arc lamp 622 is transmitted to the next stage with high efficiency by the light collecting function (or the light collecting function and the anti-reflectance function) of the PBG plate 624.
  • the arc lamp 622 and the PBG plate 624 Conversion efficiency is improved as compared to the conventional case.
  • the image projection apparatus according to the first to fifth embodiments described above, 10, 2, 30, 330, 400, 500, and the calorific power of the arc lamp 622 is less! / ⁇ light source ⁇ 40, 240 , 34 0, 410, 510 are used.
  • the light emitted from the light source units 40, 240, 340, 410, 510 in the direction different from the direction of the directional force is applied to the next stage.
  • the light source unit 620 in this embodiment is used to replace the light sources ⁇ 240, 340, 410, 510 in the first to fifth embodiments! /, It is possible.
  • the light source unit 620 is configured mainly by the arc lamp 622.
  • the light source unit 660 is mainly composed of a well-known filament lamp 662.
  • the filament lamp 662 includes a lamp housing 664, in which a pair of electrodes 670, 670 are opposed to each other with a gap therebetween. Both ends of the filament 672 are joined to the pair of electrodes 670 and 670, respectively.
  • the filament lamp 662 is a partial force light emitting region surrounded by a broken-line circle in FIG.
  • this light emitting area is small, for example, a diameter of 3 mm or less, the light emitting area From the viewpoint of a positive power element located sufficiently far from the area, the light emitting area can be regarded as a substantially point light source. On the other hand, when the light emitting area cannot be regarded as a substantially point light source, the light emitted from the light emitting area is transmitted to the next stage by using a highly efficient condensing means. It is possible.
  • a PBG plate common to the PBG plate 624 is arranged as a light condensing means in front of the filament lamp 662, as in the sixth embodiment.
  • the light source Portion 660 is configured to include a filament lamp 662 and its PBG plate. Due to the presence of the PBG plate, the electro-optical conversion efficiency of the light source unit 660 is improved as compared with the case where the PBG plate is not present.
  • the light source unit 620 is of a type that emits light without using the resonance of light, whereas in the image projector 690 according to the present embodiment, as shown in FIG. Is a type in which the light source unit 700 emits light by utilizing gain enhancement by resonance of light such as a laser.
  • FIG. 25 shows only light source unit 700 in image projection apparatus 690 according to the present embodiment.
  • the light source unit 700 is configured to include a photon generation source 702, a subwavelength structure element 704, and a power input source 706! RU
  • the photon generation source 702 is mainly composed of, for example, a semiconductor that generates photons according to current density. Examples of the semiconductor include (In-Ga-N), (Si-C), and (Al.In.Ga ⁇ P).
  • the photon generation source 702 includes an emission surface 710 from which light is emitted along the optical axis, and a light source side resonance mirror surface 712 that faces the emission surface in the optical axis direction.
  • the light source side resonance mirror surface 712 is formed as a cleavage plane.
  • the photon generation source 702 generates photons by the power (for example, electric energy) input from the power input source 706.
  • a sub-wave that performs an anti-reflection function is provided on the emission surface 710 of this photon source 702.
  • An AR layer 714 having a long structure is physically formed.
  • the sub-wavelength structure is configured such that a plurality of convex portions 82 are two-dimensionally arranged at sub-wavelength intervals. This AR layer makes it possible to emit light from the light exit surface 710 without any loss due to reflection at the light exit surface 710 to be emitted from the photon generation source 702.
  • a plate-like subwavelength structure element 704 is arranged in front of the photon generation source 702.
  • the sub-wavelength structure element 704 includes an incident end 720 where the outgoing light from the photon generation source 702 is incident, and an outgoing end 722 where the incident light exits toward the next stage.
  • An anti-transmission resonant mirror surface 730 is integrally formed on the incident end 720 of the sub-wavelength structure element 704 with a two-dimensional sub-wavelength structure.
  • the anti-transmission resonant mirror surface 730 may be a recess (or a hole penetrating the sub-wavelength structural element 704 in the thickness direction) opened in the anti-transmission resonant mirror surface 730.
  • the plurality of recesses can be configured as a regular arrangement in a lattice pattern at intervals of 420 nm on a silicon thin film having a thickness of 250 nm.
  • the plurality of recesses act as an array of a plurality of minute mirrors due to the light forbidden effect of the photonic band gap, and most of the incident light on this anti-transmission resonant mirror surface 730 is photon generation source 702 The light is reflected by the light source side resonance mirror surface 712 inside.
  • the light reflected on the anti-transmission resonant mirror surface 730 is repeatedly reflected between the anti-transmission resonant mirror surface 730 and the light source side resonant mirror surface 712 and travels back and forth. Be made. Due to this light resonance phenomenon, the quantum efficiency of the photon generation source 702, that is, the electro-optical conversion efficiency is improved.
  • the anti-transmission resonance mirror surface 730 and the light source side resonance mirror surface 712 constitute a pair of opposed mirror surfaces, and the light source unit 700 is designed so as to exceed the resonance gain force of light by the pair of opposed mirror surfaces.
  • the quantum efficiency of the photon source 702 is such that, in cooperation with a subwavelength structural element 704 having an anti-transmission resonant mirror surface 730, such a subwavelength structural element 704 is not used (e.g., an LED is simply If it emits light) it will improve.
  • a pair of cooperating mirror surfaces such as the anti-transmission resonant mirror surface 730 and the light source side resonant mirror surface 712 can be arranged in various other modes.
  • the pair of cooperating mirror surfaces can be respectively disposed on both sides of the photon source 702 with the photon source 702 being separated from each other. According to this arrangement, in addition to the effect of improving the quantum efficiency due to the resonance of light, it becomes possible to deflect the beam by the angle tilt of each mirror surface, and the resonant wavelength modulation by adjusting the mirror interval is possible. As a secondary effect.
  • the light source unit 700 in the present embodiment replaces the light sources ⁇ 240, 340, 410, 510, 620, 660 in the first to seventh embodiments. ! It is possible to talk.
  • the light emitted from each of the light sources 50R, 50G, and 50B is visible light
  • the light source The unit 760 is configured to include at least one light source that generates invisible light, and at least one conversion unit that converts the invisible light generated by the light source force into visible light.
  • the image projection apparatus 750 includes a light source unit 760 force three X-ray sources 762, 762, 762, and these X-ray sources 762, 762,
  • the 762 is configured to include three plate-like wavelength shifters 770R, 770G, and 770B provided in the 762 respectively.
  • one X-ray source 762 and one wavelength shifter 770 that generate one of the three component lights (R light, G light, and B light) together are representative.
  • These three X-ray sources 762, 762, and 762 constitute an example of the above-mentioned “at least one light source”, and the three wavelength shifters 770R, 770G, and 770B
  • An example of the “conversion unit” is as follows.
  • Each wavelength shifter 770R, 770G, 770B uses a sub-wavelength structure to The incident invisible light is converted into visible light.
  • the sub-wavelength structure has a photonic band gap, a light confinement effect occurs, and light is constrained by the dielectric defect portion.
  • the energy level of the constrained photon increases the energy level in the semiconductor substrate, which is the optoelectronic active device, and as a result, when the optoelectronic active device returns to the ground state, the energy level is increased.
  • a photon with a frequency proportional to the difference is emitted.
  • the opto-electric active device is the above-described wavelength shifter 770R, 770G, or 770B.
  • the X-ray source 762 is provided for each component light, but the present invention is configured so that one X-ray source is provided in common for a plurality of component lights. Can be implemented.
  • the plurality of wavelength shifters 770R, 770G, and 770B respectively corresponding to these component lights can be integrated in a compact manner by stacking them on the emission axis of one X-ray source, for example. Is possible.
  • the light source unit 760 in the present embodiment replaces the light source 340, 410, 510, 620, 660, 700 in the second to eighth embodiments. !
  • the wavelength shifters 770R, 770G, 770B are changed to convert visible light into invisible light, and then the wavelength shifters 770R, 770G, 770B,
  • an image display device that displays a radiation image or an infrared ray image can be configured.
  • the wavelength shifters 770R, 770G, and 770B are used, for example, any power of R light, G light, and B light (for example, R light) is used as R light. It can be changed to realize the three primary colors by shifting the wavelength to G light and B light. In this way, the R, G, and B lights can be reduced more easily than the case where three primary color lights are realized using light emitting elements individually.
  • the sub-wavelength structure element itself is a radiation source that can be reactively controlled. May be.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

A device (10) for displaying an image is disclosed. The device (10) includes (a) irradiation source sections (40, 50R, 50G, 50B) which convert electricity into electromagnetic waves and output the converted electromagnetic waves, and (b) reactive elements (70R, 70G, 70B) arranged by being correlated with the irradiation source sections (40, 50R, 50G, 50B). The reactive elements (70R, 70G, 70B) have, for instance, periodic structures into which the electromagnetic waves outputted from the irradiation source sections enter. In the case where the electromagnetic wave enters into the periodic structure, as the entered electromagnetic wave is influenced by the periodic structure, characteristics of outgoing electromagnetic wave outputted from the periodic structure change to be different from those of the entered electromagnetic wave.

Description

明 細 書  Specification
画像表示装置および放射源装置  Image display device and radiation source device
技術分野  Technical field
[0001] 本発明は、電気を電磁波に変換して出射する放射源部を用いて画像を表示する技 術に関するものであり、特に、放射源部の出力特性を改善する技術に関するもので ある。  TECHNICAL FIELD [0001] The present invention relates to a technique for displaying an image using a radiation source part that converts electricity into an electromagnetic wave and emits it, and particularly relates to a technique for improving output characteristics of the radiation source part.
背景技術  Background art
[0002] 画像を表示する画像表示装置が既に知られている(例えば、日本国特許第 30335 45号公報参照。 ) 0この種の画像表示装置は、一般に、電気を電磁波(例えば、電波 、可視光、非可視光、赤外線、紫外線、放射線)に変換し、その変換された電磁波を 出射する放射源部を含むように構成される。 [0002] Image display devices that display images are already known (see, for example, Japanese Patent No. 3033545). 0 This type of image display device generally uses electricity to generate electromagnetic waves (for example, radio waves, visible light, etc.). Light, invisible light, infrared light, ultraviolet light, radiation), and a radiation source unit that emits the converted electromagnetic wave.
[0003] この種の画像表示装置の一応用例は、変調された電磁波を投影対象に向けて投 影して結像する投影部をさらに含むように構成される画像投影装置である。別の応用 例は、フラット 'パネル ·ディスプレイである。さらに別の応用例は、光線投影表示装置 スライド ·プロジェクタである。  [0003] One application example of this type of image display apparatus is an image projection apparatus configured to further include a projection unit that projects a modulated electromagnetic wave toward a projection target to form an image. Another application is a flat 'panel display. Yet another application is a light projection display device slide projector.
[0004] 前記日本国特許第 3033545号公報にはプロジェクタが記載されている。このプロ ジェクタは、光を出射する光源部を上述の放射源部として備えている。このプロジェク タにおいては、その光源部から出射した光が、ダイクロイツクミラー、前述の変調部と しての液晶ライトバルブと光合成プリズムとを有する光学ヘッドユニット、ならびに投写 レンズをそれらの順に経て出射することにより、画像が投影対象に投影される。  [0004] Japanese Patent No. 3033545 discloses a projector. This projector includes a light source unit that emits light as the above-described radiation source unit. In this projector, the light emitted from the light source part is emitted through the dichroic mirror, the optical head unit having the liquid crystal light valve and the light combining prism as the modulation part, and the projection lens in that order. As a result, the image is projected onto the projection target.
発明の開示  Disclosure of the invention
[0005] 前記日本国特許第 3033545号公報に記載された形式のプロジェクタにおいては、 従来、量子効率(=出射量子数 Z入射電子数)が低い、すなわち、電気 電磁波変 換効率が低 、一方、電熱変換比率が高 、 (発熱量が多 、)アークランプが投写光源 であるように光源部が構成されるのが通常であった。そのため、このような従来のプロ ジェクタには、小型化が困難であると 、う問題や発熱の問題があった。  [0005] In the projector of the type described in Japanese Patent No. 3033545, conventionally, the quantum efficiency (= outgoing quantum number Z incident electron number) is low, that is, the electric electromagnetic wave conversion efficiency is low, Usually, the light source section is configured so that the electrothermal conversion ratio is high and the arc lamp is the projection light source (the heat generation amount is large). Therefore, such a conventional projector has a problem of heat generation and heat generation when it is difficult to reduce the size.
[0006] 具体的には、まず、アークランプの低量子効率に起因し、光源部による消費電力の 増加という問題があり、さらに、その問題に伴い、このプロジェクタの電池駆動化が困 難であるという問題や、高比率で電圧変換を行う部品が必要であるために、このプロ ジェクタの小型化が困難であるという問題もあった。 [0006] Specifically, first, due to the low quantum efficiency of the arc lamp, the power consumption by the light source unit is reduced. In addition, there is a problem that it is difficult to switch the battery of this projector to the problem, and parts that perform voltage conversion at a high ratio are necessary. There was also a problem that it was difficult.
[0007] 次に、アークランプの高電熱変換比率に起因し、このプロジェクタのうち高温に曝さ れる部品を耐熱構造ィ匕したり、そのような部品に対して積極的な冷却を行うことが必 要であった。  [0007] Next, due to the high electrothermal conversion ratio of the arc lamp, it is necessary to provide a heat-resistant structure for parts exposed to high temperatures in this projector and to actively cool such parts. It was important.
[0008] 具体的には、アークランプを耐熱構造のランプノヽウジングユニットに保持させること が必要であり、その耐熱構造を達成するため、ランプハウジングユニットを、耐熱ガラ スゃ耐熱セラミタス、耐熱プラスチック、耐熱マグネシウム合金といった高価な材料で 構成することが必要であった。さらに、アークランプから出射した光をこのプロジェクタ の出射口まで誘導する導光路を形成するための各部品であるダイクロイツクミラー、 液晶ライトバルブ、色合成プリズムおよび投写レンズも耐熱構造を有することが必要 であった。  [0008] Specifically, it is necessary to hold the arc lamp in a heat-resistant lamp-nosing unit. To achieve the heat-resistant structure, the lamp housing unit is made of heat-resistant glass, heat-resistant ceramic, heat-resistant plastic, It was necessary to construct it with an expensive material such as a heat-resistant magnesium alloy. In addition, the dichroic mirror, liquid crystal light valve, color composition prism, and projection lens, which are parts for forming the light guide that guides the light emitted from the arc lamp to the exit of the projector, must also have a heat-resistant structure. Met.
[0009] さらに、上述のランプノヽウジングユニット、および上述の導光路を形成するための各 種部品は高温に曝される部品であるため、それらを積極的に冷却する冷却ファンを 追加することが必要であった。このような冷却ファンを追加すると、このプロジェクタの 部品点数の増力 Πに加え、消費電力の増加、騒音の発生等の問題を招来する可能性 かあつた。  [0009] Further, since the above-mentioned lamp knowing unit and the various parts for forming the above-mentioned light guide are parts exposed to high temperatures, it is possible to add a cooling fan that actively cools them. It was necessary. If such a cooling fan was added, in addition to the increase in the number of parts of the projector, there was a possibility of causing problems such as increased power consumption and noise generation.
[0010] 以上説明した事情を背景とし、本発明は、電気を電磁波に変換して出射する放射 源部を用いて画像を表示する技術において、放射源部の出力特性を改善することを 課題としてなされたものである。  [0010] Against the background described above, the present invention has an object to improve output characteristics of a radiation source part in a technique for displaying an image using a radiation source part that converts electricity into an electromagnetic wave and emits it. It was made.
[0011] 本発明によって下記の各態様が得られる。各態様は、項に区分し、各項には番号 を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、本発明が 採用し得る技術的特徴の一部およびそれの組合せの理解を容易にするためであり、 本発明が採用し得る技術的特徴およびそれの組合せが以下の態様に限定されると 解釈すべきではない。すなわち、下記の態様には記載されていないが本明細書には 記載されている技術的特徴を本発明の技術的特徴として適宜抽出して採用すること は妨げられな 、と解釈すべきなのである。 [0012] さらに、各項を他の項の番号を引用する形式で記載することが必ずしも、各項に記 載の技術的特徴を他の項に記載の技術的特徴から分離させて独立させることを妨げ ることを意味するわけではなぐ各項に記載の技術的特徴をその性質に応じて適宜 独立させることが可能であると解釈すべきである。 [0011] The following aspects are obtained according to the present invention. Each mode is divided into sections, each section is given a number, and the number of other sections is quoted as necessary. This is to facilitate understanding of some of the technical features that can be adopted by the present invention and combinations thereof, and the technical features that can be adopted by the present invention and combinations thereof are limited to the following modes. Should not be interpreted. That is, although not described in the following embodiments, it should be construed that the technical features described in the present specification are not prevented from being appropriately extracted and adopted as the technical features of the present invention. . [0012] Further, it is not always necessary to describe each section in the form of quoting the numbers of the other sections, so that the technical characteristics described in each section are separated from the technical characteristics described in the other sections. It should be construed that the technical features described in each section can be made independent as appropriate according to their nature.
[0013] (1) 画像を表示する画像表示装置であって、 [0013] (1) An image display device for displaying an image,
電気を電磁波に変換し、その変換された電磁波を出射する放射源部と、 その放射源部に関連付けて設けられ、その放射源部から出射した電磁波が入射す る周期構造を有する板状のリアクティブ素子と  A radiation source unit that converts electricity into electromagnetic waves and emits the converted electromagnetic waves, and a plate-shaped reed having a periodic structure that is provided in association with the radiation source unit and receives electromagnetic waves emitted from the radiation source unit. With active elements
を含む画像表示装置。  An image display device.
[0014] この画像表示装置においては、放射源部に関連付けてリアクティブ素子が設けられ る。このリアクティブ素子は、放射源部から出射した電磁波が入射する周期構造を有 する。一方、電磁波が周期構造に入射した場合に、その入射電磁波がその周期構 造によって影響を受ける結果、その周期構造から出射する出射電磁波の特性 (電磁 波の伝搬方向およびその強度を表すポインティングベクトルを含む。)を入射電磁波 とは異なるものに変化させ得ることが知られている。  In this image display device, a reactive element is provided in association with the radiation source unit. This reactive element has a periodic structure in which an electromagnetic wave emitted from the radiation source is incident. On the other hand, when an electromagnetic wave is incident on a periodic structure, the incident electromagnetic wave is affected by the periodic structure. As a result, the characteristics of the outgoing electromagnetic wave emitted from the periodic structure (the pointing vector indicating the propagation direction and intensity of the electromagnetic wave are It is known that it can be changed to something different from the incident electromagnetic wave.
[0015] 周期構造は、少なくともそれの一縦断面において、凸部と凹部とが並ぶように構成 される。少なくとも 1次元的に凸部と凹部とが並ぶように構成されるのである力 通常 は、 2次元的または 3次元的に並ぶように構成される。凸部も凹部も、例えば、線状に 延びる形態や、点状を成す形態などを取り得る。 2次元的に並ぶように構成された周 期構造の一例は、後述のように、複数個の凸部が縦横に並ぶように基材に形成され たものであり、 3次元的に並ぶように構成された周期構造の一例は、支持体内に複数 個の屈折率段差部(例えば、エアホール)が 3次元的に並ぶように構成された導波路 (例えば、屈折型導波路)である。  [0015] The periodic structure is configured such that a convex portion and a concave portion are arranged at least in one longitudinal section thereof. Force that is configured so that the convex part and the concave part are aligned at least one-dimensionally. Usually, it is configured to align two-dimensionally or three-dimensionally. Both the convex part and the concave part can take, for example, a linearly extending form or a dotted form. As will be described later, an example of a periodic structure configured to be arranged two-dimensionally is formed on a base material so that a plurality of convex portions are arranged vertically and horizontally. An example of the configured periodic structure is a waveguide (for example, a refractive waveguide) configured such that a plurality of refractive index step portions (for example, air holes) are arranged three-dimensionally in a support body.
[0016] 具体的には、周期構造は、例えば、複数本のワイヤまたはランドと複数本のグルー ブまたはスリットとが同心円状を成して交互に並んで構成される場合や、複数個の突 起 (例えば、ピット)が縦横に並ぶように基材に形成される場合、複数個の穴が縦横 に並ぶように基材に形成される場合がある。それらは、凸部と凹部とが 2次元的に並 ぶ周期構造の具体例である。 [0017] 周期構造を、例えば、その周期構造に入射する入射電磁波の波長より短い周期( サブ波長)を有して複数個の凸部が並ぶように構成すると、その周期構造は、入射電 磁波にとっていわば見えない存在となるため、周期構造を形成する面に対して入射 角度が垂直である場合には、その入射電磁波から高次の回折波は発生せず、 0次の 透過波または反射波のみが発生する。これが、サブ周期構造の不可視性によるもの である。 [0016] Specifically, the periodic structure is, for example, a case where a plurality of wires or lands and a plurality of grooves or slits are arranged concentrically and alternately, or a plurality of protrusions. When the starting material (for example, pits) is formed on the substrate so as to be arranged vertically and horizontally, a plurality of holes may be formed on the substrate so as to be aligned vertically and horizontally. These are specific examples of a periodic structure in which convex portions and concave portions are arranged two-dimensionally. If the periodic structure is configured so that a plurality of convex portions are arranged with a period (subwavelength) shorter than the wavelength of the incident electromagnetic wave incident on the periodic structure, for example, the periodic structure becomes an incident electromagnetic wave. Therefore, when the incident angle is perpendicular to the surface forming the periodic structure, no higher-order diffracted wave is generated from the incident electromagnetic wave, and the 0th-order transmitted wave or reflected wave is not generated. Only occurs. This is due to the invisibility of the sub-periodic structure.
[0018] この周期構造を、さらに、凸部が少なくともそれの一縦断面においてテーパ状を成 すように構成すると、この周期構造においては、凸部の高さ方向に屈折率が徐々に 変化するため、その入射電磁波から反射波すら発生しない。これが、周期構造のァ ンチリフレクション機能によるものである。  [0018] When this periodic structure is further configured so that the convex portion has a taper shape in at least one longitudinal section thereof, in this periodic structure, the refractive index gradually changes in the height direction of the convex portion. Therefore, even a reflected wave is not generated from the incident electromagnetic wave. This is due to the antireflection function of the periodic structure.
[0019] このように、入射電磁波に与えたい影響は、周期構造の特性に依存するため、その 周期構造の特性次第で、出射電磁波の特性を所望のものとして実現することが可能 である。  [0019] As described above, since the effect to be exerted on the incident electromagnetic wave depends on the characteristics of the periodic structure, it is possible to realize the desired characteristics of the outgoing electromagnetic wave depending on the characteristics of the periodic structure.
[0020] したがって、本項に係る画像表示装置によれば、リアクティブ素子の周期構造を放 射源部に対する要求との関係において適正化することにより、放射源部の特性を改 善することが容易である。  [0020] Therefore, according to the image display device of this section, the characteristics of the radiation source section can be improved by optimizing the periodic structure of the reactive element in relation to the requirements for the radiation source section. Easy.
[0021] さらに、この画像表示装置によれば、放射源部の出力特性を改善するために設け られるリアクティブ素子が板状を成しているため、この画像表示装置にリアクティブ素 子が追加されるにしても、この画像表示装置のサイズおよび重量の増加を抑制するこ とが容易である。  Furthermore, according to this image display device, the reactive element provided to improve the output characteristics of the radiation source section has a plate shape, so that the reactive element is added to this image display device. Even so, it is easy to suppress an increase in the size and weight of the image display device.
[0022] 本項における「リアクティブ素子」は、受動的にまたは能動的に電磁波の状態量に 反応してその電磁波に一定の影響を与える素子であることを意味する。受動型のリア クティブ素子としては、例えば、反射素子、透過素子、回折素子、偏向素子、散乱素 子、光回収素子、波長変換素子、導波路等がある。一方、能動型のリアクティブ素子 としては、例えば、光スィッチ、変調素子、透過率制御素子、偏向制御素子、散乱制 御素子、エネルギー回復素子、波長変調制御素子等がある。  The “reactive element” in this section means an element that passively or actively reacts to the state quantity of the electromagnetic wave and has a certain influence on the electromagnetic wave. Examples of passive reactive elements include reflection elements, transmission elements, diffraction elements, deflection elements, scattering elements, light recovery elements, wavelength conversion elements, and waveguides. On the other hand, active reactive elements include, for example, optical switches, modulation elements, transmittance control elements, deflection control elements, scattering control elements, energy recovery elements, wavelength modulation control elements, and the like.
[0023] 本項における「周期構造」は、それの全体において、周期(すなわち、前述のダル ーブまたはスリットの間隔であり、格子間隔ともいう。)がー様に分布する場合もあれ ば、一様ではないように分布する場合もある。 [0023] The term "periodic structure" in this section may be distributed in a manner that the period (that is, the interval between the above-mentioned grooves or slits, also referred to as the lattice interval) is distributed in a whole manner. In some cases, the distribution is not uniform.
[0024] 本項における「放射源部に関連付けて設けられる」という表現は、例えば、放射源 部に対して本項における「リアクティブ素子」を別部品として追加することを意味する 場合と、放射源部のうちの少なくとも一部を本項における「リアクティブ素子」として機 能するように加工することを意味する場合とがある。  [0024] The expression "provided in association with the radiation source section" in this section means, for example, that the "reactive element" in this section is added as a separate part to the radiation source section, and radiation It may mean that at least a part of the source part is processed to function as the “reactive element” in this section.
[0025] (2) 前記リアクティブ素子は、前記放射源部と協働することにより、その放射源部の 電気 電磁波変換効率を増加させる効率増加機能を有する(1)項に記載の画像表 示装置。  [0025] (2) The image display according to (1), wherein the reactive element has an efficiency increasing function of increasing an electric electromagnetic wave conversion efficiency of the radiation source unit by cooperating with the radiation source unit. apparatus.
[0026] この画像表示装置においては、リアクティブ素子が放射源部と協働することにより、 その放射源部の電気—電磁波変換効率が、リアクティブ素子を使用しない場合より、 増加させられる。  In this image display apparatus, the reactive element cooperates with the radiation source unit, whereby the electric-electromagnetic wave conversion efficiency of the radiation source unit is increased as compared with the case where the reactive element is not used.
[0027] リアクティブ素子が放射源部と協働する態様としては、例えば、リアクティブ素子の アンチリフレクション機能 (後に詳述する。 )により、放射源部から出射した電磁波にそ の放射源部の出射面において反射による放射源部内部でのロスが発生することを抑 制する態様がある。さらに、リアクティブ素子の偏向機能 (後に詳述する。 )により、放 射源部から出射した電磁波のうち目標の進路力 斜めに外れようとするものを適当な 角度で偏向して目標の進路に戻すことにより、放射源部における出射電磁波の、次 段部とのカップリングロスを抑制する態様がある。いずれの態様にしても、放射源部 の電気 電磁波変換効率が、リアクティブ素子を使用しない場合より、増加させられ る。  [0027] As a mode in which the reactive element cooperates with the radiation source unit, for example, the anti-reflection function (described later in detail) of the reactive element causes the electromagnetic wave emitted from the radiation source unit to be affected by the radiation source unit. There is a mode of suppressing the occurrence of loss inside the radiation source section due to reflection on the exit surface. Further, the deflection function of the reactive element (described in detail later) deflects the electromagnetic wave emitted from the radiation source part that is going to deviate obliquely at the target path force at an appropriate angle to the target path. By returning, there is a mode in which the coupling loss of the outgoing electromagnetic wave in the radiation source part with the next stage part is suppressed. In either embodiment, the electromagnetic wave conversion efficiency of the radiation source section can be increased as compared with the case where no reactive element is used.
[0028] リアクティブ素子が放射源部と協働する態様としては、さらに、リアクティブ素子の電 磁波閉込め機能 (後に詳述する。 )により、放射源部から出射した電磁波を、その伝 送経路の屈曲の有無を問わず、より漏れなぐ次の光学素子に伝送することにより、 放射源部から出射した直後の電磁波の伝送中の損失を抑制する態様がある。さらに 、リアクティブ素子の屈折機能 (例えば、後述のグレーティング素子の波長選択的偏 向機能)により、発散する電磁波を平行化する態様がある。さら〖こ、リアクティブ素子 の波長選択的透過機能 (例えば、後述の PBG素子の偏光弁別フィルタ作用)により、 電磁波のうち特定の直線偏光成分のみを取り出す態様がある。 [0029] (3) 前記リアクティブ素子は、それに入射した電磁波の反射を防止するアンチリフレ クシヨン機能を有する(1)または(2)項に記載の画像表示装置。 [0028] As a mode in which the reactive element cooperates with the radiation source section, the electromagnetic wave emitted from the radiation source section is further transmitted by the electromagnetic wave confinement function (described later in detail) of the reactive element. Regardless of whether the path is bent or not, there is a mode in which the loss during transmission of the electromagnetic wave immediately after being emitted from the radiation source part is suppressed by transmitting to the next optical element that leaks more. Furthermore, there is a mode in which the diverging electromagnetic waves are made parallel by the refractive function of the reactive element (for example, the wavelength selective polarization function of the grating element described later). Furthermore, there is a mode in which only a specific linearly polarized light component is extracted from the electromagnetic wave by the wavelength selective transmission function of the reactive element (for example, the polarization discrimination filter action of the PBG element described later). [0029] (3) The image display device according to (1) or (2), wherein the reactive element has an anti-reflection function for preventing reflection of electromagnetic waves incident thereon.
[0030] この画像表示装置にお!ヽては、リアクティブ素子が、放射源部から入射した電磁波 の反射を防止するアンチリフレクション機能を有する。したがって、この画像表示装置 によれば、そのようなアンチリクレクシヨン機能を有しない前述の従来のプロジェクタに 比較し、放射源部力 の出射電磁波の反射によるロス (例えば、出射面における反射 によるロス)が低減され、放射源部とリアクティブ素子とを含む系全体としての電気 電磁波変換比率 (以下、単に「放射源部の電気—電磁波変換比率」という。)が向上 する。  In this image display device, the reactive element has an anti-reflection function for preventing reflection of electromagnetic waves incident from the radiation source unit. Therefore, according to this image display device, compared to the above-described conventional projector that does not have such an anti-recurrence function, the loss due to the reflection of the emitted electromagnetic wave of the radiation source force (for example, the loss due to the reflection on the emission surface) ) And the electromagnetic wave conversion ratio of the entire system including the radiation source part and the reactive element (hereinafter simply referred to as “the electric-electromagnetic wave conversion ratio of the radiation source part”) is improved.
[0031] この画像表示装置の実施によって放射源部の電気 電磁波変換比率が向上すれ ば、同じ電気エネルギーによって発生させ得る電磁波エネルギーが増加するため、 同じ電磁波エネルギーを発生させるために消費しなければならな 、電気エネルギー が節減可能となり、結局、放射源部の節電が可能となる。  [0031] If the electric wave electromagnetic wave conversion ratio of the radiation source section is improved by implementing this image display device, the electromagnetic wave energy that can be generated by the same electric energy increases, so it must be consumed to generate the same electromagnetic wave energy. In addition, the electric energy can be saved, and eventually the radiation source part can be saved.
[0032] さらに、この画像表示装置の実施によって放射源部の電気 電磁波変換比率が向 上すれば、同じ電気エネルギーに対し、電磁波エネルギーに付随して発生する熱量 が減少するため、この画像表示装置に対して熱対策を講じることを完全に省略可能 となるか、または講じることが必要であるとしてもそれは軽度なもので済む。  [0032] Further, if the electric electromagnetic wave conversion ratio of the radiation source section is improved by implementing this image display device, the amount of heat generated accompanying the electromagnetic wave energy is reduced with respect to the same electric energy. It can be completely omitted or even if it is necessary to take measures against heat, it can be mild.
[0033] (4) 前記リアクティブ素子は、それに入射した電磁波を偏向する機能は有するが、 偏光を弁別する機能は有しな 、(1)な 、し (3)項の 、ずれかに記載の画像表示装置  [0033] (4) The reactive element has a function of deflecting an electromagnetic wave incident on the reactive element, but does not have a function of discriminating polarized light. (1) None. Image display device
[0034] この画像表示装置においては、リアクティブ素子が、それに入射した電磁波を偏向 する機能を有する。したがって、この画像表示装置によれば、例えば、放射源部から 電磁波が発散的に出射するのに対してリアクティブ素子が局所的に配置される場合 に、放射源部から出射した電磁波のうち、リアクティブ素子に実質的に垂直に入射す るもののみならず、入射開口角以内において斜めに入射するものも、リアクティブ素 子の偏向機能により、画像の形成に利用することが可能となる。 In this image display device, the reactive element has a function of deflecting the electromagnetic wave incident thereon. Therefore, according to this image display device, for example, when the reactive element is locally arranged while the electromagnetic wave is divergently emitted from the radiation source part, the electromagnetic wave emitted from the radiation source part is: Not only those that enter the reactive element substantially perpendicularly but also those that enter obliquely within the incident aperture angle can be used for image formation by the deflection function of the reactive element.
[0035] したがって、この画像表示装置によれば、放射源部の電気 電磁波変換比率が向 上する。 [0036] (5) 前記放射源部は、前記電磁波を出射する部分を挟んで互いに対向する複数の 反射面を含み、 Therefore, according to this image display device, the electric electromagnetic wave conversion ratio of the radiation source section is improved. [0036] (5) The radiation source unit includes a plurality of reflecting surfaces that face each other across a portion that emits the electromagnetic wave,
前記リアクティブ素子は、それら反射面のうちの少なくとも一方に、反射機能と透過 機能とのうち少なくとも反射機能を有するように配置され、前記複数の反射面間にお ける前記電磁波の共振現象を利用することにより、前記電気 電磁波変換効率を増 カロさせる(1)な 、し (4)項の 、ずれかに記載の画像表示装置。  The reactive element is disposed on at least one of the reflecting surfaces so as to have at least one of a reflecting function and a transmitting function, and utilizes the resonance phenomenon of the electromagnetic waves between the plurality of reflecting surfaces. By doing so, the electric electromagnetic wave conversion efficiency is increased (1), and the image display device according to any one of (4).
[0037] この画像表示装置にお!、ては、放射源部が、電磁波を出射する部分を挟んで互 ヽ に対向する複数の反射面を含み、それら反射面のうちの少なくとも一方にリアタティ ブ素子が反射機能と透過機能とのうちの少なくとも反射機能を有するように配置され る。 [0037] In this image display apparatus, the radiation source unit includes a plurality of reflecting surfaces that are opposed to each other with a portion that emits an electromagnetic wave interposed therebetween, and at least one of the reflecting surfaces is provided with a reactive surface. The element is arranged so as to have at least a reflection function of a reflection function and a transmission function.
[0038] したがって、この画像表示装置においては、放射源部から出射した電磁波力 同一 経路を往復進行し、それにより、電磁波の共振 (増幅)が行われる。このような現象は 、対象電磁波が光であればレーザ、マイクロ波(電波)であればメーザとそれぞれ称さ れる。  Therefore, in this image display apparatus, the electromagnetic wave force emitted from the radiation source unit travels back and forth along the same path, and thereby resonance (amplification) of the electromagnetic wave is performed. Such a phenomenon is called a laser if the target electromagnetic wave is light, and a maser if it is a microwave (radio wave).
[0039] よって、この画像表示装置によれば、リアクティブ素子が放射源部と協働することに より、その放射源部の電気 電磁波変換効率が、リアクティブ素子を使用しない場合 より、増加させられる。  Therefore, according to this image display device, the reactive element cooperates with the radiation source unit, so that the electric electromagnetic wave conversion efficiency of the radiation source unit is increased as compared with the case where the reactive element is not used. It is done.
[0040] (6) 前記リアクティブ素子は、前記電磁波が入射する入射面および出射する出射 面を含み、さらに、前記入射面から前記出射面に延びる導波構造を前記周期構造と して含む(1)な 、し (5)項の 、ずれかに記載の画像表示装置。  [0040] (6) The reactive element includes an incident surface on which the electromagnetic wave is incident and an exit surface from which the electromagnetic wave is incident, and further includes a waveguide structure extending from the incident surface to the exit surface as the periodic structure ( 1) None None The image display device described in (5) above.
[0041] この画像表示装置においては、前記(1)ないし(5)項のいずれかにおけるリアクテ イブ素子が導波構造、特に導波路構造を周期構造として有するため、そのリアタティ ブ素子の入射面に入射した電磁波がロスなく出射面に誘導される。したがって、この 画像表示装置によれば、放射源部力ゝら出射した電磁波がリアクティブ素子内を伝送 し、所定の方向へ出射する際のロスがなくなり、それにより、リアクティブ素子のトータ ルの伝達効率が向上し、このことは、放射源部の電気—電磁波変換効率が向上する ことを意味する。  [0041] In this image display device, since the reactive element according to any one of the items (1) to (5) has a waveguide structure, particularly a waveguide structure as a periodic structure, the incident surface of the reactive element is arranged on the incident surface. Incident electromagnetic waves are guided to the exit surface without loss. Therefore, according to this image display apparatus, there is no loss when the electromagnetic wave emitted from the radiation source force is transmitted through the reactive element and emitted in a predetermined direction, thereby reducing the total of the reactive element. The transmission efficiency is improved, which means that the electric-electromagnetic wave conversion efficiency of the radiation source part is improved.
[0042] (7) 前記周期構造は、それに入射すべき電磁波の波長より短い周期を有するサブ 波長周期構造を含む( 1)な 、し (6)項の 、ずれかに記載の画像表示装置。 (7) The periodic structure has a sub-period having a period shorter than the wavelength of the electromagnetic wave to be incident on the periodic structure. The image display device according to any one of (1) and (6), which includes a wavelength periodic structure.
[0043] この画像表示装置においては、周期構造の周期、すなわち、周期構造の少なくとも 一縦断面における凸部間の間隔すなわち凹部間の間隔が、その周期構造に入射す べき入射電磁波の波長より短い間隔を有する。したがって、この画像表示装置によれ ば、周期構造の周期が入射電磁波の波長以上である場合に比較し、その周期構造 による前述のいくつかの機能のうち、例えば、前述のアンチリフレクション機能を効果 的に達成することが可能である。 In this image display device, the period of the periodic structure, that is, the interval between the convex portions in at least one longitudinal section of the periodic structure, that is, the interval between the concave portions is shorter than the wavelength of the incident electromagnetic wave to be incident on the periodic structure. Have an interval. Therefore, according to this image display device, compared with the case where the period of the periodic structure is equal to or greater than the wavelength of the incident electromagnetic wave, among the above-mentioned functions by the periodic structure, for example, the anti-reflection function is effective. Can be achieved.
[0044] (8) 前記リアクティブ素子は、それの法線方向に概して平行な方向に電磁波を出射 する(1)な 、し (7)項の 、ずれかに記載の画像表示装置。 [0044] (8) The image display apparatus according to any one of (7) and (7), wherein the reactive element emits electromagnetic waves in a direction generally parallel to a normal line direction thereof.
[0045] (9) 前記リアクティブ素子は、 CGH (コンピュータ'ジュネレーテッド'ホログラム)素 子と、グレーティング素子と、 PBG (フォトニック'バンド'ギャップ)素子と、フォトニック 結晶素子とのうちの少なくとも一つを含む(1)な 、し (8)項の 、ずれかに記載の画像 表示装置。 [0045] (9) The reactive element includes a CGH (computer “generated” hologram) element, a grating element, a PBG (photonic 'band' gap) element, and a photonic crystal element. The image display device according to any one of (1) and (8), which includes at least one.
[0046] (10) 前記放射源部は、フィールドェミッション素子と、プラズマ発光素子と、レーザ 素子と、無機 LED素子と、有機 LED素子と、アークランプと、フィラメントランプと、放 射線源とのうちの少なくとも一つを含む(1)な 、し (9)項の 、ずれかに記載の画像表 示装置。  [0046] (10) The radiation source section includes a field emission element, a plasma light emitting element, a laser element, an inorganic LED element, an organic LED element, an arc lamp, a filament lamp, and a radiation source. The image display device according to any one of (1) and (9), which includes at least one of them.
[0047] 例えば、放射源部がアークランプを使用する場合には、放射源部のサイズの割に 多量の光を発生させることが容易であり、サイズの割に明るい光源を実現することが 容易である。  [0047] For example, when the radiation source unit uses an arc lamp, it is easy to generate a large amount of light for the size of the radiation source unit, and it is easy to realize a bright light source for the size. It is.
[0048] また、放射源部がフィラメントランプを使用する場合には、放射源部の装置コストの 割に多量の光を発生させることが容易であり、装置コストの割に明るい光源を実現す ることが容易である。  [0048] Also, when the radiation source unit uses a filament lamp, it is easy to generate a large amount of light for the device cost of the radiation source unit, and a bright light source is realized for the device cost. Is easy.
[0049] また、放射源部が無機 LED素子または有機 LED素子を使用する場合には、インコ ヒーレントな電磁波を高効率で発生させることができるため、小型の放射源部でありな がら輝度を向上させることが容易である。特に有機 LEDを使用する場合には、それ の膜厚を lOOnm程度に薄くすることが可能であるため、非常に小型で薄い放射源部 が実現できる。 [0050] (11) 前記放射源部は、可視光を前記電磁波として出射する(1)ないし(10)項の いずれかに記載の画像表示装置。 [0049] In addition, when an inorganic LED element or an organic LED element is used as the radiation source section, incoherent electromagnetic waves can be generated with high efficiency, so that the luminance is improved while being a small radiation source section. It is easy to make. In particular, when using organic LEDs, it is possible to reduce the film thickness to about lOOnm, so a very small and thin radiation source can be realized. [0050] (11) The image display device according to any one of (1) to (10), wherein the radiation source unit emits visible light as the electromagnetic wave.
[0051] (12) 前記リアクティブ素子は、それに入射した電磁波をそれとは異なる波長を有す る電磁波に変換する波長シフト機能を有する(1)ないし(10)項のいずれかに記載の 画像表示装置。 [0051] (12) The image display according to any one of (1) to (10), wherein the reactive element has a wavelength shift function of converting an electromagnetic wave incident thereon into an electromagnetic wave having a wavelength different from the electromagnetic wave incident thereon. apparatus.
[0052] この画像表示装置によれば、画像を表示するために最終的に必要な電磁波と同じ 波長を有する電磁波を出射するように放射源部を設計することが不可欠ではなくなり 、その結果、放射源部の種類を選択する際の自由度が向上する。  According to this image display device, it is not indispensable to design the radiation source unit so as to emit an electromagnetic wave having the same wavelength as the electromagnetic wave finally required to display an image. The degree of freedom when selecting the type of the source part is improved.
[0053] 本項に係る画像表示装置は、例えば、前記放射源部が非可視光を前記電磁波とし て出射し、前記リアクティブ素子が、前記波長シフト機能により、そのリアクティブ素子 に入射した非可視光を可視光に変換する態様で実施することが可能である。この態 様によれば、可視光によって画像が表示されるにもかかわらず、非可視光を出射す る放射源部を選択することが可能となる。  In the image display device according to this aspect, for example, the radiation source unit emits invisible light as the electromagnetic wave, and the reactive element is incident on the reactive element by the wavelength shift function. It is possible to implement in a mode that converts visible light into visible light. According to this aspect, it is possible to select a radiation source unit that emits invisible light even though an image is displayed by visible light.
[0054] (13) 前記放射源部は、波長が異なる複数の電磁波をそれぞれ成分波として出射 する放射源素子を含み、  (13) The radiation source unit includes a radiation source element that emits a plurality of electromagnetic waves having different wavelengths as component waves,
前記リアクティブ素子は、前記放射源素子から入射した各成分波をそれの波長に 応じた方向に偏向することにより、前記複数の成分波を合成する合波機能を有する( 1)ないし( 12)項の 、ずれかに記載の画像表示装置。  The reactive element has a multiplexing function for synthesizing the plurality of component waves by deflecting each component wave incident from the radiation source element in a direction corresponding to the wavelength thereof (1) to (12) The image display device according to any one of the items.
[0055] この画像表示装置においては、板状のリアクティブ素子の周期構造による偏向機 能が発揮されることにより、放射源素子力 入射した各成分波がそれの波長に応じた 方向に偏向され、それにより、複数の成分波が合成される。したがって、この画像表 示装置によれば、画像表示のための合波機能を、板状のリアクティブ素子により、こ の画像表示装置の大型化を回避しつつ、発揮することが可能である。  In this image display device, the deflecting function due to the periodic structure of the plate-like reactive elements is exhibited, so that each component wave incident on the radiation source element force is deflected in the direction according to the wavelength thereof. Thereby, a plurality of component waves are synthesized. Therefore, according to this image display device, the multiplexing function for image display can be exhibited by the plate-like reactive element while avoiding the enlargement of the image display device.
[0056] この画像表示装置における「放射源素子」は、例えば、波長が互いに異なる複数の 電磁波をそれぞれ出射する複数の素子の組合せとして構成したり、半導体レーザの 如ぐ複数波長の光を放射する 1個の素子として構成することが可能である。  The “radiation source element” in this image display device is configured as a combination of a plurality of elements that respectively emit a plurality of electromagnetic waves having different wavelengths, or emits light of a plurality of wavelengths such as a semiconductor laser. It can be configured as a single element.
[0057] なお付言するに、本項および下記の各項にお!、て「複数の成分波を合成する」 t 、 う表現は、合成されるべき複数の成分波が各瞬間にお 、て一緒に存在することを必 ずしも要求しない。人間が眼で色を知覚するのに時間が必要であるという事実を踏ま えれば、複数の成分波が互いに時間的にオーバーラップすることなく存在する場合 であっても、それら複数の成分波の存在場所が共通する限り、それら複数の成分波 が合成波として人間に認識されることになるからである。したがって、「複数の成分波 を合成する」という表現は、例えば、複数の成分波の進行方向を一致させることを意 味すると考えることが可能である。 [0057] It should be noted that in this section and each of the following sections, the expression "synthesizes a plurality of component waves" is used to express a plurality of component waves to be combined at each moment. Must exist together Don't ask for it. Given the fact that humans need time to perceive color with their eyes, even when multiple component waves exist without temporally overlapping each other, This is because as long as the location is common, humans will recognize these multiple component waves as synthesized waves. Therefore, the expression “combining a plurality of component waves” can be considered to mean, for example, matching the traveling directions of the plurality of component waves.
[0058] (14) 前記リアクティブ素子は、前記周期構造によって前記合波機能を互いに共同 して実現するために前記各成分波をそれの波長に応じた方向に偏向する複数の層 が互 ヽに積層されて構成されて 、る( 13)項に記載の画像表示装置。  [0058] (14) In the reactive element, a plurality of layers for deflecting each component wave in a direction corresponding to its wavelength in order to jointly realize the multiplexing function by the periodic structure. The image display device according to item (13), wherein the image display device is laminated.
[0059] この画像表示装置によれば、画像表示のための合波機能が、リアクティブ素子の積 層構造により、各層における波長選択機能を利用して、必要波長帯全域にわたり所 定の機能を付与することが可能である。さらに、この画像表示装置の大型化を回避し つつ、実現することが可能である。  [0059] According to this image display device, the multiplexing function for image display has a predetermined function over the entire necessary wavelength band by utilizing the wavelength selection function in each layer by the stacked structure of the reactive elements. It is possible to grant. Furthermore, it is possible to realize the image display device while avoiding an increase in size.
[0060] この画像表示装置における「リアクティブ素子」は、例えば、ある波長の成分波を偏 向する第 1の層の上に、他の波長の成分波を偏向する第 2の層を積層することによつ て作成することが可能である。その第 2の層は、真空蒸着法、塗布法等、よく知られた 成膜方法とフォトリソグラフィ一等のパターン形成方法とを組み合わせて実施すること により、第 1の層の上に作成することが可能である。  [0060] The "reactive element" in this image display device is formed by, for example, laminating a second layer that deflects component waves of other wavelengths on a first layer that deflects component waves of a certain wavelength. It is possible to create it. The second layer is formed on the first layer by performing a combination of a well-known film formation method such as a vacuum deposition method or a coating method and a pattern formation method such as photolithography. Is possible.
[0061] (15) 前記放射源部は、  [0061] (15) The radiation source section includes:
波長が異なる複数の電磁波をそれぞれ成分波として出射する放射源素子と、 その放射源素子から出射された複数の成分波を合成する合波部と  A radiation source element that emits a plurality of electromagnetic waves having different wavelengths as component waves, and a combining unit that combines the plurality of component waves emitted from the radiation source element;
を含む( 1)ないし( 12)項の 、ずれかに記載の画像表示装置。  The image display device according to any one of (1) to (12), including:
[0062] 本項における「放射源素子」は、例えば、前記(13)項における「放射源素子」と同 様にして構成することが可能である。  The “radiation source element” in this section can be configured in the same manner as the “radiation source element” in the above section (13), for example.
[0063] (16) 前記放射源素子は、前記複数の成分波としての 3つの成分波をそれぞれ出 射する 3個の放射源素子を含み、  [0063] (16) The radiation source element includes three radiation source elements that respectively emit three component waves as the plurality of component waves,
前記合波部は、互いにある角度を有して発散的に配置される 3本の経路に沿って 前記 3個の放射源素子力 それぞれ入射した 3つの成分波を、周波数選択的な反射 および屈折により、合成波に合成し、その合成された合成波を予め定められた経路 に沿って、前記合波部力 遠ざ力る向きに出射する(15)項に記載の画像表示装置 The multiplexing unit reflects frequency-selective three component waves respectively incident on the three radiation source element forces along three paths that are divergently arranged at an angle to each other. The image display device according to (15), wherein the combined wave is emitted by refraction and refraction, and the combined wave is emitted in a direction away from the combined force along a predetermined path.
[0064] (17) 前記放射源素子は、前記複数の成分波としての 3つの成分波をそれぞれ出 射する 3個の放射源素子を含み、 [0064] (17) The radiation source element includes three radiation source elements that respectively emit three component waves as the plurality of component waves,
前記合波部は、一中心点から互いにある角度を有して発散的に配置される 4本の 経路のうちの 3本の経路に沿って前記 3個の放射源素子力 それぞれ前記中心点に 近づく向きに入射した 3つの成分波を、周波数選択的な反射および屈折により、 1つ の合成波に合成し、その合成された合成波を残りの 1本の経路に沿って、前記中心 点から遠ざかる向きに出射する( 15)または( 16)項に記載の画像表示装置。  The multiplexing unit is divergently arranged at an angle from one central point, and the three radiation source element forces along the three paths out of the four paths are respectively at the central point. Three component waves incident in the approaching direction are synthesized into one synthesized wave by frequency selective reflection and refraction, and the synthesized wave is synthesized along the remaining one path from the center point. The image display device according to item (15) or (16), which emits light in a direction away from it.
[0065] 本項における「合波部」の一例は、複数個のプリズムがそれの少なくとも一面同士に おいて互いに接合されて成るクロスプリズムである。このクロスプリズムにおいては、そ の接合面 (反射面および透過面)にダイクロイツクミラーが形成される。「合波部」をそ のクロスプリズムとして構成する場合には、「合波部」の小型化が容易になる。  An example of the “combining portion” in this section is a cross prism formed by joining a plurality of prisms on at least one surface thereof. In this cross prism, a dichroic mirror is formed on the joint surface (reflection surface and transmission surface). When the “multiplexing portion” is configured as the cross prism, the “multiplexing portion” can be easily downsized.
[0066] また、「合波部」は、クロスプリズムの如ぐ合波ミラーが直交しないくさび型プリズム の組合せによって構成したり、平面ダイクロイツクミラーの組合せによって構成してもよ い。  [0066] Further, the "combining unit" may be configured by a combination of wedge-shaped prisms in which the combining mirror such as a cross prism is not orthogonal, or may be configured by a combination of planar dichroic mirrors.
[0067] また、本項における「4本の経路」は、一平面上に配置したり、 3次元的に配置する ことが可能である。  [0067] Further, the "four paths" in this section can be arranged on a single plane or three-dimensionally.
[0068] (18) 前記リアクティブ素子は、前記放射源素子と前記合波部との間に配置される( 15)ないし( 17)項の 、ずれかに記載の画像表示装置。  (18) The image display device according to any one of (15) to (17), wherein the reactive element is disposed between the radiation source element and the multiplexing unit.
[0069] 本項における「リアクティブ素子」は、例えば、放射源素子のうち、合波部に対向す る各面と、合波部のうち、放射源素子に対向する面とのうちの少なくとも一方に特定 の周期構造を直接に形成することによって構成したり、それら放射源素子および合波 部から物理的に独立した要素として構成することが可能である。  [0069] The "reactive element" in this section refers to, for example, at least one of the surfaces of the radiation source element facing the multiplexing unit and the plane of the multiplexing unit facing the radiation source element. On the other hand, it can be configured by directly forming a specific periodic structure, or can be configured as an element physically independent of the radiation source element and the multiplexing unit.
[0070] (19) 前記リアクティブ素子は、前記合波部のうち、前記合成波が出射する部分に 配置される( 15)ないし( 18)項の 、ずれかに記載の画像表示装置。  [0070] (19) The image display device according to any one of (15) to (18), wherein the reactive element is arranged in a portion of the multiplexing unit where the combined wave is emitted.
[0071] 本項における「リアクティブ素子」は、前記(18)項におけると同様に、例えば、合波 部のうち、合成波が出射する部分 (例えば、出射面)に特定の周期構造を直接に形 成することによって構成したり、その合波部力 物理的に独立した要素として構成す ることが可能である。 [0071] "Reactive element" in this section refers to, for example, multiplexing as in the above section (18). Part of the part can be configured by directly forming a specific periodic structure on the part from which the synthesized wave is emitted (for example, the exit surface), or the combined force can be configured as a physically independent element. Is possible.
[0072] (20) 前記合波部は、低光弾性定数の材料を支持体として構成されて 、る(15)な いし( 19)項の 、ずれかに記載の画像表示装置。  [0072] (20) The image display device according to any one of (15) to (19), wherein the multiplexing unit is configured using a material having a low photoelastic constant as a support.
[0073] この画像表示装置によれば、合成部の支持体がいわゆる低光弾性定数の材料によ つて構成されるため、その低光弾性定数の材料より光弾性定数が高い材料によって 合成部の支持体が構成される場合より、合成部の昇温等に起因する応力状態の如 何にかかわらず、合成部の合波機能が画像全体につ 、て一様である状態が確保さ れる。したがって、この画像表示装置によれば、合成部の昇温等、合成部の応力状 態を変化させる要因が発生しても、画像のコントラストがそれほど低下せずに済む。  [0073] According to this image display device, since the support of the combining unit is configured by a material having a so-called low photoelastic constant, the material having a higher photoelastic constant than the material having the low photoelastic constant is used. Compared to the case where the support is configured, a state where the combining function of the combining portion is uniform throughout the entire image is ensured regardless of the stress state caused by the temperature rise of the combining portion. Therefore, according to this image display device, even if a factor that changes the stress state of the combining unit, such as a temperature rise of the combining unit, occurs, the contrast of the image does not decrease so much.
[0074] 本項および下記の各項における「低光弾性定数の材料」は、熱的または機械的に 外力が付加された場合に材料に生ずる複屈折の程度すなわち光弾性定数が通常の 光学ガラス材料 (例えば、最も一般的な光学ガラス (ショット社の「BK7」、オハラ社の「 S -BSL7J , β = 2. 79 X 10_12Pa)より小さい材料を意味する。 [0074] "Materials with low photoelastic constants" in this section and the following sections are optical glasses in which the degree of birefringence generated in a material when an external force is applied thermally or mechanically, that is, the photoelastic constant is normal. It means a material smaller than a material (for example, the most common optical glass (“BK7” of Schott, “S-BSL7J” of OHARA, β = 2.79 × 10 —12 Pa))
[0075] (21) さらに、前記リアクティブ素子から出射した電磁波を画素ごとに変調する変調 部を含み、それらリアクティブ素子と変調部とは、前記電磁波に対し電磁波透過性を 有する接着剤によって互いに一体化されて 、る(1)な 、し (20)項の 、ずれかに記載 の画像表示装置。  [0075] (21) Further, a modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel is included, and the reactive element and the modulation unit are mutually connected by an adhesive having electromagnetic wave permeability with respect to the electromagnetic wave. The image display device according to any one of (1) and (20), which is integrated.
[0076] この画像表示装置によれば、リアクティブ素子と変調部とを互いに接着する接着剤 が接着機能のみならず電磁波伝送機能をも有するため、それらリアクティブ素子と変 調部とを空間的に詰めて一体ィ匕することが容易となり、その結果、この画像表示装置 の小型化が容易となる。  According to this image display device, since the adhesive that bonds the reactive element and the modulation unit to each other has not only an adhesive function but also an electromagnetic wave transmission function, the reactive element and the modulation unit are spatially separated. The image display device can be easily downsized as a result.
[0077] (22) さらに、前記リアクティブ素子から出射した電磁波を画素ごとに変調する板状 の空間変調部を含み、それらリアクティブ素子と空間変調部とは、互いに積層されて いる(1)な 、し (21)項の 、ずれかに記載の画像表示装置。  (22) Further, a plate-like spatial modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel is included, and the reactive element and the spatial modulation unit are stacked on each other (1) None The image display device described in item (21).
[0078] この画像表示装置によれば、リアクティブ素子と変調部とが、共に板状とされて互い に積層されるため、それらリアクティブ素子と変調部との組合せを小型化し、ひいては 、この画像表示装置全体を小型化することが容易となる。 According to this image display device, since the reactive element and the modulation unit are both plate-shaped and stacked on each other, the combination of the reactive element and the modulation unit is downsized, and as a result This makes it easy to downsize the entire image display apparatus.
[0079] (23) 前記空間変調部は、  [0079] (23) The spatial modulation unit includes:
入射した電磁波を S波と P波とに分離する偏光ビームスプリッタと、  A polarizing beam splitter that separates incident electromagnetic waves into S and P waves,
その偏光ビームスプリツタカ 出射した S波と P波とをそれぞれ、画素ごとに偏光面 の回転が制御される状態で反射する 2つの反射型変調器と  Two reflective modulators that reflect the S-wave and the P-wave emitted from the polarization beam splittaka in a state where the rotation of the polarization plane is controlled for each pixel, and
を含み、  Including
前記偏光ビームスプリッタは、それら 2つの反射型変調器にぉ ヽてそれぞれ反射し て前記偏光ビームスプリッタに入射した 2つの電磁波を合成して出射する(22)項に 記載の画像表示装置。  The image display device according to item (22), wherein the polarization beam splitter synthesizes and emits two electromagnetic waves that are respectively reflected by the two reflective modulators and incident on the polarization beam splitter.
[0080] 前記(22)項における「空間変調部」は、(a)入射した電磁波を S波と P波とに分離 する偏光ビームスプリッタと、 (b)その偏光ビームスプリッタから出射した S波と P波との うちのいずれかのみを、画素ごとに偏光面の回転が制御される状態で反射する 1つ の反射型変調器とを含み、かつ、前記偏光ビームスプリッタは、その 1つの反射型変 調器において反射してその偏光ビームスプリッタに再入射した電磁波のうち、偏光面 が回転した成分のみを外部に出射する態様で実施することが可能である。  [0080] The "spatial modulation section" in the item (22) includes (a) a polarization beam splitter that separates an incident electromagnetic wave into S waves and P waves, and (b) an S wave emitted from the polarization beam splitter. One reflective modulator that reflects only one of the P-waves in a state in which the rotation of the polarization plane is controlled for each pixel, and the polarizing beam splitter includes the one reflective type Of the electromagnetic wave reflected by the modulator and re-entering the polarization beam splitter, only the component whose polarization plane is rotated can be emitted to the outside.
[0081] しかし、この態様を採用する場合には、偏光ビームスプリッタから出射した S波と P波 とのうちのいずれかし力、画像表示に利用することができない。  However, when this mode is adopted, any one of the S wave and P wave emitted from the polarization beam splitter cannot be used for image display.
[0082] これに対し、本項に係る画像表示装置においては、偏光ビームスプリッタから出射 した S波と P波とをそれぞれ、画素ごとに偏光面の回転が制御される状態で反射する 2つの反射型変調器が用いられ、偏光ビームスプリッタは、それら 2つの反射型変調 器においてそれぞれ反射してその偏光ビームスプリッタに再入射した 2つの電磁波を 、各電磁波のうち、偏光面が回転した成分のみに関して、合成して外部に出射する。  On the other hand, in the image display device according to this section, two reflections that reflect the S wave and the P wave emitted from the polarization beam splitter in a state in which the rotation of the polarization plane is controlled for each pixel. The polarization beam splitter reflects two electromagnetic waves reflected by the two reflective modulators and re-entering the polarization beam splitter. , Synthesize and emit to the outside.
[0083] したがって、この画像表示装置によれば、偏光ビームスプリッタから出射した S波と P 波とのうちのいずれかし力利用しない場合より無駄なぐ偏光ビームスプリッタに入射 した電磁波を画像表示に利用することが可能となる。その結果、同じ画像輝度を実現 するために放射源部が出射しなければならない電磁波の量を節減することが可能と なり、ひいては、放射源部の節電および小型化が容易になる。  Therefore, according to this image display device, electromagnetic waves incident on the polarizing beam splitter, which is less wasted than when not using any one of the S wave and P wave emitted from the polarizing beam splitter, are used for image display. It becomes possible to do. As a result, it is possible to reduce the amount of electromagnetic waves that must be emitted from the radiation source unit in order to achieve the same image brightness, and in turn, it is easy to save power and reduce the size of the radiation source unit.
[0084] 本項における「反射型変調器」の一例は、リキッド 'クリスタル ·オン 'シリコン LCOS である。また、本項に記載の特徴は、前記(22)項に記載の特徴から独立して実施す ることが可能である。 [0084] An example of a “reflective modulator” in this section is a liquid 'crystal-on' silicon LCOS It is. Further, the feature described in this section can be implemented independently of the feature described in section (22).
[0085] (24) 前記 2つの反射型変調器は、共に、液晶パネルである(23)項に記載の画像 表示装置。  (24) The image display device according to item (23), wherein both of the two reflective modulators are liquid crystal panels.
[0086] (25) 前記偏光ビームスプリッタは、低光弾性定数の材料を支持体として構成され て 、る (23)または(24)項に記載の画像表示装置。  (25) The image display device according to item (23) or (24), wherein the polarizing beam splitter is configured by using a low photoelastic constant material as a support.
[0087] この画像表示装置によれば、前記(20)項に係る画像表示装置と同様に、偏光ビー ムスプリッタの昇温や機械的ストレス等、偏光ビームスプリッタの応力状態を変化させ る要因が発生しても、画像のコントラストが大幅に低下せずに済む。 According to this image display device, similarly to the image display device according to item (20), there are factors that change the stress state of the polarization beam splitter, such as temperature rise and mechanical stress of the polarization beam splitter. Even if it occurs, the contrast of the image is not greatly reduced.
[0088] (26) さらに、前記リアクティブ素子から出射した電磁波を画素ごとに変調する板状 の空間変調部を含み、その空間変調部は、入射した電磁波を、画素ごとに外部に出 力される伝達効率が制御される状態で反射して出射する反射型空間変調器を含む([0088] (26) Further, a plate-like spatial modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel is included, and the spatial modulation unit outputs the incident electromagnetic wave to the outside for each pixel. Including a reflective spatial modulator that reflects and emits light with controlled transmission efficiency (
1)な 、し (25)項の 、ずれかに記載の画像表示装置。 1) N / A The image display device described in (25), which is not included.
[0089] (27) 前記空間変調器は、デフォーマブル'ミラー ·デバイスを含む(26)項に記載 の画像表示装置。 (27) The image display device according to item (26), wherein the spatial modulator includes a deformable mirror device.
[0090] 本項における「デフォーマブル'ミラ一 ·デバイス」は、 DMDと略称され、また、その 製造元によってデジタル ·マイクロミラー ·デバイスと称呼される場合もある。 Vヽずれに しても、このデフォーマブル 'ミラー'デバイスにおいては、画素ごとにマイクロミラーが デフォーマブルな状態すなわち入射電磁波に対する角度や変位が可変である状態 で設置され、それにより、画素ごとに、入射電磁波を次の光学素子に向けて反射等 により伝達する積算伝達時間 (反射時間の時間積分値が輝度に対応する。 )がデュ 一ティ制御される。  [0090] "Deformable mirror device" in this section is abbreviated as DMD and may also be referred to as a digital micromirror device by its manufacturer. In this deformable 'mirror' device, the micromirror is placed in a deformable state for each pixel, that is, in a state where the angle and displacement with respect to the incident electromagnetic wave are variable. The accumulated transmission time for transmitting the incident electromagnetic wave toward the next optical element by reflection or the like (the time integral value of the reflection time corresponds to the luminance) is duty-controlled.
[0091] (28) 前記空間変調部は、入射した電磁波を、画素ごとに透過率が制御される状態 で透過して出射する透過型空間変調器を含む(22)項に記載の画像表示装置。  (28) The image display device according to (22), wherein the spatial modulation unit includes a transmissive spatial modulator that transmits and emits an incident electromagnetic wave in a state where the transmittance is controlled for each pixel. .
[0092] (29) 前記リアクティブ素子は、前記放射源部のうち、前記電磁波が出射する出射 面に配置されて 、る(1)な 、し (28)項の 、ずれかに記載の画像表示装置。  [29] (29) The reactive element is disposed on an emission surface from which the electromagnetic wave is emitted in the radiation source section, and is not (1). Display device.
[0093] 本項における「リアクティブ素子」は、前記(18)項におけると同様に、例えば、放射 源部のうち、電磁波が出射する出射面に特定の周期構造を直接に形成することによ つて構成したり、その放射源部から物理的に独立した要素として構成することが可能 である。後者の場合には、「リアクティブ素子」は、例えば、その出射面に密着するよう に固定される力 またはその出射面に対して隙間を隔てて対向するように固定される The “reactive element” in this section is the same as in the above (18), for example, by directly forming a specific periodic structure on the emission surface of the radiation source where the electromagnetic wave is emitted. It can be configured as an element that is physically independent from the radiation source section. In the latter case, the “reactive element” is, for example, a force that is fixed so as to be in close contact with the emission surface or is fixed so as to face the emission surface with a gap.
[0094] (30) さらに、前記リアクティブ素子から出射した電磁波を画素ごとに変調する透過 型の変調部を含む(1)な 、し (29)項の 、ずれかに記載の画像表示装置。 [0094] (30) The image display device according to any one of (29) and (29), further including a transmissive modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel.
[0095] (31) さらに、 [0095] (31)
前記リアクティブ素子力 出射した電磁波を画素ごとに変調する変調部と、 その変調部を放熱する放熱部と  The reactive element force A modulation unit that modulates the emitted electromagnetic wave for each pixel, and a heat dissipation unit that radiates heat from the modulation unit
を含む(1)な 、し (30)項の 、ずれかに記載の画像表示装置。  The image display device according to any one of items (1) to (30).
[0096] この画像表示装置によれば、変調部の昇温が抑制されるため、変調部の昇温に起 因した画質の低下 (例えば、変調部の機能低下による画像コントラストの低下)が抑 制される。また、変調部への入射光束がその変調部に略垂直に入射しない成分を有 する場合には、透過率補償用の複屈折板を変調部の上流または下流に設定しても よぐまた、この複屈折板を特定の周期構造を有するリアクティブ素子で実現してもよ い。 [0096] According to this image display device, since the temperature rise of the modulation unit is suppressed, deterioration in image quality caused by the temperature rise of the modulation unit (for example, reduction in image contrast due to a decrease in function of the modulation unit) is suppressed. Be controlled. In addition, when the incident light beam to the modulation unit has a component that does not enter the modulation unit substantially perpendicularly, a birefringent plate for transmittance compensation may be set upstream or downstream of the modulation unit. This birefringent plate may be realized by a reactive element having a specific periodic structure.
[0097] (32) 前記放射源部は、金属サブストレートに絶縁体を塗布して成る基板上に配置 されて 、る (1)な 、し (31)項の 、ずれかに記載の画像表示装置。  [0097] (32) The image display according to any one of (1) and (31), wherein the radiation source section is disposed on a substrate formed by applying an insulator to a metal substrate. apparatus.
[0098] この画像表示装置によれば、放射源部の基板のうちのサブストレートが放熱性が高 い金属によって構成されるため、そのサブストレートが放熱性がそれほど高くはない 材料によって構成される場合より、放射源部の昇温が抑制される。  [0098] According to this image display device, since the substrate of the substrate of the radiation source section is made of a metal having high heat dissipation, the substrate is made of a material that does not have high heat dissipation. In some cases, the temperature rise of the radiation source unit is suppressed.
[0099] したがって、この画像表示装置によれば、放射源部がその出力時に発熱を伴う場 合に、その発熱という問題が、放射源部の出力(例えば、放射束量であるパワーや光 束量)を向上させる際の大きな障害にならずに済み、その結果、放射源部を選択する 際の自由度が向上する。  Therefore, according to this image display device, when the radiation source unit generates heat when it is output, the problem of the heat generation is caused by the output of the radiation source unit (for example, the power or light flux that is the amount of radiant flux). The amount of freedom in selecting the radiation source section is improved as a result.
[0100] また、放射源部に使用される素子自体の性能の割りに、電子 量子変換部位にお ける量子効率を、昇温抑制効果により、高く維持することが可能であり、よって、高い 放射輝度を持つ放射源部を実現することが可能である。 [0101] (33) 前記放射源部は、金属を含有するペーストによって前記基板に固定されてい る(32)項に記載の画像表示装置。 [0100] In addition to the performance of the element itself used in the radiation source section, the quantum efficiency at the electron quantum conversion site can be kept high due to the temperature rise suppression effect, and thus high radiation is achieved. It is possible to realize a radiation source part having brightness. (33) The image display device according to item (32), wherein the radiation source section is fixed to the substrate with a paste containing a metal.
[0102] この画像表示装置によれば、放射源部を基板に固定するためにそれらに塗布され るペーストが放熱性が高い金属によって構成されるため、そのペーストが放熱性がそ れほど高くはない材料によって構成される場合より、放射源部の昇温が抑制される。  [0102] According to this image display device, since the paste applied to the radiation source parts to the substrate is made of a metal having high heat dissipation, the paste has so high heat dissipation. The temperature rise of the radiation source part is suppressed as compared with the case where the material is not formed.
[0103] したがって、この画像表示装置によれば、前記(32)項に係る画像表示装置と同様 に、放射源部がその出力時に発熱を伴う場合に、その発熱という問題が、放射源部 の出力(例えば、放射束量であるパワーや光束量)を向上させる際の大きな障害にな らずに済み、その結果、放射源部を選択する際の自由度が向上する。  [0103] Therefore, according to this image display device, similarly to the image display device according to item (32), when the radiation source section generates heat at the time of output, the problem of the heat generation is There is no major obstacle to improving the output (for example, the power and the amount of luminous flux that is the amount of radiant flux), and as a result, the degree of freedom in selecting the radiation source section is improved.
[0104] また、前記 (32)項に係る画像表示装置と同様に、放射源部に使用される素子自体 の性能の割りに、電子 量子変換部位における量子効率を、昇温抑制効果により、 高く維持することが可能であり、よって、高い放射輝度を持つ放射源部を実現するこ とが可能である。  [0104] Further, similarly to the image display device according to the above item (32), the quantum efficiency at the electron quantum conversion site is increased due to the temperature rise suppression effect for the performance of the element itself used in the radiation source section. Therefore, it is possible to realize a radiation source part having high radiance.
[0105] (34) さらに、前記電磁波を投影対象に向けて投影する投影部を含む(1)ないし (3 [0105] (34) Further, a projection unit that projects the electromagnetic wave toward the projection target is included (1) to (3
3)項の 、ずれかに記載の画像表示装置。 The image display device according to item 3).
[0106] 本項における「投影対象」としては、例えば、専用または代用のスクリーン、感光媒 体、壁面、人体等がある。 The “projection target” in this section includes, for example, a dedicated or substitute screen, a photosensitive medium, a wall surface, a human body, and the like.
[0107] (35) 前記投影部は、複数のレンズを含み、かつ、それらレンズのうち少なくとも一部 は、合成樹脂によって形成されている(34)項に記載の画像表示装置。 (35) The image display device according to item (34), wherein the projection unit includes a plurality of lenses, and at least a part of the lenses is formed of a synthetic resin.
[0108] 例えば、画像表示装置の投影部がレンズを使用する場合、その投影部の昇温量が 低下すれば、レンズを構成する材料に高い耐熱性を要求せずに済み、例えば、ガラ スより安価で軽量な材料である合成樹脂によってレンズを構成することが可能となる。 [0108] For example, when the projection unit of the image display apparatus uses a lens, if the temperature rise amount of the projection unit decreases, it is not necessary to require high heat resistance for the material constituting the lens. The lens can be formed of a synthetic resin which is a cheaper and lighter material.
[0109] このような知見に基づき、本項に係る画像表示装置においては、投影部における複 数のレンズのうち少なくとも一部が合成樹脂によって形成されている。 Based on such knowledge, in the image display device according to this section, at least a part of the plurality of lenses in the projection unit is formed of a synthetic resin.
[0110] (36) さらに、当該画像表示装置を任意の対象物に着脱可能に固定する固定具を 含む(1)な 、し (35)項の 、ずれかに記載の画像表示装置。 [0110] (36) The image display device according to any one of (35) and (35), further including a fixture for detachably fixing the image display device to an arbitrary object.
[0111] 画像表示装置が小型で軽量なものになれば、画像表示装置を、従来のように、テ 一ブル上に載置することはもちろん、任意の対象物に着脱可能に固定することも可 能となり、画像表示装置の設置位置や画像の表示方向を選択する際の自由度が向 上する。通常の固定方法においては、画像表示装置は、それが画像を表示する方 向が、その画像表示装置がフラット ·パネル ·ディスプレイや画像投影装置である場合 には、僅かに仰ぎ見る方向となるように、傾斜状態で配置される。 [0111] If the image display device becomes small and light, the image display device can be detachably fixed to an arbitrary object as well as placed on a table as in the past. OK The degree of freedom in selecting the installation position of the image display device and the image display direction is improved. In the normal fixing method, the image display device is such that the direction in which the image is displayed is slightly upward when the image display device is a flat panel display or image projection device. In an inclined state.
[0112] このような知見に基づき、本項に係る画像表示装置は、当該画像表示装置を任意 の対象物に着脱可能に固定する固定具と共に実施される。  [0112] Based on such knowledge, the image display device according to this section is implemented together with a fixture that detachably fixes the image display device to an arbitrary object.
[0113] (37) 前記対象物は、当該画像表示装置が画像を表示するために必要な画像信号 と、当該画像表示装置の作動に必要な電気エネルギーとのうちの少なくとも一方を出 力する出力ポートを備えた可搬型機器であり、当該画像表示装置は、さらに、前記出 力ポートに接続される接続部を含む(36)項に記載の画像表示装置。  [0113] (37) The object is an output that outputs at least one of an image signal necessary for the image display device to display an image and electric energy necessary for the operation of the image display device. The image display device according to item (36), wherein the image display device further includes a connection unit connected to the output port.
[0114] この画像表示装置は、それの接続部において可搬型機器の出力ポートに接続され た状態で使用される。したがって、この画像表示装置によれば、その画像表示装置 に必要な信号およびエネルギーを供給するために必要な外部装置との接続作業が 簡易化され、さらに、その接続のための配線力 Sかさ張らずに済む。  [0114] This image display device is used in a state where it is connected to the output port of the portable device at its connection. Therefore, according to this image display device, connection work with an external device necessary for supplying signals and energy necessary for the image display device is simplified, and the wiring force S for the connection is not increased. It will end.
[0115] 本項における「可搬型機器」としては、例えば、モパイル'コンピュータ (スタンド'ァ ローン型でもネットワーク接続型でも可)、移動電話機 (携帯電話機と PHSとを含む。 )、携帯情報端末 PDA等がある。  [0115] Examples of the “portable device” in this section include, for example, a mopile computer (either a stand-alone type or a network connection type), a mobile phone (including a mobile phone and a PHS), a portable information terminal PDA. Etc.
[0116] (38) 前記接続部は、ビデオ出力ポートと、電源端子を有するシリアル通信ポートと のうちの少なくとも一方に接続される接続部を含む(37)項に記載の画像表示装置。  (38) The image display device according to item (37), wherein the connection unit includes a connection unit connected to at least one of a video output port and a serial communication port having a power supply terminal.
[0117] 前記可搬型機器の出力ポートが、電源端子を有するシリアル通信ポートを少なくと も含む場合には、本項に係る画像表示装置は、例えば、そのシリアル通信ポートのバ スパワーを用いるため、可搬型機器のバッテリを共用することが可能である。この種の シリアル通信ポートには、 RS- 232C, USB、 IEEE 1394,バスパワーイーサネット( 登録商標)、デジタル RGB端子、 SDフラッシュカードインターフェース、 PCMCIA力 ードインターフェース等がある。  [0117] When the output port of the portable device includes at least a serial communication port having a power supply terminal, the image display device according to this section uses, for example, the bus power of the serial communication port. It is possible to share the battery of portable equipment. This type of serial communication port includes RS-232C, USB, IEEE 1394, Bus Power Ethernet (registered trademark), digital RGB terminal, SD flash card interface, and PCMCIA power interface.
[0118] ただし、この画像表示装置は、電源ケーブルを別途用いてコンセントから給電を受 けるようにしてもよい。  [0118] However, this image display device may receive power from an outlet using a separate power cable.
[0119] (39) 前記接続部は、前記ビデオ出力ポートに接続される接続部を含み、そのビデ ォ出力ポートに接続される接続部は、アナログ VGAポートまたはデジタルビデオポ ートに接続される接続部である(38)項に記載の画像表示装置。 [0119] (39) The connection unit includes a connection unit connected to the video output port. (4) The image display device according to item (38), wherein the connection portion connected to the output port is a connection portion connected to an analog VGA port or a digital video port.
[0120] この画像表示装置は、アナログビデオ信号を用いることにより、複数種の可搬型情 報機器に対して汎用的に接続することが可能である。 [0120] This image display apparatus can be universally connected to a plurality of types of portable information devices by using analog video signals.
[0121] (40) 前記接続部は、無線通信ポートに無線により接続される接続部を含む(37)に 記載の画像表示装置。 (40) The image display device according to (37), wherein the connection unit includes a connection unit that is wirelessly connected to a wireless communication port.
[0122] (41) 電磁波を出射する放射源装置であって、 (41) A radiation source device that emits electromagnetic waves,
エネルギーを電磁波に変換し、その変換された電磁波を出射する放射源部と、 その放射源部に関連付けて設けられ、その放射源部から出射した電磁波が入射す る周期構造を有するリアクティブ素子であって、前記周期構造は、その周期構造に入 射する電磁波の波長より短い周期を有するサブ波長周期構造であるものと  A reactive element that converts energy into electromagnetic waves and emits the converted electromagnetic waves, and a reactive element having a periodic structure that is provided in association with the radiation source parts and receives electromagnetic waves emitted from the radiation source parts. The periodic structure is a sub-wavelength periodic structure having a period shorter than the wavelength of the electromagnetic wave incident on the periodic structure.
を含み、  Including
前記放射源部は、  The radiation source part is
波長が異なる複数の電磁波をそれぞれ成分波として出射する放射源素子と、 その放射源素子から出射された複数の成分波を 1つの合成波に合成する合波部と を含み、  A radiation source element that emits a plurality of electromagnetic waves having different wavelengths as component waves, and a combining unit that combines the plurality of component waves emitted from the radiation source element into one composite wave,
前記リアクティブ素子は、  The reactive element is:
前記放射源素子と前記合波部との間に配置される複数の成分波用素子と、 前記合波部のうち、前記合成波が出射する部分に配置される合成波用素子と を含む放射源装置。  A plurality of component wave elements disposed between the radiation source element and the combining unit; and a combined wave element disposed in a portion of the combining unit where the combined wave is emitted. Source equipment.
[0123] この放射源装置によれば、波長が異なる複数の成分波を 1つの合成波に合成して 出射するプロセス力 サブ波長周期構造を有するリアクティブ素子を用いて行われる ため、前述の画像表示装置のうち、サブ波長周期構造を有するリアクティブ素子に関 する前述の作用効果と同様な作用効果が得られる。  [0123] According to this radiation source device, since the process force that synthesizes and emits a plurality of component waves having different wavelengths into one synthesized wave is performed using a reactive element having a sub-wavelength periodic structure, the image described above is used. Among the display devices, the same effects as those described above regarding the reactive element having the sub-wavelength periodic structure can be obtained.
[0124] 本項における「リアクティブ素子」は、例えば、板状 (厚さ寸法が幅寸法より短い形状 )としたり、ブロック状 (厚さ寸法と幅寸法とが略同等である形状)とすることが可能であ る。  [0124] The "reactive element" in this section is, for example, a plate shape (a shape in which the thickness dimension is shorter than the width dimension) or a block shape (a shape in which the thickness dimension and the width dimension are substantially equal). It is possible.
[0125] 本項に係る「放射源装置」は、前述の画像表示装置における放射源部に関連して 採用される複数の特徴のうち適宜選択されたものと組み合わせて実施することが可 能である。さらに、本項に係る「放射源装置」は、画像表示以外の用途に使用すること が可能である。 [0125] The "radiation source device" according to this section is related to the radiation source unit in the image display device described above. It can be carried out in combination with one selected from a plurality of features adopted. Furthermore, the “radiation source device” according to this section can be used for purposes other than image display.
[0126] 本項における「放射源部」は、外部力 エネルギーを供給されるように構成すること は必ずしも必要ではない。すなわち、例えば、外部から電気エネルギーを取り込み、 その電気エネルギーを電磁波に変換するように構成することは不可欠ではな 、ので ある。  [0126] The "radiation source section" in this section does not necessarily need to be configured to be supplied with external force energy. That is, for example, it is not indispensable to take in electric energy from the outside and convert the electric energy into electromagnetic waves.
[0127] 具体的には、この「放射源部」は、例えば、内蔵電池力もエネルギーを取り出すよう に構成してもよいし、また、燃料電池を内蔵し、その燃料電池に外部から水素ゃメタノ ール等の化学物質を供給して、その燃料電池力 エネルギーを取り出すように構成 してちよい。  [0127] Specifically, this "radiation source section" may be configured, for example, so that the built-in battery power can also extract energy, or has a built-in fuel cell, and hydrogen is added to the fuel cell from the outside. It may be configured to supply a chemical substance such as a fuel and take out the fuel cell power energy.
[0128] (42) 前記複数の成分波用素子と前記合成波用素子とは、前記合波部のうち、互 いに異なる複数の面にそれぞれ配置されている (41)項に記載の放射源装置。  (42) The radiation according to item (41), wherein the plurality of component wave elements and the combined wave element are respectively arranged on a plurality of mutually different surfaces in the multiplexing section. Source equipment.
[0129] (43) 前記複数の成分波用素子および前記合成波用素子と前記合波部とは、電磁 波透過性を有する接着剤によって互!ヽに一体化されて!/ヽる(42)項に記載の放射源 装置。  [0129] (43) The plurality of component wave elements, the combined wave element, and the combining section are mutually connected by an adhesive having electromagnetic wave permeability! Be integrated into the bag! / Radiation source device according to (42).
[0130] この放射源装置によれば、複数の成分波用素子および合成波用素子と合波部とを それぞれ互いに接着する接着剤が接着機能のみならず電磁波伝送機能をも有する ため、それら成分波用素子および合成波用素子と合波部とを空間的に詰めて一体 化することが容易となり、その結果、この放射源装置の小型化が容易となる。また、こ の放射源装置によれば、振動等の外力に対するロバストネスを向上させて耐破損性 を向上させることが容易となる。  [0130] According to this radiation source device, since the adhesive for adhering a plurality of component wave elements, the composite wave element and the multiplexing unit to each other has not only an adhesion function but also an electromagnetic wave transmission function, these components It becomes easy to spatially pack and integrate the wave element and the synthesized wave element and the multiplexing unit, and as a result, the radiation source device can be easily downsized. In addition, according to this radiation source device, it is easy to improve the robustness against external force such as vibration and to improve the breakage resistance.
図面の簡単な説明  Brief Description of Drawings
[0131] [図 1]図 1は、本発明の第 1実施形態に従う画像投影装置 10を使用状態で示す外観 斜視図である。  FIG. 1 is an external perspective view showing the image projection apparatus 10 according to the first embodiment of the present invention in a used state.
[図 2]図 2は、図 1における画像投影装置 10の光学的構成を示す平面図である。  FIG. 2 is a plan view showing an optical configuration of the image projection apparatus 10 in FIG.
[図 3]図 3は、図 2における CGH板 70を拡大して示す側面断面図である。  FIG. 3 is an enlarged side sectional view showing the CGH plate 70 in FIG.
[図 4]図 4は、図 3におけるブロードバンド AR板 76を部分的に拡大して示す側面断面 図である。 [FIG. 4] FIG. 4 is a side cross-sectional view showing a partially enlarged broadband AR board 76 in FIG. FIG.
[図 5]図 5は、図 3におけるサブ波長構造屈折板 78を部分的に拡大して示す斜視図 である。  FIG. 5 is a perspective view showing the sub-wavelength structure refracting plate 78 in FIG. 3 partially enlarged.
[図 6]図 6は、図 2におけるクロスプリズム 56を示す平面図である。  FIG. 6 is a plan view showing the cross prism 56 in FIG. 2.
[図 7]図 7は、図 2における偏光ビームスプリッタ 120を LCOS1および LCOS2と共に 示す平面図である。  FIG. 7 is a plan view showing polarizing beam splitter 120 in FIG. 2 together with LCOS 1 and LCOS 2.
[図 8]図 8は、図 1における画像投影装置 10の電気的構成を概念的に表すブロック図 である。  FIG. 8 is a block diagram conceptually showing the electrical configuration of the image projector 10 in FIG. 1.
[図 9]図 9は、図 8における各種信号の時間的推移を説明するためのタイムチャートで ある。  FIG. 9 is a time chart for explaining temporal transition of various signals in FIG.
[図 10]図 10は、図 1における画像投影装置 10の別の使用例を説明するための外観 斜視図である。  FIG. 10 is an external perspective view for explaining another example of use of the image projection device 10 in FIG.
[図 11]図 11は、図 1における画像投影装置 10のさらに別の使用例を説明するための 外観斜視図である。  FIG. 11 is an external perspective view for explaining still another usage example of the image projector 10 in FIG. 1.
圆 12]図 12は、本発明の第 2実施形態に従う画像投影装置 230の光学的構成を示 す平面図である。 12] FIG. 12 is a plan view showing an optical configuration of the image projection apparatus 230 according to the second embodiment of the present invention.
[図 13]図 13は、図 12におけるグレーティング板 270を拡大して示す側面図および平 面図である。  FIG. 13 is an enlarged side view and plan view of the grating plate 270 in FIG.
[図 14]図 14は、図 13におけるグレーティング板 270を部分的に拡大して示す側面断 面図である。  FIG. 14 is a side sectional view showing the grating plate 270 in FIG. 13 partially enlarged.
[図 15]図 15は、図 12における偏光ビームスプリッタ位置を拡大して示す側面断面図 である。  FIG. 15 is an enlarged side cross-sectional view showing the position of the polarizing beam splitter in FIG. 12.
圆 16]図 16は、本発明の第 3実施形態に従う画像投影装置 330の光学的構成を示 す平面図である。 16] FIG. 16 is a plan view showing an optical configuration of the image projection apparatus 330 according to the third embodiment of the present invention.
[図 17]図 17は、図 16における R光源 350Rを部分的に拡大して示す側面断面図で ある。  FIG. 17 is a side sectional view showing the R light source 350R in FIG. 16 partially enlarged.
[図 18]図 18は、図 16における積層 CGH板 370を拡大して示す側面断面図である。  FIG. 18 is an enlarged side cross-sectional view of the laminated CGH plate 370 in FIG.
[図 19]図 19は、本発明の第 4実施形態に従う画像投影装置 400の光学的構成を示 す平面図である。 FIG. 19 shows an optical configuration of an image projection apparatus 400 according to the fourth embodiment of the present invention. FIG.
[図 20]図 20は、図 19における積層 CGH板 452を拡大して示す側面断面図である。  FIG. 20 is an enlarged side sectional view showing the laminated CGH plate 452 in FIG.
[図 21]図 21は、本発明の第 5実施形態に従う画像投影装置 500の光学的構成を示 す平面図である。  FIG. 21 is a plan view showing an optical configuration of an image projection apparatus 500 according to the fifth embodiment of the present invention.
[図 22]図 22は、図 21におけるフォトニック結晶板 520を拡大して示す側面断面図で ある。  FIG. 22 is an enlarged side cross-sectional view of photonic crystal plate 520 in FIG.
[図 23]図 23は、本発明の第 6実施形態に従う画像投影装置 610のうちの光源部 620 を示す平面図である。  FIG. 23 is a plan view showing light source unit 620 of image projection apparatus 610 according to the sixth embodiment of the present invention.
[図 24]図 24は、本発明の第 7実施形態に従う画像投影装置 650のうちの光源部 660 を示す平面図である。  FIG. 24 is a plan view showing light source unit 660 of image projection apparatus 650 according to the seventh embodiment of the present invention.
[図 25]図 25は、本発明の第 8実施形態に従う画像投影装置 690のうちの光源部 700 を示す平面図である。  FIG. 25 is a plan view showing light source unit 700 of image projection apparatus 690 according to the eighth embodiment of the present invention.
[図 26]図 26は、図 25における反透過共振ミラー面 712を拡大して示す斜視図である  FIG. 26 is an enlarged perspective view showing the anti-transmission resonant mirror surface 712 in FIG. 25.
[図 27]図 27は、本発明の第 9実施形態に従う画像投影装置 750のうちの光源部 760 を示す平面図である。 FIG. 27 is a plan view showing light source unit 760 of image projection apparatus 750 according to the ninth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0132] 以下、本発明のさらに具体的な実施の形態のいくつかを図面に基づいて詳細に説 明する。 [0132] Hereinafter, some of more specific embodiments of the present invention will be described in detail with reference to the drawings.
[0133] 図 1には、本発明の第 1実施形態に従う画像投影装置 10が斜視図で示されている 。この画像投影装置 10は、本発明に係る画像表示装置の一例である。  FIG. 1 shows a perspective view of an image projection apparatus 10 according to the first embodiment of the present invention. This image projection device 10 is an example of an image display device according to the present invention.
[0134] 図 1に示すように、この画像投影装置 10は、扁平な箱状の装置ハウジング 12を備 えており、その装置ハウジング 12には、投影部としての投影レンズユニット 14力 そ れの先端部において部分的に装置ハウジング 12から突出する状態で装着されてい る。  As shown in FIG. 1, the image projection apparatus 10 includes a flat box-shaped apparatus housing 12, and the apparatus housing 12 includes a projection lens unit 14 serving as a projection unit, and the distal end thereof. It is mounted so as to partially protrude from the device housing 12 at the part.
[0135] 図 1においては、この画像投影装置 10が、可搬型情報機器としてのモパイル'コン ピュータ 16に固定されて使用される状態で示されて!/ヽる。この画像投影装置 10をモ パイル.コンピュータ 16のうちの任意の板状部分、例えば、ディスプレイ 'パネルの上 縁部または側縁部に固定したり、机や机上の機械要素等に固定するために、この画 像投影装置 10には固定具としての固定クリップ 20が着脱可能に取り付けられている In FIG. 1, this image projector 10 is shown in a state of being fixed and used on a mopile computer 16 as a portable information device! This image projector 10 can be moped; any plate-like part of the computer 16, e.g. on the display 'panel A fixing clip 20 as a fixing tool is detachably attached to the image projection device 10 for fixing to an edge or side edge, or to a desk or a machine element on a desk.
[0136] 固定クリップ 20は、この画像投影装置 10を任意の機械要素に固定する固定具の 一例であり、例えば、吸盤、両面テープ、締結具、ひも等として構成することが可能で ある。この画像投影装置 10を任意の機械要素に固定することが可能でありさえすれ ば、固定具としての機能は果たされる。 [0136] The fixing clip 20 is an example of a fixing tool that fixes the image projection device 10 to an arbitrary machine element, and can be configured as, for example, a suction cup, a double-sided tape, a fastener, a string, or the like. As long as it is possible to fix the image projection device 10 to an arbitrary machine element, it functions as a fixture.
[0137] 図 1に示すように、固定クリップ 20は、任意の板状部分を両側力も把持するクリップ 部 22と、そのクリップ部 22と画像投影装置 10とを、相対回転によって任意の相対角 度で固定可能に互いに連結するチルト 'ジョイント 24とを備えている。  [0137] As shown in Fig. 1, the fixed clip 20 includes a clip portion 22 that holds an arbitrary plate-like portion with both side forces, and the clip portion 22 and the image projection device 10 at an arbitrary relative angle by relative rotation. And a tilt 'joint 24 that can be fixedly connected to each other.
[0138] 図 1に示すように、モパイル'コンピュータ 16は、それぞれ出力ポートとして USBポ ート 28とアナログ VGAポート 30とを備えており、それらポート 28, 30は接続ケーブル 32により、この画像投影装置 10のコネクタ 34 (図 8参照)に接続されている。  [0138] As shown in Fig. 1, the Mopile 'computer 16 is provided with a USB port 28 and an analog VGA port 30 as output ports, respectively. Connected to connector 34 on device 10 (see Figure 8).
[0139] USBポート 28は、電源端子を有するシリアル通信ポートであり、この USBポート 28 力もこの画像投影装置 10のコネクタ 34に、その画像投影装置 10の作動に必要な電 気エネルギーが供給される。この画像投影装置 10は、電源を外部に依存する形式と したり、電源 (例えば、電池)を内蔵する形式としたり、両者を併用する形式とすること が可能である。  [0139] The USB port 28 is a serial communication port having a power supply terminal, and this USB port 28 power is also supplied to the connector 34 of the image projection device 10 with electric energy necessary for the operation of the image projection device 10. . The image projection apparatus 10 can have a power supply that depends on the outside, a power supply (for example, a battery), or a combination of both.
[0140] これに対し、アナログ VGAポート 30は、ビデオ信号 (画像信号)を出力するビデオ 出力ポートである。このアナログ VGAポート 30からこの画像投影装置 10のコネクタ 3 4に画像信号が供給され、その供給された画像信号に基づ!/、てこの画像投影装置 1 0が画像を投影対象に投影する。  [0140] On the other hand, the analog VGA port 30 is a video output port for outputting a video signal (image signal). An image signal is supplied from the analog VGA port 30 to the connector 34 of the image projection apparatus 10, and based on the supplied image signal, the image projection apparatus 10 projects an image onto a projection target.
[0141] 図 2には、この画像投影装置 10の光学的構成が平面図で示されている。図 2に示 すように、この画像投影装置 10は、放射源部として光源部 40と、変調部としての空間 変調部 42と、投影部としての前述の投影レンズユニット 14とを備えている。  FIG. 2 shows a plan view of the optical configuration of the image projector 10. As shown in FIG. 2, the image projection apparatus 10 includes a light source unit 40 as a radiation source unit, a spatial modulation unit 42 as a modulation unit, and the projection lens unit 14 described above as a projection unit.
[0142] 光源部 40は、 RGB方式によって任意の色を生成するものであり、波長が互いに異 なる 3つの成分光(単色光)をそれぞれ発光する 3個の光源 50R, 50G, 50Bと、合 波部としてのクロスプリズム 56とを備えて 、る。 [0143] それら 3個の光源 50R, 50G, 50Bはそれぞれ、複数個の放射源素子として 3個の 無機 LED60R, 60G, 60Bを備えている。 LED60Rは、 Al、 In、 Gaおよび Pの 4元 素から成るダブルへテロ構造の無機 LEDであり、赤色ビームを放射状に (発散的に) 出射する。 LED60Gは、 In, Gaおよび Nの 3元素力 成るダブルへテロ構造の無機 LEDであり、緑色ビームを放射状に (発散的に)出射する。 LED60Bは、 In, Gaおよ び Nの 3元素力 成るダブルへテロ構造の無機 LEDであり、青色ビームを放射状に( 発散的に)出射する。 [0142] The light source unit 40 generates an arbitrary color by the RGB method, and includes three light sources 50R, 50G, and 50B that emit three component lights (monochromatic lights) having different wavelengths. And a cross prism 56 as a wave portion. Each of the three light sources 50R, 50G, and 50B includes three inorganic LEDs 60R, 60G, and 60B as a plurality of radiation source elements. The LED60R is a double heterostructure inorganic LED composed of Al, In, Ga, and P elements, and emits a red beam radially (divergently). The LED60G is a double heterostructure inorganic LED consisting of three elemental forces of In, Ga, and N, and emits a green beam radially (divergently). The LED60B is an inorganic LED with a double hetero structure consisting of three elements of In, Ga and N, and emits a blue beam radially (divergently).
[0144] 各光源 50R, 50G, 50Bにお!/ヽて ίま、対応する LED60R, 60G, 60Β力 対応す る基板 64に、高放熱性の銀ペースト (金属を含有する導電性ペーストの一例) 66に よって接着されている。基板 64は、高放熱性のアルミニウム製のサブストレート (金属 サブストレートの一例)に絶縁榭脂を塗布し、さらに銅を無電解メツキすることにより、 PCB (プリント回路基板)として構成されている。  [0144] For each light source 50R, 50G, 50B! / Corresponding to LED60R, 60G, 60Β, corresponding to substrate 64, high heat dissipation silver paste (an example of conductive paste containing metal) ) It is bonded by 66. The substrate 64 is configured as a PCB (printed circuit board) by applying an insulating resin to a high heat dissipation aluminum substrate (an example of a metal substrate) and then electrolessly plating copper.
[0145] 各光源 50R, 50G, 50Βにおいては、さらに、対応する基板 64に CGH (コンビユー タ-ジエネレーテッド'ホログラム)板 70R, 70G, 70Βがブリッジ 72によって支持され ている。各 CGH板 70R, 70G, 70Βは、隙間を隔てて、対応する基板 64に正対して いる。各光源 50R, 50G, 50Βにおける CGH板 70R, 70G, 70Βはそれぞれ、赤色 ビーム用、緑色ビーム用および青色ビーム用である。  [0145] In each of the light sources 50R, 50G, 50Β, a CGH (Computer-Generated 'Hologram) plate 70R, 70G, 70Β is further supported by a bridge 72 on the corresponding substrate 64. Each CGH plate 70R, 70G, 70mm is directly facing the corresponding substrate 64 with a gap. The CGH plates 70R, 70G, 70Β for each light source 50R, 50G, 50Β are for red beam, green beam, and blue beam, respectively.
[0146] 図 3には、 3枚の CGH板 70R, 70G, 70Βを代表する 1枚の CGH板 70が縦断面 図で示されている。この CGH板 70は、ブロードバンド AR板 76とサブ波長構造屈折 板 78とが光軸方向にぉ ヽて互 ヽに積層されて構成されて 、る。ブロードバンド AR板 76は、ブロードバンドすなわちすべての波長帯域においてアンチリフレクション (AR) 機能を発揮する。このブロードバンド AR板 76は、図 3に光路図で示すように、入射し た光を屈折させて透過させる機能も発揮する。図 3には、前述の 3個の光源 50R, 50 G, 50Βがそれぞれ点光源として近似できること、それら 3個の点光源は後述のフィー ルドシーケンシャル方式に従って順次駆動されること、および 1個の点光源は光を発 散的に出射することを踏まえて、それら 3個の光源 50R, 50G, 50Βが 1個の点光源 として表現されている。  [0146] In Fig. 3, one CGH plate 70 representing three CGH plates 70R, 70G, and 70mm is shown in a longitudinal sectional view. The CGH plate 70 is configured by laminating a broadband AR plate 76 and a sub-wavelength structural refracting plate 78 alternately in the optical axis direction. The broadband AR board 76 exhibits an anti-reflection (AR) function in broadband, that is, in all wavelength bands. As shown in the optical path diagram of FIG. 3, the broadband AR plate 76 also exhibits a function of refracting and transmitting incident light. Figure 3 shows that the three light sources 50R, 50G, and 50Β mentioned above can be approximated as point light sources, that the three point light sources are sequentially driven according to the field sequential method described later, and one point light source. The three light sources 50R, 50G, and 50Β are expressed as one point light source based on the fact that the light source emits light divergently.
[0147] 図 4には、ブロードバンド AR板 76の一部が拡大されて断面図で示されている。この ブロードバンド AR板 76は、基材 80上にテーパ状の複数個の凸部(点状の凸部) 82 が最密格子配列によって縦横に 2次元的に配置されることにより、構成されている。そ れら複数個の凸部 82により、ブロードバンド AR層 84が形成されている。 In FIG. 4, a part of the broadband AR board 76 is enlarged and shown in a sectional view. this The broadband AR plate 76 is configured by two-dimensionally arranging a plurality of tapered convex portions (dot-shaped convex portions) 82 vertically and horizontally on a base material 80 in a close-packed lattice arrangement. A broadband AR layer 84 is formed by the plurality of convex portions 82.
[0148] このブロードバンド AR層 84においては、それら複数個の凸部 82により、サブ波長 の周期を有する周期構造 (以下、単に「サブ波長構造」という。)が構成されている。こ のブロードバンド AR層 84の表面はモスアイ面とも称される。凸部 82間の間隔は、ブ ロードバンド AR層 84に入射する光束の波長(図 4においては、 LED60R, 60G, 60 Bから出射する光束の波長)より小さい。したがって、このブロードバンド AR層 84は、 ある屈折率を有する媒質と等価である。このブロードバンド AR層 84に実質的に垂直 に光束が入射する場合には、このブロードバンド AR層 84から高次の回折光は発生 せず、発生する光はせいぜい、 0次の透過光または反射光である。  In the broadband AR layer 84, the plurality of convex portions 82 constitute a periodic structure having a sub-wavelength period (hereinafter simply referred to as “sub-wavelength structure”). The surface of this broadband AR layer 84 is also referred to as a moth-eye surface. The interval between the convex portions 82 is smaller than the wavelength of the light beam incident on the broadband AR layer 84 (in FIG. 4, the wavelength of the light beam emitted from the LEDs 60R, 60G, and 60B). Therefore, this broadband AR layer 84 is equivalent to a medium having a certain refractive index. When a light beam is incident on the broadband AR layer 84 substantially vertically, no high-order diffracted light is generated from the broadband AR layer 84, and the generated light is at most zero-order transmitted or reflected light. is there.
[0149] さらに、本実施形態においては、各凸部 82がテーパ状を成しているため、各凸部 8 2の高さ方向に屈折率が徐々に変化する。したがって、ブロードバンド AR層 84から 反射光は発生せず、発生する光は 0次の透過光のみとなる。  Furthermore, in the present embodiment, since each convex portion 82 is tapered, the refractive index gradually changes in the height direction of each convex portion 82. Accordingly, no reflected light is generated from the broadband AR layer 84, and only the 0th-order transmitted light is generated.
[0150] このブロードバンド AR板 76は、ホウ珪酸ガラス(またはシリカガラス)を基材 80とし て構成されている。基材 80に対して電子線でパターユングを行い、その基材 80に対 して高速電子線で加工を行うことにより、例えば、周期が 150nmで、高さが 350nm である周期構造を構成することが可能である。また、このブロードバンド AR板 76は、 高精度の研削によって構成することも可能である。シリカガラス製の基材 80のフレネ ル反射は片面で約 3. 5%であるが、今回の周期構造により、可視域において入射角 度力 入射面の法線方向に対して ±40度以上である範囲で、 0. 1%の反射率が実 現できる。したがって、このようなサブ波長構造を任意の光源の表面に形成すれば、 光源からの光束の取り出し効率を高めることが可能である。すなわち、光源内におい て多重反射して最終的に熱として消費されてしまう光子の数を最小限に抑えることが 可能なのである。  [0150] The broadband AR plate 76 is composed of a borosilicate glass (or silica glass) as a base material 80. By patterning the base material 80 with an electron beam and processing the base material 80 with a high-speed electron beam, for example, a periodic structure with a period of 150 nm and a height of 350 nm is formed. It is possible. The broadband AR plate 76 can also be configured by high precision grinding. The Fresnel reflection of the base material made of silica glass 80 is about 3.5% on one side, but with this periodic structure, the incident angular force in the visible range is more than ± 40 degrees with respect to the normal direction of the incident surface. Within a certain range, a reflectance of 0.1% can be realized. Therefore, if such a sub-wavelength structure is formed on the surface of an arbitrary light source, it is possible to increase the light extraction efficiency from the light source. That is, it is possible to minimize the number of photons that are multiple-reflected in the light source and eventually consumed as heat.
[0151] これに対し、サブ波長構造屈折板 78は、図 5に示すように、基材 86上に複数個の 凸部 88が入射波長より短い間隔で 2次元的に並ぶように配置されることにより、構成 されている。本実施形態においては、各凸部 88は、線状に延びている。 [0152] このサブ波長構造屈折板 78に点光源 (各サブ波長構造屈折板 78に対応する 1個 の光源)力 の単色光が参照光として投入されると、透過光が物体光として再生され 、それにより、このサブ波長構造屈折板 78は、点光源からの発散光を略平行化する 正パワー素子の働きをなす。同じ点光源力 発散的に出射した複数の光線の向きを 略一方向に揃える集光機能を果たすのである。このサブ波長構造屈折板 78の屈折 層 90 (図 3参照)により、このサブ波長構造屈折板 78に入射した光束を任意の方向 に屈折させることが可能である。 On the other hand, as shown in FIG. 5, the sub-wavelength structure refracting plate 78 is arranged on the substrate 86 so that a plurality of convex portions 88 are two-dimensionally arranged at intervals shorter than the incident wavelength. It is configured by In the present embodiment, each convex portion 88 extends linearly. [0152] When monochromatic light having a point light source (one light source corresponding to each sub-wavelength structure refracting plate 78) is input as reference light to the sub-wavelength structure refracting plate 78, transmitted light is reproduced as object light. Thus, the sub-wavelength structure refracting plate 78 functions as a positive power element that substantially collimates the diverging light from the point light source. The same point light source power Condensation function that aligns the direction of multiple divergent rays in one direction. The light beam incident on the sub-wavelength structure refracting plate 78 can be refracted in an arbitrary direction by the refracting layer 90 of the sub-wavelength structure refracting plate 78 (see FIG. 3).
[0153] それらブロードバンド AR板 76もサブ波長構造屈折板 78も、 CGH (コンピュータ'ジ エネレーテッド ·ホログラム)素子である。ところで、ホログラフィは、一般に、 3次元像の 再生が可能である。ホログラフィの記録には、参照光と物体光とが干渉するとその結 果として干渉縞が生じるという現象が利用される力 これに対し、 CGHは、記録に光 をまったく用いることなくコンピュータを用いて回折パターンを生成する方法である。  [0153] Both the broadband AR plate 76 and the sub-wavelength structure refracting plate 78 are CGH (computer-generated hologram) elements. By the way, in general, holography can reproduce a three-dimensional image. In holography recording, the phenomenon that interference fringes are generated as a result of interference between the reference beam and the object beam is used. On the other hand, CGH uses a computer to diffract light without using any light for recording. This is a method for generating a pattern.
[0154] CGHの利用範囲は広範であり、グレーティング素子、シリンドリカルレンズ、球面レ ンズ、非球面レンズ、特殊レンズ、光結合器、パターン発生器などを作製するため〖こ 利用できる。 CGHには、バイナリ CGHと、グレイレベル CGHと、位相レベル CGHと があるが、一般的には、位相レベル 2値 CGHが用いられることが多い。図 5は、表面 レリーフホログラムの一例を示しており、高さがサブ波長のサイズに形成された凸部 8 8は、透過光の位相をシフトする働きをなす。  [0154] CGH is used in a wide range and can be used to manufacture grating elements, cylindrical lenses, spherical lenses, aspherical lenses, special lenses, optical couplers, pattern generators, and the like. CGH includes binary CGH, gray level CGH, and phase level CGH. In general, phase level binary CGH is often used. FIG. 5 shows an example of a surface relief hologram. The convex portion 88 having a height of a sub-wavelength size functions to shift the phase of transmitted light.
[0155] 一般に、 CGHにおいては、まず、 2次元パターンがコンピュータにより、ホログラム 面上のすべての点において物体光と参照光との生成位相分布として計算される。次 に、その計算された 2次元パターンがクロムマスク等のマスクに、例えば電子ビームを 用いて描画される。続いて、そのマスクがフォトレジストに投影される。これにより、フォ トレジストがパター-ングされ、その後、現像、リンス、ドライエッチング等の手法により 、基材上に凹凸が形成される。基材上に 2次元パターンを描画するプロセスは、基材 に対して直接、電子線リソグラフィを実施する方法によって行うことも可能である。また 、そのプロセスは、高精度の研削刃を用いて直接基材を研削する方法によって行うこ とも可能である。  In general, in CGH, first, a two-dimensional pattern is calculated by a computer as a generated phase distribution of object light and reference light at all points on the hologram surface. Next, the calculated two-dimensional pattern is drawn on a mask such as a chrome mask using, for example, an electron beam. Subsequently, the mask is projected onto the photoresist. As a result, the photoresist is patterned, and then unevenness is formed on the substrate by a technique such as development, rinsing, and dry etching. The process of drawing a two-dimensional pattern on a substrate can also be performed by a method of performing electron beam lithography directly on the substrate. The process can also be performed by a method of directly grinding a substrate using a high-precision grinding blade.
[0156] 図 2に示すように、 3個の光源 50R, 50G, 50Bは、同一平面上において 3方向から クロスプリズム 56の中心に向力つて各光束を出射するように配置されて 、る。それら 3 個の光源 50R, 50G, 50Bは、クロスプリズム 56を、それの 4側面のうちの 3側面にお いて包囲している。クロスプリズム 56は、 3個の光源 50R, 50G, 50Bからそれぞれ出 射した 3つの成分光を、後述する各反射面に設置されたダイクロイツクミラーの働きに より、 1つの合成光に合成する光合成器である。 [0156] As shown in FIG. 2, the three light sources 50R, 50G, and 50B are arranged in three directions on the same plane. The cross prism 56 is arranged so as to emit each light beam by directing force to the center of the cross prism 56. These three light sources 50R, 50G, and 50B surround the cross prism 56 on three of its four sides. The cross prism 56 combines the three component lights emitted from the three light sources 50R, 50G, and 50B into one combined light by the action of dichroic mirrors installed on each reflecting surface, which will be described later. It is a vessel.
[0157] 図 6に示すように、クロスプリズム 56は、 45度直角プリズム 94, 96, 98, 100力 個 、それらの側面同士において互いに接着接合されることにより、構成されている。各 プリズム 94, 96, 98, 100は、低光弾性定数のガラス(例えば、オハラ社製「PBH56 」低光弾性定数 j8 =0. 09 X 10_12Pa) )を支持体として形成されている。 As shown in FIG. 6, the cross prism 56 is configured by adhering and bonding 45-degree right-angle prisms 94, 96, 98, and 100 at their side surfaces. Each of the prisms 94, 96, 98, 100 is formed by using a glass having a low photoelastic constant (for example, “PBH56” low photoelastic constant j8 = 0.09 × 10 — 12 Pa) manufactured by OHARA, Inc.) as a support.
[0158] 図 6【こ示すよう【こ、 4偶のプリズム 94, 96, 98, 100のうち、 ED70R【こ対向するプ リズム 94には、 LED70Rから赤色ビーム(図 6において「R光」で表す。)が、そのプリ ズム 94の底面を入射面として、その入射面に略垂直に入射する。同様に、 LED70G に対向するプリズム 96には、 LED70Gから緑色ビーム(図 6において「G光」で表す。 )が、そのプリズム 96の底面を入射面として、その入射面に略垂直に入射する。同様 にして、 LED70Bに対向するプリズム 98には、 LED70Bから青色ビーム(図 6におい て「B光」で表す。)が、そのプリズム 98の底面を入射面として、その入射面に略垂直 に入射する。残りのプリズム 100からは、それの底面を出射面として、その出射面から 垂直に合成光(図 6にお 、て「RGB光」で表す。 )が出射する。  [0158] Figure 6 [As shown in this figure, out of the four even prisms 94, 96, 98, 100, ED70R [The opposite prism 94 has a red beam from LED70R ("R light" in Figure 6). However, the bottom surface of the prism 94 is used as the entrance surface, and the light enters the entrance surface substantially perpendicularly. Similarly, a green beam (represented by “G light” in FIG. 6) from the LED 70G enters the prism 96 facing the LED 70G with the bottom surface of the prism 96 as an incident surface, and enters the incident surface substantially perpendicularly. Similarly, a blue beam (shown as “B light” in FIG. 6) from LED 70B is incident on prism 98 facing LED 70B substantially perpendicularly to the incident surface with the bottom surface of prism 98 as the incident surface. To do. From the remaining prism 100, the bottom surface of the prism 100 is used as the exit surface, and the combined light (expressed as “RGB light” in FIG. 6) exits vertically from the exit surface.
[0159] プリズム 94の一対の斜面のうちプリズム 96と接合するものと、プリズム 100の一対の 斜面のうちプリズム 98と接合するものとにはそれぞれ、赤色ビームは反射し、緑色お よび青色のビームは透過するダイクロイツクミラー 102, 104が形成されている。さらに 、プリズム 96の一対の斜面のうちプリズム 98と接合するものと、プリズム 100の一対の 斜面のうちプリズム 94と接合するものとにはそれぞれ、青色ビームは反射し、赤色お よび緑色のビームは透過するダイクロイツクミラー 106, 108が形成されている。  [0159] Of the pair of slopes of the prism 94 that joins the prism 96 and the pair of slopes of the prism 100 that joins the prism 98, the red beam reflects and the green and blue beams respectively. Transmitting dichroic mirrors 102 and 104 are formed. Furthermore, the blue beam is reflected and the red and green beams are reflected on each of the pair of slopes of the prism 96 which is joined to the prism 98 and the pair of slopes of the prism 100 which is joined to the prism 94, respectively. Transmitting dichroic mirrors 106 and 108 are formed.
[0160] したがって、プリズム 94に入射した赤色ビームは実質的に 2面のダイクロイツクミラー 102, 104によって反射してプリズム 100から出射する。また、プリズム 96に入射した 緑色ビームは 4個のダイクロイツクミラー 102, 104, 106, 108をいずれも透過してプ リズム 100から出射する。また、プリズム 98に入射した青色ビームは 2個のダイクロイ ックミラー 106, 108によって反射してプリズム 100から出射する。それらダイクロイツク ミラー 102, 104, 106, 108の波長選択的な反射および透過により、 3方向から入射 した 3色のビームが合成され、その合成光がプリズム 100から出射する。 Accordingly, the red beam incident on the prism 94 is substantially reflected by the two dichroic mirrors 102 and 104 and emitted from the prism 100. Further, the green beam incident on the prism 96 passes through the four dichroic mirrors 102, 104, 106, and 108 and exits from the prism 100. The blue beam incident on the prism 98 is two dichroic. The light is reflected by the mirrors 106 and 108 and is emitted from the prism 100. By the wavelength selective reflection and transmission of these dichroic mirrors 102, 104, 106, and 108, three color beams incident from three directions are combined, and the combined light is emitted from the prism 100.
[0161] 図 2に示すように、各光源 50R, 50G, 50Bとクロスプリズム 56とは、各 CGH板 70R , 70G, 70Bの両面のうちビームが出射する出射面と、各プリズム 94, 96, 98の入射 面とが接着剤 114によって互いに接着されることにより、互いに固定されている。その 接着剤 114は、 UV照射によって硬化する光透過性の接着剤である。各光源 50R, 5 OG, 50Bとクロスプリズム 56とは、図 2の紙面に平行な面内における相対位置が精 度よく調整された状態で、接着剤 114によって互いに固定されている。  [0161] As shown in FIG. 2, each of the light sources 50R, 50G, 50B and the cross prism 56 includes an exit surface on which a beam exits from both sides of each CGH plate 70R, 70G, 70B, and each prism 94, 96, The 98 incident surfaces are fixed to each other by being bonded to each other by an adhesive 114. The adhesive 114 is a light-transmitting adhesive that is cured by UV irradiation. The light sources 50R, 5OG, 50B and the cross prism 56 are fixed to each other by the adhesive 114 in a state where the relative positions in the plane parallel to the paper surface of FIG.
[0162] 図 2に示すように、クロスプリズム 56の出射側に前述の空間変調部 42が設置されて いる。この空間変調部 42は、偏光ビームスプリッタ 120を備え、さらに、反射型液晶 パネルとしての LCOS (リキッド ·クリスタル ·オン ·シリコン)を 2個備えて!/、る。それら 2 個の LCOSをそれぞれ、 LCOS1および LCOS2と称する。  As shown in FIG. 2, the spatial modulation section 42 described above is installed on the exit side of the cross prism 56. This spatial modulation unit 42 includes a polarizing beam splitter 120, and further includes two LCOS (liquid crystal on silicon) as reflective liquid crystal panels! These two LCOSs are called LCOS1 and LCOS2, respectively.
[0163] 図 7には、それら偏光ビームスプリッタ 120と LCOS1および LCOS2とが拡大して 平面図で示されている。偏光ビームスプリッタ 120は、 45度直角プリズム 122, 124 力^個、それらの斜面同士において互いに接合されることにより、構成されている。そ の接合面にブロードバンド偏光ビームスプリッタ面 126が形成されている。各プリズム 122, 124の外周は、他のプリズム 124, 122との接合面でもある斜面と、互いに直角 な 2つの側面とによって構成されている。各プリズム 122, 124は、低光弾性定数のガ ラス (例えば、前述のオハラ社製 ΓΡΒΗ56] )を支持体として形成されて!ヽる。  [0163] In Fig. 7, the polarization beam splitter 120 and LCOS1 and LCOS2 are enlarged and shown in plan view. The polarizing beam splitter 120 is configured by joining 122, 124 forces of 45-degree right-angle prisms and joining them together on their inclined surfaces. A broadband polarization beam splitter surface 126 is formed on the joint surface. The outer peripheries of the prisms 122 and 124 are each composed of a slope that is also a joint surface with the other prisms 124 and 122, and two side surfaces that are perpendicular to each other. Each of the prisms 122 and 124 is formed by using a glass having a low photoelastic constant (for example, the above-mentioned ΓΡΒΗ56 manufactured by OHARA) as a support.
[0164] それらプリズム 122, 124のうち光源咅 40に近!/、プリズム 122に、その光源咅 40力 ら出射した合成光(図 7において「RGB光」で表す。)が入射する。このプリズム 122の うちの 2つの側面は、光源部 40に正対する側面と、正対しない側面とから成り、正対 する側面が、合成光がこの偏光ビームスプリッタ 120に入射する際の入射面である。 図 2に示すように、その入射面とクロスプリズム 56の出射面とは、 UV照射によって硬 化する光透過性の接着剤 130によって互 、に接着されて 、る。それら偏光ビームス プリッタ 120とクロスプリズム 56とは、図 2の紙面に平行な面内における相対位置が精 度よく調整された状態で、接着剤 130によって互いに固定されている。 [0165] 図 7に示すように、偏光ビームスプリッタ 120を構成する 2個のプリズム 122, 124の うち光源部 40から遠いプリズム 124も、それの外周が、別のプリズム 122との接合面 である底面と、互いに直角な 2つの側面とによって構成されており、それら 2つの側面 は、光源部 40に正対する側面と、正対しない側面とから成っている。 [0164] Of the prisms 122 and 124, the light source 40 is near! / And the combined light (shown as "RGB light" in FIG. 7) emitted from the light source 40 is incident on the prism 122. Two side surfaces of the prism 122 are composed of a side surface facing the light source unit 40 and a side surface not facing the light source unit 40, and the facing side surface is an incident surface when the combined light is incident on the polarization beam splitter 120. is there. As shown in FIG. 2, the incident surface and the exit surface of the cross prism 56 are bonded to each other by a light-transmitting adhesive 130 that is hardened by UV irradiation. The polarization beam splitter 120 and the cross prism 56 are fixed to each other by the adhesive 130 in a state where the relative positions in the plane parallel to the paper surface of FIG. As shown in FIG. 7, out of the two prisms 122 and 124 that constitute the polarizing beam splitter 120, the prism 124 far from the light source unit 40 also has an outer periphery that is a joint surface with another prism 122. The bottom surface and two side surfaces perpendicular to each other are formed. The two side surfaces are a side surface facing the light source unit 40 and a side surface not facing each other.
[0166] 図 7に示すように、偏光ビームスプリッタ 120に入射した合成光すなわち入射光 (光 源部 40から出射した照明光)は、ブロードバンド偏光ビームスプリッタ面 126によって 反射する入射 S波(S偏光)と、そのブロードバンド偏光ビームスプリッタ面 126を透過 する入射 P波(P偏光)とに分割される。偏光ビームスプリッタ 120は、照明光 (RGB光 )の全波長帯域において、すなわち、ブロードバンドで、その偏光特性が実質的に同 一であるように設計されて 、る。  [0166] As shown in FIG. 7, the combined light, that is, incident light (illumination light emitted from the light source unit 40) incident on the polarization beam splitter 120 is reflected by the broadband polarization beam splitter surface 126 and is incident on the S wave (S polarization). ) And an incident P wave (P-polarized light) that transmits through the broadband polarization beam splitter surface 126. The polarization beam splitter 120 is designed so that its polarization characteristics are substantially the same in the entire wavelength band of illumination light (RGB light), that is, in broadband.
[0167] 2個のプリズム 122, 124のうち光源部 40力ら遠いプリズム 124には LCOS1、近い プリズム 122には LCOS2がそれぞれ対向させられている。 LCOS1には入射 P波、 L COS2には入射 S波がそれぞれ入射する。それら LCOS1と LCOS2とは、入 ·出射 方向に関して互いに直交するように配置されて 、る。  Among the two prisms 122 and 124, LCOS1 is opposed to the prism 124 far from the light source unit 40, and LCOS2 is opposed to the near prism 122. The incident P wave is incident on LCOS1 and the incident S wave is incident on L COS2. LCOS1 and LCOS2 are arranged so as to be orthogonal to each other in the input / output direction.
[0168] LCOS1および LCOS2はいずれも、例えば日本国特開平 11— 95212号公報に 開示されているように、図示しないが、アルミニウム反射ミラーを内蔵してスイッチング 素子をマトリクス状に複数個配列して成る反射型アクティブマトリクス基板と、液晶層と 、その液晶層の厚さを規制するカバーガラスとが積層されることにより、構成される。 L COS1および LCOS2はそれぞれ、外部から供給される画像信号に基づき、その画 像信号により表される画像光が各 LCOSから出射するように、それぞれに入射した照 明光の偏光方向を変調する。  [0168] LCOS1 and LCOS2 are both not shown, for example, as disclosed in Japanese Patent Application Laid-Open No. 11-95212, but a plurality of switching elements are arranged in a matrix with built-in aluminum reflecting mirrors. The reflection type active matrix substrate, a liquid crystal layer, and a cover glass that regulates the thickness of the liquid crystal layer are laminated. Each of LCOS1 and LCOS2 modulates the polarization direction of the incident illumination light based on the image signal supplied from the outside so that the image light represented by the image signal is emitted from each LCOS.
[0169] 各 LCOSにおいては、輝度を有する画素(例えば、明表示の画素)については、こ の画素を電界的に放置することにより、偏光ビームスプリッタ 120から入射した照明光 を、その入射光に直交する偏光方向に変調して反射する。その後、その反射光は投 影レンズユニット 14に向かう。これに対し、輝度を有しない画素(例えば、暗表示の画 素)については、この画素において液晶に電界を印加することによって液晶分子を正 立させ、入射した照明光をそれと同一の偏光方向で反射する。その後、その反射光 は、光源部 40に逆戻りし、その光源部 40においてその反射光のパワーが消費され て消滅する。 [0169] In each LCOS, with respect to a pixel having luminance (for example, a bright display pixel), the illumination light incident from the polarization beam splitter 120 is converted into the incident light by leaving this pixel in an electric field. The light is modulated and reflected in the orthogonal polarization direction. Thereafter, the reflected light travels toward the projection lens unit 14. On the other hand, for a pixel having no luminance (for example, a dark display pixel), an electric field is applied to the liquid crystal in this pixel to erect the liquid crystal molecules, and the incident illumination light is polarized in the same polarization direction. reflect. Thereafter, the reflected light returns to the light source unit 40, and the power of the reflected light is consumed in the light source unit 40. Disappear.
[0170] 具体的には、 LCOS1において P波から S波への変調が行われた画素については、 LCOS1からの反射光が S波であるため、ブロードバンド偏光ビームスプリッタ面 126 において反射し、その後、その反射光は、プリズム 124の 2つの側面のうち光源部 40 と正対しない側面を出射面として、その出射面から出射する。この出射光は、 S波の 画像信号光である。一方、 LCOS1において P波力も S波への変調が行われな力つた 画素については、 LCOS1からの反射光が P波であるため、ブロードバンド偏光ビー ムスプリッタ面 126を透過し、その後、その透過光は、偏光ビームスプリッタ 120の入 射面から出射して、この画像投影装置 10内のいずれかの場所において消費消失す る。すなわちこの出射光は、 P波の消失光なのである。  [0170] Specifically, for the pixel that has been modulated from P wave to S wave in LCOS1, since the reflected light from LCOS1 is S wave, it is reflected on the broadband polarization beam splitter surface 126, and then The reflected light is emitted from the exit surface of the two side surfaces of the prism 124, with the side surface not facing the light source unit 40 being the exit surface. This emitted light is S-wave image signal light. On the other hand, in the pixel where the P wave force is not modulated into S wave in LCOS1, the reflected light from LCOS1 is P wave, so it passes through the broadband polarization beam splitter surface 126 and then the transmitted light. Is emitted from the incident surface of the polarization beam splitter 120 and consumed and lost at any location in the image projection apparatus 10. In other words, this emitted light is P wave disappearance light.
[0171] これに対し、 LCOS2において S波から P波への変調が行われなかった画素につい ては、 LCOS2からの反射光が S波であるため、ブロードバンド偏光ビームスプリッタ 面 126において反射し、その後、その反射光は、偏光ビームスプリッタ 120の入射面 力も出射して、この画像投影装置 10内のいずれかの場所において消費消失する。 すなわち、この出射光は、 S波の消失光なのである。一方、 LCOS2において S波か ら P波への変調が行われた画素については、 LCOS2からの反射光が P波であるため 、ブロードバンド偏光ビームスプリッタ面 126を透過し、その後、その透過光は、偏光 ビームスプリッタ 120の入射面から出射する。この出射光は、 P波の画像信号光であ る。  [0171] On the other hand, for pixels that were not modulated from S-wave to P-wave in LCOS2, the reflected light from LCOS2 is S-wave, so it is reflected by broadband polarization beam splitter surface 126, and then The reflected light is also emitted from the incident surface force of the polarizing beam splitter 120 and consumed and lost at any location in the image projector 10. That is, this outgoing light is S-wave disappearance light. On the other hand, for the pixel that has been modulated from S-wave to P-wave in LCOS2, the reflected light from LCOS2 is P-wave, so it passes through the broadband polarization beam splitter surface 126. The light is emitted from the incident surface of the polarization beam splitter 120. The emitted light is P-wave image signal light.
[0172] 偏光ビームスプリッタ 120の同じ出射面から、 P波の画像信号光と S波の画像信号 光とが出射する結果、それら 2種類の画像信号光が合成され、それが、空間変調部 4 2からの最終的な出射光となる。この際に肝要なことは、 2つの空間変調器である LC OS1および LCOS2からそれぞれ出射した 2種類の画像信号光が完全に重なるよう に、それら LCOS1および LCOS2が、それら間の相対位置が精度よく調整された状 態で、偏光ビームスプリッタ 120に固定されることである。  [0172] As a result of the P-wave image signal light and the S-wave image signal light being emitted from the same exit surface of the polarization beam splitter 120, these two types of image signal light are combined, and this is the spatial modulation section 4 This is the final outgoing light from 2. In this case, it is important to ensure that the LCOS1 and LCOS2 are accurately positioned relative to each other so that the two types of image signal light emitted from the two spatial modulators LCOS1 and LCOS2 are completely overlapped. It is to be fixed to the polarization beam splitter 120 in an adjusted state.
[0173] そのため、図 2に示すように、プリズム 124の表面と LCOS1の表面とは、 UV照射に よって硬化する光透過性の接着剤 132によって互いに接着されている。同様に、プリ ズム 122の表面と LCOS2の表面とは、 UV照射によって硬化する光透過性の接着 剤 134によって互いに接着されている。各 LCOSと偏光ビームスプリッタ 120とは、図 2の紙面に平行な面内における相対位置が精度よく調整された状態で、接着剤 132 , 134によって互いに固定されている。 Therefore, as shown in FIG. 2, the surface of prism 124 and the surface of LCOS 1 are bonded to each other by a light-transmitting adhesive 132 that is cured by UV irradiation. Similarly, the surface of Prism 122 and the surface of LCOS2 are light-transmitting adhesives that are cured by UV irradiation. Adhered to each other by agent 134. Each LCOS and the polarization beam splitter 120 are fixed to each other by adhesives 132 and 134 in a state where the relative positions in the plane parallel to the paper surface of FIG.
[0174] 図 2に示すように、 LCOS1の両面のうち、偏光ビームスプリッタ 120とは反対側に、 放熱部としての放熱フィン 138が、 LCOS1と接触する状態で装着されている。同様 に、 LCOS2の両面のうち、偏光ビームスプリッタ 120とは反対側に、放熱部としての 放熱フィン 140が、 LCOS 2と接触する状態で装着されている。これにより、液晶の昇 温による画像信号光のコントラスト低下を低減させることができる。一般に、液晶分子 は、摂氏 60°Cを超えると、それのねじれネマテッゥ構造を正しく維持することができな くなつてしまい、その結果、画像信号光のコントラストを低下させてしまう。  [0174] As shown in FIG. 2, heat radiation fins 138 as heat radiation portions are mounted on both sides of LCOS1 on the side opposite to polarization beam splitter 120 in contact with LCOS1. Similarly, on both sides of the LCOS 2, on the opposite side to the polarizing beam splitter 120, the heat radiating fins 140 as heat radiating portions are attached in contact with the LCOS 2. Thereby, it is possible to reduce a decrease in contrast of the image signal light due to the temperature rise of the liquid crystal. In general, when the liquid crystal molecule exceeds 60 ° C, its twisted nematic structure cannot be properly maintained, and as a result, the contrast of the image signal light is lowered.
[0175] 図 2に示すように、空間変調部 42の出射側に前述の投影レンズユニット 14が配置 されている。この投影レンズユニット 14は、テレセントリック性を有するように直列に並 んだ複数個のレンズ 150, 152, 154, 156と、それらレンズ 150, 152, 154, 156を 保持するレンズバレル 158とを備えている。それら複数個のレンズ 150, 152, 154, 156のうちの一部は、プラスチックレンズで、残りは、ガラスレンズである。本実施形態 【こお 、て ίま、 4偶のレンズ 150, 152, 154, 156のうち、装置ノヽウジング 12の内ィ則【こ ある 2個のレンズ 150, 152は、光学ガラス ΒΚ7によるガラスレンズ、外側にある 2個 のレンズ 154, 156は、光学プラスチック ΡΜΜΑによるプラスチックレンズとされてい る。  As shown in FIG. 2, the projection lens unit 14 described above is arranged on the emission side of the spatial modulation unit 42. The projection lens unit 14 includes a plurality of lenses 150, 152, 154, and 156 arranged in series so as to have telecentricity, and a lens barrel 158 that holds the lenses 150, 152, 154, and 156. Yes. Some of the plurality of lenses 150, 152, 154, 156 are plastic lenses, and the rest are glass lenses. This embodiment [Koo, Teorama, of the four even lenses 150, 152, 154, 156, of the device nosing 12, the two lenses 150, 152 are made of glass by optical glass ΒΚ7 The lens, the two lenses 154 and 156 on the outside, are plastic lenses made of optical plastic.
[0176] レンズバレル 158は、フォーカス調整ねじ 160を介して装置ハウジング 12に軸方向 に移動可能に装着されている。フォーカス調整ねじ 160により、この画像投影装置 10 の位置から、この画像投影装置 10による投影像までの投影距離すなわちフォーカス が調節される。  [0176] The lens barrel 158 is attached to the device housing 12 via the focus adjustment screw 160 so as to be movable in the axial direction. The focus adjustment screw 160 adjusts the projection distance from the position of the image projection device 10 to the projection image by the image projection device 10, that is, the focus.
[0177] 以上、この画像投影装置 10の光学的構成を説明したが、次に、その電気的構成を 説明する。  The optical configuration of the image projection apparatus 10 has been described above. Next, the electrical configuration will be described.
[0178] 図 8には、この画像投影装置 10の電気的な構成がブロック図で概念的に表されて いる。図 8に示すように、この画像投影装置 10は、マイクロプロセッサユニット(以下、 「MPU」と略称する。 ) 170を主体として構成されている。 [0179] この画像投影装置 10は、画像投影の開始を指令するためにユーザによって操作さ れる操作部として投影スィッチ 172を備えている。その投影スィッチ 172が操作され たか否かを監視するために、投影スィッチ 172と MPU 170とがキースキャン部 174を 介して互!、に接続されて!、る。 FIG. 8 conceptually shows the electrical configuration of the image projector 10 in a block diagram. As shown in FIG. 8, the image projection apparatus 10 is configured mainly with a microprocessor unit (hereinafter abbreviated as “MPU”) 170. [0179] The image projection apparatus 10 includes a projection switch 172 as an operation unit operated by a user to command the start of image projection. In order to monitor whether or not the projection switch 172 has been operated, the projection switch 172 and the MPU 170 are connected to each other via the key scanning unit 174 !.
[0180] 図 8に示すように、 MPU170には、電源インターフェース部(図 8においては「電源 i f部」で表す。) 176と、アナログ RGB信号によって代表されるビデオ信号 (画像信号) をサンプリングするビデオサンプリング部 178が接続されて 、る。それら電源インター フェース部 176とビデオサンプリング部 178とは、前述の接続ケーブル 32を介してモ パイル ·コンピュータ 16に接続されて!、る。  As shown in FIG. 8, the MPU 170 samples a power interface unit (represented as “power source if unit” in FIG. 8) 176 and a video signal (image signal) represented by an analog RGB signal. The video sampling unit 178 is connected. The power interface unit 176 and the video sampling unit 178 are connected to the mobile computer 16 via the connection cable 32 described above.
[0181] MPU170には、電源インターフェース部 176を介して、モパイル'コンピュータ 16 から電力(電気エネルギー)が供給され、さらに、それと並行して、ビデオサンプリング 部 178を介して、モパイル'コンピュータ 16から画像信号 (ビデオ信号)が供給される 。電源インターフェース部 176は、モパイル'コンピュータ 16から供給されるバスパヮ 一電圧(5Vまたは 12V)を、この画像投影装置 10による少なくとも 1つの要求電圧( + 15V, + 3. 3V, + 1. 5V,および—7. 5V)に変換する DC— DCコンバータ機能 を有する。  [0181] The MPU 170 is supplied with electric power (electrical energy) from the mopile computer 16 via the power interface unit 176, and in parallel therewith, the video from the mopile computer 16 via the video sampling unit 178. A signal (video signal) is supplied. The power interface unit 176 uses a bus pipe voltage (5V or 12V) supplied from the mopile computer 16 as at least one required voltage (+ 15V, + 3.3V, + 1.5V, and —7. DC—Converts to 5V) —Has a DC converter function.
[0182] MPU170〖こは、さらに、記憶部としての VRAM (ビデオ RAM) 180も接続されてい る。この VRAM180には、外部から取り込まれた画像信号が保存され、さらに、画像 投影に必要な画像信号が VRAM 180から読み出されて MPU 170に取り込まれる。 VRAM180としては、例えば、高速 RAMである SDRAMや DDRRAMが用いられ る。  [0182] The MPU 170 is also connected to a VRAM (video RAM) 180 as a storage unit. The VRAM 180 stores image signals captured from the outside, and further, image signals necessary for image projection are read from the VRAM 180 and captured by the MPU 170. As the VRAM 180, for example, SDRAM or DDRRAM which is a high-speed RAM is used.
[0183] 図 8に示すように、 MPU170は、 LCDドライバ 182を介して前述の LCOS 1および LCOS2に接続されている。 MPU170は、それら LCOS 1および LCOS2を制御する ために、 LCDドライバ 182に LCOS信号(図 8および図 9にお!/、ては単に「LCOS」で 表す。)を供給する。 LCOS信号は、前述の、画素ごとの変調制御、すなわち、画素 ごとに液晶に印加される電界の制御を行うために LCOS 1および LCOS2に供給され る。  As shown in FIG. 8, the MPU 170 is connected to the aforementioned LCOS 1 and LCOS 2 via the LCD driver 182. The MPU 170 supplies the LCOS signal (indicated as “LCOS” in FIGS. 8 and 9) to the LCD driver 182 in order to control the LCOS 1 and LCOS2. The LCOS signal is supplied to LCOS 1 and LCOS 2 in order to perform the above-described modulation control for each pixel, that is, control of the electric field applied to the liquid crystal for each pixel.
[0184] この画像投影装置 10においては、 3個の光源 50R, 50G, 50B、すなわち、赤色ビ ームを発光する光源(図 8においては「R光源」で表す。) 50Rと、緑色ビームを発光 する光源(図 8においては「G光源」で表す。) 50Gと、青色ビームを発光する光源(図 8においては「B光源」で表す。) 50Bと力 フィールドシーケンシャル方式に従い、順 次、点滅制御される。図 9にタイムチャートで表すように、投影画像の 1フレームごとに 、 R光源 50Rと G光源 50Gと B光源 50Bとがそれらの順に順次駆動される。 1フレーム においては、 R光源 50Rが駆動されるフィールドと、 G光源 50Gが駆動されるフィー ルドと、 B光源 50Bが駆動されるフィールドとが時間的に互いにオーバーラップしない ようになつている。 1フレームの時間幅、すなわち、フレーム周期は例えば、 1Z60秒 である。 [0184] In this image projector 10, three light sources 50R, 50G, 50B, that is, red Light source that emits light beam (represented by “R light source” in FIG. 8) 50R and light source that emits green beam (represented by “G light source” in FIG. 8) 50G and light source that emits blue beam (In Fig. 8, “B light source” is used.) 50B and force Flashing is controlled in sequence according to the field sequential method. As shown by the time chart in FIG. 9, the R light source 50R, the G light source 50G, and the B light source 50B are sequentially driven in that order for each frame of the projection image. In one frame, the field in which the R light source 50R is driven, the field in which the G light source 50G is driven, and the field in which the B light source 50B are driven do not overlap each other in time. The time width of one frame, that is, the frame period is, for example, 1Z60 seconds.
[0185] このフィールドシーケンシャル方式での画像信号処理を行うために、図 8に示すよう に、 MPU170は、タイミングジェネレータ 186とフィールドシーケンシャルドライバ 18 8とをそれらの順に経て 3個の光源 50R, 50G, 50Bに接続されている。タイミングジ エネレータ 186は、 MPU170から供給される垂直同期信号(図 8および図 9において は「VSYNC」で表す。)に応じ、図 9に示すように、ブランキング信号(図 8および図 9 においては「BLANKING」で表す。)と、各光源 50R, 50G, 50Bを駆動する光源 制御信号(図 8および図 9においてはそれぞれ、「R」、 「G」および「B」で表す。)とを 発生させる。  In order to perform image signal processing in this field sequential method, as shown in FIG. 8, the MPU 170 passes through a timing generator 186 and a field sequential driver 188 in the order of the three light sources 50R, 50G, Connected to 50B. In response to the vertical synchronization signal (indicated as “VSYNC” in FIGS. 8 and 9) supplied from the MPU 170, the timing generator 186 has a blanking signal (in FIGS. 8 and 9). "BLANKING") and light source control signals (represented by "R", "G", and "B" in Figs. 8 and 9, respectively) that drive each light source 50R, 50G, 50B. Let
[0186] 発生させられたブランキング信号は、上述の LCDドライバ 182に供給される。 LCD ドライバ 182は、図 9にタイムチャートで表すように、供給されたブランキング信号に関 連して、 LCOS信号を LCOS1および LCOS2に供給する。  [0186] The generated blanking signal is supplied to the LCD driver 182 described above. The LCD driver 182 supplies the LCOS signal to LCOS1 and LCOS2 in association with the supplied blanking signal as shown in the time chart of FIG.
[0187] これに対し、発生させられた各光源制御信号は、フィールドシケンシャルドライバ 18 8に供給される。フィールドシケンシャルドライバ 188は、図 9にタイムチャートで表す ように、供給された各光源制御信号に関連して、 R光源 50Rと G光源 50Gと B光源 50 Bとをそれぞれ駆動するのに必要な駆動電圧(図 9においてはそれぞれ、「R」、 「G」 および「B」で表す。)を、該当する光源に印加して発光させる。  On the other hand, each generated light source control signal is supplied to the field sequential driver 188. The field sequential driver 188 is required to drive the R light source 50R, the G light source 50G, and the B light source 50B in association with each supplied light source control signal, as shown in the time chart of FIG. Driving voltage (represented by “R”, “G” and “B” in FIG. 9) is applied to the corresponding light source to emit light.
[0188] 前述のように、図 1には、この画像投影装置 10の一使用例が示されており、この使 用例においては、この画像投影装置 10がモパイル'コンピュータ 16に取り付けて使 用されるが、この画像投影装置 10は、他の用途に使用することが可能である。 [0189] 別の使用例においては、図 10に示すように、この画像投影装置 10が、可搬型情報 機器としての携帯電話機 200と接続ケーブル 32によって接続され、それにより、少な くとも画像信号がこの画像投影装置 10に送信される状態で、任意のフロア上に設置 された専用のスクリーン 202上に画像が投影されるように使用される。 [0188] As described above, FIG. 1 shows an example of use of the image projection apparatus 10. In this use example, the image projection apparatus 10 is used by being attached to a mopile computer 16. However, the image projection apparatus 10 can be used for other purposes. In another use example, as shown in FIG. 10, the image projection apparatus 10 is connected to a mobile phone 200 as a portable information device by a connection cable 32, so that at least an image signal is transmitted. In a state where it is transmitted to the image projection device 10, it is used so that an image is projected onto a dedicated screen 202 installed on an arbitrary floor.
[0190] この使用例においては、この画像投影装置 10が、テーブル等の固定物上に載置さ れることにより、位置決めされる。さらに、この使用例においては、この画像投影装置 10が、携帯電話機 200以外の機器力も電力を取り込むことが可能である。この画像 投影装置 10にあおり角調整機能を付与すればそれの利便性が向上することはいう までもなぐ前述のチルト 'ジョイント 24に代えて、簡単なねじの嵌合を利用した公知 のチルト調整機構を用いてもよ!、。  [0190] In this usage example, the image projection device 10 is positioned by being placed on a fixed object such as a table. Furthermore, in this usage example, the image projecting device 10 can also capture power from equipment other than the mobile phone 200. Needless to say, if the tilt adjustment function is added to the image projection device 10, the convenience of the tilt can be improved. Instead of the above-described tilt 'joint 24, a known tilt adjustment using simple screw fitting is possible. You can use the mechanism!
[0191] さらに別の使用例においては、図 11に示すように、この画像投影装置 10が、可搬 型情報機器としての携帯情報端末 PDAの一部分に、装着具としての回転ジョイント 2 12によって機械的に、また、接続ケーブル 32 (図 1参照)によって電気的に接続され 、それにより、少なくとも画像信号がこの画像投影装置 10に送信される状態で、任意 の壁面 214上に画像が投影されるように使用される。  [0191] In yet another use example, as shown in Fig. 11, the image projection device 10 is connected to a part of a portable information terminal PDA as a portable information device by a rotary joint 212 as a mounting tool. In addition, it is electrically connected by a connection cable 32 (see FIG. 1), so that an image is projected on an arbitrary wall 214 with at least an image signal transmitted to the image projection device 10. As used.
[0192] この使用例においては、 PDA210がテーブル等の固定物上に載置される一方、こ の画像投影装置 10がその PDA210に支持されており、それにより、この画像投影装 置 10が位置決めされる。この画像投影装置 10は、回転ジョイント 212により、 PDA2 10に固定の水平軸線まわりに、または、これと交差する別の回転軸線まわりにも、回 転位置が少なくとも一軸以上の自由度で調節可能となっており、この画像投影装置 1 0が画像光を出射する角度を垂直面内にぉ 、て容易に調節可能となって 、る。さら に、この使用例においては、この画像投影装置 10力 PDA210以外の機器カも電 力を取り込むことが可能である。  [0192] In this use example, the PDA 210 is mounted on a fixed object such as a table, and the image projection apparatus 10 is supported by the PDA 210, whereby the image projection apparatus 10 is positioned. Is done. The image projection device 10 can be adjusted by a rotary joint 212 about a horizontal axis fixed to the PDA 2 10 or another rotational axis intersecting the PDA 2 10 with a degree of freedom of at least one axis. This makes it possible to easily adjust the angle at which the image projection device 10 emits image light within a vertical plane. Furthermore, in this use example, equipment other than the image projection apparatus 10-power PDA 210 can also capture power.
[0193] 次に、本発明の第 2実施形態を説明する。ただし、本実施形態は、第 1実施形態と 共通する要素が多いため、異なる要素についてのみ詳細に説明し、共通する要素に ついては、同一の符号または名称を使用して引用することにより、詳細な説明を省略 する。  [0193] Next, a second embodiment of the present invention will be described. However, since this embodiment has many elements in common with the first embodiment, only the different elements will be described in detail, and the common elements will be described in detail using the same reference numerals or names. The description is omitted.
[0194] 図 12には、本実施形態に従う画像投影装置 230の光学的構成が平面図で示され ている。この画像投影装置 230においては、装置ハウジング 232に、光源部 240と、 空間変調部 242と、投影レンズユニット 14とが、互いに直列に並ぶように搭載されて いる。この画像投影装置 230の電気的構成は、第 1実施形態に従う画像投影装置 1 0と基本的に共通するため、その説明を省略する。 FIG. 12 is a plan view showing the optical configuration of the image projector 230 according to the present embodiment. ing. In this image projection device 230, a light source unit 240, a spatial modulation unit 242 and a projection lens unit 14 are mounted on a device housing 232 so as to be arranged in series with each other. Since the electrical configuration of the image projection device 230 is basically the same as that of the image projection device 10 according to the first embodiment, the description thereof is omitted.
[0195] 図 12に示すように、本実施形態に従う画像投影装置 230においては、光源部 240 1S クロスプリズム 56と、そのクロスプリズム 56をそれの 4側面のうちの 3側面において 包囲する 3個の光源 250R, 250G, 250Bとを含むように構成されており、基本的な 構成は、第 1実施形態に従う画像投影装置 10の光源部 10と共通する。ただし、各光 源 250R, 250G, 250Bの詳細構成は、第 1実施形態とは異なる。  As shown in FIG. 12, in the image projector 230 according to the present embodiment, the light source unit 240 1S cross prism 56 and three of the four side surfaces surrounding the cross prism 56 are included. The light sources 250R, 250G, and 250B are included, and the basic configuration is the same as that of the light source unit 10 of the image projector 10 according to the first embodiment. However, the detailed configuration of each light source 250R, 250G, 250B is different from that of the first embodiment.
[0196] 具体的には、本実施形態においては、各光源 250R, 250G, 250B力 ホウ珪酸 ガラス製の基板 254を有しており、さらに、各光源 250R, 250G, 250B力 lOOnm 程度の薄膜 LEDである有機 LED260R, 260G, 260Bを主体として構成されている 。有機 LEDは、有機 ELと称されることがある。各光源 250R, 250G, 250Bにおいて は、有機 LED260R, 260G, 260Bが基板 254上に直接形成されている。さらに、各 光源 250R, 250G, 250Bにお!/ヽて ίま、各グレーティング板 270R, 270G, 270Β力 S 、ブリッジ 274を介して基板 254に装着されている。ここに、「グレーティング」とは、回 折機能を有する素子を意味し、例えば、多段階エッチングや CGHの原理、研削等の 機械加工によって作製される。  Specifically, in the present embodiment, each light source 250R, 250G, 250B force has a substrate 254 made of borosilicate glass, and each light source 250R, 250G, 250B force is a thin film LED of about lOOnm. The organic LEDs 260R, 260G, and 260B are the main components. Organic LEDs are sometimes referred to as organic EL. In each of the light sources 250R, 250G, and 250B, organic LEDs 260R, 260G, and 260B are directly formed on the substrate 254. Further, the light sources 250R, 250G, and 250B are mounted on the substrate 254 via the grating plates 270R, 270G, and 270 repulsive forces S, and the bridges 274, respectively. Here, “grating” means an element having a diffraction function, and is produced by, for example, multi-step etching, the principle of CGH, or machining such as grinding.
[0197] 図 13には、グレーティング板 270R, 270G, 270Βを代表するグレーテング板 270 が側面図と平面図とでそれぞれ示されている。グレーティング板 270R, 270G, 270 Βは、グレーティング成形品(材料: ΡΜΜΑ) 280と、サブ波長構造成形品(材料: Ρ ΜΜΑ) 282とが互いに積層されて構成されている。サブ波長構造成形品 282の表 面には、サブ波長構造 AR層 284が形成されている。このサブ波長構造 AR層 284に おいては、複数本の溝が複数の同心円に沿って並んでいる。グレーティング成形品 280も、それの格子ピッチがサブ波長サイズであることが可能であり、これは、広義の サブ波長素子といえる。  In FIG. 13, a grating plate 270 representing the grating plates 270R, 270G, and 270 mm is shown in a side view and a plan view, respectively. The grating plates 270R, 270G, and 270 Β are formed by laminating a grating molded product (material: ΡΜΜΑ) 280 and a sub-wavelength structure molded product (material: Ρ ΜΜΑ) 282. A sub-wavelength structure AR layer 284 is formed on the surface of the sub-wavelength structure molded product 282. In the sub-wavelength structure AR layer 284, a plurality of grooves are arranged along a plurality of concentric circles. The grating molded product 280 can also have a sub-wavelength size in the grating pitch, which can be said to be a sub-wavelength element in a broad sense.
[0198] 一般に、グレーティングにおいては、特定の次数のみについて部分的に回折効率 を高めるために、図 14に示す如ぐのこぎり波状の断面を有し、かつ、その断面上に おける各溝の表面がブレーズド角を有するブレーズドグレーテングを用いることが多 い。図 14には、溝の深さがサブ波長サイズに設定されたブレーズドグレーティングが 示されている。このようなグレーティングは、多数の次数の回折光を発生させるが、そ れらのうち、特に + 1次の回折光のみに、パワーを集中的に振り向ける働きをなす。 [0198] In general, a grating has a sawtooth cross section as shown in Fig. 14 in order to partially increase the diffraction efficiency only for a specific order, and on the cross section. In many cases, a blazed grating in which the surface of each groove has a blazed angle is used. Figure 14 shows a blazed grating with the groove depth set to the subwavelength size. Such a grating generates a large number of orders of diffracted light, of which the power is concentrated on only the + 1st order diffracted light.
[0199] このようなグレーティングに点光源からの単色光が投入されると、グレーティングは、 点光源からの発散光を略平行ィ匕する正パワー素子の働きをなし、それにより、グレー ティングによるサブ波長構造の屈折層により、入射した光線を屈折させる光線屈折機 能を果たす。 [0199] When monochromatic light from a point light source is input to such a grating, the grating functions as a positive power element that substantially diverges the divergent light from the point light source, thereby subtracting from the grating. The refracting layer having a wavelength structure performs a light refracting function to refract incident light.
[0200] 本実施形態においては、図 13に示すグレーティング成形品 282に、グレーティング によるサブ波長構造の屈折層(図示しない)が形成されており、このグレーティング成 形品 282により、上述の光線屈折機能が果される。この光線屈折機能により、同じ点 光源力 発散的に出射した、種々の方向ベクトルを持つ光線群の方向が略一方向 に揃えられ、その結果、同じ点光源から出射した光が集光される。  [0200] In the present embodiment, a refractive layer (not shown) having a sub-wavelength structure by a grating is formed on the grating molded product 282 shown in Fig. 13, and the above-mentioned light refraction function is achieved by this grating molded product 282. Will be fulfilled. By this light refraction function, the direction of light beams having various direction vectors emitted from the same point light source power is divergently aligned in one direction. As a result, the light emitted from the same point light source is condensed.
[0201] グレーティングは、基材に複数条の斜面および溝を、位置に応じて異なるパターン で形成することによって作製される。ただし、局部的に観察すれば、それら複数条の 斜面および溝は周期的に並んでいる。その作製のために、まず、 2次元的パターン 分布がコンピュータ等によって計算され、次に、その計算されたパターンに従い、回 転式のワークベンチに転写型としての金型が保持させられ、微細加工機等を用いる ことにより、その金型に対して直接、反転パターン形状を形成するための加工が施さ れる。その金型を利用して射出成形または注型等の複写生産方法が実施されること により、グレーティングが作製される。  [0201] A grating is produced by forming a plurality of slopes and grooves on a base material in different patterns depending on positions. However, if observed locally, the multiple slopes and grooves are arranged periodically. For the production, first, a two-dimensional pattern distribution is calculated by a computer or the like, and then, according to the calculated pattern, a mold as a transfer mold is held on a rotary workbench, and fine processing is performed. By using a machine or the like, the mold is directly processed to form a reversed pattern shape. A grating is produced by carrying out a copy production method such as injection molding or casting using the mold.
[0202] 図 12に示すように、グレーティング板 270R, 270G, 270Bは、 UV照射によって硬 化する光透過性の接着剤 290によってクロスプリズム 56に、正確に位置決めされた 状態で接着されている。  [0202] As shown in FIG. 12, the grating plates 270R, 270G, and 270B are adhered to the cross prism 56 in an accurately positioned state by a light-transmitting adhesive 290 that is hardened by UV irradiation.
[0203] 図 12に示すように、本実施形態においては、空間変調部 242が、第 1実施形態と は異なり、サブ波長構造を利用した偏光ビームスプリッタ板 300と、それの出射側に 配置された 1個の透過型 LCD (リキッドクリスタルディスプレイ) 302とを含むように構 成されている。透過型 LCD302は、偏光ビームスプリッタ板 300を隔ててクロスプリズ ム 56と一直線上にお!、て対畤して!/、る。 [0203] As shown in FIG. 12, in the present embodiment, unlike the first embodiment, the spatial modulation section 242 is disposed on the polarization beam splitter plate 300 using the sub-wavelength structure and on the exit side thereof. And a single transmissive LCD (Liquid Crystal Display) 302. The transmissive LCD 302 has a cross prism with a polarizing beam splitter plate 300. In a straight line with Mu 56!
[0204] 図 15には、偏光ビームスプリッタ板 300が拡大して側面図で示されている。この偏 光ビームスプリッタ板 300は、サブ波長構造成形品 304であり、それの表面に偏光層 306が形成されている。この偏光ビームスプリッタ板 300は、それに入射した RGB光 のうち、ある一方向の直線偏光光(図 15の例においては、 P波)は透過するのに対し 、それに直交する方向の直線偏光光(図 15の例においては、 S波)は反射する。  [0204] In FIG. 15, the polarization beam splitter plate 300 is shown in an enlarged side view. The polarization beam splitter plate 300 is a sub-wavelength structure molded product 304, and a polarizing layer 306 is formed on the surface thereof. The polarizing beam splitter plate 300 transmits linearly polarized light in one direction (P wave in the example of FIG. 15) among the RGB light incident thereon, while transmitting linearly polarized light in a direction orthogonal thereto (P wave). In the example of Fig. 15, the S wave is reflected.
[0205] 図 15に示すように、偏光ビームスプリッタ板 300に入射した RGB光のうち、その偏 光ビームスプリッタ板 300を透過した直線偏光光は、その後、図 12に示すように、透 過型 LCD302に入射する。その透過型 LCD302においては、その入射した直線偏 光光の偏光方向が、画素ごとに、 90度ねじられて透過型 LCD302から出射する力、 または 0度のままで透過型 LCD302から出射するための変調作用を受ける。その選 択的な変調作用を受けた直線偏光光については、その後、透過型 LCD302の出射 面に設けられた偏光層により画像信号光の弁別が行われ、画素ごとに選択的に透過 型 LCD302から出射する。  As shown in FIG. 15, out of the RGB light incident on the polarizing beam splitter plate 300, the linearly polarized light transmitted through the polarizing beam splitter plate 300 is then transmitted as shown in FIG. Incident on LCD302. In the transmissive LCD 302, the polarization direction of the incident linearly polarized light is twisted by 90 degrees for each pixel, or the force that is emitted from the transmissive LCD 302, or 0 degrees to exit from the transmissive LCD 302. Undergoes modulation. The linearly polarized light subjected to the selective modulation action is then discriminated from the image signal light by the polarizing layer provided on the exit surface of the transmissive LCD 302, and selectively transmitted from the transmissive LCD 302 for each pixel. Exit.
[0206] 一方、図 15に示すように、偏光ビームスプリッタ板 300に入射した RGB光のうち、そ の偏光ビームスプリッタ板 300によって反射された成分は、光源部 240の側に戻り、 消失する。  On the other hand, as shown in FIG. 15, of the RGB light incident on the polarizing beam splitter plate 300, the component reflected by the polarizing beam splitter plate 300 returns to the light source unit 240 side and disappears.
[0207] 図 12に示すように、偏光ビームスプリッタ板 300の入射面と、クロスプリズム 56の出 射面とは、 UV照射によって硬化する光透過性の接着剤 310により、互いに高精度に 位置決めされた状態で、互いに接着されている。  [0207] As shown in FIG. 12, the entrance surface of the polarization beam splitter plate 300 and the exit surface of the cross prism 56 are positioned with high accuracy by a light-transmitting adhesive 310 that is cured by UV irradiation. In this state, they are bonded together.
[0208] 図 12に示すように、透過型 LCD302力 偏光ビームスプリッタ板 300と平行に、力 つ、ブリッジ 312を介してその偏光ビームスプリッタ板 300に装着されている。この透 過型 LCD302は、板状を成し、かつ、画素ごとに画像光の透過率を変調する。この 透過型 LCD302には、放熱部としての放熱フィン 314が密着して取り付けられている 。この放熱フィン 314による空冷効果と、ブリッジ 312による伝熱効果とにより、透過型 LCD302の昇温が抑制される。それにより、昇温に起因した画像コントラストの低下 が発生せずに済む。  As shown in FIG. 12, the transmissive LCD 302 force is attached to the polarizing beam splitter plate 300 via a bridge 312 in parallel with the polarizing beam splitter plate 300. This transmissive LCD 302 has a plate shape and modulates the transmittance of image light for each pixel. The transmissive LCD 302 is attached with heat radiating fins 314 as heat radiating portions in close contact with each other. The temperature rise of the transmissive LCD 302 is suppressed by the air cooling effect by the heat radiation fins 314 and the heat transfer effect by the bridge 312. As a result, the image contrast is not lowered due to the temperature rise.
[0209] 図 12に示すように、透過型 LCD302の出射側に投影レンズユニット 14が配置され ている。この投影レンズユニット 14は、第 1実施形態と共通する構成を有する。 [0209] As shown in Fig. 12, the projection lens unit 14 is arranged on the light exit side of the transmissive LCD 302. ing. The projection lens unit 14 has a configuration common to the first embodiment.
[0210] 次に、本発明の第 3実施形態を説明する。ただし、本実施形態は、第 2実施形態と 共通する要素が多いため、異なる要素についてのみ詳細に説明し、共通する要素に ついては、同一の符号または名称を使用して引用することにより、詳細な説明を省略 する。 [0210] Next, a third embodiment of the present invention will be described. However, since this embodiment has many elements in common with the second embodiment, only different elements will be described in detail, and the common elements will be described in detail using the same reference numerals or names. The description is omitted.
[0211] 図 16には、本実施形態に従う画像投影装置 330の光学的構成が平面図で示され ている。この画像投影装置 330においては、第 2実施形態と同様に、装置ハウジング 232に、光源咅 340と、空間変調咅 342と、投影レンズユニット 14と力 互 、に直歹 IJ に並ぶように搭載されている。ただし、本実施形態は、光源部 340および空間変調部 342の一部のみに関して第 2実施形態とは異なるため、異なる要素のみについての み詳細に説明する。本実施形態に従う画像投影装置 330の電気的構成は、第 2実 施形態に従う画像投影装置 230と共通するため、その説明を省略する。  FIG. 16 shows a plan view of the optical configuration of the image projection apparatus 330 according to the present embodiment. In the image projection device 330, as in the second embodiment, the light source 340, the spatial modulation 342, and the projection lens unit 14 are mounted on the device housing 232 so as to be directly aligned with IJ. ing. However, since this embodiment is different from the second embodiment with respect to only a part of the light source unit 340 and the spatial modulation unit 342, only different elements will be described in detail. The electrical configuration of the image projection apparatus 330 according to the present embodiment is the same as that of the image projection apparatus 230 according to the second embodiment, and thus the description thereof is omitted.
[0212] 図 16に示すように、光源部 340は、第 2実施形態と同様に、 3個の光源 350R, 35 OG, 350Bを含むよう【こ構成されて!ヽる。各光源 350R, 350G, 350Bも、第 1および 第 2実施形態と同様に、ダブルへテロ構造の LED360R, 360G, 360Bを主体とし て構成されている。さら〖こ、光源 350Rを例にとり、図 17に拡大して側面断面図で示 すように、各 LED360R, 360G, 360Bの表面 ίま、サブ波長構造の AR層 364力ー 体的に形成されている。  [0212] As shown in FIG. 16, the light source unit 340 includes three light sources 350R, 35 OG, and 350B, as in the second embodiment. Each of the light sources 350R, 350G, and 350B is configured mainly with double-heterostructure LEDs 360R, 360G, and 360B as in the first and second embodiments. As an example, the light source 350R is taken as an example, and the surface of each LED 360R, 360G, 360B and the sub-wavelength AR layer 364 are formed as shown in the enlarged side sectional view in Fig. 17. ing.
[0213] 各 LED360R, 360G, 360Β【こお!ヽて ίま、その AR層 364【こより、各 LED360R, 3 60G, 360Βの出射面を通過する際の多重反射に起因する損失、すなわち、最終的 に光源内部において熱消費される光子による損失が低減する。その結果、各 LED3 60R, 360G, 360Β力らの光の取り出し効率力 AR層 364力存在しな!ヽ場合より、 向上する。一般的に、光半導体材料の平面反射率は 30%程度であるため、これを 0 . 1%以下に抑えることは、光源の電気一光変換効率の向上に直結する。  [0213] Each LED360R, 360G, 360mm [This is the AR layer 364 [From here, the loss caused by multiple reflections when passing through the exit surface of each LED360R, 360G, 360mm, that is, the final] In particular, the loss due to the photons consumed in the light source is reduced. As a result, the LED3 60R, 360G, and 360-degree light extraction efficiency can be improved compared to the case where the AR layer 364-force does not exist. In general, since the planar reflectance of the optical semiconductor material is about 30%, suppressing this to 0.1% or less directly leads to an improvement in the electrical-light conversion efficiency of the light source.
[0214] ここで、光源 350Rを f列にとり、光源 350R, 350G, 350Bの構造を具体的に説明 するが、その構造は一般的なものであるため、簡単に説明する。図 17に示すように、 基板 254に基板電極 365a, 365b力 ^形成されて!ヽる。基板電極 365aに ίま LED360 Rの電極(金薄膜) 366a、別の基板電極 365bには LED360Rの別の電極(金薄膜) 366bがそれぞれ接続されている。電極 366bは、導通体 367を介して透明電極層 3 68に接続されて!/、る。透明電極層 368と電極 366aとは、活'性層 369を隔てて互!/、に 対向している。それら透明電極層 368と電極 366aと活性層 369とは積層構造を成し ている。 [0214] Here, the structure of the light sources 350R, 350G, and 350B will be described in detail by taking the light source 350R in the f row, but since the structure is general, it will be briefly described. As shown in FIG. 17, substrate electrodes 365a and 365b are formed on the substrate 254! LED360R electrode (gold thin film) 366a, another board electrode 365b LED360R another electrode (gold thin film) 366b are connected to each other. The electrode 366b is connected to the transparent electrode layer 368 via the conductor 367! /. The transparent electrode layer 368 and the electrode 366a face each other with the active layer 369 therebetween. The transparent electrode layer 368, the electrode 366a, and the active layer 369 form a laminated structure.
[0215] 本実施形態においては、空間変調部 342が、第 2実施形態と共通する透過型 LCD 302と、第 2実施形態とは異なる積層 CGH板 370とを含むように構成されている。図 18には、その積層 CGH板 370が拡大して側面図で示されている。この積層 CGH板 370は、赤色ビームの波長を弁別する R波長弁別 CGH板 380Rと、緑色ビームの波 長を弁別する G波長弁別 CGH板 380Gと、青色ビームの波長を弁別する B波長弁別 CGH板 380Bとの積層体である。各波長弁別 CGH板 380R, 380G, 380Bは、 CG Hにより作製された後、互いに積層して貼り合わせられる。この場合、光源である各 L ED360R, 360G, 360B力も発散的に出射した光は、発散状態を維持したままクロ スプリズム 56内を、色ごとに異なる経路に沿って進行することになる。  In this embodiment, the spatial modulation unit 342 is configured to include a transmissive LCD 302 that is common to the second embodiment, and a laminated CGH plate 370 that is different from the second embodiment. In FIG. 18, the laminated CGH plate 370 is shown in an enlarged side view. This laminated CGH plate 370 consists of an R wavelength discrimination CGH plate 380R that discriminates the wavelength of the red beam, a G wavelength discrimination CGH plate 380G that discriminates the wavelength of the green beam, and a B wavelength discrimination CGH plate that discriminates the wavelength of the blue beam. It is a laminate with 380B. The wavelength discrimination CGH plates 380R, 380G, and 380B are made of CGH, and then laminated and bonded together. In this case, light divergently emitted from each of the LED ED360R, 360G, and 360B forces as the light source travels along the different paths for each color in the cross prism 56 while maintaining the divergent state.
[0216] このようにクロスプリスム 56から出射する RGB光は、平行光であってもよいし、平行 光ではなくてもよい。このような RGB光は、色別のホワイトバランス調整の可能性を無 視して説明すれば、白色点光源力 発散的に放射された白色光と等価である。その ため、図 18には、クロスプリスム 56から出射する RGB光力 白色点光源から発散的 に放射された白色光として示されて 、る。  [0216] The RGB light emitted from the cross prism 56 in this manner may be parallel light or may not be parallel light. Such RGB light is equivalent to white light divergently emitted from a white point light source if the possibility of adjusting the white balance by color is ignored. For this reason, FIG. 18 shows white light divergently emitted from the RGB light power white point light source emitted from the cross prism 56.
[0217] 本実施形態においては、そのような RGB光が上述の積層 CGH板 370に入射する 。 R波長弁別 CGH板 380Rは、サブ波長の 2次元的周期構造が赤色光の波長に適 合させられることにより、入射した RGB光のうちの赤色成分光 (R光)のみを平行化し 、かつ、設定方向に屈折させる。同様にして、 G波長弁別 CGH板 380Gは、サブ波 長の 2次元的周期構造が緑色光の波長に適合させられることにより、入射した RGB 光のうちの緑色成分光 (G光)のみを平行ィ匕し、かつ、 R光と同じ屈折方向に屈折さ せる。さらに、 B波長弁別 CGH板 380Bは、サブ波長の 2次元的周期構造が青色光 の波長に適合させられることにより、入射した RGB光のうちの青色成分光 (B光)のみ を平行ィ匕し、かつ、 R光と同じ屈折方向に屈折させる。  In the present embodiment, such RGB light is incident on the laminated CGH plate 370 described above. R wavelength discrimination CGH plate 380R collimates only the red component light (R light) of the incident RGB light by adapting the two-dimensional periodic structure of sub-wavelength to the wavelength of red light, and Refract in the setting direction. Similarly, the G wavelength discriminating CGH plate 380G makes only the green component light (G light) out of the incident RGB light parallel by adjusting the two-dimensional periodic structure of the sub-wavelength to the wavelength of the green light. Refract in the same refraction direction as the R light. Furthermore, the B wavelength discrimination CGH plate 380B collimates only the blue component light (B light) of the incident RGB light by adapting the two-dimensional periodic structure of the sub-wavelength to the wavelength of the blue light. And refract in the same refraction direction as R light.
[0218] その結果、積層 CGH板 370から出射する光は、略同一方向に略平行光として進行 する R光と G光と B光との合成光となる。 [0218] As a result, the light emitted from the laminated CGH plate 370 travels as substantially parallel light in substantially the same direction. The combined light of R light, G light and B light.
[0219] 次に、本発明の第 4実施形態を説明する。ただし、本実施形態は、第 3実施形態と 共通する要素があるため、異なる要素についてのみ詳細に説明し、共通する要素に ついては、同一の符号または名称を使用して引用することにより、詳細な説明を省略 する。 Next, a fourth embodiment of the present invention will be described. However, since this embodiment has elements in common with the third embodiment, only different elements will be described in detail, and the common elements will be described in detail using the same reference numerals or names. The description is omitted.
[0220] 図 19には、本実施形態に従う画像投影装置 400の光学的構成が平面図で示され ている。この画像投影装置 400は、概略的に説明すれば、光源の種類に関して第 3 実施形態とは異なり、さらに、 3つの成分光を合成するためにクロスプリズム 56を使用 しない点でも第 3実施形態とは異なる。さらに、この画像投影装置 400は、空間変調 を行うためにデフォーマブル'ミラ一 ·デバイス(以下、「DMD」と略称する。)402を使 用する点でも、透過型 LCD302を使用する第 3実施形態とは異なる。  FIG. 19 is a plan view showing the optical configuration of image projection apparatus 400 according to the present embodiment. Generally speaking, this image projection apparatus 400 differs from the third embodiment regarding the type of light source, and further differs from the third embodiment in that the cross prism 56 is not used to synthesize three component lights. Is different. Further, this image projection apparatus 400 also uses a transmissive LCD 302 in that a deformable mirror device (hereinafter abbreviated as “DMD”) 402 is used to perform spatial modulation. Different from form.
[0221] 図 19に示すように、本実施形態に従う画像投影装置 400は、装置ハウジング 404 を備えており、この装置ハウジング 404に光源部 410が設けられている。この光源部 410は、セラミクス製の光源ハウジング 412を備えており、この光源ハウジング 412に は、 3個の空洞 414R, 414G, 414B力 S横一列に、かつ、同じ向きに開口する状態で 並んで形成されている。それら 3個の空洞 414R, 414G, 414Bはいずれも、略真空 状態で使用される。  As shown in FIG. 19, an image projection apparatus 400 according to this embodiment includes an apparatus housing 404, and a light source unit 410 is provided in the apparatus housing 404. The light source section 410 includes a ceramics light source housing 412. The light source housing 412 has three cavities 414R, 414G, and 414B forces S arranged in a row in a row and in the same direction. Is formed. These three cavities 414R, 414G, and 414B are all used in a substantially vacuum state.
[0222] いずれの空洞 414R, 414G, 414Bにも、それの底部に、カーボンナノチューブ(C NT) 420が設置されている。このカーボンナノチューブ 420は、炭素で構成されたナ ノ構造を持つ針の集合体である。これは、電子放出源の一例であり、フィールド 'エミ ッシヨン 'デバイスの一例でもある。いずれの空洞 414R, 414G, 414Bにも、さらに、 そのカーボンナノチューブ 420に近接して、対向電極である力ソード 422が設置され ている。  [0222] In any of the cavities 414R, 414G, and 414B, a carbon nanotube (CNT) 420 is installed at the bottom. The carbon nanotube 420 is an assembly of needles having a nano structure made of carbon. This is an example of an electron emission source and an example of a field 'emission' device. In each of the cavities 414R, 414G, and 414B, a force sword 422 that is a counter electrode is further installed in the vicinity of the carbon nanotube 420.
[0223] 3偶の空?同 414R, 414G, 414B【こ ίま、各開口咅 こお ヽて各空?同 414R, 414G, 414Bを封止する状態で、 3個の蛍光体 430R, 430G, 430Βがそれぞれ固着され ている。それら 3個の蛍光体 430R, 430G, 430Βは、カーボンナノチューブ 420から 放出された電子線をトリガとして色別に可視光を発生させために設けられており、赤 色光を発光するための R発光蛍光体 430Rと、緑色光を発光するための G発光蛍光 体 430Gと、青色光を発光するための B発光蛍光体 430Bと力 成っている。それら 3 個の蛍光体 430R, 430G, 430Bには、それらの前面において、 ITO等を材料とした 透明電極であるアノード 436が蒸着されて 、る。 [0223] 3 Even Skys 414R, 414G, 414B [Opening, Opening, Opening, Opening, Sealing 414R, 414G, 414B, 3 phosphors 430R, 430G , 430mm are fixed respectively. These three phosphors, 430R, 430G, and 430Β, are provided to generate visible light for each color using the electron beam emitted from carbon nanotube 420 as a trigger, and are R-emitting phosphors for emitting red light. 430R and G emission fluorescence for green light emission 430G and B-emitting phosphor 430B for emitting blue light. On these three phosphors 430R, 430G, and 430B, an anode 436 that is a transparent electrode made of ITO or the like is deposited on the front surface thereof.
[0224] 本実施形態においては、 R発光蛍光体 430Rとそれに対応する空洞 414Rおよび カーボンナノチューブ 420とによって赤色成分光を出射する R光源 440Rが構成され 、 G発光蛍光体 430Gとそれに対応する空洞 414Gおよびカーボンナノチューブ 420 とによって緑色成分光を出射する G光源 440Gが構成され、 B発光蛍光体 430Bとそ れに対応する空洞 414Bおよびカーボンナノチューブ 420とによって青色成分光を 出射する B光源 440Bが構成され、それら 3個の光源 350R, 350G, 350Bによって 光源部 410が構成されているのである。光源ハウジング 412は、それら 3個の光源 35 OR, 350G, 350Bに共通に設けられている。  In this embodiment, the R light emitting phosphor 430R, the corresponding cavity 414R, and the carbon nanotube 420 constitute an R light source 440R that emits red component light, and the G light emitting phosphor 430G and the corresponding cavity 414G And the carbon nanotube 420 constitute a G light source 440G that emits green component light, and the B light emitting phosphor 430B and the corresponding cavity 414B and the carbon nanotube 420 constitute a B light source 440B that emits blue component light. The three light sources 350R, 350G, and 350B constitute the light source unit 410. The light source housing 412 is provided in common for the three light sources 35 OR, 350 G, and 350 B.
[0225] 図 19に示すように、それら 3個の光源 350R, 350G, 350Bは、少なくともカーボン ナノチューブ 420においてフィールドシーケンシャルドライバ 188に電気的に接続さ れており、第 1実施形態と同様にして、 3個の光源 350R, 350G, 350Bがフィールド シーケンシャル方式に従って順次駆動される。  As shown in FIG. 19, the three light sources 350R, 350G, 350B are electrically connected to the field sequential driver 188 at least in the carbon nanotube 420, and in the same manner as in the first embodiment, Three light sources 350R, 350G, 350B are driven sequentially according to the field sequential method.
[0226] 本実施形態においては、光源部 410が、さらに合波部 450を含むように構成されて いる。具体的には、図 19に示すように、光源部 410の前方に、合波部 450としての積 層 CGH板 452が、光源部 410と正対する姿勢で配置されている。積層 CGH板 452 は、第 3実施形態における積層 CGH板 370と機能も構造も共通する。  In the present embodiment, light source unit 410 is configured to further include multiplexing unit 450. Specifically, as shown in FIG. 19, a stacked CGH plate 452 as a multiplexing unit 450 is disposed in front of the light source unit 410 so as to face the light source unit 410. The laminated CGH plate 452 has the same function and structure as the laminated CGH plate 370 in the third embodiment.
[0227] 積層 CGH板 452は、図 20に拡大して示すように、ブロードバンド AR層 454が形成 された板状のサブ波長構造成形品 456と、赤色光の波長を弁別して屈折させる R光 屈折層 460Rが形成された板状のサブ波長構造成形品 470Rと、緑色光の波長を弁 別して屈折させる G光屈折層 460Gが形成された板状のサブ波長構造成形品 470G と、青色光の波長を弁別して屈折させる B光屈折層 460Bが形成された板状のサブ 波長構造成形品 470Bとが互いに積層され、密着固定されることにより、構成されて いる。  As shown in an enlarged view in FIG. 20, the laminated CGH plate 452 has a plate-like sub-wavelength structure molded product 456 on which a broadband AR layer 454 is formed, and R light refraction that discriminates and refracts the wavelength of red light. Plate-shaped sub-wavelength structure molded product 470R with layer 460R, green light wavelength discriminating and refracting green light 470R, plate-shaped sub-wavelength structured molded product 470G with blue light wavelength 460G, and blue light wavelength And a plate-like sub-wavelength structure molded product 470B on which a B light refraction layer 460B is formed are laminated together and fixed in close contact with each other.
[0228] 図 19に示すように、積層 CGH板 452の前方には、その積層 CGH板 452に対して 、後述する所定の角度で斜めに対向する姿勢で前述の DMD402が配置されている [0229] ところで、積層 CGH板 452から出射する RGB光 (合成光)は、積層 CGH板 452の 出射面の略法線方向に沿って進行し、やがて DMD402に入射する。この際の光軸 を入射光軸 Sと称する。入射光軸 Sは 1つしか存在しないのに対し、 DMD402から出 射する画像光の光軸である出射光軸は 2つ以上存在する。以下、このことを具体的 に説明する。 As shown in FIG. 19, the DMD 402 is disposed in front of the laminated CGH plate 452 so as to be obliquely opposed to the laminated CGH plate 452 at a predetermined angle described later. [0229] Incidentally, the RGB light (combined light) emitted from the laminated CGH plate 452 travels along the substantially normal direction of the emission surface of the laminated CGH plate 452, and eventually enters the DMD 402. The optical axis at this time is called the incident optical axis S. While there is only one incident optical axis S, there are two or more outgoing optical axes that are the optical axes of image light emitted from the DMD 402. This will be explained in detail below.
[0230] DMD402にお ヽては、可撓性を有する反射ミラー(マイクロミラー)がマトリクス状に 複数個配置されている。例えば、 1個の画素に 1個の反射ミラーが関連付けられる。 ある画素を明表示の状態にするためには、その画素に関連付けられた反射ミラーを 駆動するミラードライバ(図示しない)をオン状態にして、その反射ミラーを待機状態 力 所定の一方向に傾斜させる。この傾斜状態において反射ミラーから出射する光 の光軸が、明表示時の出射光軸 Tである。これに対し、ある画素を暗表示の状態に するためには、その画素に関連付けられた反射ミラーを駆動するミラードライバをオフ 状態にして、その反射ミラーを、前記所定の一方向とは反対方向に傾斜させる。この 状態において反射ミラーから出射する光の光軸が、暗表示時の出射光軸 Lである。  [0230] In DMD402, a plurality of flexible reflection mirrors (micromirrors) are arranged in a matrix. For example, one reflection mirror is associated with one pixel. In order to bring a pixel into a bright display state, a mirror driver (not shown) that drives a reflection mirror associated with the pixel is turned on, and the reflection mirror is tilted in a predetermined direction. . The optical axis of the light emitted from the reflecting mirror in this tilted state is the outgoing optical axis T during bright display. On the other hand, in order to put a pixel in the dark display state, the mirror driver that drives the reflecting mirror associated with the pixel is turned off, and the reflecting mirror is moved in a direction opposite to the predetermined one direction. Tilt to. In this state, the optical axis of the light emitted from the reflecting mirror is the outgoing optical axis L during dark display.
[0231] 図 19においては、入射光軸 Sと明表示時の出射光軸 Tとの成す角度が Θ i、明表示 時の出射光軸 Tと暗表示時の出射光軸 Lとの成す角度が Θ oとしてそれぞれ示され ている。角度 Θ iの一例は、 10度であり、角度 Θ oの一例は、 20度である。この例にお いては、 DMD402が、画素ごとの反射ミラーに対し、オンオフ制御により、両側に 5 度ずつの傾斜変調を行う。  In FIG. 19, the angle formed between the incident optical axis S and the outgoing optical axis T during bright display is Θ i, and the angle formed between the outgoing optical axis T during bright display and the outgoing optical axis L during dark display. Are shown as Θ o respectively. An example of the angle Θ i is 10 degrees, and an example of the angle Θ o is 20 degrees. In this example, the DMD 402 performs tilt modulation of 5 degrees on both sides of the reflection mirror for each pixel by on / off control.
[0232] 図 19に示すように、 DMD402には、放熱部としての放熱フィン 480が直付けされ ている。一方、暗表示時の出射光が装置ハウジング 404に照射し続けられると、その 照射部分が発熱して変形する可能性、または迷光が発生する可能性がある。そこで 、本実施形態においては、暗表示時の出射光が入射してその出射光の熱を吸収し て放熱するァブソーバ(例えば、カーボンブラック体) 482が装置ハウジング 404内に 設置されている。  As shown in FIG. 19, the DMD 402 is directly attached with heat radiation fins 480 as heat radiation portions. On the other hand, if the emitted light at the time of dark display is continuously applied to the device housing 404, the irradiated part may generate heat and be deformed, or stray light may be generated. Therefore, in the present embodiment, an absorber (for example, a carbon black body) 482 that receives emitted light during dark display and absorbs the heat of the emitted light to dissipate it is installed in the apparatus housing 404.
[0233] 図 19に示すように、 DMD402の前方には、 DMD402の表面に正対する姿勢で 投影レンズユニット 14が配置されている。この投影レンズユニット 14は、第 1実施形 態における投影レンズユニット 14と基本的に共通する。ただし、本実施形態において は、共にプラスチック製であるレンズ 154と 156との間に、プラスチック製であるレンズAs shown in FIG. 19, the projection lens unit 14 is arranged in front of the DMD 402 so as to face the surface of the DMD 402. This projection lens unit 14 is the first embodiment This is basically the same as the projection lens unit 14 in this state. However, in the present embodiment, a lens made of plastic is provided between the lenses 154 and 156 both made of plastic.
484が追カ卩的に配置されている。 484 is additionally arranged.
[0234] なお付言するに、本実施形態における光源部 410は、第 1ないし第 3実施形態にお いてそれの光源部 40, 240, 340を置換するように用いることが可能である。 It should be noted that the light source unit 410 in the present embodiment can be used to replace the light source units 40, 240, and 340 in the first to third embodiments.
[0235] 次に、本発明の第 5実施形態を説明する。ただし、本実施形態は、第 4実施形態と 共通する要素があるため、異なる要素についてのみ詳細に説明し、共通する要素に ついては、同一の符号または名称を使用して引用することにより、詳細な説明を省略 する。 [0235] Next, a fifth embodiment of the present invention will be described. However, since this embodiment has elements in common with the fourth embodiment, only the different elements will be described in detail, and the common elements will be described in detail using the same reference numerals or names. The description is omitted.
[0236] 第 4実施形態においては、光源部 410がカーボンナノチューブ 420を主体として構 成されているが、図 21に示すように、本実施形態に従う画像投影装置 500おいては 、光源部 510がプラズマ発光素子を主体として構成されている。さらに、第 4実施形 態にお 、ては、合波部 450が 2次元的なサブ波長構造を有するように構成されて!、 る力 本実施形態においては、合波部 512が、 3次元的なサブ波長構造すなわち導 波路構造を有するフォトニック結晶板 520を含むように構成されて!、る。  [0236] In the fourth embodiment, the light source unit 410 is mainly composed of the carbon nanotubes 420. However, as shown in Fig. 21, in the image projection apparatus 500 according to the present embodiment, the light source unit 510 includes the light source unit 510. The plasma light-emitting element is mainly used. Furthermore, in the fourth embodiment, the combining unit 450 is configured to have a two-dimensional sub-wavelength structure. In this embodiment, the combining unit 512 has a three-dimensional structure. It is configured to include a photonic crystal plate 520 having a typical subwavelength structure, that is, a waveguide structure! RU
[0237] 図 21には、本実施形態に従う画像投影装置 500のうち、光源部 510とフォトニック 結晶板 520とが取り出されて平面図で示されて 、る。  FIG. 21 shows a plan view of the light source unit 510 and the photonic crystal plate 520 taken out of the image projection apparatus 500 according to the present embodiment.
[0238] 図 21に示すように、光源部 510は、第 4実施形態と同様にして、セラミクス製の光源 ハウジング 530を備えており、この光源ハウジング 530には、 3個の空洞 532R, 532 G, 532Bが横一列に、かつ、同じ向きに開口する状態で並んで形成されている。そ れら 3個の空洞 532R, 532G, 532Bはいずれも、プラズマガスが充填された状態で 使用される。  As shown in FIG. 21, the light source unit 510 is provided with a ceramic light source housing 530 in the same manner as in the fourth embodiment, and the light source housing 530 has three cavities 532R, 532 G. , 532B are formed side by side in a row and open in the same direction. These three cavities 532R, 532G, and 532B are all used in a state of being filled with plasma gas.
[0239] いずれの空洞 532R, 532G, 532Bにも、それの開口部を除く部分に蛍光体 540 R, 540G, 540Bが形成されている。具体的には、空洞 532Rには、赤色成分光を発 光するための R蛍光体 540Rが形成され、空洞 532Gには、緑色成分光を発光する ための G蛍光体 540Gが形成され、空洞 532Bには、青色成分光を発光するための B 蛍光体 540Bが形成されて ヽる。  [0239] In any of the cavities 532R, 532G, and 532B, the phosphors 540 R, 540G, and 540B are formed in portions other than the openings. Specifically, the R phosphor 540R for emitting red component light is formed in the cavity 532R, and the G phosphor 540G for emitting green component light is formed in the cavity 532G. In this case, B phosphor 540B for emitting blue component light is formed.
[0240] 光源ハウジング 530の底部には、 3個の空洞 532R, 532G, 532Bに共通に、背面 誘電体基板 546が形成されている。この背面誘電体基板 546には、 3個の空洞 532 R, 532G, 532Bの各底部にそれぞれ対向する位置に 3個のアドレス電極 550R, 5 50G, 550Bが埋設されている。その背面誘電体基板 546は、光源ハウジング 530と は反対側において、 3個の空洞 532R, 532G, 532Bに共通の背面ガラス 556で覆 われている。 [0240] The bottom of the light source housing 530 has three cavities, common to the 532R, 532G, and 532B. A dielectric substrate 546 is formed. In the rear dielectric substrate 546, three address electrodes 550R, 550G, and 550B are embedded at positions facing the bottoms of the three cavities 532R, 532G, and 532B. The rear dielectric substrate 546 is covered with a rear glass 556 common to the three cavities 532R, 532G, and 532B on the side opposite to the light source housing 530.
[0241] これに対し、光源ハウジング 530の開口部には、 3個の空洞 532R, 532G, 532B の各開口部をそれぞれ閉塞する 3個の前面透明誘電体層 560R, 560G, 560Bが 形成されている。各前面透明誘電体層 560R, 560G, 560Bには、適数個の透明表 示電極 566が、少なくとも横方向に並んで埋設されている。それら前面透明誘電体 層 560R, 560G, 560Bは、光源ノヽウジング 530とは反対佃 Jにお!/、て、 3個の空?同 5 32R, 532G, 532B【こ共通の前面ガラス 568で覆われて!/、る。  [0241] In contrast, in the opening of the light source housing 530, three front transparent dielectric layers 560R, 560G, and 560B that respectively close the openings of the three cavities 532R, 532G, and 532B are formed. Yes. In each of the front transparent dielectric layers 560R, 560G, and 560B, an appropriate number of transparent display electrodes 566 are embedded at least in the horizontal direction. These transparent dielectric layers 560R, 560G, and 560B are opposite to the light source nosing 530. The three layers of the transparent dielectric layer 5 32R, 532G, and 532B are covered with this common front glass 568. I'm!
[0242] 本実施形態においては、 R蛍光体 540Rとそれに対応する空洞 532R、アドレス電 極 550Rおよび透明表示電極 566とによって赤色成分光を出射する R光源 570Rが 構成され、 G蛍光体 540Gとそれに対応する空洞 532G、アドレス電極 550Gおよび 透明表示電極 566とによって緑色成分光を出射する G光源 570Gが構成され、 B蛍 光体 540Bとそれに対応する空洞 532B、アドレス電極 550Bおよび透明表示電極 5 66とによって青色成分光を出射する B光源 570Bが構成され、それら 3個の光源 570 R, 570G, 570Bによって光源部 510が構成されているのである。光源ハウジング 53 0は、それら 3個の光源 570R, 570G, 570Bに共通に設けられている。  In this embodiment, the R phosphor 540R, the corresponding cavity 532R, the address electrode 550R, and the transparent display electrode 566 constitute an R light source 570R that emits red component light, and the G phosphor 540G and the G phosphor 540G Corresponding cavity 532G, address electrode 550G and transparent display electrode 566 constitute G light source 570G which emits green component light, and B phosphor 540B and corresponding cavity 532B, address electrode 550B and transparent display electrode 5 66 Thus, the B light source 570B that emits the blue component light is configured, and the light source unit 510 is configured by the three light sources 570R, 570G, and 570B. The light source housing 530 is provided in common for the three light sources 570R, 570G, and 570B.
[0243] それら 3個の光源 570R, 570G, 570Bは、第 4実施形態と同様にして、アドレス電 極 550R, 550G, 550Bおよび透明表示電極 566【こお!/、て、図示しな!/、フィーノレド シーケンシャルドライバ 188に電気的に接続されており、第 4実施形態と同様にして、 3個の光源 570R, 570G, 570Bがフィールドシーケンシャル方式に従って順次駆動 される。  [0243] The three light sources 570R, 570G, and 570B are the same as those in the fourth embodiment, and the address electrodes 550R, 550G, and 550B and the transparent display electrode 566 are not shown! / These are electrically connected to a finalore sequential driver 188, and the three light sources 570R, 570G, and 570B are sequentially driven in accordance with the field sequential method in the same manner as in the fourth embodiment.
[0244] これにより、各空洞 532R, 532G, 532B内においてプラズマ発光が励起され、紫 外線が発生する。その発生した紫外線は、各蛍光体 540R, 540G, 540Bに照射さ れると、波長シフト作用によって可視光に変換され、やがて、その変換された可視光 力 s、各光源 570尺, 570G, 570Bの前面の開口咅^^ら取り出される。 [0245] 本実施形態においては、光源部 510が、さらに合波部 512を含むように構成されて いる。具体的には、図 21に示すように、光源部 510の前方に、合波部 512としてのフ オトニック結晶板 520が、光源部 510と正対する姿勢で配置されている。 [0244] Thereby, plasma emission is excited in each of the cavities 532R, 532G, and 532B, and an ultraviolet ray is generated. Thus generated ultraviolet rays, the phosphor 540R, 540G, when irradiated in 540B, is converted into visible light by the wavelength shift effect, finally, the converted visible light force s, each light source 570 feet, 570 g, of 570B The front opening 咅 ^^ is taken out. In the present embodiment, light source unit 510 is configured to further include multiplexing unit 512. Specifically, as shown in FIG. 21, a photonic crystal plate 520 as a multiplexing unit 512 is disposed in front of the light source unit 510 so as to face the light source unit 510.
[0246] 図 22には、そのフォトニック結晶板 520が拡大して側断面図で示されている。図 22 には、 3個の光源 570R, 570G, 570Bがそれぞれ点光源であること、それら 3個の 光源 570R, 570G, 570Bは順次選択されて駆動されること、および、点光源は光を 発散的に出射することに着目し、光源部 510が 1個の点光源として簡略的に表現さ れている。  In FIG. 22, the photonic crystal plate 520 is enlarged and shown in a side sectional view. Figure 22 shows that the three light sources 570R, 570G, and 570B are each a point light source, that the three light sources 570R, 570G, and 570B are sequentially selected and driven, and that the point light source emits light. The light source unit 510 is simply expressed as a single point light source.
[0247] 図 22に示すように、本実施形態においては、板状のフォトニック結晶板 520が、導 波路型の 3次元周期構造を持つフォトニック結晶 580と、ブロードバンド AR層 582が 2次元的に形成された AR板 584とが積層されて構成されて 、る。ブロードバンド AR 層 84は、第 1実施形態におけると同様に、テーパ状の複数個の凸部 82がサブ波長 間隔で並んだサブ波長構造により、アンチリフレクション機能を発揮する。ブロードバ ンド AR層 84は、さらに、フォトニック結晶 580の入射端 590へ光束をカップリングさせ る偏向機能も発揮する。  As shown in FIG. 22, in this embodiment, the plate-like photonic crystal plate 520 is composed of a waveguide-type photonic crystal 580 having a three-dimensional periodic structure and a broadband AR layer 582 is two-dimensional. The AR plate 584 formed on the substrate is laminated. As in the first embodiment, the broadband AR layer 84 exhibits an anti-reflection function by a sub-wavelength structure in which a plurality of tapered convex portions 82 are arranged at sub-wavelength intervals. Broadband AR layer 84 also exhibits a deflection function for coupling a light beam to incident end 590 of photonic crystal 580.
[0248] フォトニック結晶 580は、フォトニックバンドギャップ(PBG)素子の一例である。 PBG 素子は、光子操作の視点から、サブ波長周期の誘電体周期構造を有するように形成 される素子である。 PBG素子の基本構造は、多段積層 SOI (シリコン'オン'インシュ レータ)であり、その用途は、微小な受動光回路等に止まらず、光電気融合ァクティ ブ素子に代表される新機能能素子に向けられる。すなわち、 PBG素子は、光源の透 過率を変調したり、偏光制御、位相制御を行うことが可能なのである。  [0248] The photonic crystal 580 is an example of a photonic band gap (PBG) element. The PBG element is an element formed so as to have a dielectric periodic structure with a sub-wavelength period from the viewpoint of photon manipulation. The basic structure of the PBG element is a multi-layer stacked SOI (silicon 'on' insulator), and its application is not limited to a small passive optical circuit, but a new functional element represented by an opto-electric active element. Directed. In other words, the PBG element can modulate the transmittance of the light source, and can perform polarization control and phase control.
[0249] 光子を入射対象とする誘電体周期構造による変調対象は、屈折率であり、その変 調のための構造がフォトニック結晶と称されるものである。フォトニックバンドギャップ が形成される原理は、フォトニック結晶中において、電子と同様に禁制帯が生じ、そ のエネルギーを持つ光子の存在が禁止されることにある。したがって、フォト-ックバ ンドギャップが全方位に形成された結晶では、禁制帯内のエネルギーを有する光子 はフォトニック結晶中に存在することができな 、。  [0249] An object to be modulated by a dielectric periodic structure whose target is a photon is a refractive index, and the structure for the modulation is called a photonic crystal. The principle that a photonic band gap is formed is that a forbidden band is generated in a photonic crystal like an electron, and the existence of a photon having that energy is prohibited. Therefore, in a crystal with a photonic band gap formed in all directions, photons having energy in the forbidden band cannot exist in the photonic crystal.
[0250] 電子を対象とする場合には、 pn接合などの素子機能は不純物添加によって実現さ れるが、フォトニック結晶についても、その機能を実現するのは欠陥である。フォト-ッ ク結晶の場合、その欠陥は、局所的な誘電率周期の乱れである。フォトニックバンド ギャップが全方位に形成されたフォトニック結晶に誘電対欠陥を導入すると、その誘 電体欠陥の発生位置において特定のエネルギーを持つ光子の局在が許容される。 構造上、その欠陥部における光子の局在と浸み出し (エバネッセント波)の効果とによ り、一種のフィルタ作用が得られる。この事実に着目すれば、特定の直線偏光成分の みを通過させるフィルタを形成したり、無損失の導波路を形成することができる。 [0250] In the case of electrons, device functions such as pn junction are realized by adding impurities. However, it is a defect that realizes the function of the photonic crystal. In the case of a photonic crystal, the defect is a local disorder of the dielectric constant period. When a dielectric pair defect is introduced into a photonic crystal with a photonic band gap formed in all directions, localization of photons having specific energy is allowed at the position where the dielectric defect is generated. Structurally, a kind of filter action is obtained by the localization of photons in the defect and the effect of seepage (evanescent wave). Focusing on this fact, it is possible to form a filter that passes only a specific linearly polarized light component or to form a lossless waveguide.
[0251] 本実施形態においては、そのような性質を有するフォトニック結晶 580を用いて導 波路構造が実現されている。フォトニックバンドギャップによる光閉じ込め効果を利用 すれば、 3次元結晶の内部構造を導波型、特に導波路型にすることにより、図 22に 示すように、フォトニック結晶 580への入射光がそのフォトニック結晶 580の入射端 59 0において、そのフォトニック結晶 580中に形成される複数の導波路に高効率でカツ プリングされる。さらに、その入射光は、フォトニック結晶 580の出射端 592まで無損 失で誘導される。  In the present embodiment, a waveguide structure is realized using the photonic crystal 580 having such properties. If the optical confinement effect due to the photonic band gap is used, the internal structure of the three-dimensional crystal is changed to a waveguide type, in particular, a waveguide type. At the incident end 590 of the photonic crystal 580, a plurality of waveguides formed in the photonic crystal 580 are coupled with high efficiency. Further, the incident light is guided without loss to the emission end 592 of the photonic crystal 580.
[0252] 本実施形態においては、フォトニック結晶 580が次のようにして形成される。まず、 基材であるシリカガラスに複数個のエアホールがサブ波長間隔で規則正しく形成さ れる。このシリカガラスを正確なァライメントで複数枚積層することにより、 3次元構造 のブロックが構成される。このブロックのうち、導波路を形成すべき部分について、予 め形成されたエアホールが欠落させられる。この欠落部に光子が局在することが許 容され、その結果、フォトニック結晶 580中に導波路が形成される。  In this embodiment, the photonic crystal 580 is formed as follows. First, a plurality of air holes are regularly formed at sub-wavelength intervals in the silica glass as a base material. By laminating multiple pieces of this silica glass with accurate alignment, a block with a three-dimensional structure is constructed. Of this block, the pre-formed air holes are removed from the portion where the waveguide is to be formed. Photons are allowed to localize in the missing portion, and as a result, a waveguide is formed in the photonic crystal 580.
[0253] また、 3次元の導波路構造は、例えば、次のようにしても形成することが可能である 。まず、基材に対して、 2次元の PBG構造が形成され、次に、ェピタキシャル成長や、 スピンコート等の物理的化学的手段より、 2段目以後の基材が積層される。これを同 等の PBG構造形成手法 (通常は電子線リソグラフィ一法)により、ワークのチャックを 固定した状態のまま、順次加工'積層を繰り返すことにより、 3次元構造が形成される  [0253] In addition, the three-dimensional waveguide structure can be formed as follows, for example. First, a two-dimensional PBG structure is formed on the base material, and then the second and subsequent base materials are laminated by physical and chemical means such as epitaxial growth and spin coating. Using this same PBG structure formation method (usually electron beam lithography), a three-dimensional structure is formed by repeating processing and laminating sequentially while keeping the workpiece chuck fixed.
[0254] なお付言するに、本実施形態における光源部 510は、第 1ないし第 4実施形態にお いてそれの光源部 40, 240, 340, 410を置換するように用いることが可能である。 [0255] 次に、本発明の第 6実施形態を説明する。 [0254] Note that the light source unit 510 in the present embodiment can be used to replace the light source units 40, 240, 340, 410 in the first to fourth embodiments. [0255] Next, a sixth embodiment of the present invention will be described.
[0256] 以上説明したいくつかの実施形態に従う画像投影装置 10, 230, 330, 400, 500 は、複数色の成分光 (単色光)を発生させ、かつ、色ごとおよび画素ごとに成分光の 強度を変調することにより、画像をフルカラーで投影するタイプであるが、本実施形態 に従う画像投影装置 610は、白色光を発生させ、画素ごとにその白色光の各色強度 を変調することにより、画像をモノクロまたはカラーで投影するタイプである。  [0256] The image projectors 10, 230, 330, 400, 500 according to some embodiments described above generate component light of a plurality of colors (monochromatic light) and generate component light for each color and each pixel. The image projection device 610 according to the present embodiment is a type that projects an image in full color by modulating the intensity, but the image projection device 610 according to the present embodiment generates white light and modulates each color intensity of the white light for each pixel, thereby generating an image. Are projected in monochrome or color.
[0257] 図 23には、本実施形態に従う画像投影装置 610のうちの光源部 620のみが側面 断面図で示されている。この光源部 620は、 1個の点光源としてのアークランプ 622と 、コリメータとしての PBG板 624とを含むように構成されて 、る。  In FIG. 23, only the light source unit 620 of the image projection apparatus 610 according to the present embodiment is shown in a side sectional view. The light source unit 620 is configured to include an arc lamp 622 as one point light source and a PBG plate 624 as a collimator.
[0258] アークランプ 622は、よく知られて!/、るように、ランプハウジング 626を含み、その内 部において一対の電極 630, 630がギャップを隔てて互いに対向させられる。そのギ ヤップにおいてアーク放電が行われるため、そのギャップ内の空間の一部分に、ァー クが発光される発光点が存在する。アークはその発光点力 全方位に発散的に光を 出射する。その一部は、電極 630等によって遮光され、その結果、アークランプ 622 は、ある放射パターンを有する発光特性を持つ光源となる。  [0258] The arc lamp 622 includes a lamp housing 626, as is well known! / In which a pair of electrodes 630, 630 are opposed to each other with a gap therebetween. Since arc discharge occurs in the gap, there is a light emitting point where the arc is emitted in a part of the space in the gap. The arc emits light divergently in all directions. A part of the light is shielded by the electrode 630 or the like, and as a result, the arc lamp 622 becomes a light source having a light emission characteristic having a certain radiation pattern.
[0259] 図 23に示すように、アークランプ 622の前方に上述の PBG機能を有する PBG板 6 24が配置されている。この1¾0板624は、第 1実施形態と同様に、サブ波長構造を 有する屈折層 632を含んでおり、アークランプ 622からその屈折層に入射した発散 的な白色光を平行光に集光させる。この PBG板 624は、第 1実施形態と同様に、サ ブ波長構造によってアンチリフレクション機能を果すものとすることが可能である。  As shown in FIG. 23, the PBG plate 624 having the above-described PBG function is arranged in front of the arc lamp 622. Similar to the first embodiment, the 1/0 plate 624 includes a refractive layer 632 having a sub-wavelength structure, and condenses divergent white light incident on the refractive layer from the arc lamp 622 into parallel light. Similar to the first embodiment, the PBG plate 624 can perform an anti-reflection function by a subwavelength structure.
[0260] 図 23に示すように、アークランプ 622の背後にコールドミラーリフレクタ 634が配置 されている。これにより、アークランプ 622から全方位的に放射される光の全体が有 効に PBG板 624に向けられる。  As shown in FIG. 23, a cold mirror reflector 634 is disposed behind the arc lamp 622. As a result, the entire light omnidirectionally emitted from the arc lamp 622 is effectively directed to the PBG plate 624.
[0261] 光源部 620をアークランプ 622を主体として構成する場合には、従来、電力消費量 の問題および発熱に起因する問題を解決しなければならなかった。これに対し、本 実施形態によれば、 PBG板 624の集光機能 (または集光機能およびアンチリフレタ シヨン機能)により、アークランプ 622からの出射光が高効率で次段部に伝送されるた め、それらアークランプ 622および PBG板 624を含む光学系全体としての電気一光 変換効率が従来より向上する。 [0261] When the light source unit 620 is mainly composed of the arc lamp 622, it has been necessary to solve the problem of power consumption and the problem caused by heat generation. In contrast, according to the present embodiment, the light collected from the arc lamp 622 is transmitted to the next stage with high efficiency by the light collecting function (or the light collecting function and the anti-reflectance function) of the PBG plate 624. , The arc lamp 622 and the PBG plate 624 Conversion efficiency is improved as compared to the conventional case.
[0262] したがって、本実施形態によれば、光源部 620をアークランプ 622を主体として構 成するにしても、従来ほどには多くの発光量が必要ではなくなる。その結果、節電が 容易になる上に、発熱に起因した問題が軽減され、それにより、耐熱構造化の必要 性やそれに伴う大型化および重量増加の問題も軽減される。  [0262] Therefore, according to the present embodiment, even if the light source unit 620 is mainly composed of the arc lamp 622, a larger amount of light emission than in the conventional case is not necessary. As a result, power saving is facilitated and problems due to heat generation are reduced, thereby reducing the need for a heat-resistant structure and the associated increase in size and weight.
[0263] なお付言するに、以上説明した第 1ないし第 5実施形態に従う画像投影装置 10, 2 30, 330, 400, 500ίま、アークランプ 622より発熱量力 ^少な!/ヽ光源咅 40, 240, 34 0, 410, 510を用いるのであるが、本実施形態とは異なり、次段部に向力 方向とは 異なる方向に光源部 40, 240, 340, 410, 510から出射した光を次段部に向力つて 反射する専用のリフレクタは用いておらず、それと同等の機能は、光源内部の反射や 、基板の反射、銀ペーストによる反射、電極による反射によって達成される。  [0263] In addition, the image projection apparatus according to the first to fifth embodiments described above, 10, 2, 30, 330, 400, 500, and the calorific power of the arc lamp 622 is less! / ヽ light source 咅 40, 240 , 34 0, 410, 510 are used.Unlike this embodiment, the light emitted from the light source units 40, 240, 340, 410, 510 in the direction different from the direction of the directional force is applied to the next stage. There is no dedicated reflector that reflects to the surface, and the equivalent function is achieved by reflection inside the light source, substrate reflection, silver paste reflection, and electrode reflection.
[0264] さらに付言するに、本実施形態における光源部 620は、第 1ないし第 5実施形態に お!/、てそれの光源咅 240, 340, 410, 510を置換するように用!/、ること力可會 である。  [0264] In addition, the light source unit 620 in this embodiment is used to replace the light sources 咅 240, 340, 410, 510 in the first to fifth embodiments! /, It is possible.
[0265] 次に、本発明の第 7施形態を説明する。ただし、本実施形態は、第 6実施形態と共 通する要素があるため、異なる要素についてのみ詳細に説明し、共通する要素につ いては、同一の符号または名称を使用して引用することにより、詳細な説明を省略す る。  [0265] Next, a seventh embodiment of the present invention will be described. However, since this embodiment has elements that are common to the sixth embodiment, only different elements will be described in detail, and common elements will be referred to using the same reference numerals or names. Detailed description is omitted.
[0266] 第 6実施形態においては、光源部 620がアークランプ 622を主体として構成されて いる。これに対し、本実施形態に従う画像投影装置 650においては、図 24に示すよ うに、光源部 660が、よく知られたフィラメントランプ 662を主体として構成されている。 このフィラメントランプ 662は、ランプハウジング 664を備えており、それの内部におい て一対の電極 670, 670が隙間を隔てて互いに対向させられている。それら一対の 電極 670, 670にフィラメント 672の両端がそれぞれ接合されており、そのフィラメント 672への通電により、そのフィラメント 672が高温に達して発光する。したがって、フィ ラメントランプ 662においては、図 24において破線の円で囲まれる部分力 発光領域 である。  [0266] In the sixth embodiment, the light source unit 620 is configured mainly by the arc lamp 622. On the other hand, in the image projection apparatus 650 according to the present embodiment, as shown in FIG. 24, the light source unit 660 is mainly composed of a well-known filament lamp 662. The filament lamp 662 includes a lamp housing 664, in which a pair of electrodes 670, 670 are opposed to each other with a gap therebetween. Both ends of the filament 672 are joined to the pair of electrodes 670 and 670, respectively. When the filament 672 is energized, the filament 672 reaches a high temperature and emits light. Therefore, the filament lamp 662 is a partial force light emitting region surrounded by a broken-line circle in FIG.
[0267] この発光領域が例えば、直径 3mm以下という程度に小さい場合には、その発光領 域から十分に遠方に位置する正パワー素子から見れば、その発光領域は略点光源 であるとみなすことができる。これに対し、その発光領域が略点光源であるとみなすこ とができない場合には、高効率の集光手段を用いることにより、その発光領域から発 光した光を、次段部に伝達することが可能である。 [0267] If this light emitting area is small, for example, a diameter of 3 mm or less, the light emitting area From the viewpoint of a positive power element located sufficiently far from the area, the light emitting area can be regarded as a substantially point light source. On the other hand, when the light emitting area cannot be regarded as a substantially point light source, the light emitted from the light emitting area is transmitted to the next stage by using a highly efficient condensing means. It is possible.
[0268] 本実施形態においては、図示しないが、第 6実施形態と同様にして、フィラメントラ ンプ 662の前方に、 PBG板 624と共通する PBG板が集光手段として配置され、その 結果、光源部 660が、フィラメントランプ 662とその PBG板とを含むように構成される。 その PBG板の存在により、光源部 660の電気—光変換効率が、その PBG板が存在 しない場合より、向上する。  [0268] In the present embodiment, although not shown, a PBG plate common to the PBG plate 624 is arranged as a light condensing means in front of the filament lamp 662, as in the sixth embodiment. As a result, the light source Portion 660 is configured to include a filament lamp 662 and its PBG plate. Due to the presence of the PBG plate, the electro-optical conversion efficiency of the light source unit 660 is improved as compared with the case where the PBG plate is not present.
[0269] 次に、本発明の第 8施形態を説明する。ただし、本実施形態は、第 6実施形態と共 通する要素があるため、異なる要素についてのみ詳細に説明し、共通する要素につ いては、同一の符号または名称を使用して引用することにより、詳細な説明を省略す る。  Next, an eighth embodiment of the present invention will be described. However, since this embodiment has elements that are common to the sixth embodiment, only different elements will be described in detail, and common elements will be referred to using the same reference numerals or names. Detailed description is omitted.
[0270] 第 6実施形態においては、光源部 620が、光の共振を利用することなぐ光を出射 するタイプであるのに対し、図 25に示すように、本実施形態に従う画像投影装置 690 においては、光源部 700が、レーザの如ぐ光の共振によるゲイン向上を利用するこ とにより、光を出射するタイプである。  In the sixth embodiment, the light source unit 620 is of a type that emits light without using the resonance of light, whereas in the image projector 690 according to the present embodiment, as shown in FIG. Is a type in which the light source unit 700 emits light by utilizing gain enhancement by resonance of light such as a laser.
[0271] 図 25には、本実施形態に従う画像投影装置 690のうちの光源部 700のみが示され ている。この光源部 700は、光子発生源 702と、サブ波長構造素子 704と、パワー投 入源 706とを含むように構成されて!、る。  FIG. 25 shows only light source unit 700 in image projection apparatus 690 according to the present embodiment. The light source unit 700 is configured to include a photon generation source 702, a subwavelength structure element 704, and a power input source 706! RU
[0272] 光子発生源 702は、例えば、電流密度に従って光子を発生させる半導体を主体と して構成される。その半導体としては、例えば、 (In-Ga-N) , (Si-C) , (Al.In.Ga· P)等がある。この光子発生源 702は、光軸に沿って光が出射する出射面 710と、そ の出射面に対して、光軸方向において対向する光源側共振ミラー面 712とを備えて いる。光源側共振ミラー面 712は、劈開面として形成されている。光子発生源 702は 、パワー投入源 706から投入されたパワー(例えば、電気エネルギー)により、光子を 発生させる。  [0272] The photon generation source 702 is mainly composed of, for example, a semiconductor that generates photons according to current density. Examples of the semiconductor include (In-Ga-N), (Si-C), and (Al.In.Ga · P). The photon generation source 702 includes an emission surface 710 from which light is emitted along the optical axis, and a light source side resonance mirror surface 712 that faces the emission surface in the optical axis direction. The light source side resonance mirror surface 712 is formed as a cleavage plane. The photon generation source 702 generates photons by the power (for example, electric energy) input from the power input source 706.
[0273] この光子発生源 702の出射面 710には、アンチリフレクション機能を果たすサブ波 長構造を有する AR層 714がー体的に形成されている。そのサブ波長構造は、例え ば、前述のように、複数個の凸部 82がサブ波長間隔で 2次元的に配列されたものと して構成される。この AR層により、光子発生源 702から出射しようとする光力 出射 面 710での反射による損失を伴うことなぐその出射面 710から出射することが可能と なる。 [0273] On the emission surface 710 of this photon source 702, a sub-wave that performs an anti-reflection function is provided. An AR layer 714 having a long structure is physically formed. For example, as described above, the sub-wavelength structure is configured such that a plurality of convex portions 82 are two-dimensionally arranged at sub-wavelength intervals. This AR layer makes it possible to emit light from the light exit surface 710 without any loss due to reflection at the light exit surface 710 to be emitted from the photon generation source 702.
[0274] 図 25に示すように、光子発生源 702の前方に板状のサブ波長構造素子 704が配 置されている。サブ波長構造素子 704は、光子発生源 702からの出射光が入射する 入射端 720と、その入射光が次段部に向かって出射する出射端 722とを備えている  As shown in FIG. 25, a plate-like subwavelength structure element 704 is arranged in front of the photon generation source 702. The sub-wavelength structure element 704 includes an incident end 720 where the outgoing light from the photon generation source 702 is incident, and an outgoing end 722 where the incident light exits toward the next stage.
[0275] そのサブ波長構造素子 704の入射端 720に反透過共振ミラー面 730が、 2次元的 なサブ波長構造によって一体的に形成されている。この反透過共振ミラー面 730に は、図 26に概念的に示すように、この反透過共振ミラー面 730において開口した凹 部 (またはサブ波長構造素子 704を厚さ方向に貫通する穴でも可。)が複数個、 2次 元的に配列されている。それら複数個の凹部は、例えば、厚さが 250nmであるシリコ ン薄膜に 420nm間隔で格子状に規則正しく配列されたものとして構成することが可 能である。 [0275] An anti-transmission resonant mirror surface 730 is integrally formed on the incident end 720 of the sub-wavelength structure element 704 with a two-dimensional sub-wavelength structure. As conceptually shown in FIG. 26, the anti-transmission resonant mirror surface 730 may be a recess (or a hole penetrating the sub-wavelength structural element 704 in the thickness direction) opened in the anti-transmission resonant mirror surface 730. ) Are two-dimensionally arranged. For example, the plurality of recesses can be configured as a regular arrangement in a lattice pattern at intervals of 420 nm on a silicon thin film having a thickness of 250 nm.
[0276] それら複数個の凹部は、フォトニックバンドギャップの光禁制効果により、複数個の 微小なミラーのアレイとして作用し、この反透過共振ミラー面 730への入射光の大半 を光子発生源 702内における光源側共振ミラー面 712に向力つて反射する。  [0276] The plurality of recesses act as an array of a plurality of minute mirrors due to the light forbidden effect of the photonic band gap, and most of the incident light on this anti-transmission resonant mirror surface 730 is photon generation source 702 The light is reflected by the light source side resonance mirror surface 712 inside.
[0277] 図 25に光路図で示すように、反透過共振ミラー面 730において反射した光は、そ の反透過共振ミラー面 730と光源側共振ミラー面 712との間において反射を繰り返し て往復進行させられる。この光の共振現象により、光子発生源 702の量子効率すな わち電気—光変換効率が向上する。それら反透過共振ミラー面 730と光源側共振ミ ラー面 712とは、一対の対向ミラー面を構成し、それら一対の対向ミラー面による光 の共振ゲイン力 を超えるようにこの光源部 700を設計すれば、光子発生源 702の量 子効率が、反透過共振ミラー面 730を有するサブ波長構造素子 704との協働により、 そのようなサブ波長構造素子 704を用いな 、場合 (例えば、 LEDが単に発光する場 合)より向上する。 [0278] なお付言するに、それら反透過共振ミラー面 730および光源側共振ミラー面 712の 如き一対の協働ミラー面は、他の種々の態様で配置することが可能である。例えば、 それら一対の協働ミラー面を、いずれも光子発生源 702から分離した状態で、その光 子発生源 702を隔てた両側にそれぞれ配置することが可能である。この配置によれ ば、光の共振による量子効率向上という効果に加えて、各ミラー面の角度チルトによ るビーム偏向が可能になるという効果や、ミラー間隔の調整による共振波長変調が可 能になるという効果が副次的に得られる。 [0277] As shown in the optical path diagram of FIG. 25, the light reflected on the anti-transmission resonant mirror surface 730 is repeatedly reflected between the anti-transmission resonant mirror surface 730 and the light source side resonant mirror surface 712 and travels back and forth. Be made. Due to this light resonance phenomenon, the quantum efficiency of the photon generation source 702, that is, the electro-optical conversion efficiency is improved. The anti-transmission resonance mirror surface 730 and the light source side resonance mirror surface 712 constitute a pair of opposed mirror surfaces, and the light source unit 700 is designed so as to exceed the resonance gain force of light by the pair of opposed mirror surfaces. For example, if the quantum efficiency of the photon source 702 is such that, in cooperation with a subwavelength structural element 704 having an anti-transmission resonant mirror surface 730, such a subwavelength structural element 704 is not used (e.g., an LED is simply If it emits light) it will improve. [0278] Note that a pair of cooperating mirror surfaces such as the anti-transmission resonant mirror surface 730 and the light source side resonant mirror surface 712 can be arranged in various other modes. For example, the pair of cooperating mirror surfaces can be respectively disposed on both sides of the photon source 702 with the photon source 702 being separated from each other. According to this arrangement, in addition to the effect of improving the quantum efficiency due to the resonance of light, it becomes possible to deflect the beam by the angle tilt of each mirror surface, and the resonant wavelength modulation by adjusting the mirror interval is possible. As a secondary effect.
[0279] なお付言するに、本実施形態における光源部 700は、第 1ないし第 7実施形態にお ヽてそれの光源咅 240, 340, 410, 510, 620, 660を置換するよう【こ用!ヽるこ とが可能である。  [0279] Note that the light source unit 700 in the present embodiment replaces the light sources 咅 240, 340, 410, 510, 620, 660 in the first to seventh embodiments. ! It is possible to talk.
[0280] 次に、本発明の第 9施形態を説明する。ただし、本実施形態は、第 1実施形態と共 通する要素が多いため、異なる要素についてのみ詳細に説明し、共通する要素につ いては、同一の符号または名称を使用して引用することにより、詳細な説明を省略す る。  Next, a ninth embodiment of the present invention will be described. However, since this embodiment has many elements in common with the first embodiment, only different elements will be described in detail, and common elements will be referred to using the same reference numerals or names. Detailed description is omitted.
[0281] 第 1実施形態においては、各光源 50R, 50G, 50Bからの出射光が可視光である のに対し、図 27に示すように、本実施形態に従う画像投影装置 750においては、光 源部 760が、非可視光を発生させる少なくとも 1個の光源と、その光源力 発生させら れた非可視光を可視光に変換する少なくとも 1個の変換部とを含むように構成されて いる。  In the first embodiment, the light emitted from each of the light sources 50R, 50G, and 50B is visible light, whereas in the image projector 750 according to the present embodiment, as shown in FIG. 27, the light source The unit 760 is configured to include at least one light source that generates invisible light, and at least one conversion unit that converts the invisible light generated by the light source force into visible light.
[0282] 具体的には、図 27に示すように、本実施形態に従う画像投影装置 750は、光源部 760力 3個の X線源 762, 762, 762と、それら X線源 762, 762, 762にそれぞれ 設けられた 3個の板状の波長シフタ 770R, 770G, 770Bとを含むように構成されて いる。図 27には、 3つの成分光(R光、 G光および B光)のうちのいずれかを互いに共 同して発生させる 1個の X線源 762と 1個の波長シフタ 770とが代表的に示されてい る。それら 3個の X線源 762, 762, 762が上述の「少なくとも 1個の光源」の一例を構 成し、また、それら 3個の波長シフタ 770R, 770G, 770Bが「上述の少なくとも 1個の 変換部」の一例を構成して 、る。  Specifically, as shown in FIG. 27, the image projection apparatus 750 according to the present embodiment includes a light source unit 760 force three X-ray sources 762, 762, 762, and these X-ray sources 762, 762, The 762 is configured to include three plate-like wavelength shifters 770R, 770G, and 770B provided in the 762 respectively. In FIG. 27, one X-ray source 762 and one wavelength shifter 770 that generate one of the three component lights (R light, G light, and B light) together are representative. It is shown in These three X-ray sources 762, 762, and 762 constitute an example of the above-mentioned “at least one light source”, and the three wavelength shifters 770R, 770G, and 770B An example of the “conversion unit” is as follows.
[0283] 各波長シフタ 770R, 770G, 770Bは、サブ波長構造を利用することにより、それに 入射した非可視光を可視光に変換する。この原理を説明するに、前述のように、サブ 波長構造がフォトニックバンドギャップを有する場合には、光閉じ込め効果が発生し、 これにより、誘電体欠陥部に光が拘束される。その拘束された光子のエネルギーによ り、光電気融合アクティブ素子である半導体基材中のエネルギー準位が上昇し、そ の結果、その光電気融合アクティブ素子が基底状態に戻る際に、エネルギー準位差 に比例した周波数を持つ光子が放出される。 [0283] Each wavelength shifter 770R, 770G, 770B uses a sub-wavelength structure to The incident invisible light is converted into visible light. In order to explain this principle, as described above, when the sub-wavelength structure has a photonic band gap, a light confinement effect occurs, and light is constrained by the dielectric defect portion. The energy level of the constrained photon increases the energy level in the semiconductor substrate, which is the optoelectronic active device, and as a result, when the optoelectronic active device returns to the ground state, the energy level is increased. A photon with a frequency proportional to the difference is emitted.
[0284] この原理によれば、ある波長を持つ電磁波が、光閉じ込め効果を実現するサブ波 長構造を有する光電気融合アクティブ素子に入射すると、その光電気融合アクティブ 素子から、その入射した電磁波とは波長が異なる電磁波が出射する。すなわち、その 光電気融合アクティブ素子が上述の波長シフタ 770R, 770G, 770Bである。  [0284] According to this principle, when an electromagnetic wave having a certain wavelength is incident on an optoelectronic active element having a sub-wavelength structure that realizes a light confinement effect, the incident electromagnetic wave is Emits electromagnetic waves with different wavelengths. That is, the opto-electric active device is the above-described wavelength shifter 770R, 770G, or 770B.
[0285] なお付言するに、本実施形態においては、各成分光ごとに X線源 762が設けられ ているが、複数の成分光に共通に 1個の X線源を設けるようにして本発明を実施する ことが可能である。この場合、それら成分光にそれぞれ対応する複数個の波長シフタ 770R, 770G, 770Bは、例えば、 1個の X線源の放出軸上において互いに積層さ せることにより、コンパクトに一体ィ匕することが可能である。  [0285] In addition, in the present embodiment, the X-ray source 762 is provided for each component light, but the present invention is configured so that one X-ray source is provided in common for a plurality of component lights. Can be implemented. In this case, the plurality of wavelength shifters 770R, 770G, and 770B respectively corresponding to these component lights can be integrated in a compact manner by stacking them on the emission axis of one X-ray source, for example. Is possible.
[0286] さらに付言するに、本実施形態における光源部 760は、第 2ないし第 8実施形態に お ヽてそれの光源咅 340, 410, 510, 620, 660, 700を置換するよう【こ用!ヽ ることが可能である。  [0286] In addition, the light source unit 760 in the present embodiment replaces the light source 340, 410, 510, 620, 660, 700 in the second to eighth embodiments. !
[0287] さらに付言するに、本発明を実施するに際し、波長シフタ 770R, 770G, 770Bを、 可視光を非可視光に変換するように変更したうえで、その波長シフタ 770R, 770G, 770Bと、可視光を放射する素子との組合せを用いることにより、放射線画像や赤外 線画像を表示する画像表示装置を構成することが可能である。  [0287] Further, in carrying out the present invention, the wavelength shifters 770R, 770G, 770B are changed to convert visible light into invisible light, and then the wavelength shifters 770R, 770G, 770B, By using a combination with an element that emits visible light, an image display device that displays a radiation image or an infrared ray image can be configured.
[0288] さらに付言するに、本発明を実施するに際し、波長シフタ 770R, 770G, 770Bを、 例えば、 R光と G光と B光とのうちのいずれ力 (例えば、 R光)を R光と G光と B光とに波 長シフトすることによって 3原色光を実現するように変更することが可能である。このよ うにすれば、 R光と G光と B光とにつ 、て個別に発光素子を用いて 3原色光を実現す る場合より、装置コストの削減が容易となる。  [0288] Further, in carrying out the present invention, the wavelength shifters 770R, 770G, and 770B are used, for example, any power of R light, G light, and B light (for example, R light) is used as R light. It can be changed to realize the three primary colors by shifting the wavelength to G light and B light. In this way, the R, G, and B lights can be reduced more easily than the case where three primary color lights are realized using light emitting elements individually.
[0289] さらに付言するに、サブ波長構造素子自身がリアクティブ制御可能な放射源であつ てもよい。 [0289] In addition, the sub-wavelength structure element itself is a radiation source that can be reactively controlled. May be.
以上、本発明の実施の形態のいくつかを図面に基づいて詳細に説明したが、これ らは例示であり、前記 [発明の開示]の欄に記載の態様を始めとして、当業者の知識 に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能であ る。  As described above, some of the embodiments of the present invention have been described in detail with reference to the drawings. The present invention can be implemented in other forms based on various modifications and improvements.

Claims

請求の範囲 The scope of the claims
[1] 画像を表示する画像表示装置であって、  [1] An image display device for displaying an image,
電気を電磁波に変換し、その変換された電磁波を出射する放射源部と、 その放射源部に関連付けて設けられ、その放射源部から出射した電磁波が入射す る周期構造を有する板状のリアクティブ素子と  A radiation source unit that converts electricity into electromagnetic waves and emits the converted electromagnetic waves, and a plate-shaped reed having a periodic structure that is provided in association with the radiation source unit and receives electromagnetic waves emitted from the radiation source unit. With active elements
を含む画像表示装置。  An image display device.
[2] 前記リアクティブ素子は、前記放射源部と協働することにより、その放射源部の電気 電磁波変換効率を増加させる効率増加機能を有する請求の範囲第 1項に記載の 画像表示装置。  [2] The image display device according to claim 1, wherein the reactive element has an efficiency increasing function of increasing an electric electromagnetic wave conversion efficiency of the radiation source unit by cooperating with the radiation source unit.
[3] 前記リアクティブ素子は、それに入射した電磁波の反射を防止するアンチリフレクシ ヨン機能を有する請求の範囲第 1項に記載の画像表示装置。  [3] The image display device according to claim 1, wherein the reactive element has an anti-reflection function for preventing reflection of electromagnetic waves incident thereon.
[4] 前記リアクティブ素子は、それに入射した電磁波を偏向する機能は有するが、偏光 を弁別する機能は有しない請求の範囲第 1項に記載の画像表示装置。 4. The image display device according to claim 1, wherein the reactive element has a function of deflecting an electromagnetic wave incident thereon, but does not have a function of discriminating polarized light.
[5] 前記放射源部は、前記電磁波を出射する部分を挟んで互いに対向する複数の反 射面を含み、 [5] The radiation source unit includes a plurality of reflecting surfaces facing each other across a portion that emits the electromagnetic wave,
前記リアクティブ素子は、それら反射面のうちの少なくとも一方に、反射機能と透過 機能とのうち少なくとも反射機能を有するように配置され、前記複数の反射面間にお ける前記電磁波の共振現象を利用することにより、前記電気 電磁波変換効率を増 カロさせる請求の範囲第 1項に記載の画像表示装置。  The reactive element is disposed on at least one of the reflecting surfaces so as to have at least one of a reflecting function and a transmitting function, and utilizes the resonance phenomenon of the electromagnetic waves between the plurality of reflecting surfaces. 2. The image display device according to claim 1, wherein the electric electromagnetic wave conversion efficiency is increased by doing so.
[6] 前記リアクティブ素子は、前記電磁波が入射する入射面および出射する出射面を 含み、さらに、前記入射面から前記出射面に延びる導波構造を前記周期構造として 含む請求の範囲第 1項に記載の画像表示装置。 6. The reactive element according to claim 1, wherein the reactive element includes an incident surface on which the electromagnetic wave is incident and an exit surface from which the electromagnetic wave is incident, and further includes a waveguide structure extending from the incident surface to the exit surface as the periodic structure. The image display device described in 1.
[7] 前記周期構造は、それに入射すべき電磁波の波長より短!、周期を有するサブ波長 周期構造を含む請求の範囲第 1項に記載の画像表示装置。 7. The image display device according to claim 1, wherein the periodic structure includes a sub-wavelength periodic structure having a period shorter than that of an electromagnetic wave to be incident on the periodic structure.
[8] 前記リアクティブ素子は、それの法線方向に概して平行な方向に電磁波を出射す る請求の範囲第 1項に記載の画像表示装置。 8. The image display device according to claim 1, wherein the reactive element emits an electromagnetic wave in a direction generally parallel to a normal direction thereof.
[9] 前記リアクティブ素子は、 CGH素子と、グレーティング素子と、 PBG素子と、フォト- ック結晶素子とのうちの少なくとも一つを含む請求の範囲第 1項に記載の画像表示装 置。 [9] The image display device according to claim 1, wherein the reactive element includes at least one of a CGH element, a grating element, a PBG element, and a photonic crystal element. Place.
[10] 前記放射源部は、フィールドェミッション素子と、プラズマ発光素子と、レーザ素子と 、無機 LED素子と、有機 LED素子と、アークランプと、フィラメントランプと、放射線源 とのうちの少なくとも一つを含む請求の範囲第 1項に記載の画像表示装置。  [10] The radiation source section includes at least one of a field emission element, a plasma light emitting element, a laser element, an inorganic LED element, an organic LED element, an arc lamp, a filament lamp, and a radiation source. The image display device according to claim 1, comprising:
[11] 前記放射源部は、可視光を前記電磁波として出射する請求の範囲第 1項に記載の 画像表示装置。  11. The image display device according to claim 1, wherein the radiation source unit emits visible light as the electromagnetic wave.
[12] 前記リアクティブ素子は、それに入射した電磁波をそれとは異なる波長を有する電 磁波に変換する波長シフト機能を有する請求の範囲第 1項に記載の画像表示装置。  12. The image display device according to claim 1, wherein the reactive element has a wavelength shift function for converting an electromagnetic wave incident thereon into an electromagnetic wave having a wavelength different from the electromagnetic wave incident thereon.
[13] 前記放射源部は、波長が異なる複数の電磁波をそれぞれ成分波として出射する放 射源素子を含み、  [13] The radiation source unit includes a radiation source element that emits a plurality of electromagnetic waves having different wavelengths as component waves,
前記リアクティブ素子は、前記放射源素子から入射した各成分波をそれの波長に 応じた方向に偏向することにより、前記複数の成分波を合成する合波機能を有する 請求の範囲第 1項に記載の画像表示装置。  The reactive element according to claim 1, wherein the reactive element has a multiplexing function of combining the plurality of component waves by deflecting each component wave incident from the radiation source element in a direction corresponding to a wavelength of the component wave. The image display device described.
[14] 前記リアクティブ素子は、前記周期構造によって前記合波機能を互いに共同して 実現するために前記各成分波をそれの波長に応じた方向に偏向する複数の層が互 いに積層されて構成されている請求の範囲第 13項に記載の画像表示装置。 [14] In the reactive element, a plurality of layers that deflect each component wave in a direction according to its wavelength are stacked on each other in order to jointly realize the multiplexing function by the periodic structure. 14. The image display device according to claim 13, which is configured as described above.
[15] 前記放射源部は、 [15] The radiation source section includes:
波長が異なる複数の電磁波をそれぞれ成分波として出射する放射源素子と、 その放射源素子から出射された複数の成分波を合成する合波部と  A radiation source element that emits a plurality of electromagnetic waves having different wavelengths as component waves, and a combining unit that combines the plurality of component waves emitted from the radiation source element;
を含む請求の範囲第 1項に記載の画像表示装置。  The image display device according to claim 1, comprising:
[16] 前記放射源素子は、前記複数の成分波としての 3つの成分波をそれぞれ出射する 3個の放射源素子を含み、 [16] The radiation source element includes three radiation source elements that respectively emit three component waves as the plurality of component waves,
前記合波部は、互いにある角度を有して発散的に配置される 3本の経路に沿って 前記 3個の放射源素子力 それぞれ入射した 3つの成分波を、周波数選択的な反射 および屈折により、合成波に合成し、その合成された合成波を予め定められた経路 に沿って、前記合波部力 遠ざ力る向きに出射する請求の範囲第 15項に記載の画 像表示装置。  The multiplexing unit frequency-selectively reflects and refracts the three component waves respectively incident on the three radiation source element forces along three paths that are divergently arranged at a certain angle. 16. The image display device according to claim 15, wherein the combined wave is emitted in a direction of moving away from the combined force along a predetermined path. .
[17] 前記放射源素子は、前記複数の成分波としての 3つの成分波をそれぞれ出射する 3個の放射源素子を含み、 [17] The radiation source element emits three component waves as the plurality of component waves, respectively. Including three radiation source elements,
前記合波部は、一中心点から互いにある角度を有して発散的に配置される 4本の 経路のうちの 3本の経路に沿って前記 3個の放射源素子力 それぞれ前記中心点に 近づく向きに入射した 3つの成分波を、周波数選択的な反射および屈折により、 1つ の合成波に合成し、その合成された合成波を残りの 1本の経路に沿って、前記中心 点から遠ざかる向きに出射する請求の範囲第 15項に記載の画像表示装置。  The multiplexing unit is divergently arranged at an angle from one central point, and the three radiation source element forces along the three paths out of the four paths are respectively at the central point. Three component waves incident in the approaching direction are synthesized into one synthesized wave by frequency selective reflection and refraction, and the synthesized wave is synthesized along the remaining one path from the center point. 16. The image display device according to claim 15, wherein the image display device emits light in a direction of moving away.
[18] 前記リアクティブ素子は、前記放射源素子と前記合波部との間に配置される請求の 範囲第 15項に記載の画像表示装置。  18. The image display device according to claim 15, wherein the reactive element is disposed between the radiation source element and the multiplexing unit.
[19] 前記リアクティブ素子は、前記合波部のうち、前記合成波が出射する部分に配置さ れる請求の範囲第 15項に記載の画像表示装置。  [19] The image display device according to [15], wherein the reactive element is arranged in a portion of the multiplexing portion where the combined wave is emitted.
[20] 前記合波部は、低光弾性定数の材料を支持体として構成されて!、る請求の範囲第 15項に記載の画像表示装置。  20. The image display device according to claim 15, wherein the multiplexing unit is configured using a low photoelastic constant material as a support.
[21] さらに、前記リアクティブ素子から出射した電磁波を画素ごとに変調する変調部を 含み、それらリアクティブ素子と変調部とは、前記電磁波に対し電磁波透過性を有す る接着剤によって互いに一体ィ匕されている請求の範囲第 1項に記載の画像表示装 置。  [21] Furthermore, a modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel is included, and the reactive element and the modulation unit are integrated with each other by an adhesive having electromagnetic wave permeability with respect to the electromagnetic wave. The image display device according to claim 1, wherein the image display device is attached.
[22] さらに、前記リアクティブ素子から出射した電磁波を画素ごとに変調する板状の空 間変調部を含み、それらリアクティブ素子と空間変調部とは、互いに積層されている 請求の範囲第 1項に記載の画像表示装置。  [22] In addition, it includes a plate-like spatial modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel, and the reactive element and the spatial modulation unit are stacked on each other. The image display device according to item.
[23] 前記空間変調部は、 [23] The spatial modulation unit includes:
入射した電磁波を S波と P波とに分離する偏光ビームスプリッタと、  A polarizing beam splitter that separates incident electromagnetic waves into S and P waves,
その偏光ビームスプリツタカ 出射した S波と P波とをそれぞれ、画素ごとに偏光面 の回転が制御される状態で反射する 2つの反射型変調器と  Two reflective modulators that reflect the S-wave and the P-wave emitted from the polarization beam splittaka in a state where the rotation of the polarization plane is controlled for each pixel, and
を含み、  Including
前記偏光ビームスプリッタは、それら 2つの反射型変調器にぉ ヽてそれぞれ反射し て前記偏光ビームスプリッタに入射した 2つの電磁波を合成して出射する請求の範 囲第 22項に記載の画像表示装置。  23. The image display device according to claim 22, wherein the polarizing beam splitter combines and emits two electromagnetic waves that are respectively reflected by the two reflective modulators and incident on the polarizing beam splitter. .
[24] 前記 2つの反射型変調器は、共に、液晶パネルである請求の範囲第 23項に記載 の画像表示装置。 [24] The two reflection modulators according to claim 23, wherein each of the two reflection modulators is a liquid crystal panel. Image display device.
[25] 前記偏光ビームスプリッタは、低光弾性定数の材料を支持体として構成されている 請求の範囲第 23項に記載の画像表示装置。  25. The image display device according to claim 23, wherein the polarizing beam splitter is configured with a low photoelastic constant material as a support.
[26] さらに、前記リアクティブ素子から出射した電磁波を画素ごとに変調する板状の空 間変調部を含み、その空間変調部は、入射した電磁波を、画素ごとに外部に出力さ れる伝達効率が制御される状態で反射して出射する反射型空間変調器を含む請求 の範囲第 1項に記載の画像表示装置。 [26] Furthermore, it includes a plate-like spatial modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel, and the spatial modulation unit transmits the incident electromagnetic wave to the outside for each pixel. 2. The image display device according to claim 1, further comprising a reflective spatial modulator that reflects and emits light in a controlled state.
[27] 前記空間変調器は、デフォーマブル'ミラー ·デバイスを含む請求の範囲第 26項に 記載の画像表示装置。 27. The image display device according to claim 26, wherein the spatial modulator includes a deformable mirror device.
[28] 前記空間変調部は、入射した電磁波を、画素ごとに透過率が制御される状態で透 過して出射する透過型空間変調器を含む請求の範囲第 22項に記載の画像表示装 置。  28. The image display device according to claim 22, wherein the spatial modulation unit includes a transmissive spatial modulator that transmits and emits incident electromagnetic waves in a state where the transmittance is controlled for each pixel. Place.
[29] 前記リアクティブ素子は、前記放射源部のうち、前記電磁波が出射する出射面に配 置されている請求の範囲第 1項に記載の画像表示装置。  29. The image display device according to claim 1, wherein the reactive element is arranged on an emission surface from which the electromagnetic wave is emitted in the radiation source section.
[30] さらに、前記リアクティブ素子から出射した電磁波を画素ごとに変調する透過型の 変調部を含む請求の範囲第 1項に記載の画像表示装置。 30. The image display device according to claim 1, further comprising a transmission type modulation unit that modulates the electromagnetic wave emitted from the reactive element for each pixel.
[31] さらに、 [31] In addition,
前記リアクティブ素子力 出射した電磁波を画素ごとに変調する変調部と、 その変調部を放熱する放熱部と  The reactive element force A modulation unit that modulates the emitted electromagnetic wave for each pixel, and a heat dissipation unit that radiates heat from the modulation unit
を含む請求の範囲第 1項に記載の画像表示装置。  The image display device according to claim 1, comprising:
[32] 前記放射源部は、金属サブストレートに絶縁体を塗布して成る基板上に配置されて いる請求の範囲第 1項に記載の画像表示装置。 32. The image display device according to claim 1, wherein the radiation source section is disposed on a substrate formed by applying an insulator to a metal substrate.
[33] 前記放射源部は、金属を含有するペーストによって前記基板に固定されている請 求の範囲第 32項に記載の画像表示装置。 [33] The image display device according to item 32, wherein the radiation source section is fixed to the substrate with a paste containing a metal.
[34] さらに、前記電磁波を投影対象に向けて投影する投影部を含む請求の範囲第 1項 に記載の画像表示装置。 34. The image display device according to claim 1, further comprising a projection unit that projects the electromagnetic wave toward a projection target.
[35] 前記投影部は、複数のレンズを含み、かつ、それらレンズのうち少なくとも一部は、 合成樹脂によって形成されている請求の範囲第 34項に記載の画像表示装置。 35. The image display device according to claim 34, wherein the projection unit includes a plurality of lenses, and at least a part of the lenses is formed of a synthetic resin.
[36] さらに、当該画像表示装置を任意の対象物に着脱可能に固定する固定具を含む 請求の範囲第 1項に記載の画像表示装置。 [36] The image display device according to [1], further including a fixture for removably fixing the image display device to an arbitrary object.
[37] 前記対象物は、当該画像表示装置が画像を表示するために必要な画像信号と、 当該画像表示装置の作動に必要な電気エネルギーとのうちの少なくとも一方を出力 する出力ポートを備えた可搬型機器であり、当該画像表示装置は、さらに、前記出力 ポートに接続される接続部を含む請求の範囲第 36項に記載の画像表示装置。  [37] The object includes an output port that outputs at least one of an image signal necessary for the image display device to display an image and electric energy necessary for the operation of the image display device. 37. The image display device according to claim 36, which is a portable device, and the image display device further includes a connection portion connected to the output port.
[38] 前記接続部は、ビデオ出力ポートと、電源端子を有するシリアル通信ポートとのうち の少なくとも一方に接続される接続部を含む請求の範囲第 37項に記載の画像表示 装置。  38. The image display device according to claim 37, wherein the connection unit includes a connection unit connected to at least one of a video output port and a serial communication port having a power supply terminal.
[39] 前記接続部は、前記ビデオ出力ポートに接続される接続部を含み、そのビデオ出 力ポートに接続される接続部は、アナログ VGAポートまたはデジタルビデオポートに 接続される接続部である請求の範囲第 38項に記載の画像表示装置。  [39] The connection unit includes a connection unit connected to the video output port, and the connection unit connected to the video output port is a connection unit connected to an analog VGA port or a digital video port. The image display device according to Item 38.
[40] 前記接続部は、無線通信ポートに無線により接続される接続部を含む請求の範囲 第 37項に記載の画像表示装置。 40. The image display device according to claim 37, wherein the connection unit includes a connection unit that is wirelessly connected to a wireless communication port.
[41] 電磁波を出射する放射源装置であって、 [41] A radiation source device that emits electromagnetic waves,
エネルギーを電磁波に変換し、その変換された電磁波を出射する放射源部と、 その放射源部に関連付けて設けられ、その放射源部から出射した電磁波が入射す る周期構造を有するリアクティブ素子であって、前記周期構造は、その周期構造に入 射する電磁波の波長より短い周期を有するサブ波長周期構造であるものと  A reactive element that converts energy into electromagnetic waves and emits the converted electromagnetic waves, and a reactive element having a periodic structure that is provided in association with the radiation source parts and receives electromagnetic waves emitted from the radiation source parts. The periodic structure is a sub-wavelength periodic structure having a period shorter than the wavelength of the electromagnetic wave incident on the periodic structure.
を含み、  Including
前記放射源部は、  The radiation source part is
波長が異なる複数の電磁波をそれぞれ成分波として出射する放射源素子と、 その放射源素子から出射された複数の成分波を 1つの合成波に合成する合波部と を含み、  A radiation source element that emits a plurality of electromagnetic waves having different wavelengths as component waves, and a combining unit that combines the plurality of component waves emitted from the radiation source element into one composite wave,
前記リアクティブ素子は、  The reactive element is:
前記放射源素子と前記合波部との間に配置される複数の成分波用素子と、 前記合波部のうち、前記合成波が出射する部分に配置される合成波用素子と を含む放射源装置。 A plurality of component wave elements disposed between the radiation source element and the combining unit; and a combined wave element disposed in a portion of the combining unit where the combined wave is emitted. Source equipment.
[42] 前記複数の成分波用素子と前記合成波用素子とは、前記合波部のうち、互いに異 なる複数の面にそれぞれ配置されている請求の範囲第 41項に記載の放射源装置。 42. The radiation source device according to claim 41, wherein the plurality of component wave elements and the combined wave element are respectively disposed on a plurality of different surfaces in the multiplexing section. .
[43] 前記複数の成分波用素子および前記合成波用素子と前記合波部とは、電磁波透 過性を有する接着剤によって互 、に一体化されて!/、る請求の範囲第 42項に記載の 放射源装置。  [43] The plurality of component wave elements, the combined wave element, and the multiplexing unit are integrated with each other by an adhesive having electromagnetic wave permeability! / Radiation source device according to.
PCT/JP2005/013544 2005-07-25 2005-07-25 Image display device and irradiation source device WO2007013125A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013544 WO2007013125A1 (en) 2005-07-25 2005-07-25 Image display device and irradiation source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013544 WO2007013125A1 (en) 2005-07-25 2005-07-25 Image display device and irradiation source device

Publications (1)

Publication Number Publication Date
WO2007013125A1 true WO2007013125A1 (en) 2007-02-01

Family

ID=37683035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013544 WO2007013125A1 (en) 2005-07-25 2005-07-25 Image display device and irradiation source device

Country Status (1)

Country Link
WO (1) WO2007013125A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058482A (en) * 2010-09-08 2012-03-22 Dainippon Printing Co Ltd Lighting system, projection apparatus, and projection type video display apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031213A (en) * 1996-07-16 1998-02-03 Canon Inc Light source device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031213A (en) * 1996-07-16 1998-02-03 Canon Inc Light source device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058482A (en) * 2010-09-08 2012-03-22 Dainippon Printing Co Ltd Lighting system, projection apparatus, and projection type video display apparatus

Similar Documents

Publication Publication Date Title
US7059728B2 (en) 2D/3D data projector
US8096668B2 (en) Illumination systems utilizing wavelength conversion materials
US7270428B2 (en) 2D/3D data projector
US6547400B1 (en) Light source device, optical device, and liquid-crystal display device
US20090128781A1 (en) LED multiplexer and recycler and micro-projector incorporating the Same
US8833946B2 (en) Light source module and projection apparatus
US20110044046A1 (en) High brightness light source and illumination system using same
JP5047735B2 (en) Illumination device and image display device
US20100202129A1 (en) Illumination system utilizing wavelength conversion materials and light recycling
EP1308767A2 (en) Illumination system and projection system adopting the same
WO2007140708A1 (en) Projection device and portable electronic apparatus using the same
US7066601B2 (en) Projection display having an illumination module and an optical modulator
JP2006520932A (en) Projection system and method
WO2009091610A9 (en) Light multiplexer and recycler, and micro-projector incorporating the same
CN110703552B (en) Illumination system and projection apparatus
CN110850669A (en) Micro LED-based developing device and developing method thereof
WO2020137749A1 (en) Light source device and protection-type video display device
JP2012032585A (en) Projector
CN102445831A (en) Illumination unit, projection type display unit, and direct view type display unit
JP2008268878A (en) Hologram element, illumination device, projector, and method of manufacturing hologram element
KR20070115882A (en) Etendue efficient combination of multiple light sources
CN208588892U (en) Lighting system and projection arrangement
CN113296341B (en) Lighting system
JP2005309286A (en) Image display device and radiation source device
US20070024809A1 (en) Polarizing illuminant apparatus and image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05766132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP