WO2007004281A1 - ペースト組成物およびそれを用いた太陽電池素子 - Google Patents
ペースト組成物およびそれを用いた太陽電池素子 Download PDFInfo
- Publication number
- WO2007004281A1 WO2007004281A1 PCT/JP2005/012301 JP2005012301W WO2007004281A1 WO 2007004281 A1 WO2007004281 A1 WO 2007004281A1 JP 2005012301 W JP2005012301 W JP 2005012301W WO 2007004281 A1 WO2007004281 A1 WO 2007004281A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum
- paste composition
- paste
- semiconductor substrate
- powder
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 54
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 69
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 51
- 239000004065 semiconductor Substances 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 46
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 44
- 239000010703 silicon Substances 0.000 claims abstract description 44
- 239000002245 particle Substances 0.000 claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 238000010304 firing Methods 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 14
- 239000006229 carbon black Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 18
- 238000006243 chemical reaction Methods 0.000 abstract description 12
- 238000000034 method Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 150000002484 inorganic compounds Chemical class 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- the present invention generally relates to a paste composition and a solar cell element using the same.
- the present invention relates to a paste composition used for forming a back surface aluminum electrode on a p-type silicon semiconductor substrate constituting a crystalline silicon solar cell, and a solar cell element using the paste composition.
- Solar cells are desired to be used in a wider range as clean energy that is safe and has a low environmental impact.
- it is necessary to promote light weight and low cost in order to popularize solar cells that use silicon semiconductor substrates to form elements.
- research and development have been repeated in order to reduce the thickness of solar cell elements.
- FIG. 1 is a diagram schematically showing a general cross-sectional structure of a solar cell element.
- an n-type impurity layer 2 having a thickness of 0.3 to 0.5 m is provided on the light-receiving surface side of a ⁇ -type silicon semiconductor substrate 1 having a thickness of 00 to 600 ⁇ m.
- a film 3 and a grid electrode 4 are formed in this order.
- an aluminum electrode layer 8 is formed as a back electrode.
- the aluminum electrode layer 8 includes an aluminum sintered layer 5 and an aluminum silicon mixed layer 6.
- an aluminum sintered layer 5 and an aluminum silicon mixed layer 6 are formed, and at the same time, aluminum is contained in the p-type silicon semiconductor substrate 1.
- the presence of the p + layer 7 provides a so-called BSF (Back Surface Field) effect, and can improve the collection efficiency of carriers generated in the p-type semiconductor substrate 1.
- the aluminum electrode layer is formed to be thicker than necessary. Therefore, if the thickness of the silicon semiconductor substrate is reduced to 300 m or less in order to reduce the thickness of the solar cell element, the ratio of the thickness of the aluminum electrode layer to the thickness of the semiconductor substrate increases. As a result, when cooling from the firing temperature for forming the aluminum electrode layer to room temperature, internal stress is generated due to the difference in thermal expansion coefficient between the aluminum or aluminum silicon mixture and silicon. There has been a problem that the semiconductor substrate is warped or cracked.
- the conventional method for manufacturing a solar cell element has a problem when the thickness of the silicon semiconductor substrate is reduced to 300 ⁇ m or less in response to a request for thinning the solar cell element.
- Patent Document 1 A method of etching a part of the surface of the back electrode in the thickness direction after forming the back electrode on the semiconductor substrate has been proposed in, for example, Japanese Unexamined Patent Application Publication No. 2002-353476 (Patent Document 1).
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2002-353476
- this method has a problem in that the manufacturing process is complicated and warpage or cracking during firing cannot be prevented.
- two or more types of aluminum-containing paste are applied to the entire back surface of the semiconductor substrate by first thinly applying it and then applying the aluminum-containing paste again to the portion to be thickened, followed by firing.
- Japanese Patent Laid-Open No. 2002-217435 proposes a method of forming a back electrode with a thickness of 10 mm.
- Patent Document 3 proposes a method of forming backside electrodes in a lattice pattern on the backside of a semiconductor substrate.
- a method of forming a back electrode on the back surface of a semiconductor substrate in a strip shape having a different thickness is proposed, for example, in Japanese Patent Laid-Open No. 2002-141534 (Patent Document 4). It has been proposed.
- a method of forming a back electrode in a rectangular shape on the back surface of a semiconductor substrate is, for example,
- Patent Document 5 JP-A-2002-141546 (Patent Document 5).
- the p + layer that produces the BSF effect formed by any of these methods becomes non-uniform, resulting in a decrease in conversion efficiency.
- composition of a conductive paste capable of thinning the aluminum electrode layer while ensuring a desired BSF effect a composition containing aluminum powder, glass frit, an organic vehicle, and an aluminum-containing organic compound. JP 2000-90734 (Patent Document 6).
- Patent Document 6 JP 2000-90734
- the back electrode layer is thinned by reducing the coating amount while ensuring certain solar cell characteristics, and the amount of warpage generated in the p-type silicon semiconductor substrate is reduced.
- the amount of warpage cannot be reduced without reducing the amount of conductive paste applied in order to obtain a sufficient BSF effect.
- the coefficient of thermal expansion is smaller than that of aluminum, and the melting temperature, softening temperature and decomposition temperature are higher than the melting point of aluminum, and include an inorganic compound, aluminum powder, and organic vehicle.
- Paste composition strength For example, it has been proposed in JP 2003-223813 A (Patent Document 7). However, when the amount of the inorganic compound added is increased, the occurrence of warpage or cracking during firing can be further suppressed, but the surface resistance of the aluminum electrode layer is increased and the ohmic resistance between the electrodes is increased. There was a problem that the energy generated by the irradiation of the material could not be extracted effectively, leading to a decrease in energy conversion efficiency.
- Patent Document 1 Japanese Patent Laid-Open No. 2002-353476
- Patent Document 2 JP 2002-217435 A
- Patent Document 3 Japanese Patent Laid-Open No. 2002-141533
- Patent Document 4 Japanese Patent Laid-Open No. 2002-141534
- Patent Document 5 JP 2002-141546 A
- Patent Document 6 Japanese Unexamined Patent Publication No. 2000-90734
- Patent Document 7 Japanese Patent Laid-Open No. 2003-223813
- an object of the present invention is to solve the above-mentioned problem, and even if a thinner silicon semiconductor substrate is used, warpage or cracking can be prevented, and high, A paste composition capable of achieving a BSF effect, high energy conversion efficiency, and a solar cell element including an electrode formed using the composition.
- the paste composition according to the present invention has the following characteristics.
- a paste composition according to the present invention is a paste composition for forming an electrode on a p-type silicon semiconductor substrate, and includes an aluminum powder, an organic vehicle, and a carbon powder.
- the paste composition of the present invention further includes glass frit.
- the paste composition of the present invention includes 0.1% by mass or more and 18% by mass or less of carbon powder.
- the aluminum powder is 60% by mass or more and 75% by mass or less
- the organic vehicle is 20% by mass or more and 35% by mass or less
- the carbon powder is 0.1% by mass or more 18% by mass. Including mass% or less.
- the paste composition of the present invention contains aluminum powder in an amount of 60% by mass to 75% by mass, an organic vehicle in an amount of 20% by mass to 30% by mass, and a carbon powder of 0. 1% to 18% by mass and glass frit to 5.0% by mass or less.
- the carbon powder is preferably carbon black.
- the average particle size of the carbon powder is preferably 10 ⁇ m or less.
- the average particle size of the carbon powder is 0.5. It is preferable that it is below ⁇ m.
- the carbon powder when the average particle size of the carbon powder is 0.5 ⁇ m or less, the carbon powder is preferably contained in an amount of 0.3 mass% to 6 mass%.
- a solar cell element according to the present invention includes an electrode formed by applying a paste thread and composition having the above-described characteristics onto a p-type silicon semiconductor substrate and then firing it.
- a solar cell element according to another aspect of the present invention includes an aluminum electrode layer, and the aluminum electrode layer includes carbon particles.
- a solar cell element having an electrode formed using the composition can achieve a high BSF effect and a high energy conversion efficiency.
- FIG. 1 is a diagram schematically showing a general cross-sectional structure of a solar cell element to which the present invention is applied as one embodiment.
- FIG. 2 is a diagram schematically showing a method of measuring a warpage amount of a p-type silicon semiconductor substrate after firing in which an aluminum electrode layer is formed in Examples and Conventional Examples.
- l p-type silicon semiconductor substrate
- 2 n-type impurity layer
- 3 antireflection film
- 4 grid electrode
- 5 aluminum sintered layer
- 6 aluminum silicon mixed layer
- 7 p + layer
- 8 Aluminum electrode layer
- the paste composition of the present invention is characterized by further containing carbon powder in addition to the aluminum powder and the organic vehicle.
- the thermal expansion coefficient of carbon powder varies depending on the crystal structure and the like, but is approximately 0.5 to: LO X 10 _6 / ° C, which is smaller than the aluminum thermal expansion coefficient 23.5 X 10 _6 Z ° C.
- the electrical conductivity of the carbon powder is determined by the inorganic compound powder or the key. Larger than lumium-containing organic compound powder.
- the surface resistance of the aluminum electrode layer does not increase, there is no possibility of causing a decrease in energy conversion efficiency. Further, since the deformation of the p-type silicon semiconductor substrate after baking can be suppressed without reducing the paste coating thickness, a sufficient BSF effect can be obtained.
- any material such as artificial graphite powder, activated carbon or carbon black, carbon fiber, glassy carbon and the like can be suitably used. .
- the content of the carbon powder included in the paste yarn according to the present invention is preferably 0.1% by mass or more and 18% by mass. If the content of the carbon powder is less than 0.1% by mass, it is not possible to obtain a sufficient addition effect to suppress deformation of the p-type silicon semiconductor substrate after firing. If the content of the carbon powder exceeds 18 mass 0/0, the application of the paste in screen printing or the like is reduced. [0038]
- the average particle size of the carbon powder included in the paste composition of the present invention is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.5 m or less. If the average particle size of the carbon powder exceeds 10 m, the number of carbon particles present in the aluminum electrode layer formed when the paste is baked is reduced, so that deformation of the p-type silicon semiconductor substrate after baking is suppressed. The sufficient addition effect cannot be obtained.
- the average particle size of the carbon powder is not more than 0.3 and the content of the carbon powder is 0.3 mass. % To 6% by mass. By doing so, fine carbon powder is effectively dispersed and contained in the aluminum electrode layer.
- the lower limit of the average particle size of the carbon powder is not particularly limited, but when the specific surface area that increases with the decrease in the average particle size exceeds 20000 m 2 / g, the viscosity of the paste increases, and the paste does not have a good effect during screen printing. The applicability decreases.
- the content of the aluminum powder included in the paste composition of the present invention is preferably 60% by mass or more and 75% by mass or less. If the content of aluminum powder is less than 60% by mass, the surface resistance of the aluminum electrode layer after firing increases, which may lead to a decrease in energy conversion efficiency. If the aluminum powder content exceeds 75% by mass, the applicability of the paste during screen printing will decrease.
- the organic vehicle included in the paste composition of the present invention one obtained by dissolving ethyl cellulose, acrylic resin, alkyd resin, etc. in a solvent is used.
- the content of the organic vehicle is preferably 20% by mass or more and 35% by mass or less. When the content of the organic vehicle is less than 20% by mass or exceeds 35% by mass, the printability of the paste decreases.
- the paste composition of the present invention may contain glass frit.
- the glass frit content is preferably 5.0% by mass or less. Glass frit is not directly related to the deformation, BSF effect and energy conversion efficiency of p-type silicon semiconductor, but is added to improve the adhesion between the sintered aluminum electrode layer and p-type silicon semiconductor substrate. It is a thing. If the content of glass frit exceeds 5.0% by mass, there is a risk of glass praying.
- Examples of the glass frit included in the paste composition of the present invention include SiO-BiO-PbO.
- B O -SiO- Bi O system B O-SiO- ZnO system
- Examples include the 2 3 2 2 3 2 3 2 2 3 2 system.
- a solar cell element according to one embodiment of the present invention has a cross-sectional structure shown in FIG. 1, and aluminum as a back electrode formed on the back side of p-type silicon semiconductor substrate 1-
- the volume electrode layer 8 contains carbon particles.
- an organic vehicle in which ethyl cellulose is dissolved in a glycol ether organic solvent is coated with aluminum powder and a B 2 O—SiO—PbO glass frit.
- the aluminum powder has a spherical shape with an average particle diameter of 2 to 20 / ⁇ ⁇ , or a spherical shape from the viewpoint of ensuring reactivity with the p-type silicon semiconductor substrate, coating properties, and uniformity of the coating film.
- a powder composed of particles having a close shape was used.
- the p-type silicon semiconductor substrate on which the paste has been printed After drying the p-type silicon semiconductor substrate on which the paste has been printed, it is heated in an infrared firing furnace at a temperature increase rate of 400 ° CZ in an air atmosphere and maintained at a temperature of 710 to 720 ° C for 30 seconds. Firing was carried out under the conditions. After firing, cooling was performed to obtain each sample in which an aluminum electrode layer 8 serving as a back electrode was formed on a p-type silicon semiconductor substrate 1 as shown in FIG.
- the amount of warpage of the p-type silicon semiconductor substrate after the baking with the aluminum electrode layer formed is indicated by arrows at one end of the four corners of the substrate with the aluminum electrode layer facing upward as shown in FIG. Evaluation was performed by measuring the amount of lifting (including the thickness of the substrate) X of one end located at the opposite corner while holding the substrate as shown. The amount of lift X is shown in “Warpage (mm)” in Table 2.
- the surface resistance of the aluminum electrode layer was measured with a 4-terminal surface resistance measuring device (RG-5 type sheet resistance measuring device manufactured by Nabson).
- the measurement conditions were a voltage of 4 mV, a current of 100 mA, and a load applied to the surface of 200 grf (l. 96N).
- the measured values are shown in the electrode layer surface resistance ( ⁇ inlet) in Table 1.
- the ⁇ -type silicon semiconductor substrate on which the aluminum electrode layer is formed is immersed in an aqueous hydrochloric acid solution to dissolve and remove the aluminum electrode layer 8, and then the ⁇ -type silicon on which the ⁇ + layer 7 is formed.
- the surface resistance of the semiconductor substrate 1 was measured with a 4-terminal surface resistance measuring instrument. The measured values are shown in Table 1 as ⁇ + layer surface resistance ( ⁇ port).
- the example can maintain the p-layer surface resistance ( ⁇ port), while keeping the amount of warpage low, and the electrode layer surface resistance ( ⁇ / port) is also small. Power that can be done.
- the paste composition of the present invention can prevent warping or cracking of the p-type silicon semiconductor substrate even when applied on the p-type silicon semiconductor substrate and baked, and the composition In a solar cell element with electrodes formed using, high BSF effect, high V, and energy conversion efficiency can be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
より薄いシリコン半導体基板を用いても、反りまたは割れが発生することを防止することができるとともに、高いBSF効果と高いエネルギー変換効率とを達成することが可能なペースト組成物と、その組成物を用いて形成された電極を備えた太陽電池素子を提供する。ペースト組成物は、p型シリコン半導体基板(1)の上にアルミニウム電極層(8)を形成するためのペースト組成物であって、アルミニウム粉末と、有機質ビヒクルと、炭素粉末とを含む。太陽電池素子は、上述の特徴を有するペースト組成物をp型シリコン半導体基板(1)の上に塗布した後、焼成することにより形成したアルミニウム電極層(8)を備える。アルミニウム電極層(8)は炭素粒子を含む。
Description
明 細 書
ペースト組成物およびそれを用いた太陽電池素子
技術分野
[0001] この発明は、一般的にはペースト組成物およびそれを用いた太陽電池素子に関し
、特定的には、結晶系シリコン太陽電池を構成する p型シリコン半導体基板の上に裏 面アルミニウム電極を形成する際に用いられるペースト組成物、およびそれを用いた 太陽電池素子に関するものである。
背景技術
[0002] 太陽電池は、安全でかつ環境負荷の少ないクリーンエネルギーとしてより広範囲に 実用化が望まれている。特に、シリコン半導体基板を用いて素子を構成する太陽電 池の普及を図るためには軽量ィ匕と低コストィ匕を進めることが必要とされている。この要 求に応じて太陽電池素子の厚みを薄くするために研究開発が重ねられて 、る。
[0003] 図 1は、太陽電池素子の一般的な断面構造を模式的に示す図である。
[0004] 図 1に示すように、厚み力 00〜600 μ mの ρ型シリコン半導体基板 1の受光面側 には、厚みが 0. 3〜0. 5 mの n型不純物層 2、反射防止膜 3およびグリッド電極 4 が順に形成されている。
[0005] p型シリコン半導体基板 1の裏面側には、裏面電極としてアルミニウム電極層 8が形 成されている。アルミニウム電極層 8は、アルミニウム焼結層 5とアルミニウムシリコン混 合層 6とから構成される。 p型シリコン半導体基板 1の裏面にアルミニウムを含むぺー ストを塗布して焼成することにより、アルミニウム焼結層 5とアルミニウムシリコン混合層 6が形成されると同時に、 p型シリコン半導体基板 1中にアルミニウムが拡散することに よって p+層(または p++層) 7が形成される。この p+層 7が存在することによって、いわゆ る BSF (Back Surface Field)の効果が得られ、 p型半導体基板 1内で生成したキャリア の収集効率を高めることができる。すなわち、 p型シリコン半導体基板 1内で生成した 少数キャリアのうち、裏面電極に向力うキャリアは、 P+層 7が内部電界を形成し障壁と なることによって表面方向に反発され、表面電極で光電流として有効に収集され、結 果として光起電力と光電流が増カロして変換効率を高めることができる。
[0006] アルミニウム電極層を形成するためのアルミニウム含有ペーストの塗布はスクリーン 印刷法を用いて行われ、その焼成は酸ィ匕性雰囲気中で行われるのが一般的である 。所望の BSF効果を得るためには、アルミニウム含有ペーストを厚く塗布して焼成す る必要がある。具体的には、シリコン半導体基板の全面にアルミニウム含有ペースト を 40〜70 /ζ πιの厚みで塗布して焼成しないと、 BSF効果が十分でなぐ変換効率を 高めることができない。
[0007] しかし、 BSF効果をもたらす ρ+層の形成と同時に、アルミニウム電極層も必要以上 に厚く形成されてしまう。このため、太陽電池素子の厚みを薄くするためにシリコン半 導体基板の厚みを 300 m以下まで薄くすると、半導体基板の厚みに対するアルミ -ゥム電極層の厚みの比率が大きくなる。その結果、アルミニウム電極層を形成する ための焼成温度から常温に冷却する際に、アルミニウムまたはアルミニウムシリコン混 合物とシリコンとの間の熱膨張係数の差に起因して内部応力が発生することによって 半導体基板に反りまたは割れが生じるという問題があった。
[0008] したがって、従来の太陽電池素子の製造方法では、太陽電池素子の薄型化の要 求に応じてシリコン半導体基板の厚みを 300 μ m以下に薄くする場合に問題があつ た。
[0009] このような問題を解決するために、いくつかの方法が提案されている。
[0010] 半導体基板上に裏面電極を形成した後に、この裏面電極の表面を厚み方向に一 部エッチングする方法力 たとえば特開 2002— 353476号公報 (特許文献 1)で提 案されている。しかし、この方法では製造プロセスが複雑になる上に、焼成時におけ る反りまたは割れの発生を防止することができないという問題があった。
[0011] また、半導体基板の裏面全体にアルミニウム含有ペーストをまず薄く塗布し、その 上力 厚くしたい部分に再度アルミニウム含有ペーストを塗布した後、焼成することに より、半導体基板の裏面に 2種以上の厚みで裏面電極を形成する方法が、たとえば、 特開 2002— 217435号公報 (特許文献 2)で提案されている。半導体基板の裏面に 裏面電極を格子状に形成する方法が、たとえば、特開 2002— 141533号公報 (特 許文献 3)で提案されている。半導体基板の裏面に裏面電極を厚みの異なるストライ プ状に形成する方法が、たとえば、特開 2002— 141534号公報 (特許文献 4)で提
案されている。半導体基板の裏面に裏面電極を矩形状に形成する方法が、たとえば
、特開 2002— 141546号公報 (特許文献 5)で提案されている。しかし、これらのい ずれの方法によっても形成される BSF効果をもたらす p+層が不均一となり、変換効率 の低下を招くという問題があった。
[0012] さらに、所望の BSF効果を確保しつつアルミニウム電極層を薄くすることが可能な 導電性ペーストの組成物として、アルミニウム粉末、ガラスフリット、有機質ビヒクルお よびアルミニウム含有有機化合物を含むもの力 たとえば、特開 2000— 90734号公 報 (特許文献 6)で提案されている。し力しながら、この導電性ペーストを用いることに より、ある一定の太陽電池特性を確保しつつ塗布量を減らして裏面電極層を薄くし、 p型シリコン半導体基板に生じる反り量を低減しているが、充分な BSF効果を得るた めに導電性ペーストの塗布量を減らさな 、で、反り量を低減することはできな 、。
[0013] そこで、熱膨張率がアルミニウムよりも小さぐかつ、溶融温度、軟化温度および分 解温度の!/、ずれかがアルミニウムの融点よりも高 、無機化合物と、アルミニウム粉末 および有機質ビヒクルを含むペースト組成物力 たとえば、特開 2003— 223813号 公報 (特許文献 7)で提案されている。しかし、無機化合物の添加量を増すと、焼成時 における反りまたは割れの発生をさらに抑制することができるものの、アルミニウム電 極層の表面抵抗が増大し、電極間のオーム抵抗が増加して太陽光の照射で生じた エネルギーを有効に取り出すことができず、エネルギー変換効率の低下を招くという 問題があった。
特許文献 1:特開 2002— 353476号公報
特許文献 2 :特開 2002— 217435号公報
特許文献 3 :特開 2002— 141533号公報
特許文献 4:特開 2002— 141534号公報
特許文献 5 :特開 2002— 141546号公報
特許文献 6:特開 2000 - 90734号公報
特許文献 7:特開 2003 - 223813号公報
発明の開示
発明が解決しょうとする課題
[0014] そこで、この発明の目的は、上述の問題を解決することであり、より薄いシリコン半導 体基板を用いても、反りまたは割れが発生することを防止することができるとともに、 高 、BSF効果と高 、エネルギー変換効率とを達成することが可能なペースト組成物 と、その組成物を用いて形成された電極を備えた太陽電池素子を提供することであ る。
課題を解決するための手段
[0015] 本発明者らは、従来技術の問題点を解決するために鋭意研究を重ねた結果、特定 の組成を有するペースト組成物を使用することにより、上記の目的を達成できることを 見出した。この知見に基づいて、本発明に従ったペースト組成物は、次のような特徴 を備えている。
[0016] この発明に従ったペースト組成物は、 p型シリコン半導体基板の上に電極を形成す るためのペースト組成物であって、アルミニウム粉末と、有機質ビヒクルと、炭素粉末 とを含む。
[0017] 好ましくは、この発明のペースト組成物は、ガラスフリットをさらに含む。
[0018] また、好ましくは、この発明のペースト組成物は、炭素粉末を 0. 1質量%以上 18質 量%以下含む。
[0019] さらに好ましくは、この発明のペースト組成物は、アルミニウム粉末を 60質量%以上 75質量%以下、有機質ビヒクルを 20質量%以上 35質量%以下、炭素粉末を 0. 1質 量%以上 18質量%以下含む。
[0020] ガラスフリットを含む場合、好ましくは、この発明のペースト組成物は、アルミニウム 粉末を 60質量%以上 75質量%以下、有機質ビヒクルを 20質量%以上 30質量%以 下、炭素粉末を 0. 1質量%以上 18質量%以下、ガラスフリットを 5. 0質量%以下含 む。
[0021] この発明のペースト組成物において、炭素粉末は、カーボンブラックであるのが好 ましい。
[0022] さらに、この発明のペースト糸且成物において、炭素粉末の平均粒径は、 10 μ m以 下であるのが好ましい。
[0023] そしてさらに、この発明のペースト糸且成物において、炭素粉末の平均粒径は、 0. 5
μ m以下であるのが好ましい。
[0024] この発明のペースト糸且成物において、炭素粉末の平均粒径が 0. 5 μ m以下である 場合には、炭素粉末を 0. 3質量%以上 6質量%以下含むのが好ましい。
[0025] この発明に従った太陽電池素子は、上述の特徴を有するペースト糸且成物を p型シリ コン半導体基板の上に塗布した後、焼成することにより形成した電極を備える。
[0026] この発明の別の局面に従った太陽電池素子は、アルミニウム電極層を備え、このァ ルミ-ゥム電極層が炭素粒子を含む。
発明の効果
[0027] 以上のように、この発明によれば、炭素粉末を含むペースト組成物を塗布した p型 シリコン半導体基板を焼成して電極を形成する際に、 p型シリコン半導体基板に反り または割れが発生することを防止することができるとともに、その組成物を用いて形成 された電極を備えた太陽電池素子にぉ 、て、高 、BSF効果と高 、エネルギー変換 効率とを達成することができる。
図面の簡単な説明
[0028] [図 1]一つの実施の形態として本発明が適用される太陽電池素子の一般的な断面構 造を模式的に示す図である。
[図 2]実施例と従来例においてアルミニウム電極層を形成した焼成後の p型シリコン半 導体基板の反り量を測定する方法を模式的に示す図である。
符号の説明
[0029] l :p型シリコン半導体基板、 2 :n型不純物層、 3 :反射防止膜、 4 :グリッド電極、 5 : アルミニウム焼結層、 6 :アルミニウムシリコン混合層、 7 :p+層、 8 :アルミニウム電極層
発明を実施するための最良の形態
[0030] この発明のペースト組成物は、アルミニウム粉末、有機質ビヒクルに加えて、さらに 炭素粉末を含有することを特徴としている。炭素粉末の熱膨張係数は、結晶構造等 により異なるがおよそ 0. 5〜: LO X 10_6/°Cであり、アルミニウム熱膨張係数 23. 5 X 10_6Z°Cよりも小さい。また、炭素粉末の電気伝導率は、無機化合物粉末またはァ
ルミ-ゥム含有有機化合物粉末よりも大き 、。
[0031] このような炭素粉末をペースト糸且成物に含ませることにより、炭素粉末とシリコンとの 間の熱膨張係数の差が比較的小さいので、ペーストを塗布し、焼成した後の p型シリ コン半導体の変形を抑制することができる。また、炭素粉末の電気伝導率が比較的 高 、ので、アルミニウム電極層の表面抵抗の増大を抑制することができる。
[0032] 従来、焼成後の p型シリコン半導体の変形を抑制するためには、ペーストの塗布膜 厚を薄くすること、アルミニウム含有有機化合物粉末を添加したペーストを用いること によりある一定の太陽電池特性を確保しつつペーストの塗布膜厚を薄くして裏面電 極層を薄くすること、あるいは、無機化合物粉末を添加したペーストを用いること以外 に実質的に有効な手段はな力つた。
[0033] ペーストの塗布膜厚を薄くすると、 p型シリコン半導体基板の表面より内部へのアル ミニゥムの拡散量が不十分となり、充分な BSF効果を得ることができず、結果として太 陽電池素子の特性が低下する。
[0034] 無機化合物粉末またはアルミニウム含有有機化合物粉末を添加したペーストを用 いると、アルミニウム電極層の表面抵抗が増大し、エネルギー変換効率が低下し、結 果として太陽電池素子の特性が低下する。
[0035] しかし、この発明では、アルミニウム電極層の表面抵抗が増大することがな 、ので、 エネルギー変換効率の低下を招く恐れがない。また、ペーストの塗布膜厚を薄くしな くても、焼成後の p型シリコン半導体基板の変形を抑制することができるため、充分な BSF効果を得ることができる。
[0036] 本発明のペースト組成物に含められる炭素粉末としては、人造黒鉛粉、活性炭また はカーボンブラック等の他、炭素繊維、ガラス状炭素等のいずれの材料も好適に使 用することができる。
[0037] 本発明のペースト糸且成物に含められる炭素粉末の含有量は、 0. 1質量%以上 18 質量%であることが好ましい。炭素粉末の含有量が 0. 1質量%未満では、焼成後の p型シリコン半導体基板の変形を抑制するほどの十分な添加効果を得ることができな い。炭素粉末の含有量が 18質量0 /0を越えると、スクリーン印刷等におけるペーストの 塗布性が低下する。
[0038] 本発明のペースト組成物に含められる炭素粉末の平均粒径は、好ましくは 10 μ m 以下、さらに好ましくは 1 μ m以下、より好ましくは 0. 5 m以下である。炭素粉末の 平均粒径が、 10 mを越えると、ペーストの焼成時に形成されるアルミニウム電極層 中に存在する炭素粒子の数が少なくなるため、焼成後の p型シリコン半導体基板の 変形を抑制するほどの十分な添加効果を得ることができない。
[0039] 焼成後の p型シリコン半導体基板の変形 (反り)および電極層表面抵抗をバランス 良く低減させるには、炭素粉末の平均粒径を 0. 以下、炭素粉末の含有量を 0 . 3質量%以上 6質量%以下にすればよい。このようにすることにより、微細な炭素粉 末が効果的にアルミニウム電極層中に分散して含まれる。
[0040] 炭素粉末の平均粒径の下限値は特に限定されないが、平均粒径の減少とともに増 加する比表面積が 20000m2/gを越えるとペーストの粘度が上昇し、スクリーン印刷 時におけるペーストの塗布性が低下する。
[0041] また、本発明のペースト組成物に含められるアルミニウム粉末の含有量は、 60質量 %以上 75質量%以下であることが好まし 、。アルミニウム粉末の含有量が 60質量% 未満では、焼成後のアルミニウム電極層の表面抵抗が増大し、エネルギー変換効率 の低下を招く恐れがある。アルミニウム粉末の含有量が 75質量%を越えると、スクリ ーン印刷時におけるペーストの塗布性が低下する。
[0042] 本発明のペースト組成物に含められる有機質ビヒクルとしては、ェチルセルロース、 アクリル榭脂、アルキッド榭脂等を溶剤に溶解したものが使用される。有機質ビヒクル の含有量は、 20質量%以上 35質量%以下であることが好ましい。有機質ビヒクルの 含有量が 20質量%未満になると、または 35質量%を越えると、ペーストの印刷性が 低下する。
[0043] さらに、本発明のペースト組成物はガラスフリットを含んでもよい。ガラスフリットの含 有量は、 5. 0質量%以下であるのが好ましい。ガラスフリットは、 p型シリコン半導体の 変形、 BSF効果およびエネルギー変換効率には直接関与しないが、焼成後のアルミ -ゥム電極層と p型シリコン半導体基板との密着性を向上させるために添加されるも のである。ガラスフリットの含有量が 5. 0質量%を越えると、ガラスの偏祈が生じる恐 れがある。
[0044] 本発明のペースト組成物に含められるガラスフリットとしては、 SiO— Bi O— PbO
2 2 3 系の他に、 B O -SiO— Bi O系、 B O—SiO— ZnO系、 B O—SiO—PbO
2 3 2 2 3 2 3 2 2 3 2 系等が挙げられる。
[0045] なお、この発明の一つの実施の形態としての太陽電池素子は、図 1に示される断面 構造を有し、 p型シリコン半導体基板 1の裏面側に形成される裏面電極としてのアルミ -ゥム電極層 8は炭素粒子を含む。
実施例
[0046] 以下、本発明の一つの実施例について説明する。
[0047] まず、アルミニウム粉末を 60〜75質量0 /0、ガラスフリットを 0. 3〜5. 0質量0 /0、有機 ビヒクルを 20〜30質量%の範囲内で含有するとともに、炭素粉末を表 1に示す割合 で含有する各種のペースト組成物を作製した。
[0048] 具体的には、ェチルセルロースをグリコールエーテル系有機溶剤に溶解した有機 質ビヒクルに、アルミニウム粉末と B O -SiO—PbO系のガラスフリットをカ卩え、さら
2 3 2
に表 1に示す各種の炭素粉末を加えて、周知の混合機にて混合し、ペースト組成物 を得た。
[0049] ここで、アルミニウム粉末は、 p型シリコン半導体基板との反応性の確保、塗布性、 および塗布膜の均一性の点から、平均粒径 2〜20 /ζ πιの球形、または球形に近い 形状を有する粒子からなる粉末を用いた。
[0050] 上記の各種のペースト組成物を、大きさが 2インチ(50. 8mm) X 2インチ(50. 8m m)で厚みが 280 μ mの ρ型シリコン半導体基板に、 180メッシュのスクリーン印刷版 を用いて塗布'印刷した。塗布量は、焼成後のアルミニウム電極層の厚み力 0〜50 μ mになるように設定した。
[0051] ペーストが印刷された p型シリコン半導体基板を乾燥した後、赤外線焼成炉にて、 空気雰囲気で 400°CZ分の昇温速度で加熱し、 710〜720°Cの温度で 30秒間保 持する条件で焼成した。焼成後、冷却することにより図 1に示すように p型シリコン半 導体基板 1に裏面電極となるアルミニウム電極層 8を形成した各試料を得た。
[0052] アルミニウム電極層を形成した焼成後の p型シリコン半導体基板の反り量は、焼成' 冷却後、図 2に示すようにアルミニウム電極層を上にして基板の四隅の一端を矢印で
示すように押さえて、その対角に位置する一端の浮き上がり量 (基板の厚みを含む) X を測定することによって評価した。その浮き上がり量 Xを表 2の「反り(mm)」に示した。
[0053] アルミニウム電極層の表面抵抗を、 4端子式表面抵抗測定器 (ナブソン社製 RG— 5型シート抵抗測定器)で測定した。測定条件は電圧を 4mV,電流を 100mA、表面 に与えられる荷重を 200grf (l. 96N)とした。その測定値を表 1の電極層表面抵抗( πιΩΖ口)に示す。
[0054] その後、上記のアルミニウム電極層を形成した ρ型シリコン半導体基板を塩酸水溶 液に浸漬することによって、アルミニウム電極層 8を溶解除去した後、 ρ+層 7が形成さ れた ρ型シリコン半導体基板 1の表面抵抗を、 4端子式表面抵抗測定器で測定した。 その測定値を表 1の Ρ+層表面抵抗(ΩΖ口)に示す。
[0055] [表 1]
以上に開示された実施の形態や実施例はすべての点で例示であって制限的なも
のではないと考慮されるべきである。本発明の範囲は、以上の実施の形態や実施例 ではなぐ特許請求の範囲によって示され、特許請求の範囲と均等の意味および範 囲内でのすべての修正や変形を含むものである。
産業上の利用可能性
この発明のペースト組成物は、 p型シリコン半導体基板の上に塗布して焼成しても、 p型シリコン半導体基板に反りまたは割れが発生することを防止することができるととも に、その組成物を用いて電極を形成した太陽電池素子において、高い BSF効果と高 V、エネルギー変換効率とを達成することができる。
Claims
請求の範囲
[I] p型シリコン半導体基板(1)の上に電極 (8)を形成するためのペースト組成物であ つて、アルミニウム粉末と、有機質ビヒクルと、炭素粉末とを含む、ペースト組成物。
[2] ガラスフリットをさらに含む、請求項 1に記載のペースト組成物。
[3] 炭素粉末を 0. 1質量%以上 18質量%以下含む、請求項 1に記載のペースト組成 物。
[4] アルミニウム粉末を 60質量%以上 75質量%以下、有機質ビヒクルを 20質量%以 上 35質量%以下、炭素粉末を 0. 1質量%以上 18質量%以下含む、請求項 1に記 載のペースト組成物。
[5] アルミニウム粉末を 60質量%以上 75質量%以下、有機質ビヒクルを 20質量%以 上 30質量%以下、炭素粉末を 0. 1質量%以上 18質量%以下、ガラスフリットを 5. 0 質量%以下含む、請求項 2に記載のペースト組成物。
[6] 前記炭素粉末は、カーボンブラックである、請求項 1に記載のペースト組成物。
[7] 前記炭素粉末の平均粒径は、 10 μ m以下である、請求項 1に記載のペースト組成 物。
[8] 前記炭素粉末の平均粒径は、 0. 5 μ m以下である、請求項 1に記載のペースト糸且 成物。
[9] 前記炭素粉末を 0. 3質量%以上 6質量%以下含む、請求項 8に記載のペースト組 成物。
[10] アルミニウム粉末と、有機質ビヒクルと、炭素粉末とを含むペースト組成物を ρ型シリ コン半導体基板(1)の上に塗布した後、焼成することにより形成した電極 (8)を備え た、太陽電池素子。
[I I] アルミニウム電極層 (8)を備え、前記アルミニウム電極層 (8)は炭素粒子を含む、太 陽電池素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/012301 WO2007004281A1 (ja) | 2005-07-04 | 2005-07-04 | ペースト組成物およびそれを用いた太陽電池素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/012301 WO2007004281A1 (ja) | 2005-07-04 | 2005-07-04 | ペースト組成物およびそれを用いた太陽電池素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007004281A1 true WO2007004281A1 (ja) | 2007-01-11 |
Family
ID=37604161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/012301 WO2007004281A1 (ja) | 2005-07-04 | 2005-07-04 | ペースト組成物およびそれを用いた太陽電池素子 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007004281A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004134775A (ja) * | 2002-09-19 | 2004-04-30 | Murata Mfg Co Ltd | 導電性ペースト |
JP2004303463A (ja) * | 2003-03-28 | 2004-10-28 | Sharp Corp | 色素増感型太陽電池モジュール及びその製造方法 |
JP2005079031A (ja) * | 2003-09-02 | 2005-03-24 | Toin Gakuen | 光充電可能な二次電池及び電気化学キャパシタ |
-
2005
- 2005-07-04 WO PCT/JP2005/012301 patent/WO2007004281A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004134775A (ja) * | 2002-09-19 | 2004-04-30 | Murata Mfg Co Ltd | 導電性ペースト |
JP2004303463A (ja) * | 2003-03-28 | 2004-10-28 | Sharp Corp | 色素増感型太陽電池モジュール及びその製造方法 |
JP2005079031A (ja) * | 2003-09-02 | 2005-03-24 | Toin Gakuen | 光充電可能な二次電池及び電気化学キャパシタ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3910072B2 (ja) | ペースト組成物およびそれを用いた太陽電池 | |
JP4802097B2 (ja) | ペースト組成物およびそれを用いた太陽電池素子 | |
US9224888B2 (en) | Solar cell and solar-cell module | |
EP2417609B1 (en) | Paste and solar cell using the same | |
JP2017063205A (ja) | ドープされたシリコンインクから形成されたドープされた表面接点を有するシリコン基体及び相応する方法 | |
JP6350279B2 (ja) | 塗布型材料、太陽電池素子及び電界効果パッシベーション膜付シリコン基板 | |
CN103247715B (zh) | 太阳能电池及其制造方法 | |
KR20090081864A (ko) | 태양 전지 및 이의 제조 방법 | |
KR101873563B1 (ko) | 태양 전지 셀의 제조 방법 | |
WO2006103882A1 (ja) | ペースト組成物、電極およびそれを備えた太陽電池素子 | |
JP5991945B2 (ja) | 太陽電池および太陽電池モジュール | |
US10483412B2 (en) | High efficiency local back electrode aluminum paste for crystalline silicon solar cells and its application in PERC cells | |
TW201532302A (zh) | 形成不純物擴散層的組成物、形成n型擴散層的組成物、n型擴散層的製造方法、形成p型擴散層的組成物、p型擴散層的製造方法及太陽能電池的製造方法 | |
JP4468494B2 (ja) | 太陽電池及び太陽電池の製造方法 | |
JP4668523B2 (ja) | 太陽電池素子およびその製造方法 | |
JP2008159912A (ja) | 光電変換素子用導電性ペーストの作製方法、光電変換素子、および光電変換素子の作製方法 | |
JP2005317898A (ja) | ペースト組成物およびそれを用いた太陽電池素子 | |
WO2007004281A1 (ja) | ペースト組成物およびそれを用いた太陽電池素子 | |
JP2018016511A (ja) | 保護層形成用組成物、太陽電池素子、太陽電池素子の製造方法及び太陽電池 | |
JP6434310B2 (ja) | パッシベーション膜、塗布型材料、太陽電池素子及びパッシベーション膜付シリコン基板 | |
JP5567785B2 (ja) | 導電性組成物及びそれを用いた太陽電池の製造方法 | |
JP4903531B2 (ja) | 太陽電池素子 | |
JP2009295913A (ja) | 太陽電池およびその製造方法 | |
JP4627511B2 (ja) | 光電変換素子および光電変換素子の作製方法 | |
US20110212564A1 (en) | Method for producing photovoltaic cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05765309 Country of ref document: EP Kind code of ref document: A1 |