Nothing Special   »   [go: up one dir, main page]

WO2007007576A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2007007576A1
WO2007007576A1 PCT/JP2006/313216 JP2006313216W WO2007007576A1 WO 2007007576 A1 WO2007007576 A1 WO 2007007576A1 JP 2006313216 W JP2006313216 W JP 2006313216W WO 2007007576 A1 WO2007007576 A1 WO 2007007576A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expansion valve
measured value
temperature
unit
Prior art date
Application number
PCT/JP2006/313216
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Kojima
Shinichi Kasahara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007007576A1 publication Critical patent/WO2007007576A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Definitions

  • the present invention relates to a so-called multi-type air conditioner in which a plurality of utilization units are connected to a refrigerant circuit.
  • FIG. 2 of Patent Document 1 shows an air conditioner in which three indoor units are provided for one outdoor unit.
  • Each indoor unit is provided with a liquid temperature sensor that measures the temperature of the liquid refrigerant in the heat exchanger, and when a predetermined time elapses after the measured value by the liquid temperature sensor exceeds the reference temperature during the ice melting operation. Finish the ice melting operation.
  • FIG. 1 of Patent Document 2 shows an air conditioner in which two indoor units are provided for one outdoor unit.
  • a temperature sensor is provided as a means for detecting refrigerant leakage of the expansion valve.
  • the expansion valve is fully opened to eliminate the refrigerant leakage. Recovery that repeats the closing action Performs one action.
  • Patent Document 1 Japanese Patent Laid-Open No. 03-186135
  • Patent Document 2 Japanese Patent Laid-Open No. 10-26429
  • the cooling load is often different for each indoor unit.
  • the cooling is performed when the target temperature set in advance is reached.
  • the operation is temporarily stopped, the expansion valve is closed, and the refrigerant flow from the refrigerant circuit is shut off (so-called thermo-off).
  • the expansion valve prevents the valve body and the valve seat from coming into close contact with each other due to aging or accumulation of foreign matter, and the refrigerant leaks downstream even when it is closed. End up. If the amount of leakage increases, the refrigerant piping and the heat exchanger are cooled by the leaked refrigerant, and there is a risk of causing problems such as dew condensation.
  • the present invention prevents the above-described problems such as dew and malfunction. Therefore, in the so-called multi-type air conditioner, it is possible to quantitatively and accurately estimate the refrigerant leakage amount of the expansion valve of the stopped use unit.
  • the present invention reduces the refrigerant leakage amount of the expansion valve (52) using a model of a heat conduction state in a predetermined range downstream of the expansion valve of the utilization unit that is stopped. Estimated.
  • the first invention includes a refrigerant circuit (20) in which a heat source unit (11) and a plurality of use units (12) are connected, and at least an air conditioner that performs a cooling operation (10 ). Then, when at least one of the usage units (12) performs the cooling operation and at least one other usage unit (12) is stopped, the usage unit ( A refrigerant leakage amount estimation means (81) for estimating the refrigerant leakage amount of the expansion valve (52) using a model of a heat conduction state in a predetermined range downstream of the expansion valve (52) of 12) is provided.
  • At least one of the plurality of usage units (12) connected to the refrigerant circuit (20) performs the cooling operation, and at least one other usage unit.
  • the refrigerant leakage amount is measured using a model of the heat conduction state in the predetermined range downstream of the expansion valve (52) of the utilization unit (12).
  • the estimation means (81) quantitatively estimates the refrigerant leakage amount of the expansion valve (52).
  • the expansion valve (52) of the stopped use unit (12) force When the refrigerant leaks, the refrigerant pipe or the like in a predetermined range downstream is cooled, and when the temperature becomes lower than room temperature, the pipe or the like The refrigerant absorbs ambient heat through The amount of heat absorbed at this time also changes depending on dynamic factors such as the temperature and flow rate of the refrigerant, as well as static factors such as the heat transfer area and heat transfer coefficient of the pipe.
  • an inlet temperature measuring means (54) for measuring an inlet temperature of the heat exchanger (53) is preferably provided in the use unit (12), and an indoor temperature.
  • the refrigerant flowing in the piping from immediately after the expansion valve (52) to the heat exchanger (53) of the stopped use unit (12) is connected to the atmosphere through the piping. Simulate heat exchange.
  • the refrigerant leak amount estimation means (81) includes the measured value by the inlet temperature measuring means (54) of the stopped use unit (12), the measured value by the room temperature measuring means (56), and the expansion. Based on the refrigerant temperature immediately after the valve (52), the refrigerant leakage amount is estimated using the above model (second invention).
  • the inlet temperature measuring means (54) and the room temperature measuring means (56) can usually be constituted by a temperature sensor provided in the utilization unit (12), which is advantageous in terms of cost.
  • the refrigerant leakage amount estimation means (81) stops the measurement value by the inlet temperature measurement means (54) of another utilization unit (12) during the cooling operation. It is assumed that the refrigerant temperature is immediately after the expansion valve (52) of the utilization unit (12) (third invention). In this way, it is possible to obtain the refrigerant temperature immediately after the expansion valve (52) without providing a dedicated temperature sensor or the like, which is advantageous in terms of cost.
  • the utilization unit (12) measures the inlet temperature measuring means (54) for measuring the inlet temperature of the heat exchanger (53) and the outlet temperature of the heat exchanger (53).
  • the outlet temperature measuring means (55) for performing the measurement and the room temperature measuring means (56) for measuring the temperature in the room are provided.
  • the refrigerant leakage amount estimation means (81) includes the measured value by the inlet temperature measuring means (54) of the stopped use unit (12) and the stopped use unit (12). Based on the measured value by the outlet temperature measuring means (55), the measured value by the room temperature measuring means (56), and the refrigerant temperature immediately after the expansion valve (52), the amount of refrigerant leakage is estimated using the above model. (6th invention).
  • the refrigerant leak amount estimation means (81) uses the measured value by the inlet temperature measurement means (54) of another utilization unit (12) during the cooling operation, It is assumed that the refrigerant temperature is stopped immediately after the expansion valve (52) of the utilization unit (12) (seventh invention). By doing so, it is possible to obtain the refrigerant temperature immediately after the expansion valve (52) without providing a dedicated temperature sensor or the like, which is advantageous in terms of cost.
  • the estimation of the amount of refrigerant leakage performed as described above is performed, for example, when the usage unit (12) of any of the multi-type air conditioners (10) starts the cooling operation and stops.
  • the measured value of the inlet temperature measuring means (54) or outlet temperature measuring means (55) of the bottom (12) is lowered, and is lower than the measured value by the room temperature measuring means (56) by a predetermined value or more. Sometimes it can be done (fourth and eighth inventions).
  • the liquid refrigerant from the refrigerant circuit (20) leaks downstream from the closed expansion valve (52) and enters the inlet of the heat exchanger (53).
  • the outlet temperature is lowered to a certain extent, the amount of leakage can be accurately estimated.
  • the refrigerant leakage amount is estimated, for example, after one of the usage units (12) in the cooling operation stops the operation due to thermo-off, and then one of the other usage units (12) performs the cooling operation.
  • the measured value due to the deviation of the inlet temperature measuring means (54) or the outlet temperature measuring means (55) of the stopped use unit (12) increases, and the room temperature measuring means (5 6 ) May be executed when the temperature is stabilized at a temperature lower than the measured value by a predetermined value or more (fifth and ninth inventions).
  • the refrigerant leakage amount of the expansion valve (52) is estimated using the thermo-off of the utilization unit (12) as described above, the frequency of the estimation is increased, so the expansion valve (52) This will increase the possibility that it will be possible to detect the amount of refrigerant leak before it actually increases due to deterioration over time, etc., and it will be possible to more reliably prevent problems caused by excessive refrigerant leakage.
  • the refrigerant leakage amount due to the aging of the expansion valve (52) is quantitatively determined by the refrigerant leakage amount estimation means (81). If it becomes possible to estimate, it is more preferable to further include notification means (82) for performing notification when the estimated refrigerant leakage amount is equal to or larger than a predetermined amount (tenth invention). In this way, maintenance and replacement of the deteriorated expansion valve (52) is urged to the user, and it is possible to more reliably prevent the use unit (12) from causing a malfunction such as dew condensation.
  • At least one usage unit (12) performs cooling operation, and at least one other usage unit (12) stops operation.
  • a model that comprehensively simulates the state of heat conduction to the refrigerant in a predetermined range downstream of the expansion valve (52) of the utilization unit (12) is used.
  • the heat absorption capacity of the refrigerant per hour can be estimated quantitatively and accurately, so the amount of refrigerant leakage becomes excessive and exposure It is possible to identify the time when such troubles occur and prevent them from occurring.
  • the means (54, 55, 56) for measuring the temperature can usually be constituted by a temperature sensor provided in the use unit (12), and the third means.
  • the seventh invention uses the temperature sensor of another utilization unit (12) during the cooling operation, Since the refrigerant temperature immediately after (52) can be detected, it is advantageous in terms of cost.
  • the estimation accuracy of the refrigerant leakage amount can be ensured by performing the estimation in a predetermined state, and in particular,
  • the frequency of estimation can be increased by using the thermo-off of the usage unit (12), so that the above-mentioned problems can be prevented more reliably.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view showing a model of a heat conduction state in which the refrigerant leaking from the expansion valve force absorbs the aerodynamic heat of the surroundings in the refrigerant pipe and the indoor heat exchanger.
  • FIG. 3 is a graph showing the temperature change of the refrigerant that gradually rises from immediately after the expansion valve to the inlet or outlet of the indoor heat exchanger.
  • FIG. 4 is a flowchart showing a procedure for estimating a refrigerant leakage amount.
  • FIG. 5 is an explanatory diagram showing how the deviation between the actual temperature of the refrigerant flowing through the pipe and the like and the measured value by the sensor change according to the flow rate of the refrigerant.
  • controller 81 Refrigerant leakage amount estimation unit (Refrigerant leakage amount estimation means)
  • the air conditioner (10) of the present embodiment is configured in a multi-type that is installed in a building or the like and performs temperature adjustment in a plurality of indoor spaces.
  • the air conditioner (10) of the first embodiment includes one outdoor unit (11) as a heat source unit and three indoor units (12a, 12b, 12c) as use units.
  • the number of indoor units (12) is merely an example, and may be two or four or more.
  • the outdoor unit (11) is provided outdoors.
  • the three indoor units (12a, 12b, 12c) are provided in separate rooms.
  • the outdoor unit (11) is provided with an outdoor circuit (40).
  • Each indoor unit (12) is provided with an indoor circuit (50).
  • the refrigerant circuit (20) is configured by connecting these circuits (40, 50a, 50b, 50c) with refrigerant piping.
  • the outdoor circuit (40) constitutes a heat source side circuit.
  • Each indoor circuit (50) constitutes a use side circuit.
  • Each of the indoor circuits (50) is connected in parallel to the outdoor circuit (40).
  • each indoor circuit (50) is connected to the outdoor circuit (40) via the liquid side connecting pipe (21) and the gas side connecting pipe (22).
  • One end of the liquid side connecting pipe (21) is connected to the liquid side closing valve (25) of the outdoor circuit (40).
  • the other end of the liquid side connection pipe (21) branches into three and each is connected to the liquid side end of the indoor circuit (50).
  • One end of the gas side communication pipe (22) is connected to the gas side shutoff valve (26) of the outdoor circuit (40).
  • the other end of the gas side connecting pipe (22) is branched into three and each is connected to the gas side end of the indoor circuit (50).
  • the outdoor unit (11) includes the outdoor circuit (40).
  • the outdoor circuit (40) is provided with a variable capacity compressor (41, a fixed capacity compressor (41b), an outdoor heat exchanger (43), and a four-way switching valve (51).
  • the compressor (41a) and the fixed capacity compressor (41b) are all hermetic scroll compressors, and are configured as so-called high-pressure dome type.
  • Electric power is supplied to the variable capacity compressor (41a) via an inverter.
  • the capacity of the variable capacity compressor (41a) can be changed by changing the rotation speed of the compressor motor by changing the output frequency of the inverter.
  • the variable capacity compressor (4 la) constitutes the main compressor.
  • the compressor motor is always operated at a constant rotational speed, and the capacity cannot be changed.
  • a discharge pipe (64) is connected to the variable capacity compressor (41a) and the fixed capacity compressor (41b). One end of the discharge pipe (64) is connected to the first port of the four-way switching valve (51).
  • the discharge pipe (64) is branched into a first discharge pipe (64a) and a second discharge pipe (64b) on the other end side.
  • the first discharge pipe (64a) is connected to the discharge side of the variable capacity compressor (41a), and the second discharge pipe (64b) is connected to the discharge side of the fixed capacity compressor (41b).
  • a suction pipe (61) is connected to the suction side of the variable capacity compressor (41a) and the fixed capacity compressor (41b). One end of the suction pipe (61) is connected to the second port of the four-way selector valve (51).
  • the suction pipe (61) is branched at the other end into a first suction pipe (61a) and a second suction pipe (61b).
  • the first suction pipe (61a) is connected to the suction side of the variable capacity compressor (41a), and the second suction pipe (61b) is connected to the suction side of the fixed capacity compressor (41b)! .
  • the outdoor heat exchanger (43) is a cross-fin type fin-and-tube heat exchanger, and constitutes a heat source side heat exchanger.
  • One end of the outdoor heat exchanger (43) is connected to the third port of the four-way selector valve (51).
  • the other end of the outdoor heat exchanger (43) is connected to the liquid side shutoff valve (25).
  • the outdoor unit (11) is provided with an outdoor fan (48). Outdoor air is sent to the outdoor heat exchanger (43) by the outdoor fan (48).
  • the four-way switching valve (51) has a first port to the discharge pipe (64), a second port to the suction pipe (61), and a third port to the outdoor heat exchange (43) In addition, a fourth port is connected to each gas side shut-off valve (26).
  • the first four-way selector valve (51) is in a first state (shown by a solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other. Status), the first port and the fourth port communicate with each other, and the second port and the third port It is possible to switch to the second state (the state indicated by the broken line in Fig. 1) communicating with the cage.
  • the suction pipe (61) is provided with a suction pressure sensor (93), and the discharge pipe (64) is provided with a discharge pressure sensor (97).
  • the suction pressure sensor (93) measures the pressure of the low-pressure side refrigerant flowing through the suction pipe (61).
  • the discharge pressure sensor (97) measures the pressure of the high-pressure side refrigerant flowing through the discharge pipe (64). Based on the difference between the measured value of the suction pressure sensor (93) and the measured value of the discharge pressure sensor (97), the difference between the high and low pressures of the refrigeration cycle performed in the refrigerant circuit (20) can be detected.
  • each indoor unit (12) includes an indoor circuit (50).
  • Each indoor circuit (50) is provided with an expansion valve (52) and an indoor heat exchanger (53) in order according to the liquid side end force toward the gas side end.
  • the indoor heat exchanger (53) is a cross fin type fin 'and' tube heat exchanger, and constitutes a use side heat exchanger.
  • the indoor expansion valve (52) is an electronic expansion valve.
  • the indoor unit (12) is provided with an indoor fan (57). Indoor air exchange ⁇ (53) is sent indoor air by this indoor fan (57).
  • the temperature of the pipe near the inlet of the indoor heat exchanger (53) is measured.
  • a first temperature sensor (54) is provided as described above.
  • the first temperature sensor (54) constitutes the inlet temperature measuring means according to the present invention.
  • the refrigerant pipe connecting the indoor heat exchanger (53) and the gas side end of the indoor circuit (50) is configured to measure the temperature of the pipe near the outlet of the indoor heat exchanger (53).
  • Two temperature sensors (55) are provided.
  • This second temperature sensor (55) constitutes the outlet temperature measuring means according to the present invention.
  • the first and second temperature sensors (54, 55) may be provided at the inlet and the outlet of the indoor heat exchanger (53), respectively.
  • the indoor unit (12) is provided with an indoor temperature sensor (56) for measuring the temperature of the room where the indoor unit (12) is installed.
  • This indoor temperature sensor (56) constitutes a room temperature measuring means according to the present invention.
  • the measured value of the first temperature sensor (54), the measured value of the second temperature sensor (55), and the measured value of the indoor temperature sensor (56) are sent to a controller (80) described later.
  • the air conditioner (10) of this embodiment includes a controller (80) that controls the compressors (41a, 41b) and adjusts the opening degree of the expansion valve (52) according to the operating state. .
  • This controller (80) controls the cooling operation, heating operation, ice melting operation, etc. of the air conditioner (10) as described below, and performs control related to estimation of the refrigerant leakage amount described later.
  • An amount estimation unit (81) is provided, and the refrigerant leakage amount estimation unit (81) constitutes the refrigerant leakage amount estimation means according to the present invention.
  • the controller (80) is connected to a display device (82) as a notification means for notifying the user of a refrigerant leak as will be described later. Details of the operation of the controller (80) will be described later.
  • the air conditioner (10) performs a cooling operation and a heating operation.
  • the air conditioner (10) performs an ice melting operation as necessary during the cooling operation.
  • the cooling operation will be described.
  • the four-way selector valve (23) is set to the first state indicated by the solid line in FIG. 1, and the variable capacity compressor (41a) and the fixed capacity compressor (41b) are operated.
  • the opening of the expansion valve (52) of each indoor unit (12) is individually controlled according to the cooling load in each room, and the refrigerant flow rate is set.
  • the air volume is also individually controlled by each indoor unit (12).
  • the refrigerant discharged from the variable capacity compressor (41a) and the fixed capacity compressor (41b) passes from the discharge pipe (64) through the four-way switching valve (51) to the outdoor heat exchanger (43). Into the air, where it dissipates heat to the outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchanger (43) flows through the liquid side connecting pipe (21) and is distributed to each indoor circuit (50).
  • the refrigerant distributed to the indoor circuit (50) is decompressed when passing through the expansion valve (52) and then flows into the indoor heat exchanger (53).
  • the indoor heat exchanger (53) the refrigerant absorbs heat from the indoor air and evaporates.
  • the room air cooled by the indoor heat exchange (53) is supplied to the room.
  • the refrigerant evaporated in the indoor heat exchange (53) flows into the outdoor circuit (40) through the gas side connecting pipe (22).
  • the refrigerant flowing into the outdoor circuit (40) passes through the four-way selector valve (51), and then is sucked into the variable capacity compressor (41a) and the fixed capacity compressor (41b) through the suction pipe (61).
  • the refrigerant sucked into the variable capacity compressor (41a) and the fixed capacity compressor (41b) is compressed again and discharged to the discharge pipe (64).
  • the heating operation will be described.
  • the four-way selector valve (23) is set to the second state indicated by the broken line in FIG. 1, and the variable capacity compressor (41a) and the fixed capacity compressor (41b) are operated.
  • the opening degree of the expansion valve (52) of each indoor unit (12) is individually controlled according to the heating load in each room, and the refrigerant flow rate is set.
  • the air volume is also individually controlled by each indoor unit (12).
  • the refrigerant discharged from the variable capacity compressor (41a) and the fixed capacity compressor (41b) passes from the discharge pipe (64) through the four-way switching valve (51) and the gas side communication pipe (22). Distributed to each indoor circuit (50).
  • the refrigerant flowing into the indoor circuit (50) is introduced into the indoor heat exchanger (53), where it dissipates heat to the indoor air and condenses. At that time, the indoor air heated by the indoor heat exchanger (53) is supplied into the room.
  • the refrigerant condensed in the indoor heat exchanger (53) flows into the outdoor heat exchanger (43) through the expansion valve (52) and the liquid side connecting pipe (21), and absorbs heat from the outdoor air there. Evaporate.
  • the refrigerant evaporated in the outdoor heat exchanger (43) is sucked into the variable capacity compressor (41a) and the fixed capacity compressor (41b) from the four-way switching valve (51) through the suction pipe (61).
  • the refrigerant sucked into the variable capacity compressor (41a) and the fixed capacity compressor (41b) is compressed again and discharged to the discharge pipe (64).
  • the cooling load is often different for each indoor unit (12). Yes, the load is small! / In the indoor heat exchanger (53) of the indoor unit (12), the evaporation temperature is too low and the drain water adhering to the indoor heat exchanger (12) may freeze. In such a situation, an ice melting operation is performed to melt the ice.
  • the controller (80) adjusts the refrigerant flow rate to the indoor heat exchanger (53a) of the indoor unit (12a).
  • Set (52a) to the closed state.
  • the cooling operation force continues to drive the indoor fan (57a).
  • the ice melting operation is performed, and the ice adhering to the indoor heat exchanger (53a) is melted by the indoor air sent by the indoor fan (57a).
  • the expansion valve (52a) is opened while the indoor fan (57a) is driven. As a result, the refrigerant flows into the indoor heat exchanger (53a) and the cooling operation is performed again.
  • thermo-off the refrigerant flowing in the refrigerant circuit (20) is shut off
  • the indoor unit (12) is stopped and (20) high-pressure liquid refrigerant is supplied from the refrigerant circuit to the indoor unit (12). Therefore, even if the expansion valve (52) of the stopped indoor unit (12) is closed, the refrigerant may leak downstream, and if the amount of leakage increases, the refrigerant piping of the indoor circuit (50) In addition, the indoor heat exchanger (53) may be cooled to cause problems such as dew condensation.
  • At least one of the indoor units (12a, 12b, 12c) performs the cooling operation as described above.
  • the refrigerant is leaked from the expansion valve (52) of the indoor unit (12) to the downstream indoor circuit (50) when the operation is stopped.
  • the flow rate is calculated using a model of the heat conduction state in which the refrigerant absorbs atmospheric force through piping, etc., and based on this, the refrigerant leakage amount of the expansion valve (52) can be estimated quantitatively and accurately. I am doing so.
  • This estimation is performed when each of the indoor units (12) is stopped as described above, and in the following, one of the three indoor units (12a, 12b, 12c)
  • the estimation of the refrigerant leakage amount in the indoor unit (12a) of the base will be described. The description will be omitted.
  • the refrigerant leakage amount estimation unit (81) similarly estimates the refrigerant leakage amount for the other indoor units (12b, 12c).
  • FIG. 2 shows the expansion valve (52a) force of the stopped indoor unit (12a), the leaked refrigerant force, and the ambient air (atmosphere) in the refrigerant pipe and the indoor heat exchanger (53a) downstream thereof.
  • the model of the heat conduction state that absorbs heat from is shown.
  • the temperature of the refrigerant decreases to the evaporation temperature, and then absorbs atmospheric force through the peripheral wall of the refrigerant pipe while flowing to the inlet of the indoor heat exchanger (53a). Rise gradually.
  • the temperature of the refrigerant changes from the temperature To (° C) immediately after the expansion valve (52a) to the temperature near the inlet of the indoor heat exchanger (53a) as shown in Fig. 3. It gradually rises to TH2 (° C) and approaches room temperature TH1 (° C).
  • Kl is the heat transfer coefficient in the refrigerant pipe from immediately after the expansion valve (52a) to the inlet of the indoor heat exchanger (53a), and Al (m 2 ) is the heat transfer area.
  • Al is the heat transfer area.
  • the average temperature difference ⁇ 1 is the measured value TH1 of the indoor temperature sensor (56), the measured value TH2 of the first temperature sensor (54a) (that is, the inlet temperature of the indoor heat exchanger (53a)), the expansion valve Using the refrigerant temperature To immediately after (52a), for example, logarithmic average,
  • ⁇ 1 (TH2-To) / ln ⁇ (TH1—To) / (TH1 -TH2) ⁇
  • ⁇ 1 ⁇ 1-(To + TH2) / 2
  • the refrigerant flow rate in the pipe downstream of the expansion valve (52a) that is, the refrigerant leakage amount per hour from the expansion valve (52a) G (kg / h) Is the difference in entraumi between the refrigerant expansion valve (52a) and the heat exchange ⁇ (53a) inlet, (Hout—Hin) (kj / kg)
  • Hin is the enthalpy of the liquid refrigerant immediately after the expansion valve (52a), and the force is calculated as the refrigerant temperature To and the evaporation pressure (for example, monitored by an outdoor unit) immediately after the expansion valve (52a).
  • the Hout is the enthalpy of the refrigerant gas at the inlet of the indoor heat exchanger (53a), and is calculated from the measured value TH2 of the first temperature sensor (54a) and the evaporation pressure.
  • the measured values of the temperature sensors (54a, 56a) installed in the indoor unit (12a) for normal operation control may be used for the temperatures TH1, TH2, respectively.
  • the refrigerant temperature To immediately after the expansion valve (52a) can be substituted with the measured value of the first temperature sensor (54b, 54c) of another indoor unit (12b, 12c) during the cooling operation.
  • the flow rate of the refrigerant flowing from the expansion valve (52b, 52c) to the inlet of the indoor heat exchanger (53b, 53c) is large, so the refrigerant temperature immediately after the expansion valve (52b, 52c) is This is because it is approximately equal to the inlet temperature of the indoor heat exchanger (53b, 53c).
  • the refrigerant leakage amount G from the expansion valve (52a) of the stopped indoor unit (12a) is expressed as the refrigerant temperature To immediately after the expansion valve (52a), Room temperature TH1, It can be estimated quantitatively and accurately based on the inlet temperature TH2 of the indoor heat exchanger (53a).
  • the amount of heat absorbed by the refrigerant in the pipe from immediately after the expansion valve (52a) to the indoor heat exchanger (53a) is not very large, so when the amount of refrigerant leakage is large, the same as in the above cooling operation. If the temperature To immediately after the expansion valve (52a) is not much different from the inlet temperature TH2 of the indoor heat exchanger (53a) and the accuracy of the first temperature sensor (54a) is not very high, the amount of refrigerant leakage as described above It becomes difficult to estimate G.
  • the amount of refrigerant leakage is large, and the temperature To immediately after the expansion valve (52a) and the inlet temperature TH2 of the indoor heat exchanger (53a) do not change so much.
  • the leakage amount G is estimated from the heat absorption amount Q (kj / h) of the refrigerant during the period from 52 a) to the outlet of the indoor heat exchanger (53a).
  • ⁇ ⁇ 1 and ⁇ ⁇ 2 in this case are, for example, using the logarithmic average as described above,
  • ⁇ ⁇ 1 ⁇ 1 - ⁇ 2
  • ⁇ ⁇ 2 ( ⁇ 3 - ⁇ 2) / ln ⁇ (TH1 -TH2) / (TH1 -TH3) ⁇
  • ⁇ 3 is the measured value of the second temperature sensor (55a) (that is, the outlet temperature of the indoor heat exchanger (53a)).
  • the leakage amount G of refrigerant from the expansion valve (52a) per hour is similar to the above,
  • Hin is the enthalpy of liquid refrigerant immediately after the expansion valve (52a), and Hout is the enthalpy of refrigerant gas at the outlet of the indoor heat exchanger (53a).
  • the amount of heat absorbed by the refrigerant in the indoor heat exchanger (53a) is sufficiently large. Even when the amount is large, the outlet temperature TH3 of the indoor heat exchanger (53a) is significantly different from the refrigerant temperature To immediately after the expansion valve (52a), and the refrigerant leakage amount G is quantified as described above. And accurately.
  • step S1 after the start of the illustrated flow, a force signal such as a temperature sensor (54a, 55a, 56a, ⁇ ) is input, and data stored in the memory is read as necessary.
  • the measured value TH2 of the first temperature sensor (54a) of the indoor unit (12a) that has been stopped for a predetermined time or longer is lower than the measured value TH1 of the indoor temperature sensor (56a) by a predetermined value a or more. It is determined whether the inlet temperature TH2 of the indoor heat exchanger (53a) of the stopped indoor unit (12a) has become lower than the room temperature TH1 by a predetermined value or more (TH2 ⁇ TH1- ⁇ ).
  • the predetermined value ⁇ may be determined in advance in consideration of the heat transfer state of the refrigerant pipe.
  • step S2 determines that there is no abnormality, and returns, while the determination in step S2 is YES. For example, this is because one of the indoor units (12b, 12c) of the air conditioner (10) starts the cooling operation, and after a while, the indoor unit (12a) It is determined that the refrigerant is leaking to some extent downstream from 52a), and the process proceeds to step S4.
  • step S4 the measured value TH2 of the first temperature sensor (54b, 54c) of the other indoor unit (12b, 12c) during the cooling operation is used for the expansion of the stopped indoor unit (12a).
  • step S5 the difference between the refrigerant temperature To immediately after the expansion valve (52a) and the inlet temperature TH2 of the indoor heat exchanger (53a) is preliminarily determined. Judge whether it is less than the set value j8. This set value j8 may be determined by the accuracy of the first temperature sensor (54a).
  • step S6 the measured values TH1, TH2, and the refrigerant temperature To immediately after the expansion valve (52a) adopted in step S4 and the temperature sensors (54a, 55a, 56a, ...) are used. From TH3, etc., calculate the average temperature difference ⁇ between the refrigerant and the atmosphere immediately after the expansion valve (52a) and the inlet of the indoor heat exchanger (53a), and the refrigerant enthalpy difference (Hout ⁇ Hin) during this period. .
  • step S7 the heat transfer coefficient K1 and heat transfer area A1 of the refrigerant pipe stored in the memory are read, and a coefficient KA representing the heat transfer state is calculated.
  • step S8 the refrigerant leakage amount G is calculated from the coefficient KA, the average temperature difference ⁇ , and the enthalpy difference (Hout-Hin), and the refrigerant leakage amount G is converted into the air flow rate to calculate the leakage air flow rate. Calculate the value V ( CC / min).
  • step S9 it is determined whether or not the leakage air flow rate conversion value V calculated as described above is larger than a preset threshold value ⁇ . If this determination is NO, the refrigerant leakage amount of the expansion valve (52a) force is still within the allowable range, so the routine proceeds to step S10, where it is determined that there is no abnormality and the process ends (END). On the other hand, if the determination in step S9 is YES and the amount of refrigerant leaking from the expansion valve (52a) is considerably large, this is likely to cause dew condensation or an ice melting operation malfunction.
  • step SI 1 the display device (82) indicates that there is an abnormality in the expansion valve (52a), and the process ends. (End).
  • Step S12 which has been determined that the amount of refrigerant leakage is large in Step S5
  • the refrigerant temperature To immediately after the expansion valve (52a) and the outlet temperature of the indoor heat exchanger (53a) are detected. Determining whether the difference from degree TH3 is smaller than the set value ⁇ . If this judgment is YES (TH 3— To ⁇ ), the amount of refrigerant leakage is very large, and the outlet temperature TH3 of the indoor heat exchanger (53a) is not much different from the refrigerant temperature To immediately after the expansion valve (52a). Since it is unchangeable, t, it is determined that the process proceeds to step S13 and immediately determines that there is an abnormality.
  • the display device (82) indicates that there is an abnormality in the expansion valve (52a), and the process ends. .
  • the determination is NO, the following step S14, SI5 force and the process proceeds to step S8, and the outlet of the indoor heat exchanger (53a) immediately after the expansion valve (52a) as described above.
  • the heat absorption amount Q of the refrigerant up to is calculated, and based on this, the leakage amount G of the refrigerant is obtained.
  • step S14 similar to step S6 above, the average temperature difference ⁇ ( ⁇ 1, ⁇ 2) between the refrigerant and the atmosphere immediately after the expansion valve (52a) to the outlet of the indoor heat exchanger (53a), and the refrigerant between them
  • step S15 the heat transfer coefficient Kl, K2 and the heat transfer area Al, A2 of the refrigerant piping and heat exchange (53a) are read and the heat transfer state is calculated.
  • the coefficient KA that represents is calculated.
  • step S8 the refrigerant leakage amount G and its air flow rate conversion value V are calculated, respectively, and the size of the leakage air flow rate conversion value V and the threshold value ⁇ is determined (step S). 9)
  • step S10 and S11 it is determined whether or not there is an abnormality in the expansion valve (52a) (steps S10 and S11) . If there is an abnormality (S11), this is indicated on the display device (82) End (end).
  • At least one indoor unit (12b, 12c) performs a cooling operation, and at least one other indoor unit (12a) ) Has stopped operating, and the refrigerant atmosphere flowing from immediately after the expansion valve (52a) of the stopped indoor unit (12a) to the inlet or outlet of the indoor heat exchanger (53a)
  • the expansion valve The refrigerant leakage amount G from 52a
  • the refrigerant leakage amount G from 52a can be estimated quantitatively and accurately.
  • the refrigerant leakage amount G estimated in this way increases beyond a predetermined level, the leakage amount increases further, and before the malfunction such as dew condensation or malfunction of the ice melting operation occurs, the user swells. Since the abnormality of the tension valve (52a) can be notified and the maintenance or replacement thereof can be promoted, the above-mentioned problems can be reliably prevented.
  • the leakage amount G is estimated, and the refrigerant pipe is cooled relatively short. Since the change in the medium temperature can be regarded as approximately linear, a fairly accurate estimation can be performed using a simple model.
  • the leakage amount G can be estimated by further considering the refrigerant heat absorption amount Q2 in the indoor heat exchanger (53a).
  • the temperature force (54a, 55a, 56a) provided for the normal operation control in the indoor unit (12a) is measured with the measured values TH1 to TH3 and the like used for the above estimation. ), And the refrigerant temperature To immediately after the expansion valve (52) is substituted with the value measured by the temperature sensor (54b, 54c) of another indoor unit (12) during the cooling operation. Therefore, there is no need to provide a dedicated sensor for the estimation calculation, which is advantageous in terms of cost.
  • this embodiment is essentially a preferred example, and is not intended to limit the scope of the present invention, its application, or its application.
  • the measured values TH1 to TH3 measured by the temperature sensors (54a, 55a, 56a) are used as they are for the above calculation of the refrigerant leakage amount.
  • the actual temperature of the cooling medium to be measured is slightly different from the measured value by the sensor, and the magnitude of this deviation varies depending on the flow rate of the refrigerant as shown in Fig. 5, for example.
  • the refrigerant temperature To immediately after the expansion valve (52a) of the stopped indoor unit (12a) is used as the first temperature of another indoor unit (12b, 12c) during the cooling operation.
  • the force using the measured values of the sensors (54b, 54c) is not limited to this.
  • the evaporation temperature monitored in the outdoor unit (11) can be substituted.
  • the expansion valve (52a) Although the abnormality is determined and notified, the present invention is not limited to this, and the abnormality may be determined when the refrigerant leakage amount G itself is larger than a preset threshold value. In addition, the amount of dew condensation due to refrigerant leakage may be calculated and notified to the user when this is more than a predetermined amount. Yes.
  • any indoor unit (12b, 12c) has stopped for a while after a certain time has elapsed since the start of the cooling operation.
  • (12a) expansion valve (52a) force The amount of leakage is estimated in a state where the refrigerant leaks to some extent downstream! /, And by estimating in such a state, For example, when any indoor unit (12) stops due to thermo-off, the amount of refrigerant leakage from the expansion valve (52) is estimated.
  • the expansion valve (52) is estimated.
  • the present invention is useful for a so-called multi-type air conditioner in which a plurality of usage units are connected to a refrigerant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A model for simulating heat exchange performed, via piping and an indoor heat exchanger (53), between the air and refrigerant flowing from directly after an expansion valve (52) up to an entrance or exit of an indoor heat exchanger (53). The quantity G of leakage of the refrigerant from an expansion valve (52a) of an indoor unit (12a) that is stopped while other indoor units (12b, 12c) are engaged in cooling operation is quantitatively estimated using the model based on the temperature To of the refrigerant immediately after the expansion valve (52a), room temperature TH1, heat exchanger entrance temperature TH2, etc. When the leakage quantity G is equal to or greater than a predetermined level, the expansion valve (52a) is determined to be abnormal and the fact is informed to a user.

Description

明 細 書  Specification
空気調和装置  Air conditioner
技術分野  Technical field
[0001] 本発明は、冷媒回路に複数台の利用ユニットが接続された所謂マルチタイプの空 気調和装置に関する。  [0001] The present invention relates to a so-called multi-type air conditioner in which a plurality of utilization units are connected to a refrigerant circuit.
背景技術  Background art
[0002] 従来より、この種のマルチタイプの空気調和装置として、例えば特許文献 1、 2に 開示されるように、 1台の室外ユニットに複数台の室内ユニットを接続したものが知ら れている。このようなものでは、各室内ユニットがそれぞれ冷房運転を行っているとき の個々の冷房負荷が異なる場合が多ぐ負荷の小さい室内ユニットの熱交^^では 蒸発温度が下がり過ぎて、ドレン水が凍る虞れがある。そこで、このときには氷を融か すための氷融解動作を実行する。この氷融解動作では、膨張弁を閉じて冷媒回路か らの冷媒の流入を止め、風を送って氷を融かすようにする。  Conventionally, as this type of multi-type air conditioner, as disclosed in Patent Documents 1 and 2, for example, one in which a plurality of indoor units are connected to a single outdoor unit is known. . In such a case, when each indoor unit is in cooling operation, the individual cooling load may be different. There is a risk of freezing. Therefore, at this time, an ice melting operation is performed to melt the ice. In this ice melting operation, the expansion valve is closed to stop the inflow of refrigerant from the refrigerant circuit, and the wind is sent to melt the ice.
[0003] より具体的に、特許文献 1の図 2には、 1台の室外ユニットに対して 3台の室内ュ- ットが設けられた空気調和装置が示されている。各室内ユニットには、熱交換器にお ける液冷媒の温度を計測する液温センサが設けられ、氷融解動作に該液温センサ による計測値が基準温度を上回った後、所定時間が経過すると、氷融解動作を終了 する。  More specifically, FIG. 2 of Patent Document 1 shows an air conditioner in which three indoor units are provided for one outdoor unit. Each indoor unit is provided with a liquid temperature sensor that measures the temperature of the liquid refrigerant in the heat exchanger, and when a predetermined time elapses after the measured value by the liquid temperature sensor exceeds the reference temperature during the ice melting operation. Finish the ice melting operation.
[0004] また、特許文献 2の図 1には、 1台の室外ユニットに対して 2台の室内ユニットが設 けられた空気調和装置が示されている。各室内ユニットの熱交翻には、膨張弁の 冷媒漏れを検知する手段として温度センサが設けられ、氷融解動作中に冷媒漏れを 検知すると、冷媒漏れを解消するために膨張弁の全開'全閉動作を繰り返すリカバリ 一動作を行う。  [0004] FIG. 1 of Patent Document 2 shows an air conditioner in which two indoor units are provided for one outdoor unit. In the heat exchange of each indoor unit, a temperature sensor is provided as a means for detecting refrigerant leakage of the expansion valve. When the refrigerant leakage is detected during the ice melting operation, the expansion valve is fully opened to eliminate the refrigerant leakage. Recovery that repeats the closing action Performs one action.
特許文献 1 :特開平 03— 186135号公報  Patent Document 1: Japanese Patent Laid-Open No. 03-186135
特許文献 2:特開平 10— 26429号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-26429
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] ところで、上述したようにマルチタイプの空気調和装置では、室内ユニットごとに冷 房負荷の異なる場合が多ぐ負荷の小さい室内ユニットでは、あら力じめ設定された 目標温度に達すると冷房運転を一時的に停止し、膨張弁を閉じて冷媒回路力 の冷 媒の流入を遮断する (所謂サーモオフ)。 Problems to be solved by the invention [0005] By the way, in the multi-type air conditioner as described above, the cooling load is often different for each indoor unit. In an indoor unit with a small load, the cooling is performed when the target temperature set in advance is reached. The operation is temporarily stopped, the expansion valve is closed, and the refrigerant flow from the refrigerant circuit is shut off (so-called thermo-off).
[0006] また、複数台の室内ユニットがそれぞれ別々の部屋に配置されている場合には、 V、ずれかの室内ユニットが使用されて!、ても、別の!/、ずれかの室内ユニットは使用さ れていないことがある。  [0006] When a plurality of indoor units are arranged in separate rooms, V, one of the indoor units is used !, but another! /, One of the indoor units May not be used.
[0007] そのように冷媒回路に接続されている複数の利用ユニットのうち、少なくとも 1つが 冷房運転を行い、かつ、それ以外の少なくとも 1つの利用ユニットが運転を停止して いるときには、その停止している利用ユニットにも冷媒回路からは高圧の液冷媒が流 入しょうとする。したがって、この利用ユニットでは膨張弁をしつ力りと閉じて、冷媒が 流入しな!、ようにすることが望ま 、。  [0007] Among the plurality of usage units connected to the refrigerant circuit in this way, when at least one of the usage units performs a cooling operation and at least one other usage unit has stopped operating, the operation is stopped. The high-pressure liquid refrigerant tries to flow into the used unit from the refrigerant circuit. Therefore, in this usage unit, it is desirable to close the expansion valve firmly so that the refrigerant does not flow in!
[0008] し力しながら、膨張弁は、経年劣化や異物の堆積などによって弁体と弁座とが完 全に密着しないようになり、それを閉状態にしていても冷媒が下流側に漏れてしまう。 そして、その漏れ量が多くなると、この漏れた冷媒によって冷媒配管や熱交換器が冷 やされ、露付きなどの不具合を生じる虞れがある。  [0008] However, the expansion valve prevents the valve body and the valve seat from coming into close contact with each other due to aging or accumulation of foreign matter, and the refrigerant leaks downstream even when it is closed. End up. If the amount of leakage increases, the refrigerant piping and the heat exchanger are cooled by the leaked refrigerant, and there is a risk of causing problems such as dew condensation.
[0009] また、そのように膨張弁力 の冷媒の漏れ量が多くなると、上記従来例 (特許文献 1、 2)のように氷融解動作を実行したたときに、誤動作が起きる虞れがある。すなわち 、特許文献 1のように液温センサによる計測値が基準温度を上回った後に氷融解動 作を終了するようにした場合、膨張弁力 の冷媒の漏れ量が多くなつて、液温センサ による計測値が基準温度まで上昇しなくなると、氷融解動作が終了しなくなってしまう のである。  [0009] Further, if the amount of refrigerant leakage due to the expansion valve force increases as described above, malfunction may occur when the ice melting operation is executed as in the conventional examples (Patent Documents 1 and 2). . In other words, when the ice melting operation is terminated after the measured value by the liquid temperature sensor exceeds the reference temperature as in Patent Document 1, the amount of refrigerant leakage due to the expansion valve force increases, and the liquid temperature sensor If the measured value does not rise to the reference temperature, the ice melting operation will not end.
[0010] そのような膨張弁力もの冷媒漏れは、特許文献 2に示されているように熱交温度 センサによって検知することができる力 このセンサによる温度の計測結果だけでは 冷媒の漏れの程度までは分からな!/、ので、漏れ量が多くなつて上記露付きや誤動作 などの不具合が起きる時期、すなわち膨張弁のメンテナンスや交換の時期を特定す ることはできず、不具合を未然に防止することはできな力つた。  [0010] The refrigerant leakage due to such an expansion valve force can be detected by a heat exchange temperature sensor as shown in Patent Document 2, and the temperature measurement result by this sensor alone is only to the extent of refrigerant leakage. Because the amount of leakage is so large that the malfunctions such as dew and malfunction, that is, the time for maintenance and replacement of the expansion valve cannot be specified, the malfunction can be prevented in advance. I couldn't do it.
[0011] そこで、本発明は、上記した露付きや誤動作などの不具合を未然に防止すること を目的とし、そのために、所謂マルチタイプの空気調和装置において、停止している 利用ユニットの膨張弁の冷媒漏れ量を定量的にかつ精度良く推定できるようにするこ とにある。 [0011] Therefore, the present invention prevents the above-described problems such as dew and malfunction. Therefore, in the so-called multi-type air conditioner, it is possible to quantitatively and accurately estimate the refrigerant leakage amount of the expansion valve of the stopped use unit.
課題を解決するための手段  Means for solving the problem
[0012] 上記の目的を達成するために、本発明は、停止している利用ユニットの膨張弁の 下流の所定範囲における熱伝導状態のモデルを用いて、膨張弁 (52)の冷媒漏れ量 を推定するようにした。  [0012] In order to achieve the above object, the present invention reduces the refrigerant leakage amount of the expansion valve (52) using a model of a heat conduction state in a predetermined range downstream of the expansion valve of the utilization unit that is stopped. Estimated.
[0013] 具体的に、第 1の発明は、熱源ユニット(11)と複数台の利用ユニット(12)とが接続 された冷媒回路 (20)を備え、少なくとも冷房運転を行う空気調和装置 (10)を対象とし ている。そして、上記利用ユニット(12)の少なくとも 1つが冷房運転を行い、かつ、そ れ以外の少なくとも 1つの利用ユニット(12)が運転を停止しているときに、その停止し て 、る利用ユニット(12)の膨張弁 (52)の下流の所定範囲における熱伝導状態のモ デルを用いて、当該膨張弁 (52)の冷媒漏れ量を推定する冷媒漏れ量推定手段 (81) を備えている。  [0013] Specifically, the first invention includes a refrigerant circuit (20) in which a heat source unit (11) and a plurality of use units (12) are connected, and at least an air conditioner that performs a cooling operation (10 ). Then, when at least one of the usage units (12) performs the cooling operation and at least one other usage unit (12) is stopped, the usage unit ( A refrigerant leakage amount estimation means (81) for estimating the refrigerant leakage amount of the expansion valve (52) using a model of a heat conduction state in a predetermined range downstream of the expansion valve (52) of 12) is provided.
[0014] 上記第 1の発明では、冷媒回路 (20)に接続された複数台の利用ユニット(12)のう ちの少なくとも 1つが冷房運転を行い、かつ、それ以外の少なくとも 1つの利用ュ-ッ ト(12)が運転を停止して 、るときに、その停止して 、る利用ユニット(12)の膨張弁 (52 )の下流の所定範囲における熱伝導状態のモデルを用いて、冷媒漏れ量推定手段( 81)により膨張弁 (52)の冷媒漏れ量が定量的に推定される。  [0014] In the first invention, at least one of the plurality of usage units (12) connected to the refrigerant circuit (20) performs the cooling operation, and at least one other usage unit. When the operation (12) is stopped, the refrigerant leakage amount is measured using a model of the heat conduction state in the predetermined range downstream of the expansion valve (52) of the utilization unit (12). The estimation means (81) quantitatively estimates the refrigerant leakage amount of the expansion valve (52).
[0015] すなわち、停止している利用ユニット(12)の膨張弁 (52)力 漏れる冷媒によって、 その下流の所定範囲における冷媒配管などが冷やされ、その温度が室温よりも低く なると、この配管などを介して冷媒が周囲の熱を吸収する。このときの吸熱量は前記 配管などの伝熱面積や伝熱係数といった静的な要因だけでなぐ冷媒の温度や流 量などの動的な要因によっても変化する。  [0015] That is, the expansion valve (52) of the stopped use unit (12) force When the refrigerant leaks, the refrigerant pipe or the like in a predetermined range downstream is cooled, and when the temperature becomes lower than room temperature, the pipe or the like The refrigerant absorbs ambient heat through The amount of heat absorbed at this time also changes depending on dynamic factors such as the temperature and flow rate of the refrigerant, as well as static factors such as the heat transfer area and heat transfer coefficient of the pipe.
[0016] そこで、上記大気力 冷媒への熱の伝導状態を総括的に模擬するモデルを用い 、例えば室温や上記所定範囲における冷媒の温度などを入力として、単位時間当た りに上記所定範囲を流通する冷媒の吸熱量を算出する。こうすれば、その範囲にお ける冷媒の流量、即ち膨張弁の冷媒漏れ量を定量的に求めることができる。これによ り、冷媒の漏れ量が過大になって露付きなどの不具合が起きる時期を特定して、その 不具合を未然に防止することができる。 [0016] Therefore, using a model that generally simulates the heat conduction state to the atmospheric power refrigerant, for example, the room temperature or the temperature of the refrigerant in the predetermined range is input, and the predetermined range is set per unit time. Calculate the endothermic amount of the circulating refrigerant. By doing so, it is possible to quantitatively determine the refrigerant flow rate in that range, that is, the refrigerant leakage amount of the expansion valve. This Therefore, it is possible to identify the time when the refrigerant leaks excessively and causes a malfunction such as dew, so that the malfunction can be prevented.
[0017] 上記空気調和装置のより具体的な構成として好ましいのは、上記利用ユニット(12 )に、熱交換器 (53)の入口温度を計測する入口温度計測手段 (54)と、室内の温度を 計測する室温計測手段 (56)とを設ける。上記モデルとしては、停止している利用ュ- ット(12)の膨張弁 (52)の直後から熱交換器 (53)までの配管内を流れる冷媒が、当該 配管を介して行う大気との熱交換を模擬するものとする。そして、上記冷媒漏れ量推 定手段 (81)は、上記停止している利用ユニット(12)の入口温度計測手段 (54)による 計測値と、室温計測手段 (56)による計測値と、上記膨張弁 (52)の直後の冷媒温度と に基づき、上記モデルを用いて冷媒漏れ量を推定するように構成する (第 2の発明)  [0017] As a more specific configuration of the air conditioner, an inlet temperature measuring means (54) for measuring an inlet temperature of the heat exchanger (53) is preferably provided in the use unit (12), and an indoor temperature. And a room temperature measuring means (56) for measuring. In the above model, the refrigerant flowing in the piping from immediately after the expansion valve (52) to the heat exchanger (53) of the stopped use unit (12) is connected to the atmosphere through the piping. Simulate heat exchange. Then, the refrigerant leak amount estimation means (81) includes the measured value by the inlet temperature measuring means (54) of the stopped use unit (12), the measured value by the room temperature measuring means (56), and the expansion. Based on the refrigerant temperature immediately after the valve (52), the refrigerant leakage amount is estimated using the above model (second invention).
[0018] すなわち、停止して!/、る利用ユニット(12)の膨張弁 (52)の直後の冷媒温度と熱交 [0018] That is, the refrigerant temperature and heat exchange immediately after the expansion valve (52) of the utilization unit (12) are stopped.
(53)の入口温度とが分かれば、その膨張弁 (52)の直後から熱交 (53)まで の配管内を流れる冷媒の平均的な温度状態が分力るので、さらに室温が分かれば、 上記モデルを用いて、その範囲における冷媒の吸熱量を算出することができる。これ により冷媒の漏れ量を求めることができる。また、上記入口温度計測手段 (54)と室温 計測手段 (56)とは通常、利用ユニット(12)〖こ備わる温度センサにより構成することが でき、コスト面で有利である。  If the inlet temperature of (53) is known, the average temperature state of the refrigerant flowing in the piping from immediately after the expansion valve (52) to the heat exchanger (53) is divided. Using the above model, the heat absorption amount of the refrigerant in the range can be calculated. As a result, the amount of refrigerant leakage can be obtained. Further, the inlet temperature measuring means (54) and the room temperature measuring means (56) can usually be constituted by a temperature sensor provided in the utilization unit (12), which is advantageous in terms of cost.
[0019] その場合に、より好ましいのは、上記冷媒漏れ量推定手段 (81)は、冷房運転中の 別の利用ユニット(12)の入口温度計測手段 (54)による計測値を、停止して!/、る利用 ユニット(12)の膨張弁 (52)の直後の冷媒温度とみなすものとすることである(第 3の 発明)。こうすれば、別途、専用の温度センサなどを設けることなぐ膨張弁 (52)の直 後の冷媒温度を求めることができ、コスト面で有利である。  [0019] In that case, more preferably, the refrigerant leakage amount estimation means (81) stops the measurement value by the inlet temperature measurement means (54) of another utilization unit (12) during the cooling operation. It is assumed that the refrigerant temperature is immediately after the expansion valve (52) of the utilization unit (12) (third invention). In this way, it is possible to obtain the refrigerant temperature immediately after the expansion valve (52) without providing a dedicated temperature sensor or the like, which is advantageous in terms of cost.
[0020] 但し、上記のように利用ユニット(12)の膨張弁 (52)の直後から熱交換器 (53)まで の配管において大気力 冷媒へ伝わる熱量はあまり多くない。したがって、冷媒の漏 れ量が多!、ときには、その膨張弁 (52)の直後の温度が熱交換器 (53)の入口温度と あまり変わらなくなる。この結果、温度センサの精度がかなり高くないと、上記のように 冷媒の漏れ量を推定することが難しくなる。 [0021] そこで、好ましいのは、上記利用ユニット(12)には、熱交換器 (53)の入口温度を 計測する入口温度計測手段 (54)と、熱交換器 (53)の出口温度を計測する出口温度 計測手段 (55)と、室内の温度を計測する室温計測手段 (56)とを設ける。上記モデル としては、停止して!/、る利用ユニット(12)の膨張弁 (52)の直後力 配管及び熱交換 器 (53)内を流通して該熱交 (53)の出口に至る冷媒が、当該配管及び熱交 (53)を介して行う大気との熱交換を模擬するものとする。そして、上記冷媒漏れ量推 定手段 (81)は、上記停止している利用ユニット(12)の入口温度計測手段 (54)による 計測値と、上記停止して!/、る利用ユニット(12)の出口温度計測手段 (55)による計測 値と、室温計測手段 (56)による計測値と、上記膨張弁 (52)の直後の冷媒温度とに基 づき、上記モデルを用いて冷媒漏れ量を推定するように構成することである(第 6の 発明)。 [0020] However, as described above, the amount of heat transferred to the atmospheric refrigerant is not so much in the piping from immediately after the expansion valve (52) of the utilization unit (12) to the heat exchanger (53). Therefore, when there is a large amount of refrigerant leakage, the temperature immediately after the expansion valve (52) is not much different from the inlet temperature of the heat exchanger (53). As a result, if the accuracy of the temperature sensor is not very high, it becomes difficult to estimate the amount of refrigerant leakage as described above. [0021] Therefore, preferably, the utilization unit (12) measures the inlet temperature measuring means (54) for measuring the inlet temperature of the heat exchanger (53) and the outlet temperature of the heat exchanger (53). The outlet temperature measuring means (55) for performing the measurement and the room temperature measuring means (56) for measuring the temperature in the room are provided. In the above model, the refrigerant that stops and / or flows through the piping and heat exchanger (53) immediately after the expansion valve (52) of the utilization unit (12) and reaches the outlet of the heat exchanger (53) However, it shall simulate heat exchange with the atmosphere through the piping and heat exchange (53). The refrigerant leakage amount estimation means (81) includes the measured value by the inlet temperature measuring means (54) of the stopped use unit (12) and the stopped use unit (12). Based on the measured value by the outlet temperature measuring means (55), the measured value by the room temperature measuring means (56), and the refrigerant temperature immediately after the expansion valve (52), the amount of refrigerant leakage is estimated using the above model. (6th invention).
[0022] この構成では、特に熱交翻 (53)にお 、て大気力 冷媒へ伝わる熱量が十分に 多くなるので、冷媒の漏れ量が多くても、膨張弁 (52)の直後の温度と熱交換器 (53) の出口温度とが大きく異なる値になり、上記第 2の発明と同様にして冷媒の漏れ量を 定量的に求めることができる。  [0022] In this configuration, particularly in heat exchange (53), the amount of heat transferred to the atmospheric refrigerant is sufficiently large, so even if the amount of refrigerant leakage is large, the temperature immediately after the expansion valve (52) The outlet temperature of the heat exchanger (53) becomes a value greatly different, and the amount of refrigerant leakage can be obtained quantitatively in the same manner as in the second invention.
[0023] 尚、この場合においても、より好ましいのは、上記冷媒漏れ量推定手段 (81)は、 冷房運転中の別の利用ユニット(12)の入口温度計測手段 (54)による計測値を、停 止して 、る利用ユニット(12)の膨張弁 (52)の直後の冷媒温度とみなすものとすること である (第 7の発明)。こうすれば、別途、専用の温度センサなどを設けることなぐ膨 張弁 (52)の直後の冷媒温度を求めることができ、コスト面で有利である。  [0023] In this case as well, more preferably, the refrigerant leak amount estimation means (81) uses the measured value by the inlet temperature measurement means (54) of another utilization unit (12) during the cooling operation, It is assumed that the refrigerant temperature is stopped immediately after the expansion valve (52) of the utilization unit (12) (seventh invention). By doing so, it is possible to obtain the refrigerant temperature immediately after the expansion valve (52) without providing a dedicated temperature sensor or the like, which is advantageous in terms of cost.
[0024] 上記のようにして行う冷媒漏れ量の推定は、例えば、マルチタイプ空気調和装置( 10)のいずれかの利用ユニット(12)が冷房運転を開始して、停止している利用ュ-ッ ト(12)の入口温度計測手段 (54)又は出口温度計測手段 (55)の 、ずれかによる計測 値が低下し、室温計測手段 (56)による計測値よりも所定値以上、低くなつたときに、 実行すればよい (第 4及び第 8の発明)。こうすれば、上記停止している利用ユニット( 12)にお 、て冷媒回路 (20)からの液冷媒が閉状態の膨張弁 (52)から下流側に漏れ て、熱交 (53)の入口乃至出口の温度が或る程度、低くなつたときに、その漏れ 量を精度良く推定することができる。 [0025] また、冷媒漏れ量の推定は、例えば、冷房運転中のいずれかの利用ユニット (12) がサーモオフにより運転を停止した後、他のいずれかの利用ユニット(12)が冷房運 転を継続して 、る状態で、上記停止した利用ユニット (12)の入口温度計測手段 (54) 又は出口温度計測手段 (55)の 、ずれかによる計測値が上昇して、室温計測手段 (5 6)による計測値よりも所定値以上、低い温度で安定したときに、実行するようにしても よい (第 5及び第 9の発明)。 The estimation of the amount of refrigerant leakage performed as described above is performed, for example, when the usage unit (12) of any of the multi-type air conditioners (10) starts the cooling operation and stops. The measured value of the inlet temperature measuring means (54) or outlet temperature measuring means (55) of the bottom (12) is lowered, and is lower than the measured value by the room temperature measuring means (56) by a predetermined value or more. Sometimes it can be done (fourth and eighth inventions). In this way, in the stopped utilization unit (12), the liquid refrigerant from the refrigerant circuit (20) leaks downstream from the closed expansion valve (52) and enters the inlet of the heat exchanger (53). When the outlet temperature is lowered to a certain extent, the amount of leakage can be accurately estimated. [0025] In addition, the refrigerant leakage amount is estimated, for example, after one of the usage units (12) in the cooling operation stops the operation due to thermo-off, and then one of the other usage units (12) performs the cooling operation. In the state of continuous, the measured value due to the deviation of the inlet temperature measuring means (54) or the outlet temperature measuring means (55) of the stopped use unit (12) increases, and the room temperature measuring means (5 6 ) May be executed when the temperature is stabilized at a temperature lower than the measured value by a predetermined value or more (fifth and ninth inventions).
[0026] そのように利用ユニット(12)のサーモオフを利用して、膨張弁 (52)の冷媒漏れ量 を推定するようにすれば、その推定を行う頻度が高くなるので、膨張弁 (52)の経年劣 化などによって冷媒の漏れ量が実際に多くなる前に、そのことを検知できる可能性が 高くなり、冷媒の漏れが過大になることによる不具合の防止がより確実なものとなる。  [0026] If the refrigerant leakage amount of the expansion valve (52) is estimated using the thermo-off of the utilization unit (12) as described above, the frequency of the estimation is increased, so the expansion valve (52) This will increase the possibility that it will be possible to detect the amount of refrigerant leak before it actually increases due to deterioration over time, etc., and it will be possible to more reliably prevent problems caused by excessive refrigerant leakage.
[0027] 上記第 1〜第 9の発明の何れか 1の発明のように、膨張弁 (52)の経年劣化などに 起因する冷媒の漏れ量を冷媒漏れ量推定手段 (81)によって定量的に推定できるよう になれば、この推定された冷媒漏れ量が所定量以上のときに報知を行う報知手段 (8 2)をさらに備えることがより好ましい (第 10の発明)。こうすれば、劣化などした膨張弁 (52)のメンテナンスや交換をユーザに促して、利用ユニット(12)で露付きなどの不具 合が起きることをより確実に防止できる。  [0027] As in any one of the first to ninth inventions, the refrigerant leakage amount due to the aging of the expansion valve (52) is quantitatively determined by the refrigerant leakage amount estimation means (81). If it becomes possible to estimate, it is more preferable to further include notification means (82) for performing notification when the estimated refrigerant leakage amount is equal to or larger than a predetermined amount (tenth invention). In this way, maintenance and replacement of the deteriorated expansion valve (52) is urged to the user, and it is possible to more reliably prevent the use unit (12) from causing a malfunction such as dew condensation.
発明の効果  The invention's effect
[0028] 本発明によれば、所謂マルチタイプの空気調和装置において、少なくとも 1つの 利用ユニット(12)が冷房運転を行い、かつ、それ以外の少なくとも 1つの利用ユニット (12)が運転を停止して 、るときに、その停止して 、る利用ユニット(12)の膨張弁 (52) の下流の所定範囲における冷媒への熱の伝導状態を総括的に模擬するモデルを用 い、例えば室温や上記所定範囲における冷媒温度の計測値などを入力して、時間 当たりの冷媒の吸熱量力 その漏れ量を定量的にかつ精度良く推定できるようにした ので、冷媒の漏れ量が過大になって露付きなどの不具合が発生する時期を特定して 、その不具合を未然に防止することができる。  [0028] According to the present invention, in a so-called multi-type air conditioner, at least one usage unit (12) performs cooling operation, and at least one other usage unit (12) stops operation. In this case, a model that comprehensively simulates the state of heat conduction to the refrigerant in a predetermined range downstream of the expansion valve (52) of the utilization unit (12) is used. By inputting the measured value of the refrigerant temperature in the above specified range, etc., the heat absorption capacity of the refrigerant per hour can be estimated quantitatively and accurately, so the amount of refrigerant leakage becomes excessive and exposure It is possible to identify the time when such troubles occur and prevent them from occurring.
[0029] 特に、第 2及び第 6の発明によれば、温度を計測する手段 (54, 55, 56)を通常、 利用ユニット(12)に備わる温度センサにより構成することができ、さらに第 3及び第 7 の発明では、冷房運転中の別の利用ユニット(12)の温度センサを利用して、膨張弁 (52)の直後の冷媒温度を検出できるので、コスト面で有利である。 [0029] In particular, according to the second and sixth inventions, the means (54, 55, 56) for measuring the temperature can usually be constituted by a temperature sensor provided in the use unit (12), and the third means. And the seventh invention uses the temperature sensor of another utilization unit (12) during the cooling operation, Since the refrigerant temperature immediately after (52) can be detected, it is advantageous in terms of cost.
[0030] また、上記第 4、第 5、第 8及び第 9の発明によれば、上記の冷媒漏れ量の推定を 所定の状態で行うことにより、その推定精度を確保することができ、特に第 5及び第 9 の発明では利用ユニット(12)のサーモオフを利用して推定の頻度を高めることができ るので、上記の不具合をより確実に防止できる。 [0030] According to the fourth, fifth, eighth, and ninth inventions, the estimation accuracy of the refrigerant leakage amount can be ensured by performing the estimation in a predetermined state, and in particular, In the fifth and ninth inventions, the frequency of estimation can be increased by using the thermo-off of the usage unit (12), so that the above-mentioned problems can be prevented more reliably.
[0031] さらに、上記第 10の発明のように、推定した冷媒漏れ量が多いときにユーザに報 知するようにすれば、膨張弁 (52)の交換などを促して、不具合をより一層、確実に防 止できる。 [0031] Further, as in the tenth aspect of the invention, if the user is notified when the estimated amount of refrigerant leakage is large, the replacement of the expansion valve (52), etc. is urged, and the problem is further improved. It can be reliably prevented.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]図 1は、本発明の実施形態に係る空気調和装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
[図 2]図 2は、膨張弁力 漏れた冷媒が冷媒配管や室内熱交^^において周囲の空 気力 熱を吸収する熱伝導状態のモデルを示す説明図である。  [FIG. 2] FIG. 2 is an explanatory view showing a model of a heat conduction state in which the refrigerant leaking from the expansion valve force absorbs the aerodynamic heat of the surroundings in the refrigerant pipe and the indoor heat exchanger.
[図 3]図 3は、膨張弁の直後から室内熱交換器の入口又は出口まで徐々に上昇する 冷媒の温度変化を示すグラフ図である。  FIG. 3 is a graph showing the temperature change of the refrigerant that gradually rises from immediately after the expansion valve to the inlet or outlet of the indoor heat exchanger.
[図 4]図 4は、冷媒漏れ量の推定手順を示すフローチャート図である。  FIG. 4 is a flowchart showing a procedure for estimating a refrigerant leakage amount.
[図 5]図 5は、配管などを流通する冷媒の実際の温度とセンサによる計測値とのずれ が冷媒の流速によって変化する様子を示す説明図である。  [FIG. 5] FIG. 5 is an explanatory diagram showing how the deviation between the actual temperature of the refrigerant flowing through the pipe and the like and the measured value by the sensor change according to the flow rate of the refrigerant.
符号の説明  Explanation of symbols
10 空気調和装置  10 Air conditioner
11 室外ユニット (熱源ユニット)  11 Outdoor unit (heat source unit)
12 室内ユニット (利用ユニット)  12 Indoor unit (Usage unit)
20 冷媒回路  20 Refrigerant circuit
52 膨張弁  52 expansion valve
53 室内熱交換器 (熱交換器)  53 Indoor heat exchanger (heat exchanger)
54 第 1温度センサ (入口温度計測手段)  54 1st temperature sensor (Inlet temperature measurement means)
55 第 2温度センサ(出口温度計測手段)  55 Second temperature sensor (outlet temperature measurement means)
56 室内温度センサ(室温計測手段)  56 Indoor temperature sensor (room temperature measurement means)
80 コントローラ 81 冷媒漏れ量推定部 (冷媒漏れ量推定手段) 80 controller 81 Refrigerant leakage amount estimation unit (Refrigerant leakage amount estimation means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0035] 図 1に示すように、本実施形態の空気調和装置(10)は、ビル等に設置されて複数 の室内空間において温度調節を行うマルチタイプに構成されている。  [0035] As shown in FIG. 1, the air conditioner (10) of the present embodiment is configured in a multi-type that is installed in a building or the like and performs temperature adjustment in a plurality of indoor spaces.
[0036] 本実施形態 1の空気調和装置(10)は、熱源ユニットとして 1台の室外ユニット(11) を備え、利用ユニットとして 3台の室内ユニット(12a, 12b, 12c)を備えている。なお、 室内ユニット(12)の台数は単なる例示であり、 2台あるいは 4台以上でもよい。室外ュ ニット(11)は、屋外に設けられている。一方、 3台の室内ユニット(12a, 12b, 12c)は、 それぞれ別々の室内に設けられている。  [0036] The air conditioner (10) of the first embodiment includes one outdoor unit (11) as a heat source unit and three indoor units (12a, 12b, 12c) as use units. The number of indoor units (12) is merely an example, and may be two or four or more. The outdoor unit (11) is provided outdoors. On the other hand, the three indoor units (12a, 12b, 12c) are provided in separate rooms.
[0037] 上記室外ユニット(11)には、室外回路 (40)が設けられている。各室内ユニット(12 )には、室内回路 (50)がそれぞれ設けられている。空気調和装置(10)では、これらの 回路 (40, 50a, 50b, 50c)を冷媒配管で接続して冷媒回路 (20)が構成されている。室 外回路 (40)は、熱源側回路を構成している。各室内回路 (50)は、利用側回路を構 成している。  [0037] The outdoor unit (11) is provided with an outdoor circuit (40). Each indoor unit (12) is provided with an indoor circuit (50). In the air conditioner (10), the refrigerant circuit (20) is configured by connecting these circuits (40, 50a, 50b, 50c) with refrigerant piping. The outdoor circuit (40) constitutes a heat source side circuit. Each indoor circuit (50) constitutes a use side circuit.
[0038] 上記各室内回路 (50)は、室外回路 (40)に対して互いに並列に接続されている。  [0038] Each of the indoor circuits (50) is connected in parallel to the outdoor circuit (40).
具体的に、各室内回路 (50)は、液側連絡配管 (21)及びガス側連絡配管 (22)を介し て、室外回路 (40)に接続されている。液側連絡配管 (21)は、その一端が室外回路( 40)の液側閉鎖弁 (25)に接続されている。液側連絡配管(21)の他端は、 3本に分岐 してそれぞれが室内回路 (50)の液側端に接続されて!ヽる。ガス側連絡配管 (22)は、 その一端が室外回路 (40)のガス側閉鎖弁 (26)に接続されている。ガス側連絡配管( 22)の他端は、 3本に分岐してそれぞれが室内回路 (50)のガス側端に接続されてい る。  Specifically, each indoor circuit (50) is connected to the outdoor circuit (40) via the liquid side connecting pipe (21) and the gas side connecting pipe (22). One end of the liquid side connecting pipe (21) is connected to the liquid side closing valve (25) of the outdoor circuit (40). The other end of the liquid side connection pipe (21) branches into three and each is connected to the liquid side end of the indoor circuit (50). One end of the gas side communication pipe (22) is connected to the gas side shutoff valve (26) of the outdoor circuit (40). The other end of the gas side connecting pipe (22) is branched into three and each is connected to the gas side end of the indoor circuit (50).
[0039] 〈室外ユニット〉  [0039] <Outdoor unit>
上述したように、室外ユニット(11)は室外回路 (40)を備えている。この室外回路 (4 0)には、可変容量圧縮機 (41 、固定容量圧縮機 (41b)、室外熱交換器 (43)及び四 路切換弁 (51)が設けられて ヽる。可変容量圧縮機 (41a)及び固定容量圧縮機 (41b) は、何れも全密閉型のスクロール圧縮機で、いわゆる高圧ドーム型に構成されている [0040] 上記可変容量圧縮機 (41a)には、インバータを介して電力が供給される。この可 変容量圧縮機 (41a)は、インバータの出力周波数を変化させて圧縮機モータの回転 速度を変更することによって、その容量が変更可能となっている。可変容量圧縮機 (4 la)は、主圧縮機を構成している。 As described above, the outdoor unit (11) includes the outdoor circuit (40). The outdoor circuit (40) is provided with a variable capacity compressor (41, a fixed capacity compressor (41b), an outdoor heat exchanger (43), and a four-way switching valve (51). The compressor (41a) and the fixed capacity compressor (41b) are all hermetic scroll compressors, and are configured as so-called high-pressure dome type. [0040] Electric power is supplied to the variable capacity compressor (41a) via an inverter. The capacity of the variable capacity compressor (41a) can be changed by changing the rotation speed of the compressor motor by changing the output frequency of the inverter. The variable capacity compressor (4 la) constitutes the main compressor.
[0041] 一方、上記固定容量圧縮機 (41b)は、圧縮機モータが常に一定の回転速度で運 転されるものであって、その容量が変更不能となって 、る。  [0041] On the other hand, in the fixed capacity compressor (41b), the compressor motor is always operated at a constant rotational speed, and the capacity cannot be changed.
[0042] 上記可変容量圧縮機 (41a)及び固定容量圧縮機 (41b)には、吐出管 (64)が接続 されている。吐出管 (64)の一端は、四路切換弁 (51)の第 1ポートに接続されている。 この吐出管 (64)は、他端側で第 1吐出管 (64a)と第 2吐出管 (64b)とに分岐されて 、 る。そして、第 1吐出管 (64a)が可変容量圧縮機 (41a)の吐出側に接続され、第 2吐 出管 (64b)が固定容量圧縮機 (41b)の吐出側に接続されて 、る。  [0042] A discharge pipe (64) is connected to the variable capacity compressor (41a) and the fixed capacity compressor (41b). One end of the discharge pipe (64) is connected to the first port of the four-way switching valve (51). The discharge pipe (64) is branched into a first discharge pipe (64a) and a second discharge pipe (64b) on the other end side. The first discharge pipe (64a) is connected to the discharge side of the variable capacity compressor (41a), and the second discharge pipe (64b) is connected to the discharge side of the fixed capacity compressor (41b).
[0043] 上記可変容量圧縮機 (41a)及び固定容量圧縮機 (41b)の吸入側には、吸入管 (6 1)が接続されている。吸入管 (61)の一端は、四路切換弁 (51)の第 2ポートに接続さ れている。この吸入管 (61)は、他端側で第 1吸入管 (61a)と第 2吸入管 (61b)とに分 岐されている。そして、第 1吸入管 (61a)が可変容量圧縮機 (41a)の吸入側に接続さ れ、第 2吸入管 (61b)が固定容量圧縮機 (41b)の吸入側に接続されて!、る。  [0043] A suction pipe (61) is connected to the suction side of the variable capacity compressor (41a) and the fixed capacity compressor (41b). One end of the suction pipe (61) is connected to the second port of the four-way selector valve (51). The suction pipe (61) is branched at the other end into a first suction pipe (61a) and a second suction pipe (61b). The first suction pipe (61a) is connected to the suction side of the variable capacity compressor (41a), and the second suction pipe (61b) is connected to the suction side of the fixed capacity compressor (41b)! .
[0044] 上記室外熱交換器 (43)は、クロスフィン式のフィン'アンド ·チューブ型熱交換器 であって、熱源側熱交換器を構成している。室外熱交換器 (43)の一端は、四路切換 弁 (51)の第 3ポートに接続されている。一方、室外熱交換器 (43)の他端は、液側閉 鎖弁 (25)に接続されている。また、室外ユニット(11)には、室外ファン (48)が設けら れている。室外熱交換器 (43)へは、この室外ファン (48)によって室外空気が送られ る。  [0044] The outdoor heat exchanger (43) is a cross-fin type fin-and-tube heat exchanger, and constitutes a heat source side heat exchanger. One end of the outdoor heat exchanger (43) is connected to the third port of the four-way selector valve (51). On the other hand, the other end of the outdoor heat exchanger (43) is connected to the liquid side shutoff valve (25). The outdoor unit (11) is provided with an outdoor fan (48). Outdoor air is sent to the outdoor heat exchanger (43) by the outdoor fan (48).
[0045] 上記四路切換弁 (51)は、第 1のポートが吐出管(64)に、第 2のポートが吸入管(6 1)に、第 3のポートが室外熱交翻 (43)に、第 4のポートがガス側閉鎖弁 (26)にそれ ぞれ接続されている。この第 1四路切換弁 (51)は、第 1のポートと第 3のポートが互い に連通して第 2のポートと第 4のポートが互いに連通する第 1状態(図 1に実線で示す 状態)と、第 1のポートと第 4のポートが互いに連通して第 2のポートと第 3ポートが互 ヽに連通する第 2状態(図 1に破線で示す状態)とに切り換え可能となって 、る。 [0045] The four-way switching valve (51) has a first port to the discharge pipe (64), a second port to the suction pipe (61), and a third port to the outdoor heat exchange (43) In addition, a fourth port is connected to each gas side shut-off valve (26). The first four-way selector valve (51) is in a first state (shown by a solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other. Status), the first port and the fourth port communicate with each other, and the second port and the third port It is possible to switch to the second state (the state indicated by the broken line in Fig. 1) communicating with the cage.
[0046] 上記室外回路 (40)にお 、て、吸入管(61)には吸入圧力センサ (93)が設けられ、 吐出管(64)には吐出圧力センサ(97)が設けられて 、る。吸入圧力センサ (93)は、 吸入管 (61)を流れる低圧側の冷媒の圧力を計測する。吐出圧力センサ (97)は、吐 出管 (64)を流れる高圧側の冷媒の圧力を計測する。この吸入圧力センサ (93)の計 測値と吐出圧力センサ (97)の計測値との差によって、この冷媒回路 (20)で行われる 冷凍サイクルの高低圧差を検出することができる。 In the outdoor circuit (40), the suction pipe (61) is provided with a suction pressure sensor (93), and the discharge pipe (64) is provided with a discharge pressure sensor (97). . The suction pressure sensor (93) measures the pressure of the low-pressure side refrigerant flowing through the suction pipe (61). The discharge pressure sensor (97) measures the pressure of the high-pressure side refrigerant flowing through the discharge pipe (64). Based on the difference between the measured value of the suction pressure sensor (93) and the measured value of the discharge pressure sensor (97), the difference between the high and low pressures of the refrigeration cycle performed in the refrigerant circuit (20) can be detected.
[0047] 〈室内ユニット〉 [0047] <Indoor unit>
上述したように、各室内ユニット(12)は室内回路 (50)をそれぞれ備えている。各 室内回路 (50)には、その液側端力 ガス側端へ向力つて順に膨張弁 (52)と室内熱 交 (53)とが設けられている。室内熱交^^ (53)は、クロスフィン式のフィン'アン ド'チューブ型熱交換器であって、利用側熱交換器を構成している。室内膨張弁 (52 )は、電子膨張弁によって構成されている。また、室内ユニット(12)には、室内ファン( 57)が設けられている。室内熱交^^ (53)へは、この室内ファン (57)によって室内空 気が送られる。  As described above, each indoor unit (12) includes an indoor circuit (50). Each indoor circuit (50) is provided with an expansion valve (52) and an indoor heat exchanger (53) in order according to the liquid side end force toward the gas side end. The indoor heat exchanger (53) is a cross fin type fin 'and' tube heat exchanger, and constitutes a use side heat exchanger. The indoor expansion valve (52) is an electronic expansion valve. The indoor unit (12) is provided with an indoor fan (57). Indoor air exchange ^^ (53) is sent indoor air by this indoor fan (57).
[0048] 上記室内回路 (50)において、膨張弁 (52)と室内熱交 (53)とを接続する冷媒 配管には、その室内熱交換器 (53)の入口付近の配管の温度を計測するように第 1の 温度センサ(54)が設けられて 、る。この第 1温度センサ(54)は、本発明に係る入口 温度計測手段を構成している。また、室内熱交換器 (53)と室内回路 (50)のガス側端 とを接続する冷媒配管には、その室内熱交換器 (53)の出口付近の配管の温度を計 測するように第 2の温度センサ (55)が設けられて 、る。この第 2温度センサ (55)は、 本発明に係る出口温度計測手段を構成している。なお、第 1、第 2温度センサ (54, 5 5)は、それぞれ室内熱交換器 (53)の入口及び出口に設けてもよい  [0048] In the indoor circuit (50), for the refrigerant pipe connecting the expansion valve (52) and the indoor heat exchanger (53), the temperature of the pipe near the inlet of the indoor heat exchanger (53) is measured. A first temperature sensor (54) is provided as described above. The first temperature sensor (54) constitutes the inlet temperature measuring means according to the present invention. In addition, the refrigerant pipe connecting the indoor heat exchanger (53) and the gas side end of the indoor circuit (50) is configured to measure the temperature of the pipe near the outlet of the indoor heat exchanger (53). Two temperature sensors (55) are provided. This second temperature sensor (55) constitutes the outlet temperature measuring means according to the present invention. The first and second temperature sensors (54, 55) may be provided at the inlet and the outlet of the indoor heat exchanger (53), respectively.
さらに、室内ユニット(12)には、その室内ユニット(12)が設置される室内の温度を 計測する室内温度センサ (56)が設けられている。この室内温度センサ(56)は、本発 明に係る室温計測手段を構成している。第 1温度センサ (54)の計測値と、第 2温度セ ンサ (55)の計測値と、室内温度センサ (56)の計測値とは、後述するコントローラ (80) に送られる。 [0049] 〈コントローラの構成〉 Furthermore, the indoor unit (12) is provided with an indoor temperature sensor (56) for measuring the temperature of the room where the indoor unit (12) is installed. This indoor temperature sensor (56) constitutes a room temperature measuring means according to the present invention. The measured value of the first temperature sensor (54), the measured value of the second temperature sensor (55), and the measured value of the indoor temperature sensor (56) are sent to a controller (80) described later. <Controller configuration>
本実施形態の空気調和装置(10)は、運転状態に応じて上記両圧縮機 (41a, 41b )の制御や、膨張弁 (52)の開度調節等を行うコントローラ (80)を備えている。このコン トローラ (80)は、以下に述べるように空気調和装置(10)の冷房運転、暖房運転、氷 融解動作などを制御するとともに、後述する冷媒の漏れ量の推定に関する制御を行 ぅ冷媒漏れ量推定部 (81)を有しており、この冷媒漏れ量推定部 (81)が本発明に係る 冷媒漏れ量推定手段を構成している。また、コントローラ (80)には、後述のようにユー ザに冷媒漏れにっ ヽて報知する報知手段としての表示装置 (82)が接続されて!ヽる。 コントローラ (80)の動作にっ 、ての詳細は後述する。  The air conditioner (10) of this embodiment includes a controller (80) that controls the compressors (41a, 41b) and adjusts the opening degree of the expansion valve (52) according to the operating state. . This controller (80) controls the cooling operation, heating operation, ice melting operation, etc. of the air conditioner (10) as described below, and performs control related to estimation of the refrigerant leakage amount described later. An amount estimation unit (81) is provided, and the refrigerant leakage amount estimation unit (81) constitutes the refrigerant leakage amount estimation means according to the present invention. The controller (80) is connected to a display device (82) as a notification means for notifying the user of a refrigerant leak as will be described later. Details of the operation of the controller (80) will be described later.
[0050] 運転動作  [0050] Driving action
上記空気調和装置 (10)は、冷房運転と暖房運転とを行う。また、この空気調和装 置(10)は、冷房運転中に必要に応じて氷融解動作を行う。  The air conditioner (10) performs a cooling operation and a heating operation. The air conditioner (10) performs an ice melting operation as necessary during the cooling operation.
[0051] 〈冷房運転〉  [0051] <Cooling operation>
先ず、冷房運転について説明する。冷房運転では、四路切換弁 (23)が図 1の実 線で示す第 1状態に設定され、可変容量圧縮機 (41a)及び固定容量圧縮機 (41b)が 運転される。なお、各室内ユニット(12)の膨張弁 (52)の開度は、各室内の冷房負荷 に応じて個別に制御され、冷媒流量が設定される。また、風量も各室内ユニット(12) で個別に制御される。  First, the cooling operation will be described. In the cooling operation, the four-way selector valve (23) is set to the first state indicated by the solid line in FIG. 1, and the variable capacity compressor (41a) and the fixed capacity compressor (41b) are operated. The opening of the expansion valve (52) of each indoor unit (12) is individually controlled according to the cooling load in each room, and the refrigerant flow rate is set. The air volume is also individually controlled by each indoor unit (12).
[0052] 可変容量圧縮機 (41a)及び固定容量圧縮機 (41b)カゝら吐出された冷媒は、吐出 管 (64)から四路切換弁 (51)を通って室外熱交換器 (43)へ流入し、そこで室外空気 へ放熱して凝縮する。室外熱交換器 (43)で凝縮した冷媒は、液側連絡配管 (21)を 流通して各室内回路 (50)に分配される。  [0052] The refrigerant discharged from the variable capacity compressor (41a) and the fixed capacity compressor (41b) passes from the discharge pipe (64) through the four-way switching valve (51) to the outdoor heat exchanger (43). Into the air, where it dissipates heat to the outdoor air and condenses. The refrigerant condensed in the outdoor heat exchanger (43) flows through the liquid side connecting pipe (21) and is distributed to each indoor circuit (50).
[0053] 室内回路 (50)へ分配された冷媒は、膨張弁 (52)を通過する際に減圧されてから 室内熱交換器 (53)へ流入する。室内熱交換器 (53)では、冷媒が室内空気から吸熱 して蒸発する。その際、室内熱交 (53)で冷却された室内空気が室内へ供給され る。室内熱交 (53)で蒸発した冷媒は、ガス側連絡配管 (22)を通って室外回路( 40)へ流入する。室外回路 (40)へ流入した冷媒は、四路切換弁 (51)を通過した後に 、吸入管 (61)を通って可変容量圧縮機 (41a)及び固定容量圧縮機 (41b)に吸入され る。可変容量圧縮機 (41a)及び固定容量圧縮機 (41b)に吸入された冷媒は、再び圧 縮されて吐出管 (64)へ吐出される。 [0053] The refrigerant distributed to the indoor circuit (50) is decompressed when passing through the expansion valve (52) and then flows into the indoor heat exchanger (53). In the indoor heat exchanger (53), the refrigerant absorbs heat from the indoor air and evaporates. At that time, the room air cooled by the indoor heat exchange (53) is supplied to the room. The refrigerant evaporated in the indoor heat exchange (53) flows into the outdoor circuit (40) through the gas side connecting pipe (22). The refrigerant flowing into the outdoor circuit (40) passes through the four-way selector valve (51), and then is sucked into the variable capacity compressor (41a) and the fixed capacity compressor (41b) through the suction pipe (61). The The refrigerant sucked into the variable capacity compressor (41a) and the fixed capacity compressor (41b) is compressed again and discharged to the discharge pipe (64).
[0054] 〈暖房運転〉 [0054] <Heating operation>
続いて、暖房運転について説明する。暖房運転では、四路切換弁 (23)が図 1の 破線で示す第 2状態に設定され、可変容量圧縮機 (41a)及び固定容量圧縮機 (41b) が運転される。なお、各室内ユニット(12)の膨張弁 (52)の開度は、各室内の暖房負 荷に応じて個別に制御され、冷媒流量が設定される。また、風量も各室内ユニット(12 )で個別に制御される。  Subsequently, the heating operation will be described. In the heating operation, the four-way selector valve (23) is set to the second state indicated by the broken line in FIG. 1, and the variable capacity compressor (41a) and the fixed capacity compressor (41b) are operated. The opening degree of the expansion valve (52) of each indoor unit (12) is individually controlled according to the heating load in each room, and the refrigerant flow rate is set. The air volume is also individually controlled by each indoor unit (12).
[0055] 可変容量圧縮機 (41a)及び固定容量圧縮機 (41b)カゝら吐出された冷媒は、吐出 管 (64)から四路切換弁 (51)、ガス側連絡配管 (22)を通って各室内回路 (50)へ分配 される。室内回路 (50)へ流入した冷媒は、室内熱交 (53)へ導入され、そこで室 内空気へ放熱して凝縮する。その際、室内熱交換器 (53)で加熱された室内空気が 室内へ供給される。  [0055] The refrigerant discharged from the variable capacity compressor (41a) and the fixed capacity compressor (41b) passes from the discharge pipe (64) through the four-way switching valve (51) and the gas side communication pipe (22). Distributed to each indoor circuit (50). The refrigerant flowing into the indoor circuit (50) is introduced into the indoor heat exchanger (53), where it dissipates heat to the indoor air and condenses. At that time, the indoor air heated by the indoor heat exchanger (53) is supplied into the room.
[0056] 室内熱交換器 (53)で凝縮した冷媒は、膨張弁 (52)、液側連絡配管 (21)を通って 室外熱交換器 (43)へ流入し、そこで室外空気から吸熱して蒸発する。室外熱交換器 (43)で蒸発した冷媒は、四路切換弁 (51)から吸入管 (61)を通って可変容量圧縮機 (41a)及び固定容量圧縮機 (41b)に吸入される。可変容量圧縮機 (41a)及び固定容 量圧縮機 (41b)に吸入された冷媒は、再び圧縮されて吐出管 (64)へ吐出される。  [0056] The refrigerant condensed in the indoor heat exchanger (53) flows into the outdoor heat exchanger (43) through the expansion valve (52) and the liquid side connecting pipe (21), and absorbs heat from the outdoor air there. Evaporate. The refrigerant evaporated in the outdoor heat exchanger (43) is sucked into the variable capacity compressor (41a) and the fixed capacity compressor (41b) from the four-way switching valve (51) through the suction pipe (61). The refrigerant sucked into the variable capacity compressor (41a) and the fixed capacity compressor (41b) is compressed again and discharged to the discharge pipe (64).
[0057] 〈氷融解動作〉  [0057] <Ice melting action>
マルチタイプの空気調和装置(10)では、上述したように各室内ユニット(12)で冷 房運転が行なわれているときに、その各室内ユニット(12)ごとに冷房負荷が異なる場 合が多々あり、負荷の小さ!/、室内ユニット (12)の室内熱交換器 (53)では蒸発温度が 下がり過ぎて、その室内熱交 (12)に付着するドレン水が凍る虞れがある。このよ うな状況では、氷を融かすために氷融解動作が行われる。  In the multi-type air conditioner (10), as described above, when the cooling operation is performed in each indoor unit (12), the cooling load is often different for each indoor unit (12). Yes, the load is small! / In the indoor heat exchanger (53) of the indoor unit (12), the evaporation temperature is too low and the drain water adhering to the indoor heat exchanger (12) may freeze. In such a situation, an ice melting operation is performed to melt the ice.
[0058] 氷融解動作時の空気調和装置(10)の動作について説明する。この空気調和装 置(10)では、各室内ユニット (12)ごとに氷融解動作が実行可能になって 、るので、 或る 1つの室内ユニット(12a)で氷融解動作が実行されていても、他の室内ユニット(1 2b, 12c)ではその氷融解動作に関係なく冷房運転を行うことができる。勿論、複数の 室内ユニット(12a, 12b,…;)で同時に氷融解動作を行う場合もある。 [0058] The operation of the air conditioner (10) during the ice melting operation will be described. In this air conditioner (10), the ice thawing operation can be performed for each indoor unit (12). Therefore, even if the ice thawing operation is performed in one indoor unit (12a). The other indoor units (12b, 12c) can perform the cooling operation regardless of the ice melting operation. Of course, multiple In some cases, the indoor units (12a, 12b,.
[0059] コントローラ(80)は、例えば或る室内ユニット (12a)において氷融解動作を開始す るときには、その室内ユニット(12a)の室内熱交換器 (53a)への冷媒流量を調節する 膨張弁 (52a)を閉状態に設定する。そして、この状態で冷房運転力も引き続いて室 内ファン (57a)を駆動する。これによつて、氷融解動作が実行され、室内ファン (57a) によって送り込まれた室内空気により室内熱交換器 (53a)に付着した氷は融かされる ことになる。 [0059] For example, when the ice melting operation is started in a certain indoor unit (12a), the controller (80) adjusts the refrigerant flow rate to the indoor heat exchanger (53a) of the indoor unit (12a). Set (52a) to the closed state. In this state, the cooling operation force continues to drive the indoor fan (57a). As a result, the ice melting operation is performed, and the ice adhering to the indoor heat exchanger (53a) is melted by the indoor air sent by the indoor fan (57a).
[0060] コントローラ(80)は氷融解動作を終了するときには、室内ファン (57a)を駆動した ままで、膨張弁 (52a)を開状態にする。これによつて、室内熱交換器 (53a)に冷媒が 流入して再び冷房運転が行われるようになる。  [0060] When the controller (80) ends the ice melting operation, the expansion valve (52a) is opened while the indoor fan (57a) is driven. As a result, the refrigerant flows into the indoor heat exchanger (53a) and the cooling operation is performed again.
[0061] 〈膨張弁の冷媒漏れ量の推定〉  <Estimation of refrigerant leakage amount of expansion valve>
ところで、この実施形態のようなマルチタイプの空気調和装置では、上述したよう に、各室内ユニット(12)ごとに冷房負荷の異なる場合が多々あり、負荷の小さい室内 ユニット(12)では、設定された目標温度に達すると冷房運転を一時的に停止し、膨 張弁 (52)を閉じて冷媒回路 (20)力 の冷媒の流入を遮断する (所謂サーモオフ)。ま た、 3台の室内ユニット(12a, 12b, 12c)がそれぞれ別々の室内に設けられているため 、いずれかの室内ユニット(12)が使用されていても、別のいずれかの室内ユニット(1 2)は使用されて ヽな 、こともある。  By the way, in the multi-type air conditioner as in this embodiment, as described above, there are many cases where the cooling load is different for each indoor unit (12), and the indoor unit (12) with a small load is set. When the target temperature is reached, the cooling operation is temporarily stopped, the expansion valve (52) is closed, and the refrigerant flowing in the refrigerant circuit (20) is shut off (so-called thermo-off). In addition, since the three indoor units (12a, 12b, 12c) are provided in different rooms, even if any one of the indoor units (12) is used, 1 2) is sometimes used.
[0062] そのように同じ冷媒回路(20)に接続されている 3台の室内ユニット(12a, 12b, 12c )のうち、少なくとも 1つが冷房運転を行い、それ以外の少なくとも 1つが運転を停止し て 、るときには、その停止して 、る室内ユニット(12)にも冷媒回路から (20)高圧の液 冷媒が供給されている。そのため、この停止している室内ユニット(12)の膨張弁 (52) が閉じていても、冷媒が下流側に漏れることがあり、その漏れ量が多くなると、室内回 路 (50)の冷媒配管や室内熱交換器 (53)が冷やされて、露付きなどの不具合を生じ る虞れがある。  [0062] Of the three indoor units (12a, 12b, 12c) connected to the same refrigerant circuit (20) as described above, at least one performs the cooling operation, and at least one other stops the operation. In this case, the indoor unit (12) is stopped and (20) high-pressure liquid refrigerant is supplied from the refrigerant circuit to the indoor unit (12). Therefore, even if the expansion valve (52) of the stopped indoor unit (12) is closed, the refrigerant may leak downstream, and if the amount of leakage increases, the refrigerant piping of the indoor circuit (50) In addition, the indoor heat exchanger (53) may be cooled to cause problems such as dew condensation.
[0063] また、そのように膨張弁 (52)力 下流側の配管への冷媒の漏れ量が多くなると、 上記の氷融解動作を実行するために膨張弁 (52)を閉じても、室内熱交換器 (53)に 付着した氷がな力なか融けなくなり、氷融解動作に時間が力かる上に、氷が融けた後 も室内熱交換器 (53)の温度がなかなか上昇しな 、ので、この温度上昇に基づ ヽて 氷融解動作の終了を判断するようにしていると、この判断が遅れて、不要な氷融解動 作が継続してしまうと 、う誤動作の虞れがある。 [0063] Further, when the leakage amount of the refrigerant into the downstream piping increases as described above, even if the expansion valve (52) is closed to perform the above ice melting operation, the indoor heat The ice attached to the exchanger (53) cannot be melted easily, it takes time to melt the ice, and after the ice melts However, since the temperature of the indoor heat exchanger (53) does not rise easily, if the end of ice melting operation is judged based on this temperature rise, this judgment will be delayed and unnecessary ice melting will occur. If the operation continues, there is a risk of malfunction.
[0064] そこで、この実施形態では、上記の露付きや誤動作などの不具合を未然に防止 することを目的とし、上記のように室内ユニット(12a, 12b, 12c)の少なくとも 1つが冷 房運転を行い、かつ、それ以外の少なくとも 1つが運転を停止しているときに、その停 止して 、る室内ユニット(12)の膨張弁 (52)から下流側の室内回路 (50)に漏れる冷媒 の流量を、その冷媒が配管などを介して大気力 吸熱する熱伝導状態のモデルを用 いて算出し、これに基づいて膨張弁 (52)の冷媒漏れ量を定量的に、かつ精度良く推 定できるようにしている。  [0064] Therefore, in this embodiment, for the purpose of preventing problems such as the above-mentioned dew condensation and malfunction, at least one of the indoor units (12a, 12b, 12c) performs the cooling operation as described above. When at least one other operation is stopped, the refrigerant is leaked from the expansion valve (52) of the indoor unit (12) to the downstream indoor circuit (50) when the operation is stopped. The flow rate is calculated using a model of the heat conduction state in which the refrigerant absorbs atmospheric force through piping, etc., and based on this, the refrigerant leakage amount of the expansion valve (52) can be estimated quantitatively and accurately. I am doing so.
[0065] ー冷媒漏れ量の推定手法  [0065]-Method for estimating refrigerant leakage
以下、コントローラ (80)の冷媒漏れ量推定部(81)による冷媒漏れ量の推定につ いて具体的に説明する。  Hereinafter, estimation of the refrigerant leakage amount by the refrigerant leakage amount estimation unit (81) of the controller (80) will be specifically described.
[0066] この推定は、上述したように各室内ユニット(12)のそれぞれが停止しているときに 行われるもので、以下では、 3台の室内ユニット(12a, 12b, 12c)のうちの 1台の室内 ユニット(12a)における冷媒漏れ量の推定について説明する。なお、説明は省略する 力 冷媒漏れ量推定部(81)は、他の室内ユニット(12b, 12c)に対しても同じように冷 媒漏れ量の推定を行う。  [0066] This estimation is performed when each of the indoor units (12) is stopped as described above, and in the following, one of the three indoor units (12a, 12b, 12c) The estimation of the refrigerant leakage amount in the indoor unit (12a) of the base will be described. The description will be omitted. The refrigerant leakage amount estimation unit (81) similarly estimates the refrigerant leakage amount for the other indoor units (12b, 12c).
[0067] まず、図 2には、停止している室内ユニット(12a)の膨張弁 (52a)力 漏れた冷媒 力 その下流の冷媒配管や室内熱交換器 (53a)において周囲の空気 (大気)から熱 を吸収する熱伝導状態のモデルを示す。冷媒の温度は、膨張弁 (52a)から漏れた直 後に一旦、蒸発温度まで低下した後、室内熱交換器 (53a)の入口まで流通する間に 冷媒配管の周壁を介して大気力 吸熱して、徐々に上昇する。そのため、漏れ量が 比較的少ないとき冷媒の温度は、図 3に一例を示すように膨張弁 (52a)の直後の温 度 To (° C)から室内熱交換器 (53a)の入口付近の温度 TH2 (° C)まで徐々に上昇 して、室温 TH1 (° C)に近づくようになる。  [0067] First, FIG. 2 shows the expansion valve (52a) force of the stopped indoor unit (12a), the leaked refrigerant force, and the ambient air (atmosphere) in the refrigerant pipe and the indoor heat exchanger (53a) downstream thereof. The model of the heat conduction state that absorbs heat from is shown. Immediately after leaking from the expansion valve (52a), the temperature of the refrigerant decreases to the evaporation temperature, and then absorbs atmospheric force through the peripheral wall of the refrigerant pipe while flowing to the inlet of the indoor heat exchanger (53a). Rise gradually. For this reason, when the amount of leakage is relatively small, the temperature of the refrigerant changes from the temperature To (° C) immediately after the expansion valve (52a) to the temperature near the inlet of the indoor heat exchanger (53a) as shown in Fig. 3. It gradually rises to TH2 (° C) and approaches room temperature TH1 (° C).
[0068] そこで、上記膨張弁 (52a)の直後から室内熱交換器 (53a)の入口までの冷媒配管 における伝熱係数を Kl、同伝熱面積を Al (m2)とし、その範囲を流通する冷媒と大 気との平均的な温度差を ΔΤ1とすれば、その間の冷媒の時間当たりの吸熱量 Ql (k J/ )は、 [0068] Therefore, Kl is the heat transfer coefficient in the refrigerant pipe from immediately after the expansion valve (52a) to the inlet of the indoor heat exchanger (53a), and Al (m 2 ) is the heat transfer area. Large refrigerant and If the average temperature difference from the air is ΔΤ1, the endothermic quantity Ql (k J /) of the refrigerant per hour is
Q1 =K1 XA1 X ΔΤ1  Q1 = K1 XA1 X ΔΤ1
となる。ここで、上記平均温度差 ΔΤ1は、室内温度センサ (56)の計測値 TH1と、第 1温度センサ (54a)の計測値 TH2 (即ち室内熱交換器 (53a)の入口温度)と、膨張弁 (52a)の直後の冷媒温度 Toとを用い、例えば対数平均として、  It becomes. Here, the average temperature difference ΔΤ1 is the measured value TH1 of the indoor temperature sensor (56), the measured value TH2 of the first temperature sensor (54a) (that is, the inlet temperature of the indoor heat exchanger (53a)), the expansion valve Using the refrigerant temperature To immediately after (52a), for example, logarithmic average,
ΔΤ1 = (TH2-To) /ln{ (TH1—To) / (TH1 -TH2) }  ΔΤ1 = (TH2-To) / ln {(TH1—To) / (TH1 -TH2)}
としてもよいし、或いは、より簡便に加算平均として、  Or, as a simpler addition average,
ΔΤ1 =ΤΗ1 - (To+TH2) /2  ΔΤ1 = ΤΗ1-(To + TH2) / 2
とすることちでさる。  It's a monkey.
[0069] そうして吸熱量 Q1が求まれば、膨張弁 (52a)の下流の配管における冷媒の流量 、即ち、膨張弁 (52a)からの冷媒の時間当たりの漏れ量 G (kg/h)は、この冷媒の膨張 弁(52a)の直後と熱交^^ (53a)入口とのェンタルビの差を (Hout— Hin) (kj/kg)と して、  [0069] If the endothermic amount Q1 is obtained in this way, the refrigerant flow rate in the pipe downstream of the expansion valve (52a), that is, the refrigerant leakage amount per hour from the expansion valve (52a) G (kg / h) Is the difference in enthalbi between the refrigerant expansion valve (52a) and the heat exchange ^^ (53a) inlet, (Hout—Hin) (kj / kg)
G = Ql/ (Hout— Hin)  G = Ql / (Hout— Hin)
となる。但し、上記 Hinは膨張弁 (52a)の直後の液冷媒のェンタルピであり、膨張弁 (5 2a)の直後の冷媒温度 Toと蒸発圧力(例えば室外ユニットにてモニタすればよい)と 力 算出される。また、上記 Houtは、室内熱交^^ (53a)の入口における冷媒ガスの ェンタルピであり、第 1温度センサ (54a)の計測値 TH2と蒸発圧力とから算出される。  It becomes. However, Hin is the enthalpy of the liquid refrigerant immediately after the expansion valve (52a), and the force is calculated as the refrigerant temperature To and the evaporation pressure (for example, monitored by an outdoor unit) immediately after the expansion valve (52a). The Hout is the enthalpy of the refrigerant gas at the inlet of the indoor heat exchanger (53a), and is calculated from the measured value TH2 of the first temperature sensor (54a) and the evaporation pressure.
[0070] 尚、上記温度 TH1、 TH2は、それぞれ、室内ユニット(12a)に通常の運転制御の ために装備されている温度センサ(54a, 56a)の計測値を用いればよい。また、膨張 弁(52a)の直後の冷媒温度 Toについては、冷房運転中の別の室内ユニット(12b, 12 c)の第 1温度センサ (54b, 54c)の計測値で代用できる。冷房運転中であれば、膨張 弁(52b, 52c)から室内熱交換器 (53b, 53c)の入口まで流通する冷媒の流量が多い ので、その膨張弁 (52b, 52c)の直後の冷媒温度は室内熱交換器 (53b, 53c)の入口 温度と略等しくなるからである。  [0070] The measured values of the temperature sensors (54a, 56a) installed in the indoor unit (12a) for normal operation control may be used for the temperatures TH1, TH2, respectively. The refrigerant temperature To immediately after the expansion valve (52a) can be substituted with the measured value of the first temperature sensor (54b, 54c) of another indoor unit (12b, 12c) during the cooling operation. During cooling operation, the flow rate of the refrigerant flowing from the expansion valve (52b, 52c) to the inlet of the indoor heat exchanger (53b, 53c) is large, so the refrigerant temperature immediately after the expansion valve (52b, 52c) is This is because it is approximately equal to the inlet temperature of the indoor heat exchanger (53b, 53c).
[0071] こうして、上記のモデルを用いて、停止している室内ユニット(12a)の膨張弁(52a) からの冷媒の漏れ量 Gを、その膨張弁 (52a)の直後の冷媒温度 Toと、室温 TH1と、 室内熱交^^ (53a)の入口温度 TH2とに基づ 、て定量的にかつ精度良く推定する ことができる。 [0071] Thus, using the above model, the refrigerant leakage amount G from the expansion valve (52a) of the stopped indoor unit (12a) is expressed as the refrigerant temperature To immediately after the expansion valve (52a), Room temperature TH1, It can be estimated quantitatively and accurately based on the inlet temperature TH2 of the indoor heat exchanger (53a).
[0072] ところで、膨張弁 (52a)の直後から室内熱交換器 (53a)までの配管における冷媒 の吸熱量はあまり多くはないので、冷媒の漏れ量が多いときには、上記の冷房運転 中と同様に膨張弁 (52a)の直後の温度 Toが室内熱交 (53a)の入口温度 TH2と あまり変わらなくなり、第 1温度センサ (54a)の精度がかなり高くないと、上記のように 冷媒の漏れ量 Gを推定することが難しくなる。  [0072] By the way, the amount of heat absorbed by the refrigerant in the pipe from immediately after the expansion valve (52a) to the indoor heat exchanger (53a) is not very large, so when the amount of refrigerant leakage is large, the same as in the above cooling operation. If the temperature To immediately after the expansion valve (52a) is not much different from the inlet temperature TH2 of the indoor heat exchanger (53a) and the accuracy of the first temperature sensor (54a) is not very high, the amount of refrigerant leakage as described above It becomes difficult to estimate G.
[0073] そこで、この実施形態では、冷媒の漏れ量が多くて、膨張弁 (52a)の直後の温度 Toと室内熱交 (53a)の入口温度 TH2とがあまり変わらな 、ときには、膨張弁 (52 a)の直後から室内熱交換器 (53a)の出口まで流通する間の冷媒の吸熱量 Q (kj/h) によって、その漏れ量 Gを推定するようにしている。  Therefore, in this embodiment, the amount of refrigerant leakage is large, and the temperature To immediately after the expansion valve (52a) and the inlet temperature TH2 of the indoor heat exchanger (53a) do not change so much. The leakage amount G is estimated from the heat absorption amount Q (kj / h) of the refrigerant during the period from 52 a) to the outlet of the indoor heat exchanger (53a).
[0074] すなわち、基本的には上記と同様の考え方で、室内熱交換器 (53a)の伝熱係数 を K2、同伝熱面積を A2 (m2)とすれば、膨張弁 (52a)から漏れて室内熱交翻 (53a )の出口まで流通する冷媒と大気との平均的な温度差 Δ T ( Δ T1、 Δ T2)も概略上 記図 3に示すようになるので、その冷媒の時間当たりの吸熱量 Qは、 [0074] That is, basically the same concept as described above, if the indoor heat exchanger heat transfer coefficient (53a) K2, the same heat transfer area A2 and (m 2), the expansion valve (52a) The average temperature difference ΔT (ΔT1, ΔT2) between the refrigerant that leaks and flows to the outlet of the indoor heat exchanger (53a) and the atmosphere is also shown in Figure 3 above. The amount of heat absorbed per unit Q is
Q = Q1 + Q2=K1 X A1 X Δ Τ1 +Κ2 Χ Α2 Χ Δ Τ2  Q = Q1 + Q2 = K1 X A1 X Δ Τ1 + Κ2 Χ Α2 Χ Δ Τ2
となる。この場合の Δ Τ1、 Δ Τ2は、例えば上記と同様に対数平均を用いて、  It becomes. Δ Τ1 and Δ Τ2 in this case are, for example, using the logarithmic average as described above,
Δ Τ1 =ΤΗ1 -ΤΗ2  Δ Τ1 = ΤΗ1 -ΤΗ2
Δ Τ2= (ΤΗ3 -ΤΗ2) /ln{ (TH1 -TH2) / (TH1 -TH3) }  Δ Τ2 = (ΤΗ3 -ΤΗ2) / ln {(TH1 -TH2) / (TH1 -TH3)}
とすればよい。尚、 ΤΗ3は第 2温度センサ (55a)の計測値 (即ち室内熱交換器 (53a) の出口温度)である。  And it is sufficient. Note that ΤΗ3 is the measured value of the second temperature sensor (55a) (that is, the outlet temperature of the indoor heat exchanger (53a)).
[0075] そして、膨張弁 (52a)からの冷媒の時間当たりの漏れ量 Gは、上記と同様に、  [0075] Then, the leakage amount G of refrigerant from the expansion valve (52a) per hour is similar to the above,
G = Q/ (Hout-Hin)  G = Q / (Hout-Hin)
となる。上記 Hinは膨張弁(52a)の直後の液冷媒のェンタルピである力 Houtは、室 内熱交^^ (53a)の出口における冷媒ガスのェンタルピである。  It becomes. The above Hin is the enthalpy of liquid refrigerant immediately after the expansion valve (52a), and Hout is the enthalpy of refrigerant gas at the outlet of the indoor heat exchanger (53a).
[0076] こうして、膨張弁 (52a)の下流の冷媒配管だけでなぐ室内熱交換器 (53a)も含め たより広 、範囲にぉ 、て冷媒と大気との熱交換を模擬するモデルを用いれば、特に 該室内熱交 (53a)における冷媒の吸熱量が十分に大きいことから、冷媒の漏れ 量が多いときでも、室内熱交換器 (53a)の出口温度 TH3は、膨張弁 (52a)の直後の 冷媒温度 Toとは大きく異なる値になり、上記のようにして冷媒の漏れ量 Gを定量的に 且つ精度良く求めることができる。 [0076] Thus, using a model that simulates heat exchange between the refrigerant and the atmosphere over a wider range, including the indoor heat exchanger (53a) connected only by the refrigerant pipe downstream of the expansion valve (52a), In particular, the amount of heat absorbed by the refrigerant in the indoor heat exchanger (53a) is sufficiently large. Even when the amount is large, the outlet temperature TH3 of the indoor heat exchanger (53a) is significantly different from the refrigerant temperature To immediately after the expansion valve (52a), and the refrigerant leakage amount G is quantified as described above. And accurately.
[0077] 推定演算の手順 [0077] Procedure of estimation calculation
次に、上記の如き冷媒漏れ量の推定がコントローラ(80)の冷媒漏れ量推定部(81 )によって行われる具体的な推定演算の手順を図 4のフローチャート図に沿って説明 する。  Next, a specific estimation calculation procedure in which the refrigerant leakage amount is estimated by the refrigerant leakage amount estimation unit (81) of the controller (80) will be described with reference to the flowchart of FIG.
[0078] まず、図示のフローのスタート後のステップ S1で、温度センサ(54a, 55a, 56a, · · ·) など力 の信号を入力し、必要に応じてメモリに記憶されているデータを読み込む。 ステップ S2では所定時間以上、停止している室内ユニット(12a)の第 1温度センサ (5 4a)の計測値 TH2が、室内温度センサ (56a)の計測値 TH1よりも所定値 a以上、低 いかどうか、つまり、停止している室内ユニット(12a)の室内熱交^^ (53a)の入口温 度 TH2が室温 TH1よりも所定以上、低いくなつたかどうか判定する(TH2<TH1— α )。尚、所定値 αは冷媒配管の伝熱状態を考慮してあらかじめ決定すればよい。  [0078] First, in step S1 after the start of the illustrated flow, a force signal such as a temperature sensor (54a, 55a, 56a, ···) is input, and data stored in the memory is read as necessary. . In step S2, the measured value TH2 of the first temperature sensor (54a) of the indoor unit (12a) that has been stopped for a predetermined time or longer is lower than the measured value TH1 of the indoor temperature sensor (56a) by a predetermined value a or more. It is determined whether the inlet temperature TH2 of the indoor heat exchanger (53a) of the stopped indoor unit (12a) has become lower than the room temperature TH1 by a predetermined value or more (TH2 <TH1-α). The predetermined value α may be determined in advance in consideration of the heat transfer state of the refrigerant pipe.
[0079] そして、上記ステップ S2の判定が NOで、 TH2≥TH1— aであれば、ステップ S 3に進んで異常なしと判定してリターンする一方、上記ステップ S 2の判定が YESであ れば、これは空気調和装置(10)のいずれかの室内ユニット(12b, 12c)が冷房運転を 開始して暫く時間が経過し、停止して!/、る室内ユニット(12a)の膨張弁 (52a)から下流 に或る程度以上、冷媒が漏れている状態であると判定して、ステップ S4に進む。  [0079] If the determination in step S2 is NO and TH2≥TH1-a, the process proceeds to step S3, determines that there is no abnormality, and returns, while the determination in step S2 is YES. For example, this is because one of the indoor units (12b, 12c) of the air conditioner (10) starts the cooling operation, and after a while, the indoor unit (12a) It is determined that the refrigerant is leaking to some extent downstream from 52a), and the process proceeds to step S4.
[0080] ステップ S4では、冷房運転中の別の室内ユニット(12b, 12c)の第 1温度センサ(5 4b, 54c)の計測値 TH2を、停止している室内ユ ット(12a)の膨張弁 (52a)から漏れ ている冷媒の温度 Toとして採用し、続くステップ S5では、その膨張弁 (52a)の直後の 冷媒温度 Toと室内熱交換器 (53a)の入口温度 TH2との差があらかじめ設定した値 j8よりも小さいかどうか判定する。この設定値 j8は第 1温度センサ (54a)の精度により 決定すればよい。  [0080] In step S4, the measured value TH2 of the first temperature sensor (54b, 54c) of the other indoor unit (12b, 12c) during the cooling operation is used for the expansion of the stopped indoor unit (12a). In step S5, the difference between the refrigerant temperature To immediately after the expansion valve (52a) and the inlet temperature TH2 of the indoor heat exchanger (53a) is preliminarily determined. Judge whether it is less than the set value j8. This set value j8 may be determined by the accuracy of the first temperature sensor (54a).
[0081] この判定が YESで TH2— Το< βであれば、冷媒の漏れ量が多くて、膨張弁(52 a)の直後の温度 Toと室内熱交^^ (53a)の入口温度 TH2とがあまり変わらな 、こと から、その室内熱交換器 (53a)入口までの冷媒の吸熱量 Q1に基づいて、該冷媒の 漏れ量 Gを推定することが難しいと判断し、後述のステップ S12に進む。一方、判定 が NOであれば冷媒の漏れ量は少ないので、以下のステップ S6〜S8に進んで、上 述したように膨張弁 (52a)の直後から室内熱交換器 (53a)の入口までの冷媒の吸熱 量 Q 1を算出し、これに基づ!/、て該冷媒の漏れ量 Gを求める。 [0081] If this determination is YES and TH2—Το <β, the amount of refrigerant leakage is large, and the temperature To immediately after the expansion valve (52a) and the inlet temperature TH2 of the indoor heat exchanger ^^ (53a) Therefore, based on the heat absorption amount Q1 of the refrigerant to the indoor heat exchanger (53a) inlet, the refrigerant It is determined that it is difficult to estimate the leakage amount G, and the process proceeds to Step S12 described later. On the other hand, if the determination is NO, the amount of refrigerant leakage is small, so the process proceeds to the following steps S6 to S8, and immediately after the expansion valve (52a) to the inlet of the indoor heat exchanger (53a) as described above. Calculate the heat absorption amount Q1 of the refrigerant, and based on this, calculate the leakage amount G of the refrigerant.
[0082] すなわち、ステップ S6では、上記ステップ S4で採用した膨張弁(52a)の直後の冷 媒温度 Toや温度センサ(54a, 55a, 56a, ···)〖こよる計測値 TH1, TH2, TH3などか ら、膨張弁 (52a)の直後から室内熱交換器 (53a)入口までの冷媒と大気との平均温 度差 ΔΤと、この間の冷媒のェンタルピ差 (Hout— Hin)をそれぞれ算出する。ステツ プ S7では、メモリに記憶されている冷媒配管の伝熱係数 K1及び伝熱面積 A1を読 み込んで、伝熱状態を表す係数 KAを算出する。ステップ S8では上記係数 KA、平 均温度差 ΔΤ及びェンタルピ差 (Hout— Hin)によって冷媒の漏れ量 Gを算出し、さ らに、この冷媒漏れ量 Gを空気流量に換算して漏れ空気流量換算値 V (CC/min)を算 出する。 [0082] That is, in step S6, the measured values TH1, TH2, and the refrigerant temperature To immediately after the expansion valve (52a) adopted in step S4 and the temperature sensors (54a, 55a, 56a, ...) are used. From TH3, etc., calculate the average temperature difference ΔΤ between the refrigerant and the atmosphere immediately after the expansion valve (52a) and the inlet of the indoor heat exchanger (53a), and the refrigerant enthalpy difference (Hout−Hin) during this period. . In step S7, the heat transfer coefficient K1 and heat transfer area A1 of the refrigerant pipe stored in the memory are read, and a coefficient KA representing the heat transfer state is calculated. In step S8, the refrigerant leakage amount G is calculated from the coefficient KA, the average temperature difference ΔΤ, and the enthalpy difference (Hout-Hin), and the refrigerant leakage amount G is converted into the air flow rate to calculate the leakage air flow rate. Calculate the value V ( CC / min).
[0083] そして、上記ステップ S8に続いてステップ S9では、上記のように算出した漏れ空 気流量換算値 Vがあらかじめ設定した閾値 γよりも大きいかどうか判定する。この判 定が NOであれば、膨張弁 (52a)力 の冷媒の漏れ量は未だ許容範囲内であるから 、ステップ S10に進んで異常なしと判定して、終了する(エンド)。一方、ステップ S9の 判定が YESで、膨張弁(52a)からの冷媒の漏れ量がかなり多くなつているのであれ ば、これにより露付きや氷融解動作の誤動作などが起きる可能性が高い。この場合、 膨張弁 (52a)のメンテナンスや交換が必要なので、ステップ SI 1に進んで異常と判定 し、膨張弁 (52a)に異常があることを表示装置 (82)に表示して、終了する (エンド)。  [0083] Then, in step S9 following step S8, it is determined whether or not the leakage air flow rate conversion value V calculated as described above is larger than a preset threshold value γ. If this determination is NO, the refrigerant leakage amount of the expansion valve (52a) force is still within the allowable range, so the routine proceeds to step S10, where it is determined that there is no abnormality and the process ends (END). On the other hand, if the determination in step S9 is YES and the amount of refrigerant leaking from the expansion valve (52a) is considerably large, this is likely to cause dew condensation or an ice melting operation malfunction. In this case, since maintenance and replacement of the expansion valve (52a) are necessary, the process proceeds to step SI 1 where it is determined that there is an abnormality, and the display device (82) indicates that there is an abnormality in the expansion valve (52a), and the process ends. (End).
[0084] また、上記ステップ S5において冷媒の漏れ量が多いと判定して進んだステップ S 12では、まず、膨張弁 (52a)の直後の冷媒温度 Toと室内熱交換器 (53a)の出口温 度 TH3との差が上記設定値 βよりも小さいかどうか判定する。この判定が YES (TH 3— To< )ということは、冷媒の漏れ量が非常に多くて、室内熱交 (53a)の出 口温度 TH3も膨張弁 (52a)の直後の冷媒温度 Toとあまり変わらな 、、 t 、うことなの で、ステップ S 13に進んで直ちに異常と判定し、膨張弁 (52a)に異常があることを表 示装置 (82)に表示して、終了する (エンド)。 [0085] 一方、判定が NOであれば、以下のステップ S 14, SI 5力ら上記ステップ S8に進 んで、上述したように膨張弁 (52a)の直後から室内熱交換器 (53a)の出口までの冷媒 の吸熱量 Qを算出し、これに基づいて該冷媒の漏れ量 Gを求める。すなわち、ステツ プ S14では上記ステップ S6と同様にして膨張弁 (52a)の直後から室内熱交 (53a )出口までの冷媒と大気との平均温度差 ΔΤ( ΔΤ1、 ΔΤ2)と、この間の冷媒のェン タルピ差 (Hout— Hin)とをそれぞれ算出し、ステップ S15では、冷媒配管及び熱交 翻 (53a)の伝熱係数 Kl, K2と伝熱面積 Al, A2とを読み込んで、伝熱状態を表 す係数 KAを算出する。 [0084] In Step S12, which has been determined that the amount of refrigerant leakage is large in Step S5, first, the refrigerant temperature To immediately after the expansion valve (52a) and the outlet temperature of the indoor heat exchanger (53a) are detected. Determining whether the difference from degree TH3 is smaller than the set value β. If this judgment is YES (TH 3— To <), the amount of refrigerant leakage is very large, and the outlet temperature TH3 of the indoor heat exchanger (53a) is not much different from the refrigerant temperature To immediately after the expansion valve (52a). Since it is unchangeable, t, it is determined that the process proceeds to step S13 and immediately determines that there is an abnormality. The display device (82) indicates that there is an abnormality in the expansion valve (52a), and the process ends. . [0085] On the other hand, if the determination is NO, the following step S14, SI5 force and the process proceeds to step S8, and the outlet of the indoor heat exchanger (53a) immediately after the expansion valve (52a) as described above. The heat absorption amount Q of the refrigerant up to is calculated, and based on this, the leakage amount G of the refrigerant is obtained. That is, in step S14, similar to step S6 above, the average temperature difference ΔΤ (ΔΤ1, ΔΤ2) between the refrigerant and the atmosphere immediately after the expansion valve (52a) to the outlet of the indoor heat exchanger (53a), and the refrigerant between them In step S15, the heat transfer coefficient Kl, K2 and the heat transfer area Al, A2 of the refrigerant piping and heat exchange (53a) are read and the heat transfer state is calculated. The coefficient KA that represents is calculated.
[0086] そして、上記ステップ S8に進んで冷媒の漏れ量 Gとその空気流量換算値 Vをそ れぞれ算出し、この漏れ空気流量換算値 Vと閾値 γとの大小判定を行い (ステップ S 9)、この判定結果に応じて膨張弁 (52a)の異常の有無を判定し (ステップ S 10, S11 )、異常があれば (S 11)そのことを表示装置 (82)に表示して、終了する (エンド)。  [0086] Then, the process proceeds to step S8, where the refrigerant leakage amount G and its air flow rate conversion value V are calculated, respectively, and the size of the leakage air flow rate conversion value V and the threshold value γ is determined (step S). 9) In accordance with this determination result, it is determined whether or not there is an abnormality in the expansion valve (52a) (steps S10 and S11) .If there is an abnormality (S11), this is indicated on the display device (82) End (end).
[0087] 一実施形態の効果  [0087] Effect of one embodiment
したがって、上述した実施形態では、所謂マルチタイプの空気調和装置(10)にお いて、少なくとも 1つの室内ユニット(12b, 12c)が冷房運転を行い、かつ、それ以外の 少なくとも 1つの室内ユニット(12a)が運転を停止しているときに、その停止している室 内ユニット(12a)の膨張弁 (52a)の直後から室内熱交換器 (53a)の入口又は出口まで を流通する冷媒の大気との間の熱の伝導状態を総括的に模擬するモデルを用いて 、例えば室温や上記室内熱交換器 (53a)の入口又は出口温度の計測値 TH1〜TH 3などを入力して、膨張弁 (52a)からの冷媒の漏れ量 Gを定量的にかつ精度良く推定 することができる。  Therefore, in the above-described embodiment, in the so-called multi-type air conditioner (10), at least one indoor unit (12b, 12c) performs a cooling operation, and at least one other indoor unit (12a) ) Has stopped operating, and the refrigerant atmosphere flowing from immediately after the expansion valve (52a) of the stopped indoor unit (12a) to the inlet or outlet of the indoor heat exchanger (53a) Using a model that comprehensively simulates the heat conduction state between, for example, the measured values TH1 to TH3 of the room temperature or the inlet or outlet temperature of the indoor heat exchanger (53a) are input, and the expansion valve ( The refrigerant leakage amount G from 52a) can be estimated quantitatively and accurately.
[0088] そして、そうして推定した冷媒の漏れ量 Gが所定以上に多くなれば、漏れ量がさら に多くなつて露付きや氷融解動作の誤動作などの不具合が起きる前に、ユーザに膨 張弁 (52a)の異常を報知して、そのメンテナンスや交換などを促すことができるので、 上記の不具合は確実に防止できる。  [0088] If the refrigerant leakage amount G estimated in this way increases beyond a predetermined level, the leakage amount increases further, and before the malfunction such as dew condensation or malfunction of the ice melting operation occurs, the user swells. Since the abnormality of the tension valve (52a) can be notified and the maintenance or replacement thereof can be promoted, the above-mentioned problems can be reliably prevented.
[0089] 特に、本実施形態では、冷媒の漏れ量 Gが比較的少ないときには、膨張弁 (52a) の直後から室内熱交換器 (53a)の入口までの冷媒配管における冷媒の吸熱量 Q1に 基づいて、その漏れ量 Gを推定するようにしており、この冷媒配管が比較的短ぐ冷 媒温度の変化は略線形とみなすことができるので、簡易なモデルを用いてかなり精 度の高い推定が行える。一方、冷媒の漏れ量 Gが多いときには、さらに室内熱交換 器 (53a)における冷媒の吸熱量 Q2も考慮することで、その漏れ量 Gを推定することが できる。 [0089] In particular, in the present embodiment, when the refrigerant leakage amount G is relatively small, based on the heat absorption amount Q1 of the refrigerant in the refrigerant pipe immediately after the expansion valve (52a) to the inlet of the indoor heat exchanger (53a). Therefore, the leakage amount G is estimated, and the refrigerant pipe is cooled relatively short. Since the change in the medium temperature can be regarded as approximately linear, a fairly accurate estimation can be performed using a simple model. On the other hand, when the refrigerant leakage amount G is large, the leakage amount G can be estimated by further considering the refrigerant heat absorption amount Q2 in the indoor heat exchanger (53a).
[0090] し力も、本実施形態では、上記の推定に用いる温度の計測値 TH1〜TH3などを 室内ユニット(12a)に通常の運転制御のために装備されている温度センサ (54a, 55a , 56a)によって計測するようにしており、加えて膨張弁(52)の直後の冷媒温度 Toは、 冷房運転中の別の室内ユニット(12)の温度センサ(54b, 54c)による計測値を代用す るようにしているので、推定演算のために専用のセンサを設ける必要はなぐコスト面 で有利である。  [0090] In this embodiment, the temperature force (54a, 55a, 56a) provided for the normal operation control in the indoor unit (12a) is measured with the measured values TH1 to TH3 and the like used for the above estimation. ), And the refrigerant temperature To immediately after the expansion valve (52) is substituted with the value measured by the temperature sensor (54b, 54c) of another indoor unit (12) during the cooling operation. Therefore, there is no need to provide a dedicated sensor for the estimation calculation, which is advantageous in terms of cost.
[0091] なお、本実施形態は、本質的に好ましい例示であって、本発明、その適用物、あ るいはその用途の範囲を制限することを意図するものではない。例えば、本実施形 態では温度センサ(54a, 55a, 56a)による計測値 TH1〜TH3をそのまま用いて、上 記冷媒漏れ量の推定演算を行うようにしているが、一般的に配管などを流通する冷 媒の実際の温度はセンサによる計測値とは若干のずれがあり、このずれの大きさが 例えば図 5に示すように冷媒の流速などによって変化するので、図示のような関係を あら力じめ実験などにより調べて補正マップを作成しておき、冷媒の流れに関連する 状態量 (例えば膨張弁 (52a)の差圧など)によって上記温度計測値 TH1〜TH3を補 正することが好ましい。  Note that this embodiment is essentially a preferred example, and is not intended to limit the scope of the present invention, its application, or its application. For example, in this embodiment, the measured values TH1 to TH3 measured by the temperature sensors (54a, 55a, 56a) are used as they are for the above calculation of the refrigerant leakage amount. The actual temperature of the cooling medium to be measured is slightly different from the measured value by the sensor, and the magnitude of this deviation varies depending on the flow rate of the refrigerant as shown in Fig. 5, for example. It is preferable to create a correction map by investigating through a pilot experiment, etc., and correcting the above temperature measurement values TH1 to TH3 by the state quantity related to the refrigerant flow (for example, the differential pressure of the expansion valve (52a)). .
[0092] また、本実施形態では、停止している室内ユニット(12a)の膨張弁 (52a)の直後の 冷媒温度 Toとして、冷房運転中の別の室内ユニット(12b, 12c)の第 1温度センサ (54 b, 54c)の計測値を用いるようにしている力 これに限るものではなぐ例えば室外ュ ニット(11)においてモニタした蒸発温度で代用することもできる。  [0092] Further, in the present embodiment, the refrigerant temperature To immediately after the expansion valve (52a) of the stopped indoor unit (12a) is used as the first temperature of another indoor unit (12b, 12c) during the cooling operation. The force using the measured values of the sensors (54b, 54c) is not limited to this. For example, the evaporation temperature monitored in the outdoor unit (11) can be substituted.
[0093] また、本実施形態では、図 4のフローのステップ S9などに示すように、冷媒の漏れ 量 Gの空気量換算値 Vが閾値 γよりも大き 、ときに、膨張弁 (52a)の異常を判定して 報知するするようにしているが、これに限らず、冷媒漏れ量 G自体があらかじめ設定し た閾値よりも大きいときに異常を判定するようにしてもよい。また、冷媒の漏れによる 露付き量を計算して、これが所定以上に多 、ときにユーザに報知するようにしてもよ い。 In this embodiment, as shown in step S9 of the flow in FIG. 4 and the like, when the air amount converted value V of the refrigerant leakage amount G is larger than the threshold value γ, the expansion valve (52a) Although the abnormality is determined and notified, the present invention is not limited to this, and the abnormality may be determined when the refrigerant leakage amount G itself is larger than a preset threshold value. In addition, the amount of dew condensation due to refrigerant leakage may be calculated and notified to the user when this is more than a predetermined amount. Yes.
[0094] その場合に、冷媒配管や室内熱交換器 (53a)における露付き量 D (kg/h)は、上 記実施形態において求めた冷媒の吸熱量 Ql、 Q2を時間で積算して、現在までの 総吸熱量 Qalを求め、この総吸熱量 Qalによって概略、 D=QalZ水の気化熱(245kJ /kg)として計算するとともに、必要に応じて室温、外気温、湿度などによる補正を加え るようにすればよい。  [0094] In that case, the dew amount D (kg / h) in the refrigerant pipe and the indoor heat exchanger (53a) is obtained by integrating the refrigerant heat absorption amounts Ql and Q2 obtained in the above embodiment over time. Calculate the total endotherm Qal to date, and roughly calculate it as D = QalZ water vaporization heat (245 kJ / kg) with the total endotherm Qal, and make corrections based on room temperature, outside temperature, humidity, etc. as necessary. You can do so.
[0095] さらに、本実施形態では、マルチタイプの空気調和装置(10)においていずれか の室内ユニット(12b, 12c)が冷房運転を開始して暫く時間が経過し、停止している室 内ユニット(12a)の膨張弁 (52a)力 下流に或る程度以上、冷媒が漏れて!/、る状態で 、その漏れ量を推定するようにしており、このような状態で推定を行うことにより、その 精度を高めることができるものである力 これに限るものではなぐ例えば、いずれか の室内ユニット(12)がサーモオフにより停止したときに、その膨張弁 (52)からの冷媒 漏れ量を推定するようにしてもょ ヽ。  [0095] Furthermore, in the present embodiment, in the multi-type air conditioner (10), any indoor unit (12b, 12c) has stopped for a while after a certain time has elapsed since the start of the cooling operation. (12a) expansion valve (52a) force The amount of leakage is estimated in a state where the refrigerant leaks to some extent downstream! /, And by estimating in such a state, For example, when any indoor unit (12) stops due to thermo-off, the amount of refrigerant leakage from the expansion valve (52) is estimated. Anyway ヽ.
[0096] こうすれば、基本的には全ての室内ユニット(12a, 12b, 12c)が使用されている状 況下でも、そのサーモオフを利用して推定を行えるので、その頻度が高くなり、膨張 弁 (52)の経年劣化などによって冷媒の漏れ量が過多になる前に、そのことを検知で きる可能性が高くなる。よって、露付きや誤動作などの不具合をより確実に防止でき る。  [0096] In this way, even when all indoor units (12a, 12b, 12c) are basically used, estimation can be performed using the thermo-off, so that the frequency is increased and expansion is performed. There is a high possibility that this can be detected before the amount of refrigerant leakage becomes excessive due to, for example, aging of the valve (52). Therefore, problems such as dew and malfunction can be prevented more reliably.
産業上の利用可能性  Industrial applicability
[0097] 以上説明したように、本発明は、冷媒回路に複数台の利用ユニットが接続された 所謂マルチタイプの空気調和装置につ 、て有用である。 As described above, the present invention is useful for a so-called multi-type air conditioner in which a plurality of usage units are connected to a refrigerant circuit.

Claims

請求の範囲 The scope of the claims
[1] 熱源ユニット(11)と複数台の利用ユニット (12)とが接続された冷媒回路 (20)を備 え、少なくとも冷房運転を行う空気調和装置であって、  [1] An air conditioner that includes a refrigerant circuit (20) in which a heat source unit (11) and a plurality of use units (12) are connected, and performs at least a cooling operation,
上記利用ユニット(12)の少なくとも 1つが冷房運転を行い、かつ、それ以外の少な くとも 1つの利用ユニット( 12)が運転を停止して 、るときに、その停止して 、る利用ュ ニット(12)の膨張弁 (52)の下流の所定範囲における熱伝導状態のモデルを用いて 、当該膨張弁 (52)の冷媒漏れ量を推定する冷媒漏れ量推定手段 (81)を備えて!/ヽる ことを特徴とする空気調和装置。  When at least one of the use units (12) performs cooling operation, and at least one other use unit (12) stops operating, the use unit stops. The refrigerant leakage amount estimation means (81) for estimating the refrigerant leakage amount of the expansion valve (52) using a model of the heat conduction state in a predetermined range downstream of the expansion valve (52) of (12) is provided! / An air conditioner characterized by squeezing.
[2] 請求項 1において、 [2] In claim 1,
上記利用ユニット(12)には、熱交換器 (53)の入口温度を計測する入口温度計測 手段 (54)と、室内の温度を計測する室温計測手段 (56)とが設けられ、  The utilization unit (12) is provided with an inlet temperature measuring means (54) for measuring the inlet temperature of the heat exchanger (53) and a room temperature measuring means (56) for measuring the temperature in the room,
上記モデルは、停止して!/、る利用ユニット(12)の膨張弁 (52)の直後から熱交換 器 (53)までの配管内を流れる冷媒が、当該配管を介して行う大気との熱交換を模擬 するものであり、  In the above model, the refrigerant flowing in the pipe from the position immediately after the expansion valve (52) of the utilization unit (12) to the heat exchanger (53) is stopped and heated with the atmosphere through the pipe. It simulates exchange,
上記冷媒漏れ量推定手段 (81)は、上記停止している利用ユニット(12)の入口温 度計測手段 (54)による計測値と、室温計測手段 (56)による計測値と、上記膨張弁 (5 2)の直後の冷媒温度とに基づき、上記モデルを用いて冷媒漏れ量を推定する ことを特徴とする空気調和装置。  The refrigerant leakage amount estimating means (81) includes a measured value by the inlet temperature measuring means (54) of the stopped use unit (12), a measured value by the room temperature measuring means (56), and the expansion valve ( 52. An air conditioner that estimates the refrigerant leakage amount using the above model based on the refrigerant temperature immediately after 2).
[3] 請求項 2において、 [3] In claim 2,
上記冷媒漏れ量推定手段 (81)は、冷房運転中の別の利用ユニット(12)の入口 温度計測手段 (54)による計測値を、停止している利用ユニット(12)の膨張弁 (52)の 直後の冷媒温度とみなす  The refrigerant leakage amount estimation means (81) uses the measured value of the inlet temperature measurement means (54) of another usage unit (12) during cooling operation to the expansion valve (52) of the usage unit (12) that has stopped. Regarded as the refrigerant temperature immediately after
ことを特徴とする空気調和装置。  An air conditioner characterized by that.
[4] 請求項 2において、 [4] In claim 2,
上記冷媒漏れ量推定手段 (81)は、停止中の利用ユニット (12)の入口温度計測 手段 (54)又は出口温度計測手段 (55)の 、ずれかによる計測値が低下して、室温計 測手段 (56)による計測値よりも所定値以上、低くなつたときに、膨張弁 (52)の冷媒漏 れ量を推定する ことを特徴とする空気調和装置。 The refrigerant leak amount estimation means (81) is used for the room temperature measurement because the measured value of the inlet temperature measurement means (54) or the outlet temperature measurement means (55) of the stopped use unit (12) decreases. Estimate the refrigerant leakage amount of the expansion valve (52) when the measured value is lower than the measured value by the means (56) by a predetermined value. An air conditioner characterized by that.
[5] 請求項 2において、 [5] In claim 2,
上記冷媒漏れ量推定手段 (81)は、冷房運転中の利用ユニット (12)がサーモオフ により運転を停止した後に、この利用ユニット(12)の入口温度計測手段 (54)又は出 口温度計測手段 (55)の 、ずれかによる計測値が上昇して、室温計測手段 (56)によ る計測値よりも所定値以上、低い温度で安定したときに、膨張弁 (52)の冷媒漏れ量 を推定する  The refrigerant leakage amount estimation means (81) is configured such that after the use unit (12) in the cooling operation stops operation due to thermo-off, the inlet temperature measurement means (54) or the outlet temperature measurement means ( 55) When the measured value due to the deviation rises and stabilizes at a temperature lower than the measured value by the room temperature measuring means (56) by a predetermined value or more, the refrigerant leakage amount of the expansion valve (52) is estimated. Do
ことを特徴とする空気調和装置。  An air conditioner characterized by that.
[6] 請求項 1において、 [6] In claim 1,
上記利用ユニット(12)には、熱交換器 (53)の入口温度を計測する入口温度計測 手段 (54)と、熱交換器 (53)の出口温度を計測する出口温度計測手段 (55)と、室内 の温度を計測する室温計測手段 (56)とが設けられ、  The utilization unit (12) includes an inlet temperature measuring means (54) for measuring the inlet temperature of the heat exchanger (53), an outlet temperature measuring means (55) for measuring the outlet temperature of the heat exchanger (53), and And room temperature measuring means (56) for measuring the indoor temperature,
上記モデルは、停止して!/、る利用ユニット(12)の膨張弁 (52)の直後から配管及 び熱交換器 (53)内を流通して該熱交換器 (53)の出口に至る冷媒が、当該配管及び 熱交 (53)を介して行う大気との熱交換を模擬するものであり、  The above model stops! /, Immediately after the expansion valve (52) of the utilization unit (12), flows through the piping and the heat exchanger (53) to reach the outlet of the heat exchanger (53). The refrigerant simulates heat exchange with the atmosphere through the pipe and heat exchange (53).
上記冷媒漏れ量推定手段 (81)は、上記停止している利用ユニット(12)の入口温 度計測手段 (54)による計測値と、上記停止して!/、る利用ユニット(12)の出口温度計 測手段 (55)による計測値と、室温計測手段 (56)による計測値と、上記膨張弁 (52)の 直後の冷媒温度とに基づき、上記モデルを用いて冷媒漏れ量を推定する ことを特徴とする空気調和装置。  The refrigerant leakage amount estimation means (81) includes the measured value by the inlet temperature measurement means (54) of the stopped usage unit (12) and the outlet of the usage unit (12) that stops and / or is stopped. Estimate the amount of refrigerant leakage using the above model based on the measured value by the thermometer (55), the measured value by the room temperature measuring means (56), and the refrigerant temperature immediately after the expansion valve (52). An air conditioner characterized by.
[7] 請求項 6において、 [7] In claim 6,
上記冷媒漏れ量推定手段 (81)は、冷房運転中の別の利用ユニット(12)の入口 温度計測手段 (54)による計測値を、停止している利用ユニット(12)の膨張弁 (52)の 直後の冷媒温度とみなす  The refrigerant leakage amount estimation means (81) uses the measured value of the inlet temperature measurement means (54) of another usage unit (12) during cooling operation to the expansion valve (52) of the usage unit (12) that has stopped. Regarded as the refrigerant temperature immediately after
ことを特徴とする空気調和装置。  An air conditioner characterized by that.
[8] 請求項 6において、 [8] In claim 6,
上記冷媒漏れ量推定手段 (81)は、停止中の利用ユニット (12)の入口温度計測 手段 (54)又は出口温度計測手段 (55)の 、ずれかによる計測値が低下して、室温計 測手段 (56)による計測値よりも所定値以上、低くなつたときに、膨張弁 (52)の冷媒漏 れ量を推定する The refrigerant leak amount estimating means (81) is a measure of whether the measured value of the inlet temperature measuring means (54) or the outlet temperature measuring means (55) of the use unit (12) being stopped is reduced. Estimate the refrigerant leakage amount of the expansion valve (52) when the measured value is lower than the measured value by the measuring means (56).
ことを特徴とする空気調和装置。  An air conditioner characterized by that.
[9] 請求項 6において、 [9] In claim 6,
上記冷媒漏れ量推定手段 (81)は、冷房運転中の利用ユニット (12)がサーモオフ により運転を停止した後に、この利用ユニット(12)の入口温度計測手段 (54)又は出 口温度計測手段 (55)の 、ずれかによる計測値が上昇して、室温計測手段 (56)によ る計測値よりも所定値以上、低い温度で安定したときに、膨張弁 (52)の冷媒漏れ量 を推定する  The refrigerant leakage amount estimation means (81) is configured such that after the use unit (12) in the cooling operation stops operation due to thermo-off, the inlet temperature measurement means (54) or the outlet temperature measurement means ( 55) When the measured value due to the deviation rises and stabilizes at a temperature lower than the measured value by the room temperature measuring means (56) by a predetermined value or more, the refrigerant leakage amount of the expansion valve (52) is estimated. Do
ことを特徴とする空気調和装置。  An air conditioner characterized by that.
[10] 請求項 1において、 [10] In claim 1,
冷媒漏れ量推定手段 (81)により推定された冷媒漏れ量が所定量以上のときに報 知を行う報知手段 (82)をさらに備えて!/、る  Further provided is a notification means (82) for performing a notification when the refrigerant leakage amount estimated by the refrigerant leakage amount estimation means (81) is a predetermined amount or more.
ことを特徴とする空気調和装置。  An air conditioner characterized by that.
PCT/JP2006/313216 2005-07-07 2006-07-03 Air conditioner WO2007007576A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-199185 2005-07-07
JP2005199185A JP3915819B2 (en) 2005-07-07 2005-07-07 Air conditioner

Publications (1)

Publication Number Publication Date
WO2007007576A1 true WO2007007576A1 (en) 2007-01-18

Family

ID=37636972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313216 WO2007007576A1 (en) 2005-07-07 2006-07-03 Air conditioner

Country Status (2)

Country Link
JP (1) JP3915819B2 (en)
WO (1) WO2007007576A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091443A (en) * 2015-08-31 2015-11-25 宁波奥克斯电气有限公司 Leakage protection control method for electronic expansion valve of switched-off indoor unit of multi-connected air conditioning unit
CN106016621A (en) * 2016-06-16 2016-10-12 珠海格力电器股份有限公司 Leakage detection control method of multi-split air conditioning system
EP4006437A4 (en) * 2019-07-23 2022-09-28 Qingdao Haier Air-Conditioning Electronic Co., Ltd Expansion valve control method for multi-split air-conditioning system
US11927377B2 (en) 2014-09-26 2024-03-12 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US11953239B2 (en) 2018-08-29 2024-04-09 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232569A (en) * 2007-03-22 2008-10-02 Daikin Ind Ltd Refrigerating apparatus
JP2014102041A (en) * 2012-11-21 2014-06-05 Fujitsu General Ltd Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296621A (en) * 1992-04-20 1993-11-09 Mitsubishi Electric Corp Separation type air conditioner
JPH10238912A (en) * 1997-02-27 1998-09-11 Mitsubishi Electric Corp Air conditioner and multizone air conditioner
JP2002071188A (en) * 2000-08-30 2002-03-08 Mitsubishi Electric Building Techno Service Co Ltd Abnormal heating medium supply detection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296621A (en) * 1992-04-20 1993-11-09 Mitsubishi Electric Corp Separation type air conditioner
JPH10238912A (en) * 1997-02-27 1998-09-11 Mitsubishi Electric Corp Air conditioner and multizone air conditioner
JP2002071188A (en) * 2000-08-30 2002-03-08 Mitsubishi Electric Building Techno Service Co Ltd Abnormal heating medium supply detection apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927377B2 (en) 2014-09-26 2024-03-12 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
CN105091443A (en) * 2015-08-31 2015-11-25 宁波奥克斯电气有限公司 Leakage protection control method for electronic expansion valve of switched-off indoor unit of multi-connected air conditioning unit
CN106016621A (en) * 2016-06-16 2016-10-12 珠海格力电器股份有限公司 Leakage detection control method of multi-split air conditioning system
CN106016621B (en) * 2016-06-16 2018-10-26 珠海格力电器股份有限公司 Leakage detection control method of multi-split air conditioning system
US11953239B2 (en) 2018-08-29 2024-04-09 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
EP4006437A4 (en) * 2019-07-23 2022-09-28 Qingdao Haier Air-Conditioning Electronic Co., Ltd Expansion valve control method for multi-split air-conditioning system

Also Published As

Publication number Publication date
JP3915819B2 (en) 2007-05-16
JP2007017086A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4317878B2 (en) Air conditioner and method for judging refrigerant amount
US7836711B2 (en) Air conditioner having an ice melting operation terminated on the basis of refrigerant temperature and pressure
US6655161B1 (en) Air conditioner and control method thereof
EP2320169B1 (en) Air conditioner and method for determining the amount of refrigerant therein
US20100174412A1 (en) Air conditioner and method for detecting malfunction thereof
WO2007007576A1 (en) Air conditioner
US10386871B2 (en) Air conditioner with indoor units and outdoor units
WO2009150824A1 (en) Refrigeration apparatus
JP6444577B1 (en) Air conditioner
CN105065249A (en) Compressor performance detection device, air conditioning system with same and control method
JP5505477B2 (en) AIR CONDITIONER AND REFRIGERANT AMOUNT JUDGING METHOD FOR AIR CONDITIONER
JP2017075760A (en) Air conditioner
US11333388B2 (en) Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system
JP2005257219A (en) Air conditioner
JP6141217B2 (en) Compressor deterioration diagnosis device and compressor deterioration diagnosis method
CN110529974B (en) Refrigerant leakage detection method and device for air conditioner and air conditioner
KR101282038B1 (en) Air conditioner and method of controlling the same
WO2008069265A1 (en) Air-conditioner
JP2013104619A (en) Air conditioning indoor unit
KR101590353B1 (en) Air conditioner and operating method thereof
KR101152936B1 (en) A multi air conditioner system and a pipe connection searching method of the multi air conditioner system
JP2004251583A (en) Air conditioner
KR20100079405A (en) Air conditioner and operating method thereof
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
EP3309470A1 (en) Air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780720

Country of ref document: EP

Kind code of ref document: A1